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Abstract 
This study investigates the response of a circular ring under a moving load. Past work on 

shells under the influence of moving loads is consolidated, with explanation of the formation 
of the unique quasi-stationary mode shapes, which are seen under these conditions. This work 
presents an alternate method of solution for problems for which moving loads are present and 
encourages distinguishing between normal mode shape methods and the solution methods for 
the proposed quasi-stationary resonance problems. This alternate method is then followed 
through to a general solution for quasi-stationary mode shapes, with specific solutions 
presented for the following three cases: magnitude-varying moving point load, phase varying 
moving point load and a non-uniform continuous moving load, all applied to a stationary ring.

1 Introduction 
The motivation for the work described in this paper is an investigation into whether 

information about turbine blade natural frequency can be extracted from the dynamic motion 
of the turbine casing under operating conditions. This would provide advantages over the 
currently prominent method of blade tip timing, which requires perforation of the casing. 
Operating conditions within a gas turbine present unique, spatially varying, loading 
conditions, which are described within subsequent sections of this paper. Specifically the 
moving pressure fields around the inside of the casing due to the pressure profiles around the 
rotor blades, cause harmonically varying moving pressure forces on the inside of the casing, 
which is the basis for the solution derived in Section 5.3. Furthermore, the vibration of 
individual rotor blades will cause the rotating pressure profiles around the rotor blades to be 
modulated by the blades’ dynamic motion; and thus the response to a phase modulated 
moving force is required, giving rise to the solution presented in Section 5.2. 

Historically the vibration of rings, and the extension to the case of cylindrical shells, have 
been of research interest for quite some time with many authors adding to the body of 
knowledge, starting with Love [1] presenting the first full representation of the coupling of 
the transverse bending and in-plane compression waves within a shell in his definitive work. 
Many hundreds of research papers have been, and continue to be produced using Love’s deep 
curve shell model and the work contributing to this area of knowledge on forced shell 
vibrations due to a spatially stationary load needs no introduction and is indeed vast. Further 
improved modelling assumptions on top of Love’s work accounting for rotatory inertia, 
nonlinearities and shear deformation have also found quite a large amount of attention in 
research. Driven by the number of physical applications, predominantly in the automotive and 
locomotive industries, can, under modelling assumptions, be represented as a rotating ring 
under forced conditions. The additional problem of a rotating ring subjected to a spatially 
stationary load has also received quite a large amount of research interest, with the solution 
first presented in a complete form by Carrier [2] as reported in Refs. [3,4]. 
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In addition to the abovementioned two types of loading viz. (i) stationary ring under 
spatially stationary load, (ii) rotating ring under a spatially stationary load, there exists a third 
unique problem set of steady-state loading a shell might undergo, this being; (iii) a stationary 
ring under a spatially varying load. It is to be noted that this third steady-state condition may 
be analysed as an extension of the first (i) however the unique response form, different mode 
shapes, and problem solution is believed to warrant distinguishing between the two, and is 
recommended by these authors for future study of this type of loading and response 
conditions. 

Due to the large amount of work that has been developed in the former two categories, 
the small amount of work previously carried out on the response of a ring under a moving 
load is surprising. It is the aim of this paper to bring together the current work on such a case, 
to provide a single point of reference for solution methodology, and additionally to add some 
more specific solutions, explanations, amendments and physical interpretation of this 
response phenomenon. 

The first work found on moving loads applied to a stationary shell was by Liao and 
Kessel [5], in which the case of a constant speed moving point load on a cylindrical shell was 
treated, and for the first time the resonance conditions for a moving point load were shown to 
be present when /nk nωΩ = . The physical reasoning behind the division by the mode 
number for a resonance condition is explained in Ref. [6]. Response of a rotating ring under a 
stationary load and the inverse case of a stationary ring under the influence of a constant 
speed moving point load were compared in Ref. [3], with the formulation of the equations for 
the response derived using the same two modal parameter method that is used for the 
inextensional rotating ring case. In Ref. [4] the problem of a stationary ring, and additionally 
in Ref. [7] for a cylinder, under a moving point load and comparison to the inverse problem 
was taken further, with the introduction of a (harmonically) magnitude-varying moving point 
load case. The general periodic magnitude-varying point load case was also then investigated, 
as was a moving distributed load within a specified arc range. The percentage error if the 
distributed load was assumed as a point load was also given. The “method of images” was 
used in Ref. [8] to find the response of a ring supported by a visco-elastic spring base, subject 
to a moving point load. It was found by Metrikine and Tochilin [8] that resonance occurred 
when the ring length is divisible by a wavelength of a wave radiated by the load or the load 
speed was close to the minimum phase velocity of waves in the ring. 

