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Abstract

Mining operations taking place near the footwall contact of lateritic bauxite de-

posits incur significant costs due to unplanned dilution and ore losses. The major

cause of these losses is the short-scale random fluctuations seen in the footwall

topography. Economical drill spacing chosen to model the grade distributions is

often large and inadequate to capture the spatial variations of the footwall con-

tact. Consequently, ore body models created utilising sparse boreholes become

smoother than the reality and incorporate substantial uncertainties. Under these

circumstances, it becomes rather challenging to achieve planned mining targets,

as accurate volume and tonnage calculations cannot be satisfactorily made.

The primary factors contributing to the uncertainties in the volume calculations

can be divided into two. The first one of these is related to the models created for

the footwall topography. Ore boundaries of the bauxite unit are mainly defined by

the footwall contact representing the geological interface between the bauxite and

ferricrete units. Since this contact is modelled using sparse boreholes, the created

orebody models involve high uncertainties. The second uncertainty stems from

the mining strategies. The extraction of a bauxite deposit is performed using a

front-end loader type of mining equipment. Due to the short-scale irregularities of

the ore boundaries, the mining equipment cannot accurately track down the ore

boundaries during the excavations. Hence, the selectivity of the mining equipment

used becomes an additional source for the uncertainties in the mined volumes.

This thesis aims at improving the current resource modelling practices of lat-

eritic bauxite deposits. The issues mentioned above are attempted to be addressed
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by (1) better modelling of the ore boundaries, (2) decision making under uncer-

tainty and (3) accounting for the mining equipment selectivity. Potential mod-

elling improvements were investigated through the adoption of a multiple-point

statistical simulation framework. The motivation was the opportunity of utilising

previously mined out areas to infer rich structural information on the contact vari-

ability. The bivariate training image constructed included mined-out topographies

as well as the geophysical data (GPR). The multiple-point dependence between the

variables of the training image was utilised by the Direct Sampling multiple-point

statistical algorithm. As a result, a novel approach to variogram-free modelling of

the ore boundaries is presented.

In order to make the modelling process more manageable and less labour in-

tensive, a useful tool to automatically tune the input parameters of multiple-point

statistical algorithms was also developed. The appropriate parameters were it-

eratively determined using the simulated annealing optimisation technique. The

main objective was to maximise pattern reproduction of the conditioning data in

the simulations. The advantages of the method include more objective and faster

tuning of the input parameters.

The simulated orebody boundaries were used to serve as a model of uncertainty

and incorporated into the decision-making process of creating optimum mining

boundaries. To achieve this, a novel approach inspired by a model calibration

technique called Pilot Points was utilised. The objective was to generate mining

boundaries which minimise the economic losses due to dilution and ore losses in

each of the realisations. In addition, the proposed method allowed adjusting the

degree of smoothness of the created mining boundaries to account for the equip-

ment flexibility. The comparison made with the mined-out surface demonstrated

a significant reduction in the possible economical losses.
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1.1 Background

Estimation of recoverable resources and reserves is one of the major tasks to assess

the feasibility of a mining project (Lipton et al., 1998; Abzalov, 2016). The pri-

mary goal of this work is to predict the tonnage and average grades of a mineral

deposit that will be exploited during a specific period (Rossi and Deutsch, 2013).

Such a goal can be achieved by utilising a variety of geostatistical techniques to

model the spatial variability of an attribute within a mineral deposit. However,

as the models constructed using these techniques are often based on sparsely-

spaced borehole data, uncertainties associated with them are unavoidable (Rossi

and Deutsch, 2013). These uncertainties can pose significant risks in the economic

viability of the mining projects if they are not adequately assessed. Therefore,

integration of these uncertainties in the financial assessment and decision-making

processes can benefit the mine asset values significantly (Dimitrakopoulos et al.,

2002).

Uncertainties can stem from the lack of knowledge and incomplete understand-

ing of an attribute to be quantified (Caers, 2011). Considering the mineral resource

estimation, the uncertainties can be due to the high natural variability of the at-

tributes inherent to the geology such as grades or deposit geometries (Bardossy

et al., 2003). Another source of uncertainty can be one related to the mineral

exploration practices. Sampling errors, insufficient sampling, lack of geological ex-

perience and uncertainties in the models generated during the mineral exploration

of a deposit also contribute to the uncertainties (Bardossy et al., 2003).

For the Weipa lateritic bauxite mine located in northern Queensland, Australia,

modelling of the geological contact between the bauxite and ferricrete sections is

rather a crucial task and incorporates both in-situ and operation-related uncer-

tainties that need to be accounted for. The geology of the mine site is comprised

of stratified geological layers and the bauxite ore exists within the soil horizons

(Erten, 2012; Abzalov and Bower, 2014). The ore is covered by a topsoil layer

and underlying the bauxite unit there exists an iron and silica-rich material called

ferricrete (or locally known as ironstone). The formation process of the deposit

comprises the intensive in-situ weathering/leaching of kaolinite, quartz and iron
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oxide minerals (Loughnan and Bayliss, 1961; Grubb, 1971). Due to the weathering

process involved in the formation of the deposit, the geological contact between

the bauxite and ironstone units is rather uneven (Abzalov and Bower, 2009). The

large lateral variability evident in the geological contact exhibits almost random

frequencies, being the major source of the uncertainties in the estimation of the

bauxite ore tonnage. An example of such a contact can be seen in Figure 1.1.

Ferricrete Unit

Bauxite Unit

Bauxite/ferricrete interface

Figure 1.1: An example uneven surface illustrating the undulating contact topog-
raphy between bauxite and ironstone units at the Weipa bauxite mine (after Erten
(2012))

Resource estimation of a lateritic bauxite deposit is performed using sparsely-

spaced boreholes drilled on a regular grid within the estimation domain (Erten,

2012; Abzalov and Bower, 2014). The chosen spacing between these boreholes is

based heavily on the variation and continuity in grades (Hartman and Mutmansky,

2002). Hence, the defined drill spacing is sufficient to model the aluminium grade
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(Al2O3%) within the bauxite unit. However, as the geological interface between

the bauxite and ironstone units is rather uneven, the chosen drill spacing fails to

adequately infer the lateral variability in the footwall contact topography (Erten,

2012). Therefore, contact models created using interpolation techniques, such as

the ones offered by geostatistics, become less detailed and smoother, as expected,

than the reality. This situation leads to an imprecise resource estimation as well as

volumetric uncertainties due to poorly defined deposit boundaries (Singh, 2007).

Consequences of such uncertainties mainly include inaccurate quantification of

the dilution, ore loss and total mined bauxite volumes. Figure 1.2 illustrates the

underlying process of the unplanned dilution and ore losses.

Pisolitic Bauxite

Kaolinite

Ferricrete

Top Soil

Estimated surface

Boreholes

Actual surface

Dilution Ore Loss
Ore 
Zone

Figure 1.2: Borehole spacing determined based on the grade continuity cannot
capture the lateral variability in the bauxite/ferricrete interface. Therefore, the
modelled geological contact results in unplanned dilution and ore losses (after
Erten (2012))

Mining strategies used to exploit the bauxite deposit also yield additional un-

certainties in the estimated volumes. That is, a large front-end loader cannot

track the actual ore/waste boundaries during the mining activity, which results in

operational dilution. The bauxite layer at the Weipa mine is of pisolitic type and

has free flow characteristics. Unlike many other mining methods, mining of the
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bauxite deposit at the Weipa mine does not require any blasting operation since

the entire deposit consists of loose pisolites. Therefore, extraction of the deposit

is performed by a large front-end loader. Since the geological contact modelled

during the resource estimation stage is poor and incorporates excessive uncertain-

ties due to the use of sparse borehole data, the equipment operator is not given

any prior information (i.e. spatial coordinates that can be uploaded to the GPS

mounted on the front-end loader) related to the contact. To extract the baux-

ite ore, the operator primarily makes use of the hardness and colour differences

between the bauxite and ferricrete units to follow the boundary. In other words,

the decision on the ore boundaries has to be made by the operator at the time of

mining. Furthermore, the digging ability of the mining equipment restricts track-

ing the actual interface due to substantial small-scale fluctuations apparent in the

geological boundary. To sum up, subjective decisions of the equipment operator at

the time of mining and the limited equipment selectivity cause critical operational

uncertainties in resource estimations.

Accurate quantification of the dilution is critical to enhancing the profitability

of the bauxite mining operations. Mineral processing of the bauxite is highly sen-

sitive to the chemical composition of the ore being fed to the plant (Erten, 2012).

Even a minor increase in the silica content of the ore results in a significant rise

in the caustic soda consumption. Being a significantly expensive chemical com-

pound, the quantity of the caustic soda used to treat the ore profoundly affects the

processing costs, which in turn impacts on the overall mining costs. At the Weipa

bauxite mine, for instance, the cost of one unit dilution is approximately 60 times

more expensive than one unit ore loss (Erten, 2012). As silica is highly abun-

dant in the Ferricrete unit, dilution of the Ferricrete unit acts as a major source

of the silica in the mined volume. Therefore, accurate modelling of the contact

between the bauxite and ferricrete as well as proper quantification of uncertainties

is essential for risk management.

Mining strategies or resource estimation techniques allowing the incorporation

and better quantification of the uncertainties can significantly benefit the manage-

ment of the unplanned ferricrete dilutions. One way of reducing the uncertainties
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in the bauxite base floor models would be the implementation of dense drilling

applications. However, this solution would significantly increase the associated

exploration costs, making the operation less profitable or not profitable at all.

Another approach could be the use of geophysical methods, such as ground pen-

etrating radar (GPR), to assist delineating the geological contact. GPR surveys

can provide exhaustive secondary information about the location of the geological

contact, and they are rather cost effective as compared to the drilling of additional

exploration boreholes. Integration of GPR in contact modelling has demonstrated

benefits in achieving better contact models in several applications (Erten, 2012;

Erten et al., 2013, 2015). However, even though a better model is attained using

the GPR survey to assist the modelling, the large spatial variations of the models

attained cannot be accurately mined out due to the limited selectivity of the min-

ing equipment. Therefore, any excavation surface inevitably causes dilution and

ore losses that need to be accounted for. Even though this problem exhibits a re-

semblance with the dig-limit problems in open-pit mining, which has been a topic

for a number of research studies such as Norrena and Deutsch (2001, 2002); Rich-

mond (2004); Richmond and Beasley (2004); Isaaks et al. (2014); Ruiseco et al.

(2016); Ruiseco and Kumral (2017); Sari and Kumral (2018), the problem encoun-

tered in lateritic bauxite deposits is different because of the free-digging mining

method used. The geological contacts in lateritic bauxite are in the form of con-

tact topographies and can be modelled using their elevation attributes. Therefore,

determination of the optimum mining boundaries is achieved by finding the op-

timum mining elevation values. Research on determining the optimum mining

elevations was conducted by McLennan et al. (2006) to optimise the dilution and

ore losses in a lateritic nickel mine. However, due to the existence of good equip-

ment selectivity, a special emphasis on the equipment flexibility was not vital in

that study.
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1.2 Motivation

Extraction of a bauxite ore at a particular location of the mine site exposes a

mined-out surface that can be deemed representative of the actual geological

interface. Given that the spatial variations of an attribute within a geological

domain exhibit prominent similarities, mined-out areas can provide substantial

prior knowledge about the structural information inherent in a future mining area.

Therefore, it is possible to infer the spatial statistics of a future mining area with-

out relying on the limited structural information derived from the sparse drill hole

data. Such an inference can be done by the use of multiple-point statistics and

can benefit the resource estimation in several aspects: (1) variogram modelling is

not needed as the structural information is borrowed from a training image, (2)

structural information that cannot be derived from the sparse drill hole can be

retrieved from the mined out areas, (3) it allows building a catalogue of training

images from which the most suitable training image can be chosen for a particular

area. These advantages make it rather worthy to explore the potential benefits of

what multiple-point statistics has to offer.

One common characteristic of the multiple-point statistical algorithms is the

requirement for algorithmic input parameters to perform the simulations. The

statistics of the generated models are highly dependent on the input parameters

as well as the training image chosen. Once a decision on the training image has

been made, the model qualities then become highly dependent on the input pa-

rameters. A sensitivity analysis comprising manual tuning of these parameters is

the common approach to determining the parameters. However, this is a rather

cumbersome task and requires one to devote significant time to discover the appro-

priate parameters. Therefore, a methodology for automatically determining the

parameters is needed to reduce the time spent in the parameter tuning process.

Geological contact modelling in lateritic bauxite deposits poses significant chal-

lenges and incorporates uncertainties which stem from different sources. One can

generate a model of uncertainties for the contact boundary using stochastic real-

isations. Although the generated realisations provide a set of possible scenarios

which allow the quantification of the uncertainties, they cannot be directly used to
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determine which boundaries to excavate. Therefore, there exists an apparent need

for an optimum mining boundary that will be used to both guide the operators

and to calculate the accurate volumes to be mined. Such a boundary should (1)

lead to the reduction in economical losses due to dilution and ore loss, (2) incor-

porate the model of uncertainties and (3) have an adjustable degree of smoothness

to increase the equipment flexibility.

1.3 Research Questions, Aims and Objectives

Research questions

This thesis investigates approaches to improve the current ore boundary modelling

practices for lateritic bauxite deposits. It attempts to address the following three

major research questions:

1. Can the current geological contact models be improved by incorporating the

MPS in the modelling framework?

2. How can the appropriate algorithmic input parameters of MPS algorithms

be determined more efficiently? Can the parameter tuning process be auto-

mated so that faster tuning is achieved as well as improving the simulation

qualities?

3. How can the optimum mining boundaries be obtained that:

• are less detailed than the actual ore boundaries so that it is easier to

excavate with front-end loader type mining equipment,

• minimise the economic losses due to dilution and ore loss, and

• incorporate the modelled uncertainty in the decision making process.

Research aims and objectives

There are three main aims of this thesis. The first one is related to the spatial

modelling of the geological interface utilising the previously mined-out areas as
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analogue sites (which provide prior knowledge on the geology). Within the scope

of this aim, the use of the Direct Sampling (DS) multiple-point statistical (MPS)

algorithm and its potential benefits are explored in the thesis. Objectives set to

achieve this aim are as follows:

1. Developing an overall framework to carry out the MPS simulations for the

lateritic metal deposits.

2. Construction of the univariate and bivariate training images.

3. Setting up of the DS algorithm to perform the simulations.

4. Setting up of the Turning Bands (TB) geostatistical simulation technique to

perform the simulations.

5. Comparing the DS simulation performances with the TB simulations using

statistical and geostatistical performance indicators.

The second aim is to develop an approach which automatically determines the

algorithmic input parameters of the DS algorithm. The following objectives were

set for this aim of the thesis:

1. Determining a suitable technique to quantify the multiple-point statistics of

the borehole data and the realisations.

2. Determining a metric to quantify the mismatch between the multiple-point

statistics of the conditioning data and the realisations.

3. Setting up an optimisation framework to iteratively find the DS parameters.

The decision variables to be used are the DS input parameters, and the

objective function to be minimised is the mismatch between the input-output

pattern statistics.

4. Determination of an optimisation method which efficiently approximates the

global minimum of an objective function with many local minima.
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The last aim of the thesis is about developing a methodology to design a smooth

mining surface which minimises the dilution and ore losses as well as increasing

the equipment flexibility. The following objectives were set to achieve this aim of

the thesis:

1. Defining a loss function to calculate the expected losses of a given decision

surface in all the contact realisations.

2. Determining an interpolation technique to construct the mining boundaries

using a set of control points (pilot points). The chosen technique should

allow adjusting the smoothness of the resulting surface to also incorporate

the equipment flexibility.

3. Setting up of an optimisation framework to construct the optimum mining

boundaries. The objective of the optimisation is to minimise the economical

losses due to dilution and ore losses in each of the realisations. The decision

variables comprise the pilot point values which determine the shape of the

mining boundary.

1.4 Thesis Outline

The thesis presents several approaches related to the geological interface modelling

of lateritic metal deposits. The relationship between the chapters is illustrated in

Figure 1.3 and the content of the chapters are as follows:

Chapter 2

Chapter 2 provides a comprehensive background on the methods which are used

in this thesis. These methods will be referred to in the approaches presented in

Chapter 4, 5 and 6.
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Chapter 3

Figure 1.3: Flowchart of the thesis

Chapter 3

Chapter 3 introduces the data used to develop the techniques presented in this

thesis. The data comes from two mine areas within the Weipa bauxite mine in

northern Queensland, Australia and it comprises borehole, GPR and the mined-out



12 CHAPTER 1. INTRODUCTION

floor survey data. Their exploratory data analyses are also given in this chapter.

The data is used to perform the bivariate and univariate simulations for the ele-

vation variable of the ore boundaries (footwall contact topography) in Chapter 4

and 5.

Chapter 4

Chapter 4 presents the overall framework to carry out the geological contact simu-

lations using multiple-point statistics. The step-by-step description of the method-

ology covers the data preparation as well as setting up the DS simulations in detail.

The contact realisations created in this chapter are used as a model of uncertainty

to create optimum mining boundaries in Chapter 6.

Chapter 5

Chapter 5 presents a new strategy to automatically determine the algorithmic

input parameters of the Direct Sampling algorithm. The automatically determined

parameters are then used to perform the simulations in Chapter 4. Note that the

process of tuning the parameters required for the MPS simulations is presented in

Chapter 5 after the MPS simulations are presented in Chapter 4. This is because

setting up the MPS simulations is required to both perform the simulations and

tune the parameters. The mentioned relationship between the chapters can be

seen in Fig. 1.3.

Chapter 6

Chapter 6 presents a methodology inspired by a calibration technique called pi-

lot points to construct optimum mining boundaries. The proposed methodology

allows constructing an optimum mining surface using the model of uncertainties

created in Chapter 4. It also allows the integration of the digging ability of the

mining equipment through the degree of smoothness of the mining boundaries

created.
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The work done in Chapters 4 and 5 was utilised in Chapter 6, therefore, it is

the final chapter before the conclusions of the thesis.

Chapter 7

This chapter presents the concluding remarks and discussions on the advantages

and drawbacks of all the components of the research. Recommendations for future

work are also given here.
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2.1 Introduction

This chapter provides an overview of the methods used to investigate potential

improvements in resource estimation of lateritic metal mines. Since Chapters

5 and 6 of the thesis are publications and written in article formats, some of

the methods are already presented in these chapters. Therefore, to avoid any

repetition, methods explained in those chapters are not again presented in Chapter

2. In other words, Chapter 2 presents methods which are not given in Chapters 4,

5 and 6.

The first aim of the thesis is to explore the potential benefits of using multiple-

point statistics in geological contact modelling (covered in Chapter 4). Therefore,

Chapter 2 starts with background information on geostatistics and available mod-

elling techniques (estimation and simulation). This is then followed by describing

the variogram related limitations of geostatistics and how MPS can be used to ad-

dress such issues through TIs. The multiple-point statistical simulations based on

a TI are demonstrated using the Direct Sampling algorithm in Chapters 5 and 6,

which are based on the publications. Therefore, the Direct Sampling method was

not included in this chapter. Similarly, the methods, such as smooth histograms,

Jensen-Shannon divergence, spatial cumulants, pilot points, simulated annealing

and multi-level B-spline methods, are originally presented in the publications given

in Chapters 5 and 6; hence, they are not included in this chapter either.

2.2 Geostatistics in Resource Estimation

Initial knowledge of geological features such as grades, tonnages or boundaries of

a deposit is often acquired through a limited number of samples collected from

different parts of the ore body. Therefore, these attributes need to be estimated

at locations where no samples are collected. Geostatistics provides a framework to

perform the spatial modelling of these attributes by treating them as spatially cor-

related random variables. Assumptions and tools used in geostatistical modelling

are explained in the following subsections.
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2.2.1 Regionalised Variables and Random Functions

Geostatistics treats the measurable quantities of a mineralised phenomenon as

regionalised variables (ReV) (Journel and Huijbregts, 1978). Given a mineral de-

posit, for instance, a ReV can be a grade, deposit thickness or the elevation variable

of a foot-wall topography. A set of samples {z(xi), i = 1, ..., N} collected from xi

locations of a domain D, hence, represent a subset of ReV (Wackernagel, 2013).

A ReV is considered to be the outcome of a random draw from a location-specific

probability distribution. That is to say, at each of infinitely many x locations of a

domain D, there exists a random variable Z(x) that can be described with a mean

m and variance σ2 (Oliver, 2010). An RV can also be characterised by a certain

distribution whose cdf can be defined as in the following:

Fx(z) = Prob{Z(x) ≤ z} (2.1)

where F defines the probability of the outcome Z of the RV to be lower than a

specific z value. A family of all the random variables within a domain is called

a random function (RF) (Armstrong, 1998). An RF Z(x) can be decomposed

into components which are a deterministic mean m (drift) and a stochastic part

fluctuating around the mean (residual) R(x):

Z(x) = m(x) +R(x) (2.2)

2.2.2 Stationarity

The term stationarity refers to the assumption that the data over a region exhibits

the same degree of variation, and its distribution is invariant under translation h

(Oliver and Webster, 2015). It can be considered as a decision made for the choice

of the RF and allows one to pool the data over an area (Wackernagel, 2013).

The strict version of the stationarity requires all the moments of the RV to be

translation invariant (Armstrong, 1998). That is, the multivariate CDF within an
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area should stay the same under any translation, which is called strict stationarity :

Fx1,...,xn(z1, ..., zn) = Fx1+h,...,xn+h(z1, ..., zn) (2.3)

However, due to the limited number of samples available, inference of multivariate

cdf is usually not practical and such an assumption cannot be verified. There-

fore, a weaker form of stationarity assumption called second order stationarity is

often employed. Second order stationarity assumes that the expected value of

E[Z(x)] = m, which is the mean, is constant throughout a given area. Moreover,

the covariance function, which can be used to characterise the spatial variation,

should only depend on the vector h rather than the coordinates:

C(h) = E[{Z(x)−m(x)}{Z(x+ h)−m(x)}]

= E[{Z(x)Z(x+ h)−m(x)}]
(2.4)

In situations where the mean varies rather than being constant, the covariance

function cannot be calculated. Therefore, a weaker form of stationarity called

intrinsic stationarity can be used. This form of stationarity is based on the incre-

ments Z(x + h) − Z(x) and requires the expected value of the increments to be

equal to 0.

E[Z(x)− Z(x+ h)] = 0 (2.5)

Intrinsic hypothesis uses the variance of the differences to characterise the be-

haviour of the spatial variations, rather than the covariance of the residuals. Simi-

lar to the second order stationarity, the variances should depend on the lag distance

h rather than the x locations:

var[Z(x)− Z(x+ h)] = E[{Z(x)− Z(x+ h)}2] = 2γ(h) (2.6)

γ(h) represents the value of the semivariance at lag distance h. In situations

where the second order stationarity exists, the covariance and variogram become
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equivalent:

γ(h) =
1

2
E{[Z(x)− Z(x+ h)]2}

=
1

2
E[Z(x)2] +

1

2
E[Z(x+ h)2]− E[Z(x)Z(x+ h)]

= E[Z(x)2]− E[Z(x)Z(x+ h)]

= V ar[Z(x)]− {E[Z(x)Z(x+ h)E[Z(x)]E[Z(x+ h)]}

= C(0)− C(h)

(2.7)

However, the opposite is not true; the variogram may not be equal to the

covariance if the covariance does not exist.

2.2.3 Spatial Correlation and the Variogram

The stochastic component R(x) of the RF exhibits a structured random behaviour

around the drift m(x) (Armstrong, 1998). Geostatistical interpolation techniques

require this structural information be derived to perform estimations at unsampled

locations of a domain. Although both semi-variograms and covariances can be used

to express the spatial variability as a function of the separation distance h between

the samples, semi-variograms are frequently used as a measure of spatial correla-

tion. Given sample data {z(xi), i = 1, ..., n}, the experimental semi-variogram can

be calculated using the average of squared differences between data pairs:

γ(h) =
1

2N(h)

N(h)∑
i=1

[Z(xi)− Z(xi + h)]2 (2.8)

where N(h) is the total number of pairs separated by a lag distance h. Once the

experimental variogram was constructed using a set of h lag distances, the next step

is then to fit one or more authorized models to characterise the spatial variability.

Examples of commonly used authorised variogram models include spherical, power,

exponential and Gaussian (Norrena, 2007), as can be seen in Fig. 2.1.

Variogram models are usually controlled by the range and sill parameters.

The sill parameter refers to the variance C of the random process whereas the
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Exponential Variogram Model Gaussian Variogram Model

|h| |h|

Nugget Effect Variogram Model

|h|
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Sill

SillSill
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Spherical Variogram Model

|h|

( ) h

( ) h

( ) h

( ) h

Figure 2.1: Examples of commonly used semi-variogram models to fit an experi-
mental variogram (After Norrena (2007))

range a corresponds to the lag distance beyond which no spatial correlation exists.

These variograms can be expressed as following:

Spherical Model

Spherical function is commonly used in geostatistics and can be defined by the

range and the sill values:

γ(h) =

C
(

1.5 |h|
a
− 1.5 |h|

3

a3

)
|h| 6 a

C |h| > a
(2.9)
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Nugget Effect Model

Also called pure nugget, the nugget effect model implies no spatial correlation

between the samples:

γ(h) =

{
0 h = 0

C |h| > 0
(2.10)

Exponential Model

The exponential model is defined as:

γ(h) = C(1− e−
|h|
r ) (2.11)

where r represents a distance parameter. In this model, a finite range cannot be

defined as the model approaches the sill asymptotically. Therefore, the lag distance

value corresponding to the 95th percentile of the sill variance is considered as the

practical range, also called the effective range and corresponds to the value of 3r.

Gaussian Model

Similar to the exponential model, this function approaches the sill asymptotically

and the lag distance value corresponding to the 95th percentile of the sill becomes
√

3r. The function defining the model is described as follows (Wackernagel, 2013):

γ(h) = C(1− e−
|h|2
r2 ) (2.12)

2.2.4 Kriging

Kriging is a geostatistical estimation technique which was first put in a framework

by Matheron et al. (1965). It allows the estimation of an attribute at an unsampled

location as a linear combination of available neighbouring data (Goovaerts, 2000).

