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Abstract

With a growing number of available datasets especially from satellite remote sensing, there is a1

great opportunity to improve our knowledge of the state of the hydrological processes via data2

assimilation. Observations can be assimilated into numerical models using dynamics and data-3

driven approaches. The present study aims to assess these assimilation frameworks for integrating4

different sets of satellite measurements in a hydrological context. To this end, we implement a tra-5

ditional data assimilation system based on the Square Root Analysis (SQRA) filtering scheme and6

the newly developed data-driven Kalman-Takens technique to update the water components of a7

hydrological model with the Gravity Recovery And Climate Experiment (GRACE) terrestrial water8

storage (TWS), and soil moisture products from the Advanced Microwave Scanning Radiometer9

- Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS) in a 5-day10

temporal scale. While SQRA relies on a physical model for forecasting, the Kalman-Takens only11

requires a trajectory of the system based on past data. We are particularly interested in testing12

both methods for assimilating different combination of the satellite data. In most of the cases, si-13

multaneous assimilation of the satellite data by either standard SQRA or Kalman-Takens achieves14

the largest improvements in the hydrological state, in terms of the agreement with independent15

in-situ measurements. Furthermore, the Kalman-Takens approach performs comparably well to16

dynamical method at a fraction of the computational cost.17
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1. Introduction18

The study of terrestrial water storage (TWS) and different water compartments, such as19

soil moisture, groundwater, and surface water storage, is essential because of their roles in the20

environment, hydroclimate impacts, and human life as a major fresh water resource. In this regard,21

hydrological models provide a unique opportunity to enhance our understandings of hydrological22

processes within land areas. The models have been used to analyze the spatiotemporal variations23

of hydrological components (e.g., Wooldridge and Kalma, 2001; Doll et al., 2003; Huntington,24

2006; Coumou and Rahmstorf, 2012; van Dijk et al., 2013). Nevertheless, there are factors such25

as inaccurate inputs and forcing fields, data deficiencies (e.g., limited ground-based observations),26

and imperfect modeling that impose a degree of uncertainties in models’ simulations (van Dijk et27

al., 2011; Vrugt et al., 2013). High resolution (spatially and temporally) satellite remotely sensed28

observations of different water compartments can be assimilated to improve models performances29

(Schumacher et al., 2016; Khaki et al., 2017a). Accordingly, various approaches have been put30

forward to efficient incorporation of observations into the models (e.g., Bishop et al., 2001; Kalnay,31

2003; Tippett et al., 2003; Sauer, 2004; Evensen, 2004; Dreano et al., 2015).32

Data assimilation provides a framework to integrate models simulations with new observations.33

When a physics-based model is available, data assimilation techniques constrain the model state34

with available observations in order to bring its outputs closer to the data according to their35

uncertainties (Bertino et al., 2003; Hoteit et al., 2012). This approach has been widely implemented36

in hydrological studies (e.g., Reichle et al., 2002; Seo et al., 2003; Vrugt et al., 2005; Weerts and37

El Serafy, 2006; Neal et al., 2009; Giustarini et al., 2011; Khaki et al., 2018a,b; Tangdamrongsub38

et al., 2018). In other cases, where the physical processes of the studied system are not available or39

perfectly understood, data-driven (or non-parametric) approaches may provide reliable alternatives40

(e.g., Sauer, 2004; Tandeo et al., 2015; Dreano et al., 2015; Hamilton et al., 2016; Lguensat et al.,41

2017). Both dynamical and data-driven modeling approaches have their own advantageous and42

disadvantageous. Traditionally, data assimilation systems were implemented based on a physical43

model, which can lead to a better redistribution of increments between state variables but generally44

requires intensive computations in realistic applications (Tandeo et al., 2015). A data-driven model,45

on the other hand, only relies on data and their associated errors with no or limited knowledge of46

physical processes but computationally can be significantly less demanding.47
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The main aim of this contribution is to assess the performance of these frameworks for assim-48

ilating different combinations of multiple satellite remote sensing products within a hydrological49

context. For this purpose, we use an ensemble-based sequential technique, the Square Root Anal-50

ysis (SQRA) filtering scheme (Evensen, 2004) from dynamical, a modified version of the recently51

developed data-driven approach, Kalman-Takens filter (Hamilton et al., 2016) from the data-driven52

approach. Khaki et al. (2017a) recently studied the performance of various standard data assimila-53

tion schemes and showed that SQRA is highly capable of assimilating TWS data into a hydrological54

model (see also Schumacher et al., 2016). The method has also been found to outperform other55

existing filters, e.g., addressing the sampling error in covariance matrix, especially for the small-size56

ensembles and an efficient resampling process (see, e.g., Whitaker and Hamill, 2002; Nerger, 2004;57

