
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/adfm.201802592. 

 

This article is protected by copyright. All rights reserved. 

 

DOI: 10.1002/adfm.201802592  

Article type: Review 

 

Gas Humidification Impact on the Properties and Performance of Perovskite-Type Functional 

Materials in Proton-Conducting Solid Oxide Cells 

 

 

Wei Wang, Dmitry Medvedev*, Zongping Shao* 

 

 

Dr. W. Wang, Prof. Z. Shao 

WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, 

Perth, WA 6845, Australia 

E-mail: zongping.shao@curtin.edu.au 

 

Dr. D. Medvedev 

Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High 

Temperature Electrochemistry, Yekaterinburg 620990, Russia 

E-mail: dmitrymedv@mail.ru  

 

Dr. D. Medvedev 

Ural Federal University, Yekaterinburg 620002, Russia 

 

https://doi.org/10.1002/adfm.201802592
https://doi.org/10.1002/adfm.201802592
https://doi.org/10.1002/adfm.201802592
mailto:zongping.shao@curtin.edu.au
mailto:dmitrymedv@mail.ru
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadfm.201802592&domain=pdf&date_stamp=2018-10-10
Sian Dewar
This is the author accepted manuscript of:
Wang, W. and Medvedev, D. and Shao, Z. 2018. Gas Humidification Impact on the Properties and Performance of Perovskite-Type Functional Materials in Proton-Conducting Solid Oxide Cells. Advanced Functional Materials. 28 (48).




 

  

 

This article is protected by copyright. All rights reserved. 

2 

 

Prof. Z. Shao 

Jiangsu National Synergetic Innovation Center for Advanced Material, State Key Laboratory of 

Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 

Nanjing 210009, China 

 

 

Keywords: chemical expansion, proton-conducting materials, solid oxide electrochemical cells, 

transport properties, water vapor partial pressure 

 

Fuel cells and electrolysis cells as important types of energy conversion devices can be divided into 

groups based on the electrolyte material. However, solid oxide cells (SOCs) based on conventional 

oxygen-ion conductors are limited by several issues, such as high operating temperature, the difficulty 

of hydrogen purification from water, and inferior stability. To avoid these problems, proton-conducting 

oxides are proposed as electrolytes for SOCs in electrolysis and fuel cell modes. Since water vapor 

partial pressure (pH2O) is one of the main parameters determining the proton concentration in proton-

conducting oxides (characteristics of which can be either improved or deteriorated), the pH2O control is 

extremely important for the optimization of the devices’ performance and stability. This review 

provides an overview of the research progresses made for proton-conducting SOCs, especially for the 

impact of gas humidification on the operability and performance. Fundamental understanding of the 

main processes in proton-conducting SOCs and design principles for the key components are 

summarized and discussed. The trends, challenges and future directions that exist in this dynamic field 

are also pointed out. This review will inspire interest from various disciplines and provide some useful 

guidelines for future development of proton-conductor-based energy storage and conversion systems.  

 

1. Introduction 

 

 Complex oxides with meaningful proton transfer capability at certain conditions are 

proposed to be promising functional materials for solid oxide cells (SOCs), which form the basis of 

highly efficient, environmentally friendly and economically attracted electrochemical devices and 

technologies.[1–4] If the ionic transporting capability dominates over the electronic one, such 

conducting materials can be used as electrolytes for solid oxide fuel cells (SOFCs), solid oxide 
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electrolysis cells (SOEC), hydrogen sensors and hydrogen pumps,[5–8] operating on the principles of 

chemical energy conversion to electricity, electricity to chemicals, hydrogen detection and hydrogen 

separation, respectively. If electronic transport is comparable with (or higher than) the ionic one, 

electrode-free membranes for hydrogen-separation reactors and electrode materials for electrode-

based SOCs can be purposefully designed.[9] Unconventional proton transport for oxide materials 

allows the unique processes to be also carried out, for example, a precise H/D/T-isotope analysis, 

conversion of harmful (NOx) or widely available compounds (CO2) to harmless and valuable products 

(N2, CO), conversion of saturated hydrocarbon (CH4, C2H6) to unsaturated or aromatic compounds 

(C2H4, C6H6), hydrogen compression and etc.[10-13] 

 A proton-conducting electrolyte is a heart for the proton-conducting SOCs. Such materials 

demonstrate superior proton conductivity in the temperature range of 300-700 °C, owing to high 

both concentration and mobility of proton charge carriers in comparison with similar parameters of 

the oxygen-ionic electrolytes (stabilized ZrO2, doped CeO2 and doped LaGaO3).
[14,15] This unique 

feature of proton conductors has attracted increasing interests for the development of the low- and 

intermediate-temperature solid oxide electrochemical cells. 

 When solid oxides are in contact with hydrogen-containing gas components (H2, NH3, H2O) at 

elevated temperatures, a proton transport is formed. In the case of redox-stable systems (e.g., 

electrolytes), the highly mobile proton defects ( OOH ) appear through the interaction of existing 

oxygen vacancies ( OV ) with steam, as illustrated by equation (1) presented in Kroger-Vink 

formalism.[16] Energetically, this process takes an intermediate place between physical adsorption of 

water and deep chemical interaction with the formation of hydroxide phase(s). Therefore, the 
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proton-conducting materials should have good structural stability (no decomposition) when they are 

hydrated. 

x

O O 2 OV +O +H O 2OH                            (1) 

By applying the law of mass action to the equation (1), the dependence of proton defects 

concentration on the water vapor partial pressure can be presented as: 

 
1/21/2 1/2 x 1/2

O w O O 2[OH ] K [V ] [O ] pH O               (2) 

Here Kw is the equilibrium constant of the reaction shown in equation (1). According to equation (2), 

the water vapor partial pressure is a key parameter affecting the ion transport (particularly, proton 

on account of 
OOH , oxygen-ion on account of 

OV ) and electron transfer. Correspondingly, the 

water concentrations in oxidizing and reducing atmospheres determine the functionality and 

performance of electrochemical devices based on these electrolytes. 

 Although there were several excellent reviews published on the topic of proton-conducting 

oxides in the past years,[6,7,9,10,13,14] these reviews were mainly aimed at the development and design 

of materials for the applications in SOCs. In this review, we focus on the effect of gas moisturizing 

(humidification) on the functionality, properties and performance of the proton-conducting 

materials to provide some useful guidelines on the optimization of electrochemical proton-

conducting systems (symmetrical cells, fuel cells and electrolysis cells) by varying and controlling the 

water vapor partial pressures. Due to excellent mobility of protons and their low activation barrier, 

the proton-conducting electrolytes and corresponding electrochemical devices show promising 

performance below 500 °C. However, the proton-conducting electrolytes are almost fully hydrated 
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under such low temperatures. This does not allow us to reveal the pH2O influence on the 

functionality of the proton-conducting perovskite oxides. Thus, we discussed the progress of the 

proton-conducting materials above 600 °C, when a hydration limit hasn’t been reached in these 

electrolytes, which can respond to the pH2O changes significantly. 

2. Proton-conducting electrolytes as a basis for SOCs 

 

 A SOC is composed of two electrodes and one electrolyte, where the electrolyte is 

sandwiched by the two electrodes. This electrolyte membrane allows the transfer of ions (O2– or H+) 

from one “electrode|electrolyte” interface to another one, whereas the electrochemical 

oxidation/reduction reactions occur over the electrodes. In the case of the electrolytes with proton 

conductivity, the principles of different types of SOCs are summarized in Figure 1. Gas tightness is 

one of the most important requirements for proton-conducting SOCs. In other words, the proton-

conducting membrane separates two different gases without any mixing. Along with highly dense 

structure, the electrolytes should have excellent ionic and negligible electronic conductivity to 

suppress the undesirable self-starting electrochemical reactions. Since the proton-conducting 

processes occur with the participation of many gas components, the electrolytes are needed to 

possess a superior structural stability and a good tolerance against the interactions with gases as 

well as other functional components in SOCs (cathode, anode, interconnector and sealant). The 

constituent materials should be thoroughly selected by considering their thermal properties during 

different technological stages (co-sintering, electrode sintering, start-up, cool-down and thermo-

cycles) to avoid any cracking, delamination and leakage. 
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 It can be seen that the proton-conducting membrane in SOC is simultaneously in contact 

with both cathodic and anodic atmospheres with different partial pressures of oxygen (pO2), 

hydrogen (pH2) and water vapor (pH2O), etc. Some of these partial pressures are the potential-

determined parameters of transport behavior of the proton-conducting electrolytes. The description 

of their transport properties is convenient to carry out using the quasi-chemical model. The defect 

formation and interaction processes for 2 4 3

1 x x 3A B M O  

 
 can be presented as follows:[17,18] 

2"BO "
/ x

2 3 B O OM O M V 3O    (3) 

wK
x

O O 2 OV +O +H O 2OH   (1) 

pK
x

2 O O1/ 2O V O 2h    (4) 

nK
x /

O O 2O V 1/ 2O 2e    (5) 

Here, /

BM  is an acceptor dopant occupying the B-site, x

OO  is the oxygen-ion in its regular site, h  

and /e  are the holes and electrons, Kp and Kn are the equilibrium constants of the reactions (4) and 

(5). Considering a general electroneutral condition (or its particular cases) 

/ /

B O O[M ] [e ] 2[V ] [OH ] [h ]       (6)  

as well as a balance of ions 

x

O O O[O ] [V ] [OH ] 3                 (7) 
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the dependences of defects concentration on the pO2 and pH2O variation are shown in Figure 2. This 

Figure describes the bulk structure of proton-conducting martials, which are free from the defects 

interaction resulting in change in the concentrations of mobile charge carriers.[19] Moreover, the 

impacts of surface and grain boundaries are not considered in the presented model (equation (1)–

(7)), which are always chemically different in comparison with the bulk region of the materials.[20] 

 According to Figure 2, a drop of pO2 resulted in the corresponding decrease in the hole 

defect concentration. At the same time, the increase in pH2O led to a decrease in the levels of both 

oxygen-ionic and p-type electronic conductivities. This tendency is also suitable for the low- and 

intermediate-temperature SOCs since the rapid improvement of proton transport with an increase in 

pH2O can also be achieved at reduced temperatures. 

 The purposeful changes of pO2, pH2O and temperatures enable the enhancement of the 

transport properties of proton-conducting membranes. However, the relationship between other 

functional materials of SOCs and external changes (particularly, pH2O) may be different and the 

thorough analysis of reported data is required to reveal the main regularities. 

3. Functional materials of proton-conducting SOCs 

 

3.1. Electrolytes 

 Among different representatives of proton-conducting oxides in SOCs, the BaCeO3- and 

BaZrO3-based materials are most widely studied perovskite oxides.[21] In this section, we primarily 

focus on these two systems with a great emphasis while some other important proton-conducting 

oxides are also summarized. 
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3.1.1. Features of hydration 

 Protons are not an inborn part of oxide materials, since the proton-conducting-related 

properties only appeared after the hydration process (equation (1)). Dissociative absorption of 

steam occurs with the participation of oxygen vacancies. They were created by the acceptor doping 

way (equation (2)), which determined the maximal level of proton concentrations (hydration limit). 

