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The mechanical properties of carbide-derived carbons (CDCs) are computed using molecular dynamics sim-
ulations, spanning the experimental density range and synthesis temperatures. The structures consist of
nanoporous networks with continuous graphene walls enclosing the pores. Calculation of elastic constants
and simulation of tensile strain reveal a direct relationship between microstructure and elasticity, with density
and temperature inducing significant changes in the pore topology and medium-range order. CDCs have a
high elastic moduli and high ultimate tensile strengths while showing resistance to brittle fracture. This
suggests that CDCs are a promising route to achieve dense 3D graphene networks with tunable mechanical
properties.

The extremely high Young’s modulus of graphene, of
order 1 TPa, makes it an attractive starting point for the
design of structures with outstanding mechanical prop-
erties. The challenge, however, is to create a carbon net-
work which makes use of the excellent 2D mechanical
properties of graphene while maintaining 3D connectiv-
ity. Using many different techniques (see Refs. 1 and 2 for
a review), 3D graphene networks have been synthesized
across a wide density range, from as little as 0.01 g/cc3 to
as high as 1.4 g/cc,4 around 60% the density of graphite.
Over this range the Young’s modulus rises substantially,
from 100 kPa up to 10 GPa, exhibiting a strong power-
law dependence on density.5 In this work we show that
carbide-derived carbons (CDCs) are a promising addition
to the family of 3D graphene networks. Using molecular
dynamics simulations, we show that CDCs have excel-
lent mechanical properties and significantly exceed the
performance of equivalent density structures.

CDCs are nanoporous materials synthesized from a
carbide precursor where the non-carbon atoms are re-
moved via thermo-chemical treatments.6 Typically this
involves chlorination in combination with temperatures
of 400–1200 ◦C. The density and porosity of CDCs are
tunable via the choice of precursor and synthesis temper-
ature and a wide number of precursor carbides have been
studied.6–11 As shown in Table I, CDCs have a density
in the range 0.5–1.1 g/cc. The CDC literature is ex-
tensive and is dominated by the study of porosity and
adsorption, as these properties enable numerous applica-
tions such as air and water filtering, energy storage and
gas separation.6,12–19 However, there are only a few ex-
perimental studies of CDCs from a mechanical point of
view,20–22 and we are not aware of any simulations of
mechanical properties.

A variety of computational methods have been de-
veloped to produce CDC structures (see Ref. 23 for a
review), ranging from simple geometric models24 to so-
phisticated simulation-based techniques employing either
monte-carlo atomistic reconstruction25–29 or direct gen-
eration of coordinates by molecular dynamics.30–35 Re-
cently we generated TiC-CDC structures using an An-
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nealed Molecular Dynamics (AMD) approach and found
excellent agreement with experiments.31 In a consider-
able improvement over previous studies, the AMD simu-
lations predicted temperature-driven graphitization, ra-
dial distribution functions and absorption isotherms. A
key component of the approach is using the transferable
environment-dependent interaction potential (EDIP) for
carbon,36 which provides an excellent description of
the competing hybridizations37,38 and disordered carbon
properties.39,40

In this Letter we compute the mechanical properties
of CDCs with densities spanning the experimental range,
and for each structure we determine the elastic constants
and stress-strain curves. Figure 1 shows 14 structures
created using our AMD approach. The CDC structures
develop via long-time (3 ns) annealing of a face-centered-
cubic lattice precursor with densities between 0.5 and
1.1 g/cc. To account for the effect of temperature on the
microstructure each structure is annealed separately at
low and high temperature. The simulation temperatures
of Tlow = 2000 K and Thigh = 4000 K correspond ap-
proximately to experimental synthesis temperatures of
800 and 1200 ◦C, respectively, following an Arrhenius
approach to bridge the large timescale gap between ex-
periments and simulations.31 Simulations are performed
using LAMMPS,41 with an NVE ensemble, a timestep of
0.2 fs and the Bussi thermostat. All structures contain
32,000 atoms and the atomic interactions are described
using EDIP. A sensitivity analysis involving twenty 8,788-
atom structures confirms that the results are statistically
robust; see Supplementary Material for details.