Given a set of samples {z(xi), i = 1, ..., n}, for instance, the estimation at an x

location of a domain is performed using the weighted average of the samples:

z∗(x) =
∑

λiz(xi) (2.13)
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where λi represents the weight assigned to the random variable z(xi). The weights

in kriging are chosen based on two criteria. First, the estimation should be unbi-

ased, that is, the difference between the mathematical expectation and the true

value should be equal to zero:

E[Z∗(x)− Z(x)] = 0 (2.14)

Second, the prediction variance V ar[Z∗(x)−Z(x)], also called the kriging variance,

should be the minimum. Due to these characteristics of the estimations, kriging

is also called the best linear unbiased estimator (BLUE).

Although there are various types of kriging techniques suitable for various

applications, commonly used ones which are Ordinary Kriging and Simple Kriging

will be covered in the following subsections.

Ordinary Kriging

In Ordinary Kriging (OK), the mean is assumed to be unknown. Considering

a random function Z from which a set of samples were collected at xi locations

i = 1, ..., N , the value at location x0 is estimated as follows:

Z∗(x0) =
n∑
i=1

λi(x0)z(xi) (2.15)

where n represents the data points in the local neighbourhood around x0, which is

a subset of N . The estimation unbiasedness is guaranteed by summing the weights

λi to one:
n∑
i=1

λi = 1 (2.16)

In order to obtain the weights, the following linear equations need to be solved:

n∑
i=1

λi(x0)γ(xj − xi) + µ(x0) = γ(xj − x0) for i = 1, 2, ..., n

n∑
i=1

λi(x0) = 1

(2.17)
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where µ represents the Lagrange multiplier used to achieve the variance minimi-

sation and γ(xj − xi) is the average semi-variance between the data points. The

equation can also be written in a matrix form as follows:

Kλ = k (2.18)
γ(x1 − x1) . . . γ(x1 − xn) 1

...
...

...
...

γ(xn − x1) . . . γ(xn − xn) 1

1 . . . 1 0




λ1(x0)

...

λn(x0)

µ

 =


γ(x1 − x0)

...

γ(xn − x0)
1

 (2.19)

where K represents the (n+ 1) · (n+ 1) matrix of data semivariances, λ represents

the kriging weights and the Lagrange multiplier. k on the right hand side of the

equation represents the data-to-unknown covariances. The kriging variance can

be obtained by:

σ2(x0) =
n∑
i=1

λiγ(xi, xo) + µ(x0) (2.20)

Simple Kriging

Simple Kriging (SK) is similar to OK except that the mean m needs to be specified

as a priori knowledge (Abzalov, 2016). Therefore, the SK estimator utilises (n+1)

number of information including the defined mean m:

Z∗(x0) =
n∑
i=1

λiz(xi) + {1−
n∑
i=1

λi}m (2.21)

Unlike the OK, the sum of the SK weights need not be equal to one. Due to these

characteristics of the method, the SK can only be expressed in terms of covariances

(Goovaerts, 2000). Hence, the equation that needs to be solved becomes

n∑
i=1

λiC(xj − xj) = C(x0, xi) for i = 1, 2, ..., n (2.22)
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The minimum error variance for the SK is estimated by:

σ2(x0) = C(0)−
n∑
i=1

λiC(xi − x0) (2.23)

2.2.5 Geostatistical Simulations

The most common problem with the kriging methods is that the large values tend

to be underestimated whereas the smaller values are overestimated (Webster and

Oliver, 2001). In other words, the kriging results represent the smoothened version

of the reality due to the loss of original data variance. Geostatistical simulation

techniques can address this issue by reproducing the variation inferred from the

data without the smoothing effect. An additional benefit of the simulations in-

cludes the incorporation of the uncertainties in the model through the equiprobable

realisations.

Geostatistical simulations generate realisations of a random field with certain

statistical and geostatistical properties such as spatial variability and histogram.

The primary aim is to construct a set of realisations representing possible scenar-

ios for the variable distribution. Altogether, these realisations serve as a model of

uncertainty of the attribute within the simulation domain (Norrena, 2007). If any

data on the attribute of interest is available, the realisations can be conditioned

to that data (conditional simulation). Similarly, if no samples have been collected,

one can also perform unconditional simulations based on a priori knowledge on

the expected statistical properties. In such situations, the focus is frequently on

the reproduction of the specified mean and the variogram (Webster and Oliver,

2001). In conditional simulations, apart from the reproduction of the original vari-

ability, the realisations honour the observations at the sample locations (Gebbers

and De Bruin, 2010). Considering a set of observations z(xi), i = 1, 2, ..., N , for

instance, the simulated values z∗c (xj), j = 1, 2, ..., T should be the same at the

sample locations:

z∗c (xi) = z(xi), for all i = 1, 2, ...N (2.24)
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Sequential Gaussian Simulations

In Sequential Gaussian Simulations (sGs), the values at each location of a domain

is simulated sequentially based on a conditional cumulative distribution function

(ccdf) computed at each location. The conditioning data used includes the obser-

vations as well as the previously simulated values. Given a set of k observations

Z = {Z(xi)|i = 1, ..., k}, the steps of the algorithm can be described as follows

(Gebbers and De Bruin, 2010; Olea, 2012):

1. Pre-processing:

(a) Check if the conditioning data Z(xi) is normally distributed. Perform

a normal transformation to obtain normal scores if necessary.

2. Initial definitions:

(a) Define the variogram: Compute the experimental variogram and fit a

model. For the unconditional simulations, select a model and define the

parameters.

(b) Initialise a simulation grid: Create a regular grid comprised of m nodes

at which the variable of interest will be simulated.

(c) Move the data to the closest grid nodes.

(d) Define a path: Generate a random path to be sequentially visited to

simulate the values at all nodes.

3. Simulation of the grid node n at x0 location:

(a) Kriging: Perform a kriging estimation of Z∗(x0) and the variance σ2
K(x0)

at the node n based on the observations Z(xi) and the previously sim-

ulated data Zs(1,2,...,n−1) within the search radius.

(b) Modelling of the ccdf: Establish a Gaussian cdf using the kriged esti-

mate Z∗(x0) and the variance σ2
K(x0), N(Z∗(x0), σ

2
K(x0)).

(c) Random number generation: Create a random number using the con-

structed ccdf and assign this number Zs(x0) to the grid node.
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(d) Visit the next grid number (n+ 1) on the path defined.

(e) Repeat steps 3.a to 3.d until all the nodes have been informed.

(f) Back transformation if any transformation has been carried out.

Turning Bands Simulations

The Turning Bands method (TB) is a computationally efficient simulation tech-

nique working in reduced dimensionality (Olea, 2012). The method creates a set of

independent one-dimensional realisations with a certain covariance and averages

them to generate the realisations of a multi-dimensional random function. The

steps of the algorithm include the following:

1. Perform a normal score transformation of the data, if required.

2. Fit a covariance model Covn(h) to the transformed data using the standard

variogram modelling techniques.

3. Derive the covariance Cov1(h) that will be used to produce one-dimensional

realisations.

4. Create a number of one-dimensional independent realisations centralised at

the origin of a multidimensional sphere.

5. Sum up all the line realisations to produce the multi-dimensional realisation

Zn(xi).

6. Back transform if necessary.

2.3 Multiple-Point Statistics

Traditional geostatistics explained in the preceding sections rely on the variogram

or covariance-based random function theory (Journel, 2005). Therefore, the geo-

logical continuity is defined in second-order statistics, which is based on 2-point

correlations in space. Although the second-order statistics can be suitable to
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characterise Gaussian processes, it is inadequate to identify complex structures

exhibiting non-linear physical realities (Guardiano and Srivastava, 1993; Mari-

ethoz and Caers, 2014). An example of these is the curvilinear structures which

are strongly connected and frequently define sub-surface preferential flow paths

(Feyen and Caers, 2005). In addition to the lack of structural information that

covariances/variograms can identify, prior knowledge on them may be rather dif-

ficult to infer and model (Journel, 2005; De Iaco and Maggio, 2011; Mariethoz

and Caers, 2014). In traditional geostatistics, the structural information is often

derived from the observations collected. In situations where the number of avail-

able observations are scarce, the experimental variograms may not reveal a clear

structure. Therefore, model parameters for the variograms cannot be accurately

inferred. Under these circumstances, a common approach becomes the derivation

of model parameters from a geologically similar area, from an outcrop or based on

the prior geological knowledge (Journel, 2003). Another limitation of the tradi-

tional geostatistics is that the mathematical representation of geostatistics may not

be non-expert friendly and require substantial knowledge in statistical modelling

and the prevailing geology to be modelled (Caers and Zhang, 2004; Mariethoz and

Caers, 2014).

The above-mentioned limitations of traditional geostatistics can be addressed

by multiple-point geostatistics (MPS). MPS provides a framework to go beyond

the second-order statistics through the use of Training Images (TI). A TI can be

considered as an analogue of a variogram/covariance model. It essentially serves

as a conceptual geological model and contains spatial patterns which are deemed

representative of the spatial variations of the geology of interest (Mariethoz and

Caers, 2014). One of the benefits of using a TI as structural information is that

it accommodates higher-order rich structural information that cannot be inferred

from a set of observations through variograms. Secondly, the use of TI avoids the

problem of having unclear structural information due to undersampling. Unlike

traditional geostatistics in which the structural information is derived from the

observations, a TI offers complete and rich structural information. Therefore,

utilisation of a TI in modelling yields much more realistic results than traditional
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geostatistics. Structures such as curvilinear features are very well reproduced with

remarkable connectivity. Lastly, the use of a TI as an analogue image is rather non-

expert friendly as the spatial continuity is not expressed in mathematical models

as in geostatistics (Mariethoz and Caers, 2014). Examples of the sources of a

TI can be digitised hand-drawn sketches of the geology, outcrops or present-day

depositions (Journel, 2003).

The spatial patterns existing in the TI can be extracted by a number of MPS

simulation algorithms that are available (Guardiano and Srivastava, 1992; Zhang

et al., 2006; Arpat and Caers, 2007; Gloaguen and Dimitrakopoulos, 2009; Dim-

itrakopoulos et al., 2010; Honarkhah and Caers, 2010; Mariethoz et al., 2010;

Straubhaar et al., 2011; Tahmasebi et al., 2012). These algorithms reproduce the

patterns contained in a TI in a puzzling manner and differ in the way they perform

this operation. Therefore, each of the algorithms has its own advantages and dis-

advantages over other algorithms. Among all the algorithms currently available,

Direct Sampling offers plenty of advantages including its capability to simulate

high numbers of facies, non-stationary fields and continuous or multivariate sim-

ulations in a very fast manner without scanning the whole TI (Mariethoz et al.,

2010). In this thesis, incorporation of the MPS framework to model the geologi-

cal interface within lateritic metal mines is investigated with the Direct Sampling

algorithm.

2.3.1 Higher-Order Spatial Statistics with Cumulants

In statistics, cumulants are used to describe the probability distribution of a ran-

dom variable with the linear combination of statistical moments (Mariethoz and

Caers, 2014). Application of cumulants in spatial statistics has been put in a

framework by Dimitrakopoulos et al. (2010) as an alternative way to characterise

non-linear and non-Gaussian ergodic spatial random fields. Spatial cumulants

serve as the parametric representation of the interaction of more than two-points

in a mathematical framework. Due to these characteristics, they can also be consid-

ered as an extension to the covariance functions (Mustapha and Dimitrakopoulos,

2010).
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Given a random variable Z, the moment-generating function can be expressed

using its Taylor expansion about the origin (Rosenblatt, 1985):

M(w) = E[ewZ ] =
∞∑
r=0

wrMom

r︷ ︸︸ ︷
[Z, ..., Z]

r!
(2.25)

the rth moment can be obtained by taking the derivative of M at the origin:

dr

dwr
[E(ewZ)] = Mom[Z, ..., Z] (2.26)

similarly, the cumulant-generating function K can be defined as the Neparian

logarithm of the moment generating function M and can also be expressed as a

Taylor expansion:

K(w) = ln(E[ewZ ]) =
∞∑
r=0

wrCum

r︷ ︸︸ ︷
[Z, ..., Z]

r!
(2.27)

Therefore, the cumulants can be expressed as functions of moments. The relation-

ship between the cumulants and moments can be expressed as follows:

Cum[Z] = Mom[Z]

Cum[Z,Z] = Mom[Z,Z]−Mom[Z]2

Cum[Z,Z] = Mom[Z,Z, Z]− 3Mom[Z,Z]Mom[Z] + 2Mom[Z]3

(2.28)

Let us now consider a zero-mean, stationary and ergodic random field {Z(x), i =

0, 1, ..., N}, xi ∈ Ω ⊆ Rr (r = 1, 2, or 3) where N represents the number of points

in a discrete grid DN . The spatial cumulant of Z(x) of order r becomes:

cZr (h1, ..., hr−1) = Cum[Z(x), Z(x+ h1), ..., Z(x+ hr)] (2.29)

Based on the relationship between the moments and the cumulants given in Eq.2.28,
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the first order cumulant for a zero-mean random field Z(x) can be expressed as:

cZ1 = E[Z(x)] = 0 (2.30)

The second-order cumulant of a non-centred random function Z(x) is the covari-

ance:

cZ2 (h) = E[Z(x)Z(x+ h)]− E[Z(x)]2 (2.31)

The third cumulant becomes as follows:

cZ3 (h1, h2) =E[Z(x)Z(x+ h1)Z(x+ h2)]

− E[Z(x)]E[Z(x+ h1)Z(x+ h2)]

− E[Z(x)]E[Z(x+ h1)Z(x+ h3)]

− E[Z(x)]E[Z(x+ h2)Z(x+ h3)] + 2E[Z(x)]3

(2.32)

where h3 represents the interaction between the vectors h1 and h2. Given a set of

conditioning data, the cumulants can be experimentally calculated by scanning the

given data with a spatial template that has a specific geometry (Minniakhmetov

and Dimitrakopoulos, 2017). Considering an x location, for instance, a spatial

template centred around x with a set of directional vectors {h1, ..., hn} can be

defined as dn(x, L) = {Z(x+h1), ..., Z(x+hn)}. For the third-order cumulant, the

template becomes d2(x, L) = {Z(x+h1), Z(x+h2)} and the third-order cumulant

is calculated as:

cZ3 (h1, h2) =
1

Nh1,h2

Nh1,h2∑
k=1

Z(x)Z(x+ h1)Z(x+ h2) (2.33)

where Nh1,h2 is the number of replicates of the template. In the case of data on an

irregular grid, the tolerances in distances, angles and bands are included.
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2.4 Summary and Discussion

This chapter provided a review of the methods that are utilised to develop the

approaches presented in Chapter 4, 5 and 6. The review started with geostatistics

to model an attribute using the theory of regionalised variables. This was then

followed by the theories of geostatistical estimation and simulation techniques

such as OK, SK, sGs and TB. Use of variogram models in geostatistics has some

limitations, particularly for scarce data sets. MPS can address such limitations of

geostatistics by incorporating analogue data sets in modelling practices through the

TI concept. Therefore, MPS exhibits a potential to improve the contact modelling

in lateritic metal deposits.

Cumulants allow quantifying the multiple-point statistics of a partial or com-

plete data set using a spatial template that has a particular spatial configuration.

The way it performs such a task is different than that of the smooth-histogram

technique presented in Chapter 5. For instance, the smooth histogram technique

utilises pattern similarities for a given spatial template. Whereas, the cumulant

method computes higher-order statistics using a spatial template that has a partic-

ular spatial configuration. The computation of cumulants is performed for different

lag distances. On the other hand, the smooth histogram method uses only one

spatial template with a certain size. Hence, it takes longer to generate a cumulant

map as compared to computing pattern statistics through the smooth histogram.

Detailed information on the smooth histogram method is given in Chapter 5.
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3.1 Introduction

This chapter provides background information about the data used to develop the

methods for the resource estimation of lateritic bauxite deposits. The data used

comes from two mine areas, namely Oak and Kumbur mine areas, located within

the Weipa bauxite mine. Therefore, the chapter starts with brief information on

the Weipa bauxite mine. This is then followed by the geology of the Weipa bauxite

mine and the mining methods used to extract the bauxite ore. Lastly, the data

collected from the Oak and Kumbur mine areas is introduced. The exploratory

data analysis has also been performed and presented in this chapter as well.

3.2 Weipa Bauxite Mine

Weipa bauxite mine is one of the biggest open-cut bauxite mine operations in the

world. It is located in the west coast of Cape York peninsula in northern Queens-

land, Australia (Fig.3.1). Having been discovered in 1955 by an oil prospecting

company, further investigations revealed the suitability of the deposit for alumina

production (Evans, 1959; Duncan, 1961). The operations started in 1961 and the

mine is currently being operated by Rio Tinto Alcan. There are mainly two major

sites located within the mine. These sites are named as Andoom and Weipa, which

are divided by the Mission River. Bauxite formation is distributed approximately

10,000 km2 over the Western Cape York with a depth ranging between 1m and

6m (Evans, 1975).

3.2.1 Geology of the Mine Site

The western part of Cape York Peninsula is mainly comprised of two types of

sediments, which are Rolling Down Group sediments and Bulimba Formation sed-

iments (Schaap, 1990). Rolling down group sediments form the parent rock for-

mation of Andoom mine site and are estimated to be 50 to 100 million years old.

Bulimba formation, on the other hand, dominates the Weipa site and dates back
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Figure 3.1: Location of the Weipa bauxite mine. After Taylor et al. (2008)
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to Tertiary time period, which is estimated to be 50 million years old. The sed-

iments of Bulimba overly the Rolling down group and contain tertiary or upper

Cretaceous unconsolidated fluvitile sands and clays. Rolling down group basically

comprise marine claystone, mudstone, siltsone, lithic sandstone and minor quartz

sandstone.

The bauxite deposit at the Weipa is thought to have formed from the in-situ

chemical weathering of kaolinite, quartz and iron oxide minerals (Loughnan and

Bayliss, 1961). Primary controlling factors for the weathering comprised climate,

vegetation cover, ground water circulation, bedrock composition and texture (Gow

and Lozej, 1993). Since the geology is originated from such a process, the baux-

ite deposit exists within a regolith profile comprised of several geological units

(Francke, 2012). The overall weathering profile has a thickness ranging between

20 to 35 m (Schaap, 1990). The components that make up of the weathering profile

are, from bottom to top, top-soil, pisolitic bauxite, ferricrete (ironstone), kaolin

and sandstone units, respectively (Fig. 3.2). The thickness of the major units are:

0.5 m for the top-soil, 0.25-8 m for the bauxite unit and 1-2m for the ferricrete unit

(Schaap, 1990). The alumina-rich bauxite is composed of loose pisolithes with a

size range of 0.5 to 30 mm (Bárdossy and Aleva, 1990).

The geological interface between the bauxite/ferricrete is believed to correspond

to the water table level at the time of bauxite formation (Eggleton et al., 2005).

In order to visually observe the degree of lateral variability of the contact, a test

excavation with a small-scale excavator had previously been performed (Erten,

2012). This specific excavation has demonstrated that the geological interface

separating the bauxite from the ferricrete is rather wavy, as can be seen in Fig.

3.3. It was also observed that the revealed surface undulates with almost random

frequencies. Furthermore, the frequency of the short-scale fluctuations observed

in the exposed surface were higher than the exploration borehole spacing, making

the chosen drill spacing (76.2 x 76.2 m) insufficient to reliably model the ore

boundaries.
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Figure 3.2: Geological units present at the Weipa bauxite mine. After Francke
(2012)

Figure 3.3: The test excavation conducted to reveal the characteristics of the
lateral variability inherent in the geological interface (Erten, 2012)
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3.2.2 Bauxite Mining Practices at Weipa

Exploration

Mining of bauxite at Weipa mine pre-requisites an exploration programme to be

conducted to model the deposit. This is mainly done to quantify the bauxite

tonnages and average grades of a planned mining area by creating a geological

resource model. The drilling programme conducted at Weipa comprises regularly

spaced boreholes with a spacing of 76.2 × 76.2 m (Erten, 2012). Air-core drilling

method is utilised to drill the boreholes with an average depth of 3.5m. The core

samples are collected in 0.25 m vertical intervals and assayed for AL2O3, SiO2,

Fe2O3, TiO2, LoI, TAA (total avaliable alumina), MHA (monohydrate alumina

or boehmitic or diasporitic alumina) and THA (Trihydrate alumina or gibbsitic

alumina). Modelling of the grades is performed by first constructing a block model

inside a pre-defined ore boundaries. The grade values are then interpolated at each

discrete location of the blocks. The ultimate model is then used to generate short,

medium and long term mine plans.

Mining

The bauxite ore at the Weipa exists within the soil horizons and it has free-flow

characteristics. Therefore, no drilling and blasting is required to fragment the ore

material and the overlying geological units (Bárdossy and Aleva, 1990). Extraction

of the bauxite requires, first, a site preparation work involving the removal of the

top-soil material. This task is carried out through Cat-657 type scrapers with a

33 m3 capacity (Erten, 2012). The stripped top-soil material is then dumped at a

spot which is next to the mining area for the future rehabilitation purposes.

Having completed the displacement of the top-soil, the exposed bauxite unit is

extracted using rubber-tired front-end loaders, with a bucket capacity of 10 m3 as

shown in Fig. 3.4. The extracted material is hauled by Cat bottom-dump trucks

with a 150-tonne capacity as shown in Fig. 3.5. Depending on the location of a spe-

cific mine area within the Weipa, the ore is either directly dumped to a stockpile or

transferred to the wagons of a train by the trucks and then dumped to a stockpile.
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Figure 3.4: Front-end loader type of mining equipment used to extract the bauxite
ore at the Weipa bauxite mine (Erten, 2012)

3.3 Oak and Kumbur Mine Areas

Oak and Kumbur mine areas are located within the Weipa bauxite mine and

are used in this thesis to develop and investigate techniques to improve current

resource estimation practices. Oak mine is located in Andoom mine site and covers

an area of 360 × 800 m, whereas the Kumbur mine area exists within the north of

Andoom mine site and is 215 × 500 m in size (Erten, 2012). Major components

of the laterite profile at Oak and Kumbur mine areas are: overburden layer, red

soil layer, Al-rich pisolitic bauxite layer, transitional zone and ferricrete layer.

3.3.1 Data

There are three types of data collected from both Oak and Kumbur mine areas

to create a resource model: (1) exploration boreholes (2) saturation boreholes and

(3) dense GPR survey data to help locating the ore boundaries. The exploration

boreholes are drilled on a regular grid of 76.2 × 76.2 m in both Oak and Kumbur
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Figure 3.5: Cat bottom-dump type truck used to haul the extracted bauxite ma-
terial. The capacity is 150 tonne (Erten, 2012)

mine areas. These boreholes contain a variety of information including grades and

lithologies defined in three-dimensional space. The number of boreholes drilled are

33 for the Oak and 13 for the Kumbur mines. In addition to the regular exploration

boreholes, 218 saturation boreholes, also called as production control boreholes

(PCD), were drilled in the Kumbur area. The spacing between these holes were

19.05 m and they are only analysed for the lithologies to aid delineating the ore

boundaries. Therefore, the PCD only contain the elevation values corresponding to

the bauxite/ferricrete interface. Location maps of the exploration and production

boreholes can be seen in Fig. 3.6.

As for the GPR data, both mine areas were surveyed using an UltraGPR radar

system with a 80-MHz antenna mounted. The data collection was performed by

towing a GPR device along a predefined virtual grid for each mine area. The

bauxite/ferricrete boundary was sampled every 0.25 m along the profiles. The

spacing between the profiles were approximately 15 m for the Oak mine area and

9 m for the Kumbur mine area. The total area covered for the Oak mine was

14.23 hectares with 17.94 km GPR profile. As for the Kumbur mine, the GPR

surveys covered 6.78 hectares with 15.17km of GPR profile. The number of GPR
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Figure 3.6: Location maps for borehole data of the Oak and Kumbur mine areas.
Circles represent the exploration borehole locations whereas ”+” signs represent
the saturation drill hole locations

pick-points collected was 83,861 for the Oak and 60,451 for the Kumbur. The

locations of the GPR pick-points are given in Fig. 3.7. Following the extraction

of the bauxite ore at each mine area, the exposed topographical surfaces were

surveyed. These resulting mined-out surfaces can be deemed representative of the

combination of lateral variability of the geological interface as well as the mining

equipment selectivity. The survey points collected after the bauxite extraction can

be seen in Fig. 3.8.
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(a) Oak Mine (b) Kumbur Mine

Figure 3.7: Location maps of the GPR pick-points collected from the Oak and
Kumbur mine areas

3.4 Exploratory Data Analysis

Exploratory data analysis (EDA) serves as one of the essential tasks to evaluate a

resource estimation project (Tukey, 1977). It particularly helps to understand the

statistical properties of the datasets through a number of statistical tests performed

prior to the estimation practices (Abzalov, 2016). In this thesis, the statistical

properties of the available data is explored using a number of commonly used

EDA tools. Before conducting any statistical analysis, the GPR data of both

mines are first pre-processed to remove any duplicate pick-points. This operation

is mainly performed to avoid any possible matrix instability that may take place

during geostatistical estimation or simulations.

As one of the tools used in a EDA, histograms are computed for each of the



3.4. EXPLORATORY DATA ANALYSIS 47

(a) Oak Mine (b) Kumbur Mine

Figure 3.8: Location maps of the survey pick-points collected after the extraction
of bauxite from Oak and Kumbur mine areas (mined-out surfaces)

variables to visually check the statistical distributions. The frequency distributions

of the Oak and Kumbur mine variables are presented in Fig. 3.9 and Fig. 3.10

respectively.

It can clearly be observed from the Oak GPR elevation data that the baux-

ite/ferricrete interface can be multi-modal. Such a multi-modality is weakly ap-

parent in the borehole and floor data, since they relatively comprise less num-

ber of samples. As for the Kumbur data, there is not an apparent evidence of

multi-modality. However, the Kumbur GPR data seems to have a left skewed

distribution.

