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Sensor Fault Detection and Isolation: A Game Theoretic Approach 

This paper studies sensor fault detection using a game theoretic approach. Sensor 

fault detection is considered as change point analysis in the coefficients of a 

regression model. A new method for detecting faults, referred to as two-way fault 

detection, is introduced which defines a game between two players, i.e. the fault 

detectors. In this new strategic environment, assuming that the independent states 

of the regression model are known, the test statistics are derived and their finite 

sample distributions under the null hypothesis of no change are derived. These test 

statistics are useful for testing the fault existence, as well as, the pure and mixed 

Nash equilibriums are derived for at-most-one-change and epidemic change 

models. A differential game is also proposed and solved using the Pontryagin 

maximum principle. This solution is useful for studying the fault detection problem 

in unknown state cases. Kalman filter and linear matrix inequality methods are 

used in finding the Nash equilibrium for the case of unknown states. Illustrative 

examples are presented to show the existence of the Nash equilibriums. Also, the 

proposed fault detection scheme is numerically evaluated via its application on a 

practical system and its performance is compared with the cumulative sum method. 

Keywords: AMOC; Differential game; Epidemic model; Kalman filtering; LMI; 

Nash equilibrium; Pontryagin maximum principle; Two-way fault detection 

1. Introduction  

From industrial safety systems to sustainable plants, fault detection and isolation 

(FDI) techniques play an essential role to detect and isolate faults in systems as early as 

possible and to generate the critical information which will be used to remove the fault 

effect from the overall system and keep the performance at the desirable level till the next 

prescheduled maintenance procedure (Ren, Ding, & Li, 2017; Song and Guo, 2017). In 

fact, implementing active fault tolerant control, in which FDI is an important step to 

prepare the fault information, reduces the shutdown periods and unplanned maintenance, 

also it can be used to prevent the component faults from degrading further into 

catastrophic failure and increases system reliability, especially for systems operating in 



harsh environments, e.g. offshore wind turbines (H. Habibi, Nohooji, & Howard, 2017). 

It is also profitable to utilize the fault information obtained from FDI in manual 

maintenance approaches (H. Habibi, Howard, & Habibi, 2017) 

Generally, the aberration of system parameters from their nominal/expected 

values can be seen as faults at the system level view point (Isermann, 2006). Process, 

actuators and sensors form the main sources of faults which should be detected via the 

FDI scheme (Li, Wang, Han, & Wei, 2017). The residual-based FDI scheme is the most 

utilized one to detect the faults. In this scheme, by comparing the outputs of redundant 

identical components, either hardware or software components, the residual signal can be 

generated which contains the possible fault information. The significant deviation of the 

residual signal from zero can be translated as fault occurrence (H. Habibi, Howard, et al., 

2017). The evaluation of the residual to deduce the fault occurrence is very challenging 

especially for nonlinear systems with sensor noise, model uncertainty and immeasurable 

system disturbance (Ren, et al., 2017). In fact, these issues may lead to deviation of 

residual signal levels from zero which, in turn, leads to false FDI (Li, et al., 2017). Also, 

simple threshold checking, i.e. if the residual level crosses the threshold then the fault is 

detected, may lead to missed or non-detected faults which is very likely in the case of 

incipient/small faults which may cause severe system performance degradation or even 

instability (Blanke, Kinnaert, Lunze, Staroswiecki, & Schröder, 2006). 

Sensor failure is one of the important sources of faults which may lead to system 

performance degradation, because it is most likely that the sensor output will be used in 

feedback control design which may cause system instability or even system break down 

(Gu and Yang, 2017; H. Habibi, Howard, et al., 2017). Accordingly, detection of sensor 

faults is a significant aspect that must be considered, and various methods have been 

proposed for faster and more accurate FDI schemes. The least squares method is one of 



the best and well-developed methods to extract signal characteristics and probable fault 

information (Chen and Lu, 2013; Dalei and Mohanty, 2016; Hong and Dhupia, 2014; 

Yunlong and Peng, 2012). In (Ahmadizadeh, Zarei, & Karimi, 2014; Zarei and Shokri, 

2014), a nonlinear unknown input observer was designed for robust sensor FDI. 

Similarly, in (Aouaouda, Chadli, Shi, & Karimi, 2015), for uncertain and disturbed 

discrete-time nonlinear models, a robust observer approach for FDI was proposed. Also, 

in (H. Habibi, Howard, et al., 2017; Mehranbod, Soroush, & Panjapornpon, 2005) the 

Bayesian framework was utilized to detect and identify sensor faults. On the other hand, 

utilizing the concept of fuzziness, in (Wu and Ho, 2009), a fuzzy filter was designed for 

robust FDI of Ito stochastic systems. Two best observers, including Kalman or sliding 

mode concepts, for sensor robust FDI were studied in (Ben Brahim, Dhahri, Ben Hmida, 

& Sellami, 2017; Pourbabaee, Meskin, & Khorasani, 2016; Zhang, Swain, & Nguang, 

2015).  

The game theory, as a powerful technique in control engineering, has profited 

from many philosophical and theoretical concepts like Nash equilibrium (Chung and 

Speyer, 1998). The game theory concept is applicable in many fields, e.g. H∞ control 

(Başar and Bernhard, 2008) and optimal control (Evans, 2005). In (Chung and Speyer, 

1998; Mutuel and Speyer, 2000) the trade-off between FDI and disturbance attenuation 

has led to a game theoretic FDI filter. In (Bresolin and Capiluppi, 2013) the game theory 

concept was used to design a FDI scheme for a hybrid system which mixed continuous 

and discrete time dynamics. A discrete time FDI filter for a multiple fault case using the 

game theory concept was designed in (Murray and Speyer, 2014). In (Elhadef and Grira, 

2018) the fault diagnosis in distributed and parallel systems was studied using the game 

theory.  

In this paper, the fault model is considered as a change in coefficient of the 



regression model, as the underlying framework for sensor FDI, which can capture a wide 

variety of sensor fault types. Indeed, the change point analysis of the coefficient of the 

regression model is studied for sensor FDI. So, the change point analysis and FDI are 

used interchangeably (H. Habibi, Howard, et al., 2017). Consider the sensor measurement 

as a regression model as, 

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝜀𝑡 , 𝑡 = 1,2, … , 𝑛, (1) 

where 𝑦𝑡 is sensor output, 𝛽𝑡 is sensor coefficient, and 𝜀𝑡 is independent and identically 

distributed zero mean random variables with common variance 𝜎𝜀
2 < ∞.  It is assumed 

that the 𝑥𝑡 's are unknown state variables coming from a stochastic (deterministic) state 

equation as, 

𝑥𝑡 = ℎ(𝑥𝑡−1, 𝑢𝑡) + 𝑒𝑡, (2) 

for some functions ℎ, where, 𝑢𝑡 's are control variables, for example, 𝑢𝑡 = 𝐾𝑥𝑡 which is a 

state feedback control with control gain 𝐾. Here, 𝑒𝑡 's are random error terms independent 

of 𝜀𝑡 's. In the deterministic cases, 𝑒𝑡 's are zero. As a special case, when ℎ is a linear 

function, then 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛾𝑢𝑡 + 𝑒𝑡 , where 𝛼 and 𝛾 are real numbers (H. Habibi, 

Howard, et al., 2017). The null hypothesis 𝐻0 states that there is no change in 𝛽𝑡 for 𝑡 =

1,2, … , 𝑛, while the at-most-one-change (AMOC) alternative hypothesis 𝐻1 implies that, 

there is a change at an unknown time 𝑡∗ = [𝑛𝜏∗], for 0 ≤ 𝜏∗ ≤ 1. [𝜒] represents the 

integer part of variable 𝜒. Accordingly, 𝐻1 is formulated as, 

𝐻1:  𝛽𝑡 = {
𝑏1 𝑡 ≤ 𝑡∗,
𝑏2 𝑡 ≥ 𝑡∗ + 1,

 (3) 

where 𝑏1 and 𝑏2 are unknown sensor coefficients before and after the change moment 𝑡∗, 

respectively, and 𝑏1 ≠ 𝑏2. The magnitude of change is 𝜑 = 𝑏2 − 𝑏1. An alternative 

choice for 𝐻1 is the epidemic change model (Ning, Pailden, & Gupta, 2012) which is 



represented as, 

𝐻1:  𝛽𝑡 = {

𝑏1 𝑡 ≤ 𝑡1
∗,

𝑏2 𝑡1
∗ + 1 ≤ 𝑡 ≤ 𝑡2

∗

𝑏1 𝑡2
∗ + 1 ≤ 𝑡 ≤ 𝑛.

, (4) 

Again, let  𝑡𝑖
∗ = [𝑛𝜏𝑖

∗], 𝑖 = 1,2, such that 0 < 𝜏1
∗ < 𝜏2

∗ < 1. Accordingly, it is 

aimed to detect changes in 𝛽𝑡. It is noteworthy that in most practical dynamic systems, in 

the fault free case 𝛽𝑡 = 1. Indeed, it is aimed to measure identically the given state. So, 

at the fault moment, after which 𝛽𝑡 ≠ 1, the sensor output is obviously not equal to the 

state. Accordingly, the fault model (3) or (4) can be translated as a multiplicative fault 

scenario. Also, the other types of faults including biased or fixed sensor output can be 

considered in this framework. For example, 𝛽𝑡 = 1 + (𝑐 − 𝜀𝑡)/𝑥𝑡 and 𝛽𝑡 = (𝑐 − 𝜀𝑡)/𝑥𝑡 

represent the biased and fixed measurement in this framework, respectively, where 𝑐 is a 

constant number. Accordingly, a family of sensor fault types can be modelled as 

multiplicative faults for which the proposed FDI scheme is applicable, which is captured 

via this framework.  

In this paper the two-way FDI approach is proposed to resolve the problem of 

weak performance of conventional one-way FDI approaches. Also, the proposed 

approach induces a game theoretic framework for change point analysis. It should be 

noted that two-way and one-way FDI approaches are accurately defined in Section 2.  The 

differences and advantages of the two-way FDI approach compared to one-way method 

can be outlined as follows in five categories. 

(a) Game theoretic arguments 

1- Game theory has different useful concepts such as equilibriums (Gibbons, 1992). Two-

player FDI makes a game theoretic framework to use all useful game theory concepts in 

FDI. For example, although, in the current paper, the Nash equilibrium is used, however, 

the widely used method IEWDS (Iterated Elimination of Weakly Dominated Strategy) 



can be applied, in future researches. Also, some other famous framework in game theory 

such as different kinds of adoptions, repetitions, learning is applicable so the players can 

cover their mistakes in a cooperative framework. Different types of games like 

incomplete information (in simultaneously or sequentially form) are extendable. These 

are not applicable in one-way FDI framework.  

2- The game theory has applications in many fields of control engineering such as 𝐻∞ 

control. Two-way FDI adds some different useful concepts such as games based on bias 

reduction, player test statistic, quasi-Bayesian, their equilibriums (mixed and pure), in 

AMOC and epidemic, their limiting behaviour, the use of LMI technique, as well as the 

important topic of differential games (known-unknown states), in the current paper.  

(b) Data analysis arguments 

The proposed method here can also be used as a data mining technique (it belongs to the 

diagnosis-supervisory category of data mining techniques). So it is expected to have some 

good properties which are listed as below. 

3- Results seem to be more insensitive to outliers, missing values, and small shift 

problems, because two players may choose different detection methods that improve their 

estimation accuracy. 

4- Since two estimators are derived by two players, the ultimate change point estimation 

is a function of two estimators, for example their means. Thus, the variance of the final 

estimator is smaller than the variance of both estimators. 

5-Since the data sequence is checked for the existence of change points, it seems that the 

possibility of spurious change points being identified is decreased. 

6- The model is applicable for the use of multiple change point analysis. Indeed, as soon 

as a player detects a change point, other change points are detected sequentially by both 

players. 



7-In the epidemic change point detection, the use of only a small length of the epidemic 

period is very problematic. If one player misses and passes the period without identifying 

the change points, the other player may compensate for the first one’s mistake. 

(c) Speed of detection and performance arguments 

8- In the AMOC setting, the two-way FDI approach detects the change point faster than 

the one-way method. Indeed, it seeks for a change from both directions of the data series, 

and as soon as each player detects a change, the game is over. 

9- When the change point is close to the start or end of the data sequence, the performance 

of one-way FDI methods is often weak (Bai, 1994; Sen and Srivastava, 1975). In contrast, 

the performance of the two-way method is independent of the location of the change. 

(d) Industrial arguments 

10-The application of two-way FDI is significant when it is used for periodic maintenance 

procedures, especially for industrial systems with large amounts of data, e.g. SCADA 

data in wind turbine farms (Yang, Court, & Jiang, 2013). In fact, using this method, 

without losing any critical information, the data exploitation time can be reduced 

significantly by analysing the data from both the beginning and the end of the data series 

(Hameed, Hong, Cho, Ahn, & Song, 2009; Qiu et al., 2012). 

(e) Similarity to other detection methods 

11- Inherently, change point analysis methods use some search techniques for finding 

breaks and shifts in the parameters of statistical or mathematical models. There are many 

methods to increase the speed of the search and reduce the computational complexities. 

One of the famous methods is binary splitting with its advantages  (Ho, 1998). Two-way 

FDI is a special type of binary splitting which has some of the good properties of the 

sampling splitting method such as the rate of convergence of the search induces to two-

way FDI. 



The main contribution of the current paper compared to the available literatures 

is that the sensor FDI problem is defined as a game theoretic problem utilising the two-

way FDI approach. The existence of the Nash equilibrium is then surveyed in various 

cases with different criteria, e.g. via minimizing the bias of the player estimation of the 

sensor coefficient, before and after the fault moment, or by using the least squares 

method, the quasi-Bayesian method, and corresponding player test statistics (R. Habibi, 

Sadooghi-Alvandi, & Nematollahi, 2005). The differential game is proposed based on the 

above-mentioned test statistics and solved for known and unknown state cases. In the 

former case, the maximum principle is applied to solve the differential game, while in the 

latter one, it is solved using two approaches, including linear matrix inequality (LMI) and 

the maximum principle, when the states are estimated by the Kalman filter. The finite 

sample null distribution of the test statistic is derived when state 𝑥𝑡 is a sorted sample of 

the uniform distribution, or a linear combination of 𝑥𝑡−1 and 𝑢𝑡, or when it is estimated 

via the Kalman filtering approach. Also, using the best response function approach, the 

Nash equilibrium is derived. The Nash equilibrium is derived when both players decide 

to minimize the bias of their estimations of the parameter before and after the fault 

moment. It should be noted that, according to the best knowledge of the authors, there 

has been no attempt at studying the two-way sensor FDI, before this paper.  

