Research Paper

Source and possible tectonic driver for Jurassic–Cretaceous gold deposits in the West Qinling Orogen, China

Yafei Wu, Jianwei Li, Katy Evans, Denis Fougerouse, Kirsten Rempel

School of Earth Resources, China University of Geosciences, Wuhan 430074, China
School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth, WA 6845, Australia

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

1. Introduction

The far-field effects of changes in plate motion during Mesozoic subduction of the Paleo-Pacific plate have been invoked to explain changes in stress regime and widespread gold mineralization in NE Asia (Fig. 1; e.g., Zhai and Deng, 1996; Goldfarb et al., 1998, 2007; Qiu et al., 2002; Ratschbacher et al., 2003; Mao et al., 2005, 2006, 2008, 2010; Sun et al., 2007, 2010, 2013; Lan et al., 2011). However, the timing and reach of these far-field effects and their relation to gold mineralization at different distances from the plate boundary remain poorly understood. A better understanding of the geotectonic evolution of NE Asian response to such changes and their control on gold endowment is needed to design effective mineral exploration strategies.

The 2500 km long Qinling Orogenic Belt (QOB) in central China is an ideal place to determine how changes in plate motion affected the geodynamics and gold mineralization in the continental interior (Figs. 1 and 2). In the East Qinling Orogen (EQO), J3–K1 deposits are genetically related to magmatism. Gold mineralization in EQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE- and EW-trending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3–K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000 km into the continental interior.

© 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
It has been suggested that tectonism during this period was affected by subduction of the Paleo-Pacific plate (Mao et al., 2008, 2010). In the West Qinling Orogen (WQO), most gold deposits are Late Triassic to Early Jurassic in age (T3–J1; ca. 216–203 Ma; Zeng et al., 2012; Liu et al., 2014; Wang et al., 2014; Hu, 2015; Zhang, 2016; Lin et al., 2017), and are spatially associated with intrusions and dykes (ca. 220–200 Ma; Dong et al., 2011; Dong and Santosh, 2016). However, a small number of Late Jurassic to Early Cretaceous (J3–K1) gold deposits in the WQO are not associated with magmatic activity (ca. 151–125 Ma; Huang et al., 1996; Lu et al., 2006; Qi et al., 2006; Liu et al., 2015b; Wu et al., 2018a, b). The formation of J3–K1 gold deposits without magmatism in the WQO, while Au, Cu–Mo, Pb–Zn deposits formed in response to magmatism in the EQO requires explanation.

The large Daqiao gold deposit (>105 t Au at 3–4 g/t) was studied to advance understanding of ore-formation in the WQO (Fig. 2). A detailed interpretation on sulfide generations hosted in breccia ores and their compositional and isotopic features are provided in Wu et al., (2018a). High-precision sericite 40Ar/39Ar dates show that this J3–K1 deposit was produced by multiple episodes of hydrothermal activity between 151 and 127 Ma (Wu et al., 2018b). Gold ore is hosted in Triassic turbidites and in granodiorite and diorite porphyry dykes dated at ca. 215–212 Ma and 188 Ma, respectively (Wu et al., 2018b). In this paper, the additional textures, chemical, and sulfur isotope compositions of the dyke-hosted pyrites are used to compare and further constrain the source of sulfur and ore fluids in the WQO. The J3–K1 deposits and setting in the WQO are then compared to those in the EQO.