An interesting point that can be observed from these histograms is that the
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Figure 3.11: Empirical cumulative distribution function for the elevation variables
collected from Oak (a) and Kumbur (b) mine areas

floor data contains less number of elevation values within the low histogram bins, as

compared to the borehole and GPR variables. Histogram-based statistics presented

in Table 3.1 also confirm this situation. In both Oak and Kumbur data, minimum

elevation values of the floor survey data are higher than those of the GPR data.

This could be related to the decision made by the front-end loader operator at the

time of mining. Since the dilution is rather costly, the operator might intuitively

have been more cautious at lower bauxite/ferricrete elevations.

Table 3.1: Descriptive Statistics of the Variables for Oak and Kumbur Mine Areas

Variable (m) Count Min Max Mean Median Variance Std. IQR C. of Var. C. of Skew.

Oak Borehole 33 9.19 18.44 15.02 15.24 7.55 2.75 4.61 0.18 -0.49
Oak GPR 30630 7.81 19.90 14.92 15.46 6.60 2.57 3.46 0.17 -0.64
Oak Floor 4350 8.98 19.34 15.13 15.18 4.85 2.20 3.26 0.15 -0.22
Kumbur Borehole 13 20.05 23.44 21.73 21.82 0.63 0.80 0.72 0.04 -0.02
Kumbur PCD 218 19.45 23.20 21.76 21.77 0.45 0.67 0.88 0.03 -0.42
Kumbur GPR 17245 19.95 23.34 22.28 22.39 0.26 0.51 0.53 0.02 -1.45
Kumbur Floor 3395 20.67 23.09 22.04 22.05 0.22 0.47 0.71 0.02 -0.20
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The cumulative distribution function (CDF), also called the probability plot, is

a convenient tool to illustrate the probability distribution of variable. Unlike the

histogram, a CDF is not depended on the choice of the bin size as in histogram

calculations (Rossi and Deutsch, 2013). The probability plots created for both

mine areas are presented in Fig.3.11. According to these plots, the Oak mine ele-

vation variables exhibit rather similar probability distributions. However, as also

discussed previously, the floor elevations slightly deviate from the borehole and

GPR elevations within the low elevation range. For the Kumbur mine, borehole

and PCD distributions are rather similar. On the contrary, GPR and floor ele-

vations noticeably deviate from the borehole and GPR data distributions. This

could be due to the fact that the bauxite deposit at Kumbur mine is relatively

shallower compared to the oak mine. Since the performance of the GPR surveys

are affected by the depth of the deposit, the GPR surveys at Kumbur might have

been affected by the existence of a shallow deposit thickness. The same reason

could also be valid for the mined-out floor survey; existence of a shallow deposit

could have made it difficult to accurately tracking the deposit boundaries.

In order to check the normality of the data, Q-Q plots of the raw data against

the calculated normal scores are constructed as in Fig. 3.12 and Fig. 3.13. The

Q-Q plot of the Oak data indicates the existence of a deviation from the normal

distribution. The same is true for the Kumbur mine data as well, the elevation

values exhibit slight to moderate deviations from the theoretical distribution quan-

tiles. However, when the coefficient of variation values in Table 3.1 are concerned,

all the values are below 1. Hence, the distributions do not pose a significant erratic

values that might cause issues in geostatistical estimations (Issaks and Srivsatava,

1989).

3.5 Summary and Discussion

In this chapter, a background information on the Weipa bauxite mine as well as the

prevailing geology existing in the mine are given. Moreover, two mine areas within

the Weipa mine, namely Oak and Kumbur mine areas, are presented. The data of
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Figure 3.12: Q-Q plots of the Oak mine area variables.

Figure 3.13: Q-Q plots of the Kumbur mine area variables.

these two mines are used in this thesis to develop and investigate the techniques

to improve the current resource estimation practices for lateritic metal mines.

Therefore, an exploratory data analysis of the variables from these mines is also

performed to analyse the statistical characteristics of the data. The exploratory

data analysis included plotting the location maps, calculating the histograms, cu-

mulative distribution functions, Q-Q plots and the descriptive statistics.
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4.1 Introduction

This chapter presents the framework used to implement MPS on modelling the ore-

body boundaries in lateritic metal deposits. The proposed approach was demon-

strated on a lateritic bauxite deposit using the borehole and GPR data sets as

simulation variables. The TIs used to perform the simulations were obtained from

the footwall topographies exposed after the extraction of the bauxite ore at two

historic mine areas, which were the Oak and Kumbur areas. In addition to the

contact topographies exposed, the mine areas also had the GPR data collected

prior to the extraction. Therefore, the simulations were performed in the form of

both univariate and bivariate simulations using the DS MPS algorithm. The data

from one mine area was used as a TI to perform the simulations for the other mine

area and vice-versa. In order to compare the performance of the MPS simulations,

the same simulations were also conducted using the TB geostatistical simulation

technique. The comparison has been made using several statistical and spatial

statistical indicators.

4.2 Background

The objective of resource estimation practice for mineral deposits is to accurately

forecast the grades and tonnages that will be extracted within a specified time

period (Bardossy et al., 2003; Rossi and Deutsch, 2013). This kind of a goal

involves defining the geological boundaries inside which blocks models are con-

structed. A conventional practice to accomplish this is to outline the boundaries

of the geological lithologies by explicitly drawing the geological contacts using the

available borehole data (Osterholt and Dimitrakopoulos, 2018). This technique

is considerably subjective and leads to an over-smoothened interpretation of the

geology. Alternatively, geostatistical estimation methods may be utilised to define

the geological domains (de Freitas Silva and Dimitrakopoulos, 2016). However, es-

timations performed using geostatistical techniques also exhibit a smoothing effect

and do not take into account the uncertainties in the contact models.
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Geostatistical conditional simulation approaches address the smoothing prob-

lems of the estimation techniques by creating equiprobable realisations of the ore-

body boundaries (Dimitrakopoulos, 1998). Each individual orebody realisation ex-

hibits statistical properties and a variogram structure similar to what is observed

in the borehole data. Therefore, the resulting realisations do not go through any

smoothing effect, as in kriging. Furthermore, when taken jointly, the realisations

created can be used as a model of uncertainty for the orebody boundaries. How-

ever, the geostatistical simulation approaches utilise variogram/covariance models

for the structural information, which cannot capture and reproduce complex curvi-

linear geological features (Journel, 2005; De Iaco and Maggio, 2011; Mariethoz and

Caers, 2014). Another drawback of the use of variograms is that the spatial con-

tinuity is inferred and modelled from a set of borehole data. Hence, in the case of

a scarce data set, the structural information cannot be adequately identified.

As far as the MPS modelling framework is concerned, the structural informa-

tion is not derived from a variogram model. It is instead obtained from a TI which

could be regarded as an analogue of a variogram/covariance model used in classi-

cal geostatistics. A TI is a conceptual geological model containing spatial patterns

which are believed to exist in the modelling domain (Mariethoz and Caers, 2014).

These patterns are extracted from the TI and simulated in the modelling do-

main through a number of MPS algorithms available (Guardiano and Srivastava,

1992; Strebelle, 2002; Zhang et al., 2006; Arpat and Caers, 2007; Gloaguen and

Dimitrakopoulos, 2009; Dimitrakopoulos et al., 2010; Honarkhah and Caers, 2010;

Mariethoz et al., 2010; Straubhaar et al., 2011; Tahmasebi et al., 2012).

Incorporation of TIs in orebody modelling can offer some advantages. First

of all, a TI comprises high-order and rich structural information that cannot be

sufficiently described in the form of second-order statistics. Hence, obtaining the

structural information from a TI makes it possible to reproduce complex orebody

structures which better represent the reality. A second advantage of the use of TI is

that it alleviates the difficulties experienced in the case of limited conditioning data

sets. Rather than depending on the borehole data for the structural information,

the spatial information is acquired from a TI which is composed of rich spatial
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patterns. The last benefit of the TI is that it provides a user-friendly modelling

framework as the structural information is not defined in mathematical expressions

(Mariethoz and Caers, 2014).

There are very few applications of MPS for resource estimation of mineral de-

posits compared to the oil-gas industry (Pasti et al., 2012). This is mainly due

to the difficulties experienced when obtaining a suitable TI which represents the

geology of interest well (Mery et al., 2017). Nonetheless, a number of approaches

have previously been employed to create TIs for mineral deposits. For instance,

the exploration boreholes or blastholes collected from a mine site can be utilised to

conceptualise the geology (Jones et al., 2013). Another example of deriving a TI in

mineral deposits is to use deterministic orebody models generated using the bore-

hole data (Goodfellow et al., 2012; van der Grijp and Minnitt, 2015). Knowledge

obtained from the previously mined-out areas can also be utilised as representative

geologies (Rezaee et al., 2013; Osterholt and Dimitrakopoulos, 2018). Finally, the

TI can also be constructed using TI generator software if the properties of the

expected geological features are known (Pasti et al., 2012).

In lateritic metal mines, the deposits are frequently shallow and the geological

contact defining the ore boundaries can be observed after extracting the ore unit.

Although the shape of a mined-out surface is affected by how well the interface

is traced during the extraction, the resulting exposed topography still reflects the

variations inherent in the contact surface. Therefore, if these surfaces are surveyed,

they can be used as a TI to model the ore boundaries of another mining area with

a similar geology. Due to such geological characteristics and the nature of mining

operations involved, it is believed that the use of MPS in modelling the geological

contacts in lateritic or stratified deposits have the potential to improve resource

modelling practices; hence, it is definitely worth investigating. The following sec-

tions will describe the steps and the preliminary analysis conducted to implement

the MPS simulations in a lateritic bauxite deposit.
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4.3 Structural Analysis and Pre-Processing of

the Data

As the first step, the available data was analysed in terms of its spatial statistics.

This analysis revealed the existence of a trend in the data set and allowed to deter-

mine to perform the simulations using the residuals. The following two subsection

illustrate: (1) how the trends were detected and mathematically expressed; and

(2) the approach used to convert the point-type the data sets into the gridded

ones.

4.3.1 Structural Analysis and Trend Detection

In order to perform the structural analysis of the elevation variables, the experi-

mental variograms need to be computed and analysed first. These variograms can

normally be calculated along a given direction. Alternatively, they can be also cal-

culated independent of a direction, which is called an omnidirectional variogram.

Omnidirectional variograms are useful for preliminary analysis of the structural

variability of a RV. However, in the presence of an anisotropy, the sill and the

variance of a variogram may vary in different directions. In such cases, the di-

rections in which the spatial continuity are maximum and minimum need to be

identified to better describe the spatial continuity.

To get an initial understanding of the structural continuity, omnidirectional

variograms were first computed using the average differences of data pairs Z(xi)

and Z(xi +h), separated by a specified h increment in the Oak and Kumbur mine

areas as follows:

γ(h) =
1

2N(h)

N(h)∑
i=1

[Z(xi)− Z(xi + h)]2 (4.1)

where N represents the number of pairs for a given h increment. For the Oak

borehole data, the experimental omnidirectional variogram was computed using a

lag distance of 76.2 m, lag tolerance of 38.1 m and 10 lags. Since the GPR and

floor survey data of the Oak mine are densely sampled, a lag distance of 15 m,
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a lag tolerance of 7.5 m and 50 lags were chosen to compute the omnidirectional

variograms. As for the Kumbur borehole and PCD variables, the lag distance was

chosen based on the spacing of the PCD, which is 19.05 m. Lag tolerance for these

variables was chosen as 9.53 m and the variograms had 50 lags. The floor survey

and the GPR data variograms for the Kumbur area were computed using the same

lag distance and tolerances as in the Oak GPR data, which were 15 m and 7.5 m,

respectively. The resulting omnidirectional variograms of the raw point-type data

can be seen in Fig. 4.1.
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Figure 4.1: Omnidirectional variograms computed for the Oak and Kumbur mine
areas

The variograms computed for the Oak mine indicate the existence of a non-

stationarity as there is a lack of evidence for a finite sill. Therefore, the geological

interface between the bauxite/ferricrete units appears to have a spatial trend. As

for the Kumbur mine, the variograms also exhibit a non-stationarity behaviour.

However, the non-stationarity for this mine seems to be weak and the rise in the

variogram values tend to stop and drop down after the lag distance of 450 m.

Determination of the optimum drifts was carried out by using the non-stationarity

modelling tool of the ISATIS software package (Bourassi et al., 2016). The types



60 CHAPTER 4. MPS SIMULATION OF ORE BOUNDARIES

of the drifts analysed include the universality condition, the linear drift (first or-

der) and the quadratic drift (second order). The degrees of polynomials providing

the most suitable estimates were identified using the cross-validation technique.

The type of the neighbourhood used for the GPR and the floor survey data was of

moving type, since these data sets were dense and irregularly spaced. The borehole

data and PCD comprised of limited number of points. Hence, unique neighbour-

hood type was utilised for these data sets. The search neighbourhoods used had

a maximum distance of 300m. Moreover, eight angular sectors with six points per

sector were utilised. The most suitable drift types using this configuration were

the first order for the Oak mine variables and the second order for the Kumbur

variables. Having identified the drift types, the coefficients of the drifts were then

determined through the methods of least squares, as can be seen in Table 4.1. The

trend surfaces constructed using these coefficients were then used to obtain the

residuals.

Table 4.1: Drift Coefficients Determined for the Oak and Kumbur Mine Variables

Variable UC X Y X2 Y2 XY

Oak Borehole -62.37 -15.54 × 10−5 4.85 × 10−5 - -
Oak GPR -58.59 -17.68 × 10−5 4.11 × 10−5 - -
Oak Floor -65.09 -11.25 × 10−5 5.80 × 10−5 - -
Kumbur PCD -1649.55 -14.90 × 10−4 1.39 × 10−3 -8.41 × 10−10 -3.03 × 10−10 -4.43 × 10−10

Kumbur GPR -4355.40 29.80 × 10−4 3.80 × 10−3 -2.29 × 10−9 -8.65 × 10−10 -6.89 × 10−10

Kumbur Floor -1588.10 72.74 × 10−5 1.44 × 10−3 -2.39 × 10−9 -3.91 × 10−10 4.64 × 10−10

4.3.2 Migrating the Data Points to the Grid Nodes and

Constructing the TI

The simulations require the data to be located on a predefined grid. Therefore,

if the data is in point form, it should be converted to grid data by migrating the

data points to the nodes of the grid prior to the simulations. As far as the primary

simulation variable is concerned, the migration process is handled within the DS

algorithm itself. On the other hand, the migration of the other variables, which

are the secondary simulation variable and the variables of the bivariate TI, are



4.3. STRUCTURAL ANALYSIS AND PRE-PROCESSING OF THE DATA 61

performed outside of the DS algorithm. Such a preliminary step is required to

both fill the gaps between the data point locations as well as converting the point

data into the grid type data.

The raw data from the Oak and Kumbur mine areas were in the form of point

data. Therefore, they had be migrated to the grids created for each mine area.

For this reason, two grids for both Oak and Kumbur mine areas were created. The

constructed grids have a single grid cell (pixel) size of 2.38 × 2.38 m. The sizes of

the grids in terms of number of grid nodes are 180 × 400 for the Oak mine and 97

× 214 for the Kumbur mine.

Since the GPR and the mined-out survey data are sampled irregularly at finite

locations, the collected data points cannot be directly used to inform all the grid

nodes. In other words, after assigning the available data points to the closest

grid nodes, some of the nodes may still be uninformed. Therefore, reconstruction

of the missing elevation variable is needed to create the full picture of the TIs

and auxiliary variables (GPR). The elevation values could be assigned through

interpolation techniques by utilising the neighbouring data points. However, such

an approach would lead to a smoothing effect and the resulting re-constructed

images might have different spatial statistical properties than the original data

sets. The reconstruction task can be achieved by the use of geostatistical simulation

techniques, such as the sGs. A simple example illustrating the process involved in

such a reconstruction approach can be seen in Fig. 4.2.

Informing the uninformed grid node locations using a simulation technique has

a benefit of preserving the original statistical and spatial statistical properties of

the data. However, since the sGs utilises a variogram model, which is two-point

statistics, to perform the simulations, the assigned values might lack higher-order

statistics. Nevertheless, since the raw data set is rather densely sampled, the

majority of the grid nodes are informed by the collected samples. Hence, the extent

of the multiple-point statistical loss can be ignored and the resulting simulations

are still considered to exhibit the multiple-statistical information of the raw data.

An important aspect that needs to be considered is the trends evident in the
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Figure 4.2: Process used to both convert the point data into the gridded type and
reconstruct the images

datasets, as they can have an effect on the accuracy of the simulated values. How-

ever, since the GPR and floor surveys are densely sampled, the data points used

to simulate a grid node are always within close proximity of the uninformed grid

nodes. Hence, the effect of the trend is less pronounced in the simulated values

of the GPR and floor surveys. This fact can be confirmed by the study presented

in Dagasan et al. (2018a) (given in Appendix J). The study comprised the per-

formance comparison of stationary and non-stationary modelling techniques to

reproduce the elevation field in the Oak mine area using the GPR data. Universal

Kriging and IRF-k were used as non-stationary geostatistical techniques. Hence,

the trend was taken into consideration. On the other hand, the OK was used to

perform the same task by ignoring the trend. The variogram for the OK was mod-

elled by first identifying the variogram-free direction and fitting a model to the

experimental variogram computed along this direction. The results of this study

have shown that the performances of the three methods were almost identical due

to the existence of an abundance of data points. Therefore, the variograms to
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perform reconstruction work through the sGs in this thesis were modelled using

the experimental variograms calculated along the variogram-free directions.

In order to identify the variogram-free directions, the variogram maps of the

GPR and floor surveys of both mine areas were generated first, as can be seen in

Appendix C. The variogram map created for the Kumbur GPR variable is also

illustrated in Fig. 4.3. This map reveals the trend free direction as N130. The

experimental variogram calculated along the N130 direction and the fitted model

can also be seen in 4.3. The model fitted is comprised of two spherical structures

with ranges of 19.33 m and 306.05 m. The sill values of these are 0.065 and 0.056,

respectively. The same procedure was also followed to migrate the points of the

Kumbur floor, Oak GPR and Oak floor survey variables. The data before and

after the re-construction process can be seen in Fig. 4.4.
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Figure 4.3: (a) Experimental variogram calculated along the trend-free direction
(N130) and (b) the variogram model fitted for the Kumbur GPR variable
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Figure 4.4: Re-construction of the GPR and floor surveys of the Oak and Kumbur
mine areas

4.4 Setting up the MPS Simulations

The MPS simulations in this study are performed using the DS algorithm. Select-

ing the DS was mainly due to the benefits it offers such as the ability to perform

multivariate and continuous simulations. Furthermore, since the DS does not scan

the whole TI to store the conditional probabilities, it performs the simulations

rather fast.

As in all the MPS algorithms, the DS requires a preliminary set-up process in

which the information about the simulations and the algorithmic input parameters

are specified. Examples of such information include the number of variables used

in the simulations, the locations where the data are stored in the computer, and

the size and origin of the simulation grid. The following subsections will provide

explanations on the selection of the simulation variables as well as the specification

of algorithmic input parameters to perform the simulations in this research. An

overview of the inputs and outputs of the bivariate DS simulations can be seen in
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Fig. 4.5.
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Figure 4.5: Inputs and outputs of the bivariate DS simulations

4.4.1 Choosing the Simulation Variables

There are mainly two types of data collected from the Oak and Kumbur mine

areas for the resource modelling. The first type is the drill hole data obtained

from the exploration boreholes or PCD. The second type is the geophysical data

acquired from the GPR surveys. The GPR data provides the depth to the ge-

ological interface from the surface through two-way travel time. However, this

information is not as reliable as the borehole data information. Therefore, the

GPR data has been used as an auxiliary variable to guide the simulations whereas

the PCD/borehole data has been used as the primary variable to condition the
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simulations. Conditioning the simulations, as also described in Section 4.3.2, is

carried out internally within the DS algorithm prior to the simulation process.

Since the borehole and PCD data are drilled on a regular grid (equally spaced),

their locations are co-located with the grid node locations. Hence, the original raw

data locations do not undergo any translation during the migration process.

Due to the existence of two kinds of data representing the elevation variable

of the geological contact, the simulations are performed in both univariate and

bivariate forms. For the univariate simulations, the mined-out surface of one mine

area is used as a TI to perform the simulations for the other mine area. As for the

bivariate simulations, the constructed TIs comprise the mined-out topographies as

the primary variable and the GPR surveys as the secondary variable. Therefore,

the multiple-point dependence between the variables is also utilised to guide the

simulations. This is carried out by constructing bivariate data events to scan the

TI until the distances in each variable fall below the defined thresholds or the

maximum scan fraction is reached.

4.4.2 Algorithmic Input Parameter Selection

Although the MPS simulations are predominantly affected by the TI selection and

the simulation variables, the choice of the input parameters also plays a significant

role on the simulation results. Therefore, the appropriate simulation parameters

need to be identified prior to the simulations. A common way to achieve this

is to perform a manual sensitivity analysis using different input parameters and

seek the ones yielding good simulation quality. To carry out such an analysis,

five DS parameters were selected. For the bivariate simulations, the parameters

include the weighting factor whd assigned to the conditioning data, acceptance

thresholds (thd and tGPR), and the number of neighbours (nhd and nGPR) of the DS

algorithm. Some of the parameters were not selected for the sensitivity analyses.

These include the weighting factor wGPR of the GPR data and the scan fraction

f . The reason why wGPR was not selected was that the GPR grid was already

exhaustively informed and the change in the GPR weight would not have had an

effect on the simulations. As for the scan fraction, the preliminary parameter trials
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conducted have shown that it had a minor effect on the simulations. Therefore, it

was chosen as 0.5 for both the sensitivity analysis and the simulations. It should

be noted that 0.5 for the scan fraction is also suggested by Meerschman et al.

(2013) for continuous simulations.

Having tested a number of different DS parameter combinations manually, the

appropriate DS parameters were finally determined. However, during this sensitiv-

ity analysis, it was understood that the manual determination of the parameters

were rather cumbersome and time-consuming. Therefore, an approach to automat-

ically tune the input parameters was developed. The main idea of the proposed

approach was to find the parameters which best reproduce the patterns of the

borehole data. This is carried out by first computing the pattern statistics of the

conditioning data and comparing it with that of the simulations after each and

every parameter trial. This process is automatically performed by utilising the

optimisation framework of the SA algorithm. The parameters are used as the de-

cision variables of the SA and they are iteratively optimised to achieve minimum

input-output statistical dissimilarity. The details of the proposed approach are

presented in both Chapter 5 and Dagasan et al. (2018b). Table 4.2 shows the au-

tomatically determined parameters using the proposed approach for the Kumbur

area. All the parameters used to perform the simulations can be seen in Table 4.3.

Table 4.2: Optimised DS parameters used to simulate the position of the geological
contact in Kumbur mine area

Parameters whd nhd nGPR thd tGPR

Tuned Kumbur Bivariate Simulations 13.08 14 45 0.009 0.305

4.5 Results and Comparison

The simulation results were analysed using 40 bivariate and univariate realisations

generated for each mine area. Considering the fact that the simulations were

carried out using the DS and TB methods, each mine area contained four sets

of simulation results (univariate and bivariate simulations using the DS and TB
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Table 4.3: DS parameters used to simulate the position of the geological contact
in Oak and Kumbur mine areas

Parameters whd nhd nGPR thd tGPR

Kumbur Bivariate 13.08 14 45 0.009 0.305
Kumbur Univariate 13.08 14 - 0.009 -
Bivariate Oak 10.00 20 21 0.001 0.01
Univariate Oak 10.00 6 - 0.001 -

methods). Therefore, the results occupy a large volume. Due to this reason, only

the bivariate simulations for the Kumbur mine are presented in the chapter. The

rest of the results are, therefore, presented in the appendices.

The omnidirectional variograms exhibited non-stationarity in the variables.

Therefore, the simulations were performed using the residuals. To do this, the

trend surfaces constructed using the coefficients in Table 4.1 were subtracted from

the raw data to obtain the residuals, as can be seen in Appendix B. The resulting

residual data sets were then used as the simulation and TI variables. The residual

simulation variables and the TI variables for the bivariate Kumbur simulations can

be seen in Fig. 4.6. After performing the simulations, the trends were added back

to each of the realisations generated.

For the geostatistical simulations, the TB with external kriging method in the

RGeostats R package (Renard et al., 2017) was utilised. The GPR variable was

used as an external drift and facilitated obtaining the residuals of the PCD. The

resulting residuals were used to create the variogram model to perform the simu-

lations. Experimental variograms computed in various directions demonstrated a

geometric anisotropy; N0
◦

andN90
◦

directions appeared to be the main anisotropy

directions. Two nested models consisting of exponential and spherical structures

were fitted to the computed experimental variograms in the major anisotropy di-

rections. The sill value of the spherical component was 0.137 and the ranges were

112 and 237 in the N0
◦

and N90
◦

directions, respectively. On the other hand, the

sill value of the exponential component was 0.2 and the ranges were 38 m along

N0
◦

and 35 m along N90
◦
. The variogram model created using the given range

and sill parameters can be seen in Fig. 4.7. After modelling the variogram, the TB
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Figure 4.6: Bivariate TI, simulation variables and the omnidirectional residual
variograms for the Kumbur mine area

simulations were performed utilising 400 turning bands in the simulations. Using

the setup explained, 40 realisations were generated using the DS and TB methods.

The first three realisations of the simulations can be seen in Fig. 4.8. The average

of the realisations and the variograms of the realisations are illustrated in Fig. 4.9.

Performance evaluations of the DS and TB simulations have been undertaken

using various statistical indicators. The first performance indicator used was the
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variogram reproduction of the conditioning data used. Omnidirectional variograms

of the residuals in Fig. 4.6 reveal the difference between the two-point statistics
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of the simulation variables and the TI used to perform the simulations. Such a

difference can rightfully be interpreted as an indication of a compatibility issue.