Fig. 1 highlights the significant effect of temperature

TABLE I. Common carbide precursors and the corresponding
carbide-derived carbon (CDC) density in g/cc. Density values
calculated assuming a conformal transformation where the
original shape and volume of the precursor is maintained.

Ta2C Fe3C Ti3AlC2 Mo2C B4C Ti3SiC2 BaC2

0.483 0.516 0.520 0.541 0.548 0.552 0.558
Al4C3 SrC2 Ti2AlC ZrC CaC4 Cr3C2 NbC
0.591 0.686 0.733 0.783 0.832 0.891 0.895
TaC WC SiC TiC MoC W2C VC
0.909 0.960 0.961 0.989 1.018 1.056 1.101
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FIG. 1. Simulated CDC structures (2 nm cross-sections) obtained by annealing at, a) Thigh, and b) Tlow. Red, green and blue
spheres denote sp, sp2 and sp3 bonded atoms, respectively. All structures contain 32,000 atoms, and box lengths decrease from
10.9 nm (0.5 g/cc) to 8.3 nm (1.1 g/cc).

and density on CDCs. While all the structures are
highly sp2-bonded, temperature drives significant differ-
ences in their microstructures. At Tlow, all the struc-
tures remain disordered, featuring small and convoluted
graphene platelets often linked to each other by sp3

bonds. When the density increases, the pores become
smaller and there are more links among platelets. At
Thigh, all the structures become more ordered, with large,
planar graphene platelets seen at low density. As the
density increases, graphene layers start to stack, giving
rise to small graphitic domains. For the highest den-
sity of 1.1 g/cc, we observe up to four stacked layers as
shown in the right-most image in Fig. 1(a). The tran-
sition from highly disordered carbon to stacked layers is
well known experimentally,8,42,43 and the close correspon-
dence between simulation and experiments is extensively
discussed for the specific case of TiC-CDCs (density of
0.98 g/cc) in Ref. 31.

To quantify the degree of order and graphitization, co-
ordination fractions and ring statistics are computed for
all structures (full details in supplementary material).
For the Thigh structures the sp, sp2 and sp3 fractions
are independent of density, with mean values of 1.4%,
98% and 0.6%, respectively. The small percentage of sp
atoms indicates that the structures are continuous 3D
networks, since sp atoms occur primarily at the edges of
graphene platelets. In addition, the low sp3 fraction in-
dicates that cross-linking between graphene fragments is
minimal. At Tlow the sp2 fraction decreases linearly from
90% at 0.5 g/cc to 84% at 1.1 g/cc, while the sp3 frac-
tion increases by a similar amount (from 4% to 10%) over
the same range. This indicates considerable amounts of
cross-linking between small graphene fragments, creat-
ing small pores. Ring statistics characterize the topology
of the network and reveal no density dependence. The

Thigh structures are dominated by hexagons, typical of
graphene, while the Tlow structures contain appreciable
numbers of pentagons and heptagons, with excess of the
former. This excess produces positive curvature which
encloses the pores, as seen in Fig. 1(b).

For each of the structures in Fig. 1 we compute the
elastic constant tensor Cij by finite difference (see sup-
plementary material for details). Each element of the
elastic constant tensor Cij is calculated as the ratio be-
tween the stress and the strain in the corresponding di-
rection. For the Tlow structures the elements Cij have
the symmetry of a cubic material and can be character-
ized by the principal elastic constants C11, C12, and C44.
Consistent with visual inspection of Fig. 1(a), the Cij for
the Thigh structures exhibit some anisotropy. However,
this is a consequence of the finite size of our simulations
and the relatively small number of domains.