Various engineering problems involve axisymmetric structures under the influence of 
moving loads, including but not limited to: the casing of Gas Turbines, under the rotating 
pressure fields from rotor blades; planetary gear systems, with the sun and ring gears under 
the influence of the force of the moving planet gears; the outer race of rolling element 
bearings, from forces transmitted through the moving rolling elements; and submarine 
vessels, from rotating pressure fields from the propeller. The first application of a moving 
load case to a real physical problem, of a rotating harmonic internal pressure loading on the 
internal surface of a fan casing, due to the pressure difference between rotating blades, was 
initially investigated in Ref. [9]. The results obtained were however unclear as to the response 
form, and in addition the poor experimental verification found by the author added to 
inconclusive outcomes being drawn from this work. A nonlinear harmonic balance method 
was developed in Ref. [10] for the same form of forcing conditions as examined in Ref. [9]. 
However, the only resonant condition examined was the system’s exhibition of a dynamic 
response typical of a hardening spring nonlinear system. 
Recently, Canchi and Parker [11] introduced the problem case of a circular ring subjected to 
forces applied by moving springs to model the interaction within a planetary gearbox with the 
gear mesh between the planet gears and ring gear represented as a set of moving springs 
which rotate with the planet carrier speed, and further expanded to include variations in the 
spring stiffness with respect to time in Ref. [12]. The work in Ref. [11] investigated the 
parametric instabilities of in-plane bending vibrations, with two numerical methods used to 
validate the parametric analytical approach used for solution. The principal resonance 
conditions found by Canchi and Parker [11] for moving spring sets on a stationary ring were 
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of the same type as found by Huang and Soedel [3], however extra parametric resonances 
were found due to the force being transmitted to the ring through spring sets and not a directly 
applied force as in Ref. [3]. 

Most recently the authors, giving the motivation for this article, have developed the 
response of a gas turbine casing under the influence of a phase varying moving harmonic 
pressure force, to simulate the rotating pressure fields inside a gas turbine. The dominant, 
purely deterministic, pressure loadings were investigated in Ref. [13], with further extension 
to the response of an elastic ring under the influence of a moving stochastic pressure force in 
Ref. [14]. This is believed to be the first investigation of an elastic ring under a stochastic 
moving load. 

Experimental verification of any moving load solutions is scarce, with the work in Refs. 
[9] and [15] the only known results available. As stated earlier, the experiments conducted in 
Ref. [9] were inconclusive, however more success was found by Penneton et al. [15], where 
the response and sound radiation of a cylindrical shell under a constant speed moving point 
load was undertaken. Good correlation between experimental results and an analytical model 
were shown with a frequency-domain approach to represent the load used to aid the analytical 
solution process. 

The aforementioned papers represent the entire body of research, known to us, conducted 
on the response of shells under a moving load. In general, they have been limited to the 
inextensional assumption, with the notable exception of Ref. [3]. Because these studies are 
not completely exhaustive, this has given the opportunity for the collation and interpretation 
of all present work, the presentation of a new method for solution, new specific solution cases 
without the relaxation of the inextensional assumption, to be followed in the subsequent 
sections. 

2 Problem and equation formulation 
The governing equations of motion for a stationary ring have been presented, and solved, 

by many previous authors, and were presented in Ref. [6] in the following form: 
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Note that the forcing terms are per unit length, if Eq. (2.1) is divided by the ring width, 
then the force is given as a pressure. Also I is the second moment of area about the neutral 
axis and A is the cross sectional area. The effects of Poisson’s ratio are neglected in a circular 
ring assumption (as opposed to a circular cylinder, see Ref. [6] for a more thorough 
discussion of this). 