Since the reaction in equation (1) is exothermic, the proton concentration decreased with the 

increasing temperature shown in Figure 2e-h and the following equation: 

2o o

O
w x

O O 2

[OH ]S H
K exp exp =

R RT [V ][O ]pH O





    
    

   
 (8) 

where 
oH  and 

oS  are the standard molar enthalpy and entropy, respectively. Some proton-

conducting oxides with these parameters after hydration are listed in Table 1.[24-34] 

 The temperature is one of the most influential factors to affect the defect interaction 

(especially at relatively low temperatures and high defect concentration[19]), surface and grain 

boundary chemistry[22]. In addition, the temperature also has a strong effect on the experimental 

level of 
O[OH ]  at a specific condition. As a result, a reduced amount of mobile oxygen vacancies 

was achieved due to the structural features of some perovskites.[23,32] 

 From the chemical aspect, Kreuer presented the direct correlation between the 

thermodynamic parameters of the hydration and the basicity of ABO3 perovskites.[ 28] More precisely, 

the equilibrium constant (equation (8)) was found to be increased in the sequences of Ca → Sr → Ba 

(A site) and Ti → Nb → Sn → Zr → Ce (B site). As a result, BaCeO3- and BaZrO3-based perovskite 

oxides demonstrated the highest hydration capability, the highest concentrations of proton charge 
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carriers in their perovskite structures and the highest protonic conductivity. However, these BaCeO3- 

and BaZrO3-based systems exhibited a lower water uptake capability in comparison with the 

theoretically predicted level, corresponding to a full hydration of oxygen vacancies, /

O B[OH ] [M ]  , 

as shown in Figure 3. There are several reasons leading to these experimental results.[19-22] The BaO 

evaporation and redistribution of the acceptor dopants between A site and B site of ABO3 structure 

is reported as one of the reasons;[21] this results in an effective decrease in the amount of oxygen 

vacancies, which is regulated by the acceptor dopant concentration as depicted in equation (3). An 

inhomogeneity of surface regions and grain boundaries can be considered as another reason of the 

low (overall) proton concentration and hydration capability.[20,22] Finally, the existence of simple 

( 
x

/

O BOH M  , /

O BV M


  ) and complex ( 
/

/ /

B O BM OH M  , 
x

/ /

B O BM V M  ) defects’ 

associates is found to be the decisive factor for the observed differences in theoretical and 

experimental water uptake capability, especially at relatively low temperatures, when these 

associates are stable.[19]
 The evident ways of improving the experimental levels of water uptake 

capability and proton concentrations should be thorough control of the Ba-stoichiometry, the 

decrease of the impurities coming from the initial powders or some technological steps (such as 

milling, grinding, and treatment), and the achievement of conditions favorable for the dissociation of 

the defects and defect-based associates. 

3.1.2. Crystal structure 

 Although BaCeO3 and BaZrO3 belong to perovskite oxides with a formula of ABO3, their 

crystal structures are different, which can cause some differences in the proton transport. The 

nominally pure BaCeO3 and BaZrO3 exhibited orthorhombic and cubic structures at room 
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temperature, respectively.[21] This difference can be assigned to the ionic radii difference of the B-

site elements (Ce4+ and Zr4+) occupied B-site and can also be described by the Goldschmidt tolerance 

factor:[35] 

 
2 2

4 2

XII VI

Ba O

VI VI

B O

r r
t

2 r r

 

 





                         (9) 

Where r is the ionic radius of the ions in corresponding coordination states. This factor is associated 

with the degree of stability or distortion of the perovskite structure. If the tolerance factor is close to 

1.0, the formation of a cubic structure is energetically favorable. With an increase of tolerance factor 

up to 1.04 or a decrease down to 0.71, some distortions of the perovskite structure can be formed, 

such as tetragonal, rhombohedral, orthorhombic or monoclinic ones. Using Shannon system, the 

tolerance factors were around 0.94 and 1.00 for BaCeO3 and BaZrO3, respectively, agreeing well with 

their crystal structures.[36] 

 The structural changes were especially clear by using a system based on BaCeO3 and BaZrO3 

solid solutions (Table 2),[38-44] for which a sequence of phase transitions was observed. It should be 

noted that different structures existed for the material with the same composition. Since the 

tolerance factor actually kept constant, some other factors also affected the phase structures in the 

BaCeO3–BaZrO3 system. Temperature and pH2O also have some contributions to such factors (Figure 

4) although their effects on the crystal structure are opposite.[45,46] The symmetry of perovskite 

structure increased with increasing the temperature due to octahedral tilting diminishing and 

decreased with increasing the water vapor content, suggesting that the significant distortion of the 
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lattice was relevant to the material’s hydration capability. This will also lead to a chemical expansion 

effect, which will be described in detail in the next section. 

3.1.3. Chemical expansion 

 The hydration effect of the proton-conducting materials resulted in a considerable structural 

change (Figure 4c), which not only led to the phase transition(s) but also to the lattice expansion. 

Recently, the thermo- and chemo-mechanical properties based on the hydration capability has been 

intensively studied for the doped BaCeO3, BaZrO3 and BaCe1–xZrxO3 systems. Different experimental 

and theoretical studies were performed by Uda et al.[46-48], Andersson et al.[49,50], Tsidilkovski et al.[51], 

Jedvik et al.[52], Bjørheim et al.[53] and Mather et al.[54]. The obtained results demonstrated that the 

proton formation led to a lattice expansion compared with the initial one containing oxygen 

vacancies (Figure 5a and b).[50,52,55] Based on the numerical estimation, the effective ionic radii 

of
OV , 

OOH  and x

OO were 1.18, 1.35 and 1.40 Å, respectively.[49] It indicated that the creation of 

oxygen vacancies by acceptor doping always resulted in the lattice contraction by assuming 

conditionally that the effective ionic radii of cations were not changed with such a doping. On the 

other hand, the lattice expansion was accompanied by the filling of oxygen vacancies with water 

vapor and the formation of stable proton defects. 

 The chemical expansion of the proton-conducting materials under gas humidification 

increased with the increasing in the basicity of oxides and the amount of the acceptor dopant (Figure 

5c), which was responsible for a sufficient amount of oxygen vacancies. According to the 

comparative analysis presented in the literature,[52,56] chemical expansion coefficient varied in a wide 
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range of 0.01–0.2 depending on the chemical composition of the BaCe1−x−yZrxMyO3−δ system, 

including Zr content (x), type of dopant (M) and its concentration (y). 

 It is interesting that relative expansion of the proton-conducting materials can reach a quite 

high value under conditionally isothermal dwell. Based on the results of Andersson et al., the relative 

changes in the calculated unit cell volumes of BaCe0.8Y0.2O3–δ in dry and wet oxygen atmospheres at 

500-800 °C is equivalent to change in the cell volume with a 200 °C increase in the temperature at a 

constant gas composition (dry oxygen, Figure 5d).[50] Such a high degree of the lattice expansion 

might be a reason of their mechanical stress, which was one of the essential problems in SOCs. In 

addition, the relative change of unit cell parameters (or other dimension characteristics) did not 

depend substantially on the pO2 variation due to the high stability of the anionic sublattice. This can 

be realized even for the BaCeO3-based materials, which contained the Ce element with variable 

oxidation states (Ce4+/Ce3+). On the other hand, many oxygen electrodes suffered from the relative 

dimension shrinkage/expansion induced by the pO2 change.[57] Therefore, the creation of good 

adhesive electrolyte/electrode contacts with no destruction under both pO2 and pH2O variation is 

then critical for the stable operation of SOCs. 

 

3.1.4. Stability 

 High basicity of the oxides is favorable for the formation of stable proton defects in the 

crystal structure due to the more exothermic hydration enthalpies. From this viewpoint, BaCeO3-

based materials are demonstrated to be good ionic conductors with the highest values of total 

proton conductivity. However, the stability of proton defects was not satisfied at both low- and high-
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temperature regions. From the one side, the concentration of proton charge carriers decreased with 

the increasing temperature. At the temperatures higher than 700-900 °C (depending on the 

materials composition and ambient gas conditions) the effect of concentration overwhelmed the 

effect of the increasing protons mobility, resulting in a decrease in the proton conductivity.[28,58] The 

proton concentration at high temperatures can be partially increased by providing a higher pH2O 

level, which shifted the equilibrium of reaction (1) to the right. From the other side, the character of 

proton/oxygen bond in 
OOH  was changed to the ionic bonds with the formation of hydroxyl groups 

(OH–), which led to the decomposition of the proton conductors, especially at low temperatures and 

high steam concentrations:[59,60] 

3 2 2 2BaCeO H O Ba(OH) CeO              (10) 

 For example, pure BaCeO3 was thermodynamically stable in the high-temperature region 

and started to react with steam at the temperatures below 400 °C.[60] 

Carbonate phases were then formed in humid atmospheres with the existence of trace amount of 

CO2: 

2 2 3 2Ba(OH) 2CO Ba(HCO )            (11) 

2 2 3 2Ba(OH) CO BaCO H O             (12) 

 Thermodynamic calculations suggests that H2O is a less aggressive component for BaCeO3-

based materials than CO2 since BaCeO3-based materials are stable at the temperatures higher than 

~1040 °C, while they are decomposed in the CO2-containing atmospheres at lower temperatures.[60] 
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Many efforts have been devoted to the maintenance of high proton conductivity and 

enhancement of chemical stability of the BaCeO3-based materials.[21,61] One possible way is the 

partial substitution of basic ions with some dopants, which decreased the basicity with an increased 

tolerance factor. Most frequently, the modification of BaCeO3 was carried out by partially 

substituting Ce4+ cations in the B-site (Figure 6a). The chemical stability of the modified oxides was 

significantly enhanced in both H2O- and CO2-containing gases (Figure 6b), allowing the materials to 

be used stably in the intermediate-temperature range.[64-75] The proton transport was also 

maintained in this way since the oxides formed by complete Ce4+ substitution by the different 

acceptor, isovalent and donor dopants (for example, Ba2In2O5, BaZrO3, BaSnO3) also have proton 

transport capability.[37,62,63] However, their proton conductivities were lower than those of BaCeO3-

based materials, which can be assigned to several reasons. Firstly, the free volume and migration 

channels size of the unit cell decreased although the crystal structures symmetry and tolerance 

factor value increased at the same time. Correspondingly, the mobility of charge carriers decreased. 

Secondly, some introduced dopants possessed refractory nature in comparison with cerium ions. In 

this situation, the grain boundary conductivity considerably dropped due to the smaller grain size 

and higher grain boundary density (Figure 6c).[76-78] Thirdly, the oxygen vacancy concentration 

decreased when the donor-type cations were used as the dopants. 