2. Regional geological setting

Mesozoic oblique subduction of the Paleo-Pacific ocean plate beneath the Eurasian continent is thought to have started at ca. 160 Ma (Fig. 1a; Ren et al., 1992; Niu et al., 2003). The drifting direction of the Paleo-Pacific plate changed from roughly SW at ca. 160 Ma to NW at ca. 125–122 Ma (Koppers et al., 2003; Sun et al., 2007). At ca. 160 Ma, the principal stress direction in the QOB was NS and gradually shifted to EW by ca. 140 Ma (Mao et al., 2005, 2006). Polymetallic deposits genetically associated with the subduction-related magmatic centers occur across the whole NE Asia with peaks at ca. 150–140 Ma and 130–119 Ma (Fig. 1b; Mao et al., 2005, 2006). Polymetallic deposits genetically associated with the subduction-related magmatic centers occur across the whole NE Asia with peaks at ca. 150–140 Ma and 130–119 Ma (Fig. 1b; Mao et al., 2005, 2006; Li et al., 2003, 2006, 2012a, b; Goldfarb et al., 2014).
Early Mesozoic (Meng and Zhang, 1999; Dong et al., 2011). The QOB can be divided into four suture zone or thrust fault bounded terranes from north to south (Fig. 2): the Southern North China Craton (S-NCC), North Qinling Belt (NQB), South Qinling Belt (SQB) and Northern South China Block (N-SCB) (Zhang et al., 1995). The QOB has also been divided into the eastern and western parts (EQO and WQO). Both are dominated by the Cambrian to Triassic marine sedimentary rocks, with some Archean metamorphosed supracrustal rocks in the EQO (Li et al., 2012a; Liu et al., 2015a).

Mesozoic granitoid intrusions are widespread in the QOB (Fig. 2; Dong and Santosh, 2016). The majority of intrusions in the WQO (ca. 230–200 Ma) contain mafic enclaves and are enriched in LILE with negative $\varepsilon^{\text{Nd}}(t)$ and $\varepsilon^{\text{Hf}}(t)$ values. J3–K1 (164–100 Ma) intrusions are rare in the WQO but are widespread in the EQO (Fig. 2). Both are dominated by the Cambrian to Triassic marine sedimentary rocks, with some Archean metamorphosed supracrustal rocks in the EQO (Li et al., 2012a; Liu et al., 2015a).

3. Deposit geology

The Daqiao gold deposit is located between the northern Hezuo-Lintan-Liangdang Fault (HLLF) and the southern Zhouqu-Chengxian-Huixian Fault (ZCHF; Fig. 2; Zhang et al., 2018). Gold mineralization is mainly hosted in Middle Triassic Huashiguan Formation turbidites that are in fault contact with Carboniferous limestone (Zhang et al., 2018; Wu et al., 2018a). There are a number of reverse faults in the mine, which mostly strike NE. Ore bodies at Daqiao are characterized by auriferous breccias (Fig. 3a) and are spatially related to the NE-striking reverse faults. Hydrothermal alteration consists of multistage silicification, sulfidation, sericitization and carbonatization (Fig. 3b). Arsenian pyrite and marcasite are the predominant ore minerals (Wu et al., 2018a).

Two kinds of pyrite have been identified in granodiorite dykes with different degrees of hydrothermal alteration (Fig. 3c–f). In the less intensely altered dykes (Fig. 3c, e), pyrite occurs as fine-grained anhedra to subhedra (20–100 µm across), or in deformed and cataclastic aggregates (150–600 µm across). Pyrite commonly contains inclusions of, or occurs as veinlets with, chalcopyrite, galena, and sphalerite. Irregular and deformed pyrite aggregates replace silicate minerals (Fig. 3e). In dykes with intense alteration, pyrite is subhedral, between 200 and 300 µm in diameter (Fig. 3d, f), has a characteristic porous texture, and contains fine-grained inclusions of mica and feldspar (2–20 µm across).

4. Samples and methods

4.1. Sample description

Polished thin sections and section blocks of dykes containing pyrite were characterized initially by optical microscopy and...
scanning electron microscopy (SEM). Two samples of altered and mineralized granodiorite dykes (DQ123 with 0.4 g/t Au, and DQ477 with 2.5 g/t Au) were collected from borehole ZK6802 and underground workings, respectively, that are 2.5 km apart. Sample DQ123 is less intensely altered than DQ477, which contains coarse-grained sericite and pyrite aggregates (Fig. 3d).