If the usual assumption is made that the steady-state response is harmonic in time and the 
time and spatial variables are separable, then it can be shown that 

 3 ( , )

( , )

nk

nk

j tjn
nk

j tjn
nk

u t A e e

u t B je e

ωθ

ωθ
θ

θ

θ −

=

=
 (2.2) 

is a fundamental solution of the equations of motion. Solution of the equations of motion 
must provide the response form for any kind of loading which the system is under. It is 
known that for a spatially stationary load or under free vibration the response form will be 
made up of forward and a backward travelling wave which combine to create a response of a 
harmonically varying standing wave form. It is then the convention to make a judicious 
choice of the solution form of the equations of motion such that the mode shapes are usually 
expressed as [6,16,17] 
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Solution for the frequency at which these modes vibrate, natural frequencies, can be 
found with substitution of Eq. (2.3) into Eq. (2.1). Dividing by width b and setting the forcing 
terms to zero gives the homogenous equation (2.4): 
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Solution of Eq. (2.4) will produce the natural frequencies by resolving when the 
determinant is set to zero and for the amplitude ratios by back substitution of the eigenvalues 
into Eq. (2.4) resulting in 
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Note that the k-subscript is introduced to represent the two unique solution types that 
come from the fourth-order characteristic equation, the higher order frequency is associated 
with the compression dominated mode shapes and the lower order frequency is in turn 
associated with the bending mode shapes. Although these mode shapes are coupled such that 
both compression and bending are always present, from now on reference to the compression 
or bending mode shapes refers to the respective dominated mode shape. 

A problem however arises when what was a convenient judicious choice of the solution 
form is then used when the sought forced vibration solution is no longer spatially stationary. 
It is fundamental to all steady-state forced vibration solutions that the response form must 
also follow the same form as the force itself. With this it is easily recognised that a 
harmonically varying standing wave form cannot be the solution form when a spatially non-
stationary load is applied. It therefore requires the use of different mode shape functions from 
those in Eq. (2.3), for the solution under a moving load. 
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The solution of the problem of a circular ring under a moving force was handled by 
Huang and Soedel [3] using a modified method of normal mode expansion for a stationary 
load. The solution was solved for the modal participation factors in the form of 
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The assumed mode shapes were given as 
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with φ  being an arbitrary angle set by the spatial position of the load at the initial 
conditions [6]. 

The creation of Eq. (2.7) from the given standing wave mode shapes in Eq. (2.8) was not 
developed in [3]. The initial position of the load which causes the mode shapes in Eq. (2.8) to 
orientate themselves such that the maximum deflection is at the load point is given by the 
angle φ , however in the cause of a moving load this angle is no longer a constant but a 
function of the load’s motion and therefore a variable in time, tΩ . Substitution of this 
variable for the mode shape orientation into Eq. (2.8) will result in Eq. (2.9), which then can 
be separated in time and space to the form which was used in Ref. [3] in Eq. (2.7). 
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or in complex form: 
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where *θ  is the initial location of the load. 
Eq. (2.10) can now be seen to be in the general canonical form of solution for the 

equations of motion, which was stated in Eq. (2.2). It is now proposed that the solution of 
forced vibrations of shells under moving loads use mode shapes in the form of Eq. (2.10), and 
only considering positive frequencies the reason for which will be further explained later. 

Solution of the equations of motion Eq. (2.1) with Eq. (2.10) can be shown to have the 
same form as the solutions in Eqs. (2.4) and (2.5). However, with /nk nωΩ = , it is clear that 
at this load rotational frequency resonance will occur [3,4,6]. If we follow the nomenclature 
that was first used by Timoshenko [18], as reported in Ref. [19], in his initial work with 
infinite beams subject to a moving load, this resonance phenomenon will be further referred 
to as a quasi-stationary resonance condition and denoted by nkω% . The use of this description 
arises from the deformation being stationary to a Newtonian observer but harmonic in space 
and time with respect to a Euclidian reference. It is also noted that this response phenomenon 
is referred to as a resonance and not a natural frequency as it is dependent on the loading type, 
and does not follow the conventional meaning of a natural frequency. 