Hoteit et al., 2015; Khaki et al., 2017a).58

In addition to SQRA filter, a modified version of the recently developed data-driven approach,59

Kalman-Takens filter (Hamilton et al., 2016), is applied. Takens method has been used in various60

studies for non-parametric time series predictions (see, e.g., Packard et al., 1980; Takens, 1981;61

Sauer et al., 1991; Sauer, 2004). Hamilton et al. (2016) used this method and developed a new62

model-free filter for data assimilation when the physical model is not available. The Kalman-63

Takens method relies only on observations and a trajectory of the model to build a data-driven64

surrogate of the model dynamics, which is required to forecast the system state at a fraction of the65

computational time. The idea of using the model trajectory has also been used in Tandeo et al.66

(2015) and Lguensat et al. (2017) to simulate the dynamics of complex systems. All these studies67

have shown that the data-driven approach can perform well, sometimes comparable to a standard68

data assimilation.69

Here, for the first time, the application of SQRA and Kalman-Takens are investigated for70

assimilating various observation sets including terrestrial water storage (TWS) derived from the71

Gravity Recovery And Climate Experiment (GRACE), soil moisture products from the Advanced72

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and73

Ocean Salinity (SMOS) into a hydrological model, and their combination. Several studies suggest74

that assimilating these products can successfully constrain the mass balance of hydrological models75

(e.g., Zaitchik et al., 2008; Thomas et al., 2014; Eicker et al., 2014; Reager et al., 2015; Khaki et al.,76

2017b,c). In addition, various studies validate AMSR-E (e.g., Draper et al., 2009; Mladenova et al.,77

2011) and SMOS (e.g., Peischl et al., 2012; Jing et al., 2018) soil moisture products globally and78
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suggest their capability for accurately reflecting soil moisture variations of the surface top soil layer.79

It has also been shown by Renzullo et al. (2014) and Tian et al. (2017) that assimilation of these80

products can effectively improve model soil moisture simulations over Australia. Different scenarios81

are tested here to achieve the best estimates of the water storage components. This involves using82

SQRA and the Kalman-Takens filters for integrating TWS and soil moisture observations separately83

and simultaneously and comparing their impact on different water compartments. Two different84

domains of Murray-Darling and Mississippi basins are selected for testing subject to the availability85

of in-situ measurements for evaluation of the results.86

The rest of the manuscript is organized as follows. Datasets and model are described in Section87

2. The two filtering techniques are presented in Section 3 while Sections 4 and 5 analyze and discuss88

the results, respectively. The study is then concluded in Section 6.89

2. Materials90

2.1. Data assimilation (forecast step)91

2.1.1. W3RA92

Here we use 1◦×1◦ grid-distributed biophysical model of the World-Wide Water Resources93

Assessment (W3RA) for the period from January 2003 to December 2012. W3RA is based on the94

Australian Water Resources Assessment system (AWRA) model, which is provided by the Common-95

wealth Scientific and Industrial Research Organisation (CSIRO) to monitor, represent and forecast96

Australian terrestrial water cycles (http://www.wenfo.org/wald/data-software/). Forcing fields of97

minimum and maximum temperature, downwelling short-wave radiation, and precipitation from98

Princeton University are used in this study (Sheffield et al., 2006, http://hydrology.princeton.edu).99

These 1◦×1◦ daily forcing sets are only used to run the model. It is important to note that100

the inclusion of rain-gauge based product (e.g., Global Precipitation Climatology Centre; GPCC,101

Schneider et al., 2008) can potentially improve the model’s performance (see, e.g., Massari et al.,102

2018). This study, however, uses Princeton Global Meteorological Forcing dataset (Sheffield et al.,103