 The ceramics of the BaCe1−x−yZrxMyO3−δ system are considered as the most promising 

materials for SOCs since some functional characteristics can be achieved by tailoring the Ce/Zr ratio 

rationally. Starting from primary results reported by Wienströer and Wiemhöfer in 1997,[79] Ryu and 

Haile in 1999,[80] more than 300 works on this system have been published up to now. 
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3.1.5. Ceramic and mechanical properties 

 The ideal proton-conducting ceramic electrolytes should have well-developed grains, no 

porosity and “pure” grain boundaries, which can be determined by prehistory of the prepared 

powders (mean particle size, particle size distribution), technological modes (temperature and 

dwelling time) and their own chemical composition. For example, the sintering temperature should 

be increased considerably to obtain highly-dense ceramics with increased zirconium concentration (x) 

in the above-mentioned BaCe1−x−yZrxMyO3−δ system if other conditions kept unchanged.[37] The 

possibilities of different synthesis methods allowed the production of active and pure-phase 

powders and, consequently, desirable ceramics were developed and reported,[81,82] particularly for 

BaCeO3 and BaZrO3-based materials.[83,84] This section aims to focus on the mechanical properties of 

ceramic materials. 

 Depending on the architecture of the electrochemical devices, the proton-conducting 

electrolytes can act as a support as well as a thin film. To decrease the ohmic resistance (Ro), many 

SOCs were based on the thin-film electrolytes;[83-85] however if this resistance showed no effect on 

the SOCs’ functionality (for example, potentiometric-type sensors),[86] the traditional electrolyte-

supported cells can be employed. 

 Table 3 summarizes some important properties of the ceramics such as strength, hardness, 

toughness.[56,89-91] Among them, the influence of pH2O on the thermal behavior is most widely 

studied one. Moreover, thermal expansion played an important role in the applications of the 

electrolytes in the thin film mode. The match of thermal expansion coefficients (TEC) of SOCs’ 

functional layers is necessary to ensure good adhesion between them and to avoid any cracking and 

delamination. The perovskite-structured proton-conducting materials (based on MZrO3, MCeO3 and 
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LaM'O3, where M = Ca, Sr, Ba; M' = Sc, Y, Yb) exhibited TECs values between 8×10–6 and 12×10–6 K–1, 

depending on the unit cell size and crystal symmetry. These TEC values were rather close to that of 

the traditional oxygen-conducting YSZ (10-11×10–6 K–1).[92] The unique feature of the relative 

dimensions’ change consisted in its nonmonotonicity due to the chemomechanical response 

(Figure 7).[47,102] Figure 7a schematically demonstrated the influence of the pH2O-induced chemical 

expansion on the total (measured) expansion of the proton-conducting materials. The following 

assumptions were considered: the dilatometry dependence was obtained under cooling mode in a 

wet atmosphere, from a high temperature (~1000 °C), when a proton conductor was almost (fully) 

dehydrated. A linear shrinkage or contraction of the sample’s dimension was accompanied with the 

decrease of the temperature. At lower temperatures, the available oxygen vacancies started to be 

filled with steam, initiating a chemical expansion. This chemical expansion was nonmonotonic with a 

continuous decrease in the temperature and reached a certain level, corresponding to the full 

hydration. The temperature dependence of relative change of linear parameters was characterized 

in different temperature regions, corresponding to different TEC values (Table 4).[44,49,93-103] 

Depending on modes of obtained data (cooling or heating), the initial condition of samples (hydrated 

or dehydrated) and the type of atmospheres (dry or wet), the different thermal expansion behaviors 

of materials can be achieved (Figure 7b and c). 

3.1.6. Transport properties (conductivity, transport numbers) 

 The transport properties of the proton-conducting electrolytes based on BaCeO3 or BaZrO3 

are very complex since their total conductivity is composed of six conductivities such as oxygen-ionic, 

protonic and electronic bulk conductivities and oxygen-ionic, protonic and electronic grain boundary 

conductivities. These conductivities depended on the internal characteristics of the materials 
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(composition, grain size, porosity) as well as the external characteristics (temperature and partial 

pressures of potential-determined components). In order to describe these processes more correctly, 

some special conditions can be constructed when conductivities dominated over others. 

 In polycrystalline materials,[20,104] the grain boundaries determined the overall transport of 

the considered electrolytes at lower temperatures, while the bulk region predominated at higher 

temperatures (Figure 8).[108] This behavior can be applied for massive ceramic samples and it should 

be considered when developing the electrolyte-supported electrochemical devices operated at 

higher temperatures. However, the grain boundary transport displayed a significant impact on the 

output of low- and intermediate temperature SOCs, if they are based on nanocrystalline thin film 

materials. From the macroscopic viewpoint, the grain boundary resistance of the electrolytes can be 

reduced by increasing the grain size or decreasing the grain boundary density. There are two well-

known strategies to facilitate the grain growth such as the use of nanosized materials with enhanced 

sinterability[81,105] or the addition of sintering additives.[106,107] Both of these methods are useful for 

developing high-efficient electrochemical devices. 

 Temperature and chemical compositions of the materials and surrounding gas atmosphere 

determined the individual conductivity, which can be attributed to the bulk transport at 

temperatures higher than 500-600 °C. According to the profiles of defect concentrations under 

different conditions (Figure 2), the corresponding individual conductivity may predominate under a 

certain condition (Figure 9):[109] 

1. Protonic conductivity predominated under atmospheres with high pH2O and low pO2 levels (wet 

N2, wet H2) at intermediate temperatures. 
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2. Oxygen-ionic conductivity predominated under dry reducing atmospheres (dry N2, dry H2, dry NH3), 

especially at high temperatures. 

3. Hole conductivity predominated in dry oxidizing conditions at elevated temperatures. 

 In the BaCe1−x−yZrxMyO3−δ system, overall proton transport diminished with increasing  Zr 

concentration (x), which can be explained by a pivotal role of grain boundaries for the Zr-enriched 

ceramic materials; at the same time, p-type electronic transport starts to be a dominant factor under 

oxidizing atmospheres.[37,40,110] As for the effect of M3+ acceptor dopants,  a high ionic transport was 

observed for dopants with low ionic radii (M = Yb, Y, Dy, Ho) with their concentrations around 

0.2.[111-115] An increase in the ionic radius of M was accompanied with the increasing Zr amount with 

reduced grain growth rate and grain boundary conductivity as well as an improved electronic 

transport capability. 

 In addition to the perovskites based on BaCeO3 and BaZrO3, the partial substitution of Ba2+ 

with other alkaline-earth elements might be useful to extend the electrolytic domain boundaries. 

Early studies have shown that Ca- or Sr-substituted barium cerate electrolytes demonstrated a 

higher proton transport number compared with the materials without such a modification[116-118], 

which implied a proton transport improvement. Moreover, the chemical stability improved slightly 

for the Ca- or Sr-substituted materials due to the decreased basicity of these ions. As a result, joint 

modification of both A- and B-sublattices in Ba(Ce,Zr)O3 has been successfully used to from new 

highly stable electrolytes with predominant proton conductivity in the past few years.[119-125] 

 Among proton-conducting SOCs, fuel cells and electrolysis cells are widely investigated. In 

SOFCs and SOECs, the electrolyte is in contact with both oxidizing and reducing atmospheres. These 
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electrolyte membranes were almost protonic in wet H2, while undesirable electron conductivity 

appeared in oxidizing conditions (e.g., static air, one of the most used atmosphere in SOFCs), even at 

600 °C. The moisturizing of air led to a decrease in the absolute value and contribution of electron 

conductivity in the overall conductivity, as shown in the analysis of transport numbers distribution 

(Figure 9). 

3.2. Air electrodes 

 The development of air (oxygen) electrodes plays a highly important role because the rapid 

development of SOCs based on thin-film electrolytes and their insufficient electrochemical activity at 

lower operational temperatures (<600 °C).[126,127] The air electrodes should also have good, chemical 

and thermal compatibility with other cell components as well as microstructural stability during the 

thermal cycles or long-term operation. For the proton-conducting SOCs, the stability of air 

electrodes in highly humid atmospheres is also required. 

 The same electrode exhibited different electrochemical activities when they were fabricated 

on the oxygen-ionic and proton-conducting electrolytes, which came from the distinctive elementary 

reactions realized in the electrode/electrolyte systems as shown in Table 5 and Figure 10.[128,129] 

From the viewpoint of overall electrochemical reactions, equation (13) and (14) highlighted the 

above-mentioned differences of these systems: 

2 / x

2 O OFor O electrolytes : O 2V 4e 2O                (13) 

/ x

2 O O 2For H electrolytes : O 4OH 4e 4O 2H O     (14) 
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 Two main factors affected the electrochemical activity of the air electrodes such as the 

kinetic parameters (diffusion coefficients and surface exchange constants) and the microstructural 

parameters (electrocatalytic active area). The parameters of the first group lie in the materials 

science aspect and can be managed by the selection and optimization of electrode compositions; the 

parameters of the second group can be controlled through the optimization of technological 

methods. Analysis on the relationship between the electrochemical activity, kinetic and 

microstructural parameters has been thoroughly carried out.[130–135] However, the influence of air 

humidification on the oxygen electrodes’ performance was not clear, particularly for the proton-

conducting SOCs. 

 One of the first investigations in this field was carried out by Grimaud et al.[136] They studied 

several oxygen electrode materials such as La0.6Sr0.4Fe0.8Co0.2O3−δ (LSFC), Ba0.5Sr0.5Co0.8Fe0.2O3−δ 

(BSCF), PrBaCo2O5+δ (PBC) and Pr2NiO4+δ (PN) fabricated on a proton-conducting BaCe0.9Y0.1O3-δ 

electrolyte. These electrodes were divided into two groups by measuring the polarization resistances 

(Rp) with the dependence on pH2O (Figure 11).[136] The first one included LSFC only, the 

electrochemical activity of which reduced with the increase in pH2O. The second group consisted of 

other three oxygen electrodes, which showed increasing electrochemical activity with the increased 

pH2O. In addition, the experimental data were analyzed using the following equation 

m n

p 2 2R (pO ) (pH O)   (15) 

and the order coefficients (m and n) were determined. Considering the water vapor partial pressure 

behavior, n was found to be 1/2 for steps 7 and 8 and m was 1 for step 9 of Model II (Table 5) based 

on He et al.’s study.[137] For the PN electrode, the resistance at the medium and low frequencies was 
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proportional to pH2O with n values of 1/2 and 1, respectively, demonstrating that the processes 

occurred with the participation of protons in both the interface and electrode’s surface regions. The 

behaviors of BSCF and PBC were slightly different from that of PN, but their resistance showed the 

reverse tendency against pH2O. However, LSFC exhibited a positive order of the resistance to pH2O 

at medium frequencies and no order at low frequencies, suggesting its inability to hydration process. 

The rate determining step for LSFC was proposed to be oxygen adsorption/dissociation while for rate 

determining step for other three oxygen electrodes was water formation or steam releasing process. 

 Yoo et al. have studied the effect of the electrolyte material addition (BaCe0.9Y0.1O3–δ) to the 

LSFC oxygen electrode to enhance its electrochemical activity.[138] It was found that an increase of 

pH2O led to an increase in the Rp values for both single-phase and composite electrodes. However, 

the absolute Rp values for the composite material in dry and wet atmospheres were lower than 

those of the single-phase one, suggesting the extension of the triple phase boundary (TPB) area by 

adding the electrolyte material. 