The rest of the paper is organized as follows. In Section 2, the game definition of 

two-way FDI is proposed. Then, using the best response function, by minimizing the bias 

of sensor coefficient estimations before and after the fault moment, made by each player 

(detector), the two-way game framework is studied. Since each player wants to test the 

null hypothesis of the no change 𝐻0 , individually, the test statistics are proposed. The 

asymptotic null distributions of test statistics are also presented. Finally, the two-way FDI 

game framework is constructed using the mentioned test statistics. In Section 3, the game 



theoretic FDI is presented for the known states case. The two-way FDI is studied for the 

AMOC and epidemic change models. The pure Nash equilibrium in three different 

perspectives and Petkov's (2013) mixed strategies are derived. A differential game is 

constructed based on these mentioned test statistics. In Section 4, the game theoretic two-

way FDI is studied for the unknown states case. First, the LMI approach is proposed. 

Then, the Kalman filter is also proposed to estimate the unknown states and also for 

solving the differential game. Illustrative examples including finite sample distributions 

of test statistics, players best response functions, sensor bias, sensor fixed output, 

epidemic faults, and rolling analysis are studied in Section 5. Also, a practical example, 

i.e. integrated servo mechanism system, is considered to evaluate the superiority of the 

proposed FDI scheme. The conclusions are given in Section 6. 

2. Game Definition and Test Statistics 

In this section the two-way game theoretic FDI framework is constructed based 

on the given criteria and corresponding test statistics are derived. 

2.1. Game Definition: Two-Way FDI 

The conventional FDI methods seek a change in 𝛽𝑡 starting at 𝑦1 and ending at 

𝑦𝑛, sequentially, using online or offline disciplines, which is called the one-way FDI, in 

this paper. Under the AMOC alternative hypothesis 𝐻1 and an offline discipline, the FDI 

problem is similar to a game between two players that aim to estimate the change point 

as well as to estimate 𝑏1, 𝑏2. In this paper, a new concept of FDI, called two-way FDI, is 

proposed which allows the use of the game theoretic methods in FDI. Consider two 

players (detectors). The player 1 moves from 𝑦1 to 𝑦𝑛 and the player 2, in a reverse 

direction, from 𝑦𝑛 to 𝑦1. Under 𝐻0, both players are greedy and rational because they 

want to use more observations in estimating 𝑏1, 𝑏2. This is the game theoretic FDI under 



𝐻0.  

To describe the game theoretic aspects under 𝐻1, consider the special case of the 

AMOC model at which 𝑥𝑡 = 1, for all 𝑡 ≥ 1. Hence, the estimations of 𝑏1 and 𝑏2, made 

by players 1 and 2 are given as �̂�1𝑖 =
1

�̂�𝑖
∑ 𝑦𝑗
�̂�𝑖
𝑗=1  and �̂�2𝑖 =

1

𝑛−�̂�𝑖
∑ 𝑦𝑗
𝑛−�̂�𝑖
𝑗=1 , 𝑖 = 1,2, 

respectively, where players 1 and 2 estimate 𝑡∗ by �̂�1 and n − �̂�2, respectively. Each player 

is trying to minimize its own estimation bias. Given �̂�1, �̂�2, the biases of these estimators 

are 

𝑏𝑖𝑎𝑠1𝑖 = {
0 �̂�𝑖 ≤ 𝑡

∗,

𝜑(1 −
𝑡∗

�̂�𝑖
) �̂�𝑖 ≥ 𝑡∗ + 1,

 and  𝑏𝑖𝑎𝑠2𝑖 = {
−𝜑(

𝑡∗−�̂�𝑖

𝑛−�̂�𝑖
) �̂�𝑖 ≤ 𝑡∗,

0 �̂�𝑖 ≥ 𝑡
∗ + 1,

 (5) 

where, notation 𝑏𝑖𝑎𝑠1𝑖 stands for bias of �̂�1𝑖. Suppose that both players compare their 

estimations of 𝑏1, given by 
1

�̂�1
∑ 𝑦𝑖
�̂�1
𝑖=1  and 

1

�̂�2
∑ 𝑦𝑖
�̂�2
𝑖=1 , respectively. Let 𝛿𝑘 = �̂�𝑘 − 𝑡

∗, 𝑘 =

1,2. Table 1 gives the proportions of biases over 𝜑 that is the coordinates (
𝑏𝑖𝑎𝑠11

𝜑
,
𝑏𝑖𝑎𝑠12

𝜑
) 

as a function of δ1 and δ2. Cells marked by * are the pure Nash equilibrium for this game.  

Table 1. Values of (𝑏𝑖𝑎𝑠11, 𝑏𝑖𝑎𝑠12)/𝜑 

Bias δ2 ≤ 0 δ2 > 0 

δ1 ≤ 0 (0,0)* (0,
δ2

δ2+𝑡
∗) 

δ1 > 0 (
δ1

δ1+𝑡
∗,0) (

δ1

δ1+𝑡
∗, 

δ2

δ2+𝑡
∗) 

Indeed, when max(�̂�1, �̂�2) ≤ 𝑡
∗, the Nash equilibrium occurs. Considering the 

biases for estimation of b2, the Nash equilibrium occurs at min(�̂�1, �̂�2) ≤ 𝑡
∗. Combining 

both Nash equilibrium conditions, it is concluded that �̂�1 = �̂�2 = 𝑡
∗. For another example, 

suppose that player 1 estimates 𝑏1 and player 2 estimates 𝑏2. Then, Table 2 gives the 

values of (
𝑏𝑖𝑎𝑠11

𝜑
,
𝑏𝑖𝑎𝑠22

𝜑
). The equilibrium occurs when the player 1 chooses �̂�1 ≤ 𝑡∗ and 

the player 2 considers the �̂�2 ≥ 𝑡
∗ + 1.  

Table 2. Values of  (bias11, bias22)/φ 



Bias δ2 ≤ 0 δ2 > 0 

δ1 ≤ 0 (0, 
δ2

𝑛−𝑡∗−δ2
) (0,0)* 

δ1 > 0 (
δ1

δ1+𝑡
∗, 

δ2

𝑛−𝑡∗−δ2
) (

δ1

δ1+𝑡
∗, 0) 

Although, in the previous simple game, each player played his game, individually. 

However, this simple game can be modified to be a corporative/competitive game as 

follows. In the AMOC model, suppose that players 1 and 2 estimate 𝑡∗ as �̂�1 and n − �̂�2, 

respectively. The ultimate estimation of �̂� is a function of �̂�1 and �̂�2. For example, if both 

players cooperate, then, �̂� = 0.5(�̂�1 + �̂�2). In a competitive two-way FDI game, it is 

assumed that as soon as one player finds a change, that player wins, and the game is 

finished. Hence, �̂� = 𝑚𝑖𝑛(�̂�1, �̂�2). This competition is similar to Cournot's oligopoly, 

which is frequently used in economics and finance (Gibbons, 1992). The �̂��̂� and �̂��̂�
∗ are 

estimations of regression coefficients before and after the change, respectively. 

Sometimes, both players agree with the same location of change. For example, in a 

sequential format of the game, both of them use the same change detector procedure. In 

these cases, a test statistic for change detection is needed. The above-mentioned example 

was a simple case of two-way FDI. The other cases are considered in Section 3. 

2.2. Players Test Statistics  

In this section test statistics are given, such that, each player can detect the change 

point individually. Also, it should be noted that, besides the bias minimization (see 

Section 2.1), game theoretic two-way FDI is constructed based on the given test statistics. 

First, assume that states 𝑥𝑡 's are known and the AMOC model is considered. The 

unknown states case is studied in Section 4. The epidemic change problem is investigated 

in Section 3.3.  When both players agree to test the existence of change at the same time 

𝑡, (𝑡 ≤ 𝑛 − 1) the least square estimates of parameters (regression coefficients) before 



and after the change is given by 

�̂�𝑡 =
∑ 𝑥𝑖𝑦𝑖
𝑡
𝑖=1

∑ 𝑥𝑖
2𝑡

𝑖=1

 , �̂�𝑡
∗ =

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=𝑡+1

∑ 𝑥𝑖
2𝑛

𝑖=𝑡+1

 .                     (6) 

Let 𝑠𝑡 = ∑ 𝑥𝑖
2𝑡

𝑖=1  and 𝜆𝑡 =
𝑠𝑡

𝑠𝑛
, 𝑡 = 1,2, … , 𝑛, and suppose that  

𝑑𝑡 = �̂�𝑡 − �̂�𝑡
∗,                     (7) 

where  

�̂�𝑡 = 𝜆𝑡�̂�𝑡−1 + (1 − 𝜆𝑡)(
𝑦𝑡

𝑥𝑡
). (8) 

When the 𝐻0 is correct, i.e. there is no change, then 𝑑𝑡 oscillates around zero for 

each of the 𝑡's and if for some 𝑡∗ the |𝑑𝑡∗| is too large, it indicates that there is a change 

at 𝑡∗. This fact motivates one to use the following suitable test statistic 

𝑚𝑎𝑥2≤𝑡≤𝑛−1|𝑑𝑡|, (9) 

as a change detector. To standardize 𝑑𝑡, it is easily can be seen that   

𝑣𝑎𝑟(𝑑𝑡) =
𝜎𝜀
2

𝑠𝑛𝜆𝑡(1−𝜆𝑡)
. (10) 

Therefore, the standardized 𝑑𝑡 is proportional to √𝜆𝑡(1 − 𝜆𝑡)|𝑑𝑡|. Hence, the test statistic 

is given by,  

𝑚𝑎𝑥2≤𝑡≤𝑛−1√𝜆𝑡(1 − 𝜆𝑡)|𝑑𝑡|. (11) 

Using some algebraic manipulations, it can be seen that �̂�𝑡
∗ =

�̂�𝑛−𝜆𝑡�̂�𝑡

1−𝜆𝑡
 and 𝑑𝑡 =

�̂�𝑛−�̂�𝑡

1−𝜆𝑡
. 

Thus, the test statistic (11) is modified as, 

𝑚𝑎𝑥2≤𝑡≤𝑛−1|𝑢𝑡
𝑛|, (12) 

where, 𝑢𝑡
𝑛 = √𝜆𝑡(1 − 𝜆𝑡)

−1(�̂�
𝑡
− �̂�

𝑛
). The estimation of change point 𝑡∗ is then given by, 

𝑎𝑟𝑔𝑚𝑎𝑥2≤𝑡≤𝑛−1|𝑢𝑡
𝑛|. (13) 

Assuming the change point 𝑡∗ is bounded from the start or end of the data sequence, i.e., 

𝑡∗ ∈ 𝐼 = [𝑎, 𝑏] where 𝑎 = [𝑛𝜃] and 𝑏 = [𝑛(1 − 𝜃)] for some positive small number 𝜃, 

then, each player test statistic is given by,  



𝑇𝑛,𝜃
1 = 𝑚𝑎𝑥𝑡∈𝐼|𝑢𝑡

𝑛|. (14) 

The 𝑢𝑡
𝑛 plot is close to zero when there is no change in 𝛽𝑡. When there is a sudden change 

in 𝛽𝑡 's, the |𝑢𝑡
𝑛| plot shows a pattern going out from some specified boundaries with high 

probability (see Section 5.1). The mentioned boundaries are obtained using the 

asymptotic or finite sample distributions of test statistics (see Sections 2.3 and 5.1 part 

(a)).  

To illustrate that |𝑢𝑡
𝑛| takes its maximum at the actual change point, a simple 

example is given in the AMOC setting, as 𝑛 = 1000 and 𝑡∗ = 500, 𝑏1 = 2, 𝑏2 = 3, 𝜎𝜀 =

0.5 and 𝑥𝑡 's are the sorted sequence of  𝑛  independent and uniformly distributed variables 

on (0,1). Then, the resulting plot of |𝑢𝑡
𝑛| is shown in Figure 1. It is obvious that the 

maximum point is at the change point and crosses the boundary 0.25. This boundary is 

calculated with Monte Carlo simulations with 1000 repetitions, and the empirical 95% 

quantile is considered as the boundary. 

To apply this test procedure in the epidemic change model, it is necessary to find 

the first change and then apply the test procedure for observations after the first change 

to find the next change time point. An alternative method is to apply the two-way method 

based on the game theory approach which is described in Section 3.3.  

When the 𝒙𝑡 and 𝜷𝑡 are vectors (in bolded notations) of size 𝑝 ≥ 2, the regression 

equation is 𝑦𝑡 = 𝒙𝑡
′𝜷𝑡 + 𝜀𝑡 . The �̂�𝑡 is given by (∑ 𝒙𝑖

′𝒙𝑖
𝑡
𝑖=1 )−1∑ 𝒙𝑖

′𝒚𝑖
𝑡
𝑖=1 . Then, the test 

statistic is given by 𝑚𝑎𝑥𝑡∈𝐼(𝜷𝑡 − �̂�𝑡
∗)
′
𝛬−1(𝜷𝑡 − �̂�𝑡

∗), where 𝛬 = (∑ 𝒙𝑖
′𝒙𝑖

𝑡
𝑖=1 )−1 +

(∑ 𝒙𝑖
′𝒙𝑖

𝑛
𝑖=𝑡+1 )−1. It is easy to see that for the case of 𝑝 = 1, the above equation reduces 

to the 𝑇𝑛,𝜃
1  and in the current paper, this case is enough for the proposed analysis.  