3 General solution for quasi-stationary modes 
The generalised solution for quasi-stationary modes is formed in the same way as any 

modal expansion solution, but with the assumption of the mode shapes in their complex 
exponential form, which reduces the need for solving for two modal participation factors, of 
Eq. (2.10), as stated earlier. 
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Formation of the frequency equation is achieved by substitution of the assumed mode 
shapes into the equations of motion; therefore, the quasi-stationary resonance condition can 
now be defined as (remembering again that only the positive frequencies are to be 
considered): 
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The above solutions for the quasi-stationary resonance frequencies and amplitude ratios 
can be seen to be the same as for normal modes in Eqs. (2.5) and (2.6), respectively, though 
with substitution of /nk nknω ω= % . 

The method for construction of the equations for the displacement of a forced solution 
using modal expansion is readily available in texts such as Ref. [6]. They will however be 
stated below for the first time in their entirety for quasi-stationary resonance conditions. 

The forced response by the use of modal expansion assumes the following form: 
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To solve for the modal participation factor the above Eqs. (3.3) are substituted into the 
equations of motion, and making use of the orthogonality of the equations, the following 
ordinary differential equation is formed: 
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where  is the Fourier series expansion of the forcing function . The subscript ‘i’ is 
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It is noted from the above equation (3.5), that only positive frequency values will produce 
a non-trivial solution, which as stated above will be an assumption for quasi-stationary mode 
shapes. 

For a steady-state solution, Eq. (3.4) can be written as 
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then the response is a harmonic series of the driving force with the magnitude and phase 
lag contribution from each mode given by 
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The above general solutions can be applied to any moving load case. The important 
points to be taken from this general solution method is that different mode shapes, modal 
participation factors and principal resonance frequencies need to be used in moving load cases 
in comparison to a spatially stationary load case. 

4 Discussion on the generalised resonance phenomenon 
Now that the general solution of the equations of motion of an elastic shell subjected to a 

moving load have been found, an investigation into the quasi-stationary resonance conditions 
can be undertaken. 

The geometric and material properties used in this example case are shown in Table 1 
(see Fig. 1). 

Table 1 Geometric and material properties for examples 
Density 9 27.85 10 /Ns mmρ −= × 4  
Young’s Modulus 4 220.6 10 /E N mm= ×  
Mean Radius 100R mm=  
Radial Thickness 2h mm=  
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Fig. 1. Travelling point load (a) and rotating pressure loading (b) on a circular ring 
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Fig. 2. Natural frequencies vs. mode number for (a) stationary normal mode shapes and (b) quasi-
stationary mode shapes. 

 
Plots of mode number vs. resonance frequency for both normal modes and quasi-

stationary modes are shown in Fig. 2. At each natural frequency of the system, a backward 
and forward travelling wave is set up in the material, at a velocity related to the natural 
frequency and given by v f λ= , with either a bending or compression dominated mode 
shape. As the ratio of mode number to radius becomes larger, the influence of the shell’s 
curvature, and indeed the coupling between these mode shapes, lessens such that the bending 
mode shapes act like bending modes of a beam and the compression modes act like 
longitudinal modes in a beam. This is seen in Fig. 2 for the normal modes, where the 
compression modes begin to show a non-dispersive frequency relationship whereas the 
bending waves continue to have a dispersive frequency relationship. Under the influence of a 
moving load, resonance obviously occurs when the load’s velocity matches that of any mode 
of vibration, therefore if the modes begin to exhibit a non-dispersive frequency relationship, 
then all modes of vibration will have the same wave velocity and as such under a moving load 
at this frequency all modes will be excited. This resonance behaviour is seen in Fig. 2, for the 
quasi-stationary modes, where the graph of mode number vs. resonance frequency 
asymptotically converges to a single frequency being the material’s wave speed, /c E ρ= . 
A load travelling at this velocity will cause a shock wave, with waveforms being set up in 
front of the load. Further insight into this particular phenomenon for straight beams can be 
found in Ref. [19]. 