 Double perovskites with PrBaCo2–xFexO5+δ compositions (x = 0, 0.5, 1 and 1.5) have been 

proposed as potential air electrodes for proton-conducting SOCs.[139] The pure Co-based and Fe-

enriched electrodes demonstrated different electrodes’ behaviors with the pH2O variation. The Rp 

value of PBC decreased from 0.60 to 0.38 Ω cm-2 with an increase of pH2O from 0.03 to 0.30 atm 

(600 °C), whereas it increased from 8.1 to 8.5 Ω cm-2 for PrBaCo0.5Fe1.5O5+δ when pH2O was increased 

from 0.03 to 0.30 atm at 600 °C. The obtained results were explained by the unique hydration 

capability of the Fe-free cobaltite with triple-conducting behavior, at which all the electrode surface 

participated in the electrode processes. The Fe-doped double perovskite showed a less pronounced 

tendency to hydration and, therefore, it demonstrated predominantly O2–/electron mixed 
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conducting capability. In this case, the water formation (equation (14)) was proposed to be 

happened only over the electrolyte surface, impeding the competed oxygen transfer through the 

electrolyte/electrode interface.  

 The recently published work of Zohourian et al. demonstrated some directly opposite 

results.[140] The authors studied the proton uptake capability of ~20 simple perovskite oxides 

belonging to ferrite or cobaltite family (Figure 12).[140] They found that the hydrogen content was 

determined by the basicity of cations in ABO3 and covalent character of B–O bonds, reaching the 

highest values for barium ferrites doped with lanthanum and zinc, respectively. However, the Co-

containing oxides showed the lowest values. For example, the hydration enthalpy and entropy 

parameters of Ba0.95La0.05Fe0.8Zn0.2O2.4 were −86±5 kJ mol−1 and −134±6 J mol−1 K−1, respectively, 

allowing the uttermost protons concentration (10 mol.%) to be achieved in the oxide structure. 

These results open a possibility for searching the new and effective triple-conducting electrodes 

instead of cobaltites with simple or double perovskite structures,[141,142] for some of which the 

proton transfer was assumed to be questionable.[143] Some other double perovskites were also 

studied by Strandbakke et al.[128] BaGd0.8La0.2Co2O6−δ demonstrated a hydration capability with the 

corresponding enthalpy and entropy parameters of −50(±7) kJ mol−1 and −140(±10) J mol−1 K−1, 

respectively. This oxygen electrode displayed different responses on the humidification extents of 

the atmospheres. At 650 °C, its Rp value increased when the pH2O was changed from 0.002 to 

0.014 atm while a reverse tendency was observed at 400 °C with a pH2O change from 5×10–5 to 

0.027 atm. Protons were not participated directly in the electrode process at higher temperatures, 

which contributed to the slow rates for oxygen adsorption/diffusion due to the less available active 

sites for oxygen transfer. On the other hand, at low temperatures, when both the electrolyte and 
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electrode were hydrated, the protons determined the electrode process through the stage 7 of 

Model III (Table 5). 

 Sun and Cheng have studied the BSCF|BCZYYb|BSCF symmetrical cells to reveal the 

behaviors of the electrolyte and the electrodes in dry (10–6 atm) and wet (0.03, 0.1 and 0.2 atm) air 

atmospheres at 450, 550 and 650 °C.[144] It was found that the Ro decreased with the increase in the 

pH2O level and then kept constant until the hydration limit. For example, the Ro values were 2.11, 

2.04, 1.96 and 1.94 Ω cm2 at 10–6, 0.03, 0.1 and 0.2 atm of pH2O (650 °C), respectively; they were 

around 6 Ω cm2 at all the atmospheres with different pH2O levels at 450 °C. It indicated that the 

proton-conducting behavior of the BCZYYb electrolyte was dominated by the proton transport at low 

temperatures. In contrast to Ro, the Rp value increased with increased water concentrations at all 

temperatures. The detailed analysis of electrochemical impedance spectroscopy (EIS) data 

(Figure 13) was used to conclude that the electrochemical activity deterioration was associated with 

an increased resistance at medium and low frequencies and a slight decrease in the resistance at 

high frequency.[144] These resistances can be assigned to the mass transport of oxygen molecules, 

oxygen adsorption/dissociation and the charge transfer processes at low, medium and high 

frequencies, respectively. The presence of H2O in air resulted in its adsorption on the electrolyte and 

electrode surfaces, which decreased the amount of active sites for oxygen adsorption, dissociation 

and transport. The dominance of proton transfer was confirmed by the lower resistance of the high 

frequency process responsible for the total charge transfer of the electrode reactions. Moreover, the 

effect of CO2 poisoning on the electrochemical properties of the symmetrical cells was also 

investigated and it was found that BSCF was unstable in CO2, especially at low temperatures (450 
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and 550 °C). However, its stability was enhanced partially by moisturizing of the CO2-containing 

atmosphere due to the decreased active sites for CO2 adsorption by the addition of steam. 

 The BSCF electrode was also compared with other oxygen electrodes such as Ag, LSFC and 

LSFC–BCZYYb.[129] The authors performed the experiments in the same condition (T = 450–650 °C, 

pH2O = 5×10–6, 0.03–0.30 atm) and proposed possible mechanisms for all the four electrodes 

(Figure 10). It was found that both Ag and LSFC materials were unsuitable as effective single-phase 

electrodes due to shorter TPB length. The addition of BCZYYb to LSFC phase resulted in an extension 

of TPB area. BSCF was identified as the more suitable oxygen electrode for proton-conducting SOCs 

owing to lowest Rp values in both dry and wet atmospheres (Figure 14).[129] 

 Along with materials with the perovskite-related structures, the complex oxides belonging to 

the Ruddlesden-Popper phases are also considered as attractive electrodes for protonic-conducting 

electrolytes in SOCs. For example, the Ln2NiO4+δ-based materials (Ln = La, Pr, Nd) exhibit hydration 

capability,[145] high chemical stability against the hydroxide and carbonate formation due to the 

absence (or reduced amount) of alkaline-earth elements [146,147], quite low TEC values close to those 

of electrolytes,[148,149] no meaningful pO2-induced chemical expansion,[150,151] high electrical 

conductivity,[152,153] and excellent electrochemical activity as a result of both high oxygen diffusion 

coefficients and surface exchange constants.[154,155] 

 Table 6 summarizes the Rp values of the various oxygen electrodes based on symmetrical 

cells in various atmospheres with different water concentrations.[128,136-139,144,156-158] As can be seen, 

some opposite tendencies were found even for the same electrode. Different reasons may 

contribute to the observed disagreement, which will be mentioned later. Firstly, in Table 5, 
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the proposed models were based on the fact of unipolar (oxygen ionic in dry atmospheres or 

protonic in wet atmospheres) transport in the electrolytes. However, the BaCeO3 and BaZrO3-based 

materials exhibited substantial electron transport in oxidizing conditions even at 600 °C.[44] Secondly, 

these electrolytes demonstrated co-ionic (oxygen-ionic + protonic) conductivity in a wide 

temperature range (550-750 °C), which resulted in the water formation (equation (14)) as well as 

oxygen reduction (equation (13)) reactions simultaneously. Finally, the microstructural parameters 

of electrodes (tortuosity, porosity, type and size of grains) were not considered in the proposed 

models and investigations, which also played important roles in controlling the kinetic parameters 

and the electrochemical activity. 

 

3.3. Fuel electrodes 

 Fuel electrodes of proton-conducting SOCs, which are similar to the traditional oxygen-

conducting SOCs, should meet several requirements such as high electronic conductivity and 

sufficient ionic conductivity to ensure electro-catalytic activity for fuel oxidation; chemical inert to 

the interactions with gas components of fuels (H2, CO, CO2, H2S) and other components of SOCs; 

thermal compatibility with cell components; structural and mechanical flexibility between oxidizing 

and reducing atmospheres (redox-stability).[159–162] 

The composite materials composed of a metal (typically nickel) and ceramic components (electrolyte 

material) are traditional fuel electrodes for proton-conducting SOCs by meeting the above-

mentioned requirements. A Ni-metallic phase provides electron transport, whereas ionic (protonic) 

transport was provided by the ceramic part. The optimized ratio of phases and content of pore 
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former during materials preparation ensured the mechanical and redox stability of Ni-based cermets. 

The use of the same material for both the ceramic component of cermets and the electrolyte 

resulted in excellent compatibility of the cell components. 

 The existing works aimed to the optimization of microstructural, stability, electrical and 

electrochemical properties of the composite anodes for proton-conducting SOFCs and SOECs by 

controlling the ratios of the electrode components.[163–169] For example, Nasani et al. fabricated the 

symmetrical cells based on the BaZr0.85Y0.15O3–δ (BZY15) electrolyte and Ni–BZY15 anode and studied 

their electrochemical activity in reducing atmospheres with different pH2 and pH2O values.[170] They 

found that the Rp values decreased with increasing pH2 (from 0.001 to 0.1 atm) and were unchanged 

with increasing pH2O (from 6×10–4 to 0.03 atm in 10 vol.% H2/N2). Based on the comparative analysis, 

it can be concluded that dissociative adsorption of hydrogen on the anode surface was a rate-

determining step ( 2(gas) ad(surface)H 2H ), which was not dependent on the pH2O variation. 

 Miyazaki et al. have studied the electrochemical behavior of a proton-conducting SOFC 

fueled with NH3.
[171] Pure oxygen and NH3+Ar+H2O mixtures were used as the cathodic and anodic 

atmospheres for the cell with a configuration of Ni–BaZr0.8Y0.2O3–δ (BZY20)|BZY20|Pt. It was found 

that the total polarization of the electrodes decreased from 0.99 to 0.86 Ω cm2 at 650 °C with a pH2O 

increase from 0 to 0.2 atm due to the change in the rate-determining step. The ammonia 

decomposition was found to be determining factor for the dry fuel, whereas the hydrogen oxidation 

reaction dominated in the wet fuel. 

 Ding et al. fabricated the symmetrical cells made of Ba2FeMoO6−δ (BFM)|BCZYYb|BFM and 

studied the electrochemical activity of the fuel electrodes.[172] Mo-based double perovskites have 
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attracted more and more attention due to their good mixed ionic-electronic conductivity, 

mechanical stability and acceptable expansion behavior with various temperatures and pO2 

values.[173–176] Moreover, it was found that these oxides (e.g., Sr2Fe1.5Mo0.5O6−δ) may have high bulk 

proton transport,[177,178] which was favorable for proton-conducting SOCs. In Ding et al.’s work, the 

BFM electrodes were prepared by solid state reaction (SSR) and Pechini methods.[172] The EIS data 

showed that electrodes prepared by Pechini method exhibited higher electrochemical activity than 

that prepared by SSR. BFM prepared by SSR method displayed ASRs of ~250, 70, 30 and 10 Ω cm2 at 

600, 650, 700 and 750 °C, respectively (dry 5 vol.% H2/Ar). Moisturizing of an H2/Ar by 3 vol.% water 

vapor resulted in an ASR decrease to ~85, 25, 10 and 6 Ω cm2 at corresponding temperatures. It 

suggested that the rate-limiting step was the proton-charge transfer for BFM prepared by SSR 

method while hydrogen dissociation and diffusion was the rate-limiting step for BFM prepared by 

the Pechini method. However, the obtained data were not sufficient to explain the pH2O influence 

on considerable improvement of electrode activity, which needed to be clarified in the future 

research. 

