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Abstract: The correlation of spatial variation in 
land surface temperature (LST) with building height 
and density in Zhongshan District, Dalian, China is 
investigated over the period 2003–2013. We utilize 
remote sensing data and multi-source land use data, 
which we evaluate using a combination of a single-
window algorithm and correlation analysis. The 
results show that: (1) During 2003–2013, the number 
of high surface temperature regions increased by 
4,339 grid cells (out of a total of 53,601), with most of 
the high-temperature grid cells distributed along 
Jiefang Road and Zhongnan Road in the northern 
part of Zhongshan District. Ninety-eight percent of 
grid cells had temperature ranges of 293–309 K in 
July 2003, 296–310 K in August 2003, 295–308 K in 
July 2008, 296–311 K in August 2008, 305–314 K in 
July 2013, and 303–318 K in August 2013. (2)  During 
2003–2008, the number of low-rise buildings 
increased by 140%, and the number of multi-story 
buildings increased by 100%. During 2008–2013, the 
number of buildings in all height categories remained 
relatively unchanged, with the exception of an 11% 
decrease in the number of low-rise buildings. (3) 
Surface temperature showed weak correlation with 
building height (0.314 0.346, and 0.361 in 2003, 2008, 
and 2013, respectively) but moderate correlation with 
building density (0.511, 0.533, and 0.563, 
respectively). 
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I. INTRODUCTION 

RBANIZATION and the rapid development of cities 
leads to fast growth of urban space [1, 2], which can 

cause a range of problems. Urban heat islands have a 
profound impact on the urban living environment, micro-
climate, air quality, and urban public health, and also 
influence other climatic factors such as exacerbation of 
atmospheric pollution, change in the spatial distribution 
of precipitation, and change in vegetation phenology [3]. 

Many studies have measured surface temperature 
conditions using thermal infrared remote sensing through 
single-window algorithms, multi-channel algorithms, 
and other similar methods [4-6]. Single-channel 
algorithms [7-10] include atmospheric correction and 
single-window methods. In turn, the single-window 
method includes the single-window algorithm [11-15] 
and generalized single-channel algorithm methods [16], 
the split-window method [17-20], the multi-channel 
algorithm method [21-23], and both single- and multi-
channel versions of the multi-angle method. Performing 
atmospheric correction using atmospheric simulations 
enables provision of accurate real-time atmospheric 
profile data. The window used in the single window 
algorithm is relatively wide, typically using the inversion 
of thermal infrared data to determine surface 
temperature. The split window method uses the inversion 
of the absorption characteristics of two adjacent bands of 
radiation in a specified atmospheric window, while the 
multi-channel synchronization algorithm relies on 
inversion using multi-spectral temperature and 
emissivity data. 

The influence of different construction types on land 
surface temperature (LST) has been studied previously. 
Zhao et al. [24] studied the daytime and nighttime 
thermal effects of various types of building groups. Chun 
and Guldmann [25] and Chun and Guhathakurta [26] 
conducted regression analysis, considering building type 
and land use. Wu et al. [27] analyzed the impact of the 
urban thermal environment by comparing developed and 
unused land. Yang et al. [28] studied the urban heat 
island effect using three high-rise residential 
developments in Shanghai as an example and performed 
a regression analysis incorporating the building layout, 
building density, and vegetation cover. Wang and 
Ouyang [29] used the sky-view factor, building density, 
building height, and other factors as measures of land 
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surface usage. Du et al. [30] used building density in a 
regression analysis model to assess the influence of 
landscaping on the urban thermal environment. Stewart 
and Oke [31] and Ng et al. [32] studied the impact of the 
thermal environment on local climate zones by 

considering building density. Weng et al. [33] considered 
residential land by studying building types and suggested 
that residential land has a lower surface temperature than 
commercial or industrial land. Kammuang-Lue et al. [34] 
studied the effects of population, buildings, and traffic 

density on urban heat islands. Zhan et al. [35] explored 
the influence of ground coverage rate and construction 
volume density on land surface temperature. Through 
the study of various land coverage and construction 
patterns, Feng and Myint [36] explored LST in terms 
of the relationship between the central building 
structures in a neighborhood and the surrounding 
pattern of land coverage. Ge et al. [37] used visual 
interpretation to subdivide a study area into various 
building density zones, and used LST data obtained by 
remote sensing inversion to analyze the relationship 
between urban building density distribution and the 
urban heat island effect.	 On account of urban 
morphology and building height, Qiao et al. [38] used 
the Urban Ventilation Network Model (UVNM) to 
extract ventilation channels and verify their influence 
on urban surface temperature. 