Hereafter, the two-way FDI is constructed using test statistics. To this end, notice 

that, if each player wants to detect the change individually, independently, and they use 

𝑇𝑛,𝜃
1  in the offline discipline, then both estimate the change point as �̂�1 = �̂�2. However, if 



player 1 assumes that player 2 believes that the location of change is 𝑠, then the test 

statistic 𝑇𝑛,𝜃
1  is given as the maximum value of |𝑢min (𝑡,𝑠)

𝑛 | over 𝑡 ∈ 𝐼 given that 𝑠 is kept 

fixed, i.e., 𝑇𝑛,𝜃
1 = 𝑚𝑎𝑥𝑡∈𝐼|𝑢min(𝑡,𝑠)

𝑛 |. The best response of player 1 (player 2), when player 

2 (player 1) believes that the change is fixed at 𝑠 (𝑡), is given by 𝐵1(𝑠) = �̂�𝑠 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑡|𝑢min (𝑡,𝑠)
𝑛 | (or 𝐵2(𝑡) = �̂�𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠|𝑢min (𝑡,𝑠)

𝑛 |), where 𝐵1(𝑠) (𝐵2(𝑡)) is the 

best response of player 1 (player 2) when player 2 (player 1) believes that the change 

point is 𝑠 (𝑡). To illustrate that Nash equilibrium occurs at the actual change point, 

consider the time series plots of �̂�𝑠 and �̂�𝑡, as given in Figure 2, for a simple example as 

follows. 𝑛 = 100, 𝑡∗ = 20, 𝑏1 = 1, 𝑏2 = 5, 𝜎𝜀 = 0.1 and 𝑥𝑡 's come from 𝑥𝑡 = 𝛼𝑥𝑡−1 +

𝛾𝑢𝑡 + 𝑒𝑡, and 𝑢𝑡 = 𝐾𝑥𝑡, with 𝛼 = 0.1, 𝛾 = 0.5 and 𝐾 = 0.2. As it is obvious that a Nash 

equilibrium occurs at 𝑡 = 𝑠 = 20. As it is seen, 𝑠 = 𝑡 = 20 is the first 𝜏 at which 

𝐵1(𝐵2(𝜏)) = 𝜏 and 𝐵2(𝐵1(𝜏)) = 𝜏 occurs as well as where utilities (payoffs) are 

maximized. Thus, a stable Nash equilibrium occurs at 𝑡 = 𝑠 = 20 (Gibbons, 1992). It 

should be noted that this scheme will be also investigated carefully in Section 5.2 with 

payoff function 𝑢𝑚𝑖𝑛 0.5(𝑡+𝑠)
𝑛 . 

As follows, theoretical arguments of the simulated results shown in Figure 2 are 

given. Notice that the test statistic of the player 1 is given by, 

𝑇𝑛,𝜃
1 = 𝑚𝑎𝑥𝑡∈𝐼|𝑢min(𝑡,𝑠)

𝑛 | = max(𝑚𝑎𝑥𝑡<𝑠|𝑢t
𝑛|, |𝑢𝑠

𝑛|),               (15) 

where 𝑠 is the player 1’s belief about the player 2’s belief of change location. Then the 

change time point estimation is given by, 

�̂�𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡{max(𝑚𝑎𝑥𝑡<𝑠|𝑢t
𝑛|, |𝑢𝑠

𝑛|)}.                     (16) 

Also, the test statistic of the player 2 is, 

𝑇𝑛,𝜃
2 = max(𝑚𝑎𝑥𝑠<𝑡|𝑢s

𝑛|, |𝑢𝑡
𝑛|). (17) 



For both players the 𝑢min (𝑡,𝑠)
𝑛  is very close to its expectation (for similar arguments see 

(Bai, 1994)), and since its expectation is maximized at 𝑡∗ then 

{
min(�̂�𝑠, 𝑠) = 𝑡

∗,

min(�̂�𝑡 , 𝑡) = 𝑡
∗.

 (18) 

Thus, it is concluded that the Nash equilibrium is 𝑠 = 𝑡 = 𝑡∗ which shows that both 

players select the actual change point, correctly. A natural question is about the best 

combination of �̂�1, �̂�2 to find the ultimate estimation of �̂�. To answer this question, when 

both players use the criterion |𝑢0.5(𝑡+𝑠)
𝑛 |, again it is seen that  

{
�̂�𝑠 + 𝑠 = 2𝑡

∗,
�̂�𝑡 + 𝑡 = 2𝑡

∗.
 (19) 

A solution in this case is 𝑠 = 𝑡 = 𝑡∗. Again, both players select the actual change point.  

Here, an alternative formulation of the test statistic and Nash equilibrium are 

presented. Following (R. Habibi, et al., 2005; Kander and Zacks, 1966) the quasi-

Bayesian method test statistic is given by 

𝑇𝑛,𝜃
2 = ∫ 𝜋𝑠|𝑢[𝑛𝑠]

𝑛 |𝑑𝑠
1−𝜃

𝜃
,  (20) 

for some weighting function 𝜋𝑠. The above test statistic may be considered as a weighted 

average of 𝑢𝑡
𝑛. Indeed, the integral functional is used in 𝑇𝑛,𝜃

2  instead of maximum 

functional which used in 𝑇𝑛,𝜃
1 . The large values of the test statistic reject the null 

hypothesis 𝐻0 . Thus, the null hypothesis of 𝑇𝑛,𝜃
2  is needed to find the threshold 𝑐 such 

that 𝑇𝑛,𝜃
2 > 𝑐 rejects the null hypothesis 𝐻0 . This method for change point detection in a 

general class of distributions has been applied in (R. Habibi, et al., 2005). Again, using 

criterion 𝑢𝑚𝑖𝑛 (𝑡,𝑠)
𝑛  in 𝑇𝑛,𝜃

2 , it is seen that the test statistic of the player 1 is given by  

∫ 𝜋𝑡|𝑢[𝑛𝑡]
𝑛 |𝑑𝑡 +

𝑠

𝜃
|𝑢[𝑛𝑠]
𝑛 | ∫ 𝜋𝑡

1−𝜃

𝑠
𝑑𝑡,  (21) 

whereas the test statistic for the player 2 is 

∫ 𝜋𝑠|𝑢[𝑛𝑠]
𝑛 |𝑑𝑠 +

𝑡

𝜃
|𝑢[𝑛𝑡]
𝑛 | ∫ 𝜋𝑠

1−𝜃

𝑡
𝑑𝑠.  (22) 



If 𝑢[𝑛𝑡]
𝑛  and 𝑢[𝑛𝑠]

𝑛  are replaced by 𝑢𝑚𝑖𝑛 (𝑡,𝑠)
𝑛  in (21) and (22), via considering the best 

response functions of both players, which maximize (21) and (22), it is easy to see that 

again the Nash equilibrium occurs at 𝑡∗.  

2.3. Asymptotic Null Distributions 

To make statistical inference about the existence of the change, as well as to find 

the boundaries mentioned in the previous Section, the asymptotic (limiting) null 

distributions of 𝑇𝑛,𝜃
𝑖 , 𝑖 = 1,2 are needed. First, notice that under the null hypothesis 𝐻0 , 

𝛽𝑡 = 𝛽 for 𝑡 = 1,2, … , 𝑛. Thus, |�̂�𝑡 − �̂�𝑛| = |�̂�𝑡 − 𝛽 − (�̂�𝑛 − 𝛽)|. That is, the null 

distribution of  𝑇𝑛,𝜃
𝑖  doesn't depend on 𝛽. So, it is assumed that 𝛽 = 0. Also, notice that, 

based on the 𝑥𝑡 's being either deterministic or a stochastic sequence of numbers, the 

asymptotic null distributions differs. For example, in the 𝑥𝑡 deterministic case, assuming, 

for each 𝑢, then  

𝑛−1∑ 𝑥𝑖
2[𝑛𝑢]

𝑖=1 → 𝑔(𝑢),                (23) 

then Proposition 1 gives the null limiting distribution of 𝑇𝑛,𝜃
1 . Let 𝐻(𝑢) = 𝑊(𝑔(𝑢)) −

𝑔(𝑢)

𝑔(1)
𝑊(𝑔(1)) and 𝐺(𝑢) = {𝑔(𝑢)(1 − 𝑔(𝑢))}

−0.5
𝐻(𝑔(𝑢)), where 𝑊 is the standard 

Brownian motion on [0,1].  

Proposition 1. Under 𝐻0,  the limiting null distribution of 𝑇𝑛,𝜃
1  is given as follows, 

𝑛−
3

2𝜎−1𝑇𝑛,𝜃
1 →𝑑 𝑚𝑎𝑥𝑢∈[𝜃,1−𝜃]𝐺(𝑢).               (24) 

Notation →𝑑 stands for the convergence in the distribution.                                                     

Proof. Using the Donsker theorem, (see, Billingsley, 2013), it is seen that 

𝑛−1/2𝜎−1∑ 𝑥𝑖𝜀𝑖 ⇝𝑊(𝑔(𝑢))
[𝑛𝑢]
𝑖=1 . Here, the weak convergence ⇝ occurs on the space 

𝐷[0,1] on the Skorokhod topology. The 𝐷[0,1] is space of all functions that have limits 



to the left at each 𝑡 ∈ (0,1] and are right-continuous functions. The Skorokhod topology 

is an alternative version of uniform topology (Billingsley, 2013). Also, notice that, 

𝜎−1

𝑛√𝑛
|�̂�[𝑛𝑢] − �̂�𝑛| =

𝑠[𝑛𝑢]

𝑛
(
𝜎−1

√𝑛
| ∑ 𝑥𝑖𝜀𝑖 −

𝑠[𝑛𝑢]

𝑠𝑛
∑ 𝑥𝑖𝜀𝑖|)
𝑛
𝑖=1

[𝑛𝑢]
𝑖=1 ⇝ 𝑔(𝑢)|𝐻(𝑢)|. Hence, 

𝑛−
3

2𝜎−1𝑇𝑛,𝜃
1 →𝑑 𝑚𝑎𝑥𝑢∈[𝜃,1−𝜃]𝐺(𝑢). This completes the proof.      ■ 

Corollary 1. (a)-(c) are true.   

(a) If 𝑔(𝑢) = 𝑢, then process 𝐻(𝑢) is a standard Brownian bridge of 𝑊(𝑢) on [0,1]. 

(b) In case of (a) and under 𝐻0, assuming |
𝛼

1−𝛾𝐾
| < 1, then 𝑇𝑛,𝜃

1  converges in distribution 

to the maximum of the Bessel process 
𝑊(𝑢)−𝑢𝑊(1)

√𝑢(1−𝑢)
 (see (Bai, 1994)).  

(c) If 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛾𝑢𝑡 + 𝑒𝑡 , with the feedback control variable 𝑢𝑡 = 𝐾𝑥𝑡 , which is a 

frequently used state equation in control engineering, again the deterministic results are 

true. 

Proof. The proof of part (a) is straightforward and then omitted. For the part (b), notice 

that, 𝑥𝑡 =
𝛼

1−𝛾𝐾
𝑥𝑡−1 +

1

𝛼
𝑒𝑡, and this completes the proof part (b). The statistical 

properties of the Bessel process have been studied in (Revuz and Yor, 1999). The proof 

of part (c) is also straightforward. Here, using a Monte Carlo simulation, the quantiles of 

a Bessel process is simulated and consequently the boundaries mentioned in the previous 

section are derived.                                                                                             ■ 

The following proposition gives the limiting distribution of 𝑇𝑛,𝜃
1 , when condition 

|
𝛼

1−𝛾𝐾
| < 1 is violated which is necessary for the proposition 1. To this end, suppose that 

𝛼 = 1 − 𝛾𝐾 and 𝑊∗and 𝑊 are two independent standard Brownian motions. Let 

𝐺∗(𝑢) =
𝑋(𝑢)−

∆𝑢
∆1
𝑋(1)

√∆𝑢(1−∆𝑢)
 with 𝑋(𝑢) = ∫ 𝑊∗(𝑠)𝑑𝑊(𝑠)

𝑢

0
 and ∆𝑢=

∫ 𝑊∗2(𝑠)𝑑𝑠
𝑢
0

∫ 𝑊∗2(𝑠)𝑑𝑠
1
0

. 

Proposition 2. Under the null hypothesis 𝐻0, and if 𝛼 = 1 − 𝛾𝐾, then 



𝑛−
3

2𝜎−1𝑇𝑛,𝜃
1 →𝑑 𝑚𝑎𝑥𝑢∈[𝜃,1−𝜃]𝐺

∗(𝑢)/𝛼. (25) 

Proof. As 𝛼 = 1 − 𝛾𝐾, then sequence 𝑥𝑡
′𝑠 have unit root and they are random walk, 

indeed, 𝑥𝑖 = ∑
𝑒𝑗

𝛼

𝑖
𝑗=1 . Assuming 𝛽𝑖 = 𝛽 = 0, then �̂�[𝑛𝑢] =

∑ 𝑥𝑖𝜀𝑖
[𝑛𝑢]
𝑖=1

∑ 𝑥𝑖
2[𝑛𝑢]

𝑖=1

 which converges 

weakly (as a stochastic process) to 
1

𝛼

∫ 𝑊∗(𝑠)𝑑𝑊(𝑠)
𝑢
0

∫ 𝑊∗2(𝑠)𝑑𝑠
𝑢
0

. Thus, 

𝑛−
3

2𝜎−1𝑇𝑛,𝜃
1 →𝑑 𝑚𝑎𝑥𝑢∈[𝜃,1−𝜃]𝐺

∗(𝑢)/𝛼. This completes the proof.                                  ■ 

Proposition 3. Under 𝐻0, then  

𝑛−
3

2𝜎−1𝑇𝑛,𝜃
2 → ∫ 𝜋𝑠

|𝐵(𝑠)|

√𝑠(1−𝑠)

1−𝜃

𝜃
𝑑𝑠.          (26) 

Proof. The continuous mapping theorem (Billingsley, 2013) and convergence of 

𝑛−1/2𝜎−1∑ 𝑥𝑖𝜀𝑖
[𝑛𝑢]
𝑖=1  completes the proof.  The Monte Carlo method may be applied to 

find the quantiles of ∫ 𝜋𝑠
|𝐵(𝑠)|

√𝑠(1−𝑠)

1−𝜀

𝜀
𝑑𝑠.                                                                            ■ 

3. Two-Way FDI: Known States 

In the previous section, the two-way FDI was constructed via test statistics of 

change point analysis. In this Section, it is assumed that states 𝑥𝑡 's are known. This 

assumption leads to finding the pure and mixture Nash equilibriums, appropriately. Also, 

it makes a framework to study the differential games and more complicated structures 

such as epidemic faults. The results can be extended to the unknown state cases which 

are studied in Section 4. 