Interestingly, a rotating ring under a stationary load, which is the inverted load case of a 
moving load on a stationary ring, exhibits no resonance conditions under a stationary load as 
found by Huang and Soedel [3], Canchi and Parker [12] and others. As was stated above, for 
a moving load on a stationary ring, resonance occurs when the load velocity matches the 
wave speed velocity for any mode of vibration, which means for resonance in a rotating ring 
under the influence of a stationary load, the ring’s rotational speed must be equal to any 
mode’s wave speed. It is shown in Ref. [3] that for a rotating ring, the natural frequency, and 
hence the material wave speed, bifurcates around the rotational speed of the rotating ring , due 
to the coriolis and centrifugal tension components. Thus, the rotational velocity of the ring 
will never equal the wave speed within the material, such that no resonance conditions for the 
inverted case of a rotating ring under a stationary load will exist. 

Lastly, the physical explanation of how quasi-stationary mode shapes which travel 
around the circumference of a ring can exist will be entered into. It is known that a single 
impulse load on a structure will create sets of forward and backward travelling waves which 
combine to create standing normal mode shapes. It can also be assumed that a travelling point 
load could be, in the limit, made from a sum of infinite impulse loads spaced at an 
infinitesimally small distance from each other around the circumference of a ring, which are 
applied with a time delay proportional to the load’s circumferential velocity. This means as 
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the first impulse load is applied forward and backward waves are set up, which happens again 
with another impulse load at an infinitesimally small distance away, and so on as the load 
travels around the ring. If the fourth-order quasi-stationary mode was excited, i.e. the load is 
travelling at the fourth-order mode’s wave velocity in the material, with the aid of Fig. 3 it 
can be explained how quasi-stationary modes can develop. It is seen that when the first of the 
impulse loads at a specific starting position (a) is applied, travelling waves are set up, with the 
forward travelling wave moving at the speed of the load. When the load has travelled one 
third of a wavelength (b) it is seen that the forward and backward waves at the starting 
position and at the load’s position are cancelled out, leaving one forward travelling wave. 
This continues for the next set of waves set up at the next infinitesimal distance up until two-
thirds of one wavelength (c). Then all backward waves are cancelled out and the resonance 
condition of a single wave travelling with the impulse load then exists (d). Additionally, this 
explanation provides an interesting result, qualitatively showing that a transient component 
will exist up until two-thirds of a wavelength of the lowest mode of interest, however after 
this time a complete steady-state solution exists.  

( )a ( )b

( )c ( )d

Fig. 3 Wave forms set up by travelling point load, forward travelling waves —, and backward 
travelling waves - - - -. 

5 Specific Solutions 
The solution to the following specific loading cases all involve the same process of 

determining the radial and tangential displacement of the shell using the procedure outlined in 
the general solution method. The only factor changing each time is the forcing function. 
Evaluation of the generalised force vector for each case will allow easy evaluation of each 
loading case. A new subscript index preceding the forcing function will be introduced to 
distinguish the forcing term for each of the specific cases that follow. 
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5.1 Magnitude varying, moving point load (1) 
The forcing functions for a harmonically varying moving point load, expressed as a Dirac 

delta function, where 3,F Fθ  are the maximum force magnitudes per unit width in the 
transverse and tangential directions respectively, are as follows: 

 ( ) (3
1 3 cosFq t

R
)tδ θ ω⎛ ⎞= − −Ω −⎜ ⎟

⎝ ⎠
γ  (5.1) 

 ( ) (1 cosFq t
R
θ

θ )tδ θ ω⎛ ⎞= − −Ω −⎜ ⎟
⎝ ⎠

γ  (5.2) 

These can be expressed in terms of complex exponentials as 

 ( ) ( )( ) ( )3
1 3 2

j t j tFq t e t
R

ω γ ω γδ θ δ θ− −⎛ ⎞ ⎡ ⎤= − −Ω + −Ω⎜ ⎟ ⎣ ⎦⎝ ⎠
e −  (5.3) 

 ( ) ( )( ) ( )
1 2

j t j tFq t e t
R

ω γ ω γθ
θ δ θ δ θ− −⎛ ⎞ ⎡ ⎤= − −Ω + −Ω⎜ ⎟ ⎣ ⎦⎝ ⎠

e −  (5.4) 