The spatial form of urban architecture is often 
considered when studying the urban thermal 
environment effect. The change in urban architectural 
form is an important feature of urban development. The 
vertical and horizontal expansion of urban architecture 
is used to characterize the vertical and horizontal 
development of the city. But this approach is still in 
need of improvement. Understanding the mechanisms 
behind the urban heat island effect and its variability 
has practical significance, with the potential to improve 
the urban living environment and conduct more careful 
planning of urban development. Such understanding 
also has theoretical significance for the study of global 
and regional climate change. In this study, we combine 
Landsat 8 and Landsat 5 images with other data 
sources. Specifically, we use Landsat 8 thermal 
infrared band 10 and Landsat 5 thermal infrared band 6 
for estimation of LST and combine these data with 
records of building height and building density. Using 
a bivariate correlation model, we analyze the influence 
of urbanization and building height/density on surface 
temperature. We analyze the thermal environment 
effect resulting from the evolution of urban building 
types associated with rapid urbanization by studying 
the relationship between the pixel patterns of structures 
in an area and urban surface temperatures, thus 
providing a theoretical basis for study of the thermal 
environment effect, with the aim of addressing some of 
the practical problems associated with urban 
development.  

II. STUDY AREA AND DATA SOURCES 

A. Study area 

Zhongshan is a district governed by Dalian City in 
Liaoning Province, China and is located in the 
southeast part of the Dalian urban area (121°37ʹ15″E–
121°43ʹ3″E, 38°51ʹ37″N–38°56ʹ17″N). The eastern, 

southern, and northern boundaries of Zhongshan 
District are adjacent to the ocean, while the western 
side borders Xigang District. Our study area matches 
the current administrative boundaries of Zhongshan 
District (see Fig. 1). 

B. Data pre-processing 

Original data sources consisted of Landsat 8 OLI 
and TIRS data and Landsat 5 TM images (see Table 
Ⅰ), together with reference data consisting of weather 
statistics for the study area. Using three remote sensing 
images, acquired within a month, minimizes the error 
caused by climate. Remote sensing data are calibrated 
by radiometric calibration and atmospheric correction 
to eliminate the errors caused by the sensor itself and 
those caused by atmospheric scattering, absorption, and 
reflection. Relative humidity in the research area was 
estimated by comparing the OLI, TIRS, and TM 
images with the corresponding MODIS atmospheric 
temperature and humidity profile (MOD07) products 
for the same period. MOD07 estimates relative 
humidity using an empirical relationship between 
surface water vapor pressure and atmospheric 
precipitation [39-41]. 

III. Methodology 

A. Technical roadmap 
A grid was applied to the study area, dividing it into 

53,601 grid squares. The study of the spatiotemporal 
evolution of urban construction and the urban thermal 
environment effect is divided into three main 
components: (1) the urban thermal environment effect, 
measured using surface temperature obtained through 
the single-window algorithm, and surface temperature 
distribution conditions and their evolutionary 
characteristics; (2) the spatiotemporal evolution of 
urban building heights and densities; (3) bivariate 
correlation analysis of LST, building height, and 
building density. Fig. 2 shows this study process in 
detail.       