Assume that 𝑥𝑡 's are known. Without loss of generality, assume that 𝑥𝑡 = 1, for 

all 𝑡 ≥ 1.  To elaborate the reason, suppose that 𝑥𝑡 ≠ 1 for some 𝑡's. The states of the 

following scaled regression model are one 



𝑦𝑡

𝑥𝑡
= 𝛽𝑡 +

𝜀𝑡

𝑥𝑡
, 𝑡 = 1,2, … , 𝑛. (27) 

An interesting point is that the variance of variable 
𝜀𝑡

𝑥𝑡
 is 

𝜎2

𝑥𝑡
2 which causes a 

heteroskedasticity property in the regression model (27). The weighted mean of 
𝑦𝑡

𝑥𝑡
  (using 

𝑥𝑡
2

∑ 𝑥𝑖
2𝑛

𝑖=1

 as generalized least square weights) is exactly the �̂�𝑡 . This fact shows that 

inferences based on both models (27) and (1) are equivalent. Hence, originally, assume 

that 𝑥𝑡 = 1, for all 𝑡 ≥ 1, that is,  

𝑦𝑡 = 𝛽𝑡 + 𝜀𝑡 , 𝑡 = 1,… , 𝑛. (28) 

In model (28), 𝛽𝑡 is the mean of 𝑦𝑡. Therefore, the cumulative sum (CUMSUM) 

approach can be applied for FDI. Using this new approach, as follows, the two-way pure 

and mixed Nash equilibriums are derived in the AMOC case. The differential games are 

studied and two-way FDI is studied for epidemic hypothesis.  

3.1. Pure Equilibrium 

Here, for the AMOC case, the pure Nash equilibrium is studied in three different 

perspectives (a)-(c), as follows. First, notice that the 𝑖-th player (𝑖 = 1,2),  estimates the 

change 𝜏𝑖  ∈ (0,1) (instead of �̂�𝑖 = 1,2, … , 𝑛 − 1) by optimizing the objective (utility) 

functions 𝑢𝑖 , 𝑖 = 1,2 where,   

𝑢1(𝜏1) =
1

𝑛
∑ (𝑦𝑖 − �̅�),
[𝑛𝜏1]
𝑖=1 𝑢2(𝜏2) =

1

𝑛
∑ (𝑦𝑛−𝑖+1 − �̅�).
𝑛−[𝑛𝜏2]
𝑖=1                 (29) 

 (a) Suppose that player 1 estimates 𝑏1 by  �̅�[𝑛𝜏1] =
1

[𝑛𝜏1]
∑ 𝑦𝑖
[𝑛𝜏1]
𝑖=1  and player 2 

estimates 𝑏2 by �̅�[𝑛𝜏2]
∗ =

1

𝑛−[𝑛𝜏1]
∑ 𝑦𝑖
𝑛−[𝑛𝜏2]
𝑖=1 . Without loss of generality, assume that 𝜑 ≥

0. To test 𝐻0: 𝑏1 = 𝑏2, the test statistic is �̅�[𝑛𝜏1] − �̅�[𝑛𝜏2]
∗ . Similar to arguments in Section 

2.1, it is seen that to reduce the biases of estimations of �̅�[𝑛𝜏1] and �̅�[𝑛𝜏2]
∗  as well as the 



bias of the test statistic �̅�[𝑛𝜏1] − �̅�[𝑛𝜏2]
∗ , it is enough to let 𝜏1 = 𝜏2 = 𝜏

∗.  Thus, the Nash 

equilibrium occurs at the actual change point 𝜏∗.  

 (b) Similar to Section 2.2, suppose that the ultimate estimation of the change is 

𝜏 = 𝑚𝑖𝑛(𝜏1, 𝜏2). Then, the best response of the 𝑖-th (𝑖 = 1,2)  player is given by 

{
𝐵1(τ2) = 𝑎𝑟𝑔𝑚𝑎𝑥0≤𝜏1≤1|𝑢1(𝜏)|,

𝐵2(τ1) = 𝑎𝑟𝑔𝑚𝑎𝑥0≤𝜏2≤1|𝑢2(𝜏)|.
 (30) 

One can see that 𝑢1 and 𝑢2 are very close to their means (Bai, 1994). Therefore,  

𝑢1(𝜏) ≈ 𝐸(𝑢1(𝜏)) = {
−𝜑(1 − 𝜏∗)𝜏 𝜏 ≤ 𝜏∗,
−𝜑𝜏∗(1 − 𝜏) 𝜏 > 𝜏∗,

          (31) 

and 𝑢2(𝜏) = −𝑢1(𝜏). Also, notice that  

𝑢1(𝜏) = 𝑢1(𝑚𝑖𝑛(𝜏1, 𝜏2)) = {
𝑢1(𝜏1) 𝜏1 ≤ 𝜏2,

𝑢1(𝜏2) 𝜏1 > 𝜏2.
          (32) 

Here, 𝐵1(𝜏2) and 𝐵2(𝜏1) are found as follows. If 𝜏1 ≤ 𝜏2 and 𝜏2 ≤ 𝜏
∗, then 𝐵1(𝜏2) = 𝜏2. 

If 𝜏1 ≤ 𝜏2 and 𝜏2 > 𝜏
∗, then 𝐵1(𝜏2) = 𝜏

∗. Therefore, when 𝜏1 ≤ 𝜏2, then 𝐵1(𝜏2) =

𝑚𝑖𝑛(𝜏2, 𝜏
∗). If τ1 > τ2, then 𝐵1(𝜏2) = [𝜏2, 1]. In the current case, if 𝜏2 ≤ 𝜏

∗, again 

𝐵1(𝜏2) = 𝑚𝑖𝑛(𝜏2, 𝜏
∗). Hence, consider the case of 𝜏1 > 𝜏2 and 𝜏2 > 𝜏

∗, again, it is easy 

to see that 𝑢1(𝜏2) < 𝑢1(𝜏
∗), thus, for all cases, 

𝐵1(𝜏2) = 𝑚𝑖𝑛(𝜏2, 𝜏
∗). (33) 

Also, it can be seen that 𝐵1(𝜏) = 𝐵2(𝜏). Therefore, a Nash equilibrium occurs at 𝜏∗. 

(c) Again, assume that the ultimate estimation of the change is the minimum of 

change estimations of player 1 and player 2. Also, a version of rationality (additional to 

the regular rationality assumption the usually exists in game theoretic problems) is 

assumed for both players. Suppose that if players 1 and 2 understand that player 1’s 

estimate of change is closer to the actual change than the change estimation of player 2, 

then they use 𝑢2, instead of 𝑢1, and vice versa. Then, following (Petkov, 2013), it is seen 

that this game doesn't have pure equilibrium. 



The following proposition summarizes the above discussion. 

Proposition 4. The actual change point 𝜏∗ is the pure Nash equilibrium of the two-way 

game under perspectives (a) and (b). Under (c), the pure Nash equilibrium does not exist. 

3.2. Mixed Equilibrium 

Consider the part (c) of Section 3.1. Since, the pure Nash equilibrium doesn't exist, 

it is interested to find the mixed Nash equilibrium. To this end, assume that both players 

randomize according to a distribution function 𝐹. Let the ultimate change point be 

𝑚𝑖𝑛(𝜏1, 𝜏2), where 𝜏1, 𝜏2 are player 1 and player 2 estimates of change point 𝑡∗.  Similar 

to part (c) of the previous Section, players 1 and 2 are rational. Then, following (Petkov, 

2013), the expected payoff of player 1 (𝑝𝑎𝑦1) is  

𝑝𝑎𝑦1 = ∫ 𝑢(𝜏)𝑑𝐹(𝜏2) =
1

0
∫ 𝑢(
𝜏1
0

𝜏2)𝑑𝐹(𝜏2) + ∫ 𝑢(
1

𝜏1
𝜏1)𝑑𝐹(𝜏2) = ∫ 𝑢2(

𝜏1
0

𝜏2)𝑑𝐹(𝜏2) +

∫ 𝑢1(
1

𝜏1
𝜏1)𝑑𝐹(𝜏2) = ∫ 𝑢2(

𝜏1
0

𝜏2)𝑑𝐹(𝜏2) + (1 − 𝐹(𝜏1))𝑢1(𝜏1).                 (34) 

The mixed strategy is to choose 𝐹 such that 
𝜕𝑝𝑎𝑦1

𝜕𝜏1
= 0, see (Gibbons, 1992). In 

this way, player 1 is indifferent for any 𝜏1 ∈ [0,1]. By differentiating with respect to 𝜏1 

and using the Leibnitz rule, see (Billingsley, 2013), it is seen that, 

−𝐹′(𝜏1)

1−𝐹(𝜏1)
=

𝑢1
′ (𝜏1)

𝑢2(𝜏1)−𝑢1(𝜏1)
∶= ℎ(𝜏1),   𝜏 ∈ [0,1].                  (35) 

One can see that,  

ℎ(𝜏1) = {
0.5𝜏1

−1, 0 < 𝜏1 ≤ 𝜏
∗,

0.5(1 − 𝜏1)
−1, 𝜏∗ ≤ 𝜏1 < 1.

                         (36) 

Thus, the distribution function is derived as  

𝐹(𝜏1) = 1 − 𝑒
−𝐻(𝜏1) and 𝐻(𝜏1) = ∫ ℎ(𝑠)𝑑𝑠.

𝜏1
0

               (37) 



To make sure that Equation (37) is a proper integral, lower bounds 0 and 1 are 

replaced by 𝜃 and (1 − 𝜃), respectively, for some positive small number 𝜃 > 0. To 

numerically show that 𝐹(𝜏1) is well defined, let 𝜏∗ = 0.25, and 𝜃 = 0.01. Then,  

ℎ(𝜏1) = {
0.5𝜏1

−1, 0.01 < 𝜏1 ≤ 0.25,

0.5(1 − 𝜏1)
−1, 0.25 ≤ 𝜏1 < 0.99.

                  (38) 

Then, the survive function 1 − 𝐹(𝜏) is given by, 

1 − 𝐹(𝜏) = {
0.1𝜏−0.5, 0.01 < 𝜏 ≤ 0.25,

0.2309√1 − 𝜏, 0.25 < 𝜏 ≤ 0.99.
                  (39) 

The density of mixture cumulative distribution function (Mix-CDF) 𝐹(𝜏) is given by,  

𝑓(𝜏) = {
0.05𝜏−1.5, 0.01 < 𝜏 ≤ 0.25,

0.2309(1 − 𝜏)−0.5, 0.25 < 𝜏 ≤ 0.99.
                  (40) 

𝐹(𝜏) and related density (Mix-Dens), i.e. 𝑓(𝜏), are illustrated in Figure 3. 

 Alternatively, suppose that the ultimate estimation of the change is given by the mean of 

𝜏1 and 𝜏2. Hence, the expected payoff in this case is given by, 

𝑝𝑎𝑦1
∗ = ∫ 𝑢(

𝜏1+𝜏2

2

1

0
)𝑑𝐹(𝜏2) = ∫ 𝑢2(

𝜏1+𝜏2

2

𝜏1
0

)𝑑𝐹(𝜏2) + ∫ 𝑢1(
𝜏1+𝜏2

2

1

𝜏1
)𝑑𝐹(𝜏2) =

∫ 𝑢2(
𝜏1+𝜏2

2

𝜏1
0

)𝑑𝐹(𝜏2) + ∫ 𝑢1(
𝜏1+𝜏2

2

1

𝜏1
)𝑑𝐹(𝜏2).                  (41) 

Let  
𝜕𝑝𝑎𝑦1

∗

𝜕𝜏1
= 0. Then, it is seen that  

𝐹′(𝜏1){𝑢2(𝜏1) − 𝑢1(𝜏1)} + 𝐼 + 𝐼𝐼 = 0.                  (42) 

where, 𝐼 =
1

2
∫ 𝑢2

′ (
𝜏1+𝜏2

2

𝜏1
0

)𝑑𝐹(𝜏2) = ∫ 𝑢2
′ (𝑦

𝜏1
𝜏1
2

)𝐹′(2𝑦 − 𝜏1)𝑑𝑦, 𝐼𝐼 =

1

2
∫ 𝑢1

′ (
𝜏1+𝜏2

2

1

𝜏1
)𝑑𝐹(𝜏2) = ∫ 𝑢1

′ (𝑦
1+𝜏1
2

𝜏1
)𝐹′(2𝑦 − 𝜏1)𝑑𝑦, and  y =

τ1+τ2

2
. It is easy to see that  

                   𝐼 =

{
 
 

 
 

𝜑(1−𝜏∗)𝐹(𝜏1)

2
, 𝜏1 ≤ 𝜏

∗,

𝜑𝐹(2𝜏∗−𝜏1)

2
−
𝜑𝜏∗𝐹(𝜏1)

2
, 𝜏∗ < 𝜏1 ≤ 2𝜏

∗

−𝜑𝜏∗𝐹(𝜏1)

2
, 𝜏1 > 2𝜏∗,

, 



                 𝐼𝐼 =

{
 
 

 
 
𝜑𝜏∗

2
−

−𝜑(1−𝜏∗)(1−𝐹(𝜏1))

2
, 𝜏1 ≤ 2𝜏∗ − 1,

𝜑𝐹(2𝜏∗−𝜏1)

2
+
𝜑(1−𝜏∗)𝐹(𝜏1)

2
, 2𝜏∗ − 1 < 𝜏1 ≤ 𝜏

∗,

𝜑𝜏∗(1−𝐹(𝜏1))

2
, 𝜏1 > 𝜏∗.

   (43) 

Again, a differential equation is derived for 𝐹. Solving this equation, 𝐹 is derived. 

Proposition 5. The mixed Nash equilibrium distribution function 𝐹 is given by 

(a) When the ultimate change point is 𝑚𝑖𝑛(𝜏1, 𝜏2), then  

𝐹(𝜏1) = 1 − 𝑒
−𝐻(𝜏1), 𝐻(𝜏1) = ∫ ℎ(𝑠)𝑑𝑠

𝜏1
0

,        (44) 

where ℎ(𝜏1) = {
0.5𝜏1

−1, 0 < 𝜏1 ≤ 𝜏∗,

0.5(1 − 𝜏1)
−1, 𝜏∗ ≤ 𝜏1 < 1.

 

(b) When the ultimate change point is 0.5(𝜏1 + 𝜏2), then F satisfies (42). 