4. Functional materials of proton-conducting SOCs 

 

 The electrochemical cells with potential-determined components working under the high 

partial pressure differences represent model systems closest to real conditions of SOFCs and SOECs. 

From the viewpoint of thermodynamics, such cells in non-current mode can generate a voltage 

(open circuit voltage, OCV), which is determined by transport nature of electrolytes and created 

gradients:[179,180] 
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2 2
O H O O H H

2 2

p 'O p ''HRT RT
E t ln t ln t E t E

nF p ''O nF p 'H
       (16) 

where EO and EH are the thermodynamic values of oxygen and hydrogen concentration cells under 

created partial pressure differences of oxygen (p'O2, p''O2) and hydrogen (p'H2, p''H2), tO and tH are 

the oxygen-ionic and protonic transport numbers. Considering the equilibrium of 

2 2 2H O H 1/ 2O  reaction, equation (16) is equivalent to the following expression: 

2

2 2
i H i O H H O

2 2

p 'O p ''H ORT RT
E t ln t ln t E t E

nF p ''O nF p 'H O
       (17) 

where 
2H OE  is the thermodynamic value of water vapor concentration cell under created difference 

of water vapor pressures (p'H2O, p''H2O); ti = tO + tH, which is the total ions transport numbers. 

 As can be seen from equation (17), proton-conducting SOCs are more efficient than oxygen-

ion-conducting SOCs because of the higher OCV values for SOFCs and lower OCV values for SOECs 

due to the additional component (
2H H Ot E ). Nevertheless, even if the pH2O levels are the same 

between the opposite sides of an electrolyte membrane, the proton-conducting SOCs systems might 

be preferable than oxygen-ionic-conducting analogs.[181-183] A possible improvement comes from not 

only tailoring OCVs (and, correspondingly, efficiency of SOCs) on account of higher tH, but the higher 

conductivity of the electrolyte membranes (and, correspondingly, performance of SOC). The above 

analysis demonstrated a great importance of setting and controlling the water vapor partial 

pressures in both gas sides of SOCs. 

4.1. SOFCs 
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4.1.1. The electrolyte-supported configuration 

 One of the first studies concerning the SOFC’s characterization at different moisturizing 

contents of gases has been carried out by Taherparvar et al.[184] The authors fabricated the 

electrolyte-supported Pt|SrCe0.95Yb0.05O3–δ (SCY)|Pt cell and characterized it at 600, 700 and 800 °C 

in the fuel cell mode, varying the pH2O level (from 0.001 to 0.12 atm) in oxidizing and reducing 

atmospheres. When pH2O was increased in air atmosphere (pH2O = 0.03 in a fuel mixture of 10 vol.% 

H2/Ar), the peak power densities (PPDs) decreased from 2.14 to 1.73 mW cm–2 at 600 °C and 7.70 to 

6.53 mW cm–2 at 800 °C, although the total cell resistance was unchanged with humidification. The 

deterioration of cell performance was associated with a decrease of OCVs (from 1.113 to 0.993 V at 

600 °C and from 0.95 to 0.91 V at 800 °C), which showed the same tendency to the theoretical 

values with increasing pH2O value. When pH2O was increased in 10 vol.% H2/Ar atmosphere from 

0.001 to 0.03 atm (pH2O in the air was about 0.001 atm), the PPD of the fuel cell increased from 2.67 

to 3.56 mW cm–2 at 700 °C with a decrease of the total cell resistance from 100 to 75 Ω cm2. The 

authors concluded that hydrogen humidification was more efficient to obtain high performance than 

the air humidification. However, some controversies were also found by analyzing the electrical 

properties of the SCY electrolyte. Both electronic and ionic conductivities of SCY were found to be 

decreased significantly with an increase in pH2O; therefore, the total cell resistance should be 

increased at air humidification as well as hydrogen humidification, which was not observed 

experimentally. 

4.1.2. The electrode-supported configuration 

 He et al. developed an anode-supported SOFC of Ni–BaCe0.5Zr0.3Y0.2O3–δ 

(BCZY0.3)|BCZY0.3|Sm0.5Sr0.5CoO3–δ (SSC)–BCZY0.3 with 20 μm-thick electrolyte and studied the 
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correlations between cell performance and the variation of pH2O levels in the cathode chamber at 

700 °C (Table 7).[185] Based on the analysis of EIS spectra with a RO(RHQH)(RLQL) equivalent circuit 

(Figure 15),[185] the rate-limiting process was associated with the cathode reactions, including proton 

migration (step 7 of Model II , Table 5) and oxygen-ion migration (steps 5 and 6 of Model II) to the 

TPB. An increase of pH2O resulted in an increased Rp value due to their low frequency contributions. 

It indicated that adsorption stages as well as diffusion of gas components to TPB started to be rate-

limiting processes at high pH2O values. 

 The influence of the pH2O in oxidizing and reducing atmospheres on the performance of 

SOFCs based on Ni-BaCe0.85Y0.15O3–δ (BCY15)|BCY15|La0.8Sr0.2MnO3–δ (LSM) with a 20 μm-thick 

electrolyte has been studied at 700 °C using a distribution relaxation time (DRT) and EIS analyses.[186] 

It was found that the increasing pH2O level at the anode side from 1×10–4 to 0.071 atm 

(pH2O = 1×10–4 atm in the cathode side) led to the some changes in the cell performance. For 

example, PPD was changed from 210 to 200 mW cm2, OCV was reduced from 1.05 to 1.02 V and the 

Rp was changed from 0.95 to 1.17 Ω cm2 with almost unchanged Ro value. The EIS spectra were fitted 

using a L-RO(R1Q1)(R2Q2)(R3Q3) equivalent circuit and then were analyzed by separating the individual 

processes such as P1, P2 and P3 with corresponding resistances (R1, R2 and R3, respectively). Based on 

this analysis, some important conclusions were identified. Firstly, R1 decreased slightly with the pH2O 

change from 1×10–4 to 0.023 atm and then it kept constant with further increased humidification 

content. R2 was almost constant, whereas R3 increased from 0.08 to 0.30 Ω cm2 with the pH2O 

change from 1×10–4 to 0.023 atm. According to these qualitative and quantitative data, the P1 

process was attributed to the charge exchange behavior, which was enhanced by the humidification 

due to the fast proton transport in comparison with oxygen-ionic one; the P3 process corresponded 
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to gas diffusion processes in the pores of the electrode because increased concentration of pH2O 

hindered the H2 supply to the electrochemical active zone. 

 The effect of humidification amounts of the cathodic atmospheres on the cell performance 

was also investigated.[187] For example, when pH2O was increased from 1×10–4 to 0.071 atm, the PPD 

decreased from 170 to 140 mW cm2 due to the increased Ro value from 0.60 to 0.75 Ω cm2, R2 value 

from 0.66 to 1.07 Ω cm2, R3 value from 0.12 to 0.21 Ω cm2 while no inhibition of the transfer process 

of charge carriers (P1 process) was observed. In addition, the stages associated with the hindrance of 

the water desorption (P2 process, equation (14)) and oxygen adsorption (P3 process, equation (13)) 

were also limited. The above results suggested that cathode material with low ionic conductivity 

such as LSM was not suitable as air electrode for proton-conducting SOCs. 

 Lee et al. demonstrated that transport properties of air electrodes strongly affected the 

SOFCs’ performance under humidification.[187] It was found that the total cell resistances increased 

for both cells of Ni-BCY15|BCY15|LSM-Ce0.8Sm0.2O2-δ (SDC) and Ni-BCY15|BCY15|LSM-BCY15, when 

dry air and dry hydrogen atmospheres were replaced by wet ones with pH2O = 0.03 atm. However, 

the Rp for the composite material with proton-conducting component (LSM-BCY15) showed less 

performance deterioration than for the composite electrode containing oxygen-conducting part 

(LSM-SDC). 

 Lim et al. prepared SOFCs with a more stable BaCe0.45Zr0.4Y0.15O3-δ as the electrolyte 

(BCZY0.40, 15.5 μm in thickness).[188] They also replaced the LSM cathode with mixed ionic-electron 

conducting BSCF, which showed improved activity and hydration capability due to mixed 

conductivity. As shown in Figure 16, the air moisturizing resulted in the considerable drop in PPD 
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(from 0.80 to 0.46 W cm2) due to the increase in R2 and R3 resistances assigned to the proton 

transfer through the electrode/electrolyte interface and oxygen surface exchange between the 

electrode’s surface and gas atmosphere, respectively.[188] 

 Pikalova and Medvedev studied the effect of hydrogen humidification on the performance of 

the fuel cell with a configuration of Ni-BaCe0.89Gd0.1Cu0.01O3-δ (BCGC)|BCGC|Pt at 600 and 750 °C to 

determine the transport nature of the BCGC electrolyte.[189] An increase in pH2O at anode side 

showed a positive effect on the SOFC’s efficiency due to the increased maximal voltage value 

(equation (17)). The electrochemical system was modified by an additional oxygen sensor, which 

was used to monitor the oxygen partial pressure difference to estimate the thermodynamic EO level. 

Such a cell demonstrated higher OCV values than EO at high concentration of water vapor in 

hydrogen. This kind of result was obtained for the first time for electrode-supported configuration, 

indicating the predominance of proton transport of BCGC at 600 °C and co-ionic transport at 750 °C 

(Figure 17).[189] The separation of Ro and Rp from the total cell’s resistance was carried out by using a 

current interruption method. The Ro value was found to be constant with the pH2O variation while 

the Rp increased with an increase in pH2O. Although the authors proposed that this phenomena was 

due to the increased overpotential of the oxygen electrode, the inhibition of the rate-limiting 

reactions at the anode side also had some contributions, including ionization of adsorbed hydrogen 

in nickel surface and its charge transfer trough the Ni/BCGC interface.[190] 

 Danilov et al. studied the effect of simultaneous moisturizing of gases on the performance of 

Ni-BaCe0.5Zr0.3Dy0.2O3–δ (BCZD)|BCZD|YBaCo3.5Zn0.5O7+δ (YBCZ) cell operating in the fuel cell mode.[191]  

Table 8 summarizes the main characteristics of the fuel cell when the pH2O value was increased 

from 0.03 to 0.10 atm in both anodic and cathodic atmospheres.[191] The film conductivity and the 
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ion transport numbers of the BCZD electrolyte increased with the increased moisturizing extent. 

However, the PPD showed a reverse tendency owing to the deterioration of the electrochemical 

activity of the electrode (resistance increased by 2 times). The inhibition of oxygen-related processes 

due to the surface adsorption of the water vapor at the cathode side was proposed to be the main 

factor resulting in an increased electrode overpotential. 

4.2. SOECs 

 The reverse operation of proton-conducting SOFCs is an electrolysis mode (SOECs), providing 

the electrochemical decomposition of steam at the anode (air) side, electrochemical permeation of 

protons through a dense electrolyte and hydrogen production (2 in Figure 1) or compounds 

reduction (3 and 4 in Figure 1) at the cathode (fuel) side. As shown in Figure 18, the Rp of the 

electrolysis mode decreased considerably as compared with the fuel cell mode.[185,193] He et al. 

proposed another reaction mechanism (equation (18)–(25)),[185] which was different from those 

presented in Table 5.  