B. Building height and density  
Building height refers to the height difference 

between the roof and the outdoor surface. Building 
density (%) refers to the ratio between the total base 
area of buildings and the total area of a specific region. 
In this paper, building density refers to the ratio of base 
area to grid area (30 m × 30 m). Building height and 
density are important for evaluating the spatial 
distribution of buildings in an area [31, 42]. We 
classify building height and density in Tables Ⅱ and 
Ⅲ, respectively.  
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C. Single-window algorithm 
This study employs the single-window algorithm 

proposed by proposed Qin et al. [15], Wang et al. [13], 
and Tu et al. [12]. This method considers parameters 

including land surface emissivity, atmospheric 
transmittance, brightness temperature, and atmospheric 
mean temperature, and then calculates surface 
temperature using equations 1 to 3:  

 Ts= a 1-C-D + b 1-C-D +C+D T-DTa C      (1)                        
C=τε                                     (2)                                                 

D= 1-τ 1-ε τ                           (3)                                                 
where a and b are coefficients obtained from the 

relationship between thermal radiation intensity and 
brightness temperature，a = -70.1775, b = 0.4581; ε is 
ground emissivity; τ is total atmospheric transmittance; 
T is at-sensor brightness temperature; and 𝑇" is mean 
atmospheric temperature (K).  

1) Brightness temperature 
TIRS band 10 and TM band 6 data are thermal 

infrared bands with corresponding pixel brightness 
temperatures as follows: 

T= K2 ln ( K1 Lλ+1 )                      (4)                                               
Where Lλ  is radiation intensity received by the 

sensor; K#  and K$  are pre-launch preset constants 
found in the Landsat 8 and Landsat 5 header files 
(Table Ⅳ):  

TABLE Ⅳ  
THERMAL CONSTANT VALUES 

Thermal 
constant Landsat 8, band 10 Landsat 5, band 6 

𝐾# 774.89 607.76 

𝐾$ 1321.08 1260.56 

 

2) Calculating mean atmospheric temperature 
Mean atmospheric temperature ( Ta ) generally 

depends on the profile of atmospheric air temperature 
distribution and atmospheric conditions. Qin et al. [11] 
and Wang et al. [13] demonstrated that mean 
atmospheric temperature (Ta) has a linear relationship 
with near-surface temperature (T0 ). We obtain T0  is 
from the same period of MOD07 data. Given that the 
study area is located in the mid-latitudes and that the 
images were acquired during July and August, mean 
mid-latitude summer atmospheric conditions were 
therefore used (Table 4).  

Ta=16.0110+0.9262T0                 (5)                                                        

3) Calculating atmospheric transmittance rate 
Atmospheric transmittance is calculated using 

information about water vapor, wavelength, ozone, and 
aerosols. Of these, water vapor is the most important 
factor for atmospheric transmittance variation within 
the spectral temperature range [43]	(see Table Ⅴ):  

ωi=0.0981* 10*0.6108* exp 17.27* T0-273.15
273.3+ T0-273.15

RH +0.1697     

                                          (6) 
Where τ represents transmittance rate; 𝜔' represents 

atmospheric vapor content; (𝑇() represents near-surface 
temperature; and RH represents relative humidity. T0 
and RH are obtained from the same period of MOD07 
data. 

4) Calculating ground emissivity 
The pixel-scale images of the Earth’s surface are not 

homogenous; instead, over the study area, we assign 
pixels as representing either a water body, urban land, 
or a natural surface (i.e., unused land). The boundaries 
between water bodies and dry land are relatively sharp, 
and the pixels are fairly uniform and easy to extract, 
with an emissivity of 0.995. The emissivities of urban 
land and natural surfaces are calculated using equations 
7 and 8, respectively; vegetation indices are calculated 
using equations 9 and 10 [44]. The relationship 
between emissivity and vegetation indices is presented 
in Table Ⅵ. 

εurban=0.9608+0.0860Fv-0.0671Fv
2             (7)                                           

εsurface=0.9644+0.0615Fv-0.0461Fv
2            (8)                                    

Fv= NDVI-NDVIs NDVIv-NDVIs         (9)                                             
NDVI= NIR-RED NIR+RED            (10)                                               

where, (εsurface) and (εurban) are the emissivity of natural 
surface and urban land surface pixels, respectively; 
(Fv) is vegetation coverage; NDVI is normalized 
difference vegetation index; (NDVIv) is the vegetation 
index of vegetation; (NDVIs) is the vegetation index of 
soil.  