3.3. Differential Game 

Under AMOC hypothesis, a differential game (Bressan, 2010) is proposed based 

on 𝑇𝑛,𝜃
2 . It is solved using the Pontryagin maximum principle and its Nash equilibrium is 

derived. Consider 𝑇𝑛,𝜃
2  and let the magnitude of change be positive, i.e., 𝜑 > 0. Define 

the process 𝑇𝑠 as follows  

𝑇𝑠 = ∫ 𝜋𝑥𝑢[𝑛𝑥]
𝑛 𝑑𝑥,

𝑠

0
             (45) 

where 𝑢𝑡
𝑛 = √𝜆𝑡(1 − 𝜆𝑡)(�̂�𝑡 − �̂�𝑡

∗), where �̂�𝑡 and �̂�𝑡
∗ are computed by players 1 and 2, 

respectively. The Mayer type differential game is as (Bressan, 2010), 

{
𝑚𝑖𝑛𝐽 = 𝑇1 ,

𝑇𝑠
′ = 𝜋𝑠𝑢[𝑛𝑠].

𝑛               (46) 

where 𝑇𝑠
′ is derivative of 𝑇𝑠 with respect to 𝑠. The Hamiltonian function 𝐻𝑠 using co-state 

variable 𝑝𝑠 is given by,  

𝐻 = 𝐻𝑠 = −𝑝𝑠𝜋𝑠𝑢[𝑛𝑠]
𝑛 .            (47) 



It is seen that 𝜕𝐻/𝜕𝑇𝑠 = 𝑝𝑠
′ = 0 which shows that 𝑝𝑠 is a constant. Since 𝜕𝑇1/𝜕𝑇1 =

𝑝1 = 1, then 𝑝𝑠 = 1 for all 𝑠. Also, using Bang-Bang control (Isermann, 2006), it is seen 

that, 

𝜋𝑠 = {
1 if 𝑢[𝑛𝑠]

𝑛 > 0,

0 otherwise,
= {

1 if �̂�[𝑛𝑠] > �̂�[𝑛𝑠]
∗ ,

0 otherwise.
            (48) 

An equivalent form for 𝜋𝑠 is given by,  

𝜋𝑠 = {
1 𝑖𝑓 �̂�[𝑛𝑠] − �̂�𝑛 > 𝑐,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
            (49) 

where 𝑐 denotes a constant number. To find 𝑐, under 𝐻0, let 𝑃(�̂�[𝑛𝑠] − �̂�𝑛 > 𝑐) = 𝛼, for 

some predetermined significant level 1 −  𝛼. As 𝑛 → ∞, using asymptotic distributions 

in Section 2.3, with 𝑔(𝑢) = 𝑢, then �̂�[𝑛𝑠] − �̂�𝑛 ⇝
𝑊(𝑠)−𝑠𝑊(1)

𝑠
~𝑁(0,

1−𝑠

𝑠
). Thus, 𝑐 =

𝑧𝛼√
1−𝑠

𝑠
, where 𝑧𝛼 is (1 − 𝛼)-th quantile of standard normal distribution. An alternative 

of 𝑐 is zero, since under 𝐻0, then 𝐸(�̂�[𝑛𝑠] − �̂�𝑛) = 0. Let 𝑡∗ = inf {𝑡, �̂�𝑡 − �̂�𝑡
∗ > 0}. Since 

�̂�𝑡 − �̂�𝑡
∗ is too close to its expectation (Bai, 1994), then 𝑡∗ = inf {𝑡, 𝐸(�̂�𝑡 − �̂�𝑡

∗) > 0}. 

First assume that 𝑡 ≤ 𝑡∗. Then,  

𝐸(�̂�𝑡 − �̂�𝑡
∗) =

∑ 𝑥𝑖
2𝑛

𝑖=𝑡∗+1

∑ 𝑥𝑖
2𝑛

𝑖=𝑡+1

𝜑 > 0,            (50) 

which is maximized at 𝑡∗. This fact leads to 𝑡∗ = 𝑡
∗. Indeed, at 𝑡 = 𝑡∗ no player is willing 

to change its strategy (to choose another point as a change point). This shows that the 

Nash equilibrium happens at 𝑡 = 𝑡∗. The same result is also obtained when 𝑡 ≥ 𝑡∗ is 

considered. 

Proposition 6. Considering the process 𝑇𝑠 as (45), the differential game solution is given 

by (49). 

Now to illustrate the differential game approach, two simple examples for 



uniformly distributed random states and first order state feedback system are studied.  

(a) For 𝑛 = 1000, 𝑡∗ = 200, 𝑏1 = 1, 𝑏2 = 5, 𝜎𝜀 = 0.1 and 𝑥𝑡 's are the sorted sequence 

of  𝑛  independent and uniformly distributed variables on (0,1), the time series plot of 

�̂�[𝑛𝑠] − �̂�𝑛  is shown in Figure 4.  

(b) Let 𝑛 = 1000, 𝑡∗ = 200, 𝑏1 = 1, 𝑏2 = 5, 𝜎𝜀 = 0.1 and 𝑥𝑡 's come from correlated 

states 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛾𝑢𝑡 + 𝑒𝑡, and 𝑢𝑡 = 𝐾𝑥𝑡, with 𝛼 = 0.1, 𝛾 = 0.5 and 𝐾 = 0.2, then, 

the time series plot of �̂�[𝑛𝑠] − �̂�𝑛  is shown in Figure 5.  

In the unknown states cases, 𝑥𝑡 's are estimated by the Kalman filter and, 

accordingly, the differential game is presented in Section 4.2.  

3.4. Epidemic Game 

The epidemic change point is a special case of multiple change point model where 

𝛽𝑡 = 𝑏𝑖 for 𝑡𝑖
∗ + 1 ≤ 𝑡 ≤ 𝑡𝑖+1

∗  with 𝑖 = 0,… , 𝑅 − 1, 𝑡0
∗ = 0, where 𝑅 denotes the number 

of change points. In the epidemic case, 𝑅 is kept fixed at 2. The regular way to detect 

change points 𝑡𝑖
∗, 𝑖 = 1,2, … , 𝑅 − 1, is first to estimate 𝑅 and then estimating 𝑡𝑅−1

∗  and to 

move backward to 𝑡1
∗. Here, the two-way game theoretic solution to the epidemic change 

problem is proposed. Consider (1). Since, 𝛽𝑡 plays the role of the mean of 𝑦𝑡, to detect 

two change points, two CUMSUM partial sum processes 𝑢𝑛
1(𝑦, 𝜏1, 𝜏2) and 𝑢𝑛

2(𝑦, 𝜏1, 𝜏2) 

are as follows  

{
𝑢𝑛
1(𝑦, 𝜏1, 𝜏2) =

1

𝑛
∑ (𝑦𝑖 − �̅�[𝑛𝜏2])
[𝑛𝜏1]
𝑖=1 ,

𝑢𝑛
2(𝑦, 𝜏1, 𝜏2) =

1

𝑛
∑ (𝑦𝑛−𝑖+1 − �̅�[𝑛𝜏1]

∗ ),
[𝑛𝜏2]
𝑖=1

               (51) 

for 0 < 𝜏1 ≤ 𝜏2 < 1. Here, �̅�[𝑛𝜏1]
∗  is the mean of 𝑦𝑛−𝑖+1, 𝑖 = 1,2,… , [𝑛𝜏1]. While 

detection of 𝜏1, given that 𝜏2 is known, the stochastic process |𝑢𝑛
1(𝑦, 𝜏1, 𝜏2)| is maximized 

by player 1 and for detecting of 𝜏2, given 𝜏1, the process |𝑢𝑛
2(𝑦, 𝜏1, 𝜏2)| is maximized by 



player 2. This problem defines a stochastic dynamic game for two players with payoff 

functions |𝑢𝑛
𝑖 (𝑦, 𝜏1, 𝜏2)|, 𝑖 = 1,2, respectively.  

As follows, the Nash equilibrium of the two-way game is found. First notice that 

𝑢𝑛
𝑖 (𝑦, 𝜏1, 𝜏2) behaves such that its mean 𝜇𝑛

𝑖 (𝜏1, 𝜏2) ≈ 𝐸(𝑢𝑛
𝑖 (𝑦, 𝜏1, 𝜏2)). To see this, notice 

that, 

𝑢𝑛
𝑖 (𝑦, 𝜏1, 𝜏2) = 𝜇𝑛

𝑖 (𝜏1, 𝜏2) + 𝑢𝑛
𝑖 (𝜀, 𝜏1, 𝜏2), 𝑖 = 1,2.               (52) 

Then, as 𝑛 → ∞, using the Donsker theorem (Billingsley, 2013), it is seen that,  

{
𝑛1/2𝑢𝑛

1(𝜀, 𝜏1, 𝜏2) ⇝ 𝑊(𝜏1) −
𝜏1

𝜏2
𝑊(𝜏2),

𝑛1/2𝑢𝑛
2(𝜀, 𝜏1, 𝜏2) ⇝ 𝑊∗(𝜏2) −

𝜏2

1−𝜏1
𝑊∗(𝜏1).

               (53) 

Here, notation 𝑊(𝑡) stands for standard Brownian motion on [0,1] and 𝑊∗(𝑡) = 𝑊(1) −

𝑊(𝑡). Also, notice that, 

{
𝑚𝑎𝑥𝜃≤𝜏1≤𝜏2≤1−𝜃 |𝑊(𝜏1) −

𝜏1

𝜏2
𝑊(𝜏2)| = 𝑂𝑝(1),

𝑚𝑎𝑥𝜃≤𝜏1≤𝜏2≤1−𝜃 |𝑊
∗(𝜏2) −

𝜏2

1−𝜏1
𝑊∗(𝜏1)| = 𝑂𝑝(1).

               (54) 

Thus, 𝑢𝑛
𝑖 (𝑦, 𝜏1, 𝜏2), 𝑖 = 1,2 behaves similar to its mean, since 

𝑚𝑎𝑥𝜃≤𝜏1≤𝜏2≤1−𝜃|𝑢𝑛
𝑖 (𝑦, 𝜏1, 𝜏2) − 𝜇𝑛

𝑖 (𝜏1, 𝜏2)| = 𝑂𝑝 (𝑛
−
1

2) , 𝑖 = 1,2.               (55) 

Hereafter, the Nash equilibriums are sought. One can see that 𝜇1(𝜏1, 𝜏2) = 0 if  𝜏2 ≤ 𝜏1
∗. 

When, 𝜏1
∗ ≤ 𝜏2 ≤ 𝜏2

∗, then, 

𝜇1(𝜏1, 𝜏2) = {
−𝜑𝜏1(1 −

𝜏1
∗

𝜏2
) 𝑖𝑓 𝜏1 ≤ 𝜏1

∗,

−𝜑𝑡1
∗(1 −

𝜏1

𝜏2
) 𝑖𝑓 𝜏1 > 𝜏1

∗.
               (56) 

When 𝑡2
∗ ≤ 𝜏2 ≤ 1, then,  

𝜇1(𝜏1, 𝜏2) =

{
 
 

 
 

−𝜑

−𝜑
𝜏1

𝜏2
(𝜏2
∗ − 𝜏1

∗) 𝑖𝑓 𝜏1 ≤ 𝜏1
∗,

{𝜏1
∗ (1 −

𝜏1

𝜏2
) − 𝜏1 (1 −

𝜏2
∗

𝜏2
)} 𝑖𝑓 𝜏1

∗ ≤ 𝜏1 ≤ 𝜏2
∗

𝜑 (1 −
𝜏1

𝜏2
) (𝜏2

∗ − 𝜏1
∗) 𝑒𝑙𝑠𝑒 𝜏1 > 𝜏2

∗.

,               (57) 



By changing the 𝜏1 to 𝜏2 and 𝑡1
∗ to 𝑡2

∗, the mean function 𝜇2(𝜏1, 𝜏2) is derived. The 

best response of player 1 when the player 2 considers the change as 𝜏2 is given by,  

𝐵1(𝜏2) = {

[𝜃, 𝜏2] 𝜃 ≤ 𝜏2 ≤ 𝜏1
∗,

𝜏1
∗  𝜏1

∗ ≤ 𝜏2 ≤ 𝜏2
∗,

𝜏1
∗ 𝜏2

∗ ≤ 𝜏2 ≤ 1 − 𝜃.
             (58) 

If it is assumed that 𝜇1(𝜏1, 𝜏2) ≠ 0, then 𝐵1(𝜏2) = 𝜏1
∗. Similarly, 𝐵2(𝜏1) = 𝜏2

∗. 

This fact shows that the Nash equilibrium happens at (𝜏1
∗, 𝜏2

∗).  The following proposition 

summarizes the above discussion.  

Proposition 7. The Nash equilibriums of two-way FDI game occurs at the actual change 

points (𝜏1
∗, 𝜏2

∗).   

4. Two-Way FDI: Unknown States 

The unknown states case as an inevitable practical issue (Isermann, 2006) is 

considered here. Indeed, in Sections 2 and 3, the states are needed to be known. So, in 

this section, previous results and approaches are modified to be applicable for unknown 

state situations. LMI and Kalman filter methods are utilized to tackle this problem. 

4.1. LMI Application 

Here, without loss of generality, assume that the magnitude of change is negative, 

i.e., 𝜑 < 0. According to the results of Section 2, the null hypothesis 𝐻0 is rejected 

(against AMOC alternative hypothesis 𝐻1) for large value of test statistic 𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡), 

where  

𝐽(𝑥, 𝑡) = 𝜆𝑡
0.5(1 − 𝜆𝑡)

−0.5(�̂�𝑡 − �̂�𝑛),            (59) 

where 𝜆𝑡 =
𝑠𝑡

𝑠𝑛
, 𝑠𝑡 = ∑ 𝑥𝑖

2𝑡
𝑖=1  for 𝑡 = 1,2, … , 𝑛, and 𝑥 = {𝑥𝑡 , 𝑡 ≥ 1}, see Section 2. Values 

of 𝐽(𝑥, 𝑡)′𝑠 are attainable if the 𝑥𝑡 's are known. This approach is referred to as the player 



test statistic in Section 2. For the unknown states cases, following (Chung and Speyer, 

1998) and using a conservative approach, the null hypothesis 𝐻0  is rejected if, 

𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡) ≥ 𝑑,            (60) 

for some thresholds 𝑑′𝑠. These 𝑑′𝑠 are computed using the null distribution of 

𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡), such that  

𝑃𝐻0(𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡) ≥ 𝑑) = 𝛼,            (61) 

for some desired significant level 1 − 𝛼.  Following Section 2, when the above-mentioned 

method is repeated for two players 1 and 2, a two-way FDI is made. To make inference, 

the asymptotic distribution of 𝑚𝑖𝑛𝑥𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡) is needed. However, an alternative 

approach is the use of the LMI technique. 𝐻0 is rejected if for all 𝑥's 

𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡) ≥ 𝑑.           (62) 

Hence, 𝐻0 is retained (not rejected yet) if 𝑑 −𝑚𝑎𝑥𝑡𝐽(𝑥, 𝑡) ≤ 0, for some 𝑥's. This 

condition defines [𝑛(1 − 𝜃)] − [𝑛𝜃] numbers of LMI's for each 𝑡.  If the above inequality 

is solved by LMI and some 𝑥's are found, then 𝐻0 is not rejected. However, there is no 

guarantee that the 𝑥's found by LMI are the actual 𝑥's. To overcome this difficulty, using 

the Kalman filter, the actual 𝑥's are estimated and compared with the LMI 𝑥's by some 

criteria like mean square error and mean absolute percentage error. If these two series of 

𝑥's are close, then it is concluded that there is a change at the actual 𝑥's. 