4.2. LA-ICP-MS multi-element analysis of sulfides

The trace element concentrations of pyrite in each granodiorite dyke samples were determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The analytical instrumentation employed in this study was a Photon Machines Analyte G2 LA system (193 nm, 4 ns excimer laser) attached to a PerkinElmer DRC-e ICP-MS, at the U.S. Geological Survey, Denver Federal Center. Laser ablation was carried out using a 30 μm spot size, a fluence of 5 J/cm² at 7 Hz with a 35 s baseline and 40–50 s of ablation. Ablated materials were transported in He carrier gas to a modified glass mixing bulb where the He and sample aerosol were mixed coaxially with Ar prior to the ICP torch. Concentration and detection limit calculations were conducted using the protocol of Longerich et al. (1996). Signals were calibrated using USGS MASS-1 sulfide reference material and iron (57Fe) was used as the internal standard (Wilson et al., 2002). The reference material (MASS-1) was analyzed 5–10 times at the beginning of the analytical session and monitored throughout the session for drift. Signals were screened visually for heterogeneities such as micro-inclusions or zoning. The results are given in Table 1, and the reported mean concentrations for trace elements were calculated assuming that concentrations are zero for spot analyses below detection limit (b.d.l.).

4.3. LA-MC-ICP-MS sulfur isotope analysis

Polished thin sections and section blocks analyzed using LA-ICP-MS trace element spot analysis were re-polished and used for in-situ sulfur isotope analysis. In situ S isotope analyses of pyrite were performed using a Nu Plasma HR multicollector ICP-MS together with a Photon Machine Analyte G2 laser system, at the Geological Survey of Finland (GSF), Espoo, Finland. Samples were

![Figure 3. Photographs (a, c, d) and back-scattered electron (BSE) images (b, e, f) showing the features of gold mineralization, altered dykes and disseminated pyrite at Daqiao. (a) Black silicified siltstone was cemented by the calcite-chalcedony-pyrite matrix forming high-grade breccia ore. (b) Silici

brea

cia ore

e is

ser

icite and pyrite (the inset), (c) Granodiorite dyke intruding slates of the Triassic Huashiguan Formation. (d) Contact between breccia ore and intensely altered granodiorite dykes with aggregates of sericite and pyrite (the inset). (e) Deformed and cataclastic pyrite subhedras and pyrite aggregates intergrown with chalcopyrite, sphalerite, galena, and sericite. Smooth and porous pyrites have similar sulfur isotope compositions. (f) Subhedral pyrite grains with porous cores containing fine-grained silicate inclusions. The rim and core have high Au-As concentrations and similar sulfur isotope compositions. Cal: Chalcedony, Cc: calcite, Ccp: chalcopyrite, Gn: galena, Py: pyrite, Qz: quartz, Ser: sericite, Sp: sphalerite.](image-url)
ablated in He gas (gas flows = 0.4 and 0.1 L/min) within a HeEx ablation cell (Müller et al., 2009). During ablation, the data were collected in static mode (34S, 32S). Pyrite was ablated using a spot size of 30 μm and a fluence of 0.83 J/cm² at 5 Hz. The total S signal obtained for pyrite was typically 1.0 to 1.2 V. Under these conditions, after a 20 s baseline, 50 to 60 s of ablation is needed to obtain an internal precision of 34S/32S ≤ ± 0.000005 (1 SE). Three pyrite standards were used for external standard bracketing (PPP-1) (Gilbert et al., 2014) and quality control (Pyrite1 and Pyrite2 from GSP) of analyses (Wong et al., 2017). The results are given in Table 2.

5. Results

Results from the altered dykes at Daqiao contains many trace elements (Fig. 4; Co, Ni, Cu, Zn, As, Se, Ag, Sb, Te, Au, Ti, and Pb). The gold content of DQ123 pyrite grains varies from b.d.l to 3.28 ppm (mean = 1.36 ppm, standard deviation (s.d.) = 1.36, n = 5), while arsenic varies from 484 ppm to 14378 ppm (mean = 6967 ppm, s.d. = 4798, n = 5). In DQ477, the gold concentration ranges from 1.67 ppm to 2.99 ppm (mean = 2.37, s.d. = 0.54, n = 3) and arsenic from 13346 ppm to 22624 ppm (mean = 17510 ppm, s.d. = 3847, n = 3). Although pyrite spot analyses from the two dyke samples demonstrate similar trace element patterns, a number of trace elements are more enriched in sample DQ477 than DQ123 (Fig. 4e), for instance, Ni (mean 265.5 ppm vs. 149.2 ppm), Se (453.4 ppm vs. 55.9 ppm), Cu (95.2 ppm vs. 1.1 ppm), Ag (5.8 ppm vs. 0.1 ppm), Sb (82.6 ppm vs. 2.0 ppm), Te (6.6 ppm vs. 1.3 ppm), and Pb (102.1 ppm vs. 2.0 ppm).