2006, PRIN;), which has been shown, e.g., by Awange et al. (2016) to exhibit similar patterns104

of correlation to GPCC in some regions. The model parameters include effective soil parameters,105

water holding capacity and soil evaporation, relating greenness and groundwater recession, and106

saturated area to catchment characteristics (van Dijk et al., 2013). The water balance of a top107
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soil, shallow soil and deep soil compartment, as well as groundwater and surface water dynamics,108

are simulated at grid resolution, in which each cell is modeled independently of its neighbors (van109

Dijk, 2010). Water (e.g., from rainfall) redistribute between these compartments starting from the110

top soil layer and entering the deep root layer through capillary rise from groundwater. It then111

leaves the column through soil evaporation, extraction by shallow- and deep-rooted vegetation,112

or drainage into the groundwater store (Renzullo et al., 2014). Model state in the present study113

includes the W3RA water storages in the top, shallow and deep soil moisture, vegetation, snow,114

surface, and groundwater. Figure 1 summarizes the data and methodology (as it will discussed in115

Section 3) used in this study.116

2.2. Data assimilation (analysis step)117

2.2.1. GRACE TWS118

The GRACE spherical harmonic coefficients with their full error information are acquired119

from the ITSG-Grace2014 gravity field model (Mayer-Gurr et al., 2014). Here, we used Stokes’120

coefficients up to degree and order 90 (approximate spatial resolution of ∼300 by 300 km at the121

equator) covering 2003 to 2013. The following steps have been taken before converting the spherical122

harmonics to TWS. Degrees 1 and 2 are replaced with improved estimates since the GRACE-123

estimates are not very reliable (Cheng and Tapley, 2004; Swenson et al., 2008). The L2 gravity124

fields are then converted into 5-day 3◦×3◦ TWS fields (suggested by Khaki et al., 2017b, for data125

assimilation purposes) following Wahr et al. (1998). Note that colored/correlated noise in products126

is reduced by the Kernel Fourier Integration (KeFIn) filter proposed by Khaki et al. (2018c), which127

also accounts for signal attenuations and leakage effects caused by smoothing. The KeFIn filter128

works through a two-step post-processing algorithm. The first step mitigates the measurement129

noise and the aliasing of unmodelled high-frequency mass variations, and the second step contains130

an efficient kernel to decrease the leakage errors (see also Khaki et al., 2018e).131

2.2.2. Soil Moisture132

We use AMSR-E to derive soil moisture products. AMSR-E measures surface brightness133

temperature at twelve channels. This is highly correlated to surface soil moisture content (0-2 cm134

depth) and has been used to produce global data products of surface soil moisture content using135

satellite-based radiometer instruments (Njoku et al., 2003). Daily measurements of surface soil136
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Figure 1: A schematic illustration of the implemented data assimilation frameworks and data used.

moisture from descending passes (see, e.g., De Jeu and Owe, 2003; Su et al., 2013) with a spatial137

resolution of 0.25◦×0.25◦ covering the period between 2003 and 2011 from the gridded Level-3 land138

surface product (Njoku, 2004) are rescaled to a 5-day 1◦×1◦ for the present study.139

We further use Level 3 CATDS (Centre Aval de Traitement des Donnees SMOS) soil moisture140

data (Jacquette et al., 2010) from ESA’s SMOS Earth Explorer mission. SMOS Microwave Imaging141

Radiometer using Aperture Synthesis (MIRAS) radiometer measures microwave emissions from142

Earth’s surface to map land soil moisture (∼ 0-5 cm depth). Here we use ascending passes of the143

satellite subject to their higher agreement to in-situ measurements (see, e.g., Draper et al., 2009;144

Jackson and Bindlish, 2012). The soil moisture data temporal and spatial resolutions are three days145

and about 50 km, respectively. Similar to AMSR-E, SMOS data are rescaled to a 5-day (2011-2013)146

1◦×1◦ scale.147

An important step is required to prepare soil moisture products for data assimilation and148

to remove the bias between the model simulations and observations. These measurements are149

mainly used to constrain the state variability, and not its absolute values. Several studies have150

applied different methods to rescale soil moisture measurements (see, e.g., Reichle and Koster,151
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2004; Kumar et al., 2012). Here, we use cumulative distribution function (CDF) matching for152

rescaling the observations (Reichle and Koster, 2004; Drusch et al., 2005). CDF matching relies153

on the assumption that the difference between observed soil moisture and that of the model is154

stationary and guarantees that the statistical distribution of both time series is the same (Draper155

et al., 2009; Renzullo et al., 2014).156

2.3. Validation dataset157

2.3.1. Water Fluxes158

For the sake of result assessment, water flux observations are also acquired. These include159

monthly precipitation data from TRMM-3B43 products in 0.25◦×0.25◦ spatial resolution (TRMM,160