To simplify the LMI problem, notice that the maximum of 𝜆𝑡
0.5(1 − 𝜆𝑡)

−0.5 is 

√𝜗/(1 − 𝜗), for some 𝜗 where  0 < 𝜆𝑡 < 𝜗, then the 𝐻0 is retained if 

𝑑′ −𝑚𝑎𝑥𝑡(�̂�𝑡 − �̂�𝑛) ≤ 0,          (63) 

where 𝑑′ = √(1 − 𝜗)/𝜗𝑑. This is an LMI solution. Therefore, the LMI is applied to find 



𝑥's.  

Hereafter, a different formulation of LMI is presented. Suppose that it is desired 

to test if there is a change at a specified point 𝑡. The null hypothesis 𝐻0  is rejected if 

𝐽(𝑥, 𝑡) > 𝑐𝑡, for some threshold 𝑐𝑡 's. One can see that it is equivalent to say that 

(∑ 𝑥𝑖𝑦𝑖
𝑡
𝑖=1 )(∑ 𝑥𝑖

2𝑛
𝑖=1 ) − (∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 )(∑ 𝑥𝑖

2𝑡
𝑖=1 ) > 𝑐𝑡𝑠𝑛

2√𝜆𝑡(1 − 𝜆𝑡).          (64) 

An alternative format of (64) is as, 

(∑ 𝑥𝑖
2 𝑦𝑖

𝑥𝑖

𝑡
𝑖=1 ) (∑ 𝑥𝑖

2𝑛
𝑖=1 ) − (∑ 𝑥𝑖

2 𝑦𝑖

𝑥𝑖

𝑛
𝑖=1 ) (∑ 𝑥𝑖

2𝑡
𝑖=1 ) > 𝑞𝑡 ,          (65) 

where 𝑞𝑡 = 𝑐𝑡𝑠𝑛
2√𝜆𝑡(1 − 𝜆𝑡) ≤ 0.5𝑐𝑡𝑠𝑛

2. Assume that 

𝐹𝑖 =

{
 
 

 
 [

𝑦𝑖

𝑥𝑖

𝑦𝑖

𝑥𝑖

1 1
] 𝑖 = 1,… , 𝑡

[
0

𝑦𝑖

𝑥𝑖

0 1
]  𝑖 = 𝑡 + 1,… , 𝑛

.          (66) 

Then, inequality (∑ 𝑥𝑖
2 𝑦𝑖

𝑥𝑖

𝑡
𝑖=1 ) (∑ 𝑥𝑖

2𝑛
𝑖=1 ) − (∑ 𝑥𝑖

2 𝑦𝑖

𝑥𝑖

𝑛
𝑖=1 ) (∑ 𝑥𝑖

2𝑡
𝑖=1 ) > 0.5𝑐𝑡𝑠𝑛

2 can be 

represented by [
∑ 𝑥𝑖

2𝐹𝑖
𝑛
𝑖=1 0.5𝑐𝑡𝑠𝑛

2

𝐼 𝐼
] < 0 which defines a LMI problem. Here, unknown 

𝑥𝑖 's  of 𝐹𝑖 are estimated by Kalman filtering and 𝐼 is the identity matrix.  

4.2. Kalman Filter 

Here, via elaborating an example, the application of the Kalman filter to estimate 

the unknown states is described. Then, the differential game of Section 3.3 is applied for 

the unknown states case. It is seen that the differential game approach by using Kalman 

estimated states works well. A similar approach under the Bayesian setting for sensor FDI 

has been studied in (H. Habibi, Howard, et al., 2017).  



Consider a servo mechanism, whose transfer function 𝐺(𝑠) is as, 

𝐺(𝑠) =
1

𝑠(𝑠+1)(𝑠+2)
.            (67) 

The reference input 𝑟 is a unit step. The desired closed loop poles are chosen to 

be at 𝑠 = −2 ± 𝑗2√3 and 𝑠 = −10.  The state feedback controller is utilized to place the 

poles as desired values. The state space representation of this system is  

�̇�𝑡 = 𝑨𝒙𝒕 +  𝒃𝑢𝑡, 

 𝑦𝑡 = 𝒄𝒕𝒙𝒕 + 𝜀𝑡 , 
(68) 

where 𝒙𝒕 = [𝑥1𝑡  𝑥2𝑡 𝑥3𝑡]
𝑇, 𝒄𝒕 = [𝛽𝑡 0 0], at which 

𝛽𝑡 = {
1    𝑡 ≤ 𝑡∗,
5    𝑡 > 𝑡∗,

            (69) 

where 𝑡∗ = 200. The control term is given by 𝑢𝑡 = −𝒌𝒙𝒕, 𝒌 = [160 54 11]. 

Coefficients of the state equation are 𝑨 = [
0
0
0

1
0
−2

0
1
−3
], 𝒃 = [0 0 1]𝑇. Vectors and matrices 

are represented by bolded small and capital letters, respectively. Here, 𝜀𝑡 's are 

independent random variables with common normal distribution 𝑁(0,0.25).  

The Kalman filter, which is used to estimate the states, is designed as 

�̇̂�𝑡 = 𝐴�̂�𝑡 + 𝒃𝒖𝒕 + 𝒌𝑓(𝑦𝑡 − �̂�𝑡),          (70) 

where �̂�, �̂�𝑡 = �̂�1t and 𝒌𝑓 are the Kalman estimates of states, output and gain, 

respectively.  

The vector 𝒄𝑡 of the Kalman filter is [1 0 0], considering a latent fault in the 

sensor. On the other hand, to hold 𝑥1t = �̂�1t, as the goal of the Kalman filter, the latent 

coefficient 𝛽𝑡 should be applied in vector 𝒄𝑡 of the Kalman filter. Accordingly, the 

Kalman filter (70) is modified as, 

�̇̂�𝑡 = 𝐴�̂�𝑡 + 𝒃𝒖𝒕 + 𝒌𝑓(𝑦𝑡 − 𝛽𝑡�̂�1t).         (71) 



So, by selecting the appropriate estimator gain, the estimated state via the Kalman 

filter, i.e. �̂�1𝑡, will be close optimally to the term of  𝑥1𝑡/𝛽𝑡. Consequently, it can be 

concluded that the estimated state is not similar to the state 𝑥1, but rather to the 𝑥1𝑡/𝛽𝑡 

term, in which the coefficient 𝛽𝑡 is present (H. Habibi, Howard, et al., 2017).  

The differential game of Section 3 utilises the plot of �̂�[𝑛𝑙] − �̂�𝑛, 0 < 𝑙 < 1, for 

FDI purposes. This plot for dynamic system (68) with a sensor fault (69), using Kalman 

estimations of states instead of actual unknown states, is shown in Figure 6. It is seen that 

the differential game method is also applicable in the unknown states case. It should be 

noted that the data before the change point has negative effect on rate of convergence. 

Hence, a delay is observed. This problem can be removed via the windowed coefficient 

estimation, i.e. rolling analysis, which is surveyed as an illustrative example in Section 

5.2, Example 4. 

5. Illustrative examples, practical simulation and comparison 

In this section, initially, the finite sample distribution of the test statistic is 

simulated. Then, four illustrative examples are given with different fault scenarios to 

investigate the different characteristics of the two-way FDI method. Finally, the 

integrated servo mechanism with unknown states, as a practical example, is studied to 

evaluate the superiority of the proposed schemes. 

5.1. Finite sample distributions 

Here, the finite sample quantiles 𝑑′s of test statistic 𝑇𝑛,𝜃
1  are derived at which 

𝑇𝑛,𝜃
1 > 𝑑 rejects the null hypothesis 𝐻0 of no change. Although, the large sample quantiles 

are derived in Section 2.3, however, often, in practical situations, finite samples are 

available. So finite sample quantiles are beneficial to be studied. Values of 𝑑′s are derived 

for various selections of sample size 𝑛, variance 𝜎𝜀
2, and states 𝑥𝑡 's. Three cases (a)-(c) 



are given, as follows. 

(a) First, suppose that states 𝑥𝑡 's are sorted 𝑛 independent uniform random 

variables with common uniform distribution on (0,1). The sensor parameter 𝑏1 = 1. Let 

𝜃 = 0.1. Table 3 gives the Monte Carlo estimation (based on 1000 repetitions) of the 

0.99-th quantile 𝑑 for various values of 𝑛 and 𝜎𝜀
2. 

 

 

 

Table 3. The 0.99-th quantile 𝑑, uniform states 

  𝜎𝜀  

  0.01 0.1 0.5 1 2 

n 

10 0.01434 0.14342 0.71714 1.43428 2.86856 

20 0.01143 0.11432 0.57164 1.14323 2.28658 

30 0.00998 0.09989 0.49946 0.99893 1.99786 

40 0.00809 0.08093 0.40468 0.80936 1.61873 

50 0.00784 0.07843 0.39219 0.78438 1.56876 

(b) Here, the finite sample quantiles are given for correlated states. Again, suppose 

that 𝑏1 = 1, and that states 𝑥𝑡 's come from 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛾𝑢𝑡 + 𝑒𝑡, where 𝑒𝑡 is normal 

standard random variable, 𝑢𝑡 = 𝐾𝑥𝑡, with 𝛼 = 0.1, 𝛾 = 0.5 and 𝐾 = 0.2. Let 𝜃 = 0.1. It 

is assumed 𝑒𝑡 and 𝜀𝑡 are independent. Table 4 gives the 0.99-th quantile 𝑑 for various 

values of 𝑛 and 𝜎𝜀
2. 

Table 4. The 0.99-th quantile 𝑑, known states 

  𝜎𝜀  



  0.01 0.1 0.5 1 2 

n 

10 0.01247 0.12476 0.62381 1.24761 2.4952 

20 0.00941 0.094051 0.47025 0.94051 1.8811 

30 0.00615 0.061525 0.30762 0.61525 1.2305 

40 0.00485 0.04856 0.24281 0.48562 0.9712 

50 0.00387 0.03873 0.19365 0.38731 0.7746 

(c) Now assume that states 𝑥𝑡 's are unknown and estimated by the Kalman filter. 

Let 𝜃 = 0.1. Table 5 gives the mentioned quantiles for this case. It is worth noting that in 

both known and unknown cases, the 𝑑’s are similar. 

 

Table 5. The 0.99-th quantile 𝑑, Kalman filtering 

  𝜎𝜀  

  0.01 0.1 0.5 1 2 

n 

10 0.0112 0.1171 0.7476 1.9964 3.4734 

20 0.0080 0.0883 0.4778 1.0493 1.9838 

30 0.0069 0.0717 0.3527 0.6954 1.2143 

40 0.0061 0.0628 0.3132 0.6310 1.1916 

50 0.0056 0.0545 0.2841 0.5917 1.1449 

 

Finite sample (1 − 𝜁)%  quantiles of 𝑇𝑛,𝜃
2 , for 𝑛 = 50, 𝜃 = 0, 𝑏1 = 1, 𝜎𝜀 = 0.2, 

and 𝜋𝑡 = 1 for 𝑡 ∈ (0,1),  when the states are sorted, uniform observations in (0,1), are 

0.07594, 0.06578 and 0.05703 for 𝜁 = 0.01, 0.025 and 0.05, respectively.  When, 𝑥𝑡 =

𝛼𝑥𝑡−1 + 𝛾𝑢𝑡 + 𝑒𝑡, where 𝑒𝑡 's are normally distributed variables with zero mean and 



standard deviation 1, then mentioned quantiles are 0.0418, 0.0374 and 0.03345 for 𝜁 =

0.01, 0.025 and 0.05, respectively.  

Comparing Tables 3-5, almost in all cells, the smallest, largest and middle 

quantiles are known, uniform and Kalman states quantiles, respectively. As expected, 

larger 𝜎𝜀 leads to larger quantiles. Also, for larger 𝑛, quantiles converge to constant 

limiting value. The 99-th quantiles of known states are illustrated in Figure 7. For two 

other quantiles similar figure can be obtained.  

5.2. Illustrative examples 

Here, four illustrative examples are given. The first example computes the best 

response functions (15) of both players and the Nash equilibrium is derived. To show that 

the considered fault model (3) and the proposed FDI scheme is applicable in other fault 

models, sensor bias/fixed output and epidemic changes are studied in the second and third 

examples, respectively. The player test statistics and generally, game theoretic tools are 

obtained using the regular least square estimation of 𝛽𝑡. However, this estimation is 

disturbed with the past observations and this fact induces delays in fault diagnosis, as 

described in Section 4.2. To overcome this difficulty, the rolling estimations are used. So, 

in the last example the rolling estimation of a sensor coefficient at the change point is 

surveyed. 

Example 1: Best response functions. Assuming the ultimate change is 𝑚𝑖𝑛(𝑡, 𝑠), 

the best response functions of both players are given by (15) 

𝐵1(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑡≤𝑛|𝑢min(𝑡,𝑠)
𝑛 |, 𝐵2(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑠≤𝑛|𝑢min(𝑡,𝑠)

𝑛 |.        (72) 

Also, these functions are 𝐵1
∗ and 𝐵2

∗, using the average 0.5(𝑠 + 𝑡) as the ultimate 

estimation of change, that is,   



𝐵1
∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑡≤𝑛|𝑢0.5(𝑠+𝑡)

𝑛 |, 𝐵2
∗(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑠≤𝑛|𝑢0.5(𝑠+𝑡)

𝑛 |,        (73) 

where 𝑢𝑡
𝑛 = √𝜆𝑡(1 − 𝜆𝑡)

−1(�̂�
𝑡
− �̂�

𝑛
) and 𝑠𝑡 = ∑ 𝑥𝑖

2𝑡
𝑖=1  and 𝜆𝑡 =

𝑠𝑡

𝑠𝑛
, 𝑡 = 1,2,… , 𝑛.  