D. Bivariate correlation analysis 
Bivariate correlation analysis is used primarily with 

two or more variables. Based on the data type, different 
correlation coefficients can be used to measure the 
linear correlations between variables. The most 
common forms are the Pearson simple, Spearman’s 
rank, and Kendall’s tau-b concordance correlation 
coefficients. Here, we employ the Pearson simple 
correlation coefficient 

r= x-x y-y

x-x
2

y-y
2
                         (11)                                            

The statistical test corresponding to the Pearson 
simple correlation coefficient is the t-statistic. SPSS 
software automatically provides the corresponding t-
statistic probability, based on the t-statistic and the 
degrees of freedom in accordance with the t 
distribution table. 

 
IV. Results 

A. Building height and density distribution 
The Code for Design of Civil Buildings divides 

structures into five categories according to height: low-
rise, multi-story, middle-high, high-rise, and super 
high-rise [42].  

We now consider the evolution of the spatial 
distribution of buildings low-rise, multi-story, and 
middle-high buildings were the most common 
structures in Zhongshan District, and they were mainly 
concentrated in the northwestern and central parts of 
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the district (Jiefang Road and Zhongnan Road). Only 
small proportions of high-rise and super high-rise 
buildings were present, and these were located mainly 
in the Qingniwa-Tianjin Street commercial district 
(which includes Qingni and People’s Road sub-
districts, and the northeastern area of Kunming sub-
district) (Figs. 3 and 4). 

In Fig. 5a, we illustrate how building numbers 
increased during 2003–2008, with a particularly strong 
rise in numbers of low-rise (140% increase) and multi-
story (100% increase) buildings. During 2008–2013, 
the number of buildings in all height categories 
remained relatively unchanged, with the exception of 
the number of low-rise buildings, which decreased by 
11%. 

We now consider building density. The high- and 
relatively high-density plots were distributed mainly in 
the commercial district of Qingniwa-Tianjin Street 
(including the Qingni and People’s Road sub-districts, 
and the northeastern area of Kunming sub-district). 
Most of the low-, relatively low-, and medium-density 
plots were distributed along Jiefang Road and 
Zhongnan Road. During 2003–2013, the high- and 
relatively high-density plots in Guilin and Navy Square 
sub-districts turned into medium- and relatively low-
density plots; meanwhile, building density showed a 
clear increase in the middle of the study area (Figs. 5b 
and 6).  

B.  Surface temperature distribution 
The experimental results show that the error 

between the calculated LST and the measured LST is 
less than 5%, which can reflect the spatial distribution 
of the LST in the study area. 

We now consider the evolution of the spatial 
distribution of surface temperature. The temperature in 
the north and along Jiefang Road and Zhongnan Road 
is relatively high, and the temperature in the east and 
south is relatively low. In July 2003, 98% of grid cells 
had a temperature within the range 293–309 K. In 

August 2003, 98% of grid cells had a temperature 
within the range 296–310 K. In July 2008, 98% of grid 
cells had a temperature within the range 295–308 K. In 
August 2008, 98% of grid cells had a temperature 
within the range 296–311 K. In July 2013, 98% of grid 
cells had a temperature within the range 205–314 K. In 
August 2013, 98% of grid cells had a temperature 
within the range 303–318 K (Figs. 7 and 8). 

During 2003–2008, the temperature in the northwest 
portion of the study area and the Zhongnan Road and 
Jiefang Road increased significantly. During 2008–
2013,	 the temperature increased throughout the study 
area. Due to land reclamation in the northwest portion 
of the study area, the temperature increased sharply. 
The temperature increased significantly after an area of 
land in the northeastern part of the district was 
reclaimed from the ocean. In addition, many low- and 
middle-high buildings in the northwestern and western 
parts had been converted to high-rise buildings (Figs. 7 
and 8). 