2011; Huffman et al., 2007), MOD16 evaporation data with eight days temporal resolution and161

one km spatial resolution from the University of Montana’s Numerical Terradynamic Simulation162

group (Mu et al., 2011), and water discharge data from the Global Runoff Data Centre (GRDC)163

and United States Geological Survey (USGS), and the Australian Bureau of Meteorology under164

the Water Regulations (2008). All these products are rescaled into 0.25◦×0.25◦ and to the same165

temporal resolution of data assimilation observations.166

2.3.2. In-situ data167

In-situ groundwater and soil moisture measurements are used to examine the results.168

Groundwater measurements are acquired from USGS for the Mississippi Basin and from New169

South Wales Government (NSW) for the Murray-Darling Basin. Specific yields are required to170

convert well-water levels to groundwater storage variations, which are unknown. Thus, follow-171

ing Strassberg et al. (2007), we use an average (0.15) of specific yields range from 0.1 to 0.3 as172

suggested by Gutentag et al. (1984) over the Mississippi basin, and 0.13 specific yield from the173

range between 0.115 and 0.2 as suggested by the Australian Bureau of Meteorology (BOM) and174

Seoane et al. (2013) for the Murray-Darling basin. In-situ soil moisture data are obtained from175

the International Soil Moisture Network and the moisture-monitoring network over the Mississippi176

and Murray-Darling basins, respectively. The distribution of gauge stations over the study areas is177

presented in Figure 2.178
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Figure 2: Locations of Murray-Darling (a) and Mississippi (b) basins. A distribution of groundwater (circle) and soil
moisture (triangle) in-situ stations are also displayed.

3. Data Assimilation179

The model state includes top, shallow and deep soil moisture, vegetation, snow, surface, and180

groundwater storages for both SQRA and the Kalman-Takens approaches. Except for groundwater181

and surface storages, all the other components are simulated with two hydrological response units182

(HRU) of tall (deep-rooted vegetation) and short (shallow-rooted vegetation), leading to 12 state183
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variables (5× 2 + 2) at each grid cell. These state variables are updated using GRACE TWS and184

satellite soil moisture observations through data assimilation. The assimilation procedure includes185

two step,186

• Forecast step. xt−1 and its error covariance evolve through the time (t), the next assimilation187

step, using the dynamical model (M).188

• Analysis step. The forecast state (xf
t ) is updated by the observation yt.189

Here, both selected filters, i.e., SQRA and Kalman-Takens, use the same analysis step. The main190

difference between the two methods is that while a dynamics-driven model advances the state191

estimate forward in time for forecasting, a data-driven technique uses a model proxy to compute192

the forecast. This process can be achieved using the non-parametric delay-coordinate approach193

(see details in Section 3.1.2).194

3.1. Forecast step195

3.1.1. SQRA196

The model state (xt−1) is integrated in time through a dynamical model (Eq.1). Given an

ensemble member from time t − 1, x = {xi, i = 1, . . . ,n} the forecast state in SQRA can be

calculated using Eq.1. Observations at the assimilation time (t) are represented by {yt}Tt=0 ∈ Rny ,

which are related to the state through a dynamical state-space system of the form,

{
xt

f =Mt−1(xt−1) + νt, (1)

yt = Htxt
f + wt, (2)

where ‘f ’ stands for forecast (and ‘a’ in the following for analysis) and xf refers to the forecast state197

at time t. M(.) is the model operator with the noise processes of ν = {νt}t drawn from N(0,Q)198

with covariance matrix Q, and H is the design matrix with w = {wt}t drawn from N(0,R) with199

covariance matrix R. Accordingly, the forecast state (Pf
t ) in SQRA can be derived by,200

Pf
t =Mt−1Pt−1MT

t−1 + Qt. (3)
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3.1.2. The Kalman-Takens201