The δ34S signatures of fourteen spot analyses of pyrite from these two dyke samples range from +4.9‰ to +7.1‰ (Fig. 5; mean = +5.6‰, s.d. = 0.5‰). In DQ123, with the exception of one analysis at +7.1‰, all the pyrite grains show a relatively homogeneous δ34S values from +4.9‰ to +6.0‰ (mean = +5.8‰, s.d. = 0.6‰, n = 8). In DQ477, δ34S values of all the pyrite grains have narrow range of δ34S values from +5.3‰ to +6.0‰ (mean = +5.5‰, s.d. = 0.2‰, n = 6).

6. Discussion

Previous geochronological studies suggest that the majority of gold deposits and igneous intrusions in the WQO have T3–J1 ages (ca. 225–180 Ma) and formed in a syn- to post-collisional setting (Fig. 6; Dong et al., 2011). Only a few gold deposits of J3–K1 age have been reported (Wu et al., 2018b), and these show no association with magmatic activity in the WQO (Fig. 6). The substantial time gap between the youngest records of extensional deformation in the Qinling Orogen (e.g., the ca. 188 Ma dykes at Daqiao), the lack of J3–K1 magmatism, and the small number of J3–K1 gold deposits in the WQO suggests that the J3–K1 gold deposits are related to a poorly characterized geotectonic event. If pyrite hosted in T3–J1 dykes at Daqiao records fluid flow associated with the J3–K1 mineralization events, then the trace element contents and sulfur isotope ratios of the pyrite can be used to characterize the fluid source, and, in conjunction with the regional geodynamic context, to draw conclusions on the timescale and nature of the causes of the fluid flow.

6.1. Relationship of dyke-hosted pyrite to J3–K1 mineralization at Daqiao

Petrogenesis and Lu-Hf isotope studies suggest that pyrite-bearing granodiorite dykes at Daqiao are mainly produced by partial melting of thickened lower crust in a compressional setting (Shan et al., 2016). This is consistent with evidence from contemporaneous intrusions in the WQO (ca. 220–210 Ma), such as Al-saturation, LILE enrichment, negative εNd(t) and εHf(t) values (Sun et al., 2002; Zeng et al., 2014). Texturally, pyrite in the intensely altered dykes is similar to early-ore stage subhedral pyrite disseminations in the breccia-hosted ores at Daqiao (Wu et al., 2018a). However, the deformed and cataclastic pyrite aggregates in less intensely altered dykes are typically intergrown with other sulfide phases and are texturally dissimilar to pyrite in breccia-hosted ores. The As and Ag composition of pyrite from the two dykes (DQ123 and DQ477) are comparable (mean 6967 ppm vs. 17510 ppm As;
1.36 ppm vs. 2.37 ppm Au), and mostly plot within the range of Daqiao early-ore stage pyrite with up to 87,444 ppm As and 5.7 ppm Au (Fig. 4a). The lower abundance of trace elements (Fig. 4; Au, As, Se, Co, Te, Cu, and Sn) and less intense alteration in DQ123 (Fig. 3c) relative to DQ477 may be indicative of a fluid flow of lower temperatures and/or fluid-rock ratios than DQ477. However, the lower abundance of trace elements in DQ123 pyrite could also be due to sequestration of these elements in other sulfides (Fig. 3e; e.g., Co and Se into sphalerite, Se into chalcopyrite; Large et al., 2009; Genna and Gaboury, 2015). The δ34S values of dyke-hosted pyrite, which range from +4.9‰ to +7.1‰ (mean + 5.6‰) is similar to that of the early-ore stage pyrite (mean + 4.4‰; Wu et al., 2018a). Together, the trace element, and sulfur isotopic characteristics of early-ore stage breccia-hosted and dyke-hosted pyrite are representative of the J3–K1 fluids that formed Daqiao gold mineralization. However, the J3–K1 fluid flow may have been episodic and cyclic, which is consistent with the complex breccia ores in the mine.