 
Substitution of Eq. (5.3) into Eq. (3.5) results in 

 ( ) ( )
2

( ) ( )3
1 3

0

1
2

j t jn j t jn

nk

FQ t e e t e
hN R

π
ω γ θ ω γ θe Rδ θ δ θ

ρ
− − − − −⎛ ⎞ ⎡ ⎤= − −Ω + −Ω⎜ ⎟ ⎣ ⎦⎝ ⎠∫ θ∂  

  (5.5) 

 ( ) ( )3
1 3 2

j t jn t j t jn t

nk

FQ e e e
hN

ω γ ω γ

ρ
− − Ω − − − Ωe⎡ ⎤= − +⎣ ⎦  (5.6) 

Similarly it can be found from Eq. (5.4) that 

 ( ) ( )
1 2

j t jn t j t jn tnk

nk

jF CQ e e e e
hN

ω γ ω γθ
θ ρ

− − Ω − − − Ω⎡ ⎤= +⎣ ⎦  (5.7) 

The generalised force vector may now be expressed as 

 (
2 2 2

3 ( ) (
1 2

nk j n t t n j n t t n
n

nk

F C F
F e e

hN
θ ω γ φ ω γ φ

ρ
− Ω + + + − Ω − − ++

= + ))  (5.8) 

where 
 ( )22 1nk nkN R Cπ= +  (5.9) 

 1

3

tan nkF Cn
F
θφ − ⎛ ⎞

= ⎜
⎝ ⎠

⎟

)

 (5.10) 

Solution for the radial and tangential displacement using the methods from the general 
solution are shown to be as follows (it can be seen that the solution is in the same general 
form as shown in Ref. [4]): 

 ( ) 1 1 1 2

2
( ) (

1 3 1 1
1 1

, Re j n t t n j n t t njn
nk nk

n k
u t e a e b eω γ φ ψ ω γ φ ψθθ

∞
− Ω + + + + − Ω − − + +

= =

⎧ ⎫⎡ ⎤= +⎨ ⎬⎣ ⎦⎩ ⎭
∑∑  (5.11) 

 ( ) 1 1 1 2

2
( ) (

1 1 1
1 1

, Re j n t t n j n t t njn
nk nk nk

n k
u t jC e a e b eω γ φ ψ ω γ φ ψθ
θ θ

∞
− Ω + + + + − Ω − − + +−

= =

)⎧ ⎫⎡ ⎤= +⎨ ⎬⎣ ⎦⎩ ⎭
∑∑

 (5.12) 
where 1 1  are the modal participation amplitudes and ,nk nka b 1 1 1 2,ψ ψ  are the phase lags. 

they are solved below as 
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2 2 2

3
1 22 2

2 2 / /2 1 4

nk
nk

nk nk nk
nk nk

F C F
a

n nhN n

θ

ω ωρ ω ζ
ω ω

+
=
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⎤

⎢ ⎥
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 (5.13) 

 
2 2 2

3
1 22 2

2 2 / /2 1 4

nk
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nk nk nk
nk nk

F C F
b

n nhN n

θ

ω ωρ ω ζ
ω ω

+
=

⎡ ⎤⎛ ⎞ ⎡Ω − Ω−⎢ ⎥− +⎜ ⎟
⎤

⎢ ⎥
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%
% % ⎦

 (5.14) 

 1
1 1 2

/2
tan

/1

nk
nk

nk

n

n

ωζ
ω

ψ
ω

ω

−

⎛ ⎞⎛ ⎞Ω +⎜ ⎟⎜ ⎟
⎜ ⎟⎝= − ⎜

⎛ ⎞Ω+⎜ ⎟− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

%

%

⎠
⎟  (5.15) 

 1
1 2 2

/2
tan

/1

nk
nk

nk

n

n

ωζ
ω

ψ
ω

ω

−

⎛ ⎞⎛ ⎞Ω −⎜ ⎟⎜ ⎟
⎜ ⎟⎝= − ⎜

⎛ ⎞Ω −⎜ ⎟− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

%

%

⎠
⎟  (5.16) 

Inspection of Eqs. (5.13) and (5.14), shows a resonance condition existing when 

 
/
/

nk

nk

n
n

ω ω
ω ω

= Ω+
= Ω−

%

%
 (5.17) 

or in terms of the natural frequencies of the shell 

 nk

nk

n
n

ω ω
ω ω

= Ω+
= Ω−

 (5.18) 

This is in contrast to the solution put forward by Huang and Soedel [4,7] being 

 nk

nk

n
n

ω ω
ω ω

= + Ω
= − Ω

 (5.19) 

Eq. (5.17) or (5.18) is a proposed amendment to the results given by Huang and Soedel 
[4]. 