The Kalman-Takens filter, initially proposed by Hamilton et al. (2016), is applied here after202

a few modification. As mentioned, the main different between this filter and SQRA is forecasting203

step while both methods use similar analysis scheme. The Kalman-Takens filter replaces model204

equations M with a local proxy f̃ based on data. The method considers delay-coordinate vector205

(to replace the dynamical model for advancing the state forward in time. This delay-coordinate can206

be built using [xo
t,x

o
t−1, . . . ,x

o
t−d], where xo is the training data for reconstructing the system207

and d indicates the number of temporal delays.208

In the original form of the method, it relies on observable yt to create the delay-coordinate209

vector. Here, instead, we use a model trajectory to create the delay-coordinate vector. This is210

motivated by the fact that we are interested in updating the different water storage components211

while GRACE produces the summation of these compartments. We, therefore, assume that a212

trajectory generated by the model is readily available. In the present study the water storage213

components from W3RA, i.e., the open-loop top, shallow and deep soil moisture, vegetation, snow,214

surface, and groundwater are used to create the delay-coordinate vector.215

Using the N nearest neighbors within a set of training data based on a given Euclidean distance,216

the delay-coordinate vectors at t + 1, xo1
t+1,x

o2
t+1, . . . ,x

oN
t+1, can be used to construct the local217

model for predicting xt+1. To this end, a locally constant model following Hamilton et al. (2016)218

is used (see also Hamilton et al., 2017). This model in its most basic form can be assumed as an219

average of the nearest neighbors, e.g.,220

f̃(xt) =

[
xo1

t+1,x
o2
t+1, . . . ,x

oN
t+1

N
,xo

t, . . . ,x
o
t−d+1

]
. (4)

Once the local proxy f̃ is generated, the forecasting step can be carried out to estimate xf . Af-221

terwards, the analysis step of SQRA is applied to reach xa (see Section 3.2). Note that different222

values for the number of neighbors N and delays d were considered and their results are compared223

against in-situ measurement.224
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3.2. Analysis step225

The analysis step in SQRA involves first updating the forecast ensemble-mean (x̄f =226

1
N

N∑
i=1

xi
f ) as,227

x̄a = x̄f + K(y −Hx̄f ), (5)

with Kalman Gain (K)228

K = Pf (H)T (HPf (H)T + R)−1, (6)

and229

Pf =
1

N − 1

N∑
i=1

(xi
f − x̄f )(xi

f − x̄f )T , (7)

where x̄a is the analysis state, and the error covariance associated with observations (y) is denoted230

by R. For each satellite observation set, a different R is used. Full error information of the L2231

potential coefficients for each month are provided for GRACE data (cf. Section 2.2.1). These232

products are then converted from the GRACE coefficients to TWS errors following Schumacher233

et al. (2016). Regarding soil moisture observations, various error values are tested to monitor234

their impacts on data assimilation by comparing the results with independent measurements (cf.235

Section 2.3.2). This allows us to obtain optimum error values for soil moisture part of observation236

error covariance. Accordingly, R is assumed to be diagonal with an error standard deviation237

of 0.04 (m3m−3) for SMOS (suggested by Leroux et al., 2016) and 0.05 (m3m−3) for AMSR-E238

(suggested by De Jeu et al., 2008). It is worth mentioning that using spatially varying error239

information rather than the constant error assumption can lead to different results and potentially240

optimal data assimilation performance. However, providing such an information is difficult and out241

of the scope of our study, so we use the estimated optimal constant errors. Furthermore, we assume242

that GRACE data are uncorrelated from both SMOS and AMSR-E observations. An ensemble of243

anomalies, representing the deviation of the analysis ensemble members from the ensemble mean244

(x̄a) is then sampled by,245

Aa = AfV
√

I−ΣTΣΘT , (8)
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where Af = [A1
f . . .AN

f ] is the ensemble of forecast anomalies (Ai
f = xi

f − x̄f ), Σ and V are246

obtained from the singular value decomposition (SVD) of Af (Af = UΣVT ), and Θ is a random247

orthogonal matrix for redistributing the ensemble variance (Evensen, 2007; Hoteit et al., 2002).248