Using the elastic constants and the Hill formulae
[Eqs. (S1)-(S9) in supplementary material] we determine
the bulk modulus, shear modulus, Young’s modulus and
Poisson’s ratio. As shown in Fig. 2, the moduli vary
strongly with density and temperature. For example, the
bulk and shear moduli for the Tlow structures increase by
nearly a factor of six over the range 0.5 to 1.1 g/cc. The
Thigh structures also exhibit a significant increase, vary-
ing by a factor of three to four. This tunability shows
how CDCs can be selected for a particular mechanical
application by the appropriate choice of carbide precur-
sor and synthesis temperature.

The sensitivity of the elastic properties to density and
temperature reflects the spectrum of CDC microstruc-
tures. At low densities the moduli values are similar
at both temperatures, while large differences occur at
high densities due to the stacked graphene layers. These
graphitic domains can be compressed by narrowing the
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FIG. 2. Density and temperature variation of a) bulk modulus, b) shear modulus, c) Young’s modulus (averaged across
the Cartesian directions), d) specific modulus, in units of GPa/(g/cc), e) Poisson’s ratio and f) ultimate tensile strength.
Experimental values of the Young’s modulus for SiC-CDC and TiC-CDC20,21,44 are shown as black circles in panel c).

interlayer distance, while the pore walls in the microp-
orous structures at Tlow provide resistance to deforma-
tion. The microstructural differences similarly explain
the difference in shear moduli as the graphene layers can
slide over each other. Figure 2 shows that Poisson’s ra-
tio for the Tlow structures is roughly constant and equal
to 0.25, as expected for an isotropic material. Due to
the anisotropy and system-size effects, values for Thigh

structures fluctuate between 0.11 and 0.20, similar to ex-
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FIG. 3. Stress-strain curve for the 1.0 g/cc CDC annealed at
Thigh. Snapshots of a 1.5 nm depth slab along the x-axis are
shown at key stages: a) initial configuration, b) elastic regime,
c) ultimate tensile stress point, d) small fractures during plas-
tic regime, and e) superplastic regime. Color code as in Fig. 1.

perimental values of 0.165–0.19 reported for graphite.45

The stiffness of a material is characterized by its
Young’s modulus and is a key quantity in engineering
applications. Often called simply the elastic modulus,
the Young’s modulus [Fig. 2(c)] varies significantly with
density, changing by a factor of four for both tempera-
tures. The black circles in the figure show experimen-
tal data of CDCs in various forms (thin films20,44 and
monoliths/bulk21) synthesized from SiC and TiC precur-
sors. The experimental values are clustered in the range
8–18 GPa and compare well with the computed elastic
constants for the Thigh structures, confirming that our
methodology is realistic. Dividing the Young’s modulus
by the density yields the specific modulus, an important
materials property used to design structures where min-
imum weight is required, such as airplanes, masts and
bicycle frames. CDCs have a specific modulus [Fig. 2(d)]
in the range 20–80 GPa/(g/cc), superior to common light
metals such as aluminum, titanium and magnesium that
all have a specific modulus around 25 GPa/(g/cc).

Tensile stress-strain curves are computed for each CDC
structure by imposing a uniaxial strain along the x-axis.
A strain rate of 0.001 ps−1 is applied to the system every
0.02 ps. The simulation runs for 2 ns in the NPT en-
semble using a Nosé-Hoover thermostat/barostat to keep
the temperature at 300 K and the pressure at zero in
y- and z-directions; the barostat ensures that the sys-
tem responds dynamically to the applied strain. Fig-
ure 3 shows a stress-strain curve for a Thigh structure at
1.0 g/cc, with key stages indicated by the snapshots. The
structure can withstand significant strain (nearly 0.20)
in the linear, or elastic, regime [Fig. 3(b)], indicating
that CDCs are quite ductile. Beyond the yield strain,
the structure undergoes plastic deformation, attaining a
maximum tensile strength [Fig. 3(c)]. Past this point, the
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TABLE II. Variation of yield stress (units of GPa) and yield
strain with density and temperature. Values obtained by vi-
sual inspection of the stress-strain curve for each structure.

Density (g/cc) 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Yield stress
Thigh 3.4 4.7 2.8 4.6 6.5 8.8 13.0
Tlow 3.3 5.0 6.8 7.9 9.2 12.6 12.9

Yield strain
Thigh 0.22 0.19 0.22 0.23 0.17 0.19 0.16
Tlow 0.15 0.13 0.15 0.17 0.16 0.16 0.15

structure begins to fracture, but unlike many materials,
the fracture process is gradual rather than abrupt. Dur-
ing fracture, short filaments of sp-bonded atoms form,
see red atoms in Fig. 3(d), and these increase in length
with strain. This behavior, which resembles superplastic-
ity, allows the structure to maintain a significant tensile
stress, even when it expands to nearly twice its original
volume [Fig. 3(e)].

Figure 2(f) shows the density and temperature depen-
dence of the ultimate tensile strength determined from
the point of maximum stress in the stress-strain curves.
While the ultimate strength varies strongly with density,
the temperature only has a minor effect. Even for the
lowest density CDCs, the ultimate tensile strength is sig-
nificantly higher than common light metals and alloys,
such as titanium (0.79 GPa), stainless steel (0.95 GPa)46

and aluminium alloys (0.48 GPa),47 and also higher than
heavy metals, such as tungsten (1.51 GPa). The yield
stress and yield strain are obtained from the last point
in the linear regime (see Table II). Again, the density
has the strongest influence on properties, while temper-
ature plays a minor role: the mean yield strain for Thigh

structures is 0.20, and 0.15 for Tlow. The slope of the
elastic region of the stress-strain curves provide an alter-
nate route to compute the Young’s modulus. As shown
in the supplementary material, there is good correlation
with the values from the elastic constant tensor, with the
two approaches having an average difference of ∼20% for
Thigh and ∼10% for Tlow structures.

Worsley et al.5 collected data for 3D graphene networks
for various synthesis methods (carbon aerogels, carbon
nanotube assembly, and graphene assemblies obtained
via three different routes: freeze-drying of hydrogel pre-
cursors, gelation of graphene oxide and 3D printing) and
found that the Young’s modulus follows a power-law de-
pendence on density with an exponent of 2.7. Figure 4
plots their data, along with our CDC structures; for ref-
erence, also shown is single sheet graphene and commer-
cial graphite. As seen from the Figure, most efforts to
synthesize 3D graphene networks have focussed on low-
density structures; CDCs not only provide a convenient
route for creating high-density 3D graphene networks,
they also outperform the trend line. An explanation for
this behaviour could be that the computed CDC struc-
tures are fully 3D connected and have low heterogeneity.
The relatively high density of CDCs opens the possibil-
ity of biomedical implant applications where materials
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FIG. 4. Relationship between Young’s modulus and density
for a variety of sp2-bonded carbon materials. Data for CDCs
(this work), is shown with triangles. All other data is ex-
tracted from Fig. 4 in Ref. 5. The solid line is a fitted power-
law relationship from Ref. 5.

with a Young’s modulus similar to bone are desirable.
Human bone has a modulus in the range 10–30 GPa,
while common implant metals such as stainless steel, ti-
tanium and CoCr alloys have much higher moduli, in the
range 100–200 GPa. This elasticity mismatch leads to
bone-resorption and loosening of the implant, a problem
known as stress-shielding.46,48,49

The challenge in applying CDCs for structural appli-
cations concerns the synthesis route, in particular kinet-
ics associated with infiltration of the chlorine etchant.
Presently, the highest quality CDCs are prepared as pow-
ders or thin films, with typical processing times of several
hours. The difficulty comes with monolithic/bulk CDCs,
where slow kinetics can become prohibitive. Several
groups21,50–52 have developed hierarchical approaches to
accelerate the kinetics substantially (by up to 100x) but
from a mechanical point-of-view, the downside is that
the structure varies across length scales. Such materi-
als do not respond uniformly to mechanical deformation;
e.g. Fey et al.21 synthesized hierarchical SiC-CDC and
reported a Young’s modulus of 10 GPa but the compres-
sive strength was 5000 times smaller, at around 2 MPa.

Although this work focusses on CDCs, it is possible
that other synthesis routes might yield similar carbon
nanostructures with comparable properties. For exam-
ple, carbon nanomembranes fabricated by irradiation of
self-assembled-monolayers have a Young’s modulus of 10–
20 GPa, increasing up to 50 GPa after annealing.53 Re-
cent simulations54 of self-assembly of graphene flakes also
produced 3D graphene networks broadly similar to our
CDCs at Tlow. Although a different potential was used
and the density and the Young’s modulus were lower than
our work, 0.36 g/cc and 2.8 GPa, respectively, similar su-
perplastic behavior was observed.

In summary, we propose carbide-derived carbons
(CDCs) as a potential pathway to create dense 3D
graphene networks. The calculations reproduce the lim-
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ited experimental data available, and demonstrate that
CDCs have potential as a structural material. Despite
having a density much lower than metals, CDCs are duc-
tile and have an excellent ultimate tensile strength. We
find that the elastic moduli vary significantly with den-
sity and synthesis temperature, indicating that CDCs
can also be tuned for particular mechanical applications.
These characteristics arise from the CDC microstruc-
ture which consists of graphene-like fragments enclos-
ing nanometre-sized pores. Given the potential merit
of CDCs as a route towards 3D graphene networks, we
hope this work stimulates experimental interest in fabri-
cating non-hierarchical, monolithic CDCs and character-
izing their mechanical properties.

See Suppl. Mat. for details on the sensitivity anal-
ysis, microstructure characterization, calculation of the
mechanical properties and stress-strain curves for all the
structures.
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Microstructure characterization

Energy minimization using a conjugate gradient scheme is performed prior to all structural

analysis. Coordination number of each atom is computed by counting nearest neighbours up

to a cut-off of 1.85 Å. In Fig. S1 we show the dependence of sp, sp2 and sp3 fractions with

density and temperature. Shortest-path ring statistics are calculated using the algorithm of

Franzblau,1 using an in-house code previously used to study amorphous carbon.2 In Fig. S2

we show the number of rings per atom, i.e pentagons, hexagons, heptagons and octagons.

Calculation of the mechanical properties

To compute the elastic constant tensor for each structure, we first relax the simulation box

to zero pressure and minimize the energy. An average minimum of 150,000 iterations were

required to fully relax each structure with stopping tolerance criteria of 10−14 for the energy

and 10−16 eV/Å for the forces. Next a small deformation of 10−3 is imposed on the system by

tilting the box in every direction followed by an energy minimization with the same tolerance
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Figure S1: Dependence of atomic coordination fractions with density at low and high anneal-
ing temperatures. Panel a) shows fraction of sp3 bonded atoms, b) fraction of sp2 bonded
atoms and c) fraction of sp bonded atoms.

criteria. The corresponding term of the elastic tensor Cij is calculated as the ratio between

the stress σ and the strain ε in the corresponding direction.3 The bulk modulus K and the

shear modulus G are calculated from the elements of the elastic constant tensor using the

Voigt formulas:3,4

KVoigt =
1

9
[C11 + C22 + C33 + 2(C12 + C13 + C23)] (S1)

GVoigt =
1

15
[C11 + C22 + C33 + 3(C44 + C55 + C66)−

− C12 − C13 − C23]

(S2)

The elastic compliance tensor is calculated by inverting the elastic constant tensor. Ac-
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Figure S2: Density dependence of the number of rings per atom for annealing at Tlow (blue
symbols) and Thigh (red symbols). Panel a) shows number of hexagons per atom, ideal
graphite limit of 0.5 hexagons per atom is shown as a dashed line. Panel b) shows the
number of pentagons (circles) and heptagons (asterisks). Panel c) shows the number of
octagons per atom.

cording to Reuss formula, K and G can be calculated using the components of the compliance

tensor Sij as:3,4

KReuss = [S11 + S22 + S33 + 2(S12 + S13 + S23)]
−1 (S3)

GReuss =15/[4(S11 + S22 + S33 − S12 − S13 − S23)+

+ 3(S44 + S55 + S66)]

(S4)

3



The Hill formula is defined as the average between the Voigt and the Reuss values:3,4

KHill =
1

2
(KVoigt +KReuss) (S5)

GHill =
1

2
(GVoigt +GReuss) (S6)

The Young’s moduli in each direction is calculated from the elastic compliance:3,4

Yx = S−1
11 (S7)

Yy = S−1
22 (S8)

Yz = S−1
33 (S9)

The average Young’s modulus is Y = 1
3
(Yx + Yy + Yz).

Sensitivity analysis

The initialization step of the simulations involves a velocity distribution created using ran-

dom values, and hence the final structure is not unique. This non-uniqueness, which is

intrinsic to molecular dynamics and monte carlo methods, raises the possibility that the

structural and mechanical properties might vary if the simulation were repeated using a

different random seed. We considered running a suite of additional simulations for each tem-

perature and density combination to extract error bars by brute force, but this would have

been impractical, requiring around 1 million cpu-hours of supercomputing time. Instead, we

performed two types of sensitivity analysis on the mechanical properties.

The quickest approach involves a least-squares fitting procedure applied to the elastic

constant data in Fig. 2 of the main manuscript. Assuming a quadratic dependence on

density, the residual-sum-of-squares (RSS) becomes the estimator for the standard deviation
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each combination of temperature and density. Structures contain 8,788 atoms. Red, green
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of the underlying scatter (which is presumed to be normally distributed). This analysis

yields an estimate of 0.3 GPa for the standard-deviation of the Tlow structures, and 2 GPa

for the Thigh structures. Due to the small sample size of seven points, both of these estimates

have an uncertainty of around a factor of two. For the Poisson ratio, the same analysis yields

standard-deviation estimates of 0.003 and 0.03 for the Tlow and Thigh structures, respectively.

The second approach addresses the question of non-uniqueness by explicitly calculating

the mean, standard-deviation and standard-error-in-the-mean of coordination fractions, ring

statistics and mechanical properties for 20 additional structures. The additional simulations

used different random number seeds to generate five CDC structures at (i) Tlow and Thigh,

and (ii) the lowest and highest densities. To reduce the computational cost, these additional

5



20 simulations were performed in a smaller simulation cell (65% of the box length, compared

to the original structures), reducing the number of atoms from 32,000 to 8,788. In every

other respect the methodology was identical to that for the large structures reported in the

main body of the text.

Cross-sectional slices of the 20 structures are shown in Fig. S3, showing the five different

structures created for each density and temperature combination. Within each set of sim-

ulations (i.e. a row in Fig. S3) there are obvious visual differences specific to the size of

pores, number of stacked layers, orientation, etc. These variations arise from the randomized

initial conditions and highlight the non-uniqueness of the method. Despite these differences,

the five structures in each row share many common characteristics and furthermore, closely

resemble the corresponding large structures in Fig. 1 of the main manuscript.

A statistical analysis of the 20 structures is provided in Tables S1 to S4, reporting co-

ordination fractions, ring statistics (expressed as number of rings per atom) and elastic

properties (using Hill values). For comparison, we show the values for the corresponding

large structure at the bottom of each table. The coordination fractions and ring statistics

show little variability across the amongst the five structures, and are close to the correspond-

ing large structure. A similar situation applies for the elastic constants, albeit with slightly

higher variability. The only exception is the highly anisotropic and layered Thigh structure

at 1.1 g/cc. Even for this structure, the SEM is still only a few GPa, and two of the three

elastic constants are very close to those of the large structure. Note that the small box

magnifies the effect of anisotropy, as mentioned in the manuscript.

Calculation of the stress-strain curve

To obtain stress-strain curves we apply uniaxial tensile strain along the x-direction. The

strain rate is 0.001 ps−1 and is applied to the system every 0.02 ps. The simulation is run for

2 ns in the NPT ensemble where a Nosé-Hoover thermostat is used to keep the temperature at

6



Table S1: Statistical variability analysis at a density of 0.5 g/cc for Tlow. Coordination
fractions, ring statistics and elastic constants are listed for all five small structures. Also
shown is the mean, standard deviation (SD) and standard-error-in-the-mean (SEM) for each
property. The final line shows the properties of the corresponding large structure from the
main body of the manuscript.

structure sp (%) sp2 (%) sp3 (%) N5 N6 N7 N8 Y (GPa) K (GPa) G (GPa) σ
# 1 6.50 90.02 3.40 0.127 0.233 0.096 0.024 14.09 10.48 11.30 0.258
# 2 6.17 90.51 3.30 0.129 0.229 0.097 0.026 19.70 13.43 13.27 0.256
# 3 5.66 90.33 3.96 0.127 0.238 0.102 0.023 18.59 10.87 12.06 0.219
# 4 6.44 89.92 3.60 0.130 0.226 0.101 0.025 15.84 10.02 11.21 0.240
# 5 6.90 89.21 3.82 0.124 0.239 0.095 0.023 16.51 8.93 9.87 0.210
Mean 6.33 90.00 3.62 0.127 0.233 0.098 0.024 16.95 10.75 11.54 0.237
SD 0.41 0.45 0.25 0.002 0.005 0.003 0.001 1.99 1.49 1.12 0.019
SEM 0.21 0.22 0.12 0.001 0.003 0.001 0.001 1.00 0.75 0.56 0.010
Large 6.32 89.80 3.89 0.127 0.234 0.099 0.024 17.80 11.98 12.17 0.250

Table S2: Statistical variability analysis at a density of 0.5 g/cc for Thigh. Coordination
fractions, ring statistics and elastic constants are listed for all five small structures. Also
shown is the mean, standard deviation (SD) and standard-error-in-the-mean (SEM) for each
property. The final line shows the properties of the corresponding large structure from the
main body of the manuscript.

structure sp (%) sp2 (%) sp3 (%) N5 N6 N7 N8 Y (GPa) K (GPa) G (GPa) σ
# 1 2.01 96.83 0.48 0.026 0.429 0.030 0.001 16.33 10.03 12.91 0.224
# 2 2.29 96.32 0.47 0.023 0.436 0.025 0.001 15.72 8.19 10.69 0.179
# 3 2.57 96.03 0.44 0.030 0.419 0.031 0.002 9.66 5.30 7.98 0.176
# 4 2.09 96.68 0.41 0.027 0.431 0.027 0.003 11.96 6.13 8.04 0.195
# 5 1.79 96.50 0.32 0.026 0.430 0.029 0.001 8.99 5.09 7.56 0.140
Mean 2.15 96.47 0.42 0.026 0.429 0.028 0.002 12.53 6.95 9.44 0.183
SD 0.26 0.28 0.06 0.002 0.005 0.002 0.001 3.02 1.89 2.06 0.027
SEM 0.13 0.14 0.03 0.001 0.003 0.001 0.000 1.51 0.95 1.03 0.014
Large 2.57 96.97 0.47 0.027 0.428 0.029 0.003 10.93 4.85 7.64 0.153

Table S3: Statistical variability analysis at a density of 1.1 g/cc for Tlow. Coordination
fractions, ring statistics and elastic constants are listed for all five small structures. Also
shown is the mean, standard deviation (SD) and standard-error-in-the-mean (SEM) for each
property. The final line shows the properties of the corresponding large structure from the
main body of the manuscript.

structure sp (%) sp2 (%) sp3 (%) N5 N6 N7 N8 Y (GPa) K (GPa) G (GPa) σ
# 1 6.04 83.71 10.23 0.131 0.252 0.112 0.025 84.02 57.68 57.28 0.257
# 2 6.29 83.72 9.95 0.129 0.252 0.108 0.027 82.85 56.22 56.59 0.255
# 3 5.87 84.43 9.68 0.127 0.255 0.108 0.027 82.38 57.50 56.21 0.262
# 4 5.71 84.71 9.56 0.127 0.254 0.106 0.031 81.19 57.73 56.37 0.265
# 5 5.92 84.50 9.57 0.130 0.249 0.108 0.028 83.58 56.55 56.20 0.255
Mean 5.97 84.21 9.80 0.129 0.252 0.108 0.028 82.81 57.14 56.53 0.259
SD 0.19 0.42 0.26 0.002 0.002 0.002 0.002 0.99 0.63 0.40 0.004
SEM 0.10 0.21 0.13 0.001 0.001 0.001 0.001 0.49 0.31 0.20 0.002
Large 6.35 83.72 9.93 0.130 0.251 0.108 0.027 82.70 57.47 56.06 0.260
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Table S4: Statistical variability analysis at a density of 1.1 g/cc for Thigh. Coordination
fractions, ring statistics and elastic constants are listed for all five small structures. Also
shown is the mean, standard deviation (SD) and standard-error-in-the-mean (SEM) for each
property. The final line shows the properties of the corresponding large structure from the
main body of the manuscript.

structure sp (%) sp2 (%) sp3 (%) N5 N6 N7 N8 Y (GPa) KHill (GPa) GHill (GPa) σ
# 1 1.98 97.21 0.59 0.024 0.435 0.023 0.002 28.98 21.26 28.82 0.269
# 2 1.79 97.41 0.44 0.026 0.434 0.024 0.002 15.76 11.34 18.73 0.200
# 3 1.93 97.29 0.55 0.025 0.435 0.024 0.002 14.78 8.41 14.92 0.192
# 4 2.21 97.09 0.60 0.025 0.431 0.026 0.001 34.62 20.89 28.41 0.170
# 5 2.08 97.27 0.47 0.028 0.424 0.029 0.002 22.91 14.35 21.78 0.149
Mean 2.00 97.25 0.53 0.026 0.432 0.025 0.002 23.41 15.25 22.53 0.196
SD 0.14 0.10 0.06 0.001 0.004 0.002 0.000 7.62 5.11 5.42 0.041
SEM 0.07 0.05 0.03 0.001 0.002 0.001 0.000 3.81 2.56 2.71 0.020
Large 1.76 97.60 0.64 0.027 0.430 0.028 0.002 35.37 18.62 26.96 0.195

300 K and the pressure at zero in the y and z-directions, so the system responds dynamically

to the applied strain. In Fig. S4 we show the curves for all densities and the two annealing

temperatures. The ultimate tensile strength is obtained from the point of maximum stress in

the stress-strain curve. The yield stress is obtained from the last point in the linear regime.

The Young’s modulus in the tensile direction Yx can be calculated from the slope of the

stress-strain curve in the linear regime. This represents an alternative method to Eq. S7. In

Fig. S5 we compare both methods for the Tlow and Thigh structures. The structures at Tlow

show a good correlation between both methods at all densities, with differences between 5

and 15%. The structures at Thigh show a good correlation, between 10 and 20%, for densities
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Figure S4: Stress-strain curves for all the CDC structures annealed at a) Tlow, and b) Thigh.
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up to 0.9 g/cc. The only significant difference, around 30%, occur for the 1 and 1.1 g/cc.

Good overall agreement between both methods reinforces the robustness of the calculations.
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Figure S5: Young’s modulus as a function of density and temperature. For each annealing
temperature, results obtained from the stress-strain curve are plotted against results derived
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squares and red open squares, respectively, for Thigh).
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