C.  Correlation of surface temperature with building 
height and density 

The average annual temperature for two months was 
calculated, and the correlation between the surface 
temperature and the building height and the building 
density was then analyzed. Table Ⅶ shows the results 
of correlation analysis for surface temperature, 
building height, and building density for 2003, 2008, 
and 2013. Our results show that surface temperature 
correlates only weakly with building height (0.314, 
0.346, and 0.361 in 2003, 2008, and 2013, 
respectively), but moderately with building density 
(0.511, 0.533, and 0.563). There is a low positive 
correlation between LST and building height, which 
indicates that high-rise buildings have a small effect on 
LST. The surface temperature and building density 
have a moderate correlation, which indicates that the 
high-density building area has a relatively large impact 
on the LST. 

V. DISCUSSION AND CONCLUSIONS 

A. Discussion  
The Dalian Municipal Planning Bureau issued the 

relevant provisions of the planning and design of 
Dalian city notice on August 24, 2005, which is used 
for the construction, management and protection of the 
city. The height of the building and the density of the 
building are clearly stipulated in the provisions. There 
is an increase in the height of urban buildings, the 
middle and relatively high building density and the 
surface temperature. It is necessary to strictly 
implement the relevant provisions and pay attention to 
the planning. 

In this study, the single window algorithm is used to 
retrieve the LST. Because it is difficult to eliminate the 
influence of the atmosphere using this algorithm, 
Landsat imagery with a cloud coverage less than 5% 

was selected. The building density in this study refers 
to the ratio of the base area to the grid area (30 m× 30 
m). In the next study, the grid scale can be adjusted in 
order to get a better scale.  The selected correlation 
analysis method has effectively analyzed the 
correlation between LST and building height and 
density, but this method cannot well express their 
spatial correlation. 

  We focused on characterizing the potential 
relationships between building height/density and the 
heat island effect. However, many other factors are also 
involved, e.g., roads and vegetation. These factors 
should be taken into account in a future comprehensive 
analysis. Our study is also limited by errors in the 
remote sensing band algorithm. The mechanisms 
behind the heat island effect therefore require further 
study and analysis using high-precision, long-term, and 
multiple-period data sets. 
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B. Conclusions 
Our study investigates the effects of the rapid 

urbanization of Zhongshan District, Dalian, on the 
thermal environment. We utilized surface temperatures 
and bivariate correlations to analyze spatial and 
temporal changes associated with urban buildings. We 
determined surface temperatures using the single-
window algorithm, and employed bivariate correlation 
analysis to explore possible associations of building 
height and density with surface temperature, and 
obtained the following results:  
1) The number of buildings increased during 2003–

2008, especially in the low-rise and multi-story 
building categories. The number of low-rise and 
multi-story buildings increased by 140% and 
100%, respectively. In this period, urban 
buildings are growing in two directions, both 
horizontal and vertical, and the urban space is 
growing rapidly. During 2008–2013, building 
numbers in all height categories remained 
relatively unchanged, except for a decrease of 
11% in the number of low-rise buildings. In this 
period of time, urban buildings have mainly 
vertical growth. 

2) Surface temperature data show that the number of 
high-temperature grid cells increased 
significantly, by 4,339 (out of a total of 53,601), 
between 2003 and 2013. Most of the high-
temperature grid cells were distributed along 
Jiefang Road and Zhongnan Road in the northern 
part of Zhongshan District. Our results show that 
98% of grid cells had temperatures of 293–309 K 
in July 2003, 296–310 K in August 2003, 295–
308 K in July 2008, 296–311 K in August 2008, 
and 305–314 K in July 2013, and 303–318 K in 
August 2013. The distribution of surface 
temperature is basically consistent with the 
distribution of buildings and the distribution of 
building density. Urban low building density area 
has more green and empty space, the air 
ventilation efficiency is high, the temperature is 
relatively low. In contrast, the temperature is 
relatively high in the urban high building density 
area. 

3) In 2003, 2008, and 2013, surface temperature 
showed low correlation with building height 
(correlation coefficients of 0.314, 0.346, and 
0.361, respectively), but moderate correlation 
with building (0.511, 0.533, and 0.563, 
respectively). When the number of urban 
buildings increases, the ventilation efficiency in 
the area is reduced and the temperature is 
relatively high. Conversely, the urban low 
building density area has more greening, which is 
convenient for air circulation and results in 
relatively low temperature. 
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Fig 1. Map of the study area. 
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Fig. 2 Technology road map. 

 
Fig. 3 Three-dimensional map of building distribution (actual height*3). 

 
Fig. 4 Map of building height distribution. 
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Fig. 5 Histograms showing: a. Numbers of buildings according to height; b. Numbers of spatial grid cells according to building density. 
 

 
Fig. 6 Map of building density distribution. 

 
 

 
Fig. 7 Map of land surface temperature distribution showing: a. LST of July 2003; b. LST of August 2003; c.	LST of July 2008; d.	LST of August 

2008; e.	LST of July 2013; and f.	LST of August 2013. 
 
 

 
Fig. 8 Box plots of surface temperature distributions. 
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TABLE Ⅰ  
DATA SOURCES AND DESCRIPTIONS 

Date Detector Resolution Data Sources 

2013-07-03/2013-08-11 Landsat 8 OLI/TIRS 30 m Geospatial Data Cloud 
MOD07 atmospheric broadband product 5 km Downloaded from NASA 

2013-08-05 SPOT5 10 m National Bureau of Oceanography 

2008-07-12/2008-08-06 Landsat 5 TM 30 m Geospatial Data Cloud 
MOD07 atmospheric broadband product 5 km Downloaded from NASA 

2007-04-13 SPOT5 10 m National Bureau of Oceanography 

2003-07-15/2003-08-16 Landsat 5 TM 30 m Geospatial Data Cloud 
MOD07 atmospheric broadband product 5 km Downloaded from NASA 

2003-06-16 SPOT5 10 m National Bureau of Oceanography 

2013 country, province, city, county (district), 
village (town, street) data - Dalian Planning Bureau 

2003/2008/2013 building structure outline, height, the number 
of floors (stories) - Dalian Land Resource and Housing Bureau, 

SPOT image interpretation 
2003/2008/2013 Roads - Dalian Land Resource and Housing Bureau 
 

TABLE Ⅱ 
CLASSIFICATION OF BUILDING TYPES [31, 42] 

Building type Classification standard 
Low-rise building 1–3 floors (3–10 m) 

Multi-story building 4–6 floors (10–18 m) 
Middle-high rise building 7–9 floors (18–24 m) 

High-rise building 10 or more floors (24–100 m) 
Super high-rise building Building height exceeds 100 m 

TABLE Ⅲ  
CLASSIFICATION OF BUILDING DENSITY [31, 42] 

Building density Classification standard 

Low 0–10% 
Relatively low 10–20% 

Medium 20–40% 
Relatively high 40–70% 

High 70–100% 
 

TABLE Ⅳ  
THERMAL CONSTANT VALUES 

Thermal 
constant Landsat 8, band 10 Landsat 5, band 6 

𝐾# 774.89 607.76 

𝐾$ 1321.08 1260.56 
 

TABLE Ⅴ  
DERIVATION OF ATMOSPHERIC TRANSMITTANCE 

Atmospheres Atmosphere vapor content 
(g*cm) Transmittance estimation equation 

Mid-Latitude average summer atmosphere 
0.2–1.6 τ=0.9184-0.0825ωi 
1.6–4.4 τ=1.0163-0.1330ωi 
4.4-5.4 τ=0.7029-0.0620ωi 

 
TABLE Ⅵ 

 EQUATIONS AND CONDITIONS FOR ESTIMATING GROUND EMISSIVITY WITH NDVI THRESHOLD METHOD 
NDVI value Ground emissivity equation 
NDVI<=0 Water body ε=0.995 

0<NDVI<0.7 Urban land εurban 
NDVI>=0.7 Natural surface  εsurface 

 
TABLE Ⅶ  

CORRELATIONS BETWEEN SURFACE TEMPERATURE AND BUILDING HEIGHT / DENSITY, 2003–2013  
 2003 2008 2013 

Building 
height 

Building 
density 

Building 
height 

Building 
density 

Building 
height 

Building 
density 

2003 land surface temperature .314** .511** - -   
2008 land surface temperature  - - .346** .533** - - 
2013 land surface temperature - - - - .361** .563** 

**. Significant correlation at the 0.01 level (bilateral). 