2 (g) 2 adsH O H O              (18) 

2 ads ads adsH O OH H    (19) 

2

ads ads adsOH O H                 (20) 

2 /

ads adsO e O                (21) 

/

ads adsO e O               (22) 

ads 2(ads)2O O              (23) 
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ads (tpb)H H 
                         (24) 

(tpb) (el)H H 
                         (25) 

 These reactions included the surface dissociative adsorption of water, oxygen charge 

transfer, formation and desorption as well as proton migration to TPB. It was found that the surface 

diffusion of adsorbed oxygen ions was not the rate-limiting step for electrolysis mode (as compared 

with fuel cell mode), whereas water ionization and proton transfer from the electrode surface to the 

electrolyte were found to be the rate-limiting steps in the electrolysis mode. An increased pH2O in 

the air led to a decrease of Rp (Figure 18c) due to the promotion of these reactions and the 

enhancement of the charge transfer. The similar correlation between Rtotal and pH2O at the anode 

side was also revealed by Azimova and McIntosh for the Ni-BaCe0.48Zr0.4Yb0.1Co0.02O3−δ 

(BCZYC)|BCZYC|BCZYC-La0.8Sr0.2CoO3–δ (LSC) electrolysis cell.[154] 

 Danilov et al.[194] have utilized a Ruddlesden-Popper Nd1.95Ba0.05NiO4+δ (NBN) nickelate 

material in an electrolysis cell with a configuration of Ni-BCZD|BCZD (15 µm)|NBN. It was revealed 

that at 750 °C and thremoneutral mode (U ≈ 1.3 V) the current density values increased from 665 to 

810 mA cm–2 when pH2O in air was changed from 0.03 to 0.50 atm. This result was attributed to 

behavior of the BCZD electrolyte (protonic conductivity increased and polarization resistance 

decreased from 0.55 to 0.51 Ω cm2) as well as with a positive response of the NBN oxygen electrode 

(its polarization resistance varied from 0.05 to 0.03 Ω cm2, respectively). According to the data 

obtained, NBN can be considered as an active electrode toward reaction (14) due to its possible 

hydration capability revealed for similar nickelates.[136] 
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Zhu et al.[195,196] carried out the mathematical modeling of SOCs based on proton-conducting 

electrolytes by means of a Nernst-Planck model and established effects of air humidification and 

electron conductivity on the performance and efficiency of SOCs operated in both fuel cell and 

electrolysis cell modes as shown in Figure 19.[195,196] According to their data, the air humidification 

slightly affected the cell performance (the total polarization was assumed to be constant) for both 

modes, however, considerably improved their efficiency. The efficiency increased with diminishing 

pO2, which was determined by the p-type electronic conductivity of the electrolytes as shown in 

equation (4). Based on Figure 19, it showed that Ce-enriched membranes were more preferable than 

Zr-enriched ones for utilization in highly humid atmospheres; however, the poor chemical stability of 

Ce-enriched materials limited their widespread use, especially for low-temperature ranges. 

5. Long-term stability and degradation phenomena 

 

 Decreasing the operation temperatures of SOCs is required to impede the rate and degree of 

degradation processes and to extend the lifetime of the electrochemical devices. However, their 

operation at the intermediate- and low-temperature ranges also suffered from the degradation 

phenomena due to the different chemical and physical processes.[133,197-201] For example, some 

changes occurred as for the individual functional materials (grain aging, coarsening, recrystallization, 

cracking and material decomposition) as well as for the corresponding interfaces (phase interaction, 

cation segregation and delamination). 

 Considering the proton-conducting SOCs, the low chemical stability of the electrolyte 

materials at a high concentration of H2O and CO2 and their expansion incompatibility with other 
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functional materials can be considered as ones of the main reasons leading to the degradation. A 

negative effect of CO2 on both electrolyte and electrode resistances of the BSCF|BCZYYb|BSCF 

symmetrical cell was reported.[144] The cells were treated in an atmosphere with 1% CO2 at 450, 550 

and 650 °C for 2 h, characterized by EIS analysis before and after the CO2 treatment. It was found 

that the maximal degradation degree (DD) of the Ro was ~8% after the CO2 treatment. At the same 

time, the deterioration degree of Rp was much higher by 50-110%, which, however, decreased down 

to ~65% after the recovery procedure as compared with the initial values. Chemical instability of the 

electrolyte in H2O-enriched atmospheres was observed for BaCe0.8Zr0.2O3–δ (BCZ).[202] The cells with a 

~15 μm electrolyte were characterized in the electrolysis mode. For the cell with BCZ electrolyte, the 

DD level for current density (U = 1.1 V) was 9%, whereas DD for the total resistance (caused by the 

increase of ohmic contribution) was ~7% after 10 hours’ operation. Li et al. fabricated and 

characterized a SOEC cell with 15 μm-thick BaCe0.5Zr0.3Y0.16Zn0.04O3–δ electrolyte in short-time mode 

(10 h).[203] During this period, the DD level for current density and total cell’s resistance were 12 and 

15%, respectively. 

 The degradation degree seems to be higher under the electrolysis mode than the fuel cell 

mode. Ye et al. have studied a SOC with CaZr0.9In0.1O3–δ electrolyte under reversible operation.[204] 

The DD values for current density and total resistance were 18 and 12% after 8 hours’ electrolysis 

process, respectively (U = 1.2 V, 850 °C). On the other hand, no changes in current density (U = 0.8 V, 

850 °C) were observed in the fuel cell mode. The authors considered that the degradation process in 

SOEC mode was attributed to the change in anode microstructure resulted from nickel coarsening at 

high operational temperatures. However, it was unclear why such a coarsening behavior did not 

result in a cell performance degradation in the fuel cell mode. Most probably, the bias potential 
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applied to SOCs affected the degradation parameters, since the same electrode was polarized 

differently, causing the occurrence of some unequal elementary reactions (refer to the comparison 

between Table 5 and equation (18)–(25)). The degradation of the Ro in the electrolysis mode was 

found by Bi and Traversa even for a highly stable proton-conducting electrolyte (BaZr0.8Y0.2O3–δ, 

BZY).[205] They observed an increase of the Ro from ~8.47 to 8.58 Ω cm2 after 80 h of operation (fuel 

atmosphere = 5 vol.% H2/Ar, oxygen atmosphere = 3 vol.% H2O/air, U = 1.3 V). Since no chemical 

interaction between BZY and H2O was predicted, such an ohmic deterioration can be assigned to the 

chemical expansion behavior of the electrolyte due to the continuous steam supply to the 

electrode/electrolyte interface in the electrolysis mode. A temperature of 600 °C was suitable for 

gradual hydration of BZY with chemical expansion effects (Figure 5 and Figure 6) and a strain and 

stress between the functional materials were observed. 

6. Conclusions and perspectives 

 

 The oxides with proton-conducting capability are interesting and highly promising materials 

for various electrochemical applications, including SOFCs and SOECs, pumps and sensors, reactors 

and converters. Protons are formed through their interaction of oxide materials with the hydrogen-

containing component in the gas atmospheres at elevated temperatures. This process occurs 

generally through the filling of oxygen vacancies existed in the oxides by water vapor, which is 

determined by the inherent properties of the materials (cell components) and two external factors 

(temperature and water vapor partial pressure), which can be easily set and controlled.  
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The appearance of protons induced the structural changes, affecting the pH2O-determined 

functional properties differently (Figure 20). Proton charge carriers exhibited a very high mobility 

and a low migration barrier. This allows a higher conductivity to be reached for the proton-

conducting electrolytes, extending the operation range of electrochemical devices down to 

extremely low temperatures (300-500 °C).[83,142,206] Although undeniable advantages in ionic 

transport are observed for such electrolytes, there are a number of drawbacks, which might be the 

limiting factors for practical applications. Firstly, hydration process was accompanied by a 

mechanical stress appeared in electrolyte ceramics due to a pH2O-induced chemical expansion, 

which was more pronounced for low- and intermediate-temperature ranges. Secondly, some 

electrolytes (highly conductive cerates) showed a low thermodynamic stability under humidified 

conditions, especially at temperatures below 600 °C. Therefore, a rational design of proton-

conducting electrolytes should be carried out to improve the stability, mitigate pH2O-induced 

chemical strain and maintain high ionic (including protonic) conductivity. 

Regarding the electrode systems, they exhibited a low degree of hydration capability, 

although a relatively high concentration of protons has been revealed recently in the Zn-doped 

BaFeO3 perovskite system.[140] The oxygen-ionic and electronic conductivity of Zn-doped BaFeO3 

allows developing new triple-conducting electrodes with promising electrochemical activity as a 

result of extending the electrochemical active area. In addition, barium ferrite based electrodes have 

been successfully examined experimentally in electrochemical cells with proton-conducting 

electrolytes.[207-209] It should be taken into account that most of the electrode materials 

demonstrated a undesirable pO2-induced chemical expansion behavior due to the presence of Fe- 

and Co-ions with easy oxidation capability and spin state variations. This might be a significant 
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problem for joint application of electrolyte and electrode systems in the conditions of the thermo-

cycles or simultaneous pO2 and pH2O variations. A possible solution to suppress the chemical 

expansion effect is the use of Fe- and Co-free electrodes, like oxides belonging to the Ruddlesden-

Popper family. For some of them (e.g., Ln2NiO4+δ), the hydration capability is also mentioned.[136] 

Moreover, the layered nickelates compositions contain no (or low) concentration of alkaline-earth 

elements, which positively affects the chemical stability of the electrodes. 

Apart from the properties of the individual materials, pH2O affected the interfacial behavior, 

which determined the kinetic parameters of electrode processes. Based on the literature review, this 

effect may improve or deteriorate the electrochemical reaction rates, which were reflected in the 

corresponding polarization characteristics. The most likely explanation for different electrode 

behaviors lies in predominant ionic conductivity of the electrolytes (oxygen ionic conductivity at high 

temperatures, protonic conductivity at low temperatures and co-ionic at medium temperatures)[37] 

as well as conduction nature (mixed oxygen-ionic/electronic or triple protonic/oxygen-

ionic/electronic) of the electrodes, which depend on temperature, pH2O and pO2 conditions and 

affect the proton transfer processes through the electrode/electrolyte interface. 

Considering the intermediate-temperature SOFCs and SOECs, their performance (peak 

power density, hydrogen evolution rate) under gas humidification can be varied in the positive or 

negative directions depending on the electrode response, while the electrolytic properties are 

always improved. Moisturizing the oxidizing atmospheres is beneficial to suppress the p-type 

electron transport in the electrolytes, whereas moisturizing the reducing atmospheres increases the 

electromotive force (or OCV), which is determined by the water vapor potential difference. Both 

these ways allow the improvement of energy efficiency of the electrochemical devices. 
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The different effect of pH2O on the characteristics of the materials and interfaces should be 

comprehensively considered, when designing and developing the electrochemical devices operated 

under highly moisturizing atmospheres or ambient gases when pH2O is not a constant parameter. 

 This review highlights the main findings of the effect of pH2O variations on the performance 

and properties of materials and interfaces at elevated temperatures based on proton-conducting 

SOCs. However, some extension of knowledge in this field is still needed to provide some useful 

guidelines, allowing the solid oxide electrochemical cells to be effectively operated during a long 

period of time without any degradation processes caused by the existence of steam at low and 

intermediate temperature range. 
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Figure 1. The main types of SOCs based on proton-conducting materials: 1 – H2- or NH3-fueled fuel 

cells, 2 – electrolysis cells, 3 – ammonia synthesis reactors, 4 – reactors of CO2 or NOx reduction, 5 – 

potentiometric-type sensors and reactors of compounds dehydrogenation with the formation of 

aromatics (6), alkenes (7) and sulfur (8). 
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Figure 2. Concentration dependences of the mobile defects on the pO2 and pH2O variation in 

different model atmospheres: 1 – /

B[M ] , 2 – O[OH ] , 3 – 
O[V ]  and 4 – [h ] . The concentrations 

are presented in relative units, dopant concentration ( /

B[M ] ) is equal to 0.1. The parameters Kw and 

Kp are set as 5.3 and 2.6×10–6 (a low temperature, a-f) and 0.1 and 1.9×10–6 (a high temperature, g 

and h). 
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Figure 3. Proton concentration and hydration behavior of perovskite materials based on barium 

cerate and barium zirconate as a function of temperature. The correlation of the numbers, materials 

and references can be found in Table 1. The concentration of acceptor dopants is kept at 0.1. The 

curves were obtained at moderately moist conditions with a pH2O of around 0.02 atm. 

 

 

 

Figure 4. The temperature dependences of unit cell parameters (a) and lattice volume (b) of the 

BaCe0.65Zr0.2Y0.15O3–δ sample in static air. (a,b) Reproduced with permission.[45] Copyright 2011, 

American Chemical Society. (c) The temperature dependences of preudocubic cell volume of the 

BaCe0.8Y0.2O3–δ sample in oxygen atmospheres with different humidity, O2 + x vol.% H2O. Reproduced 

with permission.[46] Copyright 2013, Elsevier.  
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Figure 5. The lattice distortions of Zr- and Ba-sublattices in the presence of oxygen vacancies (a) and 

protons (b). (a,b) Reproduced with permission.[52] Copyright 2015, Elsevier. (c) Lattice constant of 

BaZr1–xYxO3–δ obtained in different atmospheres. The data are obtained from the X-ray diffraction 

under cooling mode. Reproduced with permission.[51] Copyright 2016, WILEY-VCH Verlag GmbH & Co. 

KGaA, Weinheim. (d) The pseudo-cubic cell volume of BaCe0.8Y0.2O3–δ in different atmospheres. The 

data are obtained from the neutron diffraction analysis under cooling mode. Reproduced with 

permission.[50] Copyright 2015, Royal Society of Chemistry. 
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Figure 6. (a) Possible modification ways of BaCeO3 to enhance its chemical stability as well as the 

representative of proton-conducting oxides with complete substitution of Ce4+ cations by the 

dopants. (b) The concentration of stabilizing dopant in BaCeO3 to obtain enhanced chemical stability 

in H2O- and/or CO2-containing atmospheres; In-doped system: 1 – [64], 2 – [65], 3 – [66], 4 – [67], 5 – 

[68]; Nb-doped system: 1 – [69], 2 – [70], 3 – [71], 4 – [72], 5 – [73]; Sn-doped system: 1 – [74], 2 – 

[75]. (c) bulk and grain boundary conductivity of doped BaCeO3 and BaZrO3 materials. The graph is 

presented in literature[76] based on the published data in literature[77,78]. Reproduced with 

permission.[76] Copyright 2017, American Chemical Society.  
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Figure 7. (a) Chemical and thermal expansion profiles of a dried (dehydrated) proton conductor 

under cooling in water-containing atmosphere and calculated TEC values from the temperature 

dependence of measured expansion: 1 – ratio of real concentration of protons to the maximal one, 2 

– thermal expansion, 3 – chemical expansion, 4 – measured expansion. (b) Thermal expansion curves 

of the BaCe0.7Zr0.1Y0.1Yb0.1O3–δ (BCZYYb) sample measured in various atmospheres. Reproduced with 

permission.[102] Copyright 2011, Elsevier.  (c) Lattice constant change in a BaZr0.8Y0.2O3–δ pellet sample 

with various temperatures, obtained by continuous high-temperature (HT)-XRD measurements in 

different atmospheres. Reproduced with permission.[47] Copyright 2013, WILEY-VCH Verlag GmbH & 

Co. KGaA, Weinheim. 
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Figure 8. The comparison of total conductivities of BaZr0.85Y0.15O3–δ measured by EIS and DC methods 

in wet Ar condition (a), and the ratio of grain boundary resistance to total resistance with respect to 

temperature (b). (a,b) Reproduced with permission.[108] Copyright 2011, Elsevier.  
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Figure 9. Protonic (a–d), oxygen-ionic (e–h) and electron-hole (i–l) transport numbers as functions of 

pO2 and pH2O at different temperatures. All panels reproduced with permission.[109] Copyright 2017, 

Elsevier. 
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Figure 10. Schematic representation of possible reactions for SOFCs based on different electrodes 

and pure oxygen-ionic (a) and proton-conducting (b) electrolytes. All panels reproduced with 

permission.[129] Copyright 2017, The Electrochemical Society. 
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Figure 11. Impedance spectra recorded at 600 °C, under air atmospheres containing 0.03 to 0.30 bar 

of steam for the symmetrical cells with the following oxygen electrodes: LSFC (a), BSCF (b), PBC (c) 

and PN (d). All panels reproduced with permission.[136] Copyright 2012, The Electrochemical Society. 
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Figure 12. Proton concentration at 250 °C and ≈16 mbar H2O. All materials are in the hydration 

regime. a) Variation of La and Sr content on the perovskite’s A-site. b) Effect of Zn and Co 

substitution on the B-site. All panels reproduced with permission.[140] Copyright 2018, WILEY-VCH 

Verlag GmbH & Co. KGaA, Weinheim. 

 

 

Figure 13. Impedance spectra for a BSCF/BCZYYb/BSCF symmetrical cell in dry simulated air 

(20%O2/80%N2 with <5 ppm H2O or CO2) versus simulated air humidified with various concentrations 

of moisture at 450 °C. Reproduced with permission.[144] Copyright 2017, The Electrochemical Society. 
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Figure 14. Impedance spectra for the symmetrical cells in dry simulated air (20%O2/N2 with <5ppm 

H2O and CO2) versus simulated air humidified with various concentrations of moisture at 450 °C in 

the case of the electrodes of Ag (a), LSFC (b), LSFC–BCZYYb (c) and BSCF (d). All panels reproduced 

with permission.[129] Copyright 2017, The Electrochemical Society. 

 

 

Figure 15. The impedance spectra of the Ni–BCZY0.3|BCZY0.3|SSC–BCZY0.3 cell at 700 °C in open 

circuit mode (U = OCV (a)) and SOFC mode (U = 0.7 V (b)) with various pH2O levels in oxygen 

electrode. All panels reproduced with permission.[185] Copyright 2010, Elsevier. 
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Figure 16. I-V and I-P curves for the Ni–BCZY0.4|BCZY0.4|BSCF fuel cell (a), its corresponding EIS 

spectra (b), DRT analysis (c) and total and constituent resistances depending on pH2O at the cathode 

side (d). All panels reproduced with permission.[188] Copyright 2016, Elsevier.  
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Figure 17. Effective transport numbers of protons, oxygen-ions and holes for BCGC material in SOFC 

mode at 600 °C (a) and 750 °C (b) and different water vapor pressure in (1–x)H2–xH2O anode gas 

mixture. (a,b) Reproduced with permission.[189] Copyright 2016, Elsevier. 
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Figure 18. EIS spectra of the proton-conducing SOCs operating in fuel and electrolysis mode. (a) Ni–

BCZY0.7|BCZY0.7 (25 μm)|LN (where BCZY0.7 = BaCe0.2Zr0.7Y0.1O3–δ, LN = La2NiO4+δ); Reproduced with 

permission.[193] Copyright 2015, Elsevier.  (b) Ni–BCZY0.3|BCZY0.3 (20 μm)|SSC–BCZY0.3. (c) The 

impedance data for the same cell obtained at 700 °C in the electrolysis mode (1.3 V) with various 

pH2O levels in oxygen electrode. All panels reproduced with permission.[185] Copyright 2010, Elsevier.  
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Figure 19. Predicted cell potentials, power density (a), electrolyte potential difference (b), and 

faradaic efficiency (c) of SOCs based on two well-known proton-conducting electrolytes as functions 

of current density at 600 °C and O2+H2O gas mixtures with different oxygen concentrations. The gas-

phase composition on the fuel side is fixed as 97.0% H2 and 3.0% H2O. Four gas-phase compositions 

on the air side are 1.0%, 10.0%, 50.0%, and 80.0% O2 balanced with H2O. Reproduced with 

permission.[195,196] Copyright 2018, The Electrochemical Society.  
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Figure 20. Influence of pH2O on functionality of the individual materials and electrochemical cells 

based on them. 
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Table 1. The thermodynamic parameters of materials hydration. 

 

No. Material ΔH [kJ mol
–1

] ΔS [J K
–1

 mol
–1

] Ref. 

1 BaCe0.9Y0.1O3–δ –138 –142 24 

2 BaCe0.9Y0.1O3–δ –122 –119 25 

3 BaCe0.9Y0.1O3–δ –123 –113 26 

4 BaCe0.9Yb0.1O3–δ –127 –126 25 

5 BaCe0.6Zr0.3Y0.1O3–δ –106 –104 26 

6 BaCe0.4Zr0.5Y0.1O3–δ –62.6 –70.1 27 

7 BaCe0.2Zr0.7Y0.1O3–δ –93 –96 26 

8 BaZr0.9Y0.1O3–δ –79.5 –88.9 28 

9 BaZr0.9Y0.1O3–δ –83.3 –91.2 26 

10 SrCe0.95Yb0.05O3–δ –157 –128 29 

11 Ba3Ca1.17Nb1.83O9–δ –65.2 –103.7 28 

12 Ba3Ca1.18Nb1.82O9–δ –78.5 –111 30 

13 La0.9Sr0.1ScO3−δ –97 –112 31 

14 La0.9Sr0.1YbO3−δ –141 –111 32 

15 La0.9Sr0.1YO3−δ –90 –70 33 

16 La1.9Ca0.1Zr2O7−δ –128 –150 34 
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Table 2. The crystal structure of BaCe0.8−xZrxY0.2O3−δ perovskite materials at room temperatures: M – 

monoclinic, O – orthorhombic, R – rhombohedral, C – cubic. 

 

x [concentration of zirconium] 

Ref. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

M n/a n/a R n/a R n/a n/a C 38 

M O O O O O C C C 39 

O n/a C C C C C C C 40 

R R R R C C C C C 41 

C C C C C C C C C 42 

O O n/a n/a C C C C C 43 

O O O R C C C C C 44 

 



 

  

 

This article is protected by copyright. All rights reserved. 

71 

 

Table 3. Some mechanical properties of proton-conducting perovskite materials: σ is the bending 

strength, H is the Vickers hardness, Kc is the fracture toughness, E is the Young’s modulus, α is 

thermal expansion coefficient, marker * corresponds to the hydrated oxides. 

 

Materials σ [MPa] Hv [GPa] Kc [MPa m
1/2

] E [GPa] α [10
-6
×K

–1
] Ref. 

SrCe0.95Yb0.05O3–δ 150±20 5.5 2.1 n/a 11.5 89 

SrZr0.95Yb0.05O3–δ 50±15 4.6 1.5 n/a 10.4 89 

BaCeO3 n/a 2.34 n/a 154 11.2 90 

Ba3Ca1.18Nb1.82O9–δ 110±10 5.0 1.0 n/a 12.3 89 

BaCe0.6Zr0.2Y0.2O3–δ n/a 9.3 0.4 180 n/a 91 

BaZrO3 n/a 4.95 n/a 243 7.1 90 

BaZrO3 n/a 8.7 1.8 n/a n/a 56 

BaZr0.9Y0.1O3–δ n/a 9.0 1.9 n/a n/a 56 

BaZr0.9Y0.1O3–δ
*
 n/a 10.0 2.4 n/a n/a 56 

BaZr0.8Y0.2O3–δ n/a 8.0 1.8 n/a n/a 56 

BaZr0.8Y0.2O3–δ
*
 n/a 8.3 2.4 n/a n/a 56 

BaCe0.2Zr0.7Y0.1O–δ n/a 8.6 1.7 n/a n/a 56 

BaCe0.2Zr0.7Y0.1O–δ
*
 n/a 8.4 2.8 n/a n/a 56 
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Table 4. The average TECs for BaCeO3-, BaZrO3- and BaCeO3–BaZrO3-based proton conductors in 

ambient or dry and wet* air. 

 

Composition Temperature interval [°С] average TECs×10
6
 [К

–1
] Ref. 

BaCe0.5Zr0.3Yb0.2O3–δ 

100–560 11.7 

93 

560–900 7.6 

BaCe0.5Zr0.3Y0.2O3–δ 

100–575 10.8 

93 

575–900 8.5 

BaCe0.8Y0.2O3–δ 

100–620 11.6 

44 

620–900 8.3 

100–900 9.9
 

49 

100–900 11.1
*
 

BaCe0.8Gd0.2O3–δ 20–1000 9.8 94 

BaCe0.8Sm0.2O3–δ 

600–900 9.3 95 

20–800 10.3 96 

BaCe0.7Zr0.1Y0.2O3–δ 

20–900 10.2 97 

20–630 11.3 

98 

630–900 8.4 

20–1000 11.2 99 

30–1000 13.5 100 

50–650 12.1 

101 650–800 5.7 

800–1000 8.5 

BaCe0.7Zr0.1Y0.1Yb0.1O3–δ 

10–500 14.2 

102 600–700 5.4 

800–1100 11.6 

20–1200 9.1 

103 

20–1200 9.8
*
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BaCe0.4Zr0.4Y0.2O3–δ 

500–900 8.5 

44 

500–900 9.6
*
 

BaZr0.8Y0.2O3–δ 

100–900 8.2 44 

100–900 8.0 

49 

100–900 9.7
*
 

BaZr0.9Y0.1O3–δ 

100–900 7.4 

49 

100–900 8.8
*
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Table 5. The main elementary steps for oxygen electrodes of SOFCs based on oxygen-ionic and 

protonic electrolytes. Reproduced with permission.[128] Copyright 2015, Elsevier. Abbreviations: g – 

gas, ads – adsorbed, el – electrode, e – electrolytes, int – interface, tpb – triple phase boundary, surf 

– surface. 

 

Type of fuel cell SOFC(O
2–

) SOFC(H
+
) 

Model I II III 

Type of 

electrode 
MIEC (O

2–
/electron) MIEC (O

2–
/electron) MIEC (H

+
/electron) 

Reaction step 1 2(g) 2adsO O  2(g) 2adsO O  2(g) 2adsO O  

Reaction step 2 

/ 2

2ads 2adsO 2e O 

 

/ 2

2ads 2adsO 2e O   
/ 2

2ads 2adsO 2e O   

Reaction step 3 
2

2ads adsO 2O 
 

2

2ads adsO 2O 
 

2

2ads adsO 2O 
 

Reaction step 4 
/ 2

ads adsO e O   
/ 2

ads adsO e O   
/ 2

ads adsO e O   

Reaction step 5 
2 2

ads (el) (el)O v O   
2 2

ads (el) (el)O v O   (e) (int)H H 
 

Reaction step 6 
2 2

(el) (int)O O 
 

2 2

(el) (tpb)O O 
 (int) (el,surf)H H 

 

Reaction step 7 
2 2

(int) (e)O O 
 (e) (tpb)H H 

 
2

(el,surf) ads 2 ads2H O H O   

Reaction step 8  
2

(tpb) (tpb) 2 (tpb)O 2H H O   2 ads 2 (g)H O H O  

Reaction step 9  2 (tpb) 2 (g)H O H O   
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Table 6. The Rp values of the various oxygen electrodes under air humidification in a symmetrical cell 

configuration (electrode|electrolyte|electrode). Abbreviations: BCZYYb = BaCe0.7Zr0.1Y0.1Yb0.1O3–δ, 

BCY = BaCe0.9Y0.1O3–δ, BCS = BaCe0.8Sm0.2O3−δ, BZY = BaZr0.8Y0.2O3−δ, BCZY = BaCe0.7Zr0.1Y0.2O3–δ, 

BZCY = BaZr0.7Ce0.2Y0.1O3−δ, BCGC = BaCe0.89Gd0.1Cu0.01O3−δ, BSCF = Ba0.5Sr0.5Co0.8Fe0.2O3–δ, 

LSFC = La0.6Sr0.4Fe0.8Co0.2O3–δ, PBC = PrBaCo2O5+δ, PBCF = PrBaCo0.5Fe1.5O5+δ, PN = Pr2NiO4+δ, 

PCN = Pr1.9Ca0.1NiO4+δ, SSC = Sm0.5Sr0.5CoO3−δ, SSNC = SrSc0.175Nb0.025Co0.8O3−δ, 

BSFC = Ba0.5Sr0.5Fe0.8Cu0.2O3−δ, BGLC = BaGd0.8La0.2Co2O6−δ, YCBC = Y0.8Ca0.2BaCo4O7+δ. 

Electrolyte Electrode pH2O change [atm] Rp change [Ω cm
2
] Ref. 

BZCY BGLC 
0.002 → 0.014, 650 °C, pO2 = 

1.5×10
–4

 
~13 → 8.3 128 

BCY LSCF 0.03 → 0.30 in air at 600 °C 12.5 → 17.0 136 

BCY BSCF 0.03 → 0.30 in air at 600 °C 3.75 → 2.25 136 

BCY PBC 0.03 → 0.30 in air at 600 °C 0.57 → 0.38 136 

BCY PN 0.03 → 0.30 in air at 600 °C 0.9 → 0.3 136 

BCS SSC–BCS 0.03 → 0.30 in air at 500 °C 10 → 8.5 137 

BZY LSFC 0.03 → 0.15 in N2 at 600 °C 0.65 → 1.21 138 

BZY LSFC–BCY 0.03 → 0.15 in N2 at 600 °C 0.49 → 0.97 138 

BCY PBC 0.03 → 0.30 in air at 600 °C ~0.6 → 0.4 139 

BCY PBCF 0.03 → 0.30 in air at 600 °C 7.2 → 8.3 139 

BCZYYb BSCF 10
–6

 → 0.03 in air 

0.49 → 0.72 (650 °C) 

2.99 → 3.83 (550 °C) 

14.07 → 16.2 (450 °C) 

144 

BCZY SSNC 0.03 → 0.30 in air at 600 °C 2.10 → 0.31 156 

BCZY BSFC–BCZY 0.03 → 0.30 in air at 600 °C 8.5 → 8.1 157 

BCGC YCBC 4·10
–4

 → 0.10 in air at 700 °C 0.49 → 1.05 158 

BCGC PCN–BCGC 4·10
–4

 → 0.10 in air at 700 °C 0.28 → 0.39 158 
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Table 7. The main characteristics of the Ni–BCZY0.3|BCZY0.3|SSC–BCZY0.3 fuel cell at 700 °C with 

various pH2O levels in oxygen electrode.[185] 

 

pH2O 

[atm] 
OCV [V] Etheor [V] OCV/Etheor 

PPD 

[mW cm
–2

] 

Open-circuit mode, 

U = OCV 

Fuel cell mode, 

U = 0.7 V 

Rp 

[Ω cm
2
] 

RO 

[Ω cm
2
] 

Rp 

[Ω cm
2
] 

RO 

[Ω cm
2
] 

0.2 1.01 1.035 0.975 289 0.46 0.52 0.39 0.52 

0.3 1.00 1.016 0.984 254 0.49 n/a 0.41 n/a 

0.5 0.95 0.987 0.963 234 0.52 0.51 0.43 0.51 

0.7 0.88 0.962 0.915 208 0.55 0.52 0.45 0.52 
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Table 8. Electrochemical data for the cells with a configuration of Ni-BCZD|BCZD|YBCZ, in wet H2 

and wet air atmospheres at 700 °C depending on humidity of gases: p'H2O = p''H2O = 0.03 atm (1) and 

p'H2O = p''H2O = 0.10 atm (2): EO is the thermodynamic voltage value for ideal oxygen-conducting 

electrolyte, Esens is the potential recorded by the oxygen sensor, Eexp is the measured OCV, Re is the 

electronic resistance of the electrolyte, Ro is the total ohmic resistance of the electrolyte, σfilm, total is 

the total film conductivity of the electrolyte, Rp is the polarization resistance of the electrode, Rtotal is 

the total cell’s resistance and 
i,corrt  is the average transport numbers of ions. Reproduced with 

permission.[191] Copyright 2017, American Chemical Society. 

 

Parameters 

PPD 

[mW cm
2
] 

EO 

[V] 

Esesn 

[V] 

Eexp 

[V] 

Re 

[Ω cm
2
] 

Ro 

[Ω cm
2
] 

σfilm, total 

[mS cm
–1

] 

Rp 

[Ω cm
2
] 

Rtotal 

[Ω cm
2
] i,corrt

 

Condition (1) 331 1.118 1.114 0.946 3.82 0.49 4.1 0.18 0.67 0.87 

Condition (2) 313 1.063 1.060 1.001 5.27 0.42 4.8 0.36 0.79 0.92 

Relative 

difference, % 

–5.5 –4.9 –4.8 +5.8 +38.0 +14.3 +17.1 –100 –17.9 +5.7 
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Proton-conducting solid oxide cells (SOCs) have attracted much attention recently due to its high 

efficiency, low operating temperatures and zero environmental impact. This review provides an 

overview of the gas humidification impact on the operability and performance of SOCs in electrolysis 

and fuel cell modes. The material design strategies, degradation mechanism and perspectives of 

proton-conducting SOCs are also outlined. 
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