The above resonances are easily recognisable as being in the form of the well-known 
amplitude modulated signal, displaying the characteristics at resonance of a pair of sidebands 
around the driving frequency , at Ω / nω± , as would be expected. 

5.2 Phase varying, moving point load (2) 
The forcing functions for a harmonically phase varying moving point load, expressed as a 

Dirac delta function, are as follows: 

 (3
2 3 cosFq t

R
)tδ θ β ω γ⎛ ⎞ ⎡ ⎤= − −Ω − −⎜ ⎟ ⎣ ⎦⎝ ⎠

 (5.20) 

 (2 cosFq t
R
θ

θ )tδ θ β ω γ⎛ ⎞ ⎡ ⎤= − −Ω − −⎜ ⎟ ⎣ ⎦⎝ ⎠
 (5.21) 

These can be expressed in terms of complex exponentials as 

 
( ) ( )

3
2 3

e e
2

j t j tFq t
R

ω γ ω γ

δ θ β
− − −⎡ ⎤⎛ ⎞+⎛ ⎞= − −Ω −⎢ ⎥⎜⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎟

⎣ ⎦
 (5.22) 
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( ) ( )

2
e e

2

j t j tFq t
R

ω γ ω γ
θ

θ δ θ β
− − −⎡ ⎤⎛ ⎞+⎛ ⎞= − −Ω −⎢ ⎥⎜⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎟

⎣ ⎦
 (5.23) 

Substitution of Eq. (5.22) into Eq. (3.5) results in 

 
2 ( ) ( )

3
2 3

0

1 e e
2

j t j t
jn

nk

FQ t
hN R

π ω γ ω γ
θe Rδ θ β

ρ

− − −
−⎡ ⎤⎛ ⎞+⎛ ⎞= − −Ω −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ θ∂  (5.24) 

Evaluation of the integral and simplify Eq. (5.24): 

 
( ) [ ]

( ) ( )e e
23

2 3

( )3
2 3

j t j t
jn t

nk

j n t t

nk

FQ e
hN

F J n
Q e

hN

ω γ ω γ
β

ν ω γν

ρ

β
ρ

− − −⎡ ⎤⎛ ⎞+
− Ω +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− Ω + −

= −

= −

 (5.25) 

where  is the Bessel function of the first kind, and ( )J zν ν  takes all integer values 
between . :−∞ ∞

Similarly it can be found from Eq. (5.23) that 

 
( ) [ ( )

2
j n t tnk

nk

jC F J n
Q e

hN
]ν ω γθ ν

θ

β
ρ

− Ω + −= −  (5.26) 

The generalised force vector may now be expressed as 

 
( ) ((

2 2 2
( )3

2
j n t t nnk

n
nk

J n F C F
F e

hN
ν ω γ φν θβ

ρ
− Ω + − ++

= ) )  (5.27) 

Solution for radial and tangential displacements is then found to be as follows: 

 ( ) ( ) 2 1

2
( )

2 3 2
1 1

, Re j n t t n jjn
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n k
u t e a e eν ω γ φ ψθ

ν
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 ( ) ( ) 2 1

2
( )

2 2
1 1
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nk nk

n k
u t jC e a e eν ω γ φ ψθ
θ

ν

θ
∞ ∞

− Ω + − + −
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∑ ∑ ∑  (5.29) 

where  is the model participation amplitude and 2 nka 2 1ψ  is the phase lag. They are 
solved below as 

 
( ) 2 2 2

3
2 22 2

2 2 / /1 4

nk
nk

nk nk nk
nk nk

J n F C F
a

n nhN n

ν θβ

νω νωρ ω ζ
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 (5.30) 

 1
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nk
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n

n

νωζ
ω

ψ
νω
ω

−
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%
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⎠
⎟  (5.31) 