Nevertheless, in spite of such a difference, variograms of the realisations illustrated

in 4.9 have shown that the DS was capable of reproducing two-point statistics of

borehole data successfully. It is also observed from the variograms in Fig. 4.9

that both methods reproduce the variogram of the conditioning data well and the

simulations are rather similar.

To be able to observe the visual differences in the results between the two simu-

lation techniques, the mean of the simulations and the variations around the mean

of the simulated values are analysed. Considering the generated L realisations, the

average of the simulations (E-type maps) were created by taking the average of



72 CHAPTER 4. MPS SIMULATION OF ORE BOUNDARIES

the simulated values at each x discrete grid node location:

z∗E(x) =
1

L

L∑
l=1

zl(x) (4.2)

where z∗E(x) represents the expected elevation values and zl(x) represents the el-

evation values at x locations of the lth realisation. The created maps in Fig. 4.9

exhibit only a slight difference between them. Hence, it is realised that the average

of the DS and TB realisations are fairly similar.

The variation of the simulated values around the mean was used to analyse the

generated uncertainty model. To obtain such variations, the interquartile-range

(IQR) of the simulated elevations at each grid node was calculated by subtracting

the lower quantile values from the upper quantile ones:

qR(x) = q0.75(x)− q0.25(x) (4.3)

The IQR maps shown in Fig. 4.9 indicate that the DS tends to produce lower

IQR values; hence, less uncertainty. The calculated average of the IQR values are

0.426 for the DS simulations and 0.501 for those of the TB.

Comparison of the simulation performances has also been made in terms of

higher-order statistics. Computation of higher-order statistics has been carried

out by the hosc software, which utilises spatial cumulants (Dimitrakopoulos et al.,

2010). Third-order experimental cumulant maps were computed using an L-shaped

spatial template constructed along the N0
◦

and N90
◦

directions. Lag separations

used were 2.38 m and the cumulant maps were computed for 50 lag distances in

both directions. The resulting cumulant maps of the realisations as well as the

mined-out surface referenced are shown in Fig. 4.10.

The resulting cumulant maps look fairly different and do not give adequate in-

formation on the resemblance between the realisations and the reference mined-out

surface. Hence, the similarity between the cumulant maps needed to be expressed

quantitatively. This calculation was performed by subtracting the cumulant maps

of each of the 40 realisations from that of the mined-out surface pixel-by-pixel, as
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tions of the DS and TB Kumbur simulations

follows:

errorlC =
1

N

N∑
j=1

|cl(j)− c(ref)(j)| (4.4)

where cl(j) and c(ref)(j) are the calculated cumulant values at the jth pixel of

the maps and N is the number of grids (pixels) that the cumulant maps comprise.

Distribution of the mean absolute errors errorlC for each realisation l can be seen

in Fig. 4.11.

These histograms demonstrate that both simulation methods yield similar re-

sults in terms of the generated higher-order statistics. The means of the errors in

40 realisations are both 5×10−7. Hence, both methods produce the same multiple-

point statistical errors.

The last performance comparison was carried out by measuring the similarity
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between the realisations and the mined-out surface of the simulation area. This

similarity was calculated by subtracting the realisations from the mined-out surface

pixel-by-pixel and taking the mean of the absolute differences:

errorRef =
1

LK

L∑
l=1

K∑
i=1

|Z l(i)− Z(ref)(i)| (4.5)

where K represents the number of grids in the realisations/mined-out image, and

Z l(i) and Z(ref)(i) are the elevation values in the lth realisation and the mined-out

image, respectively. The calculated error for the DS and TB are 0.534 and 0.528,

respectively. Based on these results, it is also obvious that the difference between

the DS and TB simulations is insignificant for the bivariate Kumbur simulations.

The above analyses have also been performed for the Bivariate Oak, Univariate

Oak and Univariate Kumbur simulations. The results of all the simulations are

summarised using three performance indicators with respect to the mined-out

reference surfaces: IQR, cumulant error and MAE. The results presented in Table

4.4 and Fig. 4.12 show that the DS consistently produced less uncertainties than

the TB. As for the cumulant errors, the DS yields less cumulant errors in three

out of four cases. This is intuitively expected since the simulations in DS are

performed within the MPS framework. The direct comparison with the mined-out

surfaces indicates that the DS is again slightly better than the TB as the errors it
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yields are less in two cases (univariate and bivariate Oak), is the same in one case

(bivariate Kumbur) and is greater in only one case (univariate Kumbur).

Table 4.4: Summary of the simulation results

Simulation
Type

Mine Area Method
Uncertainty
(IQR)

Cumulant
Error

MAE

Univariate
Oak

DS 0.69 0.0013 0.92
TB 0.99 0.0028 0.94

Kumbur
DS 0.48 1.5e-6 0.54
TB 0.52 3.0e-7 0.53

Bivariate
Oak

DS 0.80 0.0011 0.87
TB 0.96 0.0122 0.94

Kumbur
DS 0.43 5e-7 0.53
TB 0.50 5e-7 0.53
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DS techniques for the Oak and Kumbur mine areas
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4.6 Summary and Discussion

This chapter investigated the use of multiple-point statistics in modelling the foot-

wall topographies in lateritic metal deposits. The training images used to perform

the simulations comprised the mined-out floor and the ground penetrating radar

surveys collected from previously mined-out areas. Due to the existence of two

types of simulation variables representing the bauxite/ferricrete interface (bore-

hole and geophysical data), the simulations were performed in the form of both

univariate and bivariate types. The resulting multiple-point statistical simulations

were compared with classical geostatistical simulations through various statistical

indicators.

Concerning the comparisons made between the direct sampling and turning

bands simulations, both techniques produced reasonably similar results. There-

fore, it can be deduced that the use of multiple-point statistics did not remarkably

enhance the contact models. However, it has been observed that it can be a promis-

ing tool to be used in modelling lateritic bauxite deposits. Supporting evidence

to this is the successful variogram reproduction in spite of a non-compatibility

between the TI and the simulation variables. Therefore, if a better training im-

age in terms of the training image-conditioning data compatibility is derived, it is

believed that substantial simulation performance could be achieved. Obtaining a

compatible training image in lateritic metal mines is rather straightforward since

extracting the ore at a mining area results in a mined-out topography. Provided

that a group of mined-out regions are surveyed, they can be used to construct a

catalogue of training images to simulate the future mining areas. Such a cata-

logue can provide geologists with a variety of training images with different spatial

statistics. Therefore, a suitable training image with similar statistical and struc-

tural characteristics observed in the conditioning data set can be chosen easily.

Lastly, the use of multiple-point statistics provides a non-parametric modelling

framework. Therefore, it is rather non-expert friendly as the structural model is

not expressed in mathematical definitions.

One important aspect that is considered to affect the quality of the training

images is the digging precision of the mining machinery used to extract the deposit.



4.6. SUMMARY AND DISCUSSION 77

Since the bauxite ore is of pisolitic type and is located within the soil horizons, it is

extracted using a front-end loader type mining machine. Bucket dimensions of the

machinery are thought to influence the shape of the resulting mined-out surface

significantly; the smaller the bucket dimensions of the machinery, the better the

digging precision is in tracking the bauxite/ferricrete interface. Furthermore, the

actual interface is sensed by the mining machinery operator utilising the hardness

and colour differences between the bauxite and ferricrete units at the time of

mining. Since the decision on the location of the orebody boundaries is made by

the operator at the time of mining, the resulting reference geology is subjective

to some extent. In other words, the resulting mined-out surface might be slightly

off from the actual geological interface due to the decision made by the operator.

To alleviate this problem, a pilot excavation area can be dug more carefully using

smaller mining equipment next to a future mining area. Hence, the geological

variations can be better illuminated. This approach could allow generating better

quality training images and is believed to improve the quality of the training images

produced.
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Abstract

The application of multiple-point statistics (MPS) in the mining industry is not yet

widespread and there are very few applications so far. In this paper, we focus on

the problem of algorithmic input parameter selection, which is required to perform

MPS simulations. The usual approach for selecting the parameters is to conduct

a manual sensitivity analysis by testing a set of parameters and evaluating the re-

sulting simulation qualities. However, carrying out such a sensitivity analysis may

require significant time and effort. The purpose of this paper is to propose a novel

approach to automate the parameter tuning process. The primary criterion used to

select the parameters is the reproduction of the conditioning data patterns in the

simulated image. The parameters of the MPS algorithm are obtained by iteratively

optimising an objective function with simulated annealing. The objective function

quantifies the dissimilarity between the pattern statistics of the conditioning data

and the simulation image in two steps: the pattern statistics are first obtained

using a smooth histogram method; then, the difference between the histograms is

evaluated by computing the Jensen–Shanon divergence. The proposed approach

is applied for the simulation of the geological interface (footwall contact) within a

laterite-type bauxite mine deposit using the Direct Sampling MPS algorithm. The

results point out two main advantages: (1) a faster parameter tuning process and

(2) more objective determination of the parameters.

5.1 Introduction

Multiple-point statistics (MPS) allows the simulation of spatial or temporal ran-

dom functions by reproducing pattern statistics from an exhaustive data set —

the training image (TI) — built from conceptual knowledge (Strebelle, 2002) or

borrowed from analogue sites (Oriani et al., 2014; Pirot et al., 2014). Due to

the capabilities and the power of MPS, its use has been rather widespread for

simulating complex structures in earth sciences. This fact paved the way for the

development of a large number of MPS algorithms and their application to vari-

ous contexts (Guardiano and Srivastava, 1992; Strebelle, 2002; Zhang et al., 2006;
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Arpat and Caers, 2007; Gloaguen and Dimitrakopoulos, 2009; Dimitrakopoulos

et al., 2010; Honarkhah and Caers, 2010; Mariethoz et al., 2010; Straubhaar et al.,

2011; Tahmasebi et al., 2012).

In this paper, we focus on a novel application of MPS: geological modelling

of lateritic bauxite deposits. The objective is to simulate the footwall contact

topography, which constitutes the base of the exploitable deposit. The reason why

MPS could be interesting in this particular case is that several sites have already

been mined out, and the topographies of the footwall contact exposed after the

mining operations can be considered as analogues to the footwall contact of a future

mining area. In addition, the data sets collected from such mines usually include

several variables such as exploration boreholes, exhaustive geophysical data, and

production control boreholes (Erten, 2012; Dagasan et al., 2018a,b). In order to

account for the multivariate nature of the modelling problem and the necessity to

simulate a continuous variable, it was decided to use the Direct Sampling (DS)

algorithm (Mariethoz et al., 2010) in this work.

As in all MPS algorithms (Mariethoz and Caers, 2014), DS requires some in-

put data such as the training image (TI) and a set of specific input parameters.

The choices of the TI and the input parameters significantly influence the simu-

lation results (Boucher, 2007). Assuming that the selection of a TI has already

been made, identifying a correct set of input parameters plays a direct role on the

quality of the simulations and the spatial uncertainty quantification. One of the

most common approaches to determine the MPS parameters is to manually tune

them by conducting a sensitivity analysis (Mariethoz et al., 2010; Boisvert et al.,

2010; Mariethoz and Caers, 2014). Computation time and simulation quality are

the key performance indicators used in the sensitivity analysis (Liu, 2006). Be-

cause these two indicators often counteract each other, the optimality of a set of

input parameters is usually assessed based on the balance achieved between them.

Applications of such sensitivity analyses can be found in Meerschman et al. (2013);

Rezaee et al. (2013); Liu (2006); Huysmans and Dassargues (2011).

More generally, the quality of the simulations is often difficult to assess since

many different criteria can be used and the parameter identification is based on a
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manual procedure and a visual inspection of the results. More rigorous methods

define a set of indicators to quantify the similarity between the input data and the

simulations. Quantification of the similarity between the TI, conditioning data

and the resulting simulations is usually based on the reproduction of first and

second order statistics. For instance, Meerschman et al. (2013) quantify the error

between the TI and model statistics based on the calculated errors in connectivity,

histograms and variograms. Quantifying the multiple-point statistics error, on

the other hand, can be done by multiple-point histograms (Boisvert et al., 2010;

De Iaco and Maggio, 2011; Tan et al., 2014), cumulants (Dimitrakopoulos et al.,

2010), connectivity functions (Renard and Allard, 2013), spatial patterns (Pérez

et al., 2014), smooth histograms (Melnikova et al., 2015), or connectivity indicators

(Pirot et al., 2014). However, carrying out such a sensitivity analysis manually

requires running many simulations and is cumbersome and time-consuming.

The specific aim of the present paper is to present a new automated technique

to determine the appropriate input parameters of the MPS algorithm for the case

of bauxite deposits. Some of the techniques and ideas that are developed in this

context can easily be re-used and extended for more general situations (stratified

deposits), as we will discuss at the end of the paper. The benefits of an auto-

mated method are twofold: it leads to higher quality simulations through the

enhancement of pattern reproduction; and it provides less labour intensive and

more objective parameter tuning. The approach presented in this paper makes

use of a stochastic optimisation framework to automate the parameter tuning

process. Input parameters are utilised as the decision variables to minimise an

objective function which quantifies the mismatch between the pattern statistics

of the conditioning data and the generated realisations. Computing the objective

function is performed in two steps: First, the smooth histogram formulation of Mel-

nikova et al. (2015) is used to quantify the pattern statistics of the boreholes and

that of the simulations. We have selected that approach since it allows working

with continuous variables, while other simpler techniques would not allow com-

puting histograms of patterns of continuous variables. Second, the dissimilarity

between pattern histograms is evaluated utilising the Jensen-Shannon divergence
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(JS) (Cover and Thomas, 2012). In order to observe the effect of the optimi-

sation algorithm on the tuned parameters, a number of optimisation techniques

have been utilised to minimise the objective function. Nevertheless, the Simulated

Annealing (SA) algorithm (Kirkpatrick et al., 1983) has proven to be the most

efficient method amongst the ones tested, as the objective function may contain

many local minima. After hundreds of iterations, the SA algorithm converges and

provides the parameters yielding the minimum JS divergence value.

The remainder of the paper is organised as follows: Section 5.2 reviews the

underlying methods used to develop the proposed approach, Section 5.3 presents

the setup of the problem using the data from a bauxite mine and implementation of

the approach, Section 5.4 is dedicated to the analyses of the results and Section 5.5

concludes the key features of the automated parameter tuning process presented.

5.2 Overview of Underlying Methods

In this section, the methods that are used in the proposed methodology are re-

viewed. The aim is to provide the required background information to understand

the implementation of the methodology described in Section 5.3.

5.2.1 Direct Sampling Algorithm

Direct Sampling is a pixel-based MPS algorithm which is used to simulate a

random function Z (Mariethoz et al., 2010). Being a sequential simulation al-

gorithm, it successively visits all the locations x of a regular simulation grid

(SG) and generates simulated Z∗(x) values, until all the grid nodes are informed.

Once all the conditioning data (if available) are assigned in the SG, the algo-

rithm follows a predefined random path to visit all the non-informed grid nodes

x to perform the simulations. Having chosen the n maximum number of clos-

est grid nodes parameter of the DS, the algorithm finds n number of informed

neighbours at grid nodes {x1, x2, ..., xn} around x and computes the lag vectors

L = {h1, h2, ..., hn} to define the data event dn(x, L) = {Z(x+ h1), ..., Z(x+ hn)}.
The TI is randomly scanned at y locations until the distance between the patterns
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dn(x, L) and dn(y, L) = {Z(y+h1), ..., Z(y+hn)} falls below a predefined threshold

t or until the maximal scan fraction f of the TI is reached. Then, the value Z(y)

at the scanned node y is taken as the best match and is pasted on the grid node

x of the SG. These steps are repeated until all the nodes in the SG are simulated.

There are different ways of computing the distance between two data events

(or patterns) in the DS algorithm and the choice depends mainly on the type of

the variable. For instance, the distance for continuous variables can be calculated

by using the Manhattan distance:

d{dn(x, L), dn(y, L)} =
1

n

n∑
i=1

|Z(xi)− Z(yi)|
dmax

∈ [0, 1] (5.1)

where

dmax = max
y∈TI

Z(y)− min
y∈TI

Z(y) (5.2)

When calculating the distances between the patterns retrieved from the SG

and the TI, different weightings can be given to the data event nodes based on

their distances ‖hi‖ to the central node. This is carried out by a weighting factor

αi applied to each data event node such that:

αi =
‖hi‖−δ

dmax

n∑
j=1

‖hj‖−δ
(5.3)

where δ is the power for computing the weight. A specific weighting w can also

be used to achieve pattern consistency in the neighbourhood of the conditioning

data. The weighting factor αi then becomes:

αi =
βi‖hi‖−δ

dmax

n∑
j=1

βj‖hj‖−δ
(5.4)
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where

βi =

{
w if the i th node (i.e., xi) is a conditioning location (hard data)

1 otherwise

The DS algorithm also allows multivariate simulations utilising the multiple-

point relationship between the variables in the training data set. The training

image TI used in multivariate simulations is comprised of m variables. Consid-

ering the variables Z1(x), ..., Zm(x) (k = 1, ...,m) used in the multivariate anal-

ysis, each variable Zk(x) may have a different data event dknk
(x, L) = {Zk(x +

hk1), ..., Zk(x + hknk
)} with different Lk lag vectors. The joint data event dn(x) =

{d1n1
(x, L1), ..., dmnm

(x, Lm)} is then used to scan the TI to find a compatible pat-

tern.

In the original version of the DS (Mariethoz et al., 2010), the algorithm com-

bines all the specific distances using a weighted average. However, in this work,

we use a different implementation of the DS called DeeSse (Straubhaar, 2016).

Instead of using a global threshold and a set of weights, DeeSse uses a variable

specific threshold tk for each variable Zk. The TI is scanned until the distance for

each pattern is below the corresponding threshold, or the maximum scan fraction

is reached (Straubhaar, 2016; Straubhaar et al., 2016). More detailed informa-

tion on the implementation and application of the DS algorithm can be found in

Mariethoz et al. (2010) and Meerschman et al. (2013).

5.2.2 Comparing Patterns with Smooth Histograms

The smooth histogram is a pseudo-histogram reflecting the pattern statistics of

an image (Melnikova et al., 2015). Since it is based on the pixel values rather

than the pattern counts, it can be computed for both discrete and continuous im-

ages. Melnikova et al. (2015) use such a histogram to compare the multiple-point

statistics of a continuous model with a discrete training image for an inverse prob-

lem. The comparison is carried out by first defining a search template T to collect

the unique patterns patTI,unj of the categorical training image. These patterns

are then used to construct the categories (classes) of the pseudo-histograms Hd,m



5.2. OVERVIEW OF UNDERLYING METHODS 89

and Hd,T I of the model image and the TI, respectively. Because the categories of

the constructed pseudo-histograms are discrete, any pattern patmi observed in the

continuous model image m would not fall into one of these categories. Instead,

it contributes to all NTI,un numbers of unique categories with a value between

0 and 1. This value is calculated based on the similarity of the patterns in the

histogram categories and the patterns of the model image. The jth bin of the

model histogram Hd,m is then computed by:

H
d,m

j =
Nm∑
i=1

1

(1 + A
∥∥∥patmi − patTI,unj

∥∥∥k
2
)
s (5.5)

Similarly, the pseudo-histogram of the TI can be computed by calculating the

patterns of the categories and all the patterns in the TI, as in the following:

H
d,TI

j =
NTI∑
i=1

1

(1 + A
∥∥∥patTIi − patTI,unj

∥∥∥k
2
)
s (5.6)

where A, k and s are user-defined parameters to shape the pattern similarity

function. Melnikova et al. (2015) state that these parameters not only define how

well the pseudo-histogram approximates the true frequency distribution, but they

also control the degree of smoothing. However, there is a trade-off between the

degree of smoothing achieved and the true frequency distribution approximated.

Therefore, optimal values balancing these are required. Melnikova et al. (2015)

define A = 100, k = 2 and s = 2 as optimal parameters balancing this trade-off.

The comparison of two pseudo-histograms requires a dissimilarity metric. In

our case, we chose the Jensen–Shannon (JS) divergence to calculate the dissimilar-

ity of two pseudo-histograms. The JS is used to quantify the dissimilarity between

two density distributions p and q by averaging the Kullback–Leibler divergences,

as in the following (Endres and Schindelin, 2003):

dJS(p, q) =
1

2

∑
i

pi log

(
pi
qi

)
+

1

2

∑
i

qi log

(
qi
pi

)
(5.7)
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where pi and qi represent the probability densities at the ith bins. Calculation of

the dissimilarity also requires the pseudo-histograms to share the same (mutual)

classes.

5.2.3 Generalised Simulated Annealing

Simulated Annealing (SA) is a stochastic optimisation tool to solve complex opti-

misation problems by mimicking the annealing process of a molten metal (Reeves,

1993; Xiang et al., 2017). Being inspired by the Metropolis algorithm (Metropolis

et al., 1953), it was first proposed by Kirkpatrick et al. (1983) to find the global

optimum of a complex objective function. The method approximates the global

minimum by exploring the solution space at finite locations. The combination of

stochastic exploration and a cooling scheme controls the probability of accepting

worse solutions and avoiding remaining trapped in local minima. The artificial

temperature is high in the initial stages of the optimisation, therefore, worse so-

lutions have a higher probability of acceptance. As the optimisation progresses,

the temperature is lowered and the focus is shifted toward accepting only better

solutions to identify the minimum more accurately.

Given an objective function f(x) such that x = (x1, x2, ..., xn), a standard SA

algorithm uses the following steps to find the global minimum (Sun and Sun, 2015):

1. Choose a high initial temperature T0 value, an initial solution x0 and evaluate

the objective function, E0 = f(x0).

2. Propose a new solution xi+1:

• Generate a candidate solution xi+1 from the current one (xi) using a

predefined visiting distribution.

• Evaluate the change in the objective function for the candidate solution,

∆ = f(xi+1)− f(xi).

• Accept the iteration if it reduces the objective function, ∆ < 0.

• Otherwise, accept or reject it based on a probability of acceptance cri-

terion.
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3. Repeat step 2 for L number of iteration times keeping T constant.

4. Reduce the temperature to Tn+1 using a cooling function.

5. Repeat steps 2–4 until the convergence criteria is satisfied.

The choice of the visiting distribution in step 2 has a significant effect on the

efficiency of the SA algorithm. Therefore, different visiting distributions for the

SA have been investigated by some researchers such as Szu and Hartley (1987) and

Tsallis and Stariolo (1996). In this research, the Generalised Simulated Annealing

algorithm (GSA) (Tsallis and Stariolo, 1996) with the distorted Cauchy–Lorentz

distribution is used. As for the stopping criteria, the GSA offers different options

such as maximum running time, maximum function calls, maximum iteration num-

ber or a threshold value for the objective function.

5.3 Problem Setup and Methodology

Before describing the details of the proposed methodology, let us present the prob-

lem more precisely. The ultimate aim is to determine the MPS parameters to

simulate the interface between the ore and waste within a laterite-type bauxite

deposit.

The data to perform the simulations comes from two mine sites. The first one

(Figure 5.1a,b) comprises a finite set of depth measurements collected from regu-

larly spaced boreholes (conditioning data and primary variable) and an exhaustive

Ground Penetrating Radar (GPR) survey (soft data and secondary variable). The

position of the interface in this mine site is aimed to be simulated by DS, using

these data sets as conditioning information. The second site is a mined-out ana-

logue area providing a training data set. It includes the topographical survey of

the exposed deposit base (primary variable) as well as a GPR survey done before

the mining operation. This training data set, which is used as a bivariate training

image, can be seen in Figure 5.1. In addition to this data, the simulation of the

interface with DS requires the input parameters (number of neighbours, distance
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thresholds, etc.) to be determined. The aim of the proposed methodology is,

therefore, to automatically obtain an optimal set of parameters for that purpose.

Figure 5.1: Simulation and the TI variables: (a) GPR variable used as the sec-
ondary simulation variable; (b) borehole data used to condition the simulations
(primary variable-black dots overlying the GPR survey); (c) floor survey of a
previously extracted mine area (primary TI variable) and (d) GPR data of the
previously mined area collected prior to the extraction (Secondary TI variable).
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In lateritic bauxite deposits, the data sets may be dense and regularly organ-

ised. This offers the possibility to define a specific quality metric in which the

patterns observed in the conditioning data can be taken as the target. Therefore,

the general principle of the proposed methodology is to minimise an objective

function representing the dissimilarity of the conditioning data with the simulated

image in terms of pattern statistics. The calculation of the dissimilarity requires

the pattern statistics to be computed. This is only done once for the conditioning

data. For the simulated image, however, the pattern statistics change with each

perturbation of the parameters and needs to be updated.

5.3.1 Methodology

The computation of the conditioning data pattern statistics first requires the mi-

gration of the borehole datapoints into the SG. This step is needed to convert the

punctual data into the gridded type. Once this step is done, a search template

T is defined to retrieve the patterns contained in the borehole data. Since we

are comparing the pseudo-histograms of one fully informed simulation image and

a partially-informed borehole data image, a special search template needs to be

constructed. Therefore, the construction of the search template T is based on two

parameters: (1) the number of grids between borehole data and (2) the number

of borehole data desired to be used in one category of the pseudo-histogram. This

is illustrated in the following example: say we have borehole data located in a

grid at every five nodes in the x and y directions. If we want to capture a four

boreholes data pattern, we choose the size of the search template to be 5 × 5. The

constructed search template scans the borehole data grid and collects the patterns

once four borehole data is captured by the search template. The collected pat-

terns serve as the categories of the pseudo-histogram to be constructed. In order

to account for the non-stationarity, the means patCi are subtracted from each patCi ,

focusing on the variation of each pattern around its mean. The steps mentioned

above are illustrated in Figure 5.2.
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Figure 5.2: Construction of the smooth histogram categories of the of borehole
data.

Following the construction of the smooth histogram categories for the condi-

tioning data, the pseudo-histogram Hd,C for the conditioning data is computed by

the following:

H
d,C

j =
NC∑
i=1

1

(1 + A
∥∥patCi − patCj ∥∥k2)

s (5.8)

where NC represents the number of patterns captured from the SG.