6.2. Characteristics of J3–K1 fluid flow in the dykes at Daqiao

Pyrite trace elements compositions (e.g., Co, Ni, and Se) have commonly been used to assess origin (e.g., Price, 1972; Huston et al., 1995; Belousov et al., 2016). For example, pyrite from volcanic exhalative and felsic intrusion-related sulfide ores generally has hundreds of ppm Co, tens of ppm of Ni with Co/Ni = 5–50 (Price, 1972). Elevated Co/Ni is caused by the more rapid extraction of Ni

![Figure 4. Plots of LA-ICP-MS spot analyses on pyrite compared with the compositional ranges of magmatic- and metamorphic-derived pyrite, using data from Belousov et al. (2016) and Keith et al. (2018), trace element contents of pyrite in Daqiao early-ore stage breccia-hosted ores (Wu et al., 2018a), and of pyrite from other gold deposits of J3–K1 ages in areas nearby WQO and EQO (Zhang et al., 2014; Bi et al., 2016).](image-url)
than Co from the fluid to the solid phase during magmatic differentiation (Loftus-Hills and Solomon, 1967). Conversely, low Co/Ni ratios (<1) are thought to be typical of sedimentary pyrite (Loftus-Hills and Solomon, 1967; Large et al., 2014).

Breccia- and dyke-hosted pyrite at Daqiao have Co/Ni mean ratios of 0.36 (Wu et al., 2018a) and 0.29 (six of eight spots), respectively, and are within the range of those reported for global sedimentary pyrite (Fig. 4b; Large et al., 2014). This similarity argues against a magmatic-hydrothermal origin for the dyke-hosted pyrite, such as that inferred for pyrite from gold deposits in the EQO (Fig. 4b), and instead supports derivation of sulfur and trace metals from a sedimentary source rock. Possible candidates for such a source are the underlying Paleozoic shales and carbonaceous pelites in the WQO. These Paleozoic sediments, particularly those from the Cambrian to Silurian, have a low mean Co/Ni ratio of 0.07 (Wang, 2009).

Although Se content in dyke-hosted pyrite from DQ123 is within the range of pyrite from orogenic Au and porphyry Cu-Au deposits, pyrite from DQ477 has higher Se contents of 453 ppm (Fig. 4c; Keith et al., 2018). In marine environments, Se accumulates in organic matter due to biological uptake and substitutes for S in sedimentary pyrite (Diener and Neumann, 2011; Mitchell et al., 2012). For example, at the Bendigo orogenic gold deposit, the reported Se means are 67 ppm and 32 ppm for diagenetic and hydrothermal pyrite, respectively, at the Bendigo orogenic gold deposit, the reported Se means are 67 ppm and 32 ppm for diagenetic and hydrothermal pyrite, respectively, at the Bendigo orogenic gold deposit, the reported Se means are 67 ppm and 32 ppm for diagenetic and hydrothermal pyrite, respectively (Brill, 1989; Chen, 1994; Li et al., 2001, 2012b; Gong, 2014; Wu et al., 2018a). In contrast, uniform and low $\delta^{34}S$ values (mean + 2.9‰) of ore stage pyrite from six gold deposits of J3–K1 ages in EQO are similar to that of magmatic pyrite from nearby pluton (2.1‰–4.3‰; Nie et al., 2001) and likely indicate a magmatic sulfur source (Li et al., 2012b).