Inspection of Eqs. (5.28) and (5.29) shows a resonance condition existing when 

 
/
/

nk

nk

n
n

ω νω
ω νω

= Ω+
= Ω−

%

%
 (5.32) 

Once again the solution takes the form as anticipated, of the well-known phase 
modulated signal, displaying the characteristics at resonance of an infinite number of 
sidebands around the driving frequency Ω , spaced at / nνω±  decaying with magnitude 
according to the first-order Bessel function ( )J nν β . 
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5.3 Non-uniform continuous rotating load (3) 
The forcing functions for a continuous harmonically varying pressure, are as follows: 
 ( )

3 3 3Re jm tq P e θ −Ω⎡ ⎤= ⎣ ⎦  (5.33) 

 ( )
3 Re jm tq P e θ

θ θ
−Ω⎡ ⎤= ⎣ ⎦  (5.34) 

Substitution of Eq. (5.33) into Eq. (3.5) results in 

 

2
( )

3 3 3
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2
( )3

3 3
0

1 jm t jn
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jm t
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Q P e e
hN

P ReQ e
hN

π
θ θ

π
θ

R θ
ρ

θ
ρ

−Ω −

− Ω
−

= ∂

= ∂

∫

∫
 (5.35) 

Noting Eq. (5.35) is only valid for m n= , which gives a solution of 

 3
3 3

2 jm t

mk

P ReQ
hN

π
ρ

− Ω

=  (5.36) 

Similarly it can be found from Eq. (5.34) that 
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mk
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j P C ReQ
hN

θ
θ

π
ρ

− Ω

=  (5.37) 

The generalised force vector may now be expressed as 
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2 2 2

3
3

2 jm tmk
m
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R P P C
F

hN
)e φθπ

ρ
− Ω ++

=  (5.38) 

Solution for radial and tangential displacements is then found to be as follows: 

 3 1
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∑ ⎬

where  is the model participation amplitude and 33 mka 1ψ  is the phase lag, they are 
solved below as 
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Inspection of Eqs. (5.39) and(5.40), shows a resonance condition existing when 
 mkω = Ω%  (5.43) 
The above resonance condition shows that only a single mode is excited by a continuous 

harmonically varying rotating pressure on a circular ring. A useful result of this would be that 
any rotating pressure field could be made of a Fourier expansion of rotating sinusoidal waves 
and the response made up from a sum of the above solutions for each frequency. 
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6 Conclusions 
Study of the response of shells under moving loads has received only a small amount of 

research interest to date, but the increasing speeds, machine complexity, expanding signal 
processing techniques and the relentless struggle for better analysis of systems has led to this 
paper consolidating the current state of knowledge in this field, for further use in system 
response with shells under this type of loading. 

A general discussion of the unique resonant phenomenon shells undergo when a moving 
load is applied was expanded and presented in depth for the first time. It was found that the 
difference between mode shapes and natural frequencies for a stationary ring under a spatially 
stationary load, as opposed to a moving load on a shell, was due to the existence of only 
forward travelling waves for quasi-stationary mode shapes. This also leads to a major 
difference in how the resonance frequencies are related to mode number for quasi-stationary 
mode shapes, with an asymptotic convergence to a single frequency of resonance for all mode 
shapes of compression type modes. The physical explanation of the quasi-stationary mode 
shapes from a moving point load was described, showing qualitatively that a transient 
response is present up until the point where the load has travelled around the shell’s 
circumference a distance of two-thirds of the wavelength of the lowest mode shape of interest. 

The solution for quasi-stationary modes was undertaken as a unique problem set, with 
different mode shapes, using complex exponentials, as an alternative to normal modal 
analysis, to help aid the solution formation. 

Specific solutions for a moving point load harmonically varying, phase varying and a 
harmonically distributed load were also solved in the correct form for the first time. The form 
of the results for the specific solutions show what would be expected, with the analogous 
amplitude and phase modulated signals having resonance conditions modulated by a pair and 
infinite series of sidebands, respectively, around the centre resonance of /nk nk nω ω=% . The 
result for a moving harmonically distributed load showed that only a single mode shape is 
excited. 
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