Once the smooth histogram of the borehole data is generated, the SA algorithm

runs the DS algorithm to produce a realisation. The smooth histogram of this

realisation is then computed using the categories created for the conditioning data

histogram. In order to calculate the contribution of each pattern patSIMi in the

histogram categories H
d,SIM

j , the means patSIMi are again subtracted from each

patSIMi . The pseudo-histogram Hd,SIM of a realisation is calculated as follows:

H
d,SIM

j =
NSIM∑
i=1

1

(1 + A
∥∥patSIMi − patCj

∥∥k
2
)
s (5.9)
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where NSIM is the number of patterns captured in the realisation image generated.

Because there are more patterns in the simulation image than the conditioning data

image, the weights in each category of the pseudo-histograms of the realisations

are expected to be higher than those of the conditioning pseudo-histogram. In

order to compare the pseudo-histograms, they are normalised before the computa-

tion of the Jensen–Shannon divergence. The normalisation is carried out through

the following:

Hj
d
Nor =

Hj
d − 1

NC∑
i=1

(Hi
d − 1)

(5.10)

where Hj
d
Nor is the normalised weight corresponding to the weight of the jth

category H
d

j of either H
d,SIM

j or H
d,C

j . Subtraction of 1 from each individual

pseudo-histogram category has been done to remove the weight contribution of

each pattern H
d,C

j in its own jth category. The Jensen-Shannon divergence is then

calculated as follows:

O = dJS(H
d,CNor

j , H
d,SIM

Nor

j ) =
1

2

∑
j

H
d,CNor

j log

(
H

d,CNor

j

H
d,SIMNor

j

)

+
1

2

∑
j

H
d,SIMNor

j log

(
H

d,SIMNor

j

H
d,CNor

j

) (5.11)

Starting from an initial set of x0 DeeSse parameters (vector of decision vari-

ables), the SA algorithm runs the DS algorithm to produce a realisation and evalu-

ate the objective function O1. Then, the parameters are iteratively and randomly

perturbed using the Cauchy-Lorentz visiting distribution. A new value of the ob-

jective function Oi+1 is computed and the new set of parameters xi+1 is accepted or

rejected according to a probability acquired from the generalised Metropolis algo-

rithm. Factors influencing the probability of acceptance comprise the previous and

candidate objective function values (Oi, Oi+1) as well as the number of iterations

that have been made so far. During the initial iterations, the SA has a relatively

high probability of accepting changes that may worsen the objective function. In



96 CHAPTER 5. AUTOMATIC PARAMETER TUNING

order to explore the function that we want to minimise later in the process, this

probability is reduced allowing the identification of the optimum better. The SA

algorithm runs until the convergence is achieved and the objective function O is

minimised. The overall flowchart of the methodology is shown in Figure 5.3.

The methodology was mainly implemented using R statistics software (Team,

2017). The MPS simulations were performed by calling the DeeSse algorithm

(which is coded in C) from R. For the optimisation part, we implemented the

GSA using the GenSA package of R software (Xiang et al., 2013).

5.4 Results and Discussion

5.4.1 Implementation and Analysis of the Tuned Parame-

ters on the Simulations

As explained in Section 5.3, the aim is to model the lateral variability of the

ore/waste contact surface in a lateritic bauxite deposit using borehole and GPR

datasets (Figure 5.1). For that purpose, we use a training dataset (bivariate TI)

coming from an analogue site (Figure 5.1c,d). The simulation grid has a size of 97

and 214 nodes in the x and y directions, respectively. The TI, on the other hand,

is 180 × 400 in grid size. The spacing between the nodes of both the SG and

the TI grids are 2.38 m. Since the data sets have apparent drifts, the types and

the coefficients of these drifts were initially detected. First order trend surfaces

for the TI and the second order trend surfaces for the simulation variables were

found suitable and subtracted from the data sets to obtain the residuals. The

residuals obtained were then used to perform the MPS simulations. Following the

simulations, the trend surfaces were added back to each realisation.

Several combinations of DS parameters were initially tested to determine the

appropriate simulation parameters by visually checking the simulation qualities.

These initial attempts have shown that the simulation qualities were rather sensi-

tive to changes in the parameter, making it difficult to identify optimal parameters

through visually analysing the resulting simulations. The proposed methodology
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Figure 5.3: Flowchart of the methodology.
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was then implemented. Five parameters that were considered during the optimi-

sation procedure were whd, nhd, nGPR, thd and tGPR. The weighting factor wGPR of

the GPR data was not selected for the optimisation, as the simulation grid SGGPR

of the GPR data was already exhaustively informed and any change in wGPR would

not affect the simulations. One of the main parameters of the DS algorithm, the

scan fraction f , was also not considered in the procedure. Based our previous

trials, it did not affect the simulation quality significantly for this example. This

observation of ours is rather consistent with the results presented in Meerschman

et al. (2013); they state that the parameter f has a small effect on the simulation

qualities unless it is below 0.2 for continuous simulations. Therefore, the scan

fraction f was kept equal to 0.5 throughout the optimisation procedure.

As the first step of our proposed algorithm, a search template is built to capture

4 points to construct the pseudo-histogram. Because the boreholes are drilled on

a regular grid of 19.05 × 19.05 metres and the grid spacing is 2.38 m, they are

located in the SG at every 9th node in the x and y directions. Therefore, a 9

× 9 search template was constructed to capture four borehole data at a time.

This search template was then used to construct the pseudo-histogram Hd,C of the

borehole patterns.

Having constructed the pseudo-histogram of the conditioning data, the SA

algorithm was run with the following initial parameters: whd = 10, nhd = 5, nGPR

= 20, thd = 0.01 and tGPR = 0.1. These parameters were selected as the ones

yielding visually good simulation quality during the manual sensitivity analyses.

In addition, the optimisation is also constrained by an upper and lower boundary,

as can be seen in Table 5.1. The resulting realisation is shown in Figure 5.4a.

The pseudo-histogram Hd,SIM of the initial realisation is then calculated to

compute the dJS mismatch. The JS divergence dJS between the pseudo-histograms

Hd,C and Hd,SIM was initially calculated as 0.102. Using 30,000 function calls

as the stopping criteria, the SA algorithm converged and found the parameters

for the DS algorithm yielding a local minimum divergence value. The resulting

realisation can be seen in Figure 5.4b. The parameters along with their associated

JS divergence values are provided in Table 5.1.
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Figure 5.4: Realisations produced with (a) the initial parameters and (b) final
parameters.

Table 5.1: Initial and optimum parameters together with the associated JS diver-
gence values.

Parameters whd nhd nGPR thd tGPR dJS

Lower Boundaries 1 1 1 0.0001 0.0001 0.1520
Initial Parameters 10 5 20 0.010 0.10 0.1020
Automatic Tuning 13.07 14 45 0.009 0.305 0.0667
Upper Boundaries 15 50 50 0.5 0.5 0.1793

Although the initial and final realisations exhibit a noticeable difference, the

average of 40 realisations generated using the initial and optimum parameters do

not show an apparent dissimilarity, as can be seen in Figure 5.5. However, the

interquartile ranges of the elevation values calculated at each grid node notice-

ably dropped after the parameter tuning procedure, as illustrated in Figure 5.5.
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This can be seen more clearly in the distributions of IQR values shown in Figure

Figure 5.5: (a) Initial average of the realisations; (b) final average of the realisa-
tions. Interquartile range maps: (c) before the parameter optimisation and (d)
after the parameter optimisation.
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5.6. Similarly, the evolution of the variograms in Figure 5.7 also shows that the

variability between the realisations has decreased. In other words, the statistical

fluctuations are better centred around the experimental variogram of the borehole

data. These results indicate that although the means of the realisations exhibit a

considerable similarity, there is a reduction in the estimated uncertainty around

the mean. Since the optimised realisations are richer in terms of conditioning

data patterns, the model of uncertainty would represent the original data vari-

ability better. Therefore, we consider the resulting uncertainty reduction as an

improvement.
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Figure 5.6: Evolution of the distributions of the IQR values calculated at each grid
node. Mean of the IQR values dropped from 0.60 to 0.47 in automatically found
parameters.

5.4.2 Effect of the Optimisation Method and the Initial

Parameters on the Final Results

In order to test the choice of the SA, we compared the performances of differ-

ent optimisation techniques. The parameter tuning process has also been car-

ried out using other optimisation methods. These optimisers include the L-BFGS

(quasi-newton type) (Zhu et al., 1997) and BOBYQA (trust region) (Powell, 2009)

methods. The optimisers were set to run with different initial parameters. These

included a set of input parameters yielding a high JS divergence value, suggested
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Figure 5.7: Variograms of the realisations and the experimental variogram of the
borehole data: (a) Variograms before the optimisation; (b) variograms after the
optimisation and (c) 99.9% confidence interval of the variograms before and after
the optimisation.

parameters in Meerschman et al. (2013) and our initial parameters based on the

manual sensitivity analysis.

The results in Figure 5.8 indicate that the final value of the JS divergence is

highly dependent on the initial parameters chosen for the BOBYQA and LBFGS

optimisers. The performance of the SA algorithm, on the other hand, is less

sensitive to the choice of initial parameters for these cases. Therefore, it is more

robust and requires less preliminary manual sensitivity analysis. As discussed

earlier, such a manual analysis is rather time consuming as it involves testing

different set of parameters and observing the results manually. Furthermore, in

three out of four cases, the SA outperformed the other optimisation algorithms in

terms of reaching the minimum JS divergence.

It should be noted that the optimizers used in this paper are reaching an opti-

mum solution by utilising an iterative process. Hence, as the number of iterations

increases, the probability of achieving a better solution increases as well. However,

this would increase the total CPU time required for the optimisation. In the case

study presented, 5 DS parameters were tuned to simulate the elevation values of

the ore/waste interface. The simulation of 20,758 grid nodes took, on average, 4 s

to perform one run using 8 threads. Using 30,000 simulations in the optimisation

process, therefore, takes roughly 33.3 h to complete. If the method is applied for
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a problem with larger grid size, CPU time may become an important concern.

Therefore, the number of iterations should be adjusted depending on the nature

and the complexity of the simulations. Based on our experience obtained from this

study, even 100 function calls with the SA seem to be adequate to find a better

set of parameters than the visual inspection method. This can also be seen in the

convergence plots of the SA for 30,000 function calls (Figure 5.9). Taking the total

reduction in 30,000 function calls as a reference (from 0.180 to 0.067), the graphs

show that 75% of the reduction that is achieved actually takes place within 100

function calls. Whereas, 99% is achieved in 7000 function calls. Therefore, if fea-

sible, the optimisation can be set to run around seven to eight thousand function

calls. Otherwise, a hundred function calls would also yield satisfactory results.
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Figure 5.8: Convergence comparisons of three different optimisers with three dif-
ferent set of initial DS parameters.

5.4.3 Effect of the Chosen Parameters on the Pattern Re-

production

Since the JS divergence is a function of five DS parameters, the direct visuali-

sation of its behaviour depending on the parameters is not straightforward. An
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Figure 5.9: Convergence graphs obtained by running 30,000 function calls.

approach to visualise such multi-dimensional problems is to plot the lowest JS

divergence values in 1-D against individual parameters. This technique is called

profile-likelihood and is utilised to check visually the parameters of a statistical

model obtained via maximum likelihood techniques. The idea is to plot the maxi-

mum likelihood function values as a function of all but one parameter. It can also

be considered analogous to tracking the maximum values along the crests of a five

dimensional function. Given a model with parameters (α, ψ) and the likelihood

L(α, ψ), the profile of the likelihood Lp(α) for parameter α can be denoted as

follows (Diggle et al., 1998):

Lp(α) = L(α, ψ̂(α)) = max
ψ

(L(α, ψ(α))) (5.12)

To create such 1-D profiles, 30,000 DS simulations were first performed. During

these simulations, the tested parameters and their associated JS divergence values

were recorded. In our case, we were interested in minimising the objective function.

Therefore, we used the created data set to plot the individual parameters against

the minimum JS divergence values.
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The created profiles shown in Figure 5.10 help our understanding of the op-

timisation problem better and its sensitivity to the parameters. For instance,

they show that as the parameter thd increases, the JS divergence increases as well.

This is an expected outcome as a high thd would lead to poor reproduction of the

conditioning patterns; hence, would yield a high JS divergence.
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Figure 5.10: Profile JS divergences as a function of 5 DS input parameters.

For the nhd parameter, the JS divergence decreases as expected with the max-

imum number of neighbours in the search template. But, the decrease stops at
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around thirteen and then starts to slightly increase with increasing nhd. It means

that the conditioning data patterns are best reproduced with search templates con-

sisting of approximately thirteen informed nodes. This is unusual since in most

cases the patterns of the TI are better reproduced with more points (Meerschman

et al., 2013). Here, the TI seems to contain features that are not present in the

conditioning punctual data. One can see this as an indication that the TI is not

fully compatible with the point data. But also, a very interesting feature is that

the proposed automatic parameter identification is able to find automatically the

best compromise between reproducing the patterns from the TI and those of the

available point data. It is able to adapt the level of reproduction of the TI to

ensure compatibility with the conditioning data.

Similarly, there is an apparent trend in the profile JS divergence for tgpr. As

the tgpr increases, the JS divergence decreases and yields better simulation results.

This is an unusual behaviour and can be better understood by being reminded

of how the DS works. Considering a bivariate pattern collected from the SG, the

grid nodes of the TI are visited to find a compatible match. During this search, a

compatible pattern is considered to be the one with computed distances lower than

the specified thd and tgpr. An increase in tgpr increases the probability of accepting

a GPR component of the multivariate pattern as compatible. Therefore, the effect

of the GPR variable becomes less pronounced in the simulations. Secondary infor-

mation is normally considered to enhance the quality of the simulations. Here, the

TI could be imperfectly compatible with the simulated area, as the multiple-point

dependence between the reference mine and the simulation area could be different.

For the nGPR and wHD parameters, the plots are noisy and do not exhibit a

simple systematic decrease or increase. Considering that these plots were created

using 30,000 simulation data, these noisy plots should not be due to insufficient

data. A more likely cause could be the existence of many local minima. This could

explain why the SA performed more efficiently than the other optimization meth-

ods.

Another observation is related to the sensitivity of the JS divergence to the

parameters. When the range of the JS divergence values are considered, thd seems
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to be the most sensitive parameter as it has a high range of JS divergence values.

This parameter is followed by nhd and tgpr. The parameters whd and ngpr seem to

have less effect on the resulting JS divergences. Another interesting observation is

related to the thd and tgpr values. Both threshold values lose their significance on

the JS divergence values above t = 0.3. Therefore, it can be concluded that the

most influential range for these parameters for this case is between 0 and 0.3.

5.4.4 Analysis of the Automatically Tuned Parameters

The DS algorithm we used in this study was DeeSse. This version of the DS

incorporates some modifications such as the introduction of a specific threshold

for each variable rather than a global one as in the original version of Mariethoz

et al. (2010). Therefore, a direct comparison of the parameters we found with

the parameters suggested by Meerschman et al. (2013) (based on the original

DS) cannot be made. However, we can still get an insight into the parameters

from their study. For instance, they have documented an increase in the pattern

consistency by altering the conditioning data weight from 1 to 5. In our case, the

optimal value was found to be 13.07. This means that high importance was given

to the conditioning data points. Hence, better reproduction of the conditioning

data pattern was attained. Also, the threshold value for a good quality simulation

is suggested to be lower than 0.1 for the continuous variables. In addition, t ≥
0.2 is stated to produce noisy images. Our automatically found threshold values

for the conditioning data, which is 0.009 is also consistent with their findings.

However, GPR threshold tGPR was determined as 0.305 and it is higher than their

suggested values. The fact that tGPR value is higher than tHD could be due to

the objective function chosen. As the aim was to reproduce the conditioning data

better in the simulations, the focus has automatically become more on better

pattern consistency of the reference mined-out surface patterns.
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5.5 Summary and Conclusions

In this paper, we presented a methodology to improve bauxite footwall contact

simulations through an automatic parameter tuning process. The main idea was

to identify the parameters best reproducing the patterns existing in the bore-

hole/conditioning data. There are several benefits of relying on the borehole data

patterns to tune the parameters. First, although the borehole data is a partial

representation of the ground truth, they serve as precise and rather reliable infor-

mation. Second, in lateritic bauxite deposits, the data set can be dense enough to

compute the pattern statistics of the conditioning data as a reference to be targeted

in the simulations. Third, getting a TI may sometimes be difficult. Considering

the mined-out topography exposed after a bauxite extraction, the resulting sur-

face might not be entirely compatible with the conditioning data of another area.

Therefore, putting more emphasis on the conditioning data and borrowing the

patterns from a TI can be considered as a merge between two sets of information.

As a result, the adapted MPS parameters lead to generating realisations which

contain the correct patterns observed at the location where the forecast is being

made.

The proposed approach mainly provides three significant advantages. The first

advantage is related to the uncertainty estimation. The evolution of the calculated

IQR values at each grid node reveals a fair drop in the uncertainty after the pa-

rameter optimisation. Also, the observed convergence of the simulation variograms

towards the conditioning data variogram indicates that the uncertainty estimation

is more reliable after optimisation. Secondly, the parameter selection is carried out

more objectively than with the usual trial and error approach. Identification of

the appropriate parameters is performed based on an objective and quantitative

criterion. Therefore, it naturally alleviates any subjective decision that can be

made as a result of the visual inspection method. Third, the approach reduces

the time and effort spent for the sensitivity analysis. Contrary to a traditional

parameter tuning procedure in which a set of different parameters are tested and

the results are analysed manually, the proposed approach selects the parameters

automatically. This reduces the time and effort spent for the manual sensitivity
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analysis. Only some initial tests are required to set up the optimisation process.

In addition to the above-mentioned advantages, the selection of the pseudo-

histograms of Melnikova et al. (2015) as pattern statistics provides: (1) the ability

to calculate the pattern statistics of continuous images; (2) computation of the

pattern statistics of regularly spaced borehole data and (3) an extensive flexibility

when constructing the histogram categories. For instance, apart from the patterns

of the borehole data, one can also include the patterns from the other sources to

update the pattern categories. Examples of such sources may include the training

images or simulations. All the patterns coming from different sources can then be

used to construct the categories of the pseudo-histograms.

Visualisation of the behaviour of the JS divergence values based on the pa-

rameters has been performed through the profile-likelihood method. It allowed

the analysis and better understanding of the behaviour of the objective function.

The results have shown that the most influential parameters were thd, tgpr and

nhd. An interesting observation was made on tgpr. Contrary to the expectation,

the JS divergence value increased with decreasing tgpr. Such a behaviour could

be due to a possible TI compatibility issue and should be further investigated. In

general, we believe that the observed objective function behaviours are related to

both the choice of objective function as well as the case study. For instance, if

the chosen objective function included the better reproduction of the TI patterns

rather than the conditioning data, a different result could have been observed.

Therefore, a different case study and the choice of the objective function could

lead to a different behaviour.

One of the drawbacks of the proposed approach is the requirement of reg-

ularly spaced conditioning data to calculate the pattern statistics. We use the

patterns with a particular spatial configuration in the pseudo-histogram construc-

tion. Therefore, the proposed method can only be used if the conditioning data

is regularly spaced. Considering the stratified deposits such as lateritic bauxite,

nickel or coal seams, a regularly spaced exploration borehole configuration is of-

ten implemented. Hence, the proposed approach can be used to aid parameter

tuning for the MPS algorithms for such deposits. However, the conditioning data
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sets may sometimes be sparse and it may not be possible to accurately infer the

multiple-point statistics of the conditioning data and make a comparison with the

simulations. In such a case, the objective function could focus more on the re-

production of the multiple-point statistics of the training image and can easily be

integrated into the objective function in the manner described in this paper.

The general workflow proposed in the paper could be adapted to irregularly

spaced conditioning data, but this would require using a different quantification

of pattern statistics. One idea could be to use cumulants (Dimitrakopoulos et al.,

2010), because of the tolerances it offers for irregular grids. Another option would

be to define a very different objective function focusing on a cross-validation ap-

proach where the quality criteria would be based on evaluating the MPS model

performances. Most likely, the simulated annealing would still remain the most

efficient algorithm to obtain the parameters since previous experiences have shown

that the objective functions may contain local minima (Meerschman et al., 2013).

Lastly, as this approach identifies the parameters iteratively, it requires com-

putational time. This is a well-known feature of the SA technique. However, the

strength of the approach is that it allows obtaining a global minimum even when

the objective function contains many local minima. This has also been observed

by the comparison made using different optimisers with different initial DS pa-

rameters. The SA does not get stuck in local minimum values as compared to

the other methods. Moreover, when different the optimisations are initiated with

initial input parameters, the SA appears to be the least sensitive method among

the ones tested. Therefore, it might require less preliminary sensitivity analysis to

define the initial parameters for the optimisations. These facts favour the use of

the SA to tune the parameters automatically.
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Chapter 6

Pilot-point optimisation of mining

boundaries for lateritic metal

deposits: finding the trade-off

between dilution and ore loss
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Abstract

Geological contacts in lateritic metal deposits (footwall topographies) often delin-

eate the orebody boundaries. Spatial variations seen in such contacts are frequently

higher than those for the metal grades of the deposit. Therefore, borehole spac-

ing chosen based on the grade variations cannot adequately capture the geological

contact variability. Consequently, models created using such boreholes cause high

volumetric uncertainties in the actual and targeted ore extraction volumes, which,

in turn, lead to high unplanned dilution and ore losses. In this paper, a method

to design optimum ore/mining boundaries for lateritic metal deposits is presented.

The proposed approach minimizes the dilution/ore losses and comprises two main

steps. First, the uncertainty on the orebody boundary is represented using a

set of stochastic realizations generated with a multiple-point statistics algorithm.

Then, the optimal orebody boundary is determined using an optimization tech-

nique inspired by a model calibration method called Pilot Points. The pilot points

represent synthetic elevation values and they are used to construct smooth mining

boundaries using the multilevel B-Spline technique. The performance of a gener-

ated surface is evaluated using the expected sum of losses in each of the stochastic

realizations. The Simulated Annealing algorithm is used to iteratively determine

the pilot point values which minimize the expected losses. The results show a

significant reduction in the dilution volume as compared to those obtained from

the actual mining operation.

6.1 Introduction

Given a laterite-type bauxite deposit formed from tropically weathered mafic-

ultramafic complexes, the bauxite mineral exists in the soil horizons (Erten, 2012).

Therefore, the deposit can be mined easily by a front-end loader due to the free-

flow characteristics of the loose soil. Being an underlying geological unit, ferricrete

is very likely to dilute the bauxite ore during mining operations due to poorly

defined geological interface between bauxite and ferricrete units. Although this

dilution can partly be alleviated by the front-end loader operator, who subjectively
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discriminates the bauxite ore from the ferricrete based on the hardness and color

differences of the geological units at the time of mining, it still cannot be avoided

entirely.

Ferricrete dilution is the major cause of high silica content in the bauxite ore,

as it is tremendously rich in silica-bearing minerals such as kaolinite and quartz

(Morgan, 1995). The contact topography between the bauxite and ferricrete units

is rather undulating and cannot be modeled satisfactorily by using an economi-

cally viable drilling program, as the drill spacing is usually determined based on

the continuity and variation in the aluminum grade (Singh, 2007; Hartman and

Mutmansky, 2002). In other words, since the peaks and troughs cannot be sam-

pled adequately, they cannot be inferred from the geostatistical estimates either

(Philip and Watson, 1986). This situation is also illustrated in Figure 6.1. Failing

to model the contact surface accurately introduces a major uncertainty, which may

then lead to the following: (1) inaccurate calculations of the ore volume/tonnage

and the quantity of the caustic soda being consumed; and (2) subjective ore ex-

traction strategies by the front-end loader operators.

Pisolitic Bauxite

Kaolinite

Ferricrete

Top Soil

Estimated surface

Boreholes

Actual surface

Dilution Ore Loss
Ore 
Zone

Figure 6.1: The peaks and troughs of the actual ore/waste interface cannot be
detected by an economically viable drilling spacing. This results in an inaccurate
estimation of the ore/waste contact (after Erten (2012))



6.1. INTRODUCTION 119

There are several ways to reduce the uncertainty in the contact surface and

its possible consequences. One of the easiest ones would be to conduct a dense

drilling program to capture the peaks and troughs of the contact surface. How-

ever, this would dramatically increase the associated costs making the operation

less profitable and even not feasible at all. Another way to reduce the uncertainty

in the contact surface models is the use of geophysical methods to contribute to

the orebody delineation (Campbell, 1994; Fallon et al., 1997). Among the geo-

physical methods, ground penetrating radar (GPR) has been efficiently used to

improve the delineation of ore/waste boundaries in lateritic ore bodies (Francke,

2010, 2012b,a; Francké and Nobes, 2000; Francke and Parkinson, 2000; Francke

and Utsi, 2009; Francké and Yelf, 2003; Barsottelli-Botelho and Luiz, 2011; Da-

gasan et al., 2018). However, GPR surveys alone cannot replace the traditional

drilling due to their lack of accuracy. They are most efficiently used as secondary

information to complement the borehole data through geostatistical data integra-

tion techniques (Erten, 2012). Applications of such data integration presented by

Erten (2012); Erten et al. (2013, 2015) demonstrate the benefits of using the sec-

ondary information on the model precision. However, even though a better model

representing the ore/waste contact surface is attained, the large spatial variations

inherent to the ore/waste interface limits the mining equipment to track down a

given contact surface accurately.

Due to large spatial variations and the uncertainties inherent to the geologi-

cal contact, any excavation surface inevitably causes dilution and ore losses. Al-

though this problem shows a similarity with the dig-limit problems in open-pit

mining, which has been covered by several studies such as Norrena and Deutsch

(2001, 2002); Richmond (2004); Richmond and Beasley (2004); Isaaks et al. (2014);

Ruiseco et al. (2016); Ruiseco and Kumral (2017); Sari and Kumral (2018), the

problem with lateritic deposits is rather specific due to the nature of free-digging

mining method. Research on finding the optimum elevation values for a lateritic

nickel mine has been carried out by McLennan et al. (2006), but the focus was to

optimize the dilution and ore losses. The approach did not put a strong emphasis

on the equipment selectivity due to low dilution/ore loss ratio and good equipment
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selectivity.