These perturbations are then added to the analysis state to form a new ensemble by,249

xi
a = x̄a + Ai

a, i = 1, · · · , N. (9)

xi
a is then used to start the next forecasting cycle by integrating the xi

a with the dynamical model250

to compute the next xi
f (cf. Evensen, 2004, 2007; Khaki et al., 2017a).251

3.3. Filter Implementation252

In order to generate the initial ensemble, we perturb the forcing fields according to their253

error characteristics. This is done using a Gaussian multiplicative error of 30% for precipitation, an254

additive Gaussian error of 50Wm−2 for the shortwave radiation, and a Gaussian additive error of255

2◦C for temperature (Jones et al., 2007; Renzullo et al., 2014). Monte Carlo sampling of multivariate256

normal distributions with errors representing the standard deviations of the forcing sets are then257

used to produce the ensemble (see details in Renzullo et al., 2014; Khaki et al., 2017a). The258

produced ensemble of perturbations of 72 members (suggested by Khaki et al., 2017a) are then259

integrated with model between 2000 and 2003 to generate an ensemble at the beginning of the260

assimilation period.261

To mitigate for the standard issues related to the rank deficiency and the underestimation of262

the error covariance matrix of ensemble-based Kalman filters, which are due to the limited number263

of ensemble members and ensemble spread collapse (Anderson , 2001; Houtekamer and Mitchell,264

2001), ensemble inflation and the Local Analysis (LA) scheme (Evensen, 2003; Ott et al., 2004)265

applied. The ensemble inflation method uses a small coefficient to separately inflate prior ensemble266

deviation from the ensemble-mean and increases their variations (Anderson et al., 2007). Here, we267

use a constant factor (S = 1.12; Anderson , 2001; Khaki et al., 2017b) to inflate the ensemble268

perturbations as,269

x′
f

= S(xf − x̄f ) + x̄f , (10)

with X ′f representing the new forecast state, which contains the inflated ensemble perturbation.270
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Table 1: A summary of the applied data assimilation scenarios. Note that all water storages includes top soil, shallow
soil, deep soil water, snow, vegetation, surface, and groundwater storages.

Assimilation
case

Filtering
technique

Observation
type

State vector Updated states

Case 1 SQRA GRACE
TWS

All water storages Storages summation

Case 2 SQRA AMSR-E +
SMOS

Only soil storages
(top, shallow,
deep)

Scaling top soil layer (by field
capacity value)

Case 3 SQRA Joint obser-
vations

All water storages Storages summation by ob-
served TWS + Scaling top soil
layer by observed soil mea-
surements

Case 4 Kalman-
Takens

GRACE
TWS

All water storages Storages summation

Case 5 Kalman-
Takens

AMSR-E +
SMOS

Only soil storages
(top, shallow,
deep)

Scaling top soil layer (by field
capacity value)

Case 6 Kalman-
Takens

Joint obser-
vations

All water storages Storages summation by ob-
served TWS + Scaling top soil
layer by observed soil mea-
surements

LA, on the other hand, spatially limits the impact of given measurements in the analysis step to271

the points located within a certain distance. In using LA, at each horizontal grid point (m,n),272

with m and n representing geographic latitude and longitude directions, respectively, the selected273

measurements close to the grid point contribute to the SQRA filtering process. This means that only274

particular state variables close to the point (m,n) within an assumed distance and corresponding275

observations at the same locations are used in the assimilation process (see details in Khaki et al.,276

2017b).277

Figure 1 presents a summary of the data integration framework for the dynamics- and data-278

driven approaches. Different experimental scenarios in terms of methodology and assimilated ob-279

servations are examined. Table 1 outlines the conducted experiments, indicating, in particular, the280

assimilated observations types and the model used for each case.281

4. Results282

In this section, we first analyze the results of different data assimilation methods and283

scenarios on the forecast estimates. This allows examining how each case incorporates different284
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observations and how these effects are reflected in forecast state variables. Note that this is not285

a result validation process and the purpose of this analysis is to show the capability of different286

scenarios for forecast improving based on assimilated observation. We later evaluate the final287

results by comparing them against the reference fields. It is also worth mentioning that different288

scenarios are considered regarding the number of neighbors N (i.e., 2–40) and also the number of289

delays d (i.e., 1–25) in the Kalman-Takens implementation. It is found that increasing the number290

of neighbors can improve the approximation of training data for a particular point to a certain291

extent (due to the existing spatial correlations). However, selