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Abstract 

Automotive paint, in the form of paint chips and/or smears, is one of the most 

commonly encountered forms of trace evidence located at automotive related 

incidents. In many scenarios, such as hit-and-run accidents, automotive paint is often 

the only significant form of physical evidence available to forensic examiners, 

making its subsequent analysis critical to the investigation. Whilst guidelines have 

been established for the analysis of paint evidence, these typically rely on subjective 

interpretations of the analytical results by the forensic examiner, raising serious 

concerns regarding human error and bias. Consequently, there is an increasing 

demand for more scientifically rigorous approaches to the interpretation of forensic 

evidence. Multivariate statistics or chemometrics allows the formation of objective 

conclusions based upon experimental data, through the use of well characterised 

statistical protocols. This dissertation presents studies examining the use of a suite of 

spectroscopic techniques in conjunction with chemometrics, in order to develop 

analytical and interpretational protocols for automotive paint evidence.  

 

 

Attenuated total reflectance (ATR) Fourier transform-infrared (FT-IR) spectroscopy 

was used to analyse original manufacturer clear coats, from a statistically significant 

population of automotive paint systems. Chemometrics performed on the resultant 

data revealed a number of groupings in the sample population, which could be 

correlated to common vehicle descriptors, including vehicle origin, manufacturer, 

model, assembly plant and year of manufacture. The statistical model developed 

could enable the procurement of investigative leads from questioned paint sources, 

when a questioned vs. known sample comparison is not possible. Fundamental 

chemical studies were conducted to investigate the applicability of the subsequent 

model in a real-life context. High spatial resolution synchrotron source transmission 

FT-IR spectra of thin automotive paint cross-sections, revealed that inter-layer 

migration of chemical components can and does occur. In select samples, the cross-

linking agent melamine was shown to migrate from the underlying layers into the 

clear coat. Unless appropriate analytical and sampling protocols are used this could 

affect the classification of clear coats in the model. ATR FT-IR spectroscopy was 
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also used to investigate the effect of weathering and the environment on automotive 

clear coats. Moderate weathering of the automotive clear coats over an 18 month 

time period did not affect the outcomes from the ATR-based clear coat model.  

 

 

In instances where IR spectra of clear coats are inconclusive, further information can 

be obtained from the underlying primer surfacer coating. Principal component 

analysis conducted on synchrotron FT-IR spectra obtained from the primer surfacer, 

revealed a number of visually distinct groupings that were indicative of the vehicle 

manufacturer. This model provides more specific information pertaining to the 

vehicle manufacturer than the equivalent clear coat model.  

 

 

FT-Raman spectroscopy was also utilised to chemically interrogate original 

automotive clear coats. Multivariate statistics performed on the subsequent data 

revealed a grouping pattern and structure comparable to the ATR-based model. 

However, the statistical model generated from the Raman data had a higher 

discriminating capacity than the corresponding IR model. Additionally, a combined 

statistical approach developed by concatenating FT-IR and FT-Raman data from 

clear coats, provided increased discrimination between samples over the individual 

spectroscopic models. The combined statistical approach will enable a larger amount 

of information to be extracted from questioned paint specimens. 
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Over the past few decades, the general public has shown an increased interest in the 

application of science to crime solving. This can be largely attributed to the 

proliferation of television shows depicting the use of forensic science in the solving 

of crimes (e.g. CSI). However, the manner in which forensic science is portrayed in 

these programmes is highly sensationalised, especially in regards to the forensic 

analysis and interpretation of trace evidence. The most common misconception is 

that forensic science is infallible, meaning that the results from the analysis of trace 

contact evidence cannot be questioned.
[1-3]

 In reality, recent inquiries undertaken by 

the National Academy of Sciences (NAS) in the United States, and by the British 

Parliamentary Committee on Science and Technology, have highlighted the need to 

establish impartiality in the analysis and interpretation of forensic evidence.
[4, 5]

 In 

order to address these concerns, increased efforts have been made to establish a 

statistical basis for evaluating evidential significance. One approach is to use 

multivariate statistics or chemometric techniques, which offer the potential to 

develop rigorous statistical protocols enabling objective conclusions to be obtained 

from analytical data. This dissertation describes a program of research examining the 

use of chemometrics in the interpretation of automotive paint evidence. Whilst the 

research specifically relates to automotive paint, the statistical methodology 

developed can be universally applied to other forms of trace contact evidence. 

 

 

Forensic science is largely centred on the notion of establishing associations or links 

between the perpetrator/s, victim/s and or crime scene/s. One of the main tenets 

which define forensic science is the exchange principle, initially proposed by 

Edmund Locard, which infers that any physical contact between person/s, object/s 

and locale/s will result in a mutual exchange of material, no matter how tenuous.
[6-9] 

 

“It is impossible for a criminal to act, especially considering the intensity of a 

crime, without leaving traces of this presence.”
[10] 

Ultimately, Locard posits that any physical contact between two entities will result in 

the cross-transference of traces of physical evidence, more commonly referred to as 

trace evidence.
[7, 11]

 Some examples of frequently encountered trace evidence include 
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fingerprints, footwear impressions, hair, fibres, glass fragments, paint, soils, bodily 

fluids and gunshot and explosive residues. One of the widespread and most 

significant forms of trace contact evidence submitted to forensic science laboratories 

is paint.
[6, 7, 9, 10]

  

 

1.1 Paint Composition 

Nowadays, almost every man-made object and virtually every surface in our 

environment has some form of coating designed to protect, improve aesthetic 

characteristics or impart some functionality to the object.
[12-14]

 One example of these 

coatings is paint. The origin of paint can be traced back to the Palaeolithic era, some 

40, 000 years ago, where a combination of sap extracted from plants and colouring 

agents obtained from blood, berries and soil were employed in cave paintings.
[15]

 

Although paint technology has evolved and improved over the years, modern paint 

systems are still only contained of four basic components; binder/s, pigment/s, 

additive/s and a solvent.
[13, 15-20]

  

 

 

1.1.1 Binder (‘Resin’) 

The binder, or resin, is a polymeric constituent that forms the matrix of the coating as 

it binds the pigment/s and additive/s into place, whilst also allowing the film to 

strongly adhere to the substrate.
[13, 15, 21]

 The binder forms the backbone of the solid 

continuous film upon curing, which can occur via several mechanisms; evaporation, 

polymerisation or coagulation.
[12, 15, 21]

 Films formed by evaporation are known as 

‘non-convertible’ films as the binder does not convert to a polymerised coating. The 

film itself is produced following evaporation of the solvent, leaving the binder, 

pigment/s and additive/s behind. These coatings are effectively known as lacquers 

and can be re-dissolved upon addition of the solvent.
[15, 21]
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‘Convertible’ films, on the other hand, are formed via polymerisation upon drying, 

whereby the resin is irreversibly cross-linked following oxidation, heating or by the 

addition of a catalyst.
[15, 21]

 Finally, emulsion or ‘latex’ coatings form, when small 

particulates of resin that are dispersed in an immiscible liquid, coalesce into a 

networked structure as the liquid evaporates.
[12, 18]

 Ultimately, the binder is critical to 

the success of the final film as it binds the pigments to the application surface, whilst 

also imparting most of the physical characteristics and durable qualities to the 

coating. The common resins used in modern paint systems include acrylics, alkyds, 

urethanes, epoxies and polyesters.
[15, 21, 22]

 

 

 

 

1.1.2 Pigment 

Pigments are finely ground particles that are dispersed in paint and have a number of 

different roles depending on the type of pigment employed.
[10, 21, 23]

 Colour pigments, 

which can be either organic or inorganic, are utilised to impart a colour to the final 

coating so as to improve its aesthetic appeal. White and black inorganic colour 

pigments are often termed ‘hiding pigments’ as they increase the opacity and 

obliterate colour variation in the coating. This is of particular significance in 

improving the colour contrast of films added on top of the original coating.
[15]

 

Metallic and effect pigments are also utilised in automotive paint to provide the 

vehicle with a metallic, pearlescent or colour-shifting finish.
[24]

 Finally, extender 

pigments are routinely employed to ‘extend’ or stretch the thickness of the coating at 

a low cost, whilst also imparting certain desirable qualities to the film.
[25, 26]

  

 

 

1.1.3 Additive 

Additives are formulated into paints in small or trace amounts to fix any deficiencies 

and lend additional performance characteristics to the finished coating.
[23]

 It is 

common for many paint systems to contain up to ten or more additives, with the 

cumulative amount of additives in the paint formulation usually totalling less than    

three percent. There is a broad spectrum of additives that can affect and enhance 
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performance properties including; pigment dispersability, sag resistance, de-foaming, 

skinning, in-can stability, gloss, viscosity, binder cross-linking, flexibility, and 

ultraviolet (UV), fire and microbial resistance.
[13, 18, 27]

  

 

 

1.1.4 Solvent 

Solvents are an integral component of the paint system as they ensure that the 

binder/s, pigment/s and additive/s remain in the liquid form facilitating easy 

application to the substrate.
[15, 27]

 The solvent does not remain in the mixture for long 

as it is lost during the curing process, often following the application of heat.
[21, 23]

 

Volatile organic compounds (VOCs) are scarcely used nowadays, with most paint 

manufacturers preferring water as their solvent for health and environmental reasons 

(e.g. emulsion or latex coatings). Furthermore, improvements in paint technology 

have led to the development of powder coatings, which contain all of the main 

constituents of paint, except solvent.
[15, 28]

 Following the application of the paint to 

the substrate, the solvent, if any, evaporates leaving behind the final coating. 

 

 

1.1.5 Paint Types 

From a forensic science standpoint, paints are predominantly categorised into three 

main groups as a function of their use. These groups are architectural, artistic and 

automotive paints.
[6]

 Architectural or structural paints broadly encompass any paint 

applied to a residence or a building and are commonly encountered as evidence at 

volume crime scenes, such as burglaries.
[6, 29, 30]

 On the other hand, artistic paints are 

occasionally encountered by forensic examiners in instances of art forgery and 

graffiti.
[30]

 However, by far the most commonly occurring form of paint evidence in 

forensic science are automotive paints; which can be located at hit-and-run accidents, 

vehicular homicides, automobile crashes or generally any incident where a vehicle 

has been used in the commission of a crime.
[29, 30]

 This dissertation focuses solely on 

the analysis and interpretation of automotive paint evidence. 
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1.2 Automotive Paint 

Automotive paint is a complex multilayered system, as depicted in Figure 1.1, 

designed to protect the frame of the vehicle and impart certain aesthetic properties. 

Each layer has unique chemical characteristics and a distinct function.
[19]

 An original 

equipment manufacturer (OEM) automotive finish system is typically applied 

sequentially in a number of steps. Prior to paint deposition, all metal portions of the 

vehicle are normally pre-treated via zinc electroplating (~ 1 µm), in order to prevent 

corrosion and inhibit rust.
[24, 31]

 The first paint layer applied to the vehicle is the 

electrocoat primer. The electrocoat primer is an approximately 20 µm thick epoxy 

based coating, which is electroplated onto the body surface of the vehicle to provide 

greater corrosion resistance.
[7]

 A primer surfacer, which is usually a 35-40 µm alkyd 

based coating, is then applied to conceal any surface imperfections, providing a 

uniform foundation which will be amenable and more receptive to the application of 

the basecoat.
[24, 32]

 Following the application of the primer surfacer, a roughly 15 µm 

thick pigment containing layer known as the basecoat is applied to achieve the 

desired colour.
[6, 7, 30]

 Recently, there has been a growing trend towards the addition 

of metallic and effect pigments to automotive paint basecoats. The addition of 

metallic pigments such as aluminium flakes impart a glittering appearance to the 

paint surface, whilst metal oxide coated mica particles are utilised in order to provide 

the vehicle with a pearlescent finish. Hue-shifting pigments may also be employed to 

cause colour-shifting when the coating is viewed from different perspectives.
[6, 24]

  

 

 

The final coat applied in the automotive finishing process is known as the clear coat. 

The clear coat is typically a 40 µm thick un-pigmented layer, consisting of UV 

absorbers and hindered amine light stabilisers, designed to protect the basecoat and 

underlying layers from UV degradation and weathering.
[7]

 The UV absorbers present 

in the clear coat absorb light in the wavelength range of 290-350 nm, thereby 

significantly reducing the photo-degradation of the paint binders. Aside from the 

resistance to weathering, the clear coat also provides gloss, hardness, physical 

protection from road debris and resistance to solvents and chemicals.
[7, 24, 32]
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Whilst the OEM 4-coat system comprising a clear coat, basecoat, primer surfacer and 

electrocoat primer is the norm, there are notable exceptions, as depicted in Figure 

1.2. Some older vehicles contain a monocoat paint system, with an opaque, non-

metallic basecoat without clear coat.
[14]

 Furthermore, some higher-end vehicles have 

a metallic finish, whereby the basecoat contains solely metallic or effect based 

pigments.
[14, 24]

 If the vehicle has been damaged, or if the manufacturer isn’t satisfied 

with the finish, it may have 6 or more OEM coatings. In these instances, the vehicle 

is often refinished with an OEM basecoat and clear coat atop the original finish. 

Similarly, aftermarket coatings are commonly encountered on vehicles that have 

been damaged and subsequently refinished at a body shop. Although this type of 

paint system also typically contains 6 layers, it differs from the OEM refinish in that 

the chemical composition of the aftermarket base and clear coat is almost always 

different than the OEM counterparts.  This is illustrated in Figure 1.2, whereby it is 

clearly observed that the colour and morphology of the aftermarket base and clear 

coat differ markedly from the original coatings. 

 

Figure 1.1: Typical OEM automotive paint system comprising four distinct 

layers; electrocoat primer, primer surfacer, basecoat and clear coat. 
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Figure 1.2: Commonly encountered vehicle paint systems. Images were obtained from thin microtomed paint cross-sections (~ 8 µm) 

at the infrared microspectroscopy beam-line of the Australian Synchrotron.  
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1.2.1 Types of Automotive Paint Evidence 

Automotive paint evidence can be recovered from incident scenes in the form of 

either paint chips or smears.
[6, 30]

 The nature of the paint evidence transferred is 

dependent on a number of factors, including the force of the contact, the nature of 

the recipient surface and the quality and adherence properties of the paint.
[29]

 Paint 

smears may arise upon minor glancing contact between a vehicle and a substrate, 

typically when one vehicle side-swipes another. As a result, paint smears usually 

involve only the outermost layer of the paint system, which is normally the original 

clear coat.
[6, 29]

 In many instances, the smear transfer is also integrated with the outer 

coating of the substrate, making it extremely challenging for the forensic examiner to 

accurately sample and characterise the smeared paint.
[6]

 Automotive paint chips, on 

the other hand, typically arise upon forceful direct contact between the vehicle and 

the substrate, resulting in a deformation of the vehicle frame leading to paint 

fragments being dislodged.
[29]

 In a forensic context, paint chips are less challenging 

as they contain the entire layer structure of the paint system intact, enabling analysis 

of all of the layers and thereby increasing the evidentiary value and significance.
[30]

 

Paint chips also offer the potential for physical fits to a known sample, which is 

highly individualising and would provide unambiguous evidence of association 

between the questioned paint sample and a source.
[33]

  

 

 

1.3 Forensic Analysis of Automotive Paint 

Although paint has widely been regarded as a valuable form of trace evidence, many 

forensic examiners initially questioned the validity of forensic paint examination.
[34]

 

In fact, Paul Kirk, widely recognised as one of the leading pioneers in modern 

criminalistics stated that; 

“Because of the alteration of the vehicle on drying and the approximate 

uniformity of the dry vehicle film, little if any importance is attached to it in 

paint identification except as an impediment to the easy study of the solids 

suspended in it.”
[34, 35] 
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This statement epitomised the approach towards forensic paint examination some 60 

years ago. However, it is important to note that the analytical approach to forensic 

paint examination has continuously evolved over the years; with the modern outlook 

underlining that a significant amount of information may be extracted from 

automotive paint analysis. Whilst there is no current universal methodology for 

forensic paint examination, guidelines have been developed by the Scientific 

Working Group on Materials Analysis (SWGMAT)
[36]

 and by the American Society 

for Testing and Materials (ASTM),
[37]

 in order to provide a framework for the 

analysis of paint evidence. The guidelines advise that a combination of instrumental 

and spectroscopic techniques be utilised to characterise both the organic and the 

inorganic components of paint. These techniques include, but are not limited to, 

microscopical examinations, microspectrophotometry (MSP), infrared (IR) 

spectroscopy, Raman spectroscopy, pyrolysis-gas chromatography/mass 

spectroscopy (Py-GC/MS) and elemental analysis techniques.
[36, 37]

 The analytical 

scheme used to characterise paint evidence follows a logical sequence of 

examination that is flexible and dependent on the quality, quantity, morphology and 

the physical and chemical complexity of the sample.  

 

 

1.3.1 Microscopy 

Whilst there is no single analytical scheme suited to all samples, the starting point of 

almost every forensic paint examination is optical microscopy.
[29, 36, 37]

 Microscopic 

examination of paint fragments enables information to be ascertained regarding the 

layer sequence and structure, colour, pigment distribution and size, surface textures 

and features, morphology and appearance (Figure 1.2).
[33, 38-40]

 It is worth noting that 

in order to obtain unambiguous paint layer discrimination, the paint fragments often 

require some form of sample preparation. The most common method of paint sample 

preparation is to obtain thin cross-sections via either a microtome or by hand using a 

scalpel.
[36, 37, 41]

 When these cross sections are viewed under a high magnification 

microscope with varying degrees of illumination (i.e. bright and dark field), further 

distinctive features such as surface defects and striae are able to be observed.
[29]

 

Polarised light microscopy (PLM) and fluorescence microscopy provides 
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information complementary in nature to that obtained by optical microscopy. PLM 

allows examiners to observe and identify birefringent materials, such as inorganic 

pigments and extenders that are visually identical under visible light.
[29, 38, 42]

 The use 

of PLM as a means for the identification of pigments and extenders has largely been 

superseded by a number of instrumental techniques.
[33]

 Fluorescence microscopy 

aids in the discrimination between layers of multicomponent systems, by improving 

contrast between visually similar layers. This is achieved by illuminating the sample 

with light of a short wavelength (i.e. UV light) and observing the emitted 

fluorescence. Each layer of the paint cross section will therefore emit fluorescence of 

varying intensities, based upon the components within each layer.
[29, 34] 

By using the 

aforementioned techniques in tandem, a comprehensive visual examination of the 

paint sample can be obtained, as depicted in Figure 1.3.
[29] 

 

 

Figure 1.3: Thin re-painted automobile cross-section viewed under (a) bright 

field, (b) dark field, (c) polarised light and (d) UV light (excitation 340-380 nm, 

emission 425 nm).
[29] 
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1.3.2 Microspectrophotometry (MSP) 

The optical examination of paint is typically followed by a technique known as 

MSP, which is a highly discriminating method that can provide an objective 

assessment of colour.
[33, 39]

 MSP is an invaluable tool in identifying and 

characterising dyes and pigments in paint, as it allows discrimination of samples 

based on their interaction with light.
[43, 44]

 A microspectrophotometer is essentially a 

microscope that is interfaced with a spectrophotometer, which is capable of 

measuring the intensity of light as a function of wavelength of the visible and UV 

regions of the electromagnetic spectrum. Microspectrophotometers operate by 

irradiating a microscopic section of the paint sample with a controlled light source, 

and then measuring the intensity of the light across the spectrum that is either 

transmitted or reflected by the sample.
[45, 46]

 The preferred method of choice for paint 

characterisation by MSP is in the transmission mode using thin microtomed cross-

sections.
[47]

   

 

 

Although the human eye is adept at colour discrimination, it is extremely subjective, 

with a number of variables affecting the manner in which colour is perceived.
[48, 49]

 

MSP has been proven to be inherently more sensitive in identifying subtle 

differences in colour than the human eye, specifically in the case of metameric 

paints.
[49]

 Metameric paints are indistinguishable to the naked eye, yet are composed 

of different pigment combinations and thus may be readily distinguished by MSP.
[48, 

49]
 Additionally, research conducted by Kopchick and Bommarito has demonstrated 

that spectral information can even be obtained in some achromatic black and 

grey/silver basecoats using visible region MSP.
[50]

 This is an extremely positive 

finding considering that achromatic materials are believed to absorb or reflect all 

wavelengths of visible light uniformly, and hence visible MSP has previously been 

excluded from the forensic analysis of achromatic paints.
[50]
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Whilst the use of MSP has been well established for the characterisation of pigments 

in paint, it has also shown potential for the analysis of UV absorbing compounds in 

clear coats. Stoecklein and Fujiwara demonstrated that UV MSP can discriminate 

between automotive clear coats based upon their corresponding UV absorption 

profile.
[51]

 Whilst the features in the UV profile could be attributed to both the UV 

absorbers and binders, the authors concluded that the spectral characteristics are 

primarily attributed to the structural core of the UV absorber.
[51]

 In spite of the 

research that has been conducted, a proficiency trial conducted in 2004 has indicated 

that only 15 % of forensic examiners routinely employ MSP in the analysis of 

automotive paint.
[52]

 The reason behind this may be due to the fact that MSP lacks 

the chemical specificity of other spectroscopic techniques as the output is inherently 

simplistic, typically consisting of one or two broad spectral features, thus making 

discrimination between samples much more difficult.
[53]

   

 

 

1.3.3 Infrared (IR) Spectroscopy 

IR spectroscopy is unequivocally the most powerful, non-destructive technique 

available for the characterisation of paint, providing information pertaining to the 

composition and relative abundance of binder/resin, pigment and extender 

components.
[14, 34, 54]

 IR spectroscopy utilises IR radiation to probe the molecular 

features of materials. When IR radiation is irradiated onto a sample, some, but not 

necessarily all of the radiation can be absorbed to render an IR spectrum that is 

characteristic of the molecular structure of the sample.
[55]

 IR spectroscopy is 

incapable of identifying components that are present in trace amounts (less than 5 % 

by weight) and as a result is unlikely to detect minor co-polymers, residual solvents 

and most additives.
[34, 54]

 Paint evidence in the form of chips and fragments is often 

quite small; as such a beam condensing and focusing device and a Fourier transform 

IR (FT-IR) spectrometer is essential in order to adequately characterise the 

sample.
[29, 56]

 FT-IR spectroscopy has been widely used in the analysis of paint 

evidence, with several sampling techniques including transmission,
[47, 57-60]

 

reflection,
[57]

 transflection,
[57]

 diffuse reflectance
[57, 61, 62]

 and attenuated total 

reflection (ATR)
[63, 64]

 being reported in the open literature. A complicating factor 
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with most modern FT-IR spectrometers is that they often employ a narrow-band 

mercury cadmium telluride (MCT) detector, which has a spectral cut-off near            

700 cm
-1

.
[34, 38, 56]

 Unfortunately, many inorganic pigments and extenders have key 

vibrational bands in the far IR region of the spectrum, well below the spectral cut-off 

of the MCT detector.
[14, 34]

 Extended IR spectroscopy using caesium iodide optics 

and a deuterated triglycine sulfate detector has enabled spectra to be acquired down 

to 220 cm
-1

.
[65-70]

  Transmission analysis is typically preferred over reflectance 

techniques, even though time consuming sample preparation is required. This is 

because reflectance analysis typically suffers from poor signal to noise ratio, spectral 

distortion and issues with reproducibility.
[54]

 Furthermore, reference databases such 

as the Paint Data Query (PDQ) database contain transmission data which are 

incompatible with spectra obtained via reflectance techniques.
[71, 72] 

 

 

 

1.3.3.1 ATR IR Spectroscopy 

ATR FT-IR spectroscopy has shown great potential in the forensic analysis of paint 

smears and the individual characterisation of automotive paint layers.
[14, 34]

 ATR FT-

IR spectroscopy is a surface sensitive technique that minimises the need for sample 

preparation as only contact between the specimen surface and the reflectance crystal 

is required,
[54] 

as depicted in Figure 1.4. This is due to the fact that the evanescent 

wave generated following internal reflectance of the infrared beam in the crystal, 

protrudes 1-2 µm out of the crystal and therefore only penetrates 1-2 µm into the 

specimen surface.
[14, 34]

 Due to the surface sensitive nature of the technique it enables 

the in situ analysis of transferred paint smears on a substrate, with minimal 

interference from the substrate itself.
[14]

 Additionally, the shallow penetration of the 

beam can be exploited to rapidly characterise original clear coats, without having to 

separate the coating from the underlying layers.
[64]

 It has been demonstrated that 

ATR FT-IR spectroscopy can be utilised in the rapid characterisation and 

discrimination of automotive clear coats.
[73, 74]
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Figure 1.4: Diagrammatic representation of the analysis of a sample by multiple-

bounce ATR FT-IR spectroscopy. 

1.3.3.2 IR Microspectroscopy 

FT-IR microspectroscopy combines the power of microscopy with the FT-IR 

technique and has become the foremost method of choice for the analysis of 

multicomponent systems, such as automotive paint, in forensic laboratories.
[29, 56]

 

This is because it allows the examiner to sequentially analyse all layers of the 

sample, without the need for individual separation of each layer or complex sample 

preparation.
[57, 58]

 Samples analysed by transmission FT-IR microspectroscopy are 

normally sectioned using a microtome, to provide thin cross-sections that are 5-10 

µm thick. The transverse sections are typically flattened between diamond windows 

and each layer is separately characterised multiple times with a small aperture.
[56]

 

FT-IR microspectroscopy is one of the most valuable tools available to the forensic 

paint examiner, as it enables highly reproducible, non-destructive, rapid, individual 

layer comparisons.
[54] 

 

 

 

1.3.3.3 IR Chemical Imaging 

IR chemical imaging offers an alternative to FT-IR microspectroscopy, owing to the 

fact that chemical and spatial information can be obtained from the sample 

synchronously. In this particular instance, IR chemical imaging allows potentially 

hundreds of spectra to be acquired from all layers of the paint cross section 

simultaneously.
[75, 76]

 Previous research by Flynn et al has demonstrated that focal 

plane array (FPA) detectors can be employed in the stratigraphic imaging of 
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automotive paint chips.
[75]

 These authors noted that FPA based chemical imaging 

offers significant advantages over single-point infrared microspectroscopy (section 

1.3.3.2), relating to the analysis of multicomponent paint chips. The advantages stem 

from the fact that thousands of spectra are collected across the sample, which allows 

the user to either visualise the distribution of chemical components across all the 

layers of the sample, or extract IR spectra from regions of interest. This wealth of 

information ultimately enables comparisons between samples to be more easily 

visualised.
[75]

 However in some instances, conventional glow bar sourced IR 

microspectrometers, with both single element and FPA based detectors, may not 

display adequate sensitivity and spatial resolution required for the analysis of 

automotive paint traces. In these scenarios, synchrotron sourced FT-IR 

microspectroscopy can provide improved signal to noise ratios and spatial resolution, 

and thus can overcome the shortcomings associated with conventional glow bar 

sourced IR microspectroscopy.   

 

 

1.3.3.4 Synchrotron IR Microspectroscopy 

A synchrotron is a very large cyclic particle accelerator that generates intensely 

bright, highly collimated beams of electromagnetic radiation, which can be utilised 

as an alternative light source for spectroscopic analysis.
[77, 78]

 A schematic diagram 

of the Australian Synchrotron in Melbourne is presented below in Figure 1.5. In a 

synchrotron, electrons generated by an electron gun are accelerated by a linear 

accelerator to relativistic speeds. The electrons are moved into the booster ring 

where their energy is further increased before they are transferred into the storage 

ring. The storage ring consists of a number of bending magnets, separated by a series 

of straight sections that contain insertion devices such as undulators and wigglers. As 

the electrons move through the storage ring, they are deflected by the bending 

magnets and insertion devices, resulting in the release of electromagnetic radiation. 

The synchrotron radiation is funnelled into a beam-line and filtered to the desired 

wavelength using monochromators, before being directed down to an end-station for 

use.
[77, 78] 
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Figure 1.5: Schematic diagram of the Australian Synchrotron; (1) electron gun, 

(2) linear accelerator ‘linac’, (3) booster ring, (4) storage ring, (5) beam-line and 

(6) end-station.
[78]

 

 

Synchrotron radiation has been used extensively in a number of disciplines including 

biosciences,
[79, 80]

 medical research,
[81, 82]

 environmental sciences,
[83]

 materials 

analysis and engineering,
[84-86]

 and forensic science.
[87]

 A detailed review concerning 

the application of synchrotron light to the analysis and characterisation of forensic 

trace evidence has been provided by Kempson et al.
[87]

 Synchrotron radiation in the 

mid-IR range is roughly 2-3 orders of magnitude brighter than conventional glow bar 

sources, which equates to a 20-40 fold improvement in the signal to noise ratio. 

Furthermore, the radiation is polarised and highly collimated, enabling spectra to be 

acquired with a greater spatial resolution (i.e. 2-5 µm) than conventional 

instrumentation.
[87-90]

 Ultimately, the improved spatial resolution of synchrotron 

sourced IR allows the examiner to analyse smaller sample areas or regions of 

interest. This is highly significant, especially in instances where thin layers are 

encountered and the improved spatial resolution is required in order to unequivocally 

characterise only the layer of interest.
[91]

 These advantageous features can potentially 

be highly beneficial to the analysis of multi-layered systems like automotive paint.  
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1.3.4 Raman Spectroscopy 

Recent advances in Raman spectrometers have resulted in a renewed interest in 

Raman spectroscopy as an analytical technique, consequently providing an outlet for 

exploring this technique in forensic applications.
[34]

 Raman spectroscopy, much like 

IR spectroscopy, provides information regarding the molecular structure of a sample. 

However, whilst IR spectroscopy is concerned with the absorption of light, Raman 

spectroscopy deals with the inelastic scattering of monochromatic light (i.e. laser) by 

a sample.
[92-95]

 When a sample is irradiated with monochromatic light, most of the 

light is elastically scattered (Rayleigh scattering), such that the scattered light has the 

same energy as the incident light. However, a small fraction of the light is 

inelastically scattered, which causes the photon to either gain (anti-Stokes shift) or 

lose energy (Stokes shift) due to deactivation or excitation of molecular 

vibrations.
[92-94]

 The shift in energy of the photon is dependent upon the chemical 

structure of the molecule itself and can provide knowledge regarding the structure, 

symmetry, electronic environment and bonding of the molecule.
[93, 95, 96]

  

 

 

As Raman spectroscopy is based on light scattering as opposed to absorption, it 

provides information complementary in nature to IR spectroscopy. Raman 

spectroscopy, like IR spectroscopy, provides information regarding the characteristic 

vibrations of molecules. Whilst IR spectra arise from dipole changes, Raman spectra 

arise from polarisability changes that occur during vibration. Hence IR spectroscopy  

is more adept at detecting polar molecular features, whilst Raman spectroscopy is 

more suitable for the identification of less polar moieties.
[34, 97]

 This notion is 

illustrated by Figure 1.6, which depicts the IR and Raman spectrum of an 

aftermarket refinish clear coat. By examining both spectra it is evident that the less 

polar aliphatic C-H stretches (blue region) are more intense in the Raman than the IR 

spectrum. Similarly, the polar moieties attributable to the carbonyl stretches (red 

region) are significantly stronger in the IR than the Raman spectrum. The 

complementary nature of Raman and IR for forensic analysis is best exemplified by 

a study conducted by Buzzini and Massonnet, detailing the discrimination of 40 

similarly coloured green spray paint samples.
[98]

 The authors noted that individually, 
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IR and Raman spectroscopy have a lower discriminating power than when the 

techniques are used in combination with each other.
[98]

    

 

Figure 1.6: Comparison of ATR FT-IR and FT-Raman spectra of an aftermarket 

refinish clear coat. 

 

Whilst Raman spectroscopy has previously been utilised to chemically interrogate 

the binder portion of paint systems,
[99, 100]

 it has been employed primarily in a 

forensic context to provide information concerning the organic and inorganic 

pigments, including the extenders.
[101]

 This is due to the fact that Raman 

spectrometers are routinely capable of identifying spectral features down to          

100 cm
-1

, well into the far-IR region of the electromagnetic spectrum where many 

pigments have key vibrational bands.
[34]

 A study by Massonnet and Stoecklein 

employed FT-Raman spectroscopy to identify pigments in red automotive basecoats. 

These authors concluded that Raman spectroscopy was a suitable technique for the 

rapid, in situ analysis of red automotive basecoats, based upon the high 

discrimination power achieved for light red (0.89) and dark red (0.97) paints.
[102]

 

Whilst research has demonstrated that Raman spectroscopy could be an integral part 
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of the forensic analysis scheme, it is not routinely used in all forensic laboratories.
[29]

 

One issue that has limited the applicability of Raman spectroscopy to the analysis of 

paint is that the laser may induce fluorescence of the sample, which could potentially 

mask any spectral features in the Raman spectrum. By employing a near-IR laser 

(e.g. 1064 nm) the fluorescence emission could be somewhat mitigated; however, as 

longer wavelength light sources produce significantly weaker Raman scattering, a 

FT-Raman spectrometer needs to be employed.
[93, 94]

 

 

 

1.3.5 Pyrolysis-Gas Chromatography/Mass Spectroscopy 

(Py-GC/MS) 

Py-GC/MS has been established as arguably the most discriminating technique 

available for differentiating between similar paint binder compositions.
[34, 103-105] 

It is 

a highly sensitive and discriminating method that has shown real potential in the 

forensic examination of polymer traces.
[106-108]

 Py-GC/MS is a technique that 

pyrolytically decomposes trace amounts (5-10 µg) of paint into gaseous products 

which are then introduced into a gas chromatograph. The pyrolysis process thermally 

breaks down the polymeric macromolecules, which correspond to the paint binders, 

into smaller fragments. The fragments are then separated using GC and can be 

identified by their resulting mass spectrum.
[7, 29, 107]

 The technique is typically 

employed to identify the monomer/s used in binder systems, but is also sensitive 

enough to characterise and identify some additives, pigments and residual 

solvents.
[109, 110]

 Additionally, Py-GC/MS is capable of detecting subtle variations in 

binder composition and as such has the ability to differentiate between paint samples 

that are indistinguishable by FT-IR and Raman spectroscopy.
[111, 112]

 Whilst the 

technique has a high discriminating power, it is destructive and often time 

consuming; consequently any chemical information obtained from non-destructive 

techniques always precedes Py-GC/MS. As a result, Py-GC/MS is typically one of 

the last techniques utilised in the forensic analysis of paint.
[29, 34, 39]
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1.3.6 Elemental Analysis 

Elemental analysis constitutes a combination of bulk and trace instrumental 

techniques, including but not limited to; scanning electron microscopy energy 

dispersive spectroscopy (SEM-EDS), X-ray fluorescence spectroscopy (XRF) and 

laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS).
[33, 38, 39]

 

Elemental analysis is primarily utilised to characterise the inorganic components and 

extenders present in the paint specimen. These techniques provide information 

complementary to IR spectroscopy and Py-GC/MS, which are typically used to 

analyse the organic components of paint.
[29, 34, 38]

 SEM-EDS is a non-destructive 

technique that provides the examiner with information pertaining to particle sizes 

and distribution, morphology and bulk elemental composition of the sample. The 

method is sensitive down to approximately 1 % of mid-range atomic weight 

elements (i.e. nitrogen to bismuth), with the elemental profile being particularly 

useful in identifying the extenders in the sample.
[113, 114]

 XRF is another non-

destructive technique capable of determining the elemental composition of a paint 

sample.
[115, 116]

 However, XRF unlike SEM-EDS is significantly more sensitive to 

higher atomic weight elements and as such is particularly useful in characterising 

drier metals, inorganic colouring and metal complex pigments.
[34, 114, 117]

 XRF 

typically suffers from limited spatial resolution and is widely considered a bulk 

technique. However, a recent study by Ninomiya has demonstrated that synchrotron 

XRF microspectroscopy with high energy excitation is capable of characterising 

small areas of interest and is capable of discriminating between similarly coloured 

pearlescent coatings.
[118]

 LA-ICP-MS is a viable technique for the forensic analysis 

of automotive paints, owing to the improved sensitivity over the previously 

described elemental techniques, as well as the ability to detect trace elements.
[119]

  

 

1.3.7 X-ray diffraction (XRD) 

Although X-ray diffraction (XRD) is not an elemental technique, it can also be 

occasionally employed by forensic examiners to perform inorganic analysis on paint. 

Unlike the previously mentioned techniques, XRD does not provide the user with an 

elemental profile per se; rather XRD assesses the crystallinity of the material and can 

provide definitive identification of major inorganic pigments.
[114]
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1.4 Interpretation of Trace Contact Evidence 

1.4.1 Questioned vs. Known Comparisons 

The approach adopted by forensic examiners in the analysis of paint evidence is 

dependent primarily on the presence or absence of a control material. If a control or 

known paint sample from a suspect vehicle is available to the examiner, then 

comparisons between the questioned paint sample obtained from the scene and the 

known paint sample may be undertaken.
[29, 33]

 In these so-called questioned vs. 

known comparisons, both samples are compared based upon their physical and 

chemical characteristics via a suite of analytical tests, as depicted in Figure 1.7. As 

stated previously, the sequence of examination is dependent on the equipment 

available to the examiner, but is also contingent on the quantity, quality and 

morphology of the samples.
[14, 29]

 Typically, microscopical examinations are 

conducted first, as differences in the layer colour, structure and sequence between 

the questioned and known sample will immediately indicate if the samples do not 

share a common origin. On the other hand, destructive techniques such as Py-

GC/MS are normally conducted last, especially in instances where there are only 

trace amounts of sample to begin with.
[34] 

 

 

 

If the known and questioned paint sample cannot be discriminated using the 

combination of analytical techniques described above, then it can be inferred that the 

specimens could share a common source. Similarly, if the two samples have different 

physical and chemical characteristics, then the notion of a common origin can be 

excluded.
[29]

 Only in the event of a physical fit between the questioned and control 

samples, can it be unequivocally concluded that the two paint samples are from the 

same source (Figure 1.7). The main issue with questioned vs. known comparisons, 

especially considering the results of spectroscopic analysis, is that they invariably 

rely on visual comparisons of complex spectra. These comparisons are highly 

subjective and have led to serious concerns within the forensic community, regarding 

human error and bias in the interpretation of trace evidence.
[53, 120]
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Figure 1.7: Typical analytical sequence for automotive paint evidence in the 

comparison of questioned and control samples. If the samples remain 

undifferentiated following characterisation with a specific technique, then the 

examiner continues with the sequence of examination. This figure was adapted from 

[38]. 
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1.4.2 No Known Sample 

There are some instances, such as those involving hit-and-run accidents, where a 

known sample is not available for a comparison. In these scenarios, the physical and 

chemical characteristics of the questioned sample can be compared to a database of 

known references in order to procure investigative leads. One such automotive paint 

database, known as PDQ, was established in the early 1970’s by the Royal Canadian 

Mounted Police and is the largest automotive paint database in existence.
[7, 121]

 At 

this period in time, the PDQ database contains over 19, 000 independent samples, 

representing paint systems from a range of global vehicle manufacturers. PDQ is a 

computerised text-based database that contains information regarding both the 

physical characteristics (i.e. layer sequence and colour) and chemical composition of 

each individual layer in the paint system.
[121-123]

 Furthermore, PDQ is equipped with 

a library that contains IR spectra of every individual layer from the paint systems. 

The PDQ database is capable of direct searching of IR spectra using the IR 

SearchMaster add-in. However, the basic search algorithms used by IR SearchMaster 

provide matches based on a limited number of spectral features as opposed to the 

entire spectrum, and only IR data from one layer can be searched at any given time.  

Consequently, the forensic examiner typically translates the chemical information 

from the IR spectra into specific text codes, which are then inputted into the database 

along with information pertaining to the colour and layer sequence of the paint 

system, so as to provide a list of probable matches to vehicles.
[56, 124]

 In this way, the 

PDQ database can be utilised for investigative purposes, as it aids in the potential 

identification of the make, model and year of an unknown vehicle, from a paint 

sample encountered at a crime scene.  

 

 

However, the issue with the coding system used in the PDQ database is that it is 

highly generic, as it only recognises the presence or absence of chemical components 

in the paint system, whilst neglecting to factor in their relative amounts. This lack of 

specificity in the search criteria results in a significantly larger number of potential 

matches that the forensic examiner must work through and eliminate.
[124, 125]

 

Furthermore, the hits generated by the database have to be manually interpreted by 
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visually comparing the IR spectra from each coating in the unknown paint sample, 

against the library spectra from the individual layers of the database matches.
[125] 

This presents a similar problem to that observed in questioned vs. known 

comparisons, in that it still requires manual interpretation of the spectra by the 

examiner, which is again subject to human error and bias. As a result, one of the 

main issues that need to be addressed by the forensic science community is the 

subjective nature of the interpretation of forensic trace evidence.  

 

 

 

1.4.3 Issues in the Interpretation of Forensic Evidence 

Recent inquiries undertaken by the Science and Technology Committee in the UK, 

and the NAS in the US, have attempted to highlight issues pertaining to the forensic 

community. Both of these investigations revealed that there is the potential for bias 

in the current interpretational protocols for forensic trace evidence.
[4, 5]

 Specifically, 

the NAS report identified the need to establish strict rigorous protocols for the 

interpretation of forensic evidence.
[5] 

“A body of research is required to establish the limits and measures of 

performance and to address the impact of sources of variability and potential 

bias. Such research is sorely needed, but it seems to be lacking in most of the 

forensic disciplines that rely on subjective assessments of matching 

characteristics.”
[5] 

Furthermore, the NAS recommended that research be undertaken to address issues of 

accuracy, reliability and validity in forensic science, which includes research 

concerning human observer bias and sources of human error in forensic 

examinations.
[5]

 The use of multivariate statistics or chemometrics has the potential 

to address the aforementioned recommendations, enabling meticulous statistical and 

scientific approaches to the interpretation of forensic evidence. 
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1.5 Chemometrics in Forensic Data Analysis 

As mentioned previously, when attempting to determine if a questioned and known 

paint sample could share a common source, the forensic examiner often relies 

principally on the visual comparison of complex spectra. Consequently, the examiner 

lacks a statistical basis for evaluating the validity or significance of the evidence in 

question.
[126]

 Chemometrics is a discipline that uses mathematical and statistical 

approaches to design and optimise experimental procedures, extract maximum 

chemical information from data, and procure knowledge about chemical systems.
[127, 

128]
 Chemometrics has previously been utilised in forensic science in order to 

mitigate bias and partiality in the interpretation of analytical data obtained from trace 

evidence.
[129-131] 

 

 

 

Chemometrics eliminates the subjectivity associated with the visual comparison of 

complex spectra from questioned and known samples, as it ensures that quantitative, 

impartial measures of the data are obtained. This is extremely significant considering 

forensic science is a discipline centred on the notion of forming objective 

conclusions, based upon the analysis of physical evidence.
[129]

 Chemometrics 

provides a statistical measure of how similar or dissimilar samples are thus 

improving the reproducibility, reliability and discrimination of the data, whilst 

simultaneously addressing issues such as human error and bias.
[129, 131]

 There is a 

myriad of chemometric techniques that may be suitable in the interpretation of 

analytical data obtained from forensic evidence. These include, but are not limited 

to; cluster analysis, principal component analysis (PCA), linear discriminant analysis 

(LDA), soft independent modelling of class analogy (SIMCA) and artificial neural 

networks.
[129-131]

 In this study, a combination of PCA and LDA was utilised to 

interpret spectroscopic data obtained from automotive paint evidence. The approach 

was adopted as it enables much of the relevant, discriminating portions of the data to 

be extracted, whilst also allowing accurate predictions to be made about the data.
[131]

 

It should be noted that multivariate statistical analysis can be used in conjunction 

with Bayesian statistics to develop likelihood ratios. The Bayesian method has been 

previously used in the interpretation of automotive paint evidence.
[33, 34]
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1.5.1 Principal Component Analysis (PCA) 

It is not uncommon for modern spectroscopic techniques to generate anywhere from 

hundreds to several thousands of variables, with the sheer volume of data making it 

difficult for structure and patterns to be discerned. Exploratory data analysis in the 

form of PCA enables the user to identify patterns in multivariate data.
[132-134]

 PCA is 

the general workhorse of modern chemometrics, as it forms the foundation for many 

of the other multivariate statistical techniques.
[135, 136]

 PCA is an unsupervised 

technique that requires no user input in regards to sample groupings and is primarily 

concerned with reducing the dimensionality of the original dataset, whilst still 

retaining as much of the variance in the data as possible.
[137, 138]

 In PCA, the original 

data is transformed into principal components (PCs); which are essentially latent, 

orthogonal, uncorrelated pseudo-variables generated via the linear combination of 

the original, interrelated variables, for each sample in the dataset.
[129, 131, 134, 138, 139]

 

Each PC accounts for an amount of the total variance contained in the original data, 

with the first PC describing the greatest proportion of the variance in the dataset. 

Every successive PC accounts for less variation than the previous one, thus enabling 

a significant proportion of the variance in the data to be described in the first few 

PCs. A small number of these PCs can then be utilised to reconstruct the dataset, 

revealing patterns and structure that would not have been readily visible in the raw 

data.
[132, 137, 140] 

 

 

PCA can be performed by analysing either a correlation or a covariance matrix, with 

the latter being utilised throughout the entirety of this thesis. In the correlation 

method, the original dataset is mean centred and scaled, such that each variable in 

the transformed dataset is weighted equally. This approach is desirable in instances 

where variables have different measurement units, or when some components have 

significantly larger variances than others. In the covariance method, the data is mean 

centred but not scaled, with this approach being preferred in instances where the 

magnitude of the variance and the metric of the variables are comparable.
[131, 133, 134]
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PCA transforms the original data matrix (X), into a score (T) and a loadings (P) 

matrix, as given by the following equation: 

X = T.P + E 

The combined scores and loadings for the first few PCs contain all or most of the 

systematic variation from the original dataset. Therefore, by multiplying the scores 

and the loadings matrices together, the original dataset can be reconstructed, minus a 

residual or error (E), which contains negligible relevant information and noise.
[132]

 

Every sample contains a score on each PC, with the score acting as a co-ordinate 

reflecting the sample position on that PC.  By plotting the scores for the first two or 

three PCs (2D or 3D scores plot), it is possible to visualise or map the position of the 

samples, which ultimately enables structure and patterns to be discerned.
[132-134]

 The 

scores plot allows the user to visually identify and cluster similar samples into 

groups, whilst also discriminating between samples that have markedly different 

scores. The formation of groupings within the scores plot is often indicative of 

samples sharing similar chemical characteristics.
[138]

 Further information may be 

extracted from the scores plot by examining the loadings, which reflects the 

variables in the original data that have a significant weighting (either positive or 

negative) on a PC. Variables that have large positive or negative values have a 

significant impact on a PC, whilst low values indicate that those variables are less 

significant to that PC.
[132, 133]

 

 

 

1.5.2 Linear Discriminant Analysis (LDA) 

One of the main goals of pattern recognition is in the classification of samples. LDA 

is a form of supervised pattern recognition that uses pre-specified groupings to 

develop and build classification rules.
[129, 131]

 The use of LDA is often preceded by a 

data reduction technique typically in the form of PCA. LDA generates a discriminant 

function via a linear combination of variables, which maximises the ratio of between 

to within class variance (i.e. Fisher ratio), thereby providing maximum separation 

between groupings.
[133, 134, 140]

 The resultant model is then utilised to reassess and 

reclassify the samples from the original dataset, thereby providing the user with a 

percentage correct classification. The LDA model can then be used to assign 
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unknown samples into the most probable grouping, enabling the predictive power of 

the model to be gauged.
[131, 137] 

The classification accuracy of the developed model 

can be determined through the use of cross-validation procedures.
[133]

 The most 

common form of validation is the leave-one-out method, which is an iterative 

process whereby the first sample is omitted from the dataset and a discriminant 

model is generated based upon the remaining data. The resultant model predicts the 

classification of the test sample and the exact procedure is then repeated for every 

other sample in the dataset.
[132, 133]

 
 

 

 

The simplest form of cross-validation, known as the re-substitution method, utilises 

the entire dataset as a training set to develop a discriminant model based upon the 

pre-specified groupings.
[141]

 The classification rules are then used to re-classify each 

sample, such that the predicted grouping can be compared to the actual grouping. 

The major drawback with the re-substitution method is that it employs exactly the 

same data to both define and evaluate the model. In view of this, the discriminant 

model tends to be overoptimistic, which ultimately has a detrimental effect on the 

classification accuracy of the model when applied to new datasets.
[133, 134, 141]

  

 

 

The most reliable and robust method of validation is test set validation, whereby the 

entire original dataset is segregated into two distinct datasets; a calibration or 

training set and a validation or test set.
[132, 133]

 The training set, which preferably is 

around twice as large as the test set, is employed to develop and define the model; 

with the resultant model being used to predict the classification of test samples. The 

predicted classification of the test samples can then be compared with their actual 

grouping to afford a prediction error, which gives an estimation of the efficacy of the 

model. Test set validation is the most effective and accurate form of cross-validation 

as it uses two independent datasets to both develop and test the model.
[132, 133, 139]

 

This form of cross-validation has been used throughout the entirety of this thesis.  
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1.5.3 Chemometrics in the Analysis of Trace Evidence 

A combination of PCA and LDA has been applied in the discrimination and 

classification of forensic evidence; including fibres,
[142-144]

 glass,
[145, 146]

 inks,
[147, 148]

 

soil,
[149, 150]

 hair,
[151]

 accelerants,
[152-154]

 photocopy and printer toners,
[155-158] 

paper,
[159]

 electrical tapes
[160, 161]

 and paint.
[53, 124, 162-164]

 Chemometrics has been 

employed previously in paint analysis, with research demonstrating the applicability 

of PCA and discriminant analysis to the quality control of paint coatings.
[165]

 In a 

forensic context, chemometrics has been utilised in the analysis of both 

architectural
[164]

 and spray paints.
[163]

 Similarly, a number of studies have started to 

use chemometrics in the analysis of automotive paints.
[53, 124, 162] 

The main limitation 

with all of these studies can be primarily attributed to the small sample sizes, which 

limit the significance and minimises the predictive capabilities of the statistical 

models. 

 

 

1.5.4 Chemometrics in the Analysis of Automotive Paint 

A study conducted by Liszewski et al
[53]

 utilised UV MSP in conjunction with 

multivariate statistics, in order to assess the extent of diversity within a number of 

automotive clear coats. Cluster analysis and PCA revealed that three distinct 

groupings were present within the sample population; however no discernible 

relationship could be made between the groupings and the make, model or year of 

the corresponding vehicles. As a result, this method is limited in that it can only 

really be used in the comparison of questioned and known samples and cannot 

procure investigative leads.
[53]

 A further study conducted by Mendlein applied the 

same statistical protocols to Raman spectra obtained from automotive clear coats, 

with similar results.
[166]

  

 

 

Research undertaken by Kochanowski and Morgan
[162]

 utilised Py-GC/MS in 

combination with PCA and LDA (canonical variate analysis), to characterise and 

discriminate between 100 automotive paint samples, representing 5 different colours. 
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The authors noted that LDA performed on the spectra is capable of differentiating 

between paint samples as a function of their colour, with only minor overlap 

observed between blue and silver paint groupings. Additionally, PCA subplots 

generated from samples of the same colour demonstrated that the variance between 

samples is much greater than that within the sample (replicates), potentially enabling 

further discrimination to be achieved between vehicles of a similar colour, but 

different make and model.
[162]

  

 

 

A study by Lavine and co-workers
[124]

 has utilised search pre-filters to aid in 

searching the IR spectral libraries of the PDQ database. The authors utilise a two-

step procedure to develop these search pre-filters. The first step involves applying 

wavelets to decompose FT-IR spectra of clear coats in the PDQ library into wavelet 

coefficients. A genetic algorithm consisting of both supervised (LDA) and 

unsupervised (PCA) forms of pattern recognition analysis identifies wavelet 

coefficients characteristic of the model and manufacturer of the automobile. Using 

this approach, the authors were able to distinguish between samples from Chrysler 

vehicles from a similar production year range, as a function of the manufacturing 

plants where the vehicles were assembled.
[124]

  

 

 

1.6 Aims  

In spite of recent developments, chemometric techniques have not been routinely 

employed by the forensic science community for the analysis and interpretation of 

automotive paint evidence. The focus of this dissertation is to utilise a number of 

spectroscopic techniques in conjunction with chemometrics, in order to develop a 

statistically reliable means of comparison and differentiation in the analysis of 

automotive paint evidence. Whilst this thesis is principally concerned with the 

analysis of automotive paint, the methodology developed is universal and may 

potentially be applied to other forms of trace contact evidence. This thesis 
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dissertation involves five main streams of investigation. The first, detailed in Chapter 

3, utilises conventional ATR FT-IR spectroscopy in combination with multivariate 

statistical techniques (i.e. PCA and LDA) to characterise and classify a statistically 

large population of automotive clear coats. Chemometric methods were employed to 

identify patterns and structure within the data, in an effort to provide information 

regarding the potential make, model or year of the vehicle, as a function of the 

chemical composition of the clear coat. Further discussion in Chapter 4 focuses on 

fundamental chemical studies that may affect the classification model generated in 

the previous chapter. Synchrotron FT-IR microspectroscopy was used to obtain high 

spatial resolution stratigraphic chemical images of automotive paint cross-sections, 

with a view to examining the extent of migration of chemical components between 

layers. Additional studies utilising ATR FT-IR spectroscopy examined the effect 

environmental conditions such as heat, humidity and UV light have on the 

degradation of automotive clear coats.  

 

 

 

To date, the forensic analysis of paint has primarily been limited to the analysis of 

the base and clear coat. In fact, the public domain is seemingly devoid of any 

research examining the variability in the chemical composition of the underlying 

layers, such as the electrocoat primer, primer surfacer and basecoat. Consequently, 

Chapter 5 examines the chemical diversity in a large sample set of basecoats, primer 

surfacers and electrocoat primers, using a combination of synchrotron FT-IR 

microscpectroscopy and PCA. Chapter 6 investigates the comparisons between 

statistical models developed following characterisation of the automotive clear coats 

using IR and FT-Raman spectroscopy. As previous research has shown that a 

combination of IR and Raman spectroscopy attains a much higher discriminating 

capability than both techniques used in isolation; Chapter 7 examines the potential of 

developing an all-encompassing, highly discriminating statistical model that 

incorporates chemical information obtained from both techniques. 
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Chapter 2: Experimental Considerations 
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2.1 Sampling 

All automotive paint exemplars were obtained from a sunroof fitting company 

(Prestige Sunroofs WA, Australia) from roof panels removed during the process of 

sunroof installation, as illustrated in Figure 2.1. The make, model, year and Vehicle 

Identification Number (VIN) were recorded for each vehicle.  

 

 

Figure 2.1: Diagrammatic representation depicting the position on the vehicle 

where samples were obtained.  

 

In studies outlined in this dissertation, statistically relevant sample populations were 

utilised, consisting of 139 individual vehicles covering a range of Australian and 

international manufacturers. The sample collection consists of a diverse range of 

vehicles with 17 different manufacturers and 45 different models being represented, 

as shown in Table 2.1. Whilst there are 17 different manufacturers represented in the 

sample population, roughly 60 % of the sample population consists of only Holden 

and Holden Special Vehicles (HSV), Ford, Toyota and Mazda vehicles. This was 

anticipated considering a sales report commissioned by the Federal Chamber of 

Automotive Industries, revealed that the cumulative sales for these manufacturers 

totalled approximately 45 % of the Australian market in 2013.
[167] 

Although this 

deviates slightly from the value in the sample population, it signifies that the 

collection of samples is generally characteristic of the average vehicle in Australia. 
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Table 2.1: A complete breakdown of the vehicle types, model/s and origin of manufacture for every vehicle in the sample population. 

Manufacturer No. Samples Model(s) Origin of Manufacture 
BMW 3  325i/135i Coupe Germany 

Dodge 7 
5 Nitro US (Toledo, Ohio) 

2 Journey Mexico (Toluca, Mexico State) 

Ford 17 

10 Falcon/Territory Australia (Broadmeadows, Victoria) 

5 Focus Germany 

2 Mondeo Germany 

Holden 38 
36 Commodore/Calais/Adventra/Caprice/Cruze Australia (Elizabeth, South Australia) 

2 Captiva South Korea 

Holden Special Vehicles (HSV) 9  Grange/GTS/Clubsport Australia (Clayton, Victoria) 

Honda 8 

3 Accord Japan 

2 CRV Poland 

2 City Thailand 

1 Civic UK 

Hyundai 5  i30/Elantra South Korea 

Jaguar 1  X-Type UK 

Jeep 3  Cherokee US (Detroit) 

Mazda 12  Mazda 3/Mazda 6 Japan 

Mitsubishi 8 

4 Pajero Japan (Nagoya) 

3 Lancer Japan (Mizushima) 

1 Colt Japan 

Nissan 5 

2 Maxima Thailand 

2 Navara Spain 

1 X-Trail Japan 

Saab 2  Saab 93 Sweden 

SsangYong 2  Kyron South Korea 

Subaru 5  Impreza Japan 

Suzuki 1  Grand Vitara Japan 

Toyota 13 

6 Celica/Corolla/Prado/Kluger Japan 

4 Camry Australia (Altona, Victoria) 

3 Hilux Thailand 
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2.2 Decoding the VIN 

Important information utilised throughout this body of work regarding the country of 

origin, as well as other common vehicle descriptors (Table 2.1), were obtained by 

decoding the VIN. The VIN is a 17-digit alphanumeric code that not only uniquely 

identifies a vehicle, but also provides latent information about the vehicle itself.
[168-

170] 
The VIN is composed of three sections; the world manufacturer identifier (WMI), 

the vehicle descriptor section (VDS) and the vehicle identification section (VIS). The 

WMI contains the first three characters of the VIN, with the first two digits 

signifying the country of origin of the vehicle.
[169, 170] 

In this study, the origin of 

manufacture of the vehicle was decoded by using a list of country codes, which is 

given in Table 2.2 below. 

 

Table 2.2: Partial list of common country codes. The bolded country codes were 

encountered in this study.
[170]

 

 Code Country 

Africa (A-H) AA-AH South Africa 

Asia (J-R) 

J Japan 

KL-KR South Korea 

L China 

ML-MR Thailand 

Europe (S-Z) 

SA-SM United Kingdom 

SN-ST, W Germany 

SU-SZ Poland 

VF-VR France 

VS-VW Spain 

YS-YW Sweden 

ZA-ZR Italy 

North America (1-5) 

1, 4, 5 United States 

2 Canada 

3A-3W Mexico 

Oceania (6-7) 
6A-6W Australia 

7A-7E New Zealand 

South America (8-9) 

8A-8E Argentina 

9A-9E, 93-99 Brazil 

9F-9J Columbia 
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The remaining characters in the VIN often contain information pertaining to the 

manufacturing plant and platform where the vehicle was assembled, the vehicle 

model/series, body style, transmission, chassis and engine type and the sequential 

production number (Table 2.3).
[169, 170] 

Unfortunately, the VIN positions of the 

characters corresponding to the aforementioned vehicle descriptors vary markedly 

depending upon the manufacturer.
[170] 

As this study required specific information 

concerning the manufacturing plant where the vehicle was assembled, individual 

manufacturer VIN books were used to decipher and obtain this information. 

 

Table 2.3: Example VIN broken down into individual segments and decoded.
[170]

 

WMI VDS Check Digit VIS 

JT8 BH22F 4 T0048456 

J = Japan BH2 = LS400 4-door  T = 1996 Model Year 

T = Toyota Motor Sedan; 4.0 L V8 Engine  0 = Tahara (Japan) 

Corporation 2F = Restraint System;  Assembly Plant 

8 = Lexus Division Dual Airbags  048456 = Sequential 

   Production Number 

 

 

2.3 ATR FT-IR Spectroscopy 

ATR FT-IR spectroscopy was utilised to characterise the original manufacturer clear 

coat of all automotive paint exemplars, which contain either a typical 4-coat or OEM 

refinish paint system. A scalpel was utilised to pry chips of paint off the underlying 

metal ensuring all paint layers were present in the sample. The paint chip was then 

positioned so that the clear coat was in contact with the reflectance crystal of the 

ATR attachment. IR spectra of the automotive clear coats were recorded with a 

Perkin Elmer
®
 Spectrum™ FT-IR spectrometer, equipped with a universal single-

bounce Diamond-ZnSe crystal ATR sampling accessory. The ATR accessory is 

equipped with a pressure arm in order to consistently maintain the sample and crystal 

interface contact at a force of 80 N. Perkin Elmer software, Spectrum
®
 (v. 6.3.2), 

was employed to perform an ATR correction on the entire spectral dataset, to 
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account for the change in the depth of penetration with wavelength, so that the 

collected spectra were visually comparable to transmission spectra. All spectra were 

acquired over a range of 4000-650 cm
-1

, with a spectral resolution of 4 cm
-1

 and 4 

accumulated scans. Five replicate scans were recorded at different locations for each 

paint sample, as replicate measurements are essential in chemometric studies to 

accurately measure intra-sample versus inter-sample variation. Between sample 

acquisitions, the crystal was thoroughly cleaned to remove contaminants and 

particulate matter using an ethanol soaked piece of lint free tissue. A background 

scan of the clean Diamond-ZnSe crystal was acquired before each sample scan. 

 

 

2.4 Synchrotron FT-IR spectroscopy 

2.4.1 Cross-section Preparation 

Paint chips were obtained by using a scalpel to flake the paint off the underlying 

metal, being careful to ensure that all paint layers were present in the sample. The 

chips of paint were then sandwiched between two rigid pieces of plastic prior to 

transverse sectioning with a microtome equipped with a stainless steel blade. The 

paint chips could not be sectioned as is because they are brittle in nature and tend to 

fracture easily. Similarly, samples were not embedded in a resin prior to 

microtoming as previous research indicated the infiltration of the embedding media 

into the paint chips, leading to interference bands in the resultant IR spectra.
[171]

 The 

microtomed cross sections obtained from all paint samples were 8 µm thick. The 

paint sections were then separated from the plastic and pressed flat between two 

micro-diamond cell windows (Thermo Scientific). As the samples remained flat the 

top window was removed prior to spectra acquisition. 

 

 

 



 

 

39 

 

2.4.2 Sample Characterisation 

All experiments were conducted on the IR microspectroscopy (IRM) beam-line of 

the Australian Synchrotron, Melbourne, Australia. The mechanics of the IRM beam-

line are outlined in detail by Creagh et al.
[172]

 The beam-line consists of a Bruker 

Vertex V80v FT-IR spectrometer, equipped with a liquid nitrogen cooled narrow-

band MCT detector in conjunction with a Bruker Hyperion 2000 microscope (Bruker 

Optik GmbH, Ettlingen, Germany). The microscope is equipped with a motorised 

sample stage that allows spectral mapping of regions of interest, and an atmospheric 

purge box to minimise background variation over the mapping time. The paint 

sections were mapped in transmission mode using an X-Y step size of 2.5 µm, with a 

5 µm x 5 µm sampling aperture. Spectra were acquired over the range of              

3900-730 cm
-1

 at a spectral resolution of 4 cm
-1

 with 64 co-added scans. 2-

dimensional false colour chemical maps were then generated for specific IR bands of 

interest by correlating integrated peak areas to specific positions in the measured 

grid. Data acquisition and processing was performed via Bruker Opus software 

(version 7.0). The process is illustrated in Figure 2.2. 
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Figure 2.2: Diagrammatic representation of the stratigraphic imaging of 

automotive paint cross-sections via synchrotron FT-IR microspectroscopy. Paint 

samples were obtained from roof panels (2) removed from the vehicle during the 

process of sunroof installation (1). Synchrotron FT-IR microspectroscopy was then 

utilised to map an area across the paint section (3), whereby an IR spectrum was 

collected at each grid-point in the map. 2D chemical images were then generated by 

integrating specific peaks, thereby enabling the distribution of select chemical 

components to be visualised (4).  

 

2.4.3 Interference Fringe Removal 

IR transmission spectra obtained from thin films such as automotive paint cross-

sections are convoluted by the presence of interference fringes, which often mask 

small spectral features and make quantification of components problematic.
[173-175] 

In 

this particular instance, the interference fringes are caused by multiple reflections of 

IR radiation within the sample, resulting in a sine wave pattern propagated 



 

 

41 

 

throughout the spectrum.
[176] 

These fringes may affect both the qualitative and 

quantitative interpretation of the spectra and thus need to be eliminated.
[175] 

As a 

result, interference fringes were removed from the spectra by spectral subtraction of 

a sinusoidal wave with the same frequency as the fringes of the original data, as 

depicted in Figure 2.3. 

 

Figure 2.3: Interference fringes were removed from IR spectra by subtracting the 

sine wave function (red) from the original IR spectrum (black). 

 

 

2.5 Chemometrics 

Prior to the use of chemometric techniques the data was pre-processed, in order to 

eliminate systematic noise and any variation arising from the characterisation of the 

sample. For each stream of investigation in this dissertation, all spectra were 

assembled and stored in a single data matrix, whereby every column signified a 

variable and each row represented a sample. All spectra in the dataset were then 

linearly baseline corrected and range normalised, unless otherwise specified. 

Additionally, the data was truncated to a range of 1800-650 cm
-1

, unless otherwise 

specified, so as to only retain chemically relevant information from the ‘fingerprint’ 
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region of the spectra. Furthermore, truncation of the dataset also eliminates 

extraneous variables, such as those pertaining to aliphatic C-H stretches, which 

contain negligible relevant information. All pre-processing and subsequent statistical 

analysis of the data was performed using the Unscrambler
®

 X 10.2 software (CAMO 

Software AS, Oslo, Norway). 

 

2.5.1 Principal Component Analysis 

PCA was performed on the truncated pre-processed data matrices in order to 

visualise groupings and enable relationships to be discerned. In this study, mean-

centred data was analysed by PCA using the non-linear iterative partial least squares 

(NIPALS) algorithm. 3-dimensional scores plots were generated by using the scores 

from as many as the first five PCs, in order to visualise the grouping of samples 

within the dataset. The loadings corresponding to these PCs were then employed to 

identify characteristic spectral features that give rise to the discrimination between 

samples. 

 

2.5.2 Linear Discriminant Analysis 

The discriminant models generated in this study were validated using test set 

validation. In this method, the entire spectral dataset was segregated into two 

independent sets of data; a calibration or training set and a validation set. The 

training set (490 spectra; 98 vehicles) was roughly 2.5 times larger than the 

validation set (205 spectra; 41 vehicles). As some groupings in the dataset contained 

more samples than others, the data was separated in a manner such that the training 

set contained approximately 2.5 times more samples per grouping than the validation 

set. The training set was used to generate the discriminant model, whilst the 

validation set was then used to classify unknown test samples and gauge the 

predictive performance of the model. The efficacy of the models was evaluated by 

comparing the actual grouping to the predicted grouping of each sample in both 

datasets. This information was presented in a table in the form of a confusion matrix. 
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Chapter 3: Characterisation and classification of 

automotive clear coats using attenuated total 

reflectance infrared spectroscopy and chemometrics 

 

 

 

 

 

 

Portions of this chapter have been published in the journal Analytical Methods: 

Maric, M., van Bronswijk, W., Lewis, S.W., and K. Pitts, Rapid characterisation 

and classification of automotive clear coats by attenuated total reflectance infrared 

spectroscopy. Analytical Methods, 2012. 4(9): p. 2687-2693. 
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3.1 Introduction 

Automotive clear coats are principally utilised in order to protect the basecoat from 

the effects of weathering, chemical agents, solvent and mechanical impact.
[7, 24] 

Clear 

coat technology was first instituted in the early 1970’s, when the single layer topcoat 

system was replaced by a pigmented basecoat and clear coat. Over the years, the 

clear coat has gained popularity and unsurprisingly is still utilised in automotive 

paint systems. In fact, less than 2 % of all automotive paint systems worldwide have 

no OEM clear coat.
[24]

 Clear coat technology is ever-evolving and has changed 

extensively since its inception, with different paint binders and lower concentrations 

of VOCs being utilised, so as to comply with new environmental standards and 

regulations.
[51]

 Modern OEM clear coats applied to the painted metal portions of the 

vehicle typically consist of only one of two possible formulations; a combination of 

melamine, acrylic and styrene, or melamine, acrylic, styrene and polyurethane.
[125]

  

 

 

Paint smears often arise when less forceful contact occurs between a vehicle and a 

substrate.
[6, 29]

 Due to the relatively large thickness of the clear coat layer, in 

comparison to the thinner underlying layers, most paint smears consist only of the 

clear coat.
[124, 125]

 In instances where clear coat paint smears are encountered at crime 

scenes, obtaining investigative leads from this evidence has often proved 

challenging. Whilst databases such as PDQ have been implemented in these 

situations, they have often found limited success.
[124]

 Although direct searching of IR 

spectra in the PDQ database is possible with the IR SearchMaster add-in program, 

the program provides matches based upon a limited number of peaks rather than the 

entire spectrum. Consequently, the IR data is typically manually interpreted and 

coded, with the coded information being utilised to search against the codes in the 

database. The generic nature of the coding system, in conjunction with the fact that 

OEM clear coats typically only have two possible formulations, makes it difficult to 

obtain conclusive information about the vehicle (due to the large number of potential 

matches) from clear coat smears.
[124, 125]

 As searching of the PDQ database relies 

heavily on large variations in the chemical composition and colour of the coating, 

this significantly limits the applicability of the PDQ database in the identification 



 

 

45 

 

and characterisation of the automotive paint evidence. Additionally, both the text-

based and spectral searches are restricted by the samples in the database, which 

predominantly consists of North American vehicles. Subsequently, the PDQ system 

is somewhat limited in obtaining information from OEM clear coats in an Australian 

context. 

 

 

An approach based upon multivariate statistics may aid in procuring investigative 

leads in an Australian context, under the provision that a statistically relevant sample 

population is used. Consequently, this chapter investigated the use of ATR FT-IR 

spectroscopy in combination with chemometric techniques, in order to assess the 

chemical diversity of a statistically large population of automotive clear coats. ATR 

FT-IR spectroscopy was employed to characterise the outermost surface of the paint 

system (i.e. OEM clear coat), with PCA and LDA being applied to the resultant data. 

Although discrimination between the samples was based solely upon their resultant 

IR spectra, in some instances it was difficult to correlate a subtle change in the IR 

spectra with changes in the composition of the coating. Thus, Py-GC/MS was 

utilised to aid primarily in elucidating the acrylic components that discriminate 

between select groups of samples. The novelty in this stream of investigation lies in 

the methodology and statistical approach, in conjunction with the large sample size 

of individual vehicles, which ultimately enables patterns and relationships to be 

discerned that would otherwise prove impracticable. 
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3.2 Experimental 

ATR FT-IR spectra were obtained from the automotive clear coats as described in 

section 2.3. The resultant IR data was collated and pre-processed according to 

section 2.5. PCA and LDA were then conducted on the data as described in section 

2.5.1 and 2.5.2 respectively. 

 

 

3.2.1 Py-GC/MS 

A Curie point pyrolysis unit (Horizon Instruments) was coupled with a Hewlett 

Packard 6890 gas chromatograph mass spectrometer. The samples (~ 5 µg) were 

mounted on a flattened, bent Curie point wire and pyrolysed at 770 °C, for a duration 

of 5 s, in the pyrolyser head. The pyrolysis products were directly transferred by a 

stream of helium (18 psi) into an Agilent J&W vitreous silica DB1701 (cyanopropyl 

phenyl methylsilicone) capillary column (30 m, i.d. 0.25 mm) and detected by the 

mass spectrometer. The GC conditions and temperature program are summarised 

below in Table 3.1. The mass spectrometer was operated in positive electron impact 

mode and the resultant data was interpreted using mass spectral databases. The 

analysis of automotive paint samples by Py-GC/MS was conducted by Kari Pitts at 

the ChemCentre. 

 

Table 3.1: Summary of the GC conditions and temperature program utilised in 

the characterisation of automotive clear coats by Py-GC/MS. 

GC Conditions Temperature Program 

Mode Splitless Initial Temp. 35 °C 

Initial Temp. 250 °C (On) Time at Initial Temp. 1 min 

Pressure 9.50 psi (On) Initial Ramp Rate 8 °C/min 

Purge Flow 500.0 mL/min Intermediate Temp. 150 °C 

Purge Time 0.50 min Final Ramp Rate 20 °C/min 

  Final Temp. 270 °C 

  Time at Final Temp. 10 min 
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3.3 Results & Discussion 

3.3.1 Principal Component Analysis 

PCA performed on the entire spectral dataset (695 spectra) revealed that 98.1 % of 

the total variance of the data was accounted for in the first five PCs, as depicted in 

the Scree plot below (Figure 3.1). The Scree plot is highly significant as it provides 

the user with an indication of the appropriate number of PCs to be utilised.
[177]

 This 

is important because if too few PCs are examined, information pertaining to 

variation within the dataset may be overlooked.
[177, 178]

 Likewise, if extraneous PCs 

are employed, systematic noise may potentially be incorporated into the model.
[134]

 

Thus, the Scree plot was ultimately used as a screening method, so as to determine 

the optimal number of PCs required to model the data. This was accomplished by 

identifying the location of the plot where there is a natural break or where the curve 

is plateauing or levelling off.
[134, 177, 178]

 In this particular instance, the Scree plot 

clearly indicates that as many as five PCs could be employed to reconstruct the data. 

Although the first three PCs account for 96.0 % of the variance in the data, as the 

spectral variation may be subtle, the first three PCs may not be sufficient to model 

the dataset. Consequently, the influence of the fourth and fifth PC was evaluated. 

 

Figure 3.1: Scree plot depicting the variance in the dataset retained by each PC. 
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3-dimensional PCA scores plots were generated by plotting the scores of the 

projected objects from the relevant PCs. 3-dimensional scores plots created using a 

number of combinations of the first five PCs (Figure 3.2 and Figure 3.3), revealed 

that there visually appear to be 17 groupings in the dataset. A strong correlation was 

made between the sample groupings as a function of common vehicle descriptors; 

including vehicle origin, manufacturer, model/s, assembly plant and in some 

instances the year of vehicle manufacture.  

 

 

Interestingly, upon examination of the scores plot generated from the first three PCs 

(Figure 3.2), it was observed that the samples in classes 1-3, cannot be visually 

discriminated, as the samples are projected too close together. However, upon 

substituting the scores from the third PC with the fifth PC in the scores plot, it can be 

seen that PC5 can be utilised to discriminate between these groupings (Figure 3.3). 

Whilst the fifth PC individually accounts for only 0.9 % of the variance in the 

dataset, it was integral in providing additional discrimination between samples. The 

influence of the fourth PC was also examined; however, PC4 was determined to have 

a diminished influence on the model, as it afforded no additional group separation. It 

is also worth noting the impact of the third PC on the scores plot (Figure 3.2). The 

third PC also only accounts for a small percentage of the variance (1.3 %) in the 

data, however, it is responsible for segregating the samples in classes 7-9 from the 

other groupings. More importantly, as the samples in class 8 do not have significant 

negative or positive scores on PC1 and PC2, the third PC is primarily responsible for 

describing these samples. This is not the case with the samples in classes 7 and 9, as 

they are also both tenuously accounted for by PC2 (Figure 3.2).  

 

 

 

 

 



 

 

 

4
9
 

 

Figure 3.2: A 3-dimensional PCA scores plot from a number of different perspectives, generated using the first three PCs, 

highlighting the distribution of a population of automotive clear coats based upon their corresponding IR spectra. 
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Figure 3.3: 3-dimensional PCA scores plot, consisting of PC1, PC2 and PC5. The 

fifth PC enables discrimination between the samples in classes 1, 2 and 3. 

 

Based upon the PCA scores plots depicted in Figure 3.2 and Figure 3.3, it is evident 

that 17 groupings are present in the spectral data. A complete breakdown of the 

vehicles represented in each class is provided below in Table 3.2. The first grouping 

consists of samples obtained from the US-manufactured Dodge and Jeep vehicles. 

Whilst both these Dodge and Jeep vehicles were assembled in different regions and 

manufacturing plants in the US, it is not surprising that they group together 

considering they fall under the flagship Chrysler brand. With that being said, Dodge 

vehicles that were manufactured in Mexico were not grouped with the samples in 

class 1, but rather formed their own distinct grouping (class 5). Class 2 contained 

samples representing the German-manufactured BMW vehicles. The samples in 

class 3 signified Australian and Japanese-manufactured Toyota; and Japanese-made 

Mazda and Mitsubishi vehicles. Interestingly, the Mitsubishi vehicles represented in 

this class were Mitsubishi Lancers, which are assembled at the Mizushima 

manufacturing plant. This differs to the Mitsubishi Pajero vehicles from class 4, 

which are manufactured in Nagoya, thereby highlighting inherent diversity within an 

automotive manufacturer as a function of the plant where the vehicle was assembled. 
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Table 3.2: Summary of the samples that comprise every PCA grouping. 

Class No. No. of Samples Vehicles Represented 

Class 1 8 US (Dodge/Jeep) 

Class 2 3 BMW 

Class 3 25 
Japan (Mazda/Mitsubishi Lancer); Australia/Japan 

(Toyota) 

Class 4 4 Mitsubishi Pajero 

Class 5 2 Mexico (Dodge) 

Class 6 7 Japan (Subaru/Mitsubishi Colt/Nissan) 

Class 7 2 Germany (Ford Mondeo) 

Class 8 5 Hyundai 

Class 9 2 South Korea (Holden) 

Class 10 6 Germany (Ford Focus) 

Class 11 5 Poland (Honda); Sweden (Saab); UK (Jaguar) 

Class 12 11 Thailand (Nissan/Toyota); Japan (Honda/Suzuki) 

Class 13 2 SsangYong 

Class 14 4 Australia (Ford) [2004-2009] 

Class 15 9 Australia (Ford) [2009-present]; Spain (Nissan) 

Class 16 15 Australia (Holden/HSV) [2001-2009] 

Class 17 29 Australia (Holden/HSV) [2009-present] 

 

 

It is important to note that four classes exist within the dataset signifying samples 

obtained from Ford vehicles (classes 7, 10, 14 and 15). Classes 7 and 10 contain 

samples from the German-manufactured Ford Mondeo and Focus respectively, 

whilst classes 14 and 15 contain predominantly Australian-made Ford vehicles. The 

primary distinction between the two Australian Ford classes can be attributed to the 

period in time when the vehicles were manufactured. In particular, class 14 contains 

samples from Ford vehicles manufactured from 2004 up until 2009, whilst samples 

in class 15 represent Ford vehicles produced from 2009 until present day. 

Interestingly, class 15 also includes samples obtained from Spanish-manufactured 

Nissan Navara vehicles. Similarly, there are three classes in the dataset that contain 

samples obtained from General Motors-manufactured Holden vehicles (classes 9, 16 

and 17). It is not surprising that the South Korean-manufactured Holden vehicles 

(class 9) differ from the Australian-made Holden vehicles (classes 16 and 17). 
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However, a relationship was also identified within the samples obtained from 

Australian factory-made Holden vehicles as a function of the year the vehicles were 

manufactured. Specifically, samples obtained from class 16 signified vehicles 

manufactured from 2001 up until 2009, whereas samples in class 17 represented 

vehicles manufactured from 2009 onwards. The significance of this relationship will 

be discussed in detail later. Class 8 and class 13 contain samples representing the 

South Korean-manufactured Hyundai and SsangYong vehicles respectively. 

 

 

Class 6 principally consists of samples obtained from Japanese-manufactured Subaru 

vehicles. Whilst there are solitary samples in this grouping signifying Japanese-made 

Mitsubishi Colt and Nissan vehicles, the number of paint samples representing these 

vehicles is far too small for patterns or generalisations to be inferred. Consequently, 

these samples are not able to form stand-alone groupings and thus must be grouped 

with samples that attain similar scores. It is anticipated that as the dataset continues 

to expand and the subsequent model becomes more defined, the model will most 

likely compensate for this change, effectively producing more classes corresponding 

to these vehicles. This was also observed to an extent with select samples in classes 

11 and 12. Class 11 consisted of samples representing select vehicles manufactured 

in Europe; including the Polish-manufactured Honda CRV, the Swedish-made Saab 

and the UK factory-made Jaguar. Finally, class 12 represents both Toyota and Nissan 

utility vehicles manufactured in Thailand, as well as the Japanese-manufactured 

Honda and Suzuki.   
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To evaluate the discrimination veracity and basis of the statistical techniques, the IR 

spectra of the central samples of each grouping were visually examined and their 

chemical constituents were identified, as displayed in Figure 3.4. Predictably only 

two formulations were identified in the automotive clear coat population, with either 

an acrylic, melamine, styrene, or an acrylic, melamine, styrene, and polyurethane 

enamel being utilised.
[125]

 However, relative differences in the abundance of 

components were observed in the centroid IR spectra of each grouping (Figure 3.4). 

 

 

In all instances the main type of binder was identified as acrylic; but, subtle 

differences within the acrylic ‘fingerprint’ region (i.e. 1300-1000 cm
-1

) were 

observed, suggesting variations in the acrylic co-polymers utilised to create the 

backbone of the enamel.
[14]

 Melamine was another component present in all 

automotive clear coats, as it is an amino resin principally utilised to cross-link the 

acrylic backbone.
[14, 15, 24]

 Styrene was also identified in virtually all acrylic enamels 

of the automotive clear coats, with its continual use being predicated on the 

favourable qualities such as gloss and hardness, it imparts to the finished film.
[24]

 It 

is important to note that whilst all automotive clear coats contain these three 

fundamental components, the abundance of these components can vary significantly. 

On the other hand, polyurethane was only unequivocally observed in the clear coats 

of the German-made Ford Mondeo (class 7) and South Korean-manufactured 

Hyundai vehicles (class 8). Interestingly, a large abundance of polyurethane was also 

observed in aftermarket respray clear coats and the significance of this will be 

discussed in detail shortly. Although the chemical composition of the clear coats 

were comparable, variations between spectra typically arise from differences in the 

relative amounts of acrylic, melamine, polyurethane and styrene present, as well as 

differences in the acrylic co-polymers used. These differences can often be difficult 

to distinguish via the use of visual comparisons (Figure 3.4), reinforcing the need for 

a multivariate statistical approach. 
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Figure 3.4: The IR spectra obtained from the central objects of each class, 

showing the spectral differences between the groupings. 
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The factor loadings for the first five PCs were utilised to identify the spectral regions 

contributing to the variance in the dataset. In particular, the loadings plot for PC1 

(Figure 3.5), revealed a significant positive correlation at approximately 1550 cm
-1

 

and a region of significant positive correlation between 1490 and 1450 cm
-1

. The 

intense broad absorption at 1550 cm
-1

 is indicative of an in-plane triazine ring 

expansion attributable to melamine.
[14, 55, 56, 179]

 Furthermore, the intense peaks ca. 

1490 and 1450 cm
-1

 are characteristic for both ring and side chain C-N stretches and 

C=C aromatic ring stretches, which could be symptomatic of both melamine and 

styrene. By examining the scores plot in Figure 3.5, it can be observed that samples 

which have relatively large intensities of these peaks, and thus a large abundance of 

melamine and styrene, attain significant positive scores on PC1              (e.g. classes 

14-17). Conversely, samples that have relatively low intensities of these variables 

have significant negative scores on PC1 (e.g. classes 1-3). As a result, discrimination 

between classes on PC1 is achieved based primarily upon the relative abundance of 

melamine in the clear coat.  

 

 

The loadings plot for PC2 depicted in Figure 3.6 revealed zones of significant 

positive correlation in the 1700 and 1635 cm
-1 

regions of the IR spectrum. It is 

important to note that the dominant vibrational stretch in all the IR spectra in the 

sample population was the band near 1730 cm
-1

, which is principally
 
attributed to the 

ester carbonyl stretch of the acrylic component.
[14]

 Consequently, the large positive 

correlation at 1700 cm
-1

 is most likely indicative of a shift in the peak position of the 

carbonyl stretch associated with the acrylic binder, thereby implying a probable 

change in the acrylic binder composition. On the other hand, the significant positive 

correlation at 1635 cm
-1

 relates to a shoulder on the melamine peak. Whilst the 

loadings plot for PC2 describes very subtle differences in the IR spectra, PC2 is 

influential in the model as it is solely responsible for the discrimination between the 

two classes representing the Australian-manufactured Holden and Ford vehicles. The 

significance of this result will be discussed in detail shortly. 
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Figure 3.5: Factor loadings plot for PC1. The blue regions superimposed on the representative IR spectra for each class, denote 

spectral regions significantly positively correlated with PC1.  
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Figure 3.6: Factor loadings plot for PC2. The red regions overlaid on the representative IR spectra for each class, denote spectral 

regions significantly positively correlated with PC2. 
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The loadings plot for PC3 (Figure 3.7) revealed a significant negative correlation at 

approximately 1690 cm
-1

 and a large band of positive correlation at 1150 cm
-1

. The 

large negative loading ca. 1690 cm
-1

 is a characteristic absorption attributable to the 

C=O vibrational stretch of polyurethane.
[14, 179]

 Conversely, the positively correlated 

loading is characteristic for the acrylic binder. The key peaks associated with the 

acrylic component are the ester C=O stretch at 1730 cm
-1

 and a series of C-O 

stretching absorptions between 1300 and 1000 cm
-1

 (i.e. acrylic ‘fingerprint’ 

region).
[14, 56]

 As a result, the positive loading ca. 1150 cm
-1

 is most likely indicative 

of compositional changes of the acrylic backbone. Relating the loadings for PC3 to 

the scores plot (Figure 3.7), samples in classes 7-9 attain large negative scores on 

PC3 due either to the large abundance of polyurethane or the presence of specific 

acrylic binder/s compositions. Conversely, samples that obtained significant positive 

scores on PC3 contained no polyurethane, and a large abundance of specific acrylic 

binder/s or distinct permutations of acrylic co-polymers. Importantly, PC3 is 

primarily responsible for discriminating between the Australian-manufactured Ford 

and Spanish-manufactured Nissan vehicles (classes 14 and 15) from the Australian-

manufactured Holden vehicles (classes 16 and 17); based upon subtle differences in 

the acrylic fingerprint region of the IR spectra.  

 

 

Although discrimination between these samples arises from subtle differences in the 

acrylic ‘fingerprint’ region of the spectra, it is virtually impossible to attribute these 

changes to specific acrylic components based solely upon the IR spectra. 

Consequently, Py-GC/MS was conducted on select centroid samples, which were 

separated on PC3, so as to provide unequivocal characterisation and identification of 

the acrylic polymers utilised in the coatings and thus enable separation of groupings 

to be attributed to specific acrylic components (Table 3.3). As displayed in Table 

3.3, it is evident that automotive clear coats contain a combination of acrylic co-

polymers as opposed to a single polymeric acrylic component. Additionally, the 

information provided in this table enables the discrimination between PCA sample 

groupings to be explained based upon chemical compositional differences in the 

acrylic component.  
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Figure 3.7: Factor loadings plot for PC3. The purple regions superimposed on the representative IR spectra for each class, designate 

spectral regions significantly correlated with PC3.  
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Take the example given above; whereby samples obtained from Australian-

manufactured Ford and Spanish-made Nissan vehicles (classes 14 and 15) attain 

slightly larger positive values on PC3 than the Australian-manufactured Holden 

vehicles (classes 16 and 17). By examining Table 3.3 it is evident that the 

discrimination between the two sets of groupings on PC3 can be attributed to 

differences in the acrylic backbone. In this instance, the samples in classes 14 and 15 

are primarily composed of a combination of ethylhexylacrylate (EHA) and 

pentylmethacrylate (PMA). This deviates from the composition of samples in classes 

16 and 17 which predominantly consist of EHA and hydroxyethylmethacrylate 

(HEMA). Similarly, the samples in class 12 have scores on PC1 and PC2 that are 

comparable to the samples in class 17. These samples are ultimately discriminated 

from the samples in class 17 based upon their scores on PC3, which are significantly 

lower and can again be credited to different permutations of the acrylic components. 

In this particular instance, the samples in class 12 contain a combination of 

octylmethacrylate (OMA) and n-butylmethacrylate (nBMA), which differs from the 

acrylic composition of the samples in class 17. Thus, the Py-GC/MS data has 

demonstrated that the separation of samples on PC3, based upon the acrylic 

fingerprint region of the IR spectra, can be ascribed to specific changes in the acrylic 

co-polymers used.  

Table 3.3: Pyrolysis results for select centroid samples of the PCA groupings 

separated on PC3. A list of abbreviations for the compounds is provided in Table 

3.4. 

 Pyrolysis Products 

Class Strong Moderate Weak 

Class 1 nBMA, Sty MAE, BP, BMB unresolved MBs 

Class 3 Sty, Ca, isobMA, HEMA BMA, EHA, OMA, Ehexol, MAE, OA aMS, HEA 

Class 4 Sty, nBMA, DMA C13, BMA, OMA, HEMA, C10 HEA 

Class 7 EHA, OMA, Ehexol HEMA, Sty, HPMA BI 

Class 8 Sty, BMA, DMA HEMA, HPA, BA aMS, C10 

Class 10 Sty, BA HEA, DMA, aMS, unresolved MBs BI, OMA 

Class 12 OMA, Sty, nBMA HEMA, DMA, C13 Ehexol, C10 

Class 14 Sty, EHA, PMA Ehexol, OMA, C10 aMS, HEA 

Class 15 Sty, EHA, PMA DMA, Ehexol, OMA, C10 aMS, HEA 

Class 16 Sty, EHA, HEMA Ehexol aMS 

Class 17 Sty, EHA, HEMA Ehexol aMS, BEol, BI 
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Table 3.4: Abbreviations for the compounds identified in the pyrolysate. 

Abbreviations 

Sty - Styrene MMA - methylmethacrylate BMA – i-butylmethacrylate 

nBMA – n-butylmethacrylate PMA - pentylmethacrylate OMA – octylmethacrylate 

EHMA - ethylhexylmethacrylate HEMA - hydroxyethylmethacrylate HPMA - hydroxypropylmethacrylate 

DMA - decylmethacrylate isobMA - isobornylmethacrylate aMS – alpha methylstyrene 

EHexol – 2-ethyl 1-hexanol BEol - butoxyethoxyethanol EHA – ethylhexyacrylate 

HPA - hydroxypropylacrylate HEA - hydroxyethylacrylate BA - butylacrylate 

BP – butyl 2-methylpentanoate BMB – butyl 2-methylbutanoate 
MAE - methacrylic acid 2,3-

epoxypropylester 

BI – benzyl isocyanate C10 - dodecene C13 – tridecane 

Ca - camphene OA - dimethyloctylamine MB – methylbenzene 

  

 

As mentioned previously, exploratory analysis of the IR data was conducted with the 

first five PCs. Models built with only three PCs were unable to discriminate between 

the first three classes, as seen in Figure 3.2. The factor loadings for PC4, which is 

displayed in Figure A.1 of the appendix, did not provide any additional 

discrimination between the samples. However, total discrimination between the first 

three groupings was achieved by utilising the fifth PC (Figure 3.3). The factor 

loadings for PC5 which are depicted in Figure 3.8 revealed that there is a significant 

positive loading at approximately 700 cm
-1

. This large positive correlation ca. 700 

cm
-1

 is indicative of a =C-H out-of-plane bending vibration, which is the main 

diagnostic peak characteristic of styrene.
[55]

 Ultimately, these three classes are 

differentiated based upon the relative intensity of this peak; with the samples in class 

3 having a larger intensity than the samples in class 1, which has a larger intensity 

than the samples in class 2. Thus, the samples in class 3 attain more positive scores 

on PC5 than the samples in class 1, which similarly have more positive scores on 

PC5 than the samples in class 2. 
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Figure 3.8: Factor loadings plot for PC5. The orange region overlaid on the representative IR spectra for each class, shows a 

spectral region substantially positively correlated with PC5.  
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Whilst the loadings plots are useful in identifying the regions of the spectra that are 

the most variable for a given PC, univariate Fisher ratio plots are capable of 

discerning the individual spectral features that are the most discriminating for the 

separation of the specified groups.
[144, 155, 156]

 Fisher ratio plots are generated by using 

the analysis of variance (ANOVA) technique to determine the F-statistic for every 

spectral wavelength in the dataset. The F-value is defined as the ratio of the between 

group variance to within group variance and these values are subsequently plotted as 

a function of wavenumber to produce the Fisher ratio plot. The F-value can range 

from zero to an unbounded upper limit, with larger F-values denoting more 

discriminating spectral features.
[144, 155, 156]

  

 

 

 

Figure 3.9 depicts the Fisher ratio plot, with the shaded blue regions superimposed 

on the representative IR spectra from the centroid of each grouping, signifying 

spectral features with higher F-values and thus denotes regions of the spectra that are 

highly discriminating. In this particular instance, the plot of the F-statistic against 

wavenumber shows that significant differences between the IR spectra of the 17 

different classes are present at approximately 1550 cm
-1

, 1490-1450 cm
-1

, 1400-1300 

cm
-1

, 815 cm
-1

 and 740 cm
-1

.
[179]

 All of the vibrational bands in these regions can be 

attributed for the most part to the melamine cross-linking agent. The main diagnostic 

peaks for melamine at ca. 1550 and 815 cm
-1

 are indicative of the in-plane and out-

of-plane triazine ring deformation respectively.
[14, 56]

 Interestingly, the Fisher ratio 

plot indicates that only the vibrational bands characteristic for the melamine resin 

were highly discriminating for the separation of the classes. In comparison to the 

loadings plots from PCA, the Fisher ratio plot indicates that the regions in the spectra 

indicative of acrylic, polyurethane and styrene are far less significant to the 

discrimination between classes than melamine. This finding is consistent with the 

loadings plot for PC1, which accounts for the most significant portion of the 

variance in the dataset (90.6 %), and is primarily responsible for discriminating 

between samples on the basis of melamine abundance. 
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Figure 3.9: Fisher ratio plot. The blue regions superimposed on the IR spectra of 

each class represent spectral features with large F-values, indicative of their relative 

importance for discriminating between the groupings. 
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3.3.2 Linear Discriminant Analysis 

LDA was conducted using the data obtained from PCA. As mentioned previously, 

the entire spectral dataset was divided into two portions; a calibration or training set 

and a validation set, which were mutually exclusive. By segregating the data used to 

generate the discriminant model from the data used to estimate its performance, an 

unbiased robust evaluation of the classification accuracy can be obtained.
[134, 139]

  

 

 

The LDA calibration model was created by employing the first five PCs and the 

classifications derived from PCA of the calibration dataset. The five PC-score LDA 

model successfully classified 100 % of the training dataset and 97.6 % of the test set, 

as portrayed in the calibration and validation confusion matrices provided in Table 

3.5 and Table 3.6 respectively. As evident in Table 3.6, only one sample and its 

subsequent replicates were misclassified; with a Honda Accord from class 12 being 

categorised into class 11 by the discriminant model. This result was corroborated 

upon inspection of the discriminant values, with smaller discriminant values 

indicating that the projected samples lie closer to the centroid of a given class. As a 

result, a sample is classified to the specific class which has the smallest discriminant 

value. In this particular instance, the misclassified sample lies closer to the class 11 

centroid than the class 12 centroid, based upon the discriminant values provided in 

Table A.1 of the appendix. Additionally, it is important to inspect the discriminant 

values in order to assess the level of confidence in the classification, because in LDA 

an unknown sample must be categorised into one of the pre-specified groupings. 

Therefore, if the discriminant values for a given sample are large for all of the 

groupings, it can be concluded that the sample is not well-represented in the model. 

These discriminant values infer that although the sample is misclassified it is still 

adequately represented in the model. Furthermore, the discriminant values for a 

select sample and its replicates are consistent, inferring that the intra-sample 

variability is small in comparison to the inter-sample variability (Table A.1). 

Ultimately, based upon the results obtained from the test set validation, it can be 

concluded that the overall performance of the classification model is highly 

discriminating, which is of considerable significance in eliminating the ambiguity 

when predicting the classification of unknown samples. 
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Table 3.5: Confusion matrix displaying the results from LDA of the samples within the calibration dataset. 

 

                                                        Actual  

  
 P

re
d

ic
te

d
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total % Correct 

1 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 100 

2 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

3 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 100 

4 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

6 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 20 100 

7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 100 

8 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 15 100 

9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 100 

10 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 25 100 

11 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 15 100 

12 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 35 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 20 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 25 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 50 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 110 100 

Total 25 15 80 15 10 20 10 15 10 25 15 35 10 20 25 50 110 490 100 



 

 

 

 

6
7
 

Table 3.6: Confusion matrix showing predicted vs. actual classifications for the samples within the validation set. Note: bolded 

diagonal numbers indicate correctly classified samples, whilst the bolded red number denotes a misclassified sample.  

 

                                                        Actual  

  
P

re
d

ic
te

d
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total % Correct 

1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

3 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 100 

4 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 5 100 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

6 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 15 100 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 100 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

10 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 100 

11 0 0 0 0 0 0 0 0 0 0 10 5 0 0 0 0 0 15 66.7 

12 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 15 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 20 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 25 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 35 100 

Total 15 0 45 5 0 15 0 10 0 5 10 20 0 0 20 25 35 205 97.6 
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As mentioned previously, classes 16 and 17 contain samples obtained from 

Australian-manufactured Holden vehicles. The distinction between the samples in 

the two classes can be attributed to the time period in which the Holden vehicles 

were manufactured. Samples in class 16 represent Holden vehicles manufactured 

prior to May/June of 2009, whilst samples in class 17 signify vehicles manufactured 

after this time period. This result is significant, considering that this relationship 

could potentially be utilised in order to obtain more specific information concerning 

the vehicle model. It is important to note that this information can only be procured 

upon determining when the manufacturer ceased production on specific lines of 

vehicles. A timeline highlighting the production years of specific models under the 

General Motor’s Holden umbrella is depicted below in Figure 3.10. The dashed red 

line on the timeline denotes the point of distinction between the two groupings. 

Consequently, samples in class 16 were obtained from vehicles manufactured prior 

to mid-2009, and thus must only represent specific models of Holden vehicles 

manufactured before this point in time. Conversely, samples in class 17 were 

obtained from Holden vehicles manufactured post mid-2009 and thus solely signify 

Holden models manufactured in this time period.  

 

For example, consider an instance whereby a questioned paint sample is obtained 

from a crime scene and there is no control or known sample for comparison. In this 

particular scenario, the questioned paint sample can be incorporated into the 

statistical model in order procure an investigative lead. If the questioned paint   

sample was obtained from an Australian-made Holden vehicle then it should only be 

categorised into classes 16 or 17. Depending upon which class the sample is assigned 

to may enable the examiner to infer specific information regarding the potential 

vehicle model, whilst also excluding several other models in the process (Figure 

3.10). Additionally, the discriminating capability of this relationship can be enhanced 

when utilised in combination with partial eyewitness accounts. Consider a situation 

whereby a partial account of the suspect vehicle is obtained and it is determined to be 

from a compact vehicle. Consequently, if the questioned paint sample obtained from 

the suspect vehicle is categorised into class 16 it is most likely from a Holden Astra, 

whereas if it is classified in group 17 it infers it was obtained from a Holden Cruze. 
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Figure 3.10: Timeline of select Holden vehicles. The dashed red line denotes the demarcation between the two groupings containing 

Australian-manufactured Holden vehicles in the ATR FT-IR model. 
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Additionally, some lines of Holden vehicles had only limited production years; 

including the sports utility Adventra and the performance based Monaro. As both 

these lines of vehicles were only manufactured prior to 2009, these vehicles can 

unequivocally be excluded from any samples categorised into class 17. Whilst this 

pattern is extremely significant from a forensic standpoint, it was only discerned in 

the Australian-made Holden vehicles and to a lesser extent in the Australian-

manufactured Ford vehicles of classes 14 and 15. This might be due to the fact that 

the number of Australian-made Holden vehicles in the sample population is 

significantly larger than any of the other manufacturers (Table 2.1). Furthermore, 

these samples are inherently more diverse than those from the other manufacturers, 

with a significant range of models and production years being represented. 

Subsequently, it is anticipated that as the other classes become more defined and 

diverse, similar relationships will be discerned with respect to the other vehicle 

manufacturers. Whilst the spectral differences between classes 16 and 17 have 

previously been discussed in terms of the loadings, it is believed that the change in 

composition and the resultant differentiation between the two classes may have 

arisen from a recent change in the paint formulation. More specifically, it is 

postulated that the change in paint formulation may be attributed towards the use of 

water based paints, in order to meet current environmental regulations.
[180, 181]

  

 

 

3.3.3 Aftermarket clear coats 

It is important to note that the statistical model was built and defined with IR data 

obtained solely from OEM automotive clear coats. However, as mentioned 

previously some vehicles contain aftermarket respray coatings over the original paint 

system. As the aftermarket respray clear coat is the outermost coating of the paint 

system, ATR FT-IR spectroscopy will characterise the aftermarket respray clear coat 

as opposed to the OEM clear coat. Aftermarket respray coatings are typically applied 

in order to conceal damage or degradation to the original paint system, or to alter the 

colour and finish of the vehicle. Aftermarket respray base and clear coats are 

customarily enamels composed of acrylic/alkyd and polyurethane, which deviates 

considerably from the typical composition of OEM clear coats.
[24, 34]

 This can 

primarily be attributed to the fact that aftermarket coatings have to be able to cure 
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without the assistance of elevated temperatures.
[24]

 A typical IR spectrum of a 

respray clear coat is provided below in Figure 3.11. The respray clear coats are 

recognisable from their corresponding IR spectra, based upon a distinctively large 

abundance of polyurethane resin and a low abundance of melamine resin. As a 

result, it is important to determine the effect incorporating spectra obtained from 

respray clear coats will have on the current statistical model. 

  

Figure 3.11: Representative IR spectra of an aftermarket acrylic-polyurethane 

refinish clear coat (black) and a typical OEM acrylic-melamine clear coat (red). The 

blue highlighted region is indicative of polyurethane and the green regions are 

characteristic of melamine. 

PCA was conducted on the spectral dataset containing IR data from both the OEM 

and aftermarket respray clear coats (740 spectra, 148 samples). In order to assess the 

impact the aftermarket clear coats had on the developed model, the same 17 

groupings were utilised, with a new class being attributed to the respray clear coats. 

Upon examination of the PCA scores plot depicted in Figure 3.12, it is evident that 

the addition of respray clear coats significantly impacts the statistical model. As can 

be seen in Figure 3.12, the respray clear coats attain large positive scores on PC2, 

whilst the remaining samples from the OEM clear coats obtain either small positive 
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or negative scores on PC2. The loadings plot for PC2, provided in Figure A.2 of the 

appendix, revealed a significant positive correlation at 1690 cm
-1 

that is indicative of 

the carbonyl vibrational stretch characteristic of the polyurethane resin.
[14, 55, 56]

 

Consequently, samples which have a large abundance of polyurethane (i.e. respray 

clear coats) attain large positive scores on PC2, whilst the remaining samples which 

contain either a moderate amount of or no polyurethane attain small positive or 

negative scores on PC2, and are effectively compressed into one half of the scores 

plot. This result is significant as it potentially increases the likelihood of 

misclassification between samples from the remaining classes. 

 

Figure 3.12: 3-dimensional PCA scores plot from a number of different 

perspectives, highlighting the disparity between spectra obtained from respray and 

OEM clear coats.  
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By incorporating the IR spectra obtained from the respray coatings into the model, it 

can be observed from the scores plot that the samples representing these aftermarket 

coatings have a large effect or influence on the model. This notion was reinforced 

upon examining the influence plot for PC2, which is depicted in Figure 3.13. The 

influence plot, which is a plot of the sample’s residual variance against leverage, is 

typically utilised to objectively identify samples which are outliers or that may 

overly influence the PCA model.
[182]

 Samples that have a high residual variance are 

often poorly described by the model and can be classified as outliers. Conversely, 

samples with a high leverage have a high influence on the model.
[183]

 The worst case 

scenario is when a sample attains both a high residual variance and leverage, and is 

classed as a dangerous outlier as it distorts the model to better describe itself.
[182, 184]

 

These samples need to be removed otherwise the model will focus primarily on the 

differences between the outlier/s and the remaining samples, as opposed to 

describing differences between the other samples. 

 

 

Figure 3.13: Influence plot for PC2. 
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It can be seen from Figure 3.13 that the respray samples have a high leverage on PC2 

and therefore can be categorised as influential samples. A sample’s influence on the 

model should be measured in terms of relative leverage. In this particular instance, 

the respray samples had absolute leverage values 3 to 4 times greater in magnitude 

than the remaining samples, thereby indicating that these samples are very influential 

to the model. The reason behind the high leverage of the respray samples is 

principally attributed to the large values for the variable ca. 1690 cm
-1

, which is 

characteristic of the polyurethane resin.  

 

 

LDA was performed on the entire spectral dataset including the data obtained from 

the respray clear coats. This was undertaken so as to assess the impact incorporating 

this data has on the classification accuracy of the resultant model. It is worth 

mentioning that the calibration dataset (535 spectra, 107 samples) consisted of the 

same samples as the original training set; with the addition of 9 respray samples. 

Similarly, the validation dataset (220 spectra, 44 samples) is identical to the original 

test set with the addition of 3 respray samples. It was important to ensure that the 

same samples from the 17 classes were used to construct both the original and new 

calibration and validation datasets, in order for a valid comparison to be made 

between the original model and the model containing the respray clear coats. The 

five-PC score LDA model successfully classified 97.2 % and 95.5 % of the samples 

in the calibration and validation datasets respectively, as depicted in the confusion 

matrices portrayed in Table 3.7 and Table 3.8. Whilst the classification accuracy is 

still excellent, with only 5 samples and their corresponding replicates being 

misclassified, the classification accuracy is lower for both these datasets relative to 

the original calibration and validation sets which solely consist of OEM clear coats. 

This suggests that the addition of the IR data from the respray clear coats into the 

statistical model influences the model sufficiently so as to increase the potential for 

misclassification.   
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Table 3.7: Confusion matrix displaying the results from LDA of the calibration dataset containing data obtained from respray and 

OEM clear coats. The bolded red values signify misclassified samples. 

                                                Actual  

  
P

re
d

ic
te

d
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Respray Total % Correct 

1 25 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 83.3 

2 0 15 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 75 

3 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 100 

4 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

6 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 20 100 

7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100 

8 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 15 100 

9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 100 

10 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 25 100 

11 0 0 0 0 0 0 0 0 0 0 15 5 0 0 0 0 0 0 20 75 

12 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 30 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 20 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 25 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 50 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 0 110 100 

Respray 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 45 100 

Total 25 15 80 15 10 20 10 15 10 25 15 35 10 20 25 50 110 45 535 97.2 
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Table 3.8: Confusion matrix showing the predicted vs. actual classifications for the samples in the new validation dataset. The 

bolded red values signify misclassified samples. 

                                               Actual  

  
P

re
d

ic
te

d
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Respray Total % Correct 

1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

3 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 100 

4 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 100 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

6 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 100 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

10 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5 100 

11 0 0 0 0 0 0 0 0 0 0 10 5 0 0 0 0 0 0 15 66.7 

12 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 20 100 

16 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 25 0 0 30 83.3 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 35 100 

Respray 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 100 

Total 15 0 45 5 0 15 0 10 0 5 10 20 0 0 20 25 35 15 220 95.5 
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The reason behind the decrease in the classification accuracy is most likely 

attributable to the distortion of the model caused by the respray samples. In 

particular, the samples obtained from the respray clear coats are so influential that 

they cause the samples from the remaining classes to be projected much closer 

together than in the original model. Consequently, the distances between the classes 

are smaller and thus the potential for misclassification is much higher. As a result, 

respray clear coats, which are readily identifiable from their IR spectra, should be 

excluded from the statistical model and no attempt should be made to classify them 

with the OEM only based model. 

 

 

In instances where a vehicle contains a respray base and clear coat over the OEM 

paint system, transmission IR spectra of paint cross-sections can be obtained from 

the original clear coat and incorporated into the model. This is because the model 

was generated from ATR corrected spectra. These are comparable to spectra 

obtained via transmission IR microspectroscopy as the correction accounts for the 

change in depth of penetration as a function of wavelength. 
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3.4 Conclusions 

Summarising the findings from this statistical model, a correlation was readily 

discerned between the formation of the classes as a function of the vehicle origin, 

manufacturer, specific models, and in some instances the manufacturing plant where 

the vehicle was assembled. The model generated can be utilised to rapidly classify 

unknown samples with a high degree of confidence, and afford information that may 

procure investigative leads in an Australian context. Whilst statistical analysis in the 

form of pair-wise comparisons is a viable option when conducting known vs. 

questioned comparisons (i.e. K vs. Q), a problem arises when there are no known 

paint samples (i.e. no suspect vehicles) to compare to the questioned sample. 

Furthermore, when dealing with incidents in the nature of hit-and-run accidents and 

vehicular homicides, with the exception of closed circuit television footage or 

eyewitness accounts, paint is typically the most significant form of physical evidence 

located at these scenes. In these instances, increased significance is placed on the 

results obtained from the analysis of paint evidence.  Hence, the statistical model is 

of particular importance in providing rapid classification information pertaining to 

unknown samples obtained from incident scenes in order to yield investigative leads, 

as the information can be directly employed to elucidate vehicle origin, 

manufacturer/s, model/s and or assembly plant where the vehicle was made. Using 

the model generated, the information can be obtained and conveyed to law 

enforcement within 10 minutes of the sample being received.  

 

It is important to note that the statistical model generated in this study was developed 

using a range of Australian and international manufacturers, with the international 

cars representing only models commonly exported to Australia. Therefore, at this 

period in time the model can only be employed readily in an Australian context, and 

further research is required in order to incorporate a larger number of internationally 

manufactured vehicles. The strategy that was utilised is universal and by extension 

could be employed in other jurisdictions if they were to generate statistically 

significant data sets. Based upon these findings it can be concluded that ATR FT-IR 

spectroscopy in combination with chemometrics is a simple, rapid and inexpensive 

technique, which can rapidly provide information resulting in the procuring of 

investigative leads from questioned paint samples located at crime scenes. 
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Chapter 4: The effect of chemical component 

migration and environmental weathering on the 

classification of automotive clear coats 

 

 

 

Portions of this chapter have been previously published in the journals Forensic 

Science International and Analytical Methods: 

 

Maric, M., van Bronswijk, W., Lewis, S.W., Pitts, K., and D.E. Martin, 

Characterisation of chemical component migration in automotive paint by 

synchrotron infrared imaging. Forensic Science International, 2013. 228(1-3): p. 

165-169. 

 

Sauzier, G., Maric, M., van Bronswijk, W., and S.W. Lewis, Preliminary studies into 

the effect of environmental degradation on the characterisation of automotive clear 

coats by attenuated total reflectance infrared spectroscopy. Analytical Methods, 

2013. 5(19): p. 4984-4990. 
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4.1 Introduction 

As described in Chapter 3, ATR FT-IR spectroscopy was utilised to characterise a 

statistically large population of OEM automotive clear coats, with the resultant 

spectral data being classified using multivariate statistics. 17 distinct classes were 

discerned in the statistical model and a relationship was identified between the 

formation of the groupings as a function of a number of common vehicle descriptors 

(i.e. vehicle origin, manufacturer, model/s and manufacturing plants). The statistical 

model generated may potentially be used to procure investigative leads from 

questioned paint samples obtained at crime scenes. However, before this model can 

be applied in a forensic setting, fundamental chemical studies need to be undertaken 

in order to assess the impact chemical change of automotive clear coats, be it from 

the migration of chemical components or degradation, will have on the ATR-based 

model. 

 

 

Synchrotron FT-IR microspectroscopy was utilised to assess the extent of 

component migration amidst the layers of automotive paint cross-sections, with 

particular emphasis on the cross-linking agent melamine. Melamine is a reactive 

chemical component frequently utilised by automotive manufacturers in their 

formulation to initiate cross-linking of the binders during the curing process, to form 

extended networks, thus affording a hard and durable coating.
[13, 14, 24, 33]

 Whilst a 

number of analogous amino cross-linkers are occasionally employed, melamine is 

undeniably the most commonly encountered cross-linking additive in automotive 

paint systems.
[27, 32]

 Based upon the Fisher ratio plot presented in Chapter 3, 

melamine is the most significant component discriminating between the classes in 

the ATR-based model. Previous research has revealed that low molecular weight UV 

absorbers and hindered amine light stabilisers are capable of migrating between the 

clear coat and basecoat layers during paint curing.
[51]

 It is therefore also feasible that 

low molecular weight cross-linkers (e.g. melamine), additives and pigments may 

also migrate between the layers. It is recognised by the forensic community that 

interlayer migration of melamine can occur from the basecoat into the clear coat. 

However, at this point in time there is no direct supporting evidence available in the 
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literature. As a result, this study examined whether chemical component migration 

exists in automotive paint systems, and the resultant impact this migration may have 

in relation to the ATR-based model. 

 

 

Another potential limitation of the statistical model described in Chapter 3 is that the 

exemplars used to define the model were obtained principally from factory new or 

relatively new vehicles. Whilst the model has been shown to be promising in 

categorising samples from new or near-new factory finished vehicles, its 

applicability to samples that have undergone extensive weathering has not been fully 

investigated. Studies examining the weathering of automotive coatings have been 

previously documented in the literature from a paint technology viewpoint, with the 

intention of maximising the service life of automotive coatings.  Such research has 

demonstrated that acrylic melamine enamels, identified in original automotive clear 

coats and other outdoor paint systems, are susceptible to degradation following 

exposure to environmental factors.
[185-188]

 These studies have shown that the 

degradation of acrylic melamine coatings is influenced by UV radiation, humidity 

and air pollutants.
[185-188]

 Additionally, a comprehensive review conducted by 

Mohseni et al has investigated the effect mechanical and biological factors have on 

the chemical integrity of automotive coatings.
[187]

  

 

 

However, there is a lack of reports in the scientific literature examining the influence 

of degradation on automotive coatings within a forensic context. One such study 

undertaken by Chang et al. investigated the influence of environmental degradation 

on automotive base and clear coats over a three year period.
[189]

 In this study, paint 

samples obtained from automobile manufacturers in Taiwan were exposed to the 

elements for three years, with the samples being periodically characterised using IR 

spectroscopy. The resultant spectra were then searched against an IR database using 

a peak table search algorithm, with the majority of the coatings being correctly 

assigned to their non-weathered counterpart. However, some base and clear coats 

exhibited changes in their spectra attributable to environmental exposure, thereby 

lowering the hit quality index of the sample.
[189]

 It is important to note that the 
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samples utilised in the study by Chang and co-workers were mounted in an 

embedding resin and cross-sectioned prior to analysis. This approach has been 

proven to potentially facilitate infiltration of the embedding media into the paint 

sample itself, resulting in interference bands in the IR spectra, which ultimately may 

impact the results of this study.
[171]

 Additionally, the study was conducted in the 

Taiwanese setting, with paint samples obtained from their domestic manufacturers 

and the resultant exemplars aged under their ambient environmental conditions. This 

is significant as Taiwan on average has much higher temperatures and humidity year 

round than Australia, which could alter the degradation process. Consequently, the 

impact of environmental factors on automotive clear coats needs to be assessed in an 

Australian context. Hence, this chapter also examines the effects of environmental 

exposure on the automotive clear coats and the resultant impact this would have on 

the ATR-based model. 
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4.2 Experimental 

4.2.1 Infrared Spectroscopy 

Chemical component migration was assessed by characterising automotive paint 

cross-sections via synchrotron FT-IR microspectroscopy as outlined in section 2.4. 

For the degradation study, the clear coats were characterised using ATR FT-IR 

spectroscopy, as detailed in section 2.3. 

4.2.2 Degradation Regime  

Three automotive paint exemplars, as described in Table 4.1, were fastened to the 

roof of the chemistry building at Curtin University to undergo natural exposure to 

the environment, as depicted in Figure 4.1. 

Table 4.1: Vehicle information for the samples exposed to the environment. 

Vehicle Type & Model VIN Class 

Mazda 3 JM0BK10F200356037 3 

Ford Focus XR5 WF0PXXGCDPAR45974 10 

Holden VE SV6 6G1EK6EV6BL519455 17 

 

 

Figure 4.1: Segments from automotive panels placed on the roof of the chemistry 

department, so as to undergo natural exposure to the elements. 
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The samples were attached to metal struts on the roof (Figure 4.1) and were left to 

endure continuous exposure over an 18 month period, from the beginning of 

February 2012 until the end of July 2013. Sampling of the clear coats was performed 

at intervals of 2, 4, 6, 8 and 18 months.  

 

 

4.2.3 Statistical Analysis of Degraded Samples 

As described in Chapter 3, the discriminant model was developed via test set 

validation, whereby the entire spectral dataset was segregated into mutually 

exclusive training and test sets. For the degradation study, the entire original dataset 

was modelled in order to maximise its robustness. Thus, the entire spectral dataset 

from Chapter 3 was treated as the training (calibration) set, and the spectra obtained 

from the degradation samples following environmental exposure formed the 

foundation of the test (unknown) set. The samples in the test set were projected onto 

the model generated from the calibration set, to enable comparisons to be made of 

the samples following a change (i.e. environmental exposure). Projection is a 

technique that is essentially the PCA equivalent of prediction in regression methods. 

Additionally, a five PC-score LDA model was generated using the complete 

‘calibration’ dataset (695 spectra, 139 samples), and the resultant model was used to 

predict the classifications of the samples in the test set that had undergone exposure 

to the environment. 
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4.3 Results & Discussion 

4.3.1 Chemical component migration 

Synchrotron FT-IR microspectroscopy was utilised to chemically image thin 

automotive paint cross-sections. Unfortunately, only a small subset (75 vehicles) of 

the total sample population (139 vehicles) could be chemically imaged, due to 

limitations regarding the user time available at the IRM beam-line. Nevertheless, it 

was clearly evident from the exemplars analysed that chemical component migration 

can and does occur. Figure 4.2 depicts the optical micrograph of an area of interest 

taken from a cross-sectioned paint chip obtained from a Mazda 3. Interestingly, the 

image of the paint section clearly reveals bleeding of the red organic pigment from 

the basecoat into the clear coat, as indicated by the diffusion of the red colour across 

the base/clear coat interface. In this particular instance, the red pigment is from a 

broad class of pigments known as diketo-pyrollo pyrroles, which was identified by 

the presence of two dominant characteristic IR absorption bands ca. 1641 and 

1605 cm
-1 

in the resultant IR spectra of the basecoat.
[190]

 

 

Figure 4.2: Optical micrograph of an automotive paint cross-section obtained 

from a red Mazda 3. 
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This migration was confirmed spectroscopically in the corresponding 2-dimensional 

chemical map shown in Figure 4.3. The map displays a spatial distribution pattern 

for the amide C=O stretch (1641 cm
-1

) and is comparable with the observed visible 

migration of the pigment. In this particular instance, it is evident that relatively 

strong absorption of the pigment amide C=O stretch persists well beyond the 

base/clear coat interface, adding further credence to the notion of interlayer 

migration of paint components. 

 

 

Figure 4.3: 2-dimensional FT-IR chemical image from a paint cross-section 

(Mazda 3) following integration of the amide C=O stretching vibrational band of the 

organic pigment (~ 1641 cm
-1

). The purple regions of the contour map infer areas of 

high pigment abundance, whilst the red zones are characteristic of regions with 

lower negligible pigment concentrations. 
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To further investigate the extent of interlayer component migration, Figure 

4.4 depicts a 2-dimensional chemical map demonstrating the melamine abundance 

across the sample, as melamine is also a significant basecoat constituent. The map 

was produced by integrating the band ca. 1550 cm
-1

, which is indicative of an in-

plane triazine ring stretch for melamine.
[14, 55, 56, 179]

 The main diagnostic peak for 

melamine, which occurs near 815 cm
-1 

and is characteristic for the out-of-plane 

triazine ring deformation, could not be utilised because it is too near the lower limit 

of the spectral cut-off for the MCT detector. 

 

Figure 4.4: 2-dimensional FT-IR chemical image from a paint cross-section 

(Mazda 3) following integration of the in-plane triazine (1550 cm
-1

) band of 

melamine. 
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Figure 4.4 clearly illustrates a significant decrease in melamine abundance in the 

clear coat of the paint section from the base/clear coat boundary. In particular, the 

initial 20 μm of the clear coat displays a strong IR response for melamine, which 

substantially diminishes when approaching the surface of the clear coat. 

Similarly, Figure 4.5 shows the intensity distribution of melamine across a paint 

section obtained from a Mazda 6. In this instance, the IR response of melamine is 

strong in the primer surfacer and basecoat but consistently and incrementally 

decreases through the clear coat. This indicates that the melamine cross-linking agent 

has migrated from the basecoat before diminishing halfway through the clear coat.  

 

 

Figure 4.5: 2-dimensional FT-IR chemical image of a paint cross section from a 

Mazda 6 contrasted using the integrated absorbance of the in-plane triazine                        

(∼ 1550 cm
-1

) band of melamine. 
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It is worth noting the migration of melamine was only unequivocally observed in 

Mazda vehicles from class 3, which naturally have a low abundance of melamine in 

the clear coat, thereby allowing subtle variations in the melamine distribution to be 

readily discerned. It should also be noted that this effect was only observed with 

melamine and low molecular weight organic pigments (e.g. diketo-pyrollo pyrolles) 

and was not seen with any of the other chemical components typically present in 

automotive clear coats; such as acrylic binders, polyurethane and styrene. It is 

believed that the diffusion of paint components is size mediated, with larger 

polymeric species being incapable of interlayer migration, whilst small low 

molecular weight components and pigments are able to readily diffuse between 

coatings. This idea of paint component migration between the base and clear coat is 

supported by an earlier study conducted by Stoecklein and Fujiwara, which revealed 

that UV absorbers may potentially migrate between coatings in instances of wet on 

wet applications.
[51] 

 

 

The observed migration of melamine may well be attributed to the manner in which 

the vehicle is painted. Recent advances in automotive coating technology has 

resulted in the development of a wet paint system, which is a one-step baking and 

drying method consisting of the successive application of the primer surfacer, base 

and clear coat, all whilst wet.
[191]

 This method employs water based paints thereby 

significantly reducing the emission of VOCs. Moreover, by eliminating the required 

drying process after every coat, carbon dioxide production and energy consumption 

is greatly diminished. This technology was initially developed by Mazda and is 

likely to be instituted by other manufacturers in the future as a more environmentally 

friendly automobile coating process.
[191]

 It is believed that this wet paint system is 

directly responsible for the interlayer infiltration of melamine, which is further 

substantiated by the fact that this effect has at this time only been encountered in 

Mazda vehicles, where this painting process is implemented. 
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The implications of these results are significant. Based upon the extent of melamine 

dissemination observed from the underlying layers and into the clear coat, it is 

evident that caution must be reserved when characterising specific individual layers 

(mainly the clear coat) so as to obtain an IR spectrum truly representative of the 

composition of the coating. This may have a significant impact especially in 

instances where investigative leads need to be procured by library searching 

databases or via the use of chemometrics. A demonstration of this is shown in Figure 

4.6, which depicts two IR spectra that have been extracted from a point in the 

outermost surface of the clear coat, and a point near the base/clear coat interface of 

the paint cross-section obtained from the Mazda 3. Each spectrum is dominated by 

the characteristic vibrational bands associated with acrylic binders as well as 

melamine and styrene.
[56]

 It is evident that the main source of variation between the 

two spectra is the relative intensity of the peak ca. 1550 cm
-1

 attributable to 

melamine, which could easily reduce the accuracy with which questioned paint 

samples could be identified against a library database search or a statistical model. 

As the proportion of melamine has been shown to fluctuate within the clear coat of a 

specified sample (Figure 4.6), the heterogeneity of the IR data obtained may 

invariably result in a discrepancy in the hits generated by the database. 

 

Figure 4.6: IR spectra extracted from an area of the clear coat previously shown 

to be affected by melamine migration (black) and a region of the clear coat 

unaffected by melamine migration (red). The highlighted peak corresponds to 

melamine and illustrates the variability in the proportion of melamine within the 

clear coat. Interference fringes were removed from the spectra depicted in this 

figure, as detailed previously in section 2.4.3. 
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However, as ATR spectra arise from only the first few microns (0-3 μm) of the clear 

coat, it is highly unlikely that spectra in the previously described ATR-based clear 

coat model will be affected by melamine migration issues. The same may not 

necessarily be true for spectra obtained in transmission mode from paint cross-

sections. If this model were to be applied to transmission spectra from paint cross-

sections with an inconsistent melamine concentration across the different layers, it 

would most likely result in a misclassification of the sample, as demonstrated in 

Figure 4.7.  

 

 

Figure 4.7 illustrates the potential impact melamine migration could have on the 

classification of select samples. Relating this to the ATR-based clear coat model 

described in Chapter 3, PC1 accounts for 90.6 % of the variance in the original 

dataset and is significantly positively correlated to the peak ca. 1550 cm
-1

, which is 

characteristic for melamine. Consequently, as PC1 in the model is principally 

responsible for describing the differences in the relative abundance of melamine in 

the clear coat, if FT-IR transmission spectra of Mazda vehicles from class 3 were 

acquired from melamine contaminated areas of the clear coat, then the samples will 

be projected such that they attain more positive scores on PC1, potentially resulting 

in misclassification with samples from class 4 and class 5 (Figure 4.7). The 

outcomes of this misclassification is significant, as this would potentially result in 

misleading information being conveyed to law enforcement regarding the potential 

make and model of the offending vehicle. 

 

 

 

 

 

 

 

 



 

 

 

 

9
2
 

 

 

 

Figure 4.7: Illustration depicting the effect melamine migration could potentially have on the classification of samples using the ATR- 

based statistical model previously described in Chapter 3. 
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Based upon these results, stringent analytical protocols need to be developed in order 

to ensure that the migration of paint components does not affect the analysis and 

characterisation of paint layers. In particular, in instances where IR 

microspectroscopy is employed to sequentially analyse individual layers of a paint 

cross-section, it is vital that a sampling aperture size be chosen to limit the area of 

analysis towards the surface of the clear coat. For the remaining underlying layers 

the spectra should be measured as far from the adjacent layers as possible (i.e. mid-

centre of the coating). It will also be efficacious to use as small a sampling aperture 

size as is feasible and take measurements from a number of separated spots. 

Furthermore, precautions must be taken when analysing thin peels or shavings of 

individual layers, to ensure the sections are taken from an area truly representative of 

the composition of the coating and devoid from any melamine contamination. 

  

 

4.3.2 Environmental Degradation of Clear Coats 

To evaluate the impact of environmental conditions on the classification of samples 

within the model, three exemplars were left to undergo ambient environmental 

exposure over an 18 month period. Due to the vastness of Australia, the climatic 

conditions can vary drastically from tropical or sub-tropical in the north to temperate 

in the south.
[192]

 This stream of investigation was conducted in Perth, which is in the 

south-west region of Western Australia. The climate at this location is classified as 

Mediterranean, typically characterised by very hot, dry summers and mild, wet 

winters.
[192]

 Meteorological data obtained over this time interval revealed that the 

samples experienced approximately 4700 hours of bright measurable sunshine, with 

temperatures ranging from -0.7 °C to 42.2 °C, and approximately 950 mm of 

rainfall.
[193]

 A complete monthly breakdown of the climatic conditions over the time 

period is provided in Table 4.2.
[193, 194] 

 By examining the statistics provided in Table 

4.2, it can be clearly seen that during the time interval, the exemplars endured 

conditions typical of the Perth climate.  
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Table 4.2: A summary of the major climate statistics recorded at the Perth airport weather station, over the time period of this study 

(red – summer, yellow – autumn, blue – winter and green – spring).
[193, 194]

  

 

 Time Period 
 2012 2013 

Statistics Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 

Mean Maximum Temp. (°C) 31.3 31.6 26.4 23.0 19.3 19.2 20.0 21.4 24.9 26.1 31.4 32.3 34.6 28.4 28.7 21.7 19.9 18.7 

Mean Minimum Temp. (°C) 18.3 15.6 14.0 10.2 10.1 5.6 8.2 8.8 11.7 12.7 16.8 18.5 18.6 15.2 16.1 10.6 7.8 6.6 

No. days Temp. above 35 °C 6 7 1 0 0 0 0 0 1 2 11 8 14 1 4 0 0 0 

Total Rainfall (mm) 19.0 0.0 53.2 39.8 134.4 30.6 117.8 103.8 13.8 84.8 24.8 8.2 1.0 60.2 7.8 112.2 23.0 119.2 

Mean No. hours Sunshine 10.5 10.6 7.9 7.6 4.4 7.4 7.5 8.7 9.8 10.6 10.8 11.3 11.0 9.2 6.9 7.3 7.0 6.5 

Mean global solar exposure (MJ/m2) 24.8 24.2 15.1 11.9 8.3 11.0 13.4 18.2 21.7 25.4 28.3 29.5 26.9 20.4 13.8 11.4 10.1 10.1 

Mean UV Index 10.3 8.6 5.9 3.9 2.7 3.1 4.4 6.4 8.3 10.1 11.1 11.7 10.2 8.2 5.4 3.8 3.1 3.4 

No. days extreme UV levels 15 0 0 0 0 0 0 0 0 9 25 30 8 0 0 0 0 0 
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Throughout the summer (i.e. December to February) the samples were exposed to 

high temperatures as well as extreme UV levels. During the 547 days of exposure, 

the samples had to endure 55 days with temperatures exceeding 35 °C and 87 days 

with an extreme UV index level (≥ 11).
[193, 194]

 It is important to note that following 2 

months of exposure to the conditions, the samples began to show visible signs of 

degradation, owing primarily to the rust formed on the exposed metal edges and the 

subsequent discoloration of the clear coat. Whilst there are obvious visual signs of 

degradation, this can most likely be attributed to the fact that flakes of paint were 

removed from the panels periodically for analysis, thereby leaving exposed metal 

surfaces that will ultimately corrode. It is important to note that the clear coats of the 

exemplars were characterised from regions of the panels that were unaffected by 

corrosion. 

 

 

The spectra obtained from the automotive paint exemplars over the 18 month time 

period were projected onto the PCA model described in Chapter 3. The resultant 

scores plot depicted in Figure 4.8 revealed that from a purely visual standpoint, the 

spectra obtained from the three samples following extensive environmental exposure 

grouped together with the corresponding samples expected class. It is difficult to 

visually differentiate between the first three classes without utilising the scores from 

the fifth PC. Consequently, in order to unequivocally ascertain which class the 

degraded samples from class 3 are projected into, a new 3-dimensional scores plot 

was generated utilising PC5 in lieu of PC3 (Figure 4.9). As can be seen from Figure 

4.9, the degraded samples predicted to be from class 3 are categorically projected 

into this grouping. Additionally, the scores plot revealed slight variation in the 

position of the projected samples and this will be discussed later.  
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Figure 4.8: 3-dimensional PCA scores plot showing the distribution of the projected samples on the pre-existing PCA model.  
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Figure 4.9: 3-dimensional PCA scores plot consisting of PC1, PC2 and PC5 

highlighting that the degraded samples from class 3 are projected with the samples 

from class 3. 

 

 

LDA was performed by utilising the first five PCs along with the classifications 

derived from PCA of the entire spectral dataset described in Chapter 3 (695 spectra). 

The results of this new LDA model are tabulated below in Table 4.3, with the model 

generated from the entire dataset successfully classifying all of the data. 

Unsurprisingly, the classification accuracy is higher with this new model relative to 

the discriminant model described in Chapter 3. In this study, this new discriminant 

model was employed in all subsequent LDA classifications. 
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Table 4.3: Confusion matrix showing predicted vs. actual classifications for the entire spectral dataset. 

 

                                                        Actual  

  
 P

re
d

ic
te

d
 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total % Correct 

1 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 100 

2 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

3 0 0 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 125 100 

4 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100 

5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

6 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 35 100 

7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 100 

8 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 25 100 

9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 100 

10 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 30 100 

11 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 25 100 

12 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 55 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 20 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 45 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 0 75 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 145 145 100 

Total 40 15 125 20 10 35 10 25 10 30 25 55 10 20 45 75 145 695 100 
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The new discriminant model was capable of successfully classifying all of the 

samples over the 18 month exposure period into their respective class. The confusion 

matrix presented in Table 4.4, revealed that there is no change in the sample 

classifications over the exposure period, with all the spectra being correctly assigned 

to the pre-ordained expected groupings. 

 

Table 4.4: Confusion matrix depicting the predicted vs. actual classifications for 

the environmental exposure samples. 

  Actual   

P
re

d
ic

te
d

 Class 3 10 17 Total % Correct 

3 30 0 0 30 100 

10 0 30 0 30 100 

17 0 0 30 30 100 

Total 30 30 30 90 100 

 

Whilst the LDA model correctly classified all of the samples following an extended 

period of environmental exposure, the discriminant values need to also be inspected 

so as to verify and validate the classification. Discriminant values are measures of 

the distance of a given sample from the class centroid. Smaller magnitude 

discriminant values indicate that samples lie closer to the centre of the grouping and 

vice versa. By examining the discriminant values of the three exemplars utilised in 

this study, it can be seen that there are variations in the magnitude of the 

discriminant values, throughout the period of exposure. Table 4.5 contains the 

discriminant values from the samples obtained from the Ford Focus vehicle over the 

18 month exposure period. Firstly, it is evident based upon the magnitude of the 

discriminant values that all the samples were correctly classified to class 10. This is 

due to the fact that the discriminant values for all the samples are the smallest for 

class 10, relative to all the other groupings, thereby indicating that the samples are 

much closer to the class 10 centroid than the remaining groupings.   
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Table 4.5: Discriminant values for the Ford Focus (class 10) vehicle over the 18 month exposure period.  

          Discriminant Values 
 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10 Cl. 11 Cl. 12 Cl. 13 Cl. 14 Cl. 15 Cl. 16 Cl. 17 

Initial-1 -320.0 -292.2 -197.0 -45.6 -138.4 -110.5 -309.2 -183.8 -327.6 -4.2 -30.9 -70.9 -20.1 -112.3 -79.8 -76.3 -81.8 

Initial-2 -320.4 -292.8 -196.9 -46.0 -138.8 -111.2 -307.8 -182.6 -326.3 -4.2 -31.0 -71.1 -20.2 -113.1 -80.7 -76.7 -82.6 

Initial-3 -322.9 -294.8 -199.1 -46.7 -140.4 -111.9 -311.0 -185.2 -328.8 -4.1 -31.4 -71.1 -20.2 -112.4 -80.2 -76.4 -82.2 

Initial-4 -287.7 -266.4 -173.2 -34.5 -116.6 -103.2 -298.5 -169.4 -325.6 -6.5 -26.8 -69.4 -23.9 -103.0 -68.3 -74.1 -72.6 

Initial-5 -319.6 -292.3 -196.3 -45.6 -138.1 -110.8 -306.9 -181.8 -325.5 -4.2 -30.6 -70.7 -20.2 -112.8 -80.2 -76.5 -82.1 

2Months-1 -327.6 -301.9 -201.5 -46.5 -144.3 -111.9 -296.9 -175.0 -323.8 -5.3 -30.9 -71.7 -19.3 -105.0 -82.0 -68.3 -83.2 

2Months-2 -318.1 -293.0 -194.7 -43.0 -138.2 -108.9 -297.1 -174.3 -326.7 -5.6 -30.4 -72.3 -19.9 -102.7 -79.2 -68.0 -81.3 

2Months-3 -318.1 -293.0 -194.3 -43.3 -138.4 -109.7 -297.0 -173.9 -326.4 -5.6 -30.7 -72.8 -20.2 -103.9 -80.0 -69.1 -82.2 

2Months-4 -319.6 -293.7 -195.6 -43.9 -140.0 -110.2 -300.5 -177.1 -330.5 -5.8 -31.8 -74.2 -20.4 -103.7 -80.7 -69.2 -83.2 

2Months-5 -323.6 -298.1 -198.8 -44.9 -141.2 -109.0 -293.3 -173.0 -321.0 -5.4 -30.0 -70.9 -18.7 -104.7 -81.6 -67.7 -82.5 

4Months-1 -322.4 -300.0 -198.4 -43.2 -138.6 -106.5 -282.4 -163.8 -312.4 -5.9 -26.7 -66.3 -18.0 -98.1 -77.1 -61.5 -77.1 

4Months-2 -321.5 -298.8 -197.6 -43.1 -138.8 -107.3 -285.1 -165.5 -316.2 -6.1 -27.7 -68.1 -18.7 -98.1 -77.6 -62.3 -78.2 

4Months-3 -324.1 -300.7 -200.2 -43.6 -141.0 -108.1 -291.2 -170.3 -323.5 -6.5 -28.8 -69.3 -19.0 -95.1 -76.3 -60.8 -77.5 

4Months-4 -321.3 -298.3 -197.5 -43.0 -138.6 -107.0 -286.1 -166.5 -317.1 -6.1 -27.7 -68.1 -18.6 -98.0 -77.3 -62.3 -78.0 

4Months-5 -319.9 -297.2 -195.5 -43.3 -138.2 -108.2 -283.4 -163.9 -314.1 -6.0 -28.2 -69.1 -19.1 -101.6 -79.9 -65.0 -80.4 

6Months-1 -323.0 -298.9 -197.7 -44.7 -140.9 -109.7 -288.7 -168.6 -318.5 -5.9 -29.7 -70.8 -19.3 -103.4 -81.5 -66.6 -82.4 

6Months-2 -315.2 -289.8 -191.8 -42.7 -137.1 -108.8 -295.1 -173.1 -325.8 -6.0 -31.3 -74.2 -20.4 -105.7 -82.0 -70.4 -84.2 

6Months-3 -315.1 -290.7 -191.9 -42.1 -136.9 -108.5 -293.4 -171.3 -325.9 -6.3 -30.8 -73.6 -20.5 -102.5 -80.4 -68.0 -82.7 

6Months-4 -319.0 -295.3 -195.5 -42.8 -137.7 -107.1 -288.1 -168.1 -318.5 -5.8 -28.5 -69.6 -18.9 -101.0 -78.9 -65.1 -79.9 

6Months-5 -293.9 -276.1 -177.1 -33.7 -120.5 -101.5 -279.2 -155.6 -317.5 -7.9 -24.7 -67.6 -22.1 -90.6 -67.7 -61.3 -70.7 

8Months-1 -308.6 -288.8 -187.1 -39.1 -130.7 -105.7 -278.7 -157.7 -313.9 -7.0 -26.5 -68.5 -20.5 -96.2 -74.8 -62.6 -76.4 

8Months-2 -309.3 -288.5 -187.9 -39.4 -130.9 -105.9 -283.1 -161.2 -316.1 -6.3 -26.6 -68.3 -20.2 -97.4 -74.4 -63.9 -76.2 

8Months-3 -314.4 -292.9 -191.2 -41.4 -134.5 -107.6 -282.8 -161.7 -314.4 -6.1 -27.3 -68.7 -19.9 -100.0 -77.3 -64.9 -78.5 

8Months-4 -310.8 -290.6 -188.7 -40.0 -131.5 -106.1 -278.9 -158.1 -311.4 -6.3 -26.0 -67.3 -19.9 -98.2 -75.3 -63.6 -76.4 

8Months-5 -308.3 -288.0 -186.9 -39.2 -130.1 -105.7 -280.2 -158.7 -313.1 -6.3 -26.1 -67.8 -20.2 -97.9 -74.6 -64.0 -76.1 

18Months-1 -260.0 -251.0 -150.1 -26.3 -101.4 -105.5 -274.7 -140.9 -324.8 -14.4 -26.6 -74.8 -33.9 -86.5 -60.4 -67.5 -68.1 

18Months-2 -247.6 -244.0 -142.0 -23.1 -92.8 -101.1 -256.4 -126.4 -314.3 -19.7 -25.2 -73.9 -37.4 -81.9 -58.4 -64.0 -65.4 

18Months-3 -259.6 -248.1 -151.4 -25.0 -102.0 -102.4 -284.2 -150.4 -337.3 -14.7 -28.2 -77.3 -33.2 -82.3 -59.1 -65.0 -67.8 

18Months-4 -273.0 -260.8 -160.9 -28.2 -108.9 -102.0 -273.7 -145.5 -323.1 -12.5 -25.8 -72.3 -28.7 -84.2 -62.8 -61.5 -68.6 

18Months-5 -263.3 -254.4 -152.8 -27.0 -103.6 -106.3 -275.9 -141.7 -326.5 -14.5 -26.6 -74.5 -33.7 -84.1 -59.5 -65.5 -67.3 
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It is apparent from Table 4.5 that the magnitude of the discriminant values for the 

samples increases notably over the exposure period. Up until the 8 month period, the 

discriminant values for the tested samples showed no significant variation for their 

respective class, thereby intimating that there is no change in the distribution of 

samples. However, following 18 months of ambient exposure the discriminant values 

increase by approximately 2 fold. Whilst this does not affect the classification of the 

samples, it does indicate that these samples are much further from the group centroid 

than the samples aged over a short to medium-term time period. Furthermore, these 

samples begin to approach other classes (i.e. class 4), suggesting that with further 

exposure to the environment the samples might be misclassified (Table 4.5). A similar 

effect was observed with the two other samples, and their tabulated discriminant 

values are provided in Table A.2 and Table A.3 of the appendix. Whilst it is possible 

that the discrepancy in the discriminant values may be attributed to physical changes 

in the sample surface texture over the exposure period; it is more likely that the longer 

term environmental exposure (ca. 18 months) is chemically altering the outermost 

surface of the clear coat. 

 

 

Thermoset acrylic melamine coatings, which are widely utilised in automotive clear 

coat technology, are susceptible to degradation following exposure to weathering 

conditions.
[186]

 In particular, acrylic melamine coatings have been shown to undergo 

photo-degradation following significant exposure to UV radiation, resulting in chain 

scission and the formation of various amine and carbonyl derivative degradation 

products.
[186, 195]

 Due to the substantial UV exposure these samples endured throughout 

the course of the 18 month period (Table 4.2), it is feasible that the photo-degradation 

of the acrylic and melamine binders is responsible for the observed differences in the 

discriminant values. This notion was reinforced upon examination of the averaged IR 

spectra for the samples obtained from the Ford Focus vehicle after every sampling 

interval, as depicted in Figure 4.10. 
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Figure 4.10: Averaged ATR FT-IR spectra obtained from the clear coat of the Ford 

Focus vehicle after every sampling interval. Note the changes in the intensity of the 

vibrational stretches at 1170 and 1020 cm
-1

 following 18 months of environmental 

exposure.  

 

Visual inspection of the IR spectra in Figure 4.10 revealed that there is no significant 

change in the clear coat composition within the first 8 months of environmental 

exposure. However, discernible differences were observed in the acrylic fingerprint 

region (1300-1000 cm
-1

) of the spectra obtained from samples following 18 months 

of environmental exposure. In particular, there are two peaks in the acrylic 

fingerprint region (ca. 1070 and 1020 cm
-1

) representing C-O symmetric vibrations, 

which are more intense in the sample after 18 months of environmental degradation. 

However, photo-degradation of acrylic-melamine clear coats that leads to chain 

scission would unequivocally result in an observed decrease in the intensity of the 

corresponding C-O stretches.
[186, 195]
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The results obtained from this ambient weathering study, depicted in Figure 4.10 and 

Figure A.3 and A.4 of the appendix, contradict those of previous studies.
[186, 195]

 This 

may be due to the fact that the studies reported in the open literature, artificially aged 

their samples in a controlled system by manipulating only a few variables such as 

temperature, humidity and UV irradiance. However, these studies neglected to 

investigate the effect other natural environmental factors, such as the presence of 

biological materials, have on the weathering of these coatings. Biological materials 

in the form of bird droppings, plant sap, insect bodies and other microorganisms are 

commonly encountered in the surroundings, and thus will affect the chemical, visual 

and mechanical properties of automotive coatings.
[187, 196]

  

 

 

Recent studies have revealed that artificially aging acrylic-melamine clear coats 

which have previously been subjected to various biological materials, chemically 

deteriorates the composition of the coating in a manner mirroring ambient 

environmental degradation. Artificial weathering of these coatings solely in climate 

chambers, causes hydrolytic reactions to cleave the ether linkages formed between 

the melamine and acrylic binder during curing; thereby resulting in a decrease in the 

observed intensity of the vibrational bands attributable to this ether linkage           

(ca. 1100-1000 cm
-1

).
[197, 198]

 Conversely, the synergistic effect of biological 

substances and weathering on the clear coats, promotes self-condensation reactions 

thereby forming new ether linkages between acrylic and melamine, resulting in 

amplification in the intensity of these same C-O vibrational stretches.
[197, 198]

 A 

similar chemical response was also observed in the remaining samples utilised in this 

study that were exposed to the ambient environment (Figure A.3-A.4 of the 

appendix). Whilst the samples used in this study were not deliberately subjected to 

biological materials prior to exposure, they will more than likely have come into 

contact with some form of bio-source throughout the duration of natural 

environmental exposure. Based upon the results of this study, acrylic-melamine 

coatings respond differently when aged artificially in climate chambers relative to 

the natural surroundings. This indicates that although climate chambers can 

accelerate the degradation process, studies involving natural weathering of the 
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samples needs to be undertaken, in order to obtain an accurate representation of the 

effect of weathering on automotive clear coats.  

 

 

This study ultimately concluded that environmental exposure over an 18 month 

period does not affect sample classification. Although differences in the IR spectra 

and projection of samples were observed following 18 months of ambient 

environmental exposure, it is worth reiterating that all of these samples were still 

correctly classified into their corresponding class. It is important to note that the 

average age of registered vehicles on the Australian roads is approximately 10 years, 

therefore extensive weathering studies that span this lifetime need to be conducted in 

order to assess the applicability of this model.
[199]

 Whilst previous studies have 

employed climate chambers to artificially accelerate the ageing process by 

simulating the outdoor conditions, it has been demonstrated that the clear coats 

respond differently when aged in climate chambers as opposed to the natural 

surroundings. Consequently, in order to obtain an accurate assessment of the impact 

of environmental degradation on the model, these samples need to be exposed to the 

natural surroundings for a period of 10 years. Another issue that warrants further 

investigation is the potential effect of uneven weathering across different portions of 

the vehicle.  
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4.4 Conclusion 

Based upon the results of this study, it is evident that the migration of components 

between the various layers can and does occur. In particular, the cross-linking agent 

melamine and pigments were shown to consistently migrate from the underlying 

layers into the clear coat of select vehicles. From a forensic science viewpoint, these 

results are significant as the relative abundance of melamine and pigments in the 

clear coat will vary greatly depending upon the region of the layer analysed.  

Relating this to the ATR-based model, melamine migration may lead to 

misclassification of samples if spectra are obtained from regions of the coating 

affected by component migration. Consequently, appropriate analytical protocols 

must be established to negate the effects of component migration, so as to obtain a 

true representation of the composition of the coating for forensic identification 

purposes. Another potential limitation of the ATR model, which warranted further 

investigation, was the influence of environmental factors on the characterisation and 

classification of automotive clear coats. The results of this stream of investigation 

revealed that samples exposed to the environment over an 18 month time period did 

not affect the classification of the samples in the model. However, subtle differences 

were observed in the acrylic fingerprint region of the IR spectra following 18 months 

of environmental exposure, suggesting that longer periods of weathering are 

necessary in order to gauge the limits of the model.  

 

 

It is important to note that the clear coat model previously described in Chapter 3 

was generated solely from ATR FT-IR spectra, which is ultimately representative 

chemically of the outermost surface of the clear coat. In this particular instance, if 

ATR FT-IR spectroscopy is utilised to characterise the clear coats, the issue 

regarding chemical component migration is mitigated; as IR spectra used to generate 

and test the model are solely obtained from areas of the coating unaffected by 

component migration. However, in situations where transmission IR spectra need to 

be acquired from shavings or thin peels, caution must be exercised to ensure spectra 

obtained from regions of the sample are truly representative of the composition of 
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the coating. Whilst ATR FT-IR spectroscopy can be used to prevent chemical 

component migration from significantly influencing the model, the same cannot be 

said for the study examining the effect of environmental degradation. This is due to 

the fact that the degradation of the coating may be more pronounced at the surface of 

the clear coat. This implies that differences observed in the ATR spectra may not be 

indicative of significant changes in the bulk composition of the coating and this 

needs to be investigated further.  
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Chapter 5: Characterisation of the underlying 

paint layers of automotive paint systems using 

synchrotron FT-IR microspectroscopy 

 

 

 

 

 

 

 

Portions of this chapter have been published in the journal Talanta: 

Maric, M., van Bronswijk, W., Lewis, S.W., and K. Pitts. Synchrotron FTIR 

characterisation of automotive primer surfacer paint coatings for forensic purposes. 

Talanta, 2014. 118: p. 156-161. 
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5.1 Introduction 

Whilst the model generated from the IR spectra obtained from automotive clear coats 

displayed potential in procuring investigative leads from questioned paint samples, 

there are situations that preclude the use of this model. Although most vehicles 

contain a typical 4-coat paint system, a small proportion, less than 2 % of vehicles 

worldwide, contain a single-stage topcoat or monocoat paint system, which consists 

of only an electrocoat primer, primer surfacer and basecoat.
[24, 32]

 Subsequently, as 

there is no clear coat in this paint system, it would be impossible in this situation to 

utilise the model described in Chapter 3 to provide information about the questioned 

paint sample. 

 

 

Where IR spectra are unable to be obtained from original automotive clear coats or 

are inconclusive, further information can be obtained from underlying automotive 

paint layers. There appears to be no published research available in the open 

literature examining the chemical variability in the composition of the underlying 

automotive paint layers for forensic purposes. From a paint technology viewpoint, 

modern automotive clear coats generally only consist of four main components (i.e. 

acrylic, melamine, styrene and/or polyurethane). The underlying coatings contain a 

range of similar chemical components, but also contain inorganic pigments and 

extenders. This is of significance as the chemical formulation of these coatings will 

consist of a much larger number of chemical components, which can potentially be 

utilised to discriminate between samples. Consequently, the main aim of this study 

was to employ synchrotron FT-IR microspectroscopy in combination with 

multivariate statistics to assess the diversity in a large population of automotive 

electrocoat primer, primer surfacer and basecoat layers; with a view to identifying 

relationships between the chemical composition of the coatings and the potential 

make, model and year of manufacture of the vehicle. 
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5.2 Experimental 

Thin automotive paint cross-sections were obtained from all automotive paint 

exemplars as outlined in section 2.4.1. A small segment of the resultant cross-

sections was chemically imaged using synchrotron FT-IR microspectroscopy, as 

described in section 2.4.2. For every sample, 2-dimensional distribution maps were 

generated from key vibrational bands representing each individual component in the 

cross-section. Six single point IR spectra were extracted from chemically uniform 

regions of these underlying layers. The spectral datasets for each layer were then 

linearly baseline corrected and the interference fringes were removed as outlined in 

section 2.4.3. The datasets were mean normalised, thereby eliminating any 

variability attributable to sample texture. Finally, the datasets were truncated to a 

range of 1800-900 cm
-1

 as minimal variance in the spectra was observed outside of 

this region. PCA was then performed on the spectral datasets as defined in section 

2.5.1. The key components of the process are diagrammatically summarised in 

Figure 5.1. 

 

Figure 5.1: Illustration detailing the methodology involved in the evaluation of 

synchrotron FT-IR data obtained from the primer surfacer. 
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5.3 Results & Discussion 

It is important to note that PCA assessment of synchrotron FT-IR spectra extracted 

from the electrocoat primer and basecoat, revealed no identifiable patterns or trends. 

The composition of the basecoat was determined to be entirely dependent on the 

colour and/or finish of the vehicle, which is to be expected as it is characterised by 

the pigments in the coat. No significant variability was observed in the IR data 

obtained from the electrocoat primer. However, significant diversity was observed in 

the synchrotron FT-IR data from the primer surfacer layers. Synchrotron IR imaging 

was utilised in the stratigraphic imaging of automotive paint cross-sections, with a 

view to identifying sections of the primer surfacer that are chemically uniform and 

are thus truly representative of the composition of the coating. Figure 5.2(e) is the 

combined image of Figure 5.2(b-d), such that the three chemical images are 

overlapped to produce a red-green-blue (RGB) map. RGB mapping is a form of 

component imaging, whereby each individual component (1b-d) is colour-coded as 

red, green or blue.  

 

 

The RGB map adds the colour portions of the selected chemical components 

allowing visualisation of the local distribution of all the components based upon the 

fundamentals of additive colour mixing. As the additive mixing of all three primary 

colours yields white, this region of the RGB map represents the area where all three 

components of the surfacer are the most abundant and therefore corresponds to the 

region of the coating unaffected by interlayer paint component migration. In this 

particular instance, it is evident that the white region in Figure 5.2(e) correlates with 

the mid-centre of the primer surfacer (Figure 5.2(a)). Subsequently, synchrotron FT-

IR spectra were extracted predominantly from the chemically uniform centre of the 

primer surfacer; however, this was constantly re-evaluated on a case by case basis. In 

this particular study, the spectral dataset contained a total of 450 spectra consisting 

of 75 distinct vehicles, covering a range of Australian and international 

manufacturers. The dataset encompassed a diverse range of vehicles, with 13 makes 

and 45 different models being represented. 
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Figure 5.2: (a) Optical image of an automotive paint cross-section obtained from 

a Mazda 3. (b) Synchrotron FT-IR chemical image highlighting the distribution of 

polyurethane (ca. 1690 cm
-1

), (c) melamine (ca. 1550 cm
-1

), and (d) isophthalic 

alkyd (ca. 1236 cm
-1

). (e) An RGB image produced by combining and overlapping 

the previous three chemical images (b-d), thereby allowing visualisation of the local 

distribution of all three components. The polyurethane trace is depicted as red, 

melamine is displayed as green and isophthalic alkyd is presented as blue. 

 

 

PCA performed on the primer surfacer spectral dataset revealed that 74.7 % of the 

total variance in the dataset was accounted for in the first three PCs. The Scree plot 

shown in Figure 5.3 advocated the utilisation of as many as five PCs. A number of 

combinations of the first five PCs were examined, with the scores plot containing the 

first three PCs detailed in Figure 5.4, as the fourth and fifth PC did not offer any 

additional discrimination of samples. 
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Figure 5.3: Scree plot depicting the variance in the primer surfacer spectral 

dataset retained by each PC. 

 

The 3-dimensional PCA scores plot, generated from the first three PCs, revealed that 

14 distinct classes are present in the dataset and a correlation exists between the 

classes and the country of manufacture, the specific manufacturer and manufacturing 

plant (Table 5.1 and Figure 5.4). In addition to the samples classified into these 14 

classes, there are samples in the dataset representing single vehicles manufactured by 

Nissan, Chrysler, and Jaguar. Unfortunately, the number of samples signifying these 

vehicles is far too small for generalisations or relationships to be deduced and as 

such they were excluded from the model. It is anticipated that as the dataset 

continues to expand, the statistical model will become more defined, consequently 

producing more classes corresponding to these vehicles. There are two distinct 

groupings for both the German-manufactured Ford Focus and for the South Korean-

made Hyundai. The reason for this will be discussed in detail later.  
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As mentioned beforehand, five replicate spectra were extracted from each sample so 

as to assess the intra-sample variability within the surfacer layer. The differences 

between the replicate spectra are insignificant providing representative spectra are 

obtained from the chemically uniform regions of the coating; thereby ensuring 

compositional differences within a sample are minimal. 

 

Table 5.1: Classes revealed following PCA of the primer surfacer spectral 

dataset. 

Class No. of samples Vehicle/s represented 

Class 1 3 Mitsubishi Pajero 

Class 2 3 SsangYong 

Class 3 15 Australia (Holden/HSV) [2006-present] 

Class 4 10 Australia (Ford) 

Class 5 4 Mitsubishi Lancer 

Class 6 3 South Korea (Holden) 

Class 7 10 Toyota/Honda 

Class 8 5 Mazda 

Class 9 2 Germany (Ford Focus) 

Class 10 5 Australia (Holden/HSV) [2001-2005] 

Class 11 5 Hyundai 

Class 12 4 Hyundai 

Class 13 2 Germany (Ford Focus) 

Class 14 4 US (Dodge/Jeep) 
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Figure 5.4: Three different perspectives of a 3-dimensional PCA scores plot 

highlighting the distribution of a population of automotive primer surfacers based 

upon their corresponding synchrotron FT-IR spectra. Note: classes representing 

vehicles, which contain only one sample, were removed from the scores plot to 

provide clarity. 
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It is important to note that the spectral dataset was derived from 75 distinct vehicles, 

which is only a small subset of the total sample population (139 vehicles), due to 

restrictions on user beam-time at the Australian Synchrotron. Consequently, the 

number of groupings in this model could be fewer and much less defined than the 

groupings in the ATR-based clear coat model. However, there are a number of 

groupings common to both models; including classes representing the US-

manufactured Dodge and Jeep, SsangYong, South Korean-manufactured Holden, 

and Mitsubishi Pajero vehicles. Whilst there are shared groupings within both 

models, there are additional classes in the primer surfacer model corresponding to 

specific manufacturers. In fact, generally speaking the clear coat model was mainly 

capable of providing information regarding the origin of the vehicle. On the other 

hand, as can be seen from Table 5.1 and Figure 5.4, the model based on the primer 

surfacer is capable of providing more specific information regarding the potential 

manufacturer. For instance, whilst class 3 of the clear coat model represents Japanese 

and Australian-made Toyota, Japanese-manufactured Mazda and Mitsubishi Lancer 

vehicles, these three types of vehicles have their own distinct groupings in the primer 

surfacer model, thereby highlighting the increased discriminating power of this 

statistical model.  

 

 

Three classes exist in the dataset representing samples obtained from General 

Motors-manufactured Holden vehicles (classes 3, 6 and 10). It is not surprising that 

chemical differences in the primer surfacer are evident between the South Korean 

and Australian-made Holden vehicles, as similar differences were also observed in 

the clear coats. However, a relationship was also discerned within the samples 

obtained from Australian factory-made Holden/HSV vehicles as a function of the 

year the vehicles were manufactured. Although this trend was also observed in the 

clear coats, in this particular instance, samples obtained from class 3 represented 

vehicles manufactured from 2006 onwards, whereas samples in class 10 signify 

vehicles manufactured up until 2006. The significance of this relationship will be 

discussed in further detail below. Furthermore, there are two Mitsubishi classes 

present in the dataset (classes 1 and 5), with the distinction between these two 
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groupings occurring as a function of the plant in which the vehicles were 

manufactured. In this particular instance, the samples from class 1 represent 

Mitsubishi Pajero vehicles manufactured at the Nagoya plant, whilst the samples 

from class 5 signify Mitsubishi Lancer vehicles produced at the Mizushima plant, 

thereby highlighting diversity within the manufacturer. This correlation was also 

observed in the ATR-based clear coat model. 

 

 

Similarly, there are also two groupings in the dataset which are representative of 

samples obtained from the German-manufactured Ford Focus (classes 9 and 13), and 

Hyundai vehicles (classes 11 and 12). However, there is no observable correlation 

between the two sets of classes and the common vehicle descriptors; which includes 

but is not limited to, the model and year of the vehicle as well as the plant and 

platform used to manufacture the vehicle. The rationale behind the discrimination 

between these two sets of groupings will be discussed in detail later. It is important 

to note that class 7 contains samples representing both Toyota and Honda vehicles, 

irrespective of the country of manufacture. Consequently, class 7 includes Toyota 

vehicles manufactured in Japan, Australia, and Thailand, as well as Honda vehicles 

manufactured in Japan, Poland, and the UK. This deviates considerably from the 

groupings in the clear coat model, with the Thai-manufactured Toyota vehicles being 

classified separately from the Australian and Japanese-manufactured Toyota 

vehicles. Similarly, the Japanese-made Honda vehicles are classified differently to 

the Polish and UK-made Honda vehicles in the clear coat model. 

 

 

Based upon the PCA scores plot depicted in Figure 5.4, it is evident that 14 distinct 

classes are present in the spectral data. In order to ascertain which features of the 

spectra give rise to the discrimination between the classes, the IR spectra of the 

central sample of each class was visually examined (Figure 5.5) and their chemical 

constituents were identified (Table 5.2). 
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Figure 5.5: Synchrotron FT-IR spectra obtained from the central sample of each 

class highlighting the chemical differences between the classes.  



 

 

 

 

1
1
8

 

Table 5.2: Frequencies (cm
-1

) for synchrotron FT-IR spectra obtained from the centroid of each grouping. Note: s – strong, m – 

moderate, w – weak, b – broad, h – high, l - low. 

Class IR Absorption Frequencies (cm-1) Composition 

Class 1 1731 (s), 1554 (m), 1508(m), 1476 (m), 1375 (m), 1301 (m), 1242 (m), 1183 (m), 1135 (m), 1076 (m), 986 (w) 
Isophthalic alkyd (m), Melamine (m), Epoxy (m),             

Barium sulfate (m) 

Class 2 1731 (s), 1553 (m), 1478 (m), 1376 (m), 1289 (m), 1245 (m), 1168 (m), 1139 (m), 1076 (m), 1020 (m), 912 (w) 
Isophthalic alkyd (m), Melamine (m),                           

Magnesium silicate (m) 

Class 3 1732 (s), 1554 (m), 1478 (m), 1374 (m), 1272 (bm), 1177 (m), 1126 (m), 1075 (s), 983 (w) 
Orthophthalic alkyd (m), Melamine (m),                              

Barium sulfate (m), 

Class 4 
1735 (s), 1550 (m), 1477 (m), 1374 (m), 1238 (m), 1179 (m), 1114 (m), 1086 (s), 1035 (m), 1010 (m), 984 (m),   
914 (w) 

Isophthalic alkyd (m), Melamine (m), Barium sulfate (m), 
Aluminium silicate (m) 

Class 5 1732 (s), 1551 (w), 1469 (w), 1383 (w), 1301 (w), 1236 (m), 1184 (s), 1120 (s), 1074 (s), 984 (w) Isophthalic alkyd (m), Melamine (l), Barium sulfate (h) 

Class 6 
1730 (s), 1554 (m), 1510 (m), 1478 (m), 1375 (m), 1306 (m), 1237 (s), 1184 (s), 1125 (s), 1076 (s), 1036 (m), 
1013 (m), 986 (w), 914 (w) 

Isophthalic alkyd (m), Melamine (m), Epoxy (m),                
Barium sulfate (h), Aluminium silicate (m) 

Class 7 
1730 (s), 1551 (s), 1508 (m), 1478 (m), 1376 (m), 1305 (m), 1237 (s), 1182 (m), 1171 (m), 1130 (m), 1079 (s),  
985 (w) 

Isophthalic alkyd (m), Melamine (h), Epoxy (m),            
Barium sulfate (m) 

Class 8 
1731 (s), 1691 (w), 1548 (w), 1511 (w), 1467 (w), 1377 (w), 1302 (w), 1239 (m), 1176 (m), 1095 (w), 1078 (w), 
1031 (w), 1019 (w) 

Isophthalic alkyd (m), Melamine (l), Polyurethane (l),        
Epoxy (l), Aluminium silicate (l) 

Class 9 
1729 (s), 1691 (m), 1607 (w), 1581 (w), 1553 (w), 1510 (m), 1466 (m), 1377 (w), 1303 (m), 1243 (s), 1182 (m), 
1138 (m), 1098 (m), 1077 (m), 915 (w) 

Isophthalic alkyd (m), Melamine (l), Polyurethane (m),  
Epoxy (m) 

Class 10 
1730 (s), 1691 (m), 1546 (s), 1510 (m), 1468 (m), 1376 (m), 1303 (m), 1238 (s), 1182 (m), 1166 (m), 1136 (m), 
1095 (m), 1078 (m), 1034 (s), 1012 (m), 915 (m) 

Isophthalic alkyd (m), Melamine (h), Polyurethane (m), 
Epoxy (m), Aluminium silicate (h) 

Class 11 
1725 (s), 1690 (m), 1552 (m), 1468 (m), 1382 (w), 1358 (w), 1304 (m), 1240 (s), 1165 (w), 1138 (w), 1096 (m), 
1078 (m), 1035 (w), 1010 (w), 915 (w) 

Isophthalic alkyd (m), Melamine (m), Polyurethane (m), 
Aluminium silicate (l) 

Class 12 
1725 (s), 1692 (m), 1551 (m), 1509 (m), 1466 (m), 1382 (m), 1359 (m), 1304 (m), 1240 (s), 1184 (s), 1124 (s), 
1079 (s), 984 (w), 915 (w) 

Isophthalic alkyd (m), Melamine (m),                 
Polyurethane (m), Epoxy (m), Barium Sulfate (m) 

Class 13 
1731 (s), 1691 (m), 1607 (w), 1580 (w), 1551 (w), 1510 (m), 1466 (m), 1377 (w), 1303 (m), 1240 (s), 1201 (s), 
1170 (s), 1061 (m), 984 (w) 

Isophthalic alkyd (m), Melamine (l), Polyurethane (m),  
Epoxy (m), Barium sulfate (h) 

Class 14 
1724 (s), 1608 (w), 1580 (w), 1510 (m), 1474 (w), 1408 (w), 1375 (w), 1269 (s), 1249 (s), 1183 (w), 1120 (m), 
1105 (m), 1044 (w), 1019 (w), 976 (w) 

Terephthalic alkyd (h), Epoxy (m) 
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The backbone of every primer surfacer was polyester based; however, subtle 

differences were observable in the form of polyester employed (i.e. orthophthalic, 

isophthalic and terephthalic alkyd). Melamine was another component observed in 

almost all types of primer surfacers as it is commonly utilised as a cross-linking 

agent.
[13, 32, 200] 

Another common constituent in the surfacer is polyurethane, which is 

due in part to the constructive effect it has on the dispersibility of the film in a 

waterborne system, whilst also producing exceptional film properties.
[32, 200, 201]

 

Epoxy resin was found in over half of the surfacers as a result of the mechanical and 

technological features it affords the coating.
[200, 201] 

Extenders are also widely 

employed in the manufacture of the primer surfacers as they affect performance 

parameters such as gloss, stone-chip resistance and even rheology.
[32]

 The extenders 

encountered in this particular study were barium sulfate, aluminium silicate and 

magnesium silicate. Ultimately, discrimination between classes was achieved due to 

distinctive permutations of the chemical components listed above, or as a result of 

variations in the relative abundance of the components in the system (Table 5.2). 

 

 

The factor loadings for the first three PCs were examined to identify the spectral 

regions in the dataset responsible for the differentiation between samples on the 

scores plot. The loadings plot for PC1 revealed regions of high positive correlation at 

1722, 1270 and 1251 cm
-1

, which are characteristic of the C=O and C-O vibrational 

stretches attributable to the terephthalic alkyd resin (Figure 5.6).
[56]

 As only the US-

manufactured Dodge and Jeep vehicles from class 14 contain terephthalic alkyd in 

the primer surfacer these samples attain large positive values on PC1. Similarly, the 

remaining samples which are based on an entirely different alkyd system attain 

significant negative scores on PC1, and are subsequently compressed into one half of 

the scores plot, as depicted in Figure 5.6. 
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Figure 5.6: Factor loadings for PC1. The blue regions superimposed on the representative IR spectra for each grouping, signify 

spectral regions that are significantly positively correlated with PC1. 
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The factor loadings for PC2 revealed a strong positive correlation at 1551 cm
-1

, 

which is indicative of an in-plane vibration of the triazine ring characteristic for the 

melamine cross-linking agent. Additionally, the two significant negative loadings   

ca. 1182 and 1119 cm
-1

 are distinctive for the barium sulfate extender. Therefore, 

discrimination between samples on PC2 is achieved based upon the relative 

abundance of melamine and barium sulfate in the primer surfacer, as displayed in 

Figure 5.7. As can be seen from Figure 5.7, samples with a relatively large 

abundance of the barium sulfate extender and low abundance of melamine in the 

primer surfacer, attain significant negative scores on PC2 (e.g. samples in class 5). 

Conversely, samples that contain a large abundance of melamine and a low 

abundance of barium sulfate will have large positive scores on PC2 (e.g. classes 2, 

10 and 11).     

 

 

The loadings plot for PC3 revealed two zones of significant negative correlation; one 

at approximately 1689 cm
-1

 which is consistent with the C=O stretch attributable to 

polyurethane, and the other at 1236 cm
-1

 which is the main diagnostic peak 

representing the isophthalic alkyd resin. A broad zone of positive correlation was 

also observed at 1273 cm
-1

, which denotes the C-O stretch attributable to the 

orthophthalic alkyd resin. Therefore, samples are separated on PC3 based upon the 

presence of the orthophthalic and isophthalic alkyd resin and the abundance of 

polyurethane. By examining Figure 5.8, it is evident that the reason why samples 

from class 3 attain significant positive scores on PC3 is due to the large abundance 

of orthophthalic alkyd, and the absence of isophthalic alkyd and polyurethane in the 

surfacer. Conversely, the samples with large negative scores on PC3 contain a 

relatively large abundance of isophthalic alkyd and polyurethane, with little to no 

orthophthalic alkyd (e.g. classes 11-13). 
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Figure 5.7: Factor loadings plot for PC2. The red regions overlaid on the representative IR spectra for each class centroid, denote 

regions of significant correlation with PC2. 
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Figure 5.8: Factor loadings plot for PC3. The orange regions superimposed on the representative IR spectra for each class, signify 

spectral regions significantly correlated with PC3. 
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The Fisher ratio plot based on the PCA groupings revealed that the most important 

spectral feature in the dataset is an intense, sharp vibrational band ca. 1270 cm
-1

. 

This peak is indicative of the terephthalic alkyd resin and the presence of this band is 

a distinguishing characteristic between the representative IR spectra of the PCA 

groupings, as depicted in Figure 5.9. This result is consistent with the factor loadings 

for PC1, which accounts for 37.7 % of the total variance in the dataset, and is solely 

responsible for discriminating samples based primarily on the presence of 

terephthalic alkyd in the primer surfacer.    

  

 

As mentioned previously, there are two sets of groupings present in the model 

representing the German-manufactured Ford Focus, and Hyundai vehicles. No 

discernible correlation was observed between the groupings as a function of the 

common vehicle descriptors. However, upon closer examination, a trend was 

observed between the two classes and the nature and layer structure of the paint 

samples. Specifically, class 13 consists of Ford Focus vehicles that contain the 

typical 4-layered paint system, whilst the samples from class 9 represent Ford Focus 

vehicles containing 6 OEM coatings. As depicted in Figure 5.10, it is evident that the 

two paint systems have roughly the same total thickness, presumably to meet certain 

internal specifications and requirements. In this particular instance, the 4-coat system 

contains a much thicker primer surfacer to compensate for the fact that the 6-layered 

OEM paint system contains an additional original manufacturer base and clear coat. 

The main chemical difference between the surfacers of both systems is due solely to 

the much higher abundance of barium sulfate present in the 4-layered system. 

Barium sulfate is an extender, which is used primarily to extend or stretch the primer 

surfacer layer further at a low cost.
[201]

 Thus, the chemical difference between both 

surfacers is attributable to the fact that a large amount of barium sulfate was 

employed to extend the primer surfacer of the 4-layered system, so that the total 

thickness of the 4 and 6-layered systems are comparable. As a result, the subtle 

differences in the chemical composition of the two surfacers can directly be 

correlated with the number of layers in the paint system. 
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Figure 5.9: Representative IR spectra for all PCA groupings and Fisher ratio 

plot. Note the green region superimposed on the IR spectra which is indicative of a 

peak with a large F-value and thus highly significant in discriminating between the 

groupings. 
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Figure 5.10: Synchrotron FT-IR spectra extracted from the primer surfacer of (a) 

sample from class 13 and (b) a sample from class 9. 

 

Additionally, there are two groupings in the dataset representing samples obtained 

from Hyundai manufactured vehicles. Similarly, there is no observable pattern 

between the two sets of classes and the typical vehicle descriptors. However, once 

again, a trend is observed between the chemical compositions of the surfacers from 

the two sets of samples, as a function of the layer structure of the automotive paint 

samples. Specifically, the samples obtained from class 11 represent vehicles that 

contain an atypical monocoat system with no original manufacturer clear coat, whilst 

the samples from class 12 comprise the typical 4-layered scheme. As the 3-layered 

paint systems contain no original manufacturer clear coat the function of the primer 

surfacer in this particular instance is inherently more significant, as now the onus is 

primarily on the primer surfacer to prevent corrosion and protect the underlying 

metal body. Hence, it is not surprising that the chemical composition of the surfacer 

coating varies from 3-layered and 4-layered paint systems obtained from Hyundai 

vehicles. This finding ultimately reinforces the fact that different primer surfacers are 

tailored for specific applications.
[202]
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From a comparative standpoint, the model generated from the primer surfacer may 

potentially offer a number of advantages over the previously described clear coat 

model. Firstly, the primer surfacer model affords more specific information 

concerning the potential vehicle manufacturer, whilst the clear coat model may in 

some instances only provide general information regarding the origin of the vehicle. 

Secondly, the primer surfacer model employs chemical information which is not, or 

only minimally, impacted by deleterious effects of long-term environmental 

exposure. Although long-term continuous exposure (10 years or more) to the 

environmental conditions will likely impact on the clear coat model, it is less likely 

to affect the model generated from primer surfacers, as this layer is sandwiched 

between two other coatings and as such is not directly exposed to the environment. 

Ultimately, this minimises the risk of environmental degradation, enabling an 

accurate representation of the composition of the surfacer to be obtained from older 

or aged vehicles.  

 

 

Whilst there are circumstances in which it will be beneficial to utilise one model over 

the other, the synergistic effect of both models enables more information to be 

obtained from questioned paint samples. Consider a situation whereby a questioned 

paint sample is characterised and based upon the composition of the surfacer the 

sample is grouped with the samples in class 7. In this scenario, the primer surfacer 

model is incapable of identifying the exact vehicle manufacturer, as it is unable to 

differentiate between samples obtained from Toyota and Honda vehicles. However, 

in this instance, the clear coat model described in Chapter 3 can be utilised in 

conjunction with the primer surfacer model to obtain specific vehicle manufacturer 

identification. This is because automotive clear coats from Japanese and Australian-

made Toyota vehicles are grouped into class 3, whilst samples obtained from Thai-

manufactured Toyota vehicles are classified into class 12 of the clear coat model. 

Therefore, by using both statistical models in tandem, more information concerning 

the questioned paint sample may be elucidated.  
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As mentioned previously, there are two groupings in the primer surfacer model 

representative of Australian-manufactured Holden vehicles (classes 3 and 10). 

Samples that grouped into class 3 signify vehicles manufactured post-2006, whereas 

samples in class 10 represent vehicles manufactured up until 2006. This relationship 

is significant as it enables the forensic examiner to deduce potential vehicle models, 

based upon sample groupings as well as pre-existing knowledge of when the specific 

manufacturer (i.e. Holden) ceased production on certain lines of vehicles. In this 

particular situation, samples in class 3 were obtained from Holden vehicles 

manufactured after 2006 and thus can only represent specific vehicle models 

manufactured after this period in time, as depicted in Figure 5.11. Conversely, 

samples in class 10 were obtained from Holden vehicles manufactured prior to 2006 

and therefore can only represent specific models manufactured before this time 

period. For example, a sample obtained from either a first or second generation VE 

Commodore will be categorised into class 3, as this model was only commissioned 

for production in July 2006 (Figure 5.11). Likewise, primer surfacers characterised 

from the earlier Commodores (e.g. VX) will be classified into class 10, as Holden 

ceased production on these specific vehicles well before 2006.  

 

 

As described in Chapter 3, a similar relationship was also observed with the 

Holden/HSV vehicles on the basis of the composition of the clear coat. However, in 

this situation a change in the composition of the clear coat was detected mid-2009; 

with samples from class 16 signifying vehicles manufactured prior to May/June of 

2009, and samples from class 17 representing samples manufactured after this time 

period. Once again, the synergistic effect of the two models can be utilised to obtain 

more specific model information from a questioned paint sample obtained from an 

Australian-manufactured Holden/HSV vehicle, as depicted in Figure 5.11. For 

example, if a questioned paint sample obtained from a Holden vehicle is 

characterised and categorised into class 10 of the primer surfacer model and class 16 

of the clear coat model, it can be inferred that the sample was obtained from a 

vehicle model manufactured prior to 2006.  
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Figure 5.11: Timeline of select lines of Holden vehicles. The red dashed line denotes the distinction between classes 16 and 17 in the 

clear coat model, whilst the blue dashed line signifies the discrimination between samples contained in classes 3 and 10 of the primer 

surfacer model. 
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Similarly, if a questioned paint sample was categorised into class 3 and class 16 of 

the primer surfacer and clear coat model respectively, this would indicate that the 

vehicle was made between 2006 and mid-2009; thereby further limiting the potential 

vehicle types. Finally, if a paint sample was characterised and classified into class 3 

of the primer surfacer and class 17 of the clear coat model, then it can be inferred 

with some degree of certainty that the vehicle was manufactured after 2009. 

Ultimately, this result reinforces the notion that the two models should be employed 

together, in order to extract the maximum amount of information from the sample in 

question. 
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5.4 Conclusions 

A statistical model was developed using synchrotron FT-IR data obtained from the 

primer surfacer, and a pattern was discerned between the PCA groupings in the 

dataset as a function of vehicle manufacturer. No discernible variation was observed 

in the composition of the basecoat and electrocoat primer. However, from a forensic 

standpoint useful information may be acquired regarding a suspect vehicle from 

questioned paint samples by interrogating the primer surfacer.  The statistical model 

generated from the primer surfacer offers a few advantages over the model generated 

from clear coats. Firstly, the primer surfacer model can afford specific information 

pertaining to the vehicle manufacturer, whilst in some situations the clear coat model 

can only provide more generalised information concerning vehicle origin. 

Additionally, whilst long-term environmental exposure (i.e. ≥ 10 years) is likely to 

impact the clear coat model, this is not much of an issue with the primer surfacer 

model, as this coating is routinely sandwiched between other layers and in essence 

shielded from the deleterious effects of the environment. Whilst there are benefits to 

only employing the model generated from the primer surfacers, the discriminatory 

power of the model is enhanced when used in combination with the ATR-based 

model. 

 

The statistical model was defined from vehicles representing a range of Australian 

and international manufacturers. It is important to note that the international vehicles 

contained vehicle models only commonly exported to Australia. As a result, this 

statistical model can only be utilised in an Australian context. However, other 

jurisdictions could utilise the same methodology as long as statistically significant 

datasets were generated. Furthermore, due to limitations involving beam-time at the 

Australian Synchrotron, the following model was not as well-defined as the clear 

coat model and as such LDA was not conducted on the dataset. Whilst the PCA 

groupings are distinct, the numbers of samples in the groupings are small, making it 

difficult to perform test set validation on the dataset. Thus, a larger number of 

samples need to be characterised in order to better define the model, such that LDA 

can be performed and an estimation of the predicative performance of the model can 

be obtained. 
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Chapter 6: Characterisation and classification of 

automotive clear coats with Raman spectroscopy and 

chemometrics 
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6.1 Introduction 

Raman spectroscopy has enormous potential for the forensic analysis of paints, 

owing to its ability to characterise both the organic and inorganic components of the 

paint system at a very high spatial resolution and with minimal sample 

preparation.
[34, 101] 

Whilst Raman spectroscopy has been extensively applied to the 

examination of artistic paints (e.g. in instances of art forgery),
[203-210]

 there is less 

published work in the literature using this technique to characterise architectural
[99, 

100, 211, 212]
 and automotive

[102, 213-219]
 paints, which are commonly encountered in 

forensic casework. Furthermore, of the handful of studies that employed Raman 

spectroscopy to examine automotive paint systems, the majority have used the 

technique solely to characterise the organic and inorganic pigments in the basecoat, 

or the fillers and extenders in the primer surfacer.
[102, 213, 215-219]  

 

 

From a forensic science standpoint, there is only one study in the open literature that 

has employed Raman spectroscopy to chemically interrogate automotive clear coats. 

De Gelder and co-workers
[214]

 used Raman spectroscopy to characterise all of the 

layers, including the clear coat, in automotive paint cross-sections. The authors 

discovered that although reproducible spectra could be obtained from clear coats, the 

basecoat of the paint system provided the best spectra with which to discriminate 

between paint samples.
[214]

 Due to the paucity of research in the literature and 

because IR and Raman spectroscopy are complementary techniques, this chapter will 

explore the potential of Raman spectroscopy for the characterisation of a large 

population of automotive clear coats with subsequent chemometric analysis to 

interpret the resultant data. This statistical model can then be compared to the 

equivalent model generated from ATR data (Chapter 3), in order to determine which 

vibrational spectroscopic technique is better suited to this application. 
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6.2 Experimental 

Automotive paint exemplars were obtained as previously described in section 2.1. 

 

6.2.1 Raman Spectroscopy 

Raman spectra were acquired with a Bruker RFS 100 FT-Raman spectrometer 

(Bruker Optik GmbH, Ettlingen, Germany) equipped with a liquid-nitrogen cooled, 

high sensitivity germanium diode detector. A near-IR Nd:YAG continuous wave 

laser, operating with an excitation wavelength of 1064 nm and with a maximum 

power of 800 mW, was used to characterise the clear coats. Analysis of the clear coat 

layer was achieved by employing a scalpel to obtain thin shavings of the coating, 

which were then tightly packed into a stainless steel sample cup (Figure 6.1). 

Extreme care was taken to ensure that the shavings were obtained from the outer 

surface of the clear coat, such that the shavings were unaffected by chemical 

component migration (section 4.3.1) and thus truly representative of the composition 

of the coating. Five spectra were collected from each sample using 180 ° back-

scattering sampling mode at a focal position of 0.0 mm, over a range of 3600-75 cm
-1

 

(Stokes shift), with a spectral resolution of 4 cm
-1

, and 1024 accumulated scans (~ 30 

min).  

 

Figure 6.1:  (Left) Tightly packed clear coat shavings in a stainless steel sample 

cup; (Right) Sample mounted into the sampling compartment setup for 180 ° back-

scattering geometry in a FT-Raman spectrometer. 
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6.2.2 Chemometrics 

All spectra were collated into a single matrix dataset and were pre-processed 

according to section 2.5. The dataset was then truncated between 1800 and 600 cm
-1

, 

as no significant information was observed outside of this spectral range. PCA and 

LDA were then conducted on the dataset as described in Section 2.5.1 and 2.5.2 

respectively. 
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6.3 Results & Discussion 

6.3.1 Principal Component Analysis 

A dispersive Raman spectrometer equipped with visible lasers (e.g. 514 nm and 633 

nm) was initially utilised to chemically interrogate the automotive clear coats. 

Unfortunately, high levels of fluorescence were observed in the spectra that masked 

the Raman bands and this fluorescence interference was not able to be overcome by 

changing the excitation wavelength and laser power. Consequently, FT-Raman 

spectroscopy with a near-IR laser (1064 nm) was employed in this situation. This 

technique offers a significant advantage over dispersive Raman spectrometers that 

employ visible excitation, in that it is able to overcome the issue of fluorescence in 

materials by using an IR excitation source.
[220-222]

 

 

 

PCA performed on the Raman spectral dataset (695 spectra) revealed that 96.7 % of 

the total variance in the dataset was accounted for by the first five PCs, as seen below 

in Figure 6.2. Based upon Figure 6.2, it can be clearly seen that as many as five PCs 

could be employed to reconstruct and model the data. Whilst the first three PCs     

(93.6 %) may be capable of adequately describing the data, additional PCs also need 

to be evaluated, as the spectral variation may be quite subtle.  

 

Figure 6.2: Scree plot detailing the variance in the dataset explained by each PC.  
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A 3-dimensional scores plot generated using the first three PCs indicated that there 

visually appear to be 19 groupings in the dataset (Figure 6.3). Scores plots were also 

created from a number of combinations of the first five PCs, in order to examine the 

influence of PC4 and PC5. The fourth and fifth PCs were determined to afford no 

additional discrimination between samples, thereby justifying the use of only three 

PCs. The scores plot depicted in Figure 6.3 illustrates the separation of the data into 

19 groupings, with the discrimination between sample groupings being attributable to 

common vehicle descriptors; including vehicle origin, manufacturer, specific models, 

year of manufacture, and in some instances the manufacturing plant where the 

vehicle was assembled. A comprehensive summary of the samples that comprise 

each grouping in the dataset is provided below in Table 6.1.  

 

Table 6.1: Summary of the samples contained within each grouping following 

PCA of the Raman spectral dataset. 

Class No. No. Samples Vehicles Represented 

Class 1 8 US (Dodge/Jeep) 

Class 2 2 Mexico (Dodge) 

Class 3 6 Japan (Subaru/Nissan) 

Class 4 2 Germany (Ford Mondeo) 

Class 5 3 South Korea (Holden); Japan (Mitsubishi Colt) 

Class 6 3 BMW 

Class 7 12 Japan (Mazda/Mitsubishi Lancer/Toyota) 

Class 8 4 Australia (Toyota) 

Class 9 9 Japan (Mazda/Toyota) 

Class 10 4 Mitsubishi Pajero 

Class 11 2 SsangYong 

Class 12 13 Thailand (Nissan/Toyota); Honda; Suzuki 

Class 13 5 Hyundai 

Class 14 3 Sweden (Saab); UK (Jaguar) 

Class 15 5 Australia (Holden/HSV) [2001-2004] 

Class 16 6 Germany (Ford Focus) 

Class 17 29 Australia (Holden/HSV) [2009-Present] 

Class 18 10 Australia (Holden/HSV) [2004-2009] 

Class 19 13 Australia (Ford); Spain (Nissan) 
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Figure 6.3: A number of different perspectives of a 3-dimensional PCA scores 

plot depicting the distribution of samples based upon their resultant Raman spectra. 
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Whilst there are groupings common to both the ATR-based clear coat model 

(described in Chapter 3) and the corresponding model produced from Raman spectra, 

there are also noticeable differences in the number of groupings between both 

statistical models (Table 6.2). The statistical model generated from IR data obtained 

from automotive clear coats was only able to visually discern 17 groupings; whereas 

PCA performed on the Raman data obtained from the same sample collection 

enabled 19 groupings to be visualised. Groupings common to both statistical models 

include the samples obtained from the US-manufactured Dodge and Jeep, Mexican-

made Dodge, German-manufactured Ford Mondeo, BMW, Mitsubishi Pajero, 

SsangYong, Hyundai, German-manufactured Ford Focus, and the post-2009 

Australian-made Holden/HSV vehicles (Table 6.2). Furthermore, the vehicles 

represented in classes 3 and 5 of the Raman statistical model are almost identical to 

classes 6 and 9 of the ATR-based model, with the sole difference relating to the 

grouping of the lone Mitsubishi Colt vehicle (Table 6.2).  

 

 

This is not a major issue as it is anticipated that as the model becomes more defined, 

individual groupings may begin to emerge that represent these singular vehicles in 

the dataset. Similarly, groupings 12 and 14 in the Raman model principally contain 

the same samples as classes 11 and 12 in the ATR-based model. The only difference 

in the arrangement of samples within these groupings is attributable to the samples 

obtained from the Polish-manufactured Honda vehicles, which are grouped together 

with the other European vehicles in the ATR model (class 11). However, in the 

Raman model these samples are instead projected into class 12, alongside the 

samples obtained from the Thai-manufactured utility, Honda and Suzuki vehicles. 
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Table 6.2: Comparison of the grouping structure of the ATR-based model 

described in Chapter 3 and the equivalent model generated from Raman data.  

               ATR    Raman 

Class 1 US (Dodge/Jeep) Class 1 US (Dodge/Jeep) 

Class 2 BMW Class 6 BMW 

Class 3 
Japan (Mazda/Mitsubishi 
Lancer); Australia/Japan 

(Toyota) 

Class 7 
Japan (Mazda/Toyota/Mitsubishi 

Lancer) 

Class 8 Australia (Toyota) 

Class 9 Japan (Mazda/Toyota) 

Class 4 Mitsubishi Pajero Class 10 Mitsubishi Pajero 

Class 5 Mexico (Dodge) Class 2 Mexico (Dodge) 

Class 6 
Japan 

(Subaru/Nissan/Mitsubishi Colt) 
Class 3 Japan (Subaru/Nissan) 

Class 7 Germany (Ford Mondeo) Class 4 Germany (Ford Mondeo) 

Class 8 Hyundai Class 13 Hyundai 

Class 9 South Korea (Holden) Class 5 
South Korea (Holden); Mitsubishi 

Colt 

Class 10 Germany (Ford Focus) Class 16 Germany (Ford Focus) 

Class 11 
Poland (Honda); Sweden 

(Saab); UK (Jaguar) 
Class 14 Sweden (Saab); UK (Jaguar) 

Class 12 
Thailand (Nissan/Toyota); Japan 

(Honda/Suzuki) 
Class 12 

Thailand (Nissan/Toyota); Honda; 
Suzuki 

Class 13 SsangYong Class 11 SsangYong 

Class 14 Australia (Ford) [2004-2009] 
Class 19 Australia (Ford); Spain (Nissan) 

Class 15 
Australia (Ford) [2009-present]; 

Spain (Nissan) 

Class 16 
Australia (Holden/HSV) [2001-

2009] 

Class 15 
Australia (Holden/HSV) [2001-

2004] 

Class 18 
Australia (Holden/HSV) [2004-

2009] 

Class 17 
Australia (Holden/HSV) [2009-

present] 
Class 17 

Australia (Holden/HSV) [2009-
present] 

 

 

The main differences between the two statistical models can be predominantly 

attributed to additional groupings in the Raman model that were formed following 

subdivision of select groupings within the ATR model (Table 6.2). For example, 

there is a singular grouping in the ATR-based model representing Australian-made 

Holden vehicles manufactured prior to 2009 (class 16). However, in the statistical 
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model generated from the Raman data, these same samples are distributed over two 

groups; with the samples representing Holden/HSV vehicles assembled prior to 2004 

in class 15 and the samples signifying Holden/HSV vehicles manufactured between 

2004 and 2009 contained within class 18. The significance of this result will be 

discussed in detail later. Similarly, there is only one grouping in the ATR model 

representing Toyota, Mazda, and Mitsubishi Lancer vehicles (class 3); however the 

samples in this grouping were distributed into three distinct groupings in the Raman 

model (classes 7-9). Class 7 contained samples obtained from Japanese-

manufactured Mazda and Toyota vehicles, as well as the Mitsubishi Lancer vehicles. 

Likewise, the samples in class 9 also represented specific Japanese-manufactured 

Mazda and Toyota vehicles. Whilst the discrimination between these two groupings 

is evident, no discernible correlation could be made between the samples in the 

groupings and the vehicle descriptors (i.e. vehicle model and type, year, 

manufacturing plant and platform). Class 8 consists of samples obtained solely from 

Toyota vehicles manufactured at the Altona plant in Australia. Consequently, the 

Raman model is capable of discriminating between Toyota vehicles manufactured in 

Japan and Australia, thus enabling increased discrimination between samples over 

the analogous IR model. Conversely, it is important to note that only one grouping 

was visually discerned in the Raman model representing Australian-manufactured 

Ford and Spanish-manufactured Nissan vehicles (class 19). However, these samples 

were distributed over two groupings in the ATR-based model (classes 14 & 15).  

 

 

In spite of this, based upon the number of groupings it can be concluded that the 

stand-alone Raman model is more discriminating than the corresponding IR model. 

By examining the Raman spectra obtained from the centroids of each grouping as 

depicted in Figure 6.4, it can be observed that the Raman vibrational bands tend to be 

sharper than the equivalent IR bands. This narrow spectral line width in the Raman 

spectra not only enables the assignment of the band frequency to be more accurate 

and precise, but also ensures minimal band overlap comparative to IR spectra (Table 

6.3).
[222-224]

 These advantageous features of Raman spectra could account for the 

increased discrimination observed between samples.  
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Figure 6.4: Raman spectra obtained from the centroid of each grouping. 
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Table 6.3: Raman frequencies (cm
-1

) for the centroid spectra of each grouping. Note: s – strong, m – moderate, w – weak. 

Class   Raman Wavenumber (cm-1) 

Class 1 
1732 (m), 1624 (w), 1601 (m), 1570 (w), 1449 (s), 1384 (w), 1349 (w), 1304 (m), 1254 (w), 1230 (w), 1157 (w), 1113 (w), 1088 (w), 1061 (w), 1032 (w), 1001 (m), 975 (w), 845 (w), 778 (w),  
620 (w), 601 (w) 

Class 2 
1732 (m), 1625 (w), 1600 (m), 1570 (w), 1449 (s), 1385 (w), 1349 (w), 1303 (m), 1279 (w), 1249 (w), 1129 (w), 1111 (w), 1086 (w), 1063 (w), 1038 (w), 1001 (m), 976 (m), 845 (w), 804 (w),   
778 (w), 620 (w), 601 (w) 

Class 3 1727 (m), 1601 (w), 1567 (w), 1449 (s), 1385 (w), 1350 (w), 1303 (m), 1264 (w), 1194 (w), 1154 (w), 1122 (w), 1063 (w), 1001 (w), 976 (m),  844 (m), 600 (w) 

Class 4 
1762 (w), 1728 (m), 1602 (m), 1569 (w), 1496 (w), 1448 (s), 1384 (w), 1364 (w), 1348 (w), 1303 (m), 1251 (w), 1238 (w), 1156 (w), 1034 (w), 1001 (m), 978 (m), 892 (w), 875 (w), 830 (w),               
775 (w), 725 (w), 668 (w), 620 (w) 

Class 5 1732 (m), 1600 (m), 1567 (m), 1448 (s), 1385 (m), 1350 (w), 1301 (m), 1247 (w), 1214 (w), 1114 (w), 1070 (w), 1040 (w), 1001 (m), 979 (s),  915 (w), 895 (w), 859 (w), 841 (w), 811 (m)  

Class 6 
1730 (m), 1612 (m), 1604 (m), 1585 (w), 1449 (s), 1388 (w), 1346 (w), 1305 (m), 1257 (w), 1236 (w), 1185 (w), 1158 (w), 1122 (w), 1103 (w), 1063 (w), 1039 (w), 1001 (m), 966 (m), 912 (w), 
845 (w), 813 (m), 757 (w), 725 (w), 619 (w), 601 (m) 

Class 7 1729 (m), 1626 (w), 1603 (m), 1584 (m), 1451 (s), 1385 (w), 1346 (w), 1301 (m), 1238 (w), 1185 (w), 1157 (w), 1120 (w), 1065 (w), 1033 (m), 1002 (s), 975 (w), 843 (w), 804 (w), 621 (w) 

Class 8 
1730 (m), 1602 (s), 1584 (m), 1571 (m), 1512 (w), 1448 (s), 1344 (w), 1304 (m), 1274 (w), 1250 (w), 1185 (m), 1156 (w), 1081 (w), 1032 (m), 1002 (s), 977 (w), 891 (w),                                          
849 (w), 799 (w), 752 (w), 732 (w), 648 (w), 621 (m) 

Class 9 1730 (m), 1603 (s), 1584 (m), 1450 (s), 1342 (w), 1303 (m), 1248 (w), 1185 (w), 1157 (w), 1070 (w), 1033 (m), 1002 (s), 851 (w), 804 (w), 751 (w), 621 (m) 

Class 10 1727 (m), 1625 (w), 1602 (s), 1584 (m), 1570 (w), 1449 (s), 1386 (w), 1303 (m), 1254 (w), 1184 (w), 1156 (w), 1129 (w), 1032 (m), 1002 (s),  976 (m), 844 (w), 803 (w), 751 (w), 621 (w) 

Class 11 1730 (m), 1603 (m), 1584 (m), 1450 (s), 1380 (w), 1358 (w), 1302 (m), 1260 (w), 1234 (w), 1184 (w), 1157 (w), 1121 (w), 1065 (w), 1002 (s), 976 (m), 841 (w), 811 (w), 745 (w), 621 (w) 

Class 12 
1726 (m), 1602 (m), 1584 (m), 1569 (w), 1449 (s), 1382 (w), 1351 (w), 1303 (m), 1230 (w), 1184 (w), 1156 (w), 1126 (w), 1064 (w), 1032 (m), 1002 (s), 976 (m), 872 (w), 842 (w), 750 (w),                
621 (m), 602 (w) 

Class 13 
1758 (w), 1729 (m), 1602 (s), 1584 (m), 1569 (w), 1450 (s), 1379 (w), 1341 (w), 1304 (m), 1257 (w), 1184 (m), 1156 (w), 1065 (w), 1032 (m), 1002 (s), 977 (m), 909 (w), 872 (w), 840 (w),                
804 (w), 746 (w), 699 (w), 621 (m) 

Class 14 1729 (m), 1602 (s), 1584 (m), 1450 (s), 1383 (w), 1355 (w), 1303 (m), 1196 (m), 1184 (m), 1156 (m), 1064 (w), 1032 (m), 1002 (s), 977 (m), 896 (w), 872 (w), 838 (w), 748 (w), 621 (m), 602 (w) 

Class 15 1726 (m), 1602 (s), 1584 (m), 1449 (s), 1381 (w), 1355 (w), 1302 (m), 1184 (m), 1156 (w), 1126 (w), 1065 (w), 1032 (m), 1002 (s), 977 (m), 842 (w), 749 (w), 621 (m),  602 (w) 

Class 16 
1730 (m), 1603 (s), 1584 (m), 1450 (s), 1377 (w), 1353 (w), 1303 (m), 1198 (m), 1184 (m), 1156 (m), 1119 (w), 1088 (w), 1066 (w), 1032 (m), 1002 (s), 976 (m), 903 (w), 842 (w), 744 (w),                   
621 (m) 

Class 17 
1729 (m), 1602 (s), 1584 (m), 1496 (w), 1449 (s), 1383 (w), 1348 (w), 1304 (m), 1258 (w), 1236 (w), 1196 (m), 1184 (m), 1156 (m), 1032 (m), 1002 (s), 977 (m), 892 (w), 851 (w), 837 (w),                
827 (w), 751 (w), 621 (m) 

Class 18 1728 (m), 1603 (s), 1584 (m), 1496 (w), 1449 (s), 1380 (w), 1348 (w), 1304 (m), 1195 (m), 1184 (m), 1156 (m), 1032 (m), 1002 (s), 977 (m), 894 (w), 750 (w), 621 (m) 

Class 19 
1731 (m), 1602 (s), 1584 (m), 1569 (m), 1509 (w), 1449 (s), 1384 (w), 1342 (w), 1305 (m), 1252 (w), 1196 (m), 1184 (m), 1156 (m), 1032 (m), 1001 (s), 977 (m), 890 (w), 873 (w), 852 (w),                 

752 (w), 621 (m) 
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Moreover, because vibrations of polymer backbones typically do not generate 

significant changes in the dipole moment, but rather create drastic changes in 

polarisability, Raman spectroscopy is usually more amenable to the analysis of 

polymeric coatings such as automotive clear coats.
[179, 225]

 As depicted in Figure 6.4 

and displayed in Table 6.3, all automotive clear coats tend to be composed of the 

same chemical components (i.e. acrylic, melamine, styrene and polyurethane), with 

variations in the spectra arising from differences in the relative abundance of these 

constituents in the system. 

 

 

The factor loadings for the first three PCs were examined to identify spectral regions 

responsible for the discrimination of samples on the scores plot. The loadings plot for 

PC1, shown below in Figure 6.5, revealed two peaks of significant positive 

correlation ca. 1602 and 1002 cm
-1

. The peak at approximately 1602 cm
-1

 is part of a 

doublet of bands indicative of ring stretching attributable to styrene.
[214, 226]

 Similarly, 

the intense, sharp peak at roughly 1002 cm
-1

 is characteristic for trigonal ring 

breathing also ascribable to styrene.
[214, 226]

 Consequently, the discrimination between 

samples on PC1 is primarily attributable to the abundance of styrene in the clear coat. 

For example, samples in classes 1-6, as can be seen from Figure 6.5, have a relatively 

low abundance of styrene in the clear coat and thus attain significant negative scores 

on PC1. Conversely, samples obtained from the Australian manufactured-Ford and 

Spanish-made Nissan vehicles of class 19, have comparatively larger intensities of 

these peaks than the other samples and subsequently have larger positive scores on 

PC1. 
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Figure 6.5: Factor loadings plot for PC1. The blue regions superimposed on the representative Raman spectra for each grouping, 

denote spectral regions significantly positively correlated with PC1. 
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The loadings plot for PC2, depicted in Figure 6.6, revealed regions of positive 

correlation ca. 1447 cm
-1

, 1425 cm
-1

 and 977 cm
-1

. Additionally, there was also a 

peak of significant negative correlation at approximately 1004 cm
-1

, which denotes a 

slight band shift in the peak indicative of trigonal ring breathing characteristic of 

styrene. This signifies that PC2 is accounting for a subtle variation in the 

wavenumber shift of the styrene peak, suggesting a slight modification to the styrene 

binder, presumably due to the chemical component it is linking or polymerising with.  

The large positive loading at approximately 1447 cm
-1

 signifies CH3 and CH2 

deformations that may be attributed to the acrylic backbone.
[214, 226]

 Similarly, the 

positive loading at 1425 cm
-1

, which corresponds to a shoulder on the main acrylic 

peak at 1447 cm
-1

, is indicative of the methylene (=CH2) deformation vibration also 

characteristic for certain acrylic polymers.
[179]

 Finally, the significant positive 

loading at approximately 977 cm
-1 

signifies the triazine ring breathing of the 

melamine cross-linking agent.
[214, 226]

 Consequently, samples are differentiated on 

PC2 based upon the presence and intensity of acrylic peaks at 1447 cm
-1

 and 1425 

cm
-1

 and the melamine peak at 977 cm
-1

, in addition to a slight band shift variation of 

the main diagnostic peak for styrene. For example, samples that attain large positive 

scores on PC2 (e.g. class 5) have relatively large intensities of peaks at 1447 cm
-1

, 

1425 cm
-1

 and 977 cm
-1

, including no band shift in the styrene peak. Conversely, 

samples with large negative scores on PC2 (e.g. class 9) have relatively low 

intensities of the acrylic (1447 cm
-1

 and 1425 cm
-1

) and melamine (977 cm
-1

) peaks 

and or a large intensity of the band-shifted styrene peak (1004 cm
-1

). 

 

The factor loadings for PC3, depicted below in Figure 6.7, revealed peaks of 

significant positive correlation at 1613 cm
-1

 and 977 cm
-1

, in addition to regions of 

large negative correlation at 1449 cm
-1

 and 1305 cm
-1

. The large negative loadings at 

1449 cm
-1

 and 1305 cm
-1

 can be assigned to the CH3 and CH2 deformations, and CH2 

in-phase twisting vibrations of the acrylic component respectively.
[214, 226]

 

Interestingly, the negative loading ca.1449 cm
-1

 represents a slight band shift in the 

acrylic peak, most likely inferring variation in the acrylic co-polymer utilised to form 

the backbone. As described previously, the large positive loading at approximately 

977 cm
-1 

is indicative of triazine ring breathing of melamine.
[214, 226] 
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Figure 6.6: Factor loadings plot for PC2. The red zones overlaid on the Raman spectra obtained from each class centroid, signify 

regions of substantial correlation with PC2. 
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Figure 6.7: Factor loadings plot for PC3. The light blue regions superimposed on the representative Raman spectra of each PCA 

grouping, denote spectral regions significantly correlated with PC3.  



 

 

149 

 

Finally, the large positive loading at approximately 1613 cm
-1

 corresponds to a 

shoulder on the larger doublet peak ca.1602 cm
-1 

that was previously assigned to the 

quadrant ring stretching of styrene. This shoulder can also be attributed to ring 

stretching of aromatics, most likely from modifications to the styrene binder or from 

other aromatic additives (e.g. xylene and methylbenzenes).
[226]

 Therefore, separation 

of samples on PC3 is achieved based upon the relative intensities of peaks 

characteristic for the cross-linking agent melamine, acrylic and styrene binder. For 

example, samples from classes 8 or 19 attain large negative scores on PC3, based 

upon the relatively more intense peaks ca. 1449 cm
-1

 and 1305 cm
-1

, signifying either 

a larger abundance or a specific combination of acrylic binder/s. Importantly, the 

distinction between the samples in the two Australian-made Holden groupings 

(classes 17 and 18) can be made based upon the position of these samples on PC3. 

The samples from class 17, which represents Holden vehicles manufactured from 

2009 onwards, attain less positive scores on PC3 than the samples from class 18 

(Holden vehicles manufactured between 2004-2009). These samples from class 17 

have comparatively less positive scores on PC3 because of the more intense 

vibrational bands at approximately 1449 cm
-1

 and 1305 cm
-1

. This suggests that the 

samples from class 17 most likely have a much larger abundance of the same acrylic 

binder, or have a different acrylic backbone than those in class 18. 

 

 

Interestingly, the Fisher ratio plot depicted below in Figure 6.8 revealed that the most 

significant spectral feature in the Raman dataset was a small peak at approximately 

779 cm
-1

. This peak can most likely be assigned to ring vibrations from para-

disubstituted benzenes caused by either a modification to the styrene component or 

from another additive entirely (e.g. p-xylene).
[226]

 Comparatively, the Fisher ratio 

plot determined the spectral regions significantly positively or negatively correlated 

to the first three PCs (Figures 6.5-6.7) to be far less significant than the region ca. 

779 cm
-1

. Although this peak was only unequivocally observed in the IR spectra of 

samples obtained from classes 1, 2 and 4, the large F-value for this peak emphasises 

its class distinguishing capabilities.  
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Figure 6.8: Fisher ratio plot and the Raman spectra obtained from the central 

sample of each PCA grouping. The red region is indicative of a peak with a large F-

value, thereby indicating its significance in the dataset. 
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6.3.2 Linear Discriminant Analysis 

A LDA model was generated by utilising the first three PCs and the groupings 

derived from PCA of the calibration data. The three PC-score LDA model 

successfully classified 96.9 % of the data in the calibration set, with only 3 samples 

and their corresponding replicates being misclassified (Table 6.4). Two of the three 

samples misclassified were obtained from a Japanese-manufactured Suzuki Grand 

Vitara, and a Honda Civic made in the UK. Both samples were visually projected 

into class 12; however, the model predicted these samples to be classified in class 15 

and 14 respectively, based upon their discriminant values presented in Table A.4 of 

the appendix. Whilst these samples were misclassified, it is important to note that 

these samples represent singular vehicles in the dataset and are thus not well defined 

in the model. It is likely that as the size of the model increases, and more 

importantly, the number of samples representing these vehicles increases, specific 

groupings representing these vehicles may be formed. Although these samples are 

not adequately defined in the model, they still need to be classified into one of the 

pre-specified groupings, thus accounting for their misclassification. The final 

misclassified sample in the calibration set was obtained from a Holden VE 

Commodore manufactured in 2007. Whilst the sample should group with the other 

samples in class 18, the LDA model classifies the sample into group 17 with the 

Holden vehicles made from 2009 onwards. The discriminant values for this 

particular sample (Table A.4 of the appendix), revealed that this sample is only 

slightly closer to the centroid of class 17 relative to class 18, suggesting that there is 

a small degree of overlap between the two groupings. 

 

 

The LDA model successfully classified 97.6 % of the data in the test set, with only 

one sample and the corresponding replicates being misclassified (Table 6.5). The 

sample in question was obtained from a Thai-manufactured Toyota Hilux vehicle 

from class 12, which was classified by the model into class 15. This result was 

reinforced upon examination of the discriminant values for this sample (Table A.4 of 

the appendix). Whilst some samples were misclassified, it can be concluded that the 

overall performance of the model is highly discriminating, with only minimal 

overlap between select groupings.  
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Table 6.4: Confusion matrix displaying the results from LDA of the samples within the calibration dataset. 

 
 Actual   

 Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total % Correct 

P
re

d
ic

te
d

 

1 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 100 

2 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

3 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

4 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

5 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

6 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

7 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 35 100 

8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100 

9 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 35 100 

10 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 15 100 

11 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 100 

12 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 30 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 15 100 

14 0 0 0 0 0 0 0 0 0 0 0 5 0 10 0 0 0 0 0 15 66.7 

15 0 0 0 0 0 0 0 0 0 0 0 5 0 0 15 0 0 0 0 20 75 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 25 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 5 0 115 95.7 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 30 100 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 45 100 

 Total 25 10 15 10 15 15 35 10 35 15 10 40 15 10 15 25 110 35 45 490 96.9 
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Table 6.5: Confusion matrix depicting the accuracy with which samples in the test set were classified by the LDA model. 

 
 Actual   

 Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total % Correct 

P
re

d
ic

te
d

 

1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

3 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

7 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 25 100 

8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100 

9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 100 

10 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 100 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

12 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 20 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 5 100 

15 0 0 0 0 0 0 0 0 0 0 0 5 0 0 10 0 0 0 0 15 66.7 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 35 100 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 15 100 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 100 

 Total 15 0 15 0 0 0 25 10 10 5 0 25 10 5 10 5 35 15 20 205 97.6 
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From a comparative standpoint, the classification accuracy of the IR model is slightly 

greater than the equivalent model generated from Raman data. This can most likely 

be attributed to the fact that there are more overall groupings in the Raman model, 

indicating that there is a potential for more overlap between the groupings. 

Additionally, it is worth noting that due to differences in the number and structure of 

the groupings, an effective comparison of the predictive performance between the 

two models could not be made, as the samples used to constitute the calibration and 

validation sets were different.  

 

 

The model generated from Raman data is potentially more discriminating than the 

equivalent clear coat model obtained from IR data. This is best exemplified by the 

discrimination between the Australian-made Holden and HSV vehicles. In the IR 

model previously described in Chapter 3, there are only two groupings in the dataset 

representing these vehicles; with samples in class 16 signifying vehicles 

manufactured prior to mid-2009, whilst samples in class 17 denote vehicles made 

after this time period. However, in the Raman model the samples contained in class 

16 of the IR model are further subdivided into two distinct groupings. The samples in 

class 15 of the Raman model signify vehicles manufactured from a time period 

between 2001 until the end of 2003. The samples in class 18 represent Holden 

vehicles manufactured from the start of 2004 until mid-2009. This potentially 

enables increased discrimination between Holden and HSV vehicle models, which 

would not otherwise be discerned from the IR model (Figure 6.9). Take for example, 

a situation whereby a questioned paint sample was obtained from a Holden 

commodore. The original clear coat of the specimen could be characterised by 

Raman spectroscopy, and subsequently classified into one of the three groupings 

representing Australian-made Holden vehicles. If the sample was classified into class 

15, it indicates that the sample was obtained from either a VX or VY commodore. 

Similarly, if the sample was classified into class 18 it infers that the sample most 

likely came from a series II VY, VZ or series I VE commodore. Finally, if the 

sample was classified into class 17 it indicates that the sample was obtained from a 

VE commodore.  
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Figure 6.9: Timeline of select lines of Holden vehicles. The red dashed line denotes the demarcation between samples in groupings 15, 

17 and 18 of the Raman statistical model. 
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6.4  Conclusions 

A statistical model was developed from Raman data obtained from automotive clear 

coats. A comparison between this model and the equivalent model generated from IR 

data (Chapter 3) revealed that the Raman model was more discriminating than the 

corresponding IR model. This was based upon the comparatively greater 

discriminating ability of the Raman model (19 groupings) to the IR model (17 

groupings). This result infers that Raman spectroscopy may be of more use to the 

forensic examiner in the characterisation of automotive paint specimens than IR 

spectroscopy. Ultimately, this finding is significant as it may potentially enable more 

information to be obtained regarding the suspect vehicle, from questioned paint 

specimens. 
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Chapter 7: Discrimination of automotive clear 

coats using a combined FT-Raman and FT-IR 

statistical approach  
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7.1 Introduction 

The characterisation of a large population of automotive clear coats by ATR FT-IR 

and FT-Raman spectroscopy in conjunction with chemometric techniques has been 

previously described in Chapters 3 and 6 respectively. The stand-alone statistical 

models generated from IR and Raman data have been shown to enable discrimination 

between samples on the basis of common vehicle descriptors (e.g. make, model and 

year of vehicle manufacture). Furthermore, as described in Chapter 6 the individual 

Raman model provided improved discrimination over the analogous ATR-based 

model. Previous research by Buzzini and Massonnet have demonstrated that IR and 

Raman spectroscopy complement each other and their combination enables improved 

discrimination between similarly coloured green spray paint samples.
[98]

 

Consequently, the main objective of this study was to combine or couple the data 

obtained from both spectroscopic techniques (i.e. IR and Raman), which could 

potentially permit a larger amount of information to be extracted from each sample.  

 

 

Recent studies by Pallipurath et al
[227]

, and Bueno and Lednev
[228]

 have demonstrated 

that PCA performed on combined data obtained from two complementary 

spectroscopic techniques, enables increased discrimination between samples. The 

first study, which combined Raman and fibre-optic reflectance spectra from the same 

samples, revealed improved discrimination of medieval paint mixtures.
[227]

 The more 

recent study by Bueno and Lednev combined FT-IR and Raman spectra obtained 

from organic gunshot residues and provided a similar conclusion.
[228]

 The work 

described in this chapter involves concatenating FT-IR and FT-Raman data obtained 

from the original automotive clear coats, so as to potentially increase the sensitivity 

and specificity of the statistical analysis.  
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7.2 Experimental 

The IR dataset described in Chapter 3 and the Raman dataset described in Chapter 6 

were pre-processed separately, so as to ensure that the spectral contribution of the 

two analytical techniques were similar. The raw IR data was linearly baseline 

corrected, range normalised and then truncated (1800-650 cm
-1

) as described 

previously. The raw Raman data was also linearly baseline corrected, range 

normalised and truncated (1800-600 cm
-1

). As the Raman dataset was normalised to 

the large aliphatic stretches (i.e. ~ 3000 cm
-1

) the truncated fingerprint region of the 

Raman dataset was also scaled, to provide comparable intensities with the IR data. 

The Raman dataset was also interpolated, such that the interval between data points 

was 1 cm
-1

 and was therefore commensurate with the IR data.  

 

 

The 1390 total pre-processed IR and Raman spectra were then combined to afford 

695 spectra, generating five replicate single vector IR-Raman spectra for each of the 

139 total vehicles. Arbitrary wavenumbers were assigned to the combined IR-Raman 

spectra, such that the IR data ranged from 2951-1801 cm
-1

 and the Raman data 

ranged from 1800-600 cm
-1

. As depicted in Figure 7.1 the IR spectrum (black trace) 

was coupled with the corresponding Raman spectrum (blue trace) for each sample. It 

is important to note that both sets of data (IR and Raman) were individually pre-

processed, so that there was no significant difference at the point of attachment in the 

combined spectra (Figure 7.1). This was imperative in order to ensure that the 

chemometric techniques utilised on the corresponding dataset do not account for any 

variability attributable to the concatenation point in the combined spectra. PCA and 

LDA were then conducted on the combined dataset as described in section 2.5.1 and 

2.5.2 respectively. 
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Figure 7.1: Combined IR (black) and Raman (blue) spectrum obtained from the 

clear coat of a Holden VZ Commodore. The demarcation line (red) depicts the point 

of attachment between the two spectra. 
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7.3 Results & Discussion 

Generally speaking, the discrimination and classification accuracy of samples are 

typically enhanced when more information is provided to describe the samples under 

investigation. Consequently, a statistical model generated from a combination of 

Raman and IR data should provide greater classification accuracy than the 

corresponding individual IR and Raman models. In order to corroborate this notion, 

an all-encompassing combined dataset was created by concatenating individually 

pre-processed IR and Raman spectra for each sample (Figure 7.1). A previous study 

conducted by Bueno and Lednev normalised the raw IR and Raman datasets by area, 

such that the area under each IR and Raman spectrum of a given sample was the 

same.
[228]

 The authors were able to utilise this approach because the intensity and 

peak width of the vibrational bands in the raw Raman and IR spectra were 

comparable. However, in this situation, the IR spectra of automotive clear coats are 

characterised by very broad peaks, with the average area under the raw IR spectra 

being significantly larger than that of the raw Raman spectra. Subsequently, if area 

normalisation was utilised the combined IR-Raman spectra would be distorted in a 

manner that would assign more weight to the Raman spectra, which would have 

significantly larger intensities (Figure 7.2).     

 

Figure 7.2: Combined area normalised IR (black) and Raman (blue) spectrum 

obtained from the clear coat of a Holden VZ commodore showing unacceptable bias. 
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As a result, range normalisation was applied to both the IR and Raman spectra prior 

to combination. Furthermore, as the Raman spectra were normalised to the aliphatic 

C-H stretches (~ 3000 cm
-1

) and then truncated (1800-600 cm
-1

) so as to only contain 

spectral contributions of the fingerprint region, the truncated spectra were scaled to 

provide a similar intensity range to the IR spectra. This approach was utilised as it 

ensured that the spectral information obtained from the two techniques were 

weighted equally.  

 

 

7.3.1 Principal component analysis 

PCA performed on the combined IR and Raman dataset (695 spectra) revealed that 

97.8 % of the variance was accounted for in the first five PCs (Figure 7.3). Similar to 

the IR and Raman models, as many as five PCs could be utilised to model the 

combined dataset. 3-dimensional scores plots were generated by using various 

combinations of the first five PCs. 

 

 

Figure 7.3: Scree plot detailing the variance in each PC generated from the 

combined dataset. 
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The PCA scores plot generated from the first three PCs revealed that visually there 

are 21 groupings present in the combined dataset, which represents an increase in the 

number of groupings observed relative to the individual IR and Raman models. This 

indicates that the discriminatory power of the combined model is greater than that of 

the individual models. Interestingly, whilst the fourth and fifth PC did not divulge 

additional groupings, these PCs are important in maximising the distinction between 

the already specified groupings. Figure 7.4 depicts a 3-dimensional scores plot 

generated by plotting the scores of the projected objects from the first three PCs. 

Much like the stand-alone IR and Raman models, the samples within the groupings 

could be correlated to common vehicle descriptors such as the manufacturer, 

assembly plant, model and year of manufacture.   

 

Figure 7.4: Four different perspectives of a 3-dimensional scores plot generated 

using the first three PCs obtained from PCA of the combined IR-Raman dataset.  
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An overview of the types of vehicles represented in each grouping is provided below 

in Table 7.1. For the most part, predictably many of the groupings contained within 

the previous clear coat models, were also observed in this combined IR-Raman 

model. Of the 21 groupings present in the combined dataset, 18 of the groupings are 

common to one of the two clear coat models discussed previously. There are notable 

exceptions, which includes the samples in classes 4, 17 and 20. Particularly, samples 

represented in class 4 of this model, were segregated over two groupings in the 

Raman model; with the Australian-manufactured Toyota vehicles being categorised 

in class 8, and the Japanese-manufactured Mazda and Toyota vehicles being grouped 

in class 9. Consequently, in this particular instance, more discriminatory information 

would be obtained by using the stand-alone Raman model.   

 

Table 7.1: Overview of the samples contained within each PCA grouping of the 

combined IR-Raman dataset. 

Class No. No. Samples Vehicles Represented 

Class 1 3 BMW 

Class 2 8 US (Dodge/Jeep) 

Class 3 12 Japan (Mazda/Mitsubishi Lancer/Toyota) 

Class 4 13 Japan (Mazda/Toyota); Australia (Toyota) 

Class 5 2 Mexico (Dodge) 

Class 6 4 Mitsubishi Pajero 

Class 7 5 Hyundai 

Class 8 6 Germany (Ford Focus) 

Class 9 2 SsangYong 

Class 10 2 Germany (Ford Mondeo) 

Class 11 7 Japan (Subaru/Nissan/Mitsubishi Colt) 

Class 12 2 South Korea (Holden) 

Class 13 3 Sweden (Saab); UK (Jaguar) 

Class 14 13 Thailand (Toyota/Nissan); Honda; Suzuki  

Class 15 5 Australia (Holden/HSV) [2001-2003]  

Class 16 9 Australia (Holden/HSV) [2004-2007]  

Class 17 5 Australia (Holden/HSV) [2008-2009] 

Class 18 25 Australia (Holden/HSV) [2009-present] 

Class 19 3 Australia (Ford) [2003-2007] 

Class 20 4 Australia (Ford) [2008-2009]; Spain (Nissan) 

Class 21 6 Australia (Ford) [2009-present]  
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However, groupings 17 and 20 were only observed in the combined IR/Raman 

dataset and were not clearly visually discerned in the individual statistical datasets. 

The samples from group 17 correspond to Australian-made Holden vehicles 

manufactured from the start of 2008 to mid-2009. The samples represented in this 

grouping were obtained from a combination of samples in classes 16 and 17 of the IR 

model, and classes 17 and 18 of the Raman model. Similarly, grouping 20 in the 

combined dataset consists of samples obtained from Australian-manufactured Ford 

vehicles made between 2008 and 2009, in addition to Spanish-manufactured Nissan 

Navara vehicles. These samples were grouped together with the remaining Ford 

samples in the stand-alone Raman model (i.e. class 19), and the samples contained in 

class 15 of the IR model. Consequently, based upon the results it can be inferred that 

the combined dataset may potentially enable more information to be obtained from 

questioned automotive clear coats, relative to the individual statistical models. Whilst 

tentative groupings could also be assigned to the samples in classes 17 and 20 of the 

combined dataset, with the same samples in the stand-alone IR model; the 

discrimination between the samples is much greater and thus the groupings are more 

distinct in the augmented dataset. Ultimately, this shows that the Raman data 

provides a significant contribution to the results obtained from PCA analysis when 

both datasets are used in combination.  

 

 

As mentioned above, it was revealed from the PCA scores plot described in Figure 

7.4 that there are 21 groupings present in the spectral dataset. The centroid spectra of 

each grouping were examined, in order to identify spectral features that give rise to 

the discrimination between the groupings. Figure 7.5 depicts the combined spectra of 

each centroid, with the red dashed line on the x-axis signifying the demarcation 

between the IR and Raman spectra. 
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Figure 7.5: Combined IR-Raman spectra obtained from the centroid of each PCA grouping. The red dashed line indicates the point of 

concatenation between the IR and Raman spectra. 
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In order to examine the origin of the enhanced discrimination between the PCA 

groupings in the combined dataset, the loadings plots were examined. The factor 

loadings for PC1, depicted in Figure 7.6, revealed significant positive correlations at 

1549 cm
-1

 and 1493 cm
-1

 in the IR region of the combined spectra. The large loading 

at 1549 cm
-1

 is indicative of an in-plane triazine ring stretch attributable to 

melamine, whilst the significant loading at 1493 cm
-1

 could be attributed to both ring 

and side chain C-N stretches and C=C stretches characteristic for both melamine and 

styrene respectively. Interestingly, the factor loadings for PC1 (Figure 7.6) closely 

resembles the loadings plot for PC1 of the IR model. However, although PC1 is 

weighted significantly more to the IR region of the spectra there is also a slight 

Raman contribution to PC1; thereby indicating PCA analysis is using both forms of 

data (i.e. IR and Raman) in combination. The positioning of samples on PC1 of the 

scores plot can ultimately be attributed to intensity of these two spectral regions. For 

example, samples with a low intensity of these spectral features attain large negative 

scores on PC1 (e.g. classes 1-4); whilst samples with a large intensity of these two 

peaks will have large positive loadings on PC1 (e.g. classes 15-21).  

 

 

The loadings plot for PC2 revealed strong negative correlations at 1699 cm
-1

 and 

1623 cm
-1

 in the IR region of the combined spectra, as shown in Figure 7.7. The 

large negative loading ca. 1699 cm
-1

 can most likely be indicative of a shift in the 

peak position of the C=O stretch characteristic of the acrylic binder. On the other 

hand, the negative loading at 1623 cm
-1

 is probably indicative of variation in the 

shape and slope of a spectral band. Samples which contain large intensities of these 

spectral features attain negative scores on PC2 (i.e. classes 10, 16 and 19) and vice-

versa (i.e. classes 12, 18 and 21). PC2 is responsible for separating the Australian-

manufactured Ford (classes 19-21) and Holden (classes 16-18) vehicles. As stated 

previously, greater separation was observed in these samples in the combined dataset 

as opposed to the individual IR dataset. This can most likely be rationalised by the 

fact that although PC2 is weighted more to the IR region of the spectra, there is still a 

Raman contribution to PC2.  
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Figure 7.6: Factor loadings plot for PC1. The blue shaded regions overlaid on the representative combined IR-Raman spectra for 

every class, denote spectral regions that are significantly positively correlated with PC1. 
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Figure 7.7: Factor loadings plot for PC2. The black regions superimposed on the combined IR-Raman spectra obtained from the class 

centroid, represent spectral regions significantly negatively correlated with PC2. 
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Additionally, PC2 of the stand-alone IR model was also responsible for 

discriminating between the clear coats of Australian-made Ford and Holden vehicles. 

However, the factor loadings for PC2 obtained from the combined and IR datasets 

are different. Whilst, the loadings plots for both account for a variation in the shift of 

the carbonyl peak of the acrylic binder at approximately 1700 cm
-1

, the combined 

dataset also contains a significant correlation at 1623 cm
-1

 that deviates from the 

large correlation observed at 1635 cm
-1

 in the IR dataset. This difference in the factor 

loadings may also be responsible for the increased discrimination in the samples 

obtained from Australian-made Ford and Holden vehicles. 

 

 

The factor loadings for PC3 depicted in Figure 7.8, revealed strong positive 

correlations at 700 cm
-1

 in the IR region, and 1602 cm
-1

 and 1002 cm
-1 

in the Raman 

region of the combined spectra. The positive loading ca. 700 cm
-1

 in the IR region is 

characteristic of a =C-H out of plane bending vibration attributable to styrene. 

Similarly, the positive loadings ca. 1602 cm
-1

 and 1002 cm
-1

 is indicative of ring 

stretching and trigonal ring breathing for styrene respectively. Consequently, samples 

are differentiated on PC3 based upon the abundance of styrene in the clear coat. 

Samples with a relatively large abundance of styrene (i.e. classes 19-21) attain large 

positive scores on PC3, and conversely samples with a low abundance of styrene 

have large negative scores on PC3 (i.e. classes 10-12). It is important to note that 

PC3 correlates variation in the main diagnostic peak of styrene in the IR region (ca. 

700 cm
-1

), with variation in peaks attributable to styrene in the Raman region (ca. 

1602 & 1002 cm
-1

). This is significant as it reinforces and justifies the approach 

utilised in generating the combined dataset; as the variance in the styrene peaks from 

both the IR and Raman spectral regions are correlated in PC3. Additionally, although 

PC3 has a diminished impact on the statistical model as it individually only accounts 

for 2.6 % of the variability in the dataset, the third PC illustrates an increase in the 

spectral contribution for the Raman region in comparison to the first and second PC.     
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Figure 7.8: Factor loadings plot for PC3. The grey zones superimposed on the combined IR-Raman spectra obtained from each class 

centroid, signify spectral regions of substantial positive correlation with PC3. 
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7.3.2 Linear discriminant analysis 

LDA was performed on the concatenated dataset in order to ascertain the predictive 

performance of the model. The LDA calibration model was generated by employing 

the first five PCs and the classifications obtained from PCA of the calibration data. 

Whilst only the first three PCs were utilised to visualise the groupings and structure 

within the dataset, the fourth and fifth PCs were necessary as they enhanced the 

discrimination between closely projected groupings in the scores plot. It is important 

to note that PC4 and PC5 did not afford any additional groupings or structure and 

thus was only utilised to improve discrimination between the already defined 

groupings. The five PC-score LDA model successfully classified 100 % of the 

calibration set and 97.6 % of the validation set, as described in the confusion 

matrices provided in Table 7.2 and Table 7.3 respectively. 

 

 

Only one sample was incorrectly classified, with a Holden Commodore from class 18 

being misclassified with other Holden samples in class 17. In spite of this, the 

classification accuracy of samples in the combined model is superior to that observed 

in the statistical model generated from Raman data. In fact, the classification 

accuracy of the combined model represents a marked improvement in comparison to 

the previously reported rates of classification for the exclusive Raman model (i.e. 

96.9 % and 97.6 % for the training and validation set respectively). Although the 

predictive performance of the combined model was comparable to that of the 

individual IR model, the number of groupings present in the combined model is 

much greater, inferring a greater capacity for discrimination between samples. 

Consequently, based upon the results obtained from both PCA and LDA of the 

combined dataset, it can be concluded that the sensitivity and specificity of 

discrimination between automotive clear coats was improved by combining data 

obtained from the complementary methods. 
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Table 7.2: Confusion matrix detailing the results from LDA of the samples in the combined IR-Raman calibration dataset. 

                                                                   Actual 
 Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Total % Correct 

P
re

d
ic

te
d

 

1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

2 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 100 

3 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 100 
4 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 100 

5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

6 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

7 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

8 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100 
9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100 

11 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 20 100 

12 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 100 
13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 45 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 15 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 30 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 20 100 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 90 100 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 15 100 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 15 100 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 100 

 Total 10 25 40 45 10 15 15 20 10 10 20 10 10 45 15 30 20 90 15 15 20 490 100 
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Table 7.3: Confusion matrix showing predicted vs. actual classifications for the samples within the validation set.  

 

                                                                   Actual 
 Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Total % Correct 

P
re

d
ic

te
d

 

1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 100 

2 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100 

3 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100 
4 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

6 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 100 

7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

11 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 15 100 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 
13 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 20 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 15 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 10 50 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 30 100 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 100 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 100 

 Total 5 15 20 20 0 5 10 10 0 0 15 0 5 20 10 15 5 35 0 5 10 205 97.6 
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7.4 Conclusions 

It has been demonstrated that a combined statistical model generated by using 

spectra from two different, complementary analytical techniques (i.e. IR and Raman 

spectroscopy), can improve the statistical discrimination between automotive clear 

coats. The LDA results of the combined model depict an improvement in the 

classification accuracy over the individual Raman model and an increase in the 

overall discriminating capability over both individual spectroscopic models. An 

increase in the sensitivity and specificity of the combined approach was observed in 

comparison to the previously reported individual methods, suggesting that this 

approach could potentially afford more information concerning a suspect vehicle to 

forensic investigators. 
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Chapter 8: Conclusions and suggestions for 

future work 
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This dissertation details a series of investigations that were undertaken in order to 

facilitate the development of analytical and interpretational protocols for automotive 

paint evidence. A number of instrumental spectroscopic techniques were utilised in 

conjunction with multivariate statistics, with the aim of characterising specific 

automotive paint coatings and interpreting the resulting data. The statistical models 

generated from these studies may potentially be used to procure investigative leads 

from questioned paint samples.  

 

 

Chapter 3 investigated the potential of employing ATR FT-IR spectroscopy in 

combination with chemometrics to characterise and classify a large population of 

original automotive clear coats. A statistical model was developed with 17 

discernible groupings, which could be correlated to common vehicle descriptors; 

such as country of manufacture and manufacturer, model, assembly plant and year of 

assembly. The model developed could potentially be utilised in an Australian context 

to elucidate information about a suspect vehicle from its corresponding paint 

specimen. However, a couple of significant issues needed to be addressed, before this 

model can be used in a forensic setting (Chapter 4). Specifically, the effect of 

chemical component migration amidst automotive paint layers and the potential 

impact this would have on the classification of automotive clear coats was 

investigated. Synchrotron FTIR microspectroscopy revealed that migration of the 

cross-linking agent melamine can and does occur from the underlying layers into the 

clear coat. This is potentially significant if transmission IR spectra were obtained 

from a region of the clear coat affected by melamine migration and incorporated into 

the ATR-based statistical model. This may result in misclassification of the sample 

and lead to incorrect information being conveyed to law enforcement. However, this 

issue could be mitigated, by characterising the original clear coats of automotive 

paint systems with ATR FT-IR spectroscopy. Another issue that was investigated 

involved the effect of weathering and the environment on original manufacturer clear 

coats. Automotive paint samples were subjected to the environmental conditions over 

the course of 18 months and periodically analysed by ATR FT-IR spectroscopy. The 

resultant IR data was projected onto the statistical model described in Chapter 3, and 
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it was determined that moderate weathering of the automotive clear coats over an 18 

month period, did not affect sample classification. With that being said, further 

research is still required to investigate the effects of long-term weathering, as the 

average age of registered vehicles on Australian roads is 10 years. Furthermore, the 

effect of uneven weathering across different portions of the vehicle also warrants 

additional investigation. 

 

 

Whilst the ATR-based clear coat model (Chapter 3) has demonstrated potential in 

procuring vehicle information from questioned paint specimens, there are situations 

in which this model cannot be employed. In particular, there are some instances 

where chemical analysis of the original clear coat is inconclusive, or this coating is 

not present in the paint system. Consequently, the variability in the chemical 

composition of the underlying coatings was also investigated, with a view to 

identifying if the underlying layers of the paint system may aid in vehicle 

discrimination. Synchrotron FT-IR microspectroscopy was used to characterise the 

basecoat, primer surfacer and electrocoat primers of a statistically relevant number of 

automotive paint samples. Synchrotron IR data obtained from the primer surfacer 

was used to generate a statistical model, and a correlation was made between the 

PCA groupings as a function of vehicle manufacturer. The benefits of the primer 

surfacer model are that it can afford specific information pertaining to the vehicle 

manufacturer and is less likely to be influenced by long-term environmental 

degradation. It is important to note that no significant variation in the chemical 

composition of the basecoat apart from colour/pigments, and electrocoat primer was 

discerned.  As only the clear coat and primer surfacer layers were determined to have 

a highly variable chemical composition that is often characteristic of descriptors of 

the vehicle, it would be beneficial to utilise chemical information from both coatings 

to enhance sample discrimination. Whilst, the synergistic effect of the ATR clear 

coat model (Chapter 3) and the synchrotron IR surfacer model was briefly discussed; 

it is recommended that further work be undertaken to concatenate synchrotron IR 

data from the clear coat and primer surfacer layers, in order to generate a statistical 

model that will have enhanced sample discrimination.  
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As discovered in Chapter 3, the original clear coat of automotive paint systems is 

highly variable and this chemical variability can typically be attributed to specific 

vehicle descriptors. Chapter 6 explored the potential of near-IR FT-Raman 

spectroscopy in conjunction with chemometrics to characterise and classify the 

sample population of automotive clear coats. Interestingly, the statistical model 

generated from Raman data (19 groupings) was deemed to be more discriminating 

than the equivalent IR model (Chapter 3). This infers that FT-Raman spectroscopy 

may be better suited to the analysis of automotive clear coats than IR spectroscopy. 

Furthermore, Chapter 7 also examined the possibility of concatenating IR and Raman 

data from the automotive clear coats to develop an all-encompassing statistical 

model. This combined statistical approach was demonstrated to provide better levels 

of discrimination than the single spectroscopic approaches. Thus, the combined 

statistical approach has the potential to afford more information to the forensic 

examiner than the corresponding individual models. Furthermore, this approach is 

universal and is not solely limited to the analysis and interpretation of automotive 

paint evidence.  

 

 

Multivariate statistical analyses of datasets that contain small sample sizes are 

relatively common in analytical chemistry. The main issue with developing 

chemometric models from limited numbers of samples can be attributed to the 

instability and poor predictive quality of the resultant model. Consequently, sample 

size is of great importance in multivariate statistical analysis. Although the sample 

population is typically constrained by the economics and logistics of the experiment 

being conducted, a larger sample size is able to better define the data structure and 

add confidence to the results obtained. Therefore, the significance of the statistical 

models generated in this dissertation can primarily be credited to the large sample 

populations utilised. The statistical models described in Chapters 3 and 6 are defined 

by 139 independent samples, which represent a substantial increase on the sample 

sizes of previously reported statistical models generated from automotive paint data. 

Furthermore, aside from employing sample datasets limited in size, these previous 

studies also failed to utilise a sufficiently varied sample set, which would ultimately 
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reduce the predictive performance of the resultant model. Consequently, the 

statistical models generated in this dissertation provide a significant improvement 

over the previously reported chemometric models. With that being said, regular 

expansion of the dataset is constantly required, as with any forensic database, to 

better define the model with the latest paint formulations and ensure it does not 

become obsolete.  

 

 

Due predominantly to increasing environmental regulations and economic 

convenience, automotive paint technology is in a constant state of flux with 

automobile manufacturer’s regularly changing and revising paint formulations. 

Similarly, new vehicle types and models are continually being imported into 

Australia, resulting in an ever-increasing diverse range of vehicles on Australian 

roads. Consequently, these issues also necessitate the consistent addition of samples 

to the statistical models, in order to ensure that the model is adequately defined and 

is therefore adept at classifying unknown, questioned paint specimens. This is of 

particular importance as all three of the major Australian vehicle manufacturers               

(Holden, Ford and Toyota) will cease production of vehicles in Australia, by the end 

of 2017. This is significant because Australian-made vehicles represent roughly 44 % 

of the samples present in the current statistical models. It is believed that after 2017, 

these manufacturers will begin to import internationally assembled vehicles into 

Australia. This will undoubtedly have a significant impact on the current statistical 

models, and further work will need to be undertaken in the future to reflect the 

changing landscape of vehicles on the Australian roads. 

 

 

As previously mentioned, all automotive paint exemplars used in this dissertation 

were obtained from the roof of the vehicle during the process of sunroof installation. 

This is important due to manufacturing variation, which may result in detectable 

differences in the paint composition between, for example, the rear quarter panel and 

the hood of the vehicle. Furthermore, it is also possible that the manufacturer uses 
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different formulations to finish different parts of the automobile body, such as the 

plastic bumper and the steel frame. Although this issue was avoided in the 

development of the statistical models, due primarily to the fact that automotive paint 

samples were obtained from the same part of the vehicles, it is anticipated that this 

may be problematic when applying the model to classify unknown questioned paint 

samples. This is because it would be impossible in a case situation for the forensic 

examiner to determine whether a questioned paint sample was from a plastic or 

metallic portion of the vehicle. Thus, further work is warranted to investigate the 

intra-vehicle paint variability and the implications this might have on the developed 

statistical models.     

 

 

In this dissertation, automotive paint evidence was characterised by a variety of 

vibrational spectroscopic techniques. Whilst these techniques are frequently utilised 

in this context, mass spectroscopic techniques provide unrivalled chemical 

specificity and sensitivity. A portion of this dissertation was initially intended to use 

desorption electrospray ionisation (DESI) mass spectroscopy (MS) to characterise 

automotive paint coatings and interpret the resultant mass spectroscopic data with 

multivariate statistics. The rationale behind this line of thinking is that DESI-MS is 

inherently more sensitive than the previously used vibrational spectroscopic 

techniques, which will enable the identification of additives and other minor 

constituents that would not otherwise be observed in the corresponding IR and 

Raman spectra. Furthermore, DESI-MS is significantly more chemical specific than 

the vibrational spectroscopic techniques used in these studies, and as such affords 

improved chemical component identification. Consequently, statistical models 

generated from mass spectroscopic data are the gold standard, as they will enable 

unparalleled discrimination between samples. Unfortunately, logistical issues with 

the instrumentation prevented this work from being undertaken during my PhD 

tenure, but it is the subject of current studies. 
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Figure A.1: Factor loadings plot for PC4. The purple zones superimposed on the representative Raman spectra for each grouping, 

denote spectral regions significantly correlated with PC4. 
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Table A.1: Discriminant values for a true class 11, class 12, and the misclassified sample. 

 

 

 

 

 

 

                Discriminant Values 
 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10 Cl. 11 Cl. 12 Cl. 13 Cl. 14 Cl. 15 Cl. 16 Cl. 17 

Cl. 12-1 -420.4 -415.0 -323.8 -98.8 -168.0 -80.2 -207.4 -156.5 -172.6 -64.1 -19.1 -5.1 -35.8 -115.1 -76.1 -45.2 -38.6 

Cl. 12-2 -425.1 -422.8 -328.9 -104.4 -170.8 -84.5 -199.7 -151.5 -162.8 -70.2 -21.4 -5.6 -41.2 -121.3 -80.5 -49.5 -41.2 

Cl. 12-3 -428.5 -426.2 -330.7 -104.8 -173.1 -85.3 -198.0 -149.9 -161.8 -69.3 -21.0 -5.2 -40.1 -119.7 -80.9 -47.6 -41.3 

Cl. 12-4 -412.2 -412.4 -319.1 -99.0 -162.7 -82.4 -199.9 -147.7 -168.8 -70.5 -19.9 -5.9 -42.7 -112.9 -73.3 -46.3 -36.0 

Cl. 12 -5 -428.2 -418.1 -328.7 -99.5 -173.3 -79.2 -214.6 -164.9 -176.8 -59.6 -19.2 -5.4 -31.0 -117.7 -79.4 -45.2 -41.6 

Cl. 11-1 -313.6 -322.4 -207.2 -51.1 -113.9 -101.5 -207.2 -99.2 -216.7 -30.3 -7.7 -26.2 -35.4 -88.4 -48.3 -51.2 -36.1 

Cl. 11-2 -312.7 -324.6 -207.9 -52.7 -113.4 -103.9 -205.0 -96.1 -216.4 -34.7 -8.9 -26.8 -39.8 -86.1 -46.6 -51.0 -34.4 

Cl. 11-3 -311.6 -323.0 -207.0 -51.8 -112.2 -100.0 -196.7 -92.5 -208.8 -34.5 -8.0 -25.9 -37.8 -88.4 -49.8 -50.3 -36.2 

Cl. 11-4 -312.3 -322.7 -207.0 -51.5 -112.8 -100.6 -200.8 -95.1 -211.8 -32.8 -7.8 -26.0 -36.8 -88.4 -49.1 -50.6 -36.1 

Cl. 11-5 -310.9 -323.5 -207.1 -52.3 -111.6 -99.5 -191.8 -89.5 -205.2 -36.6 -8.2 -25.9 -39.1 -88.6 -50.6 -50.1 -36.5 

Misclassified-1 -335.3 -330.6 -244.5 -64.1 -117.8 -60.2 -177.2 -122.1 -165.1 -47.7 -10.3 -14.0 -27.7 -123.0 -77.6 -56.1 -47.2 

Misclassified-2 -324.2 -319.7 -236.1 -61.7 -111.3 -58.2 -177.2 -121.7 -166.2 -48.9 -11.2 -16.5 -29.6 -126.7 -78.6 -60.5 -48.9 

Misclassified-3 -316.7 -312.4 -229.4 -58.7 -107.1 -56.9 -175.9 -119.5 -167.8 -48.1 -10.9 -17.9 -29.6 -126.2 -78.1 -61.1 -49.3 

Misclassified-4 -322.7 -319.7 -235.2 -61.7 -110.2 -59.4 -176.3 -119.5 -166.2 -50.1 -11.1 -16.4 -31.2 -125.1 -76.8 -60.3 -47.4 

Misclassified-5 -323.5 -319.7 -235.6 -61.6 -110.8 -58.5 -176.7 -120.6 -166.2 -49.4 -11.1 -16.4 -30.4 -125.9 -77.7 -60.4 -48.2 



 

 

 

 

2
1
4

 

 

Figure A.2: Factor loadings plot for PC2. The significant positive correlation at ca. 1690 cm
-1

(red zone) is characteristic of 

polyurethane, and is principally responsible for the discrimination of the respray clear coats from their OEM counterparts on PC2. 
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Table A.2: Discriminant values for the Mazda 3 (class 3) vehicle over the 18 month exposure period.  

       Discriminant Values 
 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10 Cl. 11 Cl. 12 Cl. 13 Cl. 14 Cl. 15 Cl. 16 Cl. 17 

Initial-1 -45.4 -60.3 -5.5 -88.3 -57.2 -206.2 -330.0 -198.3 -509.8 -215.1 -217.0 -338.2 -254.0 -316.0 -267.7 -326.1 -303.6 

Initial-2 -42.2 -57.3 -4.9 -89.8 -57.0 -208.9 -339.6 -205.3 -521.6 -219.9 -221.5 -343.7 -259.5 -316.9 -268.2 -330.2 -305.5 

Initial-3 -41.8 -57.5 -4.9 -92.2 -58.1 -212.2 -341.5 -206.7 -524.4 -223.4 -224.8 -347.7 -263.5 -320.9 -271.6 -334.5 -309.2 

Initial-4 -44.5 -56.8 -5.1 -88.1 -57.9 -206.4 -341.1 -207.5 -520.8 -214.7 -219.3 -341.7 -254.3 -317.5 -268.7 -328.7 -305.8 

Initial-5 -43.3 -59.6 -5.4 -91.8 -58.5 -211.4 -335.4 -202.1 -518.4 -222.1 -223.0 -345.5 -261.7 -320.0 -271.7 -332.4 -308.5 

2Months-1 -41.7 -62.7 -6.1 -99.0 -60.4 -220.5 -332.1 -198.8 -518.3 -234.3 -231.1 -354.1 -274.5 -329.0 -279.4 -342.6 -316.2 

2Months-2 -43.9 -58.7 -5.4 -91.4 -59.1 -210.8 -337.9 -204.7 -520.6 -220.7 -223.2 -346.1 -260.4 -320.6 -272.5 -332.6 -309.5 

2Months-3 -43.9 -57.6 -5.3 -90.9 -59.4 -210.5 -342.0 -208.0 -524.5 -219.6 -223.4 -346.7 -259.6 -320.5 -272.2 -332.7 -309.8 

2Months-4 -44.3 -59.6 -5.6 -90.5 -58.9 -210.3 -337.0 -203.3 -520.1 -219.7 -221.9 -344.6 -259.4 -317.6 -270.4 -330.1 -307.5 

2Months-5 -41.2 -57.6 -5.1 -96.1 -60.0 -216.3 -341.2 -207.7 -525.7 -229.1 -230.1 -353.9 -269.4 -328.9 -279.0 -341.8 -316.5 

4Months-1 -42.0 -62.2 -6.1 -98.7 -60.9 -220.1 -333.0 -200.1 -519.9 -233.8 -231.4 -354.9 -273.9 -329.1 -280.2 -342.4 -317.2 

4Months-2 -42.9 -62.5 -6.2 -100.1 -62.0 -221.1 -331.4 -199.8 -517.1 -234.2 -232.5 -356.2 -274.3 -334.3 -284.2 -345.7 -320.6 

4Months-3 -42.3 -61.2 -5.8 -98.0 -60.9 -219.1 -334.5 -201.6 -520.2 -232.0 -230.8 -354.4 -272.1 -329.9 -280.5 -342.5 -317.4 

4Months-4 -41.0 -63.4 -6.6 -98.0 -59.8 -220.2 -333.2 -198.6 -522.9 -235.6 -230.8 -353.8 -275.5 -321.9 -275.1 -338.2 -312.6 

4Months-5 -44.1 -61.6 -5.9 -94.5 -60.2 -214.6 -331.7 -199.6 -516.1 -225.7 -225.8 -348.7 -265.3 -324.5 -276.4 -336.0 -312.9 

6Months-1 -38.8 -61.8 -6.2 -103.1 -61.0 -226.8 -340.4 -204.1 -529.2 -242.8 -237.8 -361.7 -284.1 -332.6 -281.8 -349.7 -319.9 

6Months-2 -42.0 -59.6 -5.4 -96.9 -60.4 -218.0 -338.6 -204.6 -522.6 -229.7 -229.9 -353.4 -270.3 -329.4 -279.0 -342.3 -316.3 

6Months-3 -44.6 -63.2 -5.9 -91.6 -56.7 -209.1 -319.8 -190.3 -499.7 -220.8 -218.6 -338.8 -259.2 -320.8 -271.0 -329.8 -305.6 

6Months-4 -45.1 -61.6 -5.9 -94.5 -60.0 -213.2 -328.0 -197.8 -509.0 -223.5 -224.3 -346.6 -262.9 -328.6 -278.4 -337.4 -313.9 

6Months-5 -41.9 -62.4 -5.7 -95.1 -57.7 -215.5 -329.3 -195.9 -512.8 -228.5 -225.1 -346.6 -268.2 -322.5 -272.6 -335.7 -308.9 

8Months-1 -42.6 -64.0 -6.6 -100.7 -62.5 -224.0 -334.7 -200.2 -523.0 -236.5 -233.9 -357.9 -277.4 -330.3 -281.7 -344.8 -319.2 

8Months-2 -46.8 -65.4 -6.8 -97.1 -62.5 -218.1 -325.9 -194.8 -509.5 -227.0 -266.9 -349.8 -267.0 -329.7 -280.8 -339.2 -316.5 

8Months-3 -44.8 -62.9 -6.2 -97.7 -62.2 -219.2 -332.7 -200.0 -516.8 -228.9 -229.3 -352.8 -269.4 -331.0 -281.3 -342.0 -317.9 

8Months-4 -46.1 -65.0 -6.6 -94.6 -60.8 -216.0 -327.6 -194.8 -511.5 -224.6 -224.1 -346.5 -264.6 -322.6 -274.9 -334.1 -311.1 

8Months-5 -48.0 -65.5 -6.7 -90.8 -59.3 -210.3 -321.9 -190.9 -503.0 -217.6 -217.9 -339.0 -256.7 -318.0 -270.6 -327.3 -305.7 

18Months-1 -39.7 -81.3 -19.6 -147.7 -82.4 -283.0 -359.0 -216.8 -565.6 -312.3 -292.0 -421.1 -358.1 -384.8 -328.5 -412.3 -369.6 

18Months-2 -45.9 -96.1 -30.3 -170.8 -95.6 -311.7 -369.9 -224.1 -581.6 -344.6 -317.2 -447.6 -392.7 -410.0 -350.1 -442.0 -392.2 

18Months-3 -42.8 -90.4 -27.7 -168.8 -94.8 -310.3 -378.5 -231.3 -591.7 -342.9 -318.5 -450.5 -391.6 -409.7 -350.2 -442.9 -393.7 

18Months-4 -41.6 -85.1 -22.0 -154.8 -86.8 -293.2 -365.4 -220.6 -572.4 -320.9 -300.0 -429.9 -368.3 -394.2 -335.6 -423.2 -377.5 

18Months-5 -41.8 -84.8 -21.3 -152.2 -85.5 -290.0 -362.0 -217.8 -568.0 -316.9 -296.3 -425.8 -364.0 -390.8 -332.7 -419.0 -374.2 
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Table A.3: Discriminant values for the Holden VE SV6 (class 17) vehicle over the 18 month exposure period.  

                                                                       Discriminant Values 
 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10 Cl. 11 Cl. 12 Cl. 13 Cl. 14 Cl. 15 Cl. 16 Cl. 17 

Initial-1 -368.6 -375.5 -281.7 -73.0 -147.8 -103.5 -297.9 -183.4 -313.3 -64.4 -26.5 -30.9 -56.5 -30.6 -13.6 -19.3 -4.1 

Initial-2 -363.7 -370.6 -277.7 -71.2 -144.8 -102.0 -296.8 -182.2 -313.2 -63.9 -26.1 -31.2 -56.3 -31.0 -13.3 -19.9 -4.1 

Initial-3 -365.9 -372.6 -280.0 -72.5 -146.1 -103.1 -300.4 -185.0 -315.1 -64.7 -26.8 -31.3 -57.1 -31.4 -13.0 -20.7 -3.8 

Initial-4 -360.3 -368.1 -275.8 -71.3 -142.8 -102.7 -298.2 -182.5 -314.9 -66.0 -27.1 -32.4 -58.8 -31.5 -12.7 -21.7 -3.9 

Initial-5 -361.9 -369.2 -275.4 -70.3 -143.3 -101.6 -293.0 -178.7 -309.3 -63.0 -25.1 -30.4 -55.6 -31.9 -13.7 -20.1 -4.3 

2Months-1 -381.7 -386.3 -291.7 -75.3 -156.9 -103.1 -297.7 -187.0 -316.2 -63.6 -27.4 -31.5 -53.2 -26.3 -16.6 -13.0 -6.1 

2Months-2 -387.6 -390.8 -296.5 -76.7 -160.4 -103.1 -299.9 -190.3 -317.0 -62.9 -27.6 -31.0 -51.8 -26.4 -17.5 -11.9 -6.6 

2Months-3 -375.6 -380.2 -286.0 -72.5 -152.9 -101.3 -295.6 -184.5 -314.8 -61.8 -26.1 -31.2 -52.1 -26.9 -16.0 -13.6 -6.0 

2Months-4 -378.8 -383.4 -288.5 -73.6 -154.7 -101.7 -294.0 -183.9 -312.8 -62.1 -26.1 -30.7 -51.8 -27.0 -16.9 -12.9 -6.3 

2Months-5 -376.2 -381.6 -288.4 -74.5 -153.5 -103.0 -300.2 -188.0 -319.5 -65.6 -28.3 -32.8 -55.8 -26.3 -15.1 -14.8 -5.3 

4Months-1 -377.3 -385.3 -288.4 -75.7 -155.0 -106.3 -294.1 -181.7 -316.6 -67.5 -29.0 -33.9 -58.0 -25.0 -16.0 -14.1 -6.3 

4Months-2 -371.5 -378.3 -283.5 -72.7 -150.9 -102.9 -294.0 -181.8 -316.1 -65.2 -27.6 -33.2 -55.8 -25.8 -15.4 -14.5 -5.9 

4Months-3 -391.5 -398.2 -298.3 -79.1 -162.0 -105.4 -282.9 -176.7 -299.6 -64.4 -26.0 -28.1 -52.6 -29.1 -20.7 -11.5 -7.6 

4Months-4 -373.0 -380.1 -285.4 -73.8 -151.7 -103.2 -294.1 -182.4 -315.4 -66.4 -28.0 -33.0 -56.7 -26.3 -15.6 -14.8 -5.7 

4Months-5 -381.4 -388.1 -291.2 -76.0 -157.4 -105.7 -294.2 -183.0 -316.0 -65.9 -28.5 -33.1 -55.8 -24.9 -17.0 -12.6 -6.8 

6Months-1 -374.3 -383.3 -286.2 -75.3 -152.9 -106.3 -291.7 -179.1 -314.3 -68.3 -28.8 -33.8 -59.0 -25.8 -15.8 -15.1 -6.1 

6Months-2 -386.9 -393.9 -296.5 -79.1 -159.9 -107.3 -295.1 -184.1 -311.9 -67.0 -28.4 -30.9 -56.7 -27.4 -17.0 -14.0 -5.7 

6Months-3 -366.9 -377.5 -280.6 -73.5 -148.1 -104.1 -283.7 -173.0 -308.8 -69.9 -28.4 -34.1 -60.2 -26.9 -16.6 -15.9 -6.5 

6Months-4 -384.6 -393.7 -295.1 -79.4 -158.3 -106.9 -286.5 -177.8 -305.6 -69.7 -28.5 -31.0 -58.4 -28.0 -18.4 -14.0 -6.4 

6Months-5 -369.2 -377.5 -282.2 -73.1 -149.7 -104.3 -293.5 -180.4 -316.6 -67.4 -28.4 -34.2 -58.4 -25.8 -14.9 -15.7 -5.7 

8Months-1 -379.8 -386.6 -290.2 -75.6 -156.0 -104.3 -292.2 -182.0 -313.7 -66.2 -28.1 -32.6 -55.7 -25.6 -17.2 -12.9 -6.6 

8Months-2 -378.5 -385.5 -288.7 -74.8 -155.1 -103.3 -288.1 -179.1 -310.5 -65.7 -27.4 -32.2 -54.9 -25.9 -18.0 -12.4 -7.1 

8Months-3 -375.3 -383.8 -286.6 -74.7 -153.2 -103.8 -285.5 -176.3 -309.0 -67.6 -27.8 -32.8 -56.9 -26.2 -17.8 -13.3 -7.0 

8Months-4 -378.2 -385.2 -288.0 -74.4 -154.7 -102.7 -285.4 -177.0 -307.5 -64.8 -26.6 -31.4 -54.0 -26.6 -18.4 -12.2 -7.3 

8Months-5 -370.7 -379.7 -282.8 -73.4 -150.4 -103.7 -286.1 -175.4 -310.2 -67.4 -27.7 -33.3 -57.6 -26.2 -16.8 -14.4 -6.6 

18Months-1 -364.2 -387.6 -282.3 -83.8 -149.7 -117.4 -261.8 -153.6 -299.1 -92.4 -38.4 -44.2 -81.6 -30.6 -24.4 -22.9 -13.1 

18Months-2 -364.3 -387.9 -282.0 -83.7 -150.0 -117.8 -261.3 -152.9 -298.9 -92.1 -38.3 -44.3 -81.4 -30.4 -24.5 -22.7 -13.4 

18Months-3 -383.2 -405.3 -299.1 -91.0 -161.8 -123.3 -275.2 -165.2 -307.5 -94.3 -41.0 -43.7 -82.9 -28.2 -23.4 -21.1 -11.8 

18Months-4 -359.0 -384.8 -279.0 -84.6 -146.7 -119.5 -260.3 -150.9 -297.5 -95.9 -39.7 -45.5 -85.9 -33.4 -24.5 -26.9 -13.5 

18Months-5 -362.9 -386.3 -280.8 -83.1 -148.7 -116.7 -260.1 -152.1 -297.1 -91.6 -37.7 -43.6 -80.9 -31.1 -24.4 -23.0 -13.1 
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Figure A.3: Averaged ATR FT-IR spectra obtained from the clear coat of the Mazda 

3 vehicle after every sampling interval. 

 

 

Figure A.4: Averaged ATR FT-IR spectra obtained from the clear coat of the Holden 

VE SV6 vehicle after every sampling interval. 
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Table A.4: Discriminant values for the misclassified samples in the Raman statistical model. 

 

                                                           Discriminant Values 
Calibration Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10 Cl. 11 Cl. 12 Cl. 13 Cl. 14 Cl. 15 Cl. 16 Cl. 17 Cl. 18 Cl. 19 

Suzuki Vitara-1 -299.8 -208.3 -130.5 -93.5 -176.3 -182.7 -184.9 -211.1 -203.7 -73.2 -30.6 -7.1 -92.1 -28.9 -6.8 -44.2 -83.7 -56.8 -104.1 

Suzuki Vitara-2 -297.8 -207.1 -129.3 -91.8 -176.4 -180.2 -181.5 -207.2 -199.7 -71.3 -30.1 -6.8 -91.0 -28.1 -6.2 -42.4 -84.7 -57.5 -105.7 

Suzuki Vitara-3 -299.0 -208.1 -132.0 -93.1 -177.1 -179.5 -182.6 -207.6 -200.2 -72.2 -30.6 -7.2 -90.6 -27.8 -6.6 -42.5 -81.1 -54.7 -102.0 

Suzuki Vitara-4 -304.0 -209.8 -129.8 -94.9 -173.6 -186.5 -190.6 -211.8 -209.5 -72.0 -30.4 -7.4 -96.5 -31.1 -7.0 -46.2 -82.6 -56.1 -104.9 

Suzuki Vitara-5 -306.5 -212.1 -130.7 -94.0 -175.7 -184.1 -191.2 -217.2 -210.3 -77.1 -29.8 -7.4 -96.8 -31.5 -7.0 -46.3 -82.0 -56.3 -104.9 

Honda Civic-1 -223.3 -156.7 -143.5 -86.9 -160.9 -139.6 -130.0 -152.5 -151.5 -46.0 -47.3 -17.9 -49.6 -15.9 -25.1 -46.9 -68.7 -49.6 -80.5 

Honda Civic-2 -225.3 -158.5 -144.8 -88.5 -162.3 -142.0 -131.8 -153.9 -152.8 -46.7 -47.8 -17.8 -49.9 -16.0 -24.9 -47.0 -68.7 -49.5 -79.3 

Honda Civic-3 -224.3 -157.9 -144.5 -87.7 -162.4 -140.4 -129.9 -151.5 -150.5 -45.6 -47.6 -17.8 -49.3 -15.6 -24.7 -46.0 -68.9 -49.7 -79.7 

Honda Civic-4 -226.1 -160.0 -143.4 -85.4 -158.2 -141.3 -143.3 -154.2 -152.9 -46.6 -47.9 -17.9 -50.2 -16.1 -24.5 -47.5 -69.0 -49.8 -80.5 

Honda Civic-5 -226.0 -159.8 -143.1 -85.0 -158.4 -141.5 -135.8 -154.5 -153.1 -46.8 -47.8 -18.0 -50.4 -16.2 -24.5 -47.5 -69.1 -50.0 -81.1 

Holden VE-1 -406.1 -294.9 -256.9 -160.6 -253.2 -141.6 -256.8 -281.5 -246.6 -177.6 -83.8 -95.5 -164.7 -89.5 -85.6 -101.3 -6.6 -8.3 -95.9 

Holden VE -2 -411.3 -298.8 -261.8 -163.0 -255.5 -140.1 -261.2 -284.5 -268.5 -182.6 -86.9 -100.3 -170.2 -94.5 -90.6 -105.6 -6.1 -9.9 -99.0 

Holden VE -3 -425.6 -306.8 -258.4 -162.0 -253.5 -144.5 -273.3 -295.3 -280.4 -188.2 -82.8 -98.0 -179.7 -98.5 -88.5 -107.0 -5.4 -10.7 -102.2 

Holden VE -4 -425.7 -307.7 -259.2 -162.0 -254.7 -145.5 -271.9 -290.0 -276.1 -184.9 -82.6 -95.9 -177.4 -96.6 -86.3 -103.6 -5.3 -11.2 -98.9 

Holden VE -5 -415.6 -299.7 -255.3 -158.6 -250.3 -140.6 -264.9 -286.7 -272.1 -181.8 -81.6 -95.6 -173.0 -94.4 -86.5 -103.7 -5.5 -10.3 -99.9 

                    

Validation Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10 Cl. 11 Cl. 12 Cl. 13 Cl. 14 Cl. 15 Cl. 16 Cl. 17 Cl. 18 Cl. 19 

Toyota Hilux-1 -360.2 -278.3 -188.9 -144.1 -250.2 -250.4 -211.5 -187.8 -186.5 -72.5 -67.5 -14.7 -99.8 -37.3 -8.5 -28.9 -119.9 -94.1 -89.4 

Toyota Hilux -2 -355.1 -274.7 -186.4 -143.5 -248.4 -252.4 -209.2 -186.9 -185.8 -70.5 -68.2 -14.3 -97.9 -36.8 -8.7 -29.8 -124.2 -97.2 -91.5 

Toyota Hilux -3 -359.1 -277.6 -187.7 -143.9 -249.9 -251.7 -211.0 -187.5 -186.4 -71.9 -67.9 -14.7 -99.9 -37.7 -8.7 -29.3 -122.9 -96.5 -91.6 

Toyota Hilux -4 -360.2 -278.8 -189.1 -144.5 -251.4 -251.2 -210.8 -186.7 -185.3 -72.0 -68.2 -15.0 -99.9 -37.5 -8.6 -28.5 -122.0 -95.8 -90.8 

Toyota Hilux -5 -365.5 -281.9 -189.9 -144.8 -251.5 -250.8 -214.8 -190.3 -189.1 -74.8 -67.2 -15.1 -103.0 -38.8 -8.7 -29.1 -119.1 -93.9 -90.3 