The aim of this research is to design optimum extraction boundaries for lat-

eritic metal deposits based on the simulated ore/waste interface. The proposed

approach can be used to generate mining boundaries minimizing the unplanned

dilution and ore loss as well as increasing the mining equipment flexibility. It is

inspired by a model calibration technique, which is frequently used in hydrogeol-

ogy, called pilot points. In this technique, several pilot points are first placed in

the area to be mined out. These pilot points represent synthetic elevation values

and act as points controlling the shape of proposed extraction boundaries. The el-

evation values at the pilot points are iteratively modified in order to find a smooth

excavation surface minimizing the possible dilution and ore losses. Multilevel B-

spline method (MBS) (Lee et al., 1997) was used to create a smooth surface by

interpolating the values at the pilot point locations with a predefined smooth-

ness parameter. The losses associated with a decision surface are calculated using

several hundreds of equiprobable realizations generated using the direct sampling

(DS) (Mariethoz et al., 2010) multiple-point statistics algorithm. This makes the

generated excavation surfaces account for the uncertainties in the ore/waste inter-

face. The elevation values at the pilot point locations were iteratively optimized

using the simulated annealing (SA) algorithm (Kirkpatrick et al., 1983), which

uses the sum of the losses in all the realizations as the objective function. The

pilot point values yielding minimum losses were then employed to construct the

suggested extraction surface.

6.2 Review of underlying methods

The following subsections provide the required background information to com-

prehend these methods, which form the foundations of the methodology described

in Section 6.3.
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6.2.1 The Direct Sampling MPS Algorithm

The direct sampling (DS) is a pixel-based MPS algorithm used to simulate a

random function Z(x) on a simulation grid (SG) (Mariethoz et al., 2010). It

stochastically reproduces the spatial or temporal patterns in the simulation do-

main by integrating the datasets from analogue sites through training images (TI)

(Oriani et al., 2014; Pirot et al., 2014). A TI serves as a conceptual geological

model and contains spatial structures that are thought to exist in the simulation

area (Guardiano and Srivastava, 1992). The DS uses the spatial patterns in the

TI to stochastically simulate a random function Z(x). The steps to perform the

simulations are as follows:

1. Migrate any available conditioning data to the SG.

2. Visit a non-informed grid node at x following a predefined random or regular

path.

3. Determine n number of closest informed nodes at {x1, x2, ..., xn}.

4. Define the lag vectors L = {h1, h2, ..., hn}, where hi = xi − x, to construct

the data event dn(x, L) = {Z(x+ h1), ..., Z(x+ hn)}.

5. Randomly scan the TI at y locations and calculate the distance between

dn(x, L) and dn(y, L) = {Z(y + h1), ..., Z(y + hn)} until it falls below a

threshold t or a maximum scan fraction f is reached.

6. Take the pattern as the best match and paste the central node Z(y) to the

grid node at x location.

7. Repeat the steps 2-6 until all the grid nodes are informed.

The DS algorithm also makes it possible for multivariate simulations ofm variables,

which are spatially dependent by an unknown function (Mariethoz et al., 2010).

This is basically carried out by computing the distances between the joint data

events dn(x) and dn(y) of m variables in both the SG and the TI, respectively. In

this research, the MPS simulations were carried out by calling the DS algorithm,
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which is coded in C, from R software (Team, 2017). The version of the DS used is

called DeeSse (Straubhaar, 2016). Detailed information on the algorithm can be

found in Mariethoz et al. (2010); Meerschman et al. (2013); Straubhaar (2016).

6.2.2 Pilot Point Method (PPM)

PPM is an inverse modeling technique that is commonly used to calibrate ground-

water models (Jung, 2008). It was first suggested by de Marsily et al. (1984) and

later modified by several researchers Certes and de Marsily (1991); LaVenue et al.

(1995); RamaRao et al. (1995); Oliver et al. (1996); Cooley (2000); Alcolea et al.

(2006). The primary motivation of the PPM was to overcome the non-uniqueness

and instability problems of the previous inverse techniques using a reduced pa-

rameter space. In this method, several calibration points are first chosen from the

model domain where there are no conductivity measurements taken. These points

are called pilot points and represent synthetic conductivity values to be iteratively

calibrated by minimizing the squared errors between the actual and observed head

values. At every step, the pilot point values are used to generate the conductiv-

ity field using a geostatistical interpolation technique with a particular prescribed

spatial structure inferred from the measurements.

In this research, the PPM was tailored for a mining application. Rather than

calibrating the conductivity field, the method was used to create optimum mining

boundaries. The pilot points located within the modelling domain control the

shape of the mining boundaries and were iterated to seek the pilot point values

yielding minimised dilution and ore losses. The details of our proposed mining

application are explained in the following sections.

6.2.3 Multilevel B-Splines

The MBS method was used to interpolate or approximate a scattered dataset

(Lee et al., 1997). Given a scattered dataset P = {(xc, yc, zc)} on a Ω domain,

the method uses zc values at (xc, yc) locations to carry out the approximations.

A function f (x, y) approximating the values zc at (xc, yc) locations were sought
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to interpolate the Z field. To carry out this, the method utilizes a hierarchy

of control lattices Φ0,Φ1, ...,Φh overlain the domain Ω. Each of the control lat-

tices Φk contains a different number of control points with varying spacing. The

spacing between the control points of a Φk is always halved for the subsequent con-

trol lattice Φk+1. Therefore, the 0th control lattice Φ0 becomes the coarsest and

Φh as the finest. Approximation with the coarsest control lattice Φ0 comprises

the first step of the MBS method yielding f0 function. Being an initial smooth

approximation, f0 results in a deviation ∆1zc = zc − f0(xc, yc) for each point

(xc, yc, zc). The algorithm proceeds by using the next control lattice Φ1 to generate

a function f1 which approximates the preceding deviation P1 = {(xc, yc,∆1zc)}.
A better approximation with a less departure from the original data points P

would then be obtained by the sum of f0 + f1. This would result in the deviation

∆2zc = zc − f0(xc, yc) − f1(xc, yc). Therefore, the deviation for a level k can be

calculated as ∆kzc = zc−
∑k−1

i=0 fi(xc, yc). Since the origin of the approach creates

a surface approximating the points P , the interpolation is achieved through a suf-

ficiently small finest control lattice Φh. The introduction of the adaptive control

lattice hierarchy helps to achieve finer lattices with a reasonable memory require-

ment. More information regarding the theory can be found in Lee et al. (1997).

The MBS method in this research is implemented using the MBA package created

for the R statistics software (Finley and Banerjee, 2010).

6.2.4 Simulated Annealing (SA) Algorithm

Simulated annealing (SA) is one of the stochastic optimization techniques used to

solve global optimization problems (Kirkpatrick et al., 1983; Xiang et al., 2013).

The method finds the global minimum of an objective function by mimicking

the annealing process of a molten metal. The artificial temperatures used in the

algorithm allows to regulate the cooling schedule and to introduce stochasticity.

This stochasticity is basically used to avoid the solution from trapping inside a

local minimum by changing the probability of acceptance throughout the cooling

schedule.

Given an objective function f(x) with the decision variables x = (x1, x2, ..., xn),
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the SA algorithm utilizes the following to attain a global minimum (Sun and Sun,

2015):

1. Set a high initial temperature value T0 and an initial solution x0 to evaluate

the objective function E0 = f(x0).

2. Propose a new candidate solution xi+1:

• Propose a candidate solution xi+1 based on the current one (xi) through

a predefined visiting distribution.

• Evaluate the energy difference ∆E = f(xi+1) − f(xi) to observe the

change in the objective function for the candidate solution.

• Accept the iteration if the candidate solution reduces the objective func-

tion, ∆E < 0.

• If the new candidate yields a greater objective function value, accept or

reject the solution based on a probability of acceptance criterion.

3. Repeat step 2 for L number of iterations holding T constant.

4. Reduce the temperature to Tn+1 based on a cooling function.

5. Repeat steps 2-4 until the convergence is achieved.

In this research, Generalized Simulated Annealing (GSA) method (Tsallis and

Stariolo, 1996) was used to optimize the pilot point values. It makes use of the

distorted Cauchy-Lorentz visiting distribution to seek for an optimum solution

(Tsallis and Stariolo, 1996). The GSA offers different options for the stopping cri-

teria such as maximum running time, maximum function calls, maximum iteration

number or a threshold value for the objective function. The implementation of the

GSA was performed using the GenSA package of the R statistics software (Xiang

et al., 2013). The default SA parameters of the package were set to solve complex

optimization problems (Xiang et al., 2017). Therefore, these values were used to

optimize the pilot point values in this research.
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6.3 Methodology

The methodology of the proposed approach includes several steps to generate

an optimum ore/waste boundary. First one of these is to create an ensemble

of equiprobable realizations representing the uncertainty on the position of the

ore/waste interface. This step is followed by locating some pilot points in the

simulation grid and fitting a smooth surface to them. The elevation values of the

pilot points are then iterated and updated using the SA to seek the combination of

the pilot point values minimizing the total losses in each of the realizations. These

steps are illustrated in Figure 6.2. More information about the steps is given in

the following subsections.

(a)

Generate an ensemble of k realizations 

using the DeeSse

Surface 

Topography

Realisations for the

footwall contact

Pilot Points

(b)

Locate the pilot points in the simulation 

domain

(c)
Interpolate the pilot points to create a candidate mining 

boundary and iterate the pilot point values

(d)

Find the optimum values for the pilot points yielding 

the mining boundaries which minimize the sum of 

expected losses in each realization
Multilevel B-Spline Surface

Synthetic elevation values

Figure 6.2: The main steps of the proposed methodology. See text for detailed
explanations.

6.3.1 Simulations of the bauxite/ferricrete contact

The proposed methodology requires an ensemble of k conditional realizations

R = {Rj| j = 1, 2, ..., k} representing the ore/waste interface generated as a first
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step. In order to perform the simulations, the borehole elevations of the geological

contact were used as the conditioning data. Available GPR survey of the area, on

the other hand, was used as the secondary information to guide the simulations.

Creating such realizations rather than a single estimation plays an important role

in integrating the uncertainty in the designed excavation surface.

The required simulations in this research were obtained using the DS MPS

algorithm due to the benefits it provides in modeling the ore/waste boundaries of

lateritic metal deposits. For instance, it utilizes a TI as a structural model, rather

than a variogram. Therefore, knowledge on the spatial structures can be inferred

from the previously mined-out areas through the TI concept. Since the mined-out

topographies represent a complete picture of the geological variations inherent in

the contact, they can provide rich structural information. In classical geostatistics,

such information is derived from the sparse borehole data, which only offer a partial

knowledge of the ground truth. An additional benefit of using a TI is that the

resulting modeling framework is rather non-expert friendly as variogram modeling

is not needed. Furthermore, the DS allows performing multivariate simulations by

utilizing the multiple point dependence between multiple images. If geophysical

data are available, as in our case, this can be incorporated easily in the modeling.

Although the use of MPS offers some benefits, the requirement of a TI to

perform the simulations might sometimes limit its application. For instance, after

the extraction of a bauxite deposit, a mined-out surface is exposed and this can

be used as a TI through a topographic survey. However, such a survey data may

not always be readily available. In such cases, the contact simulations can be

performed using standard geostatistical simulation techniques as well. The DS

MPS algorithm has been used in this research since a mined-out floor survey (TI)

was already available.

6.3.2 Locating pilot points

Once a set of realizations for the footwall topography are generated, the next step

involves locating several pilot points θ = {θ(xl)| l = 1, 2, ...,m} in the mining area.

These pilot points function as synthetic elevation values, which are used to create
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an optimum ore/mining boundary through interpolation.

The process required to set-up the pilot points can be explained in four steps,

as illustrated in Figure 6.3. The first one of these is to create a grid to store their

values and locations. The resolution of this grid can be chosen to be the same

as the SG. Once this is done, the next step comprises locating the pilot points

based on a predefined spacing. In order to better observe the effects of the chosen

spacing on the results in this study, pilot points were regularly spaced. That is, if

the spacing is chosen as five grid nodes, the pilot points are located at every 5th

node of the pilot points grid. After this step, the initial values of the pilot points

(synthetic elevation values) need to be assigned. This can either be performed by

drawing numbers from a random number generator or using the simulations. The

random values for the pilot points can be generated within a defined upper and

lower boundary. Such boundaries can be determined using the maximum elevation

value of the surface topography and the minimum elevation value of the contact

realizations. Getting the initial values from the simulations can simply be achieved

by copying the elevation values from the nodes of a realization which are co-located

with the pilot points. The final pilot point values, on the other hand, are decided

by the SA algorithm iteratively and lead to minimized dilution and ore losses. If

the boundaries of the grid do not have at least one pilot point, additional pilot

points are also placed at the boundaries. These additional points are required

to make the interpolation cover the whole modeling domain. For example, when

locating the pilot points in Figure 6.3, no points were placed in the right, left and

bottom boundaries initially. Therefore, three random locations in each boundary

were chosen to place an additional three pilot points.

It should be noted that the spacing chosen between the pilot points affect

the smoothness of the created mining boundaries as well as the dilution/ore loss

amounts. If the spacing between the pilot points is small, the resulting surface

becomes more detailed. Therefore, it is advised to determine this number based

on the equipment flexibility as well. A surface created using dense pilot points

would yield an uneven surface which would increase the time and fuel consumption

required to perform the excavation task.
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Figure 6.3: Steps followed to locate the pilot points and assign their initial values
in the mining area

6.3.3 Smooth excavation surface design

Multilevel B-spline is used as an interpolation technique to construct the smooth

excavation surface. The construction of the surface is mainly accomplished by

interpolating the Z field at each grid node of the mine area using a number θ of pilot

points. The degree of fluctuations that the resulting surface exhibits is primarily

influenced by two factors. The first one is the number of h levels used in the

MBS interpolation. As this number increases, the fluctuations of the constructed

surface also increases due to better approximations made in the finer levels. The

second factor is related to the spacing between the pilot points. Small spacing
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values between pilot points result in an increased number of pilot points. This

would then lead to greater variations in the interpolated surface. We consider

the fluctuations of the resulting surface as an essential factor for the equipment

flexibility. Being able to adjust this allows one to integrate the equipment flexibility

in the designed excavation surface.

6.3.4 Loss calculation-Objective Function

The objective of the optimization is to find the θ = {θ(xl)| l = 1, 2, ...,m} pilot

point values, which lead to the decision surface Sd(θ) that minimizes the sum of

expected economical losses in an ensemble of k realizations:

min
θ

k∑
j=1

Lj(θ) (6.1)

where Lj(θ) is the loss incurred in the realization Rj due to the decision surface

Sd(θ). It can be calculated as follows:

Lj(θ) = pmaxj − pactj (θ) (6.2)

where pmax
j represents the maximum profit that can potentially be made if all the

ore between the surface topography and the ore/waste contact of the jth realization

were extracted. It can be calculated by multiplying the unit profit P by the

extracted volume:

pmaxj (θ) = P

n∑
i=1

Tmaxi,j (θ) · A (6.3)

where Tmax
i,j represents the maximum bauxite thickness at the ith grid node of the

jth realization (see Figure 6.4), A represents the area of a grid cell and n represents

the number of informed grid nodes in the simulation area. Tmax
i,j can simply be

calculated by subtracting the elevation of the footwall topography realisations from
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Figure 6.4: Thicknesses used to calculate the losses due to an excavation surface

those of the surface topography Ztopo
i :

Tmaxi,j = Ztopo
i −Ri,j (6.4)

pactj (θ), on the other hand, represents the actual profit that can be made out of

Rj if the mining is carried out following the boundaries defined by the decision

surface Sd(θ). Its calculation is performed by subtracting the cost of dilution from

the profit made out of extracting the ore at each grid node:

pactj (θ) = P
n∑
i=1

T baui,j (θ) · A− C
n∑
i=1

T dili,j (θ) · A (6.5)

where T baui,j represents the mined bauxite (ore) thickness using the decision surface

Sd(θ), T dili,j represents the ferricrete (waste) thickness overlying the decision surface

and C represents the unit cost of dilution. These thicknesses can be calculated as

follows:

T baui,j (θ) = Ztopo
i −max(Ri,j,min(Ztopo

i , Sdi (θ))) (6.6)

T dili,j (θ) = Ri,j −min(Ri,j,min(Ztopo
i , Sdi (θ))) (6.7)

To sum up, the objective function used for the optimization was evaluated
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based on the expected losses incurred due to a decision surface Sd(θ). Its calcu-

lation was performed in four steps: (1) generation of an ensemble of realizations

(only for once), (2) generating a set of pilot points, (3) fitting an MBS surface to

the pilot points and (4) evaluating the loss due to the constructed smooth surface

in each of the stochastic realizations.

6.3.5 Determination of optimum values at the pilot points

The pilot point values yielding an excavation surface that minimizes the expected

loss were determined by the optimization framework of the SA algorithm. Steps of

the optimization framework to design the optimal mining boundaries can be seen

in Figure 6.5.

Interpolate the 
pilot points using the
Multi-level B-Spline

Candidate 
ore boundaries

RealizationsMPS Simulations

Evaluate the
objective function
(expected losses)

Initial values for the 
pilot points

Start

Calculate 
the energy 
difference

Is the energy 

difference    

lower?

Optimum
Pilot Point 

Values

E

[ ]E L

Is the 

probability of 

acceptance

𝑃𝑎 > random

number

Yes

Accept new 

iteration

No

Yes

Propose new 
pilot point 

values

Is the 

stopping

criterion met?

No

No

Yes

Create the 

optimum mining 

boundaries

Figure 6.5: Steps used to determine the pilot points yielding optimum mining
boundaries

Given a set of initial θ pilot points (vector of decision variables), an MBS surface

is first fitted to them, and the sum of losses in all the realizations is calculated.
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The SA algorithm then perturbs the pilot point values using the Cauchy-Lorentz

visiting distribution to evaluate the performance of a new solution (losses caused

by the updated pilot point values). A change in the pilot point values yielding an

improvement in the objective function (reduction in the losses) is always accepted.

On the other hand, any change in the pilot point values resulting in a worse

solution (increase in the loss) can be accepted or rejected based on the probability

calculated using the generalized Metropolis algorithm. The acceptance probability

depends on the artificial temperature parameter of the SA. As the temperature

set is high in the initial stages of the optimization process, the probability of

accepting worse solutions is high as well. Therefore, the solution space is well

explored in the beginning. As the iterations progress, the probability of accepting

a worse solution goes down since the artificial temperature approaches to zero.

After several thousands of iterations, the SA converges and finds the θopt pilot point

values minimizing the losses. Once the optimum pilot point values are found, they

are then used to design an optimum excavation surface through the MBS method.

6.4 Results and Discussion

The proposed approach was implemented to generate optimum mining boundaries

for a laterite-type bauxite deposit. Being an initial step of the proposed method-

ology, simulations of the bauxite/ferricrete interface were first performed. In order

to achieve this, the elevation variable of the interface was used as the attribute to

be simulated. Due to the existence both of boreholes and ground penetrating radar

data (GPR), the simulations were performed in the form of bivariate simulations.

This was carried out by utilizing the borehole data as the primary variable to con-

dition the simulations and GPR data, which is exhaustively sampled throughout

the simulation domain, as the secondary information to guide the simulations.

Both the borehole and the GPR data contain the elevation variable of the

bauxite/ferricrete interface. The borehole elevations were obtained by observing

the elevation values at which the lithology changes from bauxite to ferricrete. The

GPR elevations, on the other hand, were obtained indirectly from the original raw
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GPR measurements. In the first place, the raw GPR data were acquired in two-

way travel time. Therefore, it initially allowed the determination of the depth from

the surface to the bauxite/ferricrete interface. After subtracting the depths to the

interface from the surface elevations, the GPR elevations for the bauxite/ferricrete

were obtained. These elevations were used as the secondary variable to guide the

simulations. The conditioning data used in the simulations are shown in Figure

6.6.
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Figure 6.6: Conditioning data used in the simulations. Black dots represent the
borehole data locations (primary variable) and the underlying image represents
the GPR data (secondary variable)

A bivariate TI was then constructed to infer the multiple-point dependence

between the borehole and the GPR data. Its variables comprise an exposed mined-

out surface of a previously extracted mining area and an extensive GPR survey

conducted before mining. The variables of the constructed TI can be seen in Figure

6.7.

The grid used to store the TI dataset consists of 180 nodes in easting (X) and

400 nodes in northing (Y) directions. On the other hand, the SG is comprised of 97
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Figure 6.7: The constructed bivariate TI: (a) extraction surface of a previously
mined out area and (b) extensive GPR survey carried out prior to the excavation
of the mining area

and 214 nodes in both easting and northing directions, respectively. The single grid

size is defined as 2.38×2.38m for both the TI and the SG grids. Since the original

data for the GPR and the mined-out floor surface were in the form of point data,

they were migrated to the TI grid node locations. This was performed through

the conditional sequential Gaussian simulation (sGs) technique so as to preserve

the original statistical properties as well as avoiding any smoothing effect. Using

the constructed TI, the DS was used to generate an ensemble of 200 realizations.

The average of the resulting simulations can be seen in Figure 6.8.

The pilot points were placed in the simulation domain based on a defined

grid spacing between them. In order to analyze the effect of the spacing on the

losses and the fluctuations of the decision surface, pilot points spaced 8, 16 and

24 number of grids were tested. The defined spacings yielded 251, 60 and 26 pilot
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Figure 6.8: Average of 200 realizations representing the bauxite/ferricrete interface

points, respectively. Plan views of the pilot point locations in the mining area can

be seen in Figure 6.9.

In addition to the spacings between the pilot points, the number of h levels

used in the MBS method also affects the smoothness of the decision surface. This

parameter was chosen as 10 in this study based on visually inspecting the smooth-

ness of the resulting surface. Although our choice in this research was mainly due

to the visual inspection, we suggest that a suitable value of this parameter be

determined in the future to yield a design surface mimicking the front-end loader

equipment selectivity.

The loss calculations require some unit costs and profits be defined. These

include the profit P of mining a unit volume of bauxite ore and the cost C incurring

in the case of a unit volume of dilution. Since the grade distribution does not

show a significant variability throughout the deposit, we simply assume that the

Al2O3% grades overlying the ore/waste interface are the same everywhere. A

similar assumption was also made for the SiO2% grades within the ferricrete unit.
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Figure 6.9: Locations of the pilot points in the mine area. Blue dots represent the
pilot points located at every (a) 8th grid node, (b) 16th grid node and (c) 24th
grid node. The dashed lines represent the coordinates where the cross-sections
were taken as presented in Figures 6.10 and 6.11

Therefore, given that the dilution is approximately 60 times costlier than ore loss

in the mining of such deposits (Erten, 2012), we simply assumed that a unit loss

occurring due to dilution basically costs $60. We also assumed that the profit

made when one unit of ore is mined is $1. It should be noted that these prices are

hypothetical and might not reflect the reality.

Optimization process begins with assigning an initial set of values for the pilot

points to be optimized. These values can either be randomly chosen or pre-specified

before the optimization. In our case, the values were taken from the elevation

values corresponding to the average of 200 realizations at the pilot point locations.

We also defined a lower and an upper boundary in which the optimum values of

the pilot points are sought. These boundaries function as the constraints of the

optimization. The lower boundary was calculated based on the minimum elevation

value of the bauxite/ferricrete realizations. Maximum elevation constraint, on the

other hand, was the maximum elevation value of the topography. We defined the
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maximum iteration number of the SA as 50,000 and the temperature as 5,000. An

objective function call during the optimization process leads to the loss calculation

for 200 images, which were of size 97 × 214, to calculate the losses in each of the

realizations. Having ran the SA using the defined setup, it converged and yielded

the optimum pilot point values. The resulting cross-sections of the deposit for a

different number of pilot points are shown in Figures 6.10 and 6.11. Plan views of

the generated smooth surfaces are shown in Figure 6.12.
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Figure 6.10: Y-Y cross-sections of the optimum surfaces found by using (a) 251
pilot points, (b) 60 pilot points and (c) 26 pilot points
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Figure 6.11: X-X cross-sections of the optimum surfaces found by using (a) 251
pilot points, (b) 60 pilot points and (c) 26 pilot points
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Figure 6.12: Plan view of the excavation surface designed using (a) 251 pilot points,
(b) 60 pilot points, (c) 26 pilot points and (d) the actual mined-out surface. The
dashed lines show the sections where the cross-sections in Figures 6.10 and 6.11
were constructed.



140 CHAPTER 6. OPTIMISATION OF MINING BOUNDARIES

The cross-sections demonstrate that the optimum surfaces constructed lie above

most of the realizations. This is mainly due to the introduction of a higher dilution

cost compared to that of ore loss. The proposed approach automatically avoids

generating a surface that causes dilution, as it leads to greater losses in the objec-

tive function. Note that the position of the decision surface may seem to be high

above the simulations in certain cases, but this can be since we are only looking

at a section while there are fluctuations in the perpendicular direction that the

decision surface needs to consider to remain optimal.

The use of a different number of pilot points has two main consequences. The

first one is about the fluctuations seen in the decision surface generated. When the

number of pilot points used increases, the decision surface exhibits more fluctua-

tions. Similarly, the use of sparser pilot points yields decision surfaces that exhibit

less fluctuations, as can be seen in Figure 6.12. The second consequence is that

the calculated losses decrease when the number of pilot points increases as shown

in Figure 6.13. This indicates that there is a trade-off between the fluctuations

and the resulting losses. More pilot points allow defining a design surface that will

be rougher and more difficult to excavate but will produce higher revenue.

Following the collection of the borehole and GPR data, the area was mined

out by the front-end loader operator utilizing the hardness difference between the

ore/waste to track the actual geological interface. The surface exposed was mapped

through a topographic survey, and the collected survey points were then used to

create the complete image of the mined-out surface. Point to grid data conversion

has been achieved by the conditional sGs, as in the construction of the TI. The

main idea was again to prevent any smoothing effect.