Other similarities between the regional sediments and breccia ores at Daqiao also support sediment-derived fluids. Devonian carbonaceous phylmites and schists in the WQO are characterized by well-developed laminated diagenetic pyrite framoids that contain 0.1–1.7 ppm Au and 0.2–1.6 wt.% As (Zhang et al., 2000; Qi et al., 2003). Such Au and As enriched rocks are a possible Au and As source for the Au and As in the Daqiao ores (Wu et al., 2018a). Silurian and Cambrian siliceous rocks and carbonaceous shales that underlie Daqiao are also associated with enrichment of PGE, U, and Se (Tan, 1992; Liu and Zheng, 1993). The Daqiao breccia ores contain distinct, fine-grained hydrothermal PGE-, U- and Se-rich minerals closely associated with the ore-stage sulfides (Wu et al., 2018a).

6.3. Comparison to the EQO

The J3–K1 Daqiao gold mineralization is contemporaneous with widespread J3–K1 (ca. 150–125 Ma) magmatism and polymetallic mineralization in the EQO (Fan et al., 2011; Li et al., 2012a, b; Xie et al., 2017) and elsewhere in NE Asia (Figs. 2 and 6; Goldfarb et al., 1998, 2007; Sun et al., 2007, 2013). It has been proposed that magmatism and mineralization in the EQO is related to oblique subduction of the Paleo-Pacific ocean plate beneath the Eurasian continent (e.g., Mao et al., 2008, 2010). The plate subduction led to a regional tectonic regime transition with changes in the principal stress vectors from NS-trending at ca. 160 Ma to near EW-trending at ca. 140 Ma (Mao et al., 2005, 2006).

Structural studies of gold mines across the QOB show that T3–J1 ages deposits, such as Baguamiao, Shuangwang, Liba and...
Simaoling, are consistently controlled by WNW-trending faults and folds, whereas later NE-trending structures are barren (e.g., Gong, 2014; Wang et al., 2014; Zhang, 2016). These WNW-trending structures are thought to be a consequence of prolonged regional southward overthrusting after the T3 collision between the SCB and NCC (Chen et al., 2004). In gold deposits of J3eK1 age (e.g., Daqiao and Jinlongshan), the NE- or EW-trending brittle structures control the distribution of ore (Liu et al., 2015b; Zhang et al., 2018). In eastern China, such as the Jiaodong and Middle-Lower Yangtze belt, NE-trending faults or intersections of NE and EW-trending faults are also the dominant ore controlling structures (Fan et al., 2003; Mao et al., 2006).

In NE Asia, polymetallic mineralization peaked at ca. 150–140 Ma and 130–119 Ma and gradually decreased in intensity from east to west (Fig. 1; Li et al., 2003, 2006, 2012a, b; Mao et al., 2005). Intense mineralization mostly occurs in the circum-Pacific regions, such as Korea (granite-related Au-Ag; Choi et al., 2005), Northeast Russia (granite-related Au-Ag; Goldfarb et al., 2014), Jiaodong in East China (granite-related or orogenic Au; Qiu et al., 2002; Fan et al., 2003; Li et al., 2003, 2006), Daxing’anling in North China (granite-related Sn-Cu-Pb-Zn; Mao et al., 2005), Middle-Lower Yangtze belt in Central China (porphyry-skarn Cu-Au-Fe; Mao et al., 2006), and Nanling in South China (granite-related W-Sn-Mo-Au; Hua et al., 2005).

It is therefore interesting to consider whether subduction of the Paleo-Pacific plate influenced mineralization in the WQO, which lies about 2000 km from the current trench. On the basis of seismic data, Molnar and Tapponnier (1975) and Tapponnier and Molnar (1979) have suggested that plate collision-related continental lithosphere deformation can extend as far as 3000 km, as seen in the Eocene collision between India and Eurasia plates. If such deformation could drive sufficient heating and fluid release, then J3eK1 gold mineralization, including the Daqiao deposit, in the WQO may be, to some extent, a consequence of the tectonic regime in NE Asia, via processes related to the subduction and drifting of Paleo-Pacific plate. While it is difficult to conceptualise mechanisms that would transfer stress over such small timescales and long distances, such transfer might be facilitated by weak, young, sediments in the Qinling Orogen, that are sandwiched between the rigid, ancient, NCC and SCB.

6.4. Synthesis and implications

Most of the gold deposits, particularly in the northern belt of the WQO (e.g., Ma’anqiao, Bagumiaqo, Shuangwang, and Liha) were thought to form during the T3eJ1 (ca. 216–203 Ma; e.g., Zeng et al., 2012; Liu et al., 2014; Wang et al., 2014; Hu, 2015; Zhang, 2016; Lin et al., 2017). Although these deposits are spatially associated with...
contemporaneous intrusions or dykes (ca. 220–200 Ma; Dong et al., 2011, 2013), they are thought to be related to metamorphic devolatilization of underlying Paleozoic sediments during regional deformation associated with the NCC-SCB collision and subsequent orogenic deformation (ca. 227–195 Ma; Li et al., 1996, 1999; Yang et al., 1999; Zhang et al., 2002). The entire QBO then evolved towards an intra-continental orogenic stage (Dong et al., 2011).

At ca. 140 Ma, the regional tectonic regime in the QBO changed in response to a change in plate motion (Mao et al., 2005, 2006). In the EQO, relatively intensive far-field effects triggered widespread J3–K1 magmatism and polymetallic mineralization (Mao et al., 2008, 2010; Li et al., 2012a, b; Xie et al., 2017). This intensive magmatism, which introduced fluids, sulfur and other ore components into the upper crust, was probably caused by lithospheric thinning induced by the change in Pacific-Pacifice plate motion, which was accompanied by delamination and thermal erosion (Mao et al., 2010; Li et al., 2012b; Xie et al., 2017). In the WQO, no J3–K1 magmatism has been reported, which indicates a relatively low heat flow and fluid flux compared to that in EQO resulted from the lithospheric thinning (Li et al., 2012b). Geochemical evidence suggests that gold mineralization is genetically related to fluids produced by metamorphic devolatilization of underlying Paleozoic sediments. We propose that differences in the fluid sources and mineralization style of J3–K1 ages in the WQO and EQO are likely related to differences in their respective distances from the subduction front of the Paleo-Pacific plate.

To conclude, we propose that gold mineralization of J3–K1 ages in the EQO is mostly controlled by the NE- or EW-trending brittle structures and was driven to some extent by the far-effects of subduction of Paleo-Pacific plate. Better recognition and models for these structures are critical to successful exploration of J3–K1 gold deposits in the WQO.

7. Conclusion

Integration of the regional tectonics with geochronology suggests that J3–K1 gold deposits in the WQO are a consequence of far-field effects of Mesozoic subduction of the Paleo-Pacific plate beneath the Eurasian continent. J3–K1 changes in plate motion resulted in N–S trending extension and formation of NE- and EW-trending brittle structures that controlled fluid flow and gold deposition. The sources of sulfur and ore fluids in the J3–K1 age Daqiao deposit were produced by metamorphic devolatilization of the underlying Paleozoic trace element-rich sediments, which is unlike the intrusion-related deposits in the EQO. It may be that the differences in fluid source and mineralization style of J3–K1 gold deposits in the WQO and EQO are related to differences in their respective distances from the subduction front of the Paleo-Pacific plate, with important implications for the timescales and lateral extent of subduction-related effects on gold mineralization.

Acknowledgments

We acknowledge the valuable support from Daqiao Mining Ltd. and the Geological Survey of Gansu Province for access to samples and information about the Daqiao deposit. Research work was financially supported by the National Natural Science Foundation of China (Grant No. 41325007), the GPMR State Key Laboratory (grant MSFCPMM03), the China Geological Survey (Grant No. 1212011120570), and National Demonstration Center for Experimental Mineral Exploration Education at China University of Geosciences (Wuhan). The senior author acknowledges the receipt of a Chinese Scholarship Council/Curtin International Postgraduate Research Scholarship. This paper benefited from constructive reviews from Albert H Hofstra and other three anonymous reviewers.

Ours thanks go to editorial suggestions from Handling Editor Dr. Christopher Spencer.

References