As follows Nash equilibriums are derived in three cases (a)-(c). 

(a) First, it is supposed that the 𝑥𝑡 's are sorted 𝑛 = 100 independent uniform 

random variables with common uniform distribution on (0,1). The change occurs at 𝑡∗ =

30 where 𝑏1 = 1, 𝑏2 = 3 and 𝜎𝜀 = 0.1. Figure 8 shows the graphs of functions 𝐵1 and 

𝐵2 which are the same. The graphs of 𝐵1
∗ and 𝐵2

∗ are also given in Figure 9. Both Figures 

8 and 9 show that the Nash equilibrium occurs at  𝑡 = 30. Although, apparently, Figure 

9 shows that the change has occurred at 𝑡 = 60, however, because of the functional form 

of the argument 0.5(𝑡 + 𝑠), it should be divided by 2 to derive the actual change point 

𝑡 = 30. 

(b) Again, suppose that 𝑏1 = 1, 𝑏2 = 3, 𝑛 = 100, 𝑡∗ = 30 , and 𝜎𝜀 = 0.1. 

However, states 𝑥𝑡 's come from 𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝛾𝑢𝑡 + 𝑒𝑡, and 𝑢𝑡 = 𝐾𝑥𝑡, with 𝛼 =

0.1, 𝛾 = 0.5 and 𝐾 = 0.2. For this example, Figure 10 shows the plots of functions 𝐵1 

and 𝐵2 which are the same. Also, the graphs of 𝐵1
∗ and 𝐵2

∗ are given in Figure 11. Both 

Figures 10 and 11, show that the Nash equilibrium occurs at  𝑡 = 30. Similar to the 

reasoning of Figure 9, 𝑡 = 60 should be divided by 2 to derive the actual change point 

𝑡 = 30.   

(c) Figure 12 shows the graphs of functions 𝐵1 and 𝐵2 when the Kalman filtering 

is used to estimate the states in part (b). Again, it is seen that the Nash equilibrium occurs 

at 𝑡 = 30.  

Example 2: Sensor bias and sensor fixed output. These are two special cases of 

systems at which a fixed number (bias) is added to the output of a system (referred to as 



sensor bias) and the output of a system is fixed (referred to as sensor fixed output), see 

(Isermann, 2006). Consider cases (a)-(b), as follows 

(a) For the sensor bias case, let  

𝑦𝑡 = 𝑥𝑡 + 𝜔𝑡 + 𝜀𝑡 , 𝑡 = 1,2, … ,1000,        (74) 

where 𝑥𝑡 's is a sorted sequence of 1000 random numbers uniformly distribution on (0,1), 

and 

𝜔𝑡 = {
0 𝑡 ≤ 450,
1 𝑡 ≥ 451.

        (75) 

Here, to study the change in the bias term of the system, the 𝛽𝑡 is assumed zero. Error 

terms 𝜀𝑡 's come from normal distribution with zero mean and standard deviation 𝜎𝜀 =

0.5.  

To apply the two-way FDI, here, it is enough to let 

𝑧𝑡 = 𝑦𝑡 − 𝑥𝑡 = (𝜔𝑡 × 1) + 𝜀𝑡.        (76) 

That is, the coefficient of the fixed sensor which is 1, suddenly changes at an unknown 

time point. This is a regression model similar to model (1). It is not difficult to see that 

�̂�𝑡 = 𝑧�̅�, 𝜆𝑡 =
𝑡

𝑛
  and  𝑢𝑡

𝑛 = √
𝑡

𝑛−𝑡
(𝑧�̅� − 𝑧�̅�).        (77) 

Figure 13 shows the time series of |𝑢𝑡
𝑛| indicating there is a change at 𝑡 = 450. It is seen 

that the maximum of this plot occurs at the actual change point out of the 95% quantile 

boundary, i.e., 0.35. Thus, similar to the arguments of the previous Section, the Nash 

equilibrium occurs at 𝑡 = 450, i.e. at the true change point. 

 (b) For the fixed output case, assume that 

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝑤𝑡 + 𝜀𝑡 , 𝑡 = 1,2, … ,1000,        (78) 

where 𝛽𝑡 = 0 and 𝑤𝑡 = 1 for 𝑡 ≤ 450 and 𝛽𝑡 = 0 and 𝑤𝑡 = 2 for 𝑡 > 450. It should be 

noted that 𝛽𝑡 is selected to be 0 to make the effect of the bias apparent. Here, 𝑢𝑡
𝑛 of 

formula (13) reduces to  



𝑢𝑡
𝑛 = √

𝑡

𝑛−𝑡
(�̅�𝑡 − �̅�𝑛),        (79) 

which is a suitable process to detect the change point. Obviously, the two-way FDI 

performs well, in this case.   

For another example, consider the following case 

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝑤𝑡 + 𝜀𝑡 , 𝑡 = 1,2, … ,1000,        (80) 

where 𝛽𝑡 = 0 and 𝑤𝑡 = 1 for 𝑡 ≤ 450 and 𝛽𝑡 = 1 and 𝑤𝑡 = 2 for 𝑡 > 450. Here, 

𝑢𝑡
𝑛,∗ = √

𝜆𝑡

1−𝜆𝑡
(�̂�𝑡

∗ − �̂�𝑛
∗),        (81) 

where �̂�𝑡
∗ = ∑ 𝑥𝑖

𝑡
𝑖=1 (𝑦𝑖 − �̅�)/∑ 𝑥𝑖

2𝑡
𝑖=1 . Here, 𝜀𝑡 's are normal random variables with zero 

mean and standard deviation 0.1. Figure 14 shows the time series plot of |𝑢𝑡
𝑛,∗| which 

shows the change point at 𝑡 = 450 out of the 95% quantile boundary, i.e., 0.86. In this 

case, a two-step procedure is used to detect changes in both parameters 𝛽𝑡 and 𝑤𝑡. As 

soon as the change in 𝛽𝑡 is detected, to detect the change in 𝑤𝑡 , then let 𝑧𝑡
∗ = 𝑦𝑡 − 𝛽𝑡𝑥𝑡 

and use the process 

𝑢𝑡
𝑛,∗∗ = √

𝑡

𝑛−𝑡
(𝑧�̅�
∗ − 𝑧�̅�

∗).        (82) 

Example 3: Epidemic change. The epidemic change point is a special pattern of a 

multiple change point problem. Here, there are three segments (two change points) and 

the parameters of interest are the same for the first and third segments while the parameter 

in the middle segment has a different value. The epidemic pattern occurs in many fields 

such as medicine (influenza epidemics), meteorology (weather conditions, pollution), and 

seismology (earthquake), see (R. Habibi, et al., 2005). 

In this example, following (51), let 𝑛 = 600, [𝑛𝜏1] = 310, [𝑛𝜏2] = 400, 𝜎𝜀 = 0.1 and, 

as discussed in Section 3, let 𝑥𝑡 = 1 for all 𝑡′s. The change in 𝛽𝑡 is as  

𝛽𝑡 = {
1 1 ≤ 𝑡 ≤ 310,
3.25 311 ≤ 𝑡 ≤ 400
1 401 ≤ 𝑡 ≤ 600.

,        (83) 



Considering (51), the payoff functions of players 1 and 2 are given as  

{
𝑢1(𝜏1, 𝜏2) =

1

𝑛
∑ (𝑦𝑖 − �̅�[𝑛𝜏2])
[𝑛𝜏1]
𝑖=1 ,

𝑢2(𝜏1, 𝜏2) =
1

𝑛
∑ (𝑦𝑛−𝑖+1 − �̅�[𝑛𝜏1]

∗ ),
[𝑛𝜏2]
𝑖=1

        (84) 

respectively. The best response of player 1 when the player 2 chooses the strategy 𝜏2 is, 

𝐵1(𝜏2) =

{
 
 

 
 ℎ(𝜏1) 𝑖𝑓 𝜏2 ≤

310

600
,

310

600
𝑖𝑓 

310

600
< 𝜏2 ≤

400

600
310

600
 𝑜𝑟 

400

600
𝑖𝑓 𝜏2 >

400

600
,

,        (85) 

where ℎ is often a non-decreasing function of 𝜏1 (see, Figures 15 (a) and (b)). In the third 

row of formula (85), the best response of player 1 is 310/600 𝑜𝑟 400/600 depending if 

𝑢1(310/600, 𝜏2) > 𝑢1(400/600, 𝜏2) is true or not. However, it is true that the 𝐵1(𝜏2) is 

a step function after 310/600 and its value is 310/600 (see, Figures 15 (a) and (b)). A 

similar fact is true for 𝐵2(𝜏1). To find the Nash equilibrium estimate of the first change 

point (which is 
310

600
, actually), it is enough to find the intersection of 𝐵1([𝑛𝜏2]) and line 

[𝑛𝜏1] = [𝑛𝜏2]. The intersection of 𝐵2(𝜏1) and line 𝜏1 = 𝜏2 gives the Nash equilibrium 

estimate of the second change point with actual value 
400

600
. Figures 15 (a) and (b) show the 

best response functions 𝐵1([𝑛𝜏2]) and 𝐵2([𝑛𝜏1]), respectively. Figure 15 (a) indicates 

that there exists a change at time 310 and Figure 15 (b) implies that there is another 

change at time 600 − 200 = 400.  

Example 4: Rolling sensor estimate. The rolling analysis is applied for capturing 

the instability of model parameters over time. It is an important technique widely used in 

financial time series analysis, see (Alexander, 2001) and references therein. Rolling 

sensor coefficients are the least square estimates of 𝛽𝑡 computed using windowed 

samples. The data in the 𝑖-th sample is indexed by 𝑖 = 𝑡 − 𝑙 + 1,… , 𝑡. The rolling 



estimations of 𝛽𝑡 over a rolling window of size 𝑙 is given by 

�̂�𝑟𝑜𝑙𝑙𝑖𝑛𝑔,𝑡 = �̂�𝑙,𝑡 =
∑ 𝑥𝑡−𝑖𝑦𝑡−𝑖
𝑙
𝑖=0

∑ 𝑥𝑡−𝑖
2𝑙

𝑖=0

.        (86) 

Under 𝐻0 and AMOC model, then 𝐸(�̂�𝑙,𝑡) = 𝑏1, 𝑡 = 1,… , 𝑛. This fact motivates one to 

use the CUMSUM �̂�𝑙,𝑡, as a useful tool for change point detection. Similar to the previous 

Section, the utility function of player 1 is given by, 

𝑢1(𝜏) =
1

𝑛
∑ (�̂�𝑙,𝑡 − �̅̂�) ,
[𝑛𝜏]
𝑖=1         (87) 

where �̅̂� is the sample mean of �̂�𝑙,𝑡 , 𝑖 = 1,2, … , 𝑛 − 𝑙. To obtain the utility function of the 

second player, it is enough to calculate the rolling estimate of length 𝑙 using observations 

(𝑥𝑛−𝑖+1, 𝑦𝑛−𝑖+1), 𝑖 = 1,… , 𝑛 and then compute the corresponding CUMSUM method. 

The best response functions of both players are plotted in Figure 16. Here, 𝑛 = 1000, 

𝑡∗ = 350, 𝑏1 = 1, 𝑏2 = 2.67, 𝜎𝜀 = 0.1 and 𝑥𝑡 's are sorted uniform variables on (0,1). The 

length of the rolling window is 𝑙 = 10. This shows that the Nash equilibrium estimation 

is the actual change point.  

5.2. Practical example and comparison 

In this section, the servo mechanism system, as introduced in Section 4.2, is 

considered to evaluate the performance of the two-way FDI method. Also, a comparison 

with CUMSUM method, as a one of the widely used FDI approaches (Isermann, 2006), 

is made to verify the advantages and benefits of the two-way FDI method. Here, the states 

𝑥𝑡 's are assumed unknown, which is the case in most practical dynamic systems. Hence, 

as explained in Sections 4.2, the Kalman filter is utilized to estimate the 𝑥𝑡 's. The servo 

mechanism considered in this section, is an integrated system, i.e., the output of a system 

is not observed directly, and instead a cumulative level of it exists for FDI purposes, 

inevitably. Integrated volatility and ice-core data on oxygen isotopes are two examples of 



integrated systems (Baltazar-Larios and Sørensen, 2010). In the integrated system, the 

available output is the integration of 𝑦𝑡 as  

 𝑦𝑡
∗ = ∫ 𝑦𝑠

𝑡

0
𝑑𝑠.        (88) 

As the output 𝑦𝑡 is integrated and hence it is non-stationary in mean, so it is necessary 

that the regressors 𝑥𝑡 's are integrated. Indeed, it is not true to represent the non-stationary 

output 𝑦𝑡 by a set of stationary regressors 𝑥𝑡 's, because when 𝑥𝑡 's are non-stationary, it is 

possible to detect spurious change (Hsu, 2001).  

As follows, it is shown that the CUMSUM procedure has weak performance while 

two game theoretic procedures including best response (Section 2.2) and differential 

game (Section 4.2) methods have strong performance.  To this end, consider the dynamic 

system (68), with a sensor fault (69) where the Kalman filter (70) is used to estimate the 

state. Also, assume only that the integrated output 𝑦𝑡
∗ is available for FDI purpose. The 

estimation of 𝑦𝑡
∗ using the Kalman filter estimated output is computed as �̂�𝑡

∗ = ∫ �̂�𝑠
𝑡

0
𝑑𝑠. 

Two-way FDI methods applied here are the best response function (Section 2.2) and the 

differential game (Section 4.2).  