In order to make a comparison, the expected volumes for the bauxite reserve,

mined portion of the reserve, dilution and ore losses were calculated using the three

optimized boundaries. The expected reserve volume was calculated by taking the

average of the volume between the surface topography and 200 contact realizations.

For the mined reserve calculations, the bauxite volume overlying the optimized

surfaces in 200 realizations were averaged. If the proposed surfaces were below a

realization at a grid node, the elevation differences were multiplied by the area to
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Figure 6.13: Histograms of the losses calculated using the (a) 251 pilot points, (b)
60 pilot points and (c) 26 pilot points and (d) the actual mined out surface

calculate the dilution volume. The sum of all the dilution at each grid node yielded

the total dilution amount for a realization. Similarly, if the optimized surfaces were

above a realization, they were considered to cause an ore loss and the associated

volumes were calculated for each of the realizations. The dilution and ore losses

calculated for 200 realizations were then averaged to find the expected dilution and

ore losses for a given decision surface. In addition, the results of these optimized
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surfaces were also compared with the mined out surface using the same calculation

logic. The summary of the volume calculations given in Table 6.1 demonstrates the

benefit of the proposed method. Concerning the volume calculations, the bauxite

mined using 251 pilot points comprises 77% of the expected bauxite reserve. This

is very similar to the amount of bauxite mined by the operator, which was 76% of

the deposit. However, although both of the surfaces result in obtaining the similar

amount of bauxite deposit, the dilution amount resulted using 251 pilot point

surface was 0.076% of the total mined volume and significantly lower than the

dilution amount of mined out surface, which was 2.7%. The percentages described

are also illustrated in Figure 6.14 in terms of barplots.

Table 6.1: Statistics of the proposed and mined out surfaces

Expected Stats 251 Pilot Points 60 Pilot Points 26 Pilot Points Mined Out

Reserve Volume (m3) 130,448 130,448 130,448 130,448
Mined Reserve (m3) 100,506 86,938 75,324 99,316
Ore Loss (m3) 29,942 43,510 55,124 31,131
Ferricrete Dilution (m3) 76 86 113 2791
Economical Losses $34,502 $48,713 $61,946 $159,104

251 PP 60 PP 26 PP Mined Out
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Figure 6.14: Barplots representing (a) the mined bauxite ore percentage of the
expected reserve and (b) dilution percentages of the total mined volumes
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6.5 Summary and conclusions

In this paper, we presented a new grade control technique to minimize the risk

of operational dilution and ore losses in lateritic metal deposits. Although the

development was performed on a lateritic metal deposit, the method can be applied

to any stratified deposit to create an ore/waste boundary with a certain degree

of smoothness. The proposed approach benefits from a parameter calibration

technique called ”pilot points” to create a design surface with multi-level B-spline

method. The optimized pilot point values are iteratively obtained within the

simulated annealing algorithm to create a new ore/waste boundary minimizing the

risk of dilution and ore losses. Possible losses of a constructed surface are calculated

using several scenarios of the ore/waste boundaries generated by the multiple-point

statistical simulations. We have implemented the proposed approach on a lateritic

bauxite deposit and compared the resulting losses with the ones calculated using

the actual mining operation.

The major advantage of the proposed method is the reduction in the economi-

cal losses. Implementation of the method on bauxite has demonstrated much less

losses compared to the actual mining operation that took place. It was also ob-

served that the losses resulting from our proposed approach are affected by the

spacing between the pilot points. Densely spaced pilot points give smaller losses

but increase the fluctuations in the resulting surface. Another benefit of the pro-

posed approach comprises the integration of the uncertainties in the ore/waste

contact. The losses of a decision surface are calculated using the equiprobable

realizations representing the ore/waste interface. Therefore, the uncertainty in

the ore/waste boundary is accounted for by the design surface. Although the re-

alizations were generated using multiple-point statistics, the methodology could

also work well with standard geostatistical simulations, such as Turning Bands.

One should, however, be cautious of the quality of the simulations used as it sig-

nificantly affects the designed surface. High variability in the ore/waste contact

simulations, for instance, tends to result in a design surface deviating away from

the average of the realizations due to the high penalty associated with the dilution.

This can lead to the underestimation of the mineable reserve volume.
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The last benefit is about the adjustable smoothness of the generated surface.

The number of h levels of the multilevel B-spline method allows constructing sur-

faces with a varying degree of smoothness. This can help designing surfaces which

are capable of reflecting the mining equipment selectivity. Although h parameter

of the multilevel B-spline fundamentally controls the smoothness of the surface, it

needs to be calibrated in conjunction with the pilot point spacing used, as it also

plays a crucial role on the fluctuations seen in the resulting surface.

The proposed approach reveals several points to be studied in the future as an

improvement. The first one is the subjectivity introduced when placing the pilot

points. The number and the locations of the pilot points are chosen based on per-

sonal preference in this study. Therefore, automatic determination of the number

and the location of the pilot points as in Jiménez et al. (2016) may eliminate the

subjectivity introduced. The second point that can be improved is related to the

degree of smoothness that the decision surface exhibits. Since there is a trade-off

between the losses and the degree of smoothness of the decision surface, the op-

timum degree of smoothness yielding minimum losses needs to be specified. This

can be achieved by establishing a relationship between the surface smoothness

and the mining equipment-related losses. Once such relationship is formulated as

a function of the fluctuations of a given surface, this can then be used in the objec-

tive function as an additional term to calculate the total losses. Lastly, although

the computation time required to perform the optimization was reasonable (6-8

hours) using the R software, it can significantly be reduced by utilizing parallel

computing and coding in C language.

Instead of using the multilevel B-Spline, alternative interpolation techniques,

such as kriging, can be used to generate the excavation surface. The benefit of

kriging would be the possibility to adjust the smoothness of the surface with the

range parameter of the variogram model. In addition, it could be possible to infer

this range from previously excavated surfaces. Therefore, the equipment flexibility

can automatically be integrated into the designed surface with the prior knowledge

from the mined-out areas. The implementation of multilevel B-splines in this

research was due to its high-speed computation (Saveliev et al., 2005). Future
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research could investigate the use of kriging for the interpolation and explore its

possible advantages.

Due to the fairly continuous nature of Al2O3% and SiO2% grades throughout

the deposit and also for the sake of simplicity, the grades are considered constant

in this study. Therefore, in order to squeeze more performance out of the approach

and also to better reflect the reality, a block model of these attributes can also be

constructed to calculate the losses. Use of such a model would then involve the

loss calculations based on the partial or complete mining of a specific block.
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7.1 Conclusions

The main objective of this thesis was to develop approaches to improve the resource

estimation of laterite-type bauxite deposits. In particular, the study focused, di-

rectly and indirectly, on the management of unplanned dilution and ore losses. To

achieve the above-mentioned goal of the thesis, a series of techniques was developed

and examined. The first technique utilised a framework to model the geological

contact between the bauxite and ferricrete units using multiple-point statistics.

The second technique was developed to automate the input parameter tuning pro-

cess of the multiple-point statistical simulations. In the last technique, optimum

ore boundaries were generated based on the equiprobable realisations created for

the ore boundaries.

The methodology to model the geological contact was developed and investi-

gated using the Direct Sampling algorithm. Topographies obtained in mined-out

areas after the extraction of the bauxite ore, could be deemed representative of the

geological contact to be modelled for a future mining area in the same mine site.

Therefore, the proposed methodology utilised previously mined-out areas as anal-

ogous sites to infer the structural information through the training image concept.

The simulation results have shown that the multiple-point statistics concept has

successfully simulated the ore boundaries and has proven to be a promising tool

to be incorporated in modelling the ore boundaries for lateritic bauxite deposits.

Contrary to expectations, however, it did not significantly improve the simulations

when compared to the turning bands simulations. This was thought to be due to

the incompatibility observed between the training images and the data collected

from the simulation areas. Nevertheless, the investigation on the incorporation of

multiple-point statistics has provided a variogram-free means of modelling the ore

boundaries in lateritic bauxite deposits.

The automatic parameter tuning method was developed by adopting an op-

timisation framework. The primary criterion for scoring the parameters was the

level of success achieved in reproducing the conditioning data patterns in the sim-

ulations. Therefore, the objective function of the optimisation comprised the dis-

similarity between the pattern statistics of the conditioning data and the simulated



154 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

image. Parameters minimising this dissimilarity were determined iteratively using

the simulated annealing optimisation algorithm. The developed technique pro-

vided automatic determination of the appropriate simulation parameters. Hence,

it allowed a reduction in time spent in the labour-intensive manual tuning of the

parameters. Furthermore, it enabled a more objective determination of the pa-

rameters, as the parameters were determined based on a quantitative metric.

A method to define the optimum ore boundaries to be extracted was also de-

veloped using an optimisation framework. The primary goal set for this purpose

was to find the optimum mining boundaries minimising the expected dilution and

ore losses. The objective function used in the optimisation comprised the losses

due to a candidate mining boundary in an ensemble of stochastic realisations of

the ore boundaries. The pilot point technique, which is typically used in hydro-

geology to calibrate conductivity fields, was tailored to control the shape of the

candidate ore boundaries. The synthetic elevation values of the pilot points were

used as the decision variables of the simulated annealing algorithm and iteratively

optimised. The optimum values for the pilot points, which were determined after

the optimisation process, were then used to construct optimum mining boundaries.

The approach resulted in a significant reduction in the economic losses. Similarly,

a reduction was observed in the ferricrete dilution in the mined bauxite volume.

Another benefit of the developed method was the adjustable smoothness of the

created mining boundaries. The number of h levels of the multi-level B-spline and

the number of pilot points allow constructing mining boundaries with a varying

degree of smoothness. Therefore, the optimum smoothness for the mining bound-

aries can be chosen to reflect better the capabilities of the mining machinery used

to extract the deposit.

7.1.1 Contributions to the Current State of Knowledge

In summary, the contributions of this research to the current state of knowledge

are as follows:

1. An approach to variogram-free modelling of the ore boundaries for lateritic

bauxite deposits was developed.
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2. A method to automatically tune the parameters of multiple-point statistical

simulations for lateritic bauxite deposits was developed.

3. A method to generate optimum mining boundaries minimising the dilution

and ore loss was developed.

7.2 Future Work

The recommendations for the future work are as follows:

Derivation of a more compatible TI

One of the important factors affecting the MPS simulations is the TI used. In

this study, two historical mine areas were used to perform the simulations. The

mined-out topography and the GPR data of one mine area were used as a bivariate

TI to simulate the other mine area and vice versa. Therefore, there was only one

TI available to simulate each mine area. The computed experimental variograms

illustrated that the two mine areas exhibit different two-point statistics. Despite

this fact, the TIs were used to perform the simulations. (This was justified by

the fact that the two mine areas were within the same mine site sharing the same

geology.) Nevertheless, the MPS simulations reproduced the variograms of the

conditioning data. If these imperfectly-compatible TIs allow the reproduction of

the variograms, a better performance can be achieved by using more suitable TIs.

One way to derive a better suited TI is to form a geological catalogue. Consider-

ing the mining practices in such lateritic bauxite deposits, a mined-out topography

is always obtained following the extraction of the bauxite unit. All these mined-

out topographies can be collected to form a geological database. This can provide

the modeller with a rich variety of TIs to choose from. Therefore, a better suited

TI can be readily found.

Another approach to deriving a compatible TI could be to modify the TI. Such

an approach can be performed if the available TI has spatial statistics that are

different to the simulation data set, and is believed to contain relevant structural
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information. This could probably be achieved by stretching or shrinking the TI

until it has the desired spatial statistics.

One important aspect that should be taken into consideration is the selectivity

of the mining equipment. The selectivity of the mining equipment used, which is

a front-end loader, is not adequate to precisely track down the short scale fluc-

tuations of the ore boundaries. Therefore, the produced TIs can also reflect this

smoothing effect. To create better quality TIs, a pilot test area next to the fu-

ture mining areas can be excavated with smaller mining machinery. This way, the

operator can better track the fluctuations of the geological contact; hence, a high

quality TI reflecting the geology better can be acquired.

Calculation of the reference pattern statistics for irregularly spaced or

sparse conditioning data

Automatic tuning of the parameters utilises the conditioning data patterns and

requires that the boreholes are on a regular grid. Due to this reason, the param-

eter tuning process cannot be used if the conditioning data is irregularly spaced.

Due to the fairly continuous grade distributions in lateritic bauxite deposits, pref-

erential drilling is not a common practice. Hence, boreholes are often drilled on a

regular grid. However, if this is not the case and the proposed approach is used for

a different type of deposit, one way to acquire the pattern statistics could be the

use of Cumulants. Cumulants allow computing the pattern statistics of irregularly

spaced data using the lag tolerances. Another approach to solve such an irregu-

larity problem could be to define a distinct objective function and incorporate a

cross validation approach to assess the performance of the parameters.

Having a large spacing between the exploration boreholes is rather appealing

due to its associated economical benefits. Therefore, there may not always be

an abundance of conditioning data available in the simulation domain. When

the boreholes are sparse, the pattern statistics of the conditioning data cannot

be reliably computed. In such cases, rather than relying on the pattern statistics

of the conditioning data, one can also incorporate the TI patterns as reference

pattern statistics.
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CPU time required to tune the parameters

One of the drawbacks of the automatic parameter tuning method is the high CPU

time demand. Although 100 iterations of the SA can provide a reasonable tuning of

the parameters, a fine tuning requires more than 7,000 function calls/simulations.

Given a simulation grid consisting of millions of grid nodes, that many simulations

might not be feasible. Therefore, future work should also consider techniques

which might not require performing simulations. A possible research direction

could be the direct analysis of the TI-conditioning data to infer the appropriate

DS parameters.

Determination of the optimum number and locations of the pilot points

The pilot points in this study were automatically located in the simulation do-

main using a predefined spacing between them. In order to observe the effect of

the number of pilot points, three different pilot point spacings were used to create

the mining boundaries. The results have shown that as the number of pilot points

increase, the possible losses decrease. This is an intuitive result since as the num-

ber of points increase, the resulting interpolated surface becomes more detailed.

However, such a detailed surface would make it difficult to track the boundaries

using the current mining equipment used. In other words, as the dilution and ore

losses increase, the extraction duration would decrease. Longer excavation dura-

tions would increase the excavator related costs such as depreciation, fuel cost,

operation cost and maintenance. Therefore, the number of pilot points chosen

should also focus on this important trade-off. It should be noted that the smooth-

ness of the created surface is also dependent on the smoothness parameter of the

multilevel B-spline interpolation technique (number of levels used).

In addition, future studies should also investigate the potential benefit of using

irregularly spaced pilot points (the pilot points used in this study are on a regular

grid). Recent applications of automatic determination of the locations and num-

bers of pilot points show that reverse jump Markov Chain Monte Carlo can be

used to achieve this.
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Investigation on the benefits of other interpolation techniques for con-

structing the mining boundaries

The pilot points are used as synthetic elevations to interpolate a surface. In this

study, the multi level B-spline technique was used to perform the interpolations

between the pilot points. The choice was due to its high speed computation.

Instead of using the multi level B-spline method, a different interpolation technique

such as Kriging can be used. The benefit of using Kriging would be that the

smoothness of the surface could be adjusted using the range parameter of the

variograms. The appropriate range parameter can be inferred from the previously

mined-out areas.

Incorporation of real mining and processing costs through a block model

Due to the unavailability of real mining and processing costs, several assumptions

were made when calculating the losses. One of these assumptions is related to the

Al2O3 grades. The bauxite unit does not have a wide range of Al2O3 grade values.

Therefore, for the sake of simplicity, the grades were considered constant when

calculating the losses. The same assumption was also made for the ferricrete unit.

The volume of dilution was directly multiplied by its constant penalty. In other

words, the optimisation has been made using the 1:60 ratio between the dilution

and ore loss. To get better performance out of the proposed approach, future

studies should focus on incorporating real costs and profits. This can be achieved

by constructing the block model and assigning the associated costs and revenues

depending on the block attributes. Although it would increase the CPU demand

significantly, the results would reflect the reality better.

CPU time required to optimise the boundaries

As in the parameter tuning process, the optimisation for the mining boundaries

utilises an iterative process. The objective function calculated on each iteration is

the losses generated in each realisation due to a decision surface. Therefore, the

iterations of the ore boundary optimisation do not require as much computational
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resource as the parameter tuning process. Due to this reason, the CPU demand is

not as significant for the pilot point optimisation. To speed up the optimisation,

future studies can focus on parallel computing or deterministic design of the ore

boundaries utilising the model of uncertainty of the geological contact.
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Figure A.1: Variables used to simulate the Kumbur mine area: (a) Kumbur GPR
survey used to guide the simulations as a secondary variable, (b) Kumbur PCD
used to condition the simulations as a primary variable (circles overlain the GPR
map), (c) Oak mined-out floor topography (primary variable of the TI) and (d)
Oak GPR survey (secondary variable of the TI)
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Figure A.2: Variables used to simulate the contact topography at Oak mine area:
(a) Oak GPR data, (b) Oak borehole data overlain the GPR map (c) floor survey
variable of the TI (Kumbur Mine) and (d) GPR component of the TI (Kumbur
mine)
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(a) Kumbur PCD trend (Second Order) (b) Oak Borehole trend (First Order)

Figure B.1: Trends inferred using the conditioning data available for both Oak
and Kumbur mine areas

Figure B.2: Kumbur GPR trend and residuals: (1) Kumbur GPR data, (2) second
order trend for the Kumbur GPR and (3) Kumbur GPR residuals obtained by
subtracting the trend from the raw data
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Figure B.3: Kumbur floor trend and residuals: (a) Kumbur mined-out floor survey,
(b) second order trend fitted to the floor survey and (c) residuals of the floor survey

Figure B.4: Oak floor trend and residuals: (a) Oak mined-out floor survey, (b)
first order trend fitted to the floor survey and (c) residuals of the floor survey
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Figure B.5: Oak GPR trend and residuals: (a) Oak GPR data, (b) first order
trend fitted to the Oak GPR data and (c) the residuals of the GPR data
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Table C.1: Variogram models used to migrate the GPR and floor surveys into the
grid nodes

Variable Mine Area Structure Nugget Range Sill

GPR Survey
Oak

Spherical - 47.85 0.338
Spherical - 255.54 1.058

Kumbur
Spherical 0.001 19.33 0.065
Spherical - 306.05 0.056

Floor Survey
Oak Spherical - 164 1.232

Kumbur Spherical - 73.32 0.134
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Figure D.1: Variograms of the variables used to simulate the Kumbur mine (resid-
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0 50 100 200 300

0
1

2
3

4
5

6

Lag distance (m)

G
am

m
a 

(h
)

Residual Borehole
Residual GPR data

0 50 100 150 200 250

0.
00

0.
05

0.
10

0.
15

0.
20

Lag distance (m)

G
am

m
a 

(h
)

Residual Floor Data (TI)
Residual GPR data (TI)

Figure D.2: Variograms of the variables used to simulate the Oak mine (residuals)
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Figure D.3: Variogram models fitted to the PCD residuals for the univariate and
bivariate Kumbur TB simulations. The difference in the experimental variograms
is due to the differences in trends inferred using the borehole data for the univari-
ate simulations and the GPR data (external drift) for the bivariate simulations.
No anisotropy was detected for the univariate case. Therefore, only the omnidi-
rectional variogram was modelled
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Figure D.4: Variogram models fitted to the borehole residuals for the univariate
and bivariate Oak TB simulations. As in Kumbur mine variables, the trend for
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Figure E.1: First four DS realisations of the Kumbur univariate simulations
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Figure E.2: First four TB realisations of the Kumbur univariate simulations
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Figure E.3: First four DS realisations of the Kumbur bivariate simulations
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Figure E.4: First four TB realisations of the Kumbur bivariate simulations
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Figure E.5: Average of 40 univariate Kumbur realisations and the IQR maps
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Figure E.6: Average of 40 bivariate Kumbur realisations and the IQR maps
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Figure F.1: First four DS realisations of the Oak univariate simulations
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Figure F.2: First four TB realisations of the Oak univariate simulations
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Figure F.3: First four DS realisations of the Oak bivariate simulations
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Figure F.4: First four TB realisations of the Oak bivariate simulations
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Figure F.5: Average of 40 univariate Oak realisations and the IQR maps
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Figure F.6: Average of 40 bivariate Oak realisations and the IQR maps
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(a) Univariate Kumbur

(b) Bivariate Kumbur

Figure G.1: Reproduction of the experimental quantiles for Kumbur simulations
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(a) Univariate Oak

(b) Bivariate Oak

Figure G.2: Reproduction of the experimental quantiles for Oak simulations
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(a) Univariate Kumbur

(b) Bivariate Kumbur

Figure G.3: Reproduction of the variograms for the Kumbur mine simulations
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Figure G.5: Distribution of the interquartile ranges of the simulated elevation
values at each grid node
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Figure G.6: Distribution of the interquartile ranges of the simulated elevation
values at each grid node
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Figure G.7: Cumulant maps of the Kumbur mined-out floor (reference image) and
the first 3 DS and TB univariate Kumbur realisations
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Figure G.8: Cumulant maps of the Kumbur mined-out floor (reference image) and
the first 3 DS and TB bivariate Kumbur realisations



198APPENDIX G. STATISTICAL AND STRUCTURAL ANALYSES RESULTS

Figure G.9: Cumulant maps of the Oak mined-out floor (reference image) and the
first 3 DS and TB univariate Oak realisations
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Figure G.10: Cumulant maps of the Oak mined-out floor (reference image) and
the first 3 DS and TB bivariate Oak realisations
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Figure G.11: Distributions of the cumulant errors for the univariate Kumbur sim-
ulations
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Figure G.12: Distributions of the cumulant errors for the univariate Oak simula-
tions
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In the geological modelling of the laterite-type
deposits, the exploration boreholes may be
sparsely spaced for two major reasons: (1) the
attributed grades do not tend to vary
significantly across the deposit; (2) the overall
exploration costs must be minimized.
However, since the geological contact between
the ore and underlying waste unit fluctuates in
a rather complex manner, one should not rely
solely on the interpolation of the sparsely-
spaced borehole data, as the estimates would
not reflect the actual variability in the surface.
Therefore, it is imperative that the sparsely-
spaced borehole data be supplemented with
appropriate geophysical information for more
accurate resource estimations (Erten et al.,
2015, 2013). Ground-penetrating radar (GPR)
has widely been used to acquire a

complementary dense data-set to better
delineate the interface between two geological
units (bauxite/ferricrete) (Francke and Nobes
2000; Francke and Parkinson 2000; Watts
1997). Due to the tropical weathering and
leaching mechanisms that generate laterite-
type deposits, the geological interface
measured through GPR appears to be well
correlated with the easting (X) and northing
(Y) coordinates of the surface, which indicates
the presence of a spatial trend (McLennan,
Ortiz, and Deutch, 2006; Leuangthong, Lyall,
and Deutsch, 2002). Geostatistical techniques
are the main tools which are used to estimate
the elevation of the interface at non-sampled
locations, and there are different approaches
used to account for the trend in a data-set. In
this paper, we estimate the elevation of the
geological interface through ordinary kriging
(OK), universal kriging (UK), intrinsic random
function of order k (RF-k) methods and
compare the estimation performances. 

Geostatistical techniques are based on the
theory of regionalized variables (RVs) and are
used to estimate an attribute of interest at
non-sampled locations (Goovaerts, 1997;
Journel and Huijbregts, 1978). The idea
behind the theory is that a RV z(u ),{ +1,...,n}
is considered to be the realization of an order-
two random function (RF) Z(u) and is
assumed to have been generated according to
a probability density function (Matheron,
1971; Olea, 1974). Due to this characteristic of
the RV, there is a spatial correlation between
the samples, which allows the prediction of
Z*(u) at each non-sampled location u. The
prediction of Z*(u) requires the covariance
function C(h) of Z(u) to be known, and this
statistical inference can practically be made
from an available realization if the realization

Accounting for a spatial trend in fine-
scale ground-penetrating radar data: a
comparative case study
by Y. Dagasan*, O. Erten*, and E. Topal†

In geostatistics, one of the challenges is to account for the spatial trend that
is evident in a data-set. Two well-known kriging algorithms, namely
universal kriging (UK) and intrinsic random function of order k (IRF-k), are
mainly used to deal with the trend apparent in the data-set. These two
algorithms differ in the way they account for the trend and they both have
different advantages and drawbacks. In this study, the performances of UK,
IRF-k, and ordinary kriging (OK) methods are compared on densely sampled
ground-penetrating radar (GPR) data acquired to assist in delineation of the
ore and waste contact within a laterite-type bauxite deposit. The original
GPR data was first pre-processed to generate prediction and validation data-
sets in order to compare the estimation performance of each kriging
algorithm. The structural analysis required for each algorithm was carried
out and the resulting variograms and generalized covariance models were
verified through cross-validation. The variable representing the elevation of
the ore unit base was then estimated at the unknown locations using the
prediction data-set. The estimated values were compared against the
validation data using mean absolute error (MAE) and mean squared error
(MSE) criteria. The results show although IRF-k slightly outperformed OK
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Accounting for a special trend in fine-scale ground-penetrating radar data

exhibits stationary characteristics. If there is a trend in the
realization/data-set and the realization exhibits
nonstationary characteristics, the change in the value of RV
is no longer dependent on the lag distance h, but is also
dependent on the location of the RV. In the case of a
nonstationarity, there are basically two geostatistical methods
to account for the trend in the data-set: universal kriging and
intrinsic random function of order k (IRF-k). These two
methods differ in the way they detect the trend and the type
of structural function used to describe the spatial
relationship.

In order to estimate the value of an attribute at a non-
sampled location, the kriging algorithm requires the
computation of a system of equations with a known
variogram (h). The problem with UK arises when the
underlying variogram or covariance function is not known. In
UK, the RF Z(u) is comprised of a trend m(u) and a residual
R(u) component. The variogram of residuals can be used to
calculate the underlying variogram, but this requires the
determination of the trend component m*(u). Calculation of
m*(u), on the other hand, requires the variogram to be
known. One solution to this circular problem is refining both
the variogram and the trend estimates iteratively, as
mentioned in Neuman and Jacobson (1984). However, it has
some associated drawbacks, such as underestimation of the
underlying variogram and extreme difficulties in determining
the degree of trend or the underlying variogram from the
residuals (Armstrong, 1984; Cressie, 1993). Another solution
to these problems exists if there is a particular direction or
subzone where there is a sub-stationary zone in a
nonstationary data-set. Journel and Rossi (1989) proposed
that experimental variograms inferred in these directions or
subzones can be used to estimate the trend optimally. Chilès
(1976) gives an example of such practice assuming an
isotropic variogram model computed from the sample
variogram in stationary directions or subzones.

IRF-k was introduced by Matheron (1973) due to the
practical difficulties in the application of the UK approach. It
basically decomposes the trend and covariance structure
through increments of a sufficient order to filter out the trend
and to achieve stationarity (Chiles and Delfiner, 2012). The
kriging system of the IRF-k method is identical to the UK
method except that the variogram employed in UK is replaced
by the generalized covariance (GC) in the IRF-k method.
Contrary to UK, where the trend is required to be estimated
beforehand as a linear combination of known, linearly
independent functions to obtain the stationary residuals,
nonstationarity in IRF-k is accounted for through the
calculation of the GC. The advantage of using GC is that it has
wider class of admissible functions compared to the
variogram and the automatic detection of the parameters of
GC makes the application easier (Delhomme, 1978). On the
other hand, the use of GC creates some hurdles in practical
modelling since the method requires identification of the
order k and it is difficult to interpret the GC (Cressie, 1993).
Both UK and IRF-k methods have advantages and
disadvantages and as a result, the choice between the two
methods is based heavily on the practical difficulties of fitting
functions (Buttafuoco and Castrignano, 2005). Christensen
(1990) states that the IRF-k and UK are identical provided
that the GC is identified correctly.

UK, IRF-k, and OK have been compared in several
publications. Journel and Rossi (1989) compared OK and UK
in a case study in which they regionalized seam thickness
and coal quality variables. The results indicated that the OK
and UK methods gave similar results. It was also concluded
that any kriging algorithm with moving data windows is
equal to considering a nonstationary random function model
with a mean re-estimated at each new location. Similarly,
Zimmerman et al. (1999) compared the performances of four
interpolation algorithms, two of which were OK and UK. They
stated that although UK was expected to outperform OK in
situations where trends exist, OK performed slightly better
than UK. Odeh, McBratney, and Chittleborough (1994)
modelled soil variables by using different interpolation
methods, and stated that OK was the most inferior of all the
methods implemented, including UK. Odeh, McBratney, and
Slater (1997) compared the performance of several prediction
models, including OK and IRF-k, in prediction of soil
parameters. The IRF-k method performed slightly better than
OK. It is therefore apparent that the performance ranking of
UK, IRF-k, and OK algorithms varies between different
investigations.

The objective of this study is to predict the variability in
elevation of the base of the ore unit and compare the
performance of different kriging estimators using densely
sampled GPR data. The contribution of this paper is the
implementation of, and comparison of, the performance of,
different kriging algorithms in the case of a bauxite laterite
deposit. This was mainly done in order to ascertain which
kriging algorithm is more suitable for bauxite base elevation
data with a spatial trend. Since GPR data represents the
elevation of an interface surface, nonstationarity was
intuitively expected. This was also confirmed by the
omnidirectional variograms computed in the initial data
analysis. The omnidirectional variograms revealed the
existence of nonstationarity in the prediction data-set,
requiring handling of the trend by UK and IRF-k methods.
Therefore, these methods were employed to account for the
spatial trend in the data-set along with the OK algorithm,
which considers the spatial trend to be constant. In order to
evaluate the performances of each kriging algorithm, GPR
data representing the elevation was resampled to form
validation and prediction data-sets. The validation data-set
was used to assess the performance of the UK, IRF-k, and OK
estimators. 

The RF can be represented by the following model:

[1]

where m(u) represents the trend component and R(u)
represents the random part having a covariance function in
two-dimensional space u=(x,y). The covariance C(h) is
defined as the following:

[2]

where h is the lag distance. Considering the second-order
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stationarity assumption, R(u) is assumed to have a zero
mean value and the trend m(u) is assumed to be constant
(Oliver and Webster, 2015). Hence, C(h) is equal to:

[3]

In situations where the mean is not constant, the
covariance cannot exist. In these cases, the assumption of
stationarity is weakened to the one called intrinsic
stationarity (Matheron, 1963), where the expected
differences E[Z(u+h)–Z(u)]are equal to zero and the
covariance of the random part, which is used to measure the
spatial relations of the residuals, is replaced by the variance
of the differences:

[4]

where (h) represents the variogram at lag h. The following
relationship between the variogram (h) and covariance C(h)
function exists for a RF which is second-order stationary:

[5]

where C(0) represents the variance 2 of the RF. 

In OK, the RV is estimated at an unsampled location u as a
linear combination of available neighbouring data
{z(u ), =1,...,n} (Goovaerts, 2000). 

[6]

As with all kriging algorithms, the objective of OK is to
minimize the estimation variance as well as ensure the
unbiasedness of the estimator. OK weights (u) are
determined to satisfy this unbiasedness and minimized
variance goals. The following OK system is used to obtain the
kriging weights:

[7]

where (u) represents the Lagrange parameter used to
minimize the variance. The only information needed for the
OK system is the variogram value corresponding to every lag
distance h. The kriging variance of OK is calculated by:

[8]

In UK, the trend component is modelled as a smoothly
varying deterministic function of u and is expressed as:

[9]

where m(u) represents the local mean, l , the unknown
coefficients of the trend function, and fl(u) represent the
known functions of the coordinates u and are called trial or

base functions (Kitanidis, 1997; Rossi and Deutsch, 2014).
The residual component R(u) is modelled as a second-order
stationary RF with a zero-mean, E[Z(u)]=0. Combining the
trend and the residual, the RV is represented by the following
equation:

[10]

The trend can be modelled as a low-order polynomial
function of the spatial coordinates u. Previous studies have
indicated that increasing the number of order of trend
functions does not lead to better modelling of the trend
(Journel and Rossi, 1989). 

To satisfy the unbiasedness condition E[Z*(u)–Z(u)]=0,
Equation [9] can be rewritten as:

[11]

where the set of L constraints is termed the universality or
unbiasedness conditions. The kriging system satisfying these
requirements is then defined by:

[12]

where are the UK weights and l are the Lagrange
parameters used to determine the coefficients minimizing
the error variance. 

The UK estimate variance is defined as:

[13]

The inference of the residual variogram R(h) is,
however, not straightforward, as the only available data is in
fact Z values, not R values. The experimental variogram of Z
values is defined by:

[14]

For UK, the underlying (trend-free) variogram is assumed
to be known (Armstrong, 1984). To predict this variogram,
the form of the trend should be known. However, to estimate
the form of the trend, the variogram must be known. Various
approaches have been developed to resolve this circular
problem. The most common approach is to select a direction
or a subzone in which the trend m(u) can be negligible and
calculating the experimental covariance along these selected
directions or within this subzone (Atkinson and Lloyd. 2007;
Chihi et al., 2000; Journel and Rossi, 1989; Myers, 1989).

Intrinsic random function of order k was developed by
Matheron (1973) and later refined by Delfiner (1976). It is
an alternative tool used in nonstationary data to remove the
trend by filtering out the low-order polynomials and is
commonly used when it is difficult to infer the underlying

Accounting for a special trend in fine-scale ground-penetrating radar data

175VOLUME 118                     �



variogram of the variable of interest (Wackernagel, 2002). In
the IRF-k method, the deterministic functions f1(u) used to
represent the trend model m(u) in Equation [9] are restricted
to those which are only translation-invariant and pairwise
orthogonal (Wackernagel, 2002). 

Considering a set of weights applied to particular
points u , a discrete measure u is defined as:

[15]

where u represents the Dirac measure at point u . Any
linear combinations of the weights with RV at locations u
are defined as: 

[16]

The expression shown in Equation [16] is called the
allowable linear combination of order k(ALC-k) in Equation
[17]

[17]

holds true for all monomials of order k. Considering a
nonstationary Z(u), if the expression given in Equation [16]
is second-order stationary regardless of any translation h and
whatever the ALC-k ,  the RV Z(u) is called as IRF-k.

The variogram in IRF-k is replaced by a new function
called the GC function (Chiles and Delfiner, 2012). GC is
denoted by K(h) and is used to describe the correlation
structure of the random part R(u). The GC function of an IRF-
k is a symmetric function, K(h)=K(–h), and satisfies the
condition:

[18]

An example to GC function is known the as polynomial
generalized covariance function. The equation of the
polynomial generalized covariance function is given as: 

[19]

The conditions on bp are satisfied if bp p. 
The intrinsic kriging system minimizing the variance is

expressed in terms of the GC and shown in the following:

[20]

The estimation variance is defined by:

[21]

The region where the mine site is located is composed of
Proterozoic and Palaeozoic basement in the eastern part. This
basement comprises acid intrusives, extrusives, and
metamorphics. Overlying the basement to the west, Mesozoic
and Cenozoic sediments dominate. The sediments were

intensively weathered, which played a crucial role in the
formation of laterites rich in alumina and bauxites. The
bauxite sits above an almost entirely kaolinized pallid zone
(Morgan, 1992).

The bauxite deposit in the mine area is thought to have
formed from in-situ chemical weathering of kaolinite, quartz,
and iron oxide minerals (Loughnan and Bayliss, 1961). The
occurrence of the alumina-rich was horizon controlled by
climate, vegetation cover, chemical conditions, bedrock
composition and texture, groundwater circulation, relief,
time, and tectonic conditions (Gow and Lozej, 1993). There is
a regolith zone in the mine area comprising, from top to
bottom, post-weathering sediments (red soil), bauxitic
cement, pisolitic bauxite, nodular ferricrete, the kaolinite
zone, and the saprolitic zone (Bardossy and Aleva 1990).

An electromagnetic (EM) wave that travels through shallow
ground shows different responses to subsurface structures
with varying electromagnetic properties such as dielectric
permittivity, conductivity, and electromagnetic permeability.
GPR utilizes the dielectric permittivity contrast that exists
between the geological structures (ASTM D 6432-99 2005).
The EM wave emitted into the ground from the transmitting
antenna at the surface is reflected back when there is a
difference in the electrical properties of the subsurface
structures. This reflected wave is then received by a receiving
antenna and recorded as a function of time (Davis and
Annan, 1989). Being a function of depth, antenna spacing,
and average radar-wave velocity, the time taken for the wave
to travel to the interface and back up to the surface is called
the two-way travel time. Knowing the radar wave velocities,
this two-way travel time is then converted into depth. 

The main aim of the survey was to map the lateral variability
at the bauxite/ferricrete interface. As the area to be surveyed
was large (360 × 800 m), the method chosen needed to be
easy to implement as well as provide fast data acquisition so
that the surveying results could be checked immediately.
Other considerations in selecting a suitable geophysical
method were spatial resolution capability, cost-effectiveness,
and data processing requirements (Erten, 2012). 

In order to be sure about the applicability of the method
selected, the petrophysical properties established in previous
work on samples collected from another location within the
mine site were considered. The laboratory results revealed
that the conductivities of the bauxite and ferricrete are rather
low and there is a dielectric permittivity contrast between the
bauxite and the ferricrete. This indicated that the emitted
waves would reflect from the bauxite interface, favouring the
use of the GPR method.

The mine area chosen in this case study is approximately 360
× 800 m in size. The data-set comprises the GPR pick-points
acquired from the surface of the mine area using a radar
device. The specifications of the radar device are given by
Francke and Utsi (2009). The total areal coverage of the GPR
survey at the mine area was 142 300 m2 with GPR profiles
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17 940 m in length, which provided 64 670 GPR pick-points
distributed along the GPR profiles at 0.25 m interval (Figure
1). The GPR profiles were arranged in a square grid with a
line spacing of about 15 × 15 m (Erten, 2012). 

Due to the nature of GPR data acquisition, it is expected
that there might be multiple points that have the same
coordinates. Therefore, the data-set was first pre-processed to
mask the potential duplicates in order to avoid any kriging
matrix instability in the estimation process. This was carried
out by masking all the sample points that were within 0.25 m
of the other data-points. The number of raw GPR pick-points,
after processing, reduced to 30 630. In order to compare the
performance of each kriging method, the data was split into
two parts: prediction and validation data-sets. The prediction
data-set was generated by re-sampling the GPR pick-points
randomly on a regular 15 × 15 m grid. This process yielded
735 pick-points as a prediction/training data-set to be used
in the estimation. The remaining 29 895 pick-points were
kept for the validation. The flow chart of the data processing
and the methodology are presented in Figure 2.

The target variable to be regionalized in this study is the
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elevation of the bauxite/ferricrete interface. This variable was
obtained through the GPR survey, the depth to the interface
being calculated from the two-way travel time. This depth
was then subtracted from the ground surface elevation to
obtain the elevation of the bauxite/ferricrete interface. The
unit of the variable is metres (m).

The histograms of both prediction and validation data
corresponding to the elevations of the base of the ore unit are
shown in Figure 3. 

As it can be seen in Figure 3, the histograms of the
prediction and validation data are closely similar. This
resemblance is also revealed in the descriptive statistics of
these two data-sets given in Table I. 

The calculated coefficients of skewness of the
prediction/training and validation data-sets are –0.70 and 
–0.64, respectively. 

Scattergrams plotted against X and Y coordinates in
Figure 4 reveals that the elevation variable decreases towards
the east and increases towards the north, which suggests a
possible trend dipping in southeasterly direction. 

The raw omnidirectional variograms of the ore unit base
elevation were computed from the prediction data with 50
lags, having a lag distance of 15 m and a lag tolerance of 7.5
m. This lag distance was the average distance between the
samples in the prediction data-set. The experimental
omnidirectional variogram is shown in Figure 5. 

The apparent increase in the variogram parallel to the
increasing lag distance also confirms the existence of a trend
or nonstationarity of the elevation variable. This conclusion
is supported by the scattergrams shown in Figure 4.

A variogram map was computed to detect the maximum
and minimum spatial continuity directions as well as any
possible anisotropies. The variogram map and experimental
variograms in these directions are shown in Figure 6. 

The maximum spatial continuity in the variogram map is
seen in the N20° direction as the variogram values do not
change significantly along this direction. On the other hand,
perpendicular to this direction, which is N110°, the elevation
varies more rapidly, indicating the minimum spatial
continuity direction. In the N70° direction, there are relatively
high variogram values. As seen in Figure 6b, the variogram
values in the N70° direction are higher only for the lag values
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Table I

Ore unit base m 735 15.01 2.60 8.14 19.77 0.17
elevation prediction
data
Ore unit base m 30,630 14.92 2.57 7.81 19.90 0.17
elevation original
data



greater than 180. Since the GPR data is densely sampled,
only samples that are around 80–100 m apart from the
estimation grid node are considered for the estimation and
are of greatest importance. This fact confirms the selection of
the N110° direction as the minimum spatial continuity
direction, since the experimental variogram values in the
N110° direction are higher in the 0–100 lag distance range. 

UK was the first approach used in this study to account for
the nonstationarity seen in the data. UK requires a prior
determination of the L trend functions Fl(u) and the
covariance CR(h) of the residual component R(u) inferred
from the residual variogram R(h) (Goovaerts, 1997). The
the L trend functions were identified by testing low-order
polynomial functions, k 2, by locally fitting the polynomial
functions through the ordinary least-squares method. The
trend component identification of the elevation variable is
summarized in Table II.

In order to identify the order k of the trend component,
the degree of trend, a number of varying orders of
polynomials were selected and fitted to the data-points. In
this process, errors obtained from the fitting of different
orders of k polynomials are calculated at each point and
ranked by order of absolute magnitude. The ranks obtained
from each point are then averaged and the order k having the
lowest average rank selected as true k. In this case study,

polynomials of order 0, 1, and 2 were tried. As is seen from
Table II, the smallest mean rank value was 1.850, and it was
yielded by the first-order polynomial, k=1. Therefore, the
first-order trend function, which is comprised of 1,x,y
monomials, was selected as the best-fit trend. It would,
therefore, be expected that the OK, UK, and IRF-k estimates
would be similar due to the linear model fitted to the trend. 

The first step in determining the underlying variogram
for UK was to estimate the coefficients of the drift function
with a least-squares based estimator. Once the coefficients of
the drift function are determined, the residuals are computed
by subtracting the drift from the data. An experimental
variogram of the residuals is then calculated and a model is
fitted to the residuals experimental variogram. The bias
associated with the experimental variogram is computed and
an iteration is applied to compute the corrected experimental
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Table II 

1 x y 0.0025 0.6008 1.850
No trend -0.0006 0.8851 2.149
1 x y x2 xy y2 0.0082 1.221 2.001
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variogram. This iteration is carried out n times, n being a
user-defined maximum iteration number. Variogram fitting
for UK was carried out by using ISATIS software. The
mathematical expression of the model fitted to the underlying
variogram model is as follows:

The mathematical model fitted to the underlying
variogram is given in Figure 7.

The second approach used to account for the nonstationarity
was the IRF-k method. Nonstationary modelling with the IRF-
k method involves three steps: (1) determination of order k,
(2) inference of the optimal GC model, and (3) kriging the
elevation variable based on the inferred GC. The GC model is
readjusted (if necessary) based on the comparison of the
obtained error with the theoretical standard deviations
(Delfiner, 1976). Trend analysis has already been carried out
for the UK case and the results were summarized in Table II.
It was found that the best fit trend for the variable was the
order 1 trend (k=1).

In order to infer the optimal GC, several arbitrary models
of GCs were proposed and tested. The optimality of a GC
model was determined on the basis of the ratio called
‘Jacknife’ which is basically the number indicating the ratio
of the theoretical variance to the experimental one
(Farkhutdinov et al., 2016). The calculated Jacknife numbers
were ranked in ascending order and the GC model
corresponding to the Jacknife number closest to unity was
selected as the optimal GC. The tested GC models and their
scores can be seen in Table III.  

It can be seen in Table III that the order 1 GC function
yielded the Jacknife score closest to unity. Hence, order 1 type
of the GC function was selected with a sill value of 3.148 and
a range value of 170 m. Any possible anisotropy that may
exist in the data-set is accounted for by the polynomial
function which filters out the trend (Delfiner, 1976). 

In the OK case, the residual variogram R(h) was inferred by
calculating the experimental variogram of Z(u) along the
direction in which the trend m(u) was deemed negligible. The
deemed trend-free direction was detected as N20° from the
variogram map shown in Figure 6, and the experimental
variogram and the model fitted are shown in Figure 8.

However, since the GPR data is densely sampled, only the
samples that are 80–100 m away from any estimation grid

are considered and are of greater importance. Therefore, the
variogram model reaching the sill value at range value of 256
is considered as robust. 

Two spherical models without a nugget variance provided
the best fit to the experimental variogram computed by using
15 m as the lag distance and 0.5 h as the lag tolerance. The
mathematical representation of the fitted model is shown in
the following:

The cross-validation technique was used to assess the
accuracy of the variogram models fitted to the experimental
variograms. It utilizes diagnostic statistics and the accuracy
of the prediction is evaluated through various tools (Webster
and Oliver, 2001). The criteria used to estimate the accuracy
in this study are the mean absolute error (MAE) and mean
squared deviation ratio (MSDR). The MAE should ideally be
zero, which satisfies the unbiasedness condition. The MSDR
is basically the ratio of the computed squared errors to the
kriging variances, and the closer the MSDR is to unity, the
better the model for kriging (Oliver 2010). These two criteria
are calculated as follows:

where N is the number of data values (which is 735 for this
study), Z(u ) is the true value, Z*(u ) is the predicted value,
and 2(u) is the kriging variance. The results of the cross-
validation technique that was implemented to assess the
accuracy of the variograms used for UK, IRF-k, and OK are
given in Table IV.
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Table III 

3.148 0.000 0.000 0.000 0.902
0.000 1.469 0.000 0.000 0.733
0.000 0.000 2.062 0.000 0.892
0.000 0.000 0.000 8.087 0.624



The results of the diagnostic statistics show that,
although the variogram modelled for OK has the minimum
MAE and the closest MSDR value to unity, all of the
computed MAE values are small, indicating that there is no
significant difference among the error statistics. Based on
these results, all of the modelled variograms are considered
to be appropriate for spatial prediction.

The first step of the prediction of the elevation of the ore unit
base is to define an estimation grid that is capable of
covering the whole area containing the data-points as well as
minimizing the extrapolation. In this case study, a two-
dimensional grid having the following properties was created:
the origin is X0 = –1872.00 m, 0 = 10181.00 m, the
dimensions of the mesh are dx = 5.00 m, dy = 5.00 m, the
number of meshes is 75 along the x direction and 163 along
the y direction, resulting in 12 225 meshes in total. This was
then followed by constructing a polygon delineating the
boundaries of the data, which defines the resource estimation
area. The number of meshes within the polygon boundary is
7 089.

A moving type of neighbourhood was used in all the
aforementioned algorithms to estimate the ore unit base
elevations. In order to make the data around the estimation
grid evenly distributed, eight angular sectors around the
estimation grid were defined with a minimum of four samples
in each sector. Delfiner (1976) states that the number of

angular sectors should at least be twice the number of
unbiasedness conditions, and considering the linear trend,
there should at least be six angular sectors around the data.
Hence, the number of angular sectors selected satisfies the
given rule of thumb. Based on the parameters selected, a
minimum of 32 samples around the estimation grid were
used in each search neighbourhood. The radius of the search
window circle was determined to be 170 m. However, since
GPR pick-points were densely sampled, 32 samples around
any estimation grid node do not fall further than 80 m radius.
In another words, points that are 80 m away from any
estimation grid node are not taken into account for
estimations through kriging techniques due to this
neighbourhood selection. This selected neighbourhood was
used for all the kriging methods. 

UK was used to estimate the ore unit base elevation variable
by making use of the inferred underlying variogram of the
residuals and the trend function, which describe the spatial
relationships between the sample data. The spatial maps of
the ore unit base elevation obtained from the UK estimation
are given in Figure 9.

Contrary to UK, IRF-k does not require the trend and the
underlying variogram of the residuals to be determined
beforehand, since it has its own automatic structure
identification algorithm allowing it to pick up the best set of
parameters within a preselected set of models (Chiles and
Delfiner, 2012). Hence, parameters describing the spatial
relationship for IRF-k algorithm in this study were
automatically detected. These parameters are the trend and
the chosen optimal GC model. The spatial maps of the
estimates from IRF-k method are given in Figure 10.

In addition to these nonstationary methods, OK was
implemented by neglecting the nonstationarity present in the
data. In this method, the variogram model obtained along the
trend-free direction was used as a structural input describing
the spatial relationship. The maps of the results produced by
OK are given in Figure 11.
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Table IV 

OK 0.00047 1.02941
IRF-k 0.00153 0.97807
UK 0.00145 1.21735
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The performance of the kriging estimators was tested by
comparing the validation data with the kriged data. This was
done by comparing the mean squared error (MSE) and MAE
values. In order to compute these errors, kriged data, which
was collocated with the validation data, was copied from each
of the UK, IRF-k, and OK maps and used to calculate the error
associated with each estimation algorithm. The results of
MSE and MAE are shown in Table V.

The differences between the errors calculated from the
different kriging algorithms are similar and the errors are not
significant, considering the mean 15.01 m of the prediction
data-set. 

Scattergrams generated by plotting the kriged values
obtained from the three kriged algorithms against the
validation data yielded almost identical results. The
coefficients of correlations were 0.990, 0.990, and 0.991 for
UK, OK, and IRF-k, respectively. 

Although IRF-k slightly outperformed the other predictor
algorithms, the estimation errors were not significant enough
to conclude that the more sophisticated IRF-k algorithm
outperformed OK in this particular case study. The similarity
in the results yielded by these techniques is thought to be
due to factors such as the densely sampled GPR elevation
variable and the selected neighbourhood parameters. 

The elevation variables were densely sampled and a
maximum of 32 samples were used in the estimation of the
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Table V 

IRF-k OK UK

MAE 0.2445 0.2506 0.2535
MSE 0.1267 0.1322 0.1349



variable at an unknown grid node due to the neighbourhood
definition. Since 32 samples were almost always within a 80–
100 m radius, the trend was probably not apparent within
such a radius. Therefore, the effect of the trend was not
experienced to any significant degree, since all the samples
used in the estimation were from the immediate vicinity of
the estimation grid. 

The focus of this case study was to implement and compare
the performances of different geostatistical estimators in the
case of a trend apparent in a densely sampled GPR data-set.
The UK and IRF-k methods were implemented to account for
the trend seen in the data-set and OK was implemented by
considering the spatial trend to be constant. 

The performances were assessed by comparing the kriged
values with the preselected validation data for each kriging
algorithm. The results of the comparisons with the validation
data have shown that IRF-k outperformed the other
algorithms considering MAE and MSE criteria. However, the
differences between the results were not sufficiently
significant for one kriging algorithm to stand out among the
others. For example, the MSE values obtained from the
comparison with the validation data were 0.1267, 0.1322,
and 0.1349 for the IRF-k, OK, and UK algorithms,
respectively. Similarly, the plotted scattergrams demonstrated
a similar outcome; the coefficient of correlations obtained
from plotting the kriged values against the validation data
were 0.990, 0.990, and 0.991 for UK, OK, and IRF-k,
respectively. This similarity was mainly due to the large data-
set and neighbourhood parameters chosen.
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BACKGROUND
The minerals industry is a backbone for most of the economies in the African continent, thus, it is vital that the exploitation of the mineral

resources is conducted profitably. However, without any paradigm shift in the tactics we employ to mine these resources, the mineral

wealth we possess will not be of any benefit to the current and future generations. There need to be a shift in the way we exploit the 

resources in order to ensure longevity of current operations and enable mining of deep-level complex orebodies in a safe, healthy and

profitable manner. This can be achieved through integration of 1st, 2nd, 3rd and 4th revolutions to create a sustainable minerals industry
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