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ABSTRACT 
Power transformer is a critical asset in electrical transmission and distribution 
networks that need to be carefully monitored during its entire operational life. 
Considering the fact that a significant number of worldwide in-service power 
transformers have approached the end of expected operational life, utilities have 
adopted various transformer condition-based maintenance techniques to avoid any 
possible catastrophic failure of the equipment. Pre-mature ageing of power 
transformers mainly depends on accumulated impacts of three aging processes, 
including pyrolysis, hydrolysis and oxidation. The extent of transformer insulation 
system ageing can be quantified through measuring several diagnostic indicators such 
as interfacial tension number of the insulating oil which has a strong correlation with 
the number of transformer operating years. Moisture and furanic compounds 
generated due to paper insulation degradation are indicators for solid insulation 
ageing. While several papers investigating various estimation models for transformer 
remnant life can be found in the literatures, all presented models are solely based on 
static expert system rules without taking into account the adaptive modification of these 
rules based on accumulated history and experience of the practical measurements. This 
paper introduces a new adaptive neuro fuzzy logic-based model to estimate the life of a 
power transformer based on the values of insulating oil interfacial tension number, 
furan content in oil and the moisture content within the cellulose insulation. Also, an 
integrated asset management decision model is proposed. Results of the proposed 
model are validated against practical data collected from utility and industry power 
transformers of different ratings, designs, operating conditions and lifespans. 
Index Terms  —  power transformers, condition monitoring, asset management and 
life estimation, adaptive neuro fuzzy logic inference system. 

 
1  INTRODUCTION 

The day-by-day increase in load demand along with the 
significant number of aged power transformers have led to high 
failure rate during the last two decades [1]. Statistic survey 
conducted by the IEEE indicates that during a 16-year period, 
10% of oil-immersed power transformers in a fleet are expected 
to exhibit a catastrophic failure [2]. This motivated worldwide 
utilities to adopt more reliable condition-based maintenance 
techniques rather than time-based maintenance schemes [3]. A 
CIGRE survey indicates failure rate of transformers owing to 
issues originating from the insulation system is 11% [4]. Thus, in 
order to formulate a reliable condition-based maintenance 
strategy, comprehensive understanding of insulation system 
ageing mechanism and quantifying the extent of its integrity 
are inevitable. Ageing of the transformer insulation system is 
attributed to several factors, including temperature, moisture 
content, and oxygen concentration along with electrical and 
mechanical stresses within the transformer [5]. Although 
insulation system ageing is an unavoidable process, exposure 

of transformer to excessive levels of above mentioned ageing 
contributors results in accelerated aging. Limitation of 
economic resources emphasizes the necessity for utilities to 
adopt reliable and cost effective models for transformer life 
estimation and asset management decision. Some models were 
put forward by IEEE [6] and IEC [7] organizations to estimate 
remaining life of transformers based on the operating 
temperature of the transformer insulation system. Although the 
advancement of online condition monitoring technologies have 
facilitated utilities to collate temperature data of their assets in 
a more practicable way; still, there is no confident perception 
of temperature distribution within transformers. Furthermore, a 
lifetime estimation model based on the insulation temperature 
does not reflect the impact of other ageing factors such as 
oxygen and moisture, which leads to less credibility and 
reliability of that model. A power transformer asset 
management decision model was proposed in [2], which is 
based on fuzzy logic inference system. In spite of being a 
comprehensive model for the purpose of asset management 
decision, some criticisms can be directed toward the 
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applicability of such model on a regular basis as this model 
includes some parameters that are not measured during 
transformer routine testing. Furthermore, in order to measure 
some of the parameters deployed in this model, such as sweep 
frequency response analysis, transformer needs to be taken out 
of service. Moreover, all developed models in the literature for 
power transformer remnant life estimation and asset 
management decision are based on either static artificial neural 
network models or fuzzy logic rules without giving much 
attention to enhancing these rules based on the future 
measurements and feedback of the models outcomes. This 
paper is aimed at introducing an age estimation model for 
power transformers, developed by utilizing adaptive neuro 
fuzzy logic inference system (ANFIS) that can facilitate the 
improvement of model accuracy through the continuous 
evaluations of the measured parameters and the model’s 
outcome. The parameters used in this model are routinely 
measured diagnostic indicators, including interfacial tension 
number, 2-Furfuraldehyde (2-FAL) content in oil and moisture 
content within cellulose insulation, which are strongly 
correlated with the transformer aging. Furthermore, an 
integrated asset management decision model is developed 
based on diagnostic parameters that are frequently measured 
during routine inspections. 

2  TRANSFORMER AGEING MECHANISM 
It is widely accepted that the health condition of a 

transformer is highly dependent on the overall health of its 
insulation system. Degradation of the oil-immersed 
transformer insulation system comprised of paper and 
electrical insulating oil occurs through complex and 
sophisticated multi-factorial process due to interdependent 
relation between ageing factors and their additive effect [8]. 
The accumulative effect of temperature, moisture, acids and 
oxygen within a transformer is identified as the major cause of 
transformer aging mechanism. As insulation system ages, 
several by-products are generated. Acids are one of these by-
products, resulted from both oil oxidation and cellulose 
degradation [9]. Despite the fact that oil oxidation produces 
several types of acids, only some specific acid types having 
low solubility in oil are aggressive and accelerate the aging 
rate of paper insulation [10]. Cellulose insulation acid 
hydrolysis also yields another aging by-product recognized as 
furanic compounds [11]. Furans are one of the diagnostic tools 
used in evaluating the health level of transformer paper 
insulation. In spite of the availability of other cellulose 
degradation indicators, such as dissolved gas analysis (through 
carbon-oxide concentrations and their ratio) [12], furan 
content in the oil is widely accepted as an indicator to reflect 
the degree of polymerization (DP) of cellulosic chain [11, 13].  

Table 1. Degree of polymerization and 2-FAL concentration correlation 

DP Value 2-FAL (ppm) Significance 

1200-700 0-0.1 healthy insulation 
700-450 0.1-1.0 moderate deterioration 
450-250 1-10 extensive deterioration 

<250 >10 end of life 

Extensive research was conducted to establish the correlation 
between 2-Furfuraldehyde (2-FAL) furanic compound, which 
has higher production rate than other furan compounds and DP 

[5]. The relationship between DP and 2-FAL concentration in 
the oil along with their significance in the interpretation of 
paper insulation ageing level is highlighted in table 1 [14]. 

As another decisive contributor to the insulation system 
degradation, moisture content plays an integral role in the 
reliability of transformer operation. Moisture content within a 
transformer can be sourced by several means, such as 
penetration of moisture due to atmospheric leaks, paper or 
pressboard degradation, and insufficient drying out of 
cellulose insulation throughout manufacturing process [8]. 
Because of hygroscopic nature of paper, cellulose insulation 
tends to absorb almost all existing moisture within a 
transformer. Moisture accelerates the ageing rate of paper 
insulation, triggers partial discharge between windings and 
may even cause flashover within the transformer [5, 15]. 
Considering detrimental effect of moisture on the insulation 
system of a transformer, not only fastidious drying-out process 
during manufacturing procedure should be conducted, but also 
excessive moisture content of in-service suspected units 
should be removed by means of on-line drying-out methods, 
such as the application of heat and vacuum, cellulose cartridge 
filters or molecular sieves [15]. A transition of moisture 
between the paper insulation and insulating oil occurs when 
the transformer operating temperature alters until an 
equilibrium status is reached [16]. Although absolute moisture 
content within transformer oil sample is measured, in parts per 
million (ppm), during routine inspection, relative saturation of 
the oil is used for determining the criticality level of the 
moisture. Relative saturation of the oil depends on oil 
temperature and indicates the capacity of the oil to hold 
moisture before it becomes saturated and free water drops are 
visible within the oil solution [17]. Utilizing moisture 
equilibrium curves [5], an estimation of the water content 
within the paper insulation can also be calculated using 
relative saturation of the oil. 

The third diagnostic indicator of transformer insulation 
system decomposition, included in the proposed model in this 
paper is the interfacial tension number of the insulating oil. 
Interfacial tension number with the unit of mN/m provides an 
indication of the level of polar contaminants and ageing by-
products within the oil solution [18]. As explained above, the 
accumulation of acids in the insulation system has a 
retroactively adverse impact on the ageing rate of 
transformers. With a strong correlation observed between the 
IFT number and acidity level of transformer oil [19], 
interfacial tension number can fully represent the contribution 
of acids to the ageing of transformer insulation system in the 
proposed model. Table 2 [8, 18] includes diagnostic 
categorization of the paper insulation moisture content and 
interfacial tension number of the insulating oil. 
Table 2. Diagnostic categorization of the paper insulation moisture content 

and IFT number of the insulating oil 
Paper Insulation 

Moisture 
Content 

(%M/DW) 

Interfacial Tension 
Number (mN/m) Significance 

0.5-1.5% >27 healthy insulation 
1.5%-2.5% 24-27 entering in medium risk zone 
2.5%-4% 18-23 entering in high risk zone 

>4% <18 entering in imminent failure zone 



 

3  TRANSFORMER LIFE MODEL 
Over the course of transformer multi-factorial ageing, 

ageing factors participate in a retrospective and synergistic 
way, making this mechanism complex. Due to this 
complexity, developing a precise mathematical model for 
insulation system degradation behavior is extremely difficult. 
In this paper, Adaptive Neuro Fuzzy Inference System 
(ANFIS) is implemented to estimate transformer life and 
provide a proper asset management decision based on some 
diagnostic parameters, which yields higher precision in the 
model output. 

The typical structure of the fuzzy inference system is 
elaborated in [14, 18, 20, 21, 26]. Fuzzy inference system is 
deployed to model systems whose rule structure is defined as 
per the perception of the user from attributes of the presented 
data. The parameters of membership functions are selected 
haphazardly with merely looking at the data. With using 
ANFIS method, one can tailor the membership functions to 
the values of input and output data in order to account for all 
their characteristics and variations. Membership functions in a 
fuzzy logic system are defined by the parameters determining 
the shape of each membership function and the interval they 
cover. On the other hand, ANFIS method enables adaptive 
adjustment of the membership functions through adjusting 
their parameters with any change in the input data. Therefore, 
in the case of condition monitoring and asset management 
decision, membership functions and fuzzy rules can be 
modified based on the variations in the input and feedback 
from output data.  

The fundamentals of neuro-adaptive learning technique are 
identical to those of artificial neural networks, ANN. 
Acquiring satisfactory results after being utilized in self-
learning as well as solving complex problems, ANN has been 
deployed in pattern recognition and trend prediction [22], [23]. 
For the proposed model in this paper, input data including 2-
FAL content in the oil, moisture content within the paper 
insulation, interfacial tension number of the oil and the actual 
age of the investigated transformers calculated based on their 
commissioning date are collated from different transformers of 
different ratings, operational conditions, lifespans and designs. 
This data is divided into two groups for training and testing, 
involving 60 and 40 sets, respectively. ANFIS method is 
employed to adjust membership functions parameters through 
the Levenberg-Marquardt back propagation-optimizing 
algorithm. Using historical data of input and output variables, 
this algorithm optimizes the parameters of membership 
functions by employing random weights which are computed 
and adapted through the learning process so as to minimize the 
error between the actual and estimated result [24]. 

Figure 1 depicts the training error in years, which is the 
difference between the actual (based on designated remnant 
operational life) and estimated age (based on above mentioned 
diagnostic parameters) of the transformers over the course of 
training. As can be seen in Figure 1, training error decreases to 
a value of 1 year at the epoch of 2000. The architecture of the 
developed ANFIS model is shown in Figure 2 in which input 
variables to the system are oil interfacial tension number, 2-
FAL content in the oil and moisture content within the paper 

insulation while the output variable is the transformer 
estimated age. 

 
Figure 1.  Training error against the number of epochs 

 
Figure 2.  The architecture of the proposed ANFIS model 

 
Figure 3.  Adapted membership functions of 2-FAL content in oil 

 
Figure 4.  Adapted membership functions of cellulose moisture content 

 
Figure 5.  Adapted membership functions of interfacial tension number 



 

As shown in the model structure of Figure 2, input variables 
are mapped through input membership functions and 
subsequently through output membership functions and their 
associated parameters into output variable. Once the training 
concludes, the outcome will be the required ANFIS-based 
model and its optimized membership functions. Adjusted bell-
shape membership functions of the proposed ANFIS-based 
model are shown in Figures 3, 4 and 5. In contrary to fuzzy 
logic models, these membership functions are optimized every 
time ANFIS training is performed which facilitates continuous 
improvement in the model’s accuracy. The entire range of 
every parameter used in the ANFIS-based model is selected 
based on the input data, while the interval covered by each 
membership function is determined by the optimized 
parameters calculated by the ANFIS training method. Figure 6 
shows graphical illustration of the automated rules associated 
with the developed ANFIS model. 

Validation of the developed model is accomplished using 
the designated testing data. As documented in Figure 7, actual 
ages of the transformers that are allocated to this set of data 
are displayed in blue circles along with the age estimated by 
the developed ANFIS-based model in red stars. The figure 
reveals a satisfactory level of precision of the proposed model. 

 
Figure 6.  Developed rules by the ANFIS method for the proposed 
transformer life estimation model 

To assess the robustness of the proposed model, another set 
of data collected from various in-service transformers is used 
to compare the transformer age estimated by the proposed 
ANFIS model with that of a model established based on fuzzy 
inference system. Actual age which is calculated based on 
commissioning date of the transformers, estimated age of the 
transformers obtained through the proposed ANFIS-based 
model, and that estimated by fuzzy logic inference system 
(FIS) model along with the estimation error of each model 
(calculated as per (1)), are listed in Table 3. 

( ) ( )% 100
( )

Age Actual Age EstimatedError
Age Actual

−
= ×                      (1) 

By comparing the results of the ANFIS and FIS models, 
one can conclude that the ANFIS-based model is able to 
estimate transformers life with much higher accuracy.  

For example, a 39-year transformer having 2-FAL content of 
5.3 (mg/kg Oil), paper moisture content of 4.6 (%M/DW) and 
IFT number of 15 (mN/m), is estimated to have 38 years of 
age by the ANIFS model with an error of 2.6%, while the 
error is 6.2% when FIS is used to estimate the age of this 
transformer. This high accuracy is referred to the optimization 
of membership functions parameters when ANFIS is 
employed. These parameters are arbitrarily determined by the 
user when FIS is employed. 

 
Figure 7.  Validation of the developed ANFIS transformer-aging model  

Table 3. Error between Actual and Estimated Life of Transformers by 
ANFIS and FIS models 
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5.3 4.6 15 39 36.6 6.2 38 2.6 
5.6 4.6 17 36 36.9 2.5 37 2.8 

5.4 4.2 17 35 36.8 5.1 35.5 1.4 

4.9 4 18 34 32.7 3.8 33.7 0.9 

5 3.3 19 32 34.8 8.8 31.3 2.2 

4.3 3.5 17 31 27.9 10 30.8 0.65 
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-li
fe
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sf
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4 3.2 18 29 27.9 3.8 27.7 4.5 

3.6 3.1 19 27 27.5 1.85 26.9 0.4 

4.1 3.3 18 27 27.9 3.3 27.7 2.6 

2.3 2.9 20 24 20.1 16.3 24.9 3.8 

3 2.7 22 22 24 9.1 23.8 8.2 

M
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e 
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1.2 2.4 25 19 15.5 18.4 17.9 5.8 

0.9 2.1 22 17 15.1 11.2 16.4 3.5 

1.7 2.3 25 17 19.1 12.4 16.9 0.6 

1.6 2 26 15 17.6 17.3 13.4 10.7 

1.3 1.9 26 12 15.1 25.8 12.1 0.8 

N
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s 1 1.8 28 10 13.2 32 10.3 3 

0.4 0.8 34 8 9.2 15 8.2 2.5 

0.05 0.9 40 7 6.1 12.9 7.45 6.4 

0.03 0.5 43 3 3.7 23.3 3.02 6.7 



 

4  ASSET MANAGEMENT DECISION MODEL 
As the parameters used in the life estimation model can 

reflect transformer’s general health condition, model shown in 
Figure 8 is established using these parameters along with 
dissolved gases in the oil, which are also measured during 
continuous routine inspection [28]. This model consists of 
several ANFIS models trained in the same procedure as 
elaborated above. In the proposed model, overall criticality of 
a transformer is determined as a result of insulating oil, paper 
insulation and electrical criticalities. Oil insulation criticality 
output indicates the extent of risk that the insulating oil poses 
to the transformer and is determined based on interfacial 
tension number, acidity level and moisture content with 
considering the effect of temperature on the moisture 
equilibrium process. 

Paper insulation and thermal criticality are determined 
based on the level of 2-FAL content in the oil, heating gases 
(ethylene C2H4 and ethane C2H6), and the quantity of carbon-
oxide concentrations in the oil measured by dissolved gas 
analysis, DGA, along with carbon-oxides ratio, CO2/CO. 
Carbon-oxides ratio can be used as an indicator of the 
excessiveness of paper insulation degradation as 
recommended by the IEC [29] and IEEE [30] standards. This 
ratio is used when carbon-oxide concentrations exceed the 
recommended limits [29, 30]. When this ratio is less than three 
or more than eleven, it indicates significant cellulose 
degradation.  

Electrical criticality is determined by considering partial 
discharge and arcing criticalities. Partial discharge activity 
within a transformer can be detected by monitoring the 
concentration of hydrogen (H2) and methane (CH4) gases 
while acetylene (C2H2) concentration is an indicator for 
sustained arcing [31]. Based on the model overall criticality 
and transformer life estimation, asset management decision 
(D) ranging between 0% (new transformer) to 100% 
(imminent risk condition) is recommended as shown in Table 
4.  

Table 5 provides a comparison between the developed asset 
management model and practical management decisions 
(assessed by expert asset management utility team). 

For instance, for the sixth case study in the imminent failure 
category in Table 5, the proposed model has revealed an asset 
management decision criticality of 99.1%, with an error of 
0.1% compared to the asset management number decided by 
an expert asset management utility team based on the provided 
diagnosing parameters. Having an oil criticality of 91%, paper 
criticality of 98%, electrical criticality of 19%, and the overall 
criticality of 99%, this transformer is categorized within the 
imminent failure zone. To elaborate more on this, very high 
oil criticality of this transformer originates form the excessive 
amount of acidity as well as moisture in the oil, which yields 
high level of moisture within the paper insulation. The IFT 
number of this transformer has entered in the imminent failure 
zone as per the diagnostic categories provided in Table 2. In 
addition, carbon-oxide concentrations are outside IEEE 
recommended limits, which together with carbon-oxides ratio 
of 12.3 reveal excessive degradation of the cellulose 
insulation. This may be attributed to the improper cooling of 
this transformer due to the formation of sludge within the oil 

solution as the IFT number drops below 22. Over time, the 
formed sludge within the oil solution deposits on the 
transformer’s internal components, resulting in reduced 
cooling efficiency of the transformer. Moreover, excessive 
degradation of this transformer is due to the extensive level of 
moisture within the paper insulation, which together with the 
acids accelerate degradation rate of the paper insulation, 
producing out-of-limits carbon-oxide concentrations. 
Electrical criticality of this transformer however is estimated 
to be at a satisfactory level as there is no evidence of partial 
discharge activity or sustained arcing within the transformer 
and Hydrogen, Methane and Acetylene concentrations are 
within the IEEE recommended limits. The overall criticality of 
this transformer along with the estimated life, 91%, provides 
asset management decision number of 99.6%. According to 
table 4, this transformer needs to be immediately taken out of 
service for an internal thorough investigation. Final decision 
on whether this transformer should be retired or scrapped is 
made based on the engineering judgment from the inspection 
outcome as well as degree of polymerization (DP) testing of 
the paper samples taken from the winding insulation. 
Table 4. Management Decisions Associated with the Proposed Model Output 

Asset Management Decision 
Model Output Management Decision 

0 % < D < 25 % • normal operation 
• normal monitoring regime 

 
25 % < D < 50 % 

 
• normal operation 
• planning diagnostics 
• specific monitoring 

 
50 % < D < 65% 

 
 
 
 
 
 
 

65% < D < 75% 
 
 
 
 
 

 
75% < D < 85% 

 
 
 
 
 

 
 

85% < D < 95% 
 
 
 
 
 
 
 
 

95% < D < 100% 

 
• operation capacity reduction (below 80%  

nominal  capacity) 
• strict overall monitoring scheme 
• more frequent sampling intervals 
• planning specific diagnostics 
• planning required remedial actions 

 
• operation capacity reduction (below 60%  

nominal capacity) 
• strict overall monitoring scheme 
• more frequent sampling intervals 
• planning specific diagnostics 
• planning required remedial actions 

• operation capacity reduction (below 50%  
nominal capacity) 

• strict overall monitoring scheme 
• more frequent sampling intervals 
• planning specific diagnostics 
• planning required remedial actions 
• deciding on relocation if justified 

• operation capacity reduction (below 50%  
nominal capacity) 

• strict online monitoring scheme 
• more frequent sampling intervals 
• planning specific diagnostics 
• planning required remedial actions 
• internal off-line detailed inspection 
• deciding on relocation or retirement 

• take transformer out of service 
• specific diagnostics with internal off-line 

detailed inspection 
• deciding on retirement or scrapping 



 

 
Figure 8.  Developed ANFIS-based asset management decision model 

Table 5. Results of the developed Asset Management Decision Model 
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isk Zone 

30 0.01 0.3 3 21 421 20 1 6 4 1 1 0.06 1 12 2 1 12 2 12 12 3 11.7 12 2.5 

40 0.01 0.9 11 54 526 9.7 7 26 16 7 7 0.08 7 42 25 1 7 13 13 14 11 14.3 14 2.1 

30 0.02 1.6 17 76 652 8.6 10 22 16 10 10 0.85 11 54 33 1 15 14 15 17 20 17.1 17 0.6 

40 0.02 0.9 12 96 1210 12.6 12 23 14 12 12 0.05 13 84 42 1 19 18 19 19 10 19.3 19 1.6 

34 0.02 0.8 9 114 2210 19.4 20 23 12 20 20 0.4 22 35 22 1 7 12 12 22 7 22.3 22 1.4 

40 0.01 1 13 212 1256 5.9 19 27 17 19 19 0.1 20 87 42 1 19 19 20 23 12 23.3 24 2.9 

M
edium

 R
isk Zone 

27 0.05 1.8 30 86 1395 16.2 12 31 18 12 12 1.2 28 20 12 1 7 6 7 30 26 30.7 30 2.3 

28 0.04 1.8 25 212 1120 5.3 19 21 16 19 19 1 30 32 22 1 6 12 12 32 25 32.4 32 1.3 

29 0.02 2.1 27 124 1283 10.3 14 25 16 14 14 1.9 32 76 22 1 23 17 23 34 36 34.3 34 0.9 

26 0.05 2.4 37 64 860 13.4 10 3 1 10 10 1 25 16 5 1 10 4 10 37 44 37 37 0 

29 0.02 0.6 7 135 1640 12.1 16 23 12 16 16 0.1 17 642 215 1 39 22 39 39 5 39 39 0 

24 0.07 2.3 41 121 973 8 12 26 12 12 12 2 29 34 14 1 8 12 12 41 45 40.8 41 0.5 

26 0.07 1.9 33 475 3280 6.9 49 4 1 49 49 1.3 49 16 22 1 5 4 5 49 27 48.8 49 0.4 

H
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isk Zone 
 42 0.01 1 13 102 1562 15.3 14 41 28 14 14 0.8 15 878 453 1 53 23 53 53 13 52.9 53 0.2 

33 0.02 1.7 22 597 5421 9.1 63 112 146 63 63 0.7 59 82 57 1 14 18 18 59 22 59.4 59 0.7 

22 0.12 2.1 51 125 980 7.8 12 10 8 12 12 0.9 14 1520 340 1 63 24 63 63 37 62.5 63 0.8 

38 0.04 1.3 16 825 2650 3.2 66 102 163 66 66 0.4 60 820 276 9 58 49 58 64 17 63.5 64 0.8 

25 0.08 1.8 37 345 3221 9.3 57 84 66 57 57 1.2 73 146 124 3 28 33 37 73 26 73.6 73 0.8 

25 0.07 2.4 47 1350 10600 7.9 54 41 21 54 54 1.2 73 980 125 1 69 23 69 74 46 76.6 74 3.5 
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25 0.07 1.9 33 322 6421 19.9 77 43 29 77 77 1.6 81 83 67 1 14 18 18 82 29 81.3 82 0.9 

19 0.17 2.5 59 214 3459 16.2 76 24 16 76 76 2.9 85 63 34 1 18 15 18 85 50 86.2 88 2 

20 0.13 3 58 660 3210 4.9 62 178 112 62 62 3.2 76 86 42 1 19 19 20 76 60 91.6 92 0.4 

18 0.18 3.6 77 543 1243 2.3 95 164 121 95 95 4.5 99 732 146 18 65 67 73 99 76 95 95 0 

15 0.22 4.6 96 25 652 26.1 5 12 8 5 5 5.7 87 1620 452 1 60 24 60 96 97 98.4 98 0.4 

17 0.21 4.2 91 364 4485 12.3 85 121 53 85 85 5.4 98 72 34 1 19 17 19 99 91 99.1 99 0.1 

15 0.24 4.2 92 645 8422 13.1 100 435 322 100 100 5.3 100 620 421 1 29 22 29 100 90 99.6 100 0.4 



 

5  CONCLUSION 
Transformer insulation system decomposition is a complex 

procedure as the involved factors in this phenomenon have 
retroactive and synergistic effect on the ageing rate of the 
insulation system. This is the main difficulty for developing 
analytical equations explaining this mechanism. The 
developed models in this paper utilize diagnostic indicators 
that are regularly measured during transformer routine 
maintenance inspection. The adaptive neuro fuzzy logic-based 
integrated model put forward in this paper for estimating the 
age, overall criticality, and consequently asset management 
decision of a power transformer can be a great contribution to 
managing power transformers life cycle. It is expected that 
with the usage of this model, condition of transformers can be 
tracked more frequently with less financial cost during their 
operational lifetime. The proposed model utilizes the least 
possible number of essential key diagnostic parameters that are 
regularly measured during transformer routine inspection. 
ANFIS model provides more accurate results when compared 
to previously suggested fuzzy inference models. It also 
facilitates adaptive modifications of the rules based on the 
model’s outcome and practical measurements. The proposed 
model can be implemented with feedback system that allows 
collecting, processing, and adapting model parameters in real 
time to continuously enhance the model accuracy and 
reliability. 
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