Here, a CUMSUM method with estimated states, using the Kalman filter, is 

applied to the scaled series ℎ𝑡 =
𝑦𝑡

𝑥𝑡
 (Isermann, 2006). Since, the expectation of  ℎ𝑡 is 𝛽𝑡, 

i.e., 𝐸(ℎ𝑡) = 𝛽𝑡, thus, the partial sum of the mean corrected series ℎ𝑡 − ℎ̅, i.e., 

∑ (ℎ𝑖 − ℎ̅)
𝑡
𝑖=1 , referred to as the CUMSUM method (Isermann, 2006), detects the changes 

in mean 𝛽𝑡. Indeed, the maximiser of CUMSUM is the change point estimation. The 

CUMSUM plot with Kalman estimated states is illustrated in Figure 17. Accordingly, the 

change point estimation is 8 which is far from the actual change point 200. It is seen that 

the CUMSUM method does not represent the change in 𝛽𝑡 at the actual time and instead 

provides a spurious change point at 8. In previous sections, it was seen that when states 



are known 𝑦𝑡/𝑥𝑡 is a proxy for 𝛽𝑡, since 𝐸(𝑦𝑡/𝑥𝑡) = 𝛽𝑡, and using this stylized fact, based 

on CUMSUM method, pure and mixed Nash equilibriums are derived. However, when 

states are unknown, a straightforward suggestion is to use the Kalman estimation of states 

and consider the CUMSUM of 𝑦𝑡/𝑥𝑡. By the way, it is seen that this method does not 

detect the change point. This is why the differential game approach based on Kalman 

estimation of states and best response method using the LMI solutions are used in the 

unknown states case in Section 4. For the differential game approach, the �̂�𝑡’s 𝑡 =

1,2, … ,1000 are computed. Then, the time series plot of �̂�𝑡 − �̂�𝑛 (with 𝑐 = −0.4, see 

Section 3.3) is shown in Figure 18. It is seen that the actual change point is the first point 

at which the mentioned plot starts to depart from its initial mean. This plot indicates that 

the change point estimation is 200. Next, for the best response function approach, the 

time series plot of |𝑢𝑡
𝑛| result is plotted in Figure 19. Clearly, it crosses the threshold 𝑑 =

0.036 which is the 95% quantile boundary (see Sections 2.3 and 5.1) and takes its 

maximum at the actual change point. The best response functions of both players are 

plotted in Figure 20. It is seen again that the Nash equilibrium is the 𝑠 = 𝑡 = 200. 

To study the sensitivity analysis with respect to standard deviation 𝜎𝜀, as an 

important parameter in FDI problems, for 𝜎𝜀 = [0.01,0.1], fault estimations �̂�𝑖, 𝑖 =

br, dg, cu are derived. Notations br, dg and cu stand for best response, differential game, 

and CUMSUM methods, respectively. It is seen that �̂�br = �̂�dg = 200 which shows that 

both game theoretic methods detect the change point accurately, and �̂�cu = 8 which shows 

poor performance for the CUMSUM method. However, the two-way game theoretic FDI 

approaches have good performance, in the integrated system, when the location of the 

actual change point is too close to the beginning of the data sequence as mentioned in 

Section 1, Point 9, as well as two-way FDI methods provide two change estimators and 



by considering the mean of two estimators as the ultimate change estimator, the variance 

of the ultimate estimator reduces (see Section 1, Point 4).  

Here, the reason for good performance of two-way game theoretic FDI methods 

compared to CUMSUM is explained. Assuming �̂�𝑡 and 𝑦𝑡, as well as, 𝑦𝑡
∗ and �̂�𝑡

∗ are close 

to each other, the Kalman filter produces a linear relation between ∫ 𝑦𝑠
𝑡

0
𝑑𝑠 and ∫ 𝑥𝑠

𝑡

0
𝑑𝑠, 

with the slope 𝛽𝑡. Thus, using the Kalman outputs of an integrated system, which are  

∫ 𝑥𝑠
𝑡

0
𝑑𝑠 and ∫ 𝑦𝑠

𝑡

0
𝑑𝑠 instead of 𝑥𝑡 and 𝑦𝑡, provides the estimation of �̂�𝑡 very close to the 

actual 𝛽𝑡 when 𝑥𝑡 and 𝑦𝑡 are used in �̂�𝑡. Therefore, differential game or best response 

methods which are based on �̂�𝑡, perform properly. However, it is not true for the 

CUMSUM method because it can be simply shown that 𝐸 (
∫ 𝑦𝑠
𝑡
0 𝑑𝑠

∫ 𝑥𝑠
𝑡
0 𝑑𝑠 

) =
∫ 𝛽𝑠𝑥𝑠
𝑡
0 𝑑𝑠

∫ 𝑥𝑠
𝑡
0 𝑑𝑠

≠ 𝛽𝑡. 

Finally, if it can be guaranteed that the available data is integrated, then 𝑦𝑡 can be obtained 

via differentiation of 𝑦𝑡
∗. Then 𝑥𝑡 can be estimated by the Kalman filter, to which 𝑥𝑡 and 

𝑦𝑡 are fed. Consequently, the mentioned problem is eliminated in the CUMSUM method. 

However, it is really challenging to ensure that the given data are integrated, in the 

presence of a fault. Also, differentiation of 𝑦𝑡
∗ leads to noise amplification problems. 

6. Conclusions 

In this paper, sensor fault detection was formulated as change point analysis of a 

linear regression coefficient. The purpose of the paper was application of the game 

theoretic concepts such as Nash equilibrium and best response functions, to the sensor 

FDI. Two-way FDI method was introduced at which two players investigate from both 

sides of the data sequence to detect faults. In the AMOC model, via minimizing the bias 

of estimation of parameters before and after the change point, the two-way FDI game was 

introduced and it was seen that the Nash equilibrium occurs at the actual change point. 

Also, the corporative and the competitive game frameworks were introduced in two-way 



FDI and corresponding Nash equilibriums were derived which occur at the actual change 

points. Also, the players’ test statistics were given, and their asymptotic null distributions 

were obtained, to test the existence of the change point, individually by each player. In 

the known states case, the differential game was presented, and it was confirmed that 

Nash equilibrium is the true change point. Also, in the unknown states case, Kalman filter 

and LMI were used to estimate the states. Then via the differential game, accurate results 

were obtained, similar to the known states case ones. Numerical results showed that the 

two-way FDI scheme accurately detects the change point, for various fault scenarios. 

Finally, an integrated servo mechanism was used to evaluate the superiority of proposed 

scheme compared to the CUMSUM Method.  

Acknowledgements 

The authors would like to thank the editors and the reviewers for their helpful comments 

and constructive suggestions, which helped to improve the paper. 

Disclosure statement: No potential conflict of interest was reported by the authors. 

Reference. 

Ahmadizadeh, S., Zarei, J., & Karimi, H. R. (2014). Robust unknown input observer 

design for linear uncertain time delay systems with application to fault detection. 

Asian J. Control, 16(4), pp. 1006-1019.  

Alexander, C. (2001). Market models: A guide to financial data analysis: John Wiley & 

Sons. 

Aouaouda, S., Chadli, M., Shi, P., & Karimi, H. (2015). Discrete‐time H−∕ H∞ sensor 

fault detection observer design for nonlinear systems with parameter uncertainty. 

Int. J. of Robust Nonlin., 25(3), pp. 339-361.  

Bai, J. (1994). Least squares estimation of a shift in linear processes. Journal of time 

series analysis, 15(5), pp. 453-472.  

Baltazar-Larios, F., & Sørensen, M. (2010). Maximum likelihood estimation for 

integrated diffusion processes. In C. Chiarella (Ed.), Contemporary Quantitative 

Finance (pp. 407-423): Springer. 

Başar, T., & Bernhard, P. (2008). H-infinity optimal control and related minimax design 

problems: a dynamic game approach: Springer Science & Business Media. 

Ben Brahim, A., Dhahri, S., Ben Hmida, F., & Sellami, A. (2017). Simultaneous Actuator 

and Sensor Faults Reconstruction Based on Robust Sliding Mode Observer for a 

Class of Nonlinear Systems. Asian J. Control, 19(1), pp. 362-371.  



Billingsley, P. (2013). Convergence of probability measures: John Wiley & Sons. 

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., & Schröder, J. (2006). Diagnosis 

and fault-tolerant control: Springer. 

Bresolin, D., & Capiluppi, M. (2013). A game-theoretic approach to fault diagnosis and 

identification of hybrid systems. Theoretical Computer Science, 493, pp. 15-29.  

Bressan, A. (2010). Bifurcation analysis of a non-cooperative differential game with one 

weak player. Journal of Differential Equations, 248(6), pp. 1297-1314.  

Chen, H., & Lu, S. (2013). Fault diagnosis digital method for power transistors in power 

converters of switched reluctance motors. IEEE Transactions on Industrial 

Electronics, 60(2), pp. 749-763.  

Chung, W. H., & Speyer, J. L. (1998). A game theoretic fault detection filter. IEEE 

Transactions on Automatic Control, 43(2), pp. 143-161.  

Dalei, J., & Mohanty, K. B. (2016). Fault classification in SEIG system using Hilbert-

Huang transform and least square support vector machine. International Journal 

of Electrical Power & Energy Systems, 76, pp. 11-22.  

Elhadef, M., & Grira, S. (2018). Partial syndrome-based system-level fault diagnosis 

using game theory. International Journal of Parallel, Emergent and Distributed 

Systems, 33(1), pp. 69-86.  

Evans, L. C. (2005). An introduction to mathematical optimal control theory. Lecture 

Notes, University of California, Department of Mathematics, Berkeley 

Gibbons, R. (1992). Game theory for applied economists: Princeton University Press. 

Gu, Y., & Yang, G.-H. (2017). Sensor fault estimation for Lipschitz nonlinear systems in 

finite-frequency domain. International Journal of Systems Science, 48(12), pp. 

2622-2632.  

Habibi, H., Howard, I., & Habibi, R. (2017). Bayesian Sensor Fault Detection in a 

Markov Jump System. Asian J. Control, 19(4), pp. 1465–1481.  

Habibi, H., Nohooji, H. R., & Howard, I. (2017). Optimum efficiency control of a wind 

turbine with unknown desired trajectory and actuator faults. J. Renew. Sustain. 

Ener., 9(6), p 063305.  

Habibi, R., Sadooghi-Alvandi, S., & Nematollahi, A. (2005). Change point detection in a 

general class of distributions. Communications in Statistics—Theory and 

Methods, 34(9-10), pp. 1935-1938.  

Hameed, Z., Hong, Y., Cho, Y., Ahn, S., & Song, C. (2009). Condition monitoring and 

fault detection of wind turbines and related algorithms: A review. Renewable & 

Sustainable Energy Reviews, 13(1), pp. 1-39.  

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 20(8), pp. 832-844.  

Hong, L., & Dhupia, J. S. (2014). A time domain approach to diagnose gearbox fault 

based on measured vibration signals. Journal of Sound and Vibration, 333(7), pp. 

2164-2180.  

Hsu, C.-C. (2001). Change point estimation in regressions with I (d) variables. Economics 

Letters, 70(2), pp. 147-155.  

Isermann, R. (2006). Fault-diagnosis systems: an introduction from fault detection to 

fault tolerance: Springer Science & Business Media. 

Kander, Z., & Zacks, S. (1966). Test procedures for possible changes in parameters of 

statistical distributions occurring at unknown time points. The Annals of 

Mathematical Statistics, pp. 1196-1210.  

Li, J., Wang, X., Han, F., & Wei, G. (2017). Fault detection for discrete piecewise linear 

systems with infinite distributed time-delays. International Journal of Systems 

Science, pp. 1-9.  



Mehranbod, N., Soroush, M., & Panjapornpon, C. (2005). A method of sensor fault 

detection and identification. Journal of Process Control, 15(3), pp. 321-339.  

Murray, E. A., & Speyer, J. L. (2014). A discrete-time game theoretic multiple-fault 

detection filter. IEEE 53rd Annual Conference on Decision and Control (CDC). 

Mutuel, L. H., & Speyer, J. L. (2000). A discrete-time game-theoretic fault detection 

filter. American Control Conference. 

Ning, W., Pailden, J., & Gupta, A. (2012). Empirical likelihood ratio test for the epidemic 

change model. Journal of Data science, 10(1), pp. 107-127.  

Petkov, V. (2013). Continuous mixed strategy equilibria: in static and dynamic 

tournaments.  

Pourbabaee, B., Meskin, N., & Khorasani, K. (2016). Sensor fault detection, isolation, 

and identification using multiple-model-based hybrid Kalman filter for gas 

turbine engines. IEEE Transactions on Control Systems Technology, 24(4), pp. 

1184-1200.  

Qiu, Y., Feng, Y., Tavner, P., Richardson, P., Erdos, G., & Chen, B. (2012). Wind turbine 

SCADA alarm analysis for improving reliability. Wind Energy., 15(8), pp. 951-

966.  

Ren, Y., Ding, D.-W., & Li, Q. (2017). Finite-frequency fault detection for two-

dimensional Fornasini–Marchesini dynamical systems. International Journal of 

Systems Science, 48(12), pp. 2610-2621.  

Revuz, D., & Yor, M. (1999). Continuous martingales and Brownian motion: Springer-

Verlag, Berlin. 

Sen, A., & Srivastava, M. S. (1975). On tests for detecting change in mean. The Annals 

of Statistics, pp. 98-108.  

Song, Y., & Guo, J. (2017). Neuro-Adaptive Fault-Tolerant Tracking Control of 

Lagrange Systems Pursuing Targets With Unknown Trajectory. IEEE 

Transactions on Industrial Electronics, 64(5), pp. 3913-3920.  

Wu, L., & Ho, D. W. (2009). Fuzzy filter design for Itô stochastic systems with 

application to sensor fault detection. IEEE Transactions on Fuzzy Systems, 17(1), 

pp. 233-242.  

Yang, W., Court, R., & Jiang, J. (2013). Wind turbine condition monitoring by the 

approach of SCADA data analysis. Renewable Energy, 53, pp. 365-376.  

Yunlong, Z., & Peng, Z. (2012). Vibration fault diagnosis method of centrifugal pump 

based on emd complexity feature and least square support vector machine. Energy 

Procedia, 17(1), pp. 939-945.  

Zarei, J., & Shokri, E. (2014). Robust sensor fault detection based on nonlinear unknown 

input observer. Measurement, 48, pp. 355-367.  

Zhang, J., Swain, A. K., & Nguang, S. K. (2015). Robust sliding mode observer based 

fault estimation for certain class of uncertain nonlinear systems. Asian Journal of 

Control, 17(4), pp. 1296-1309.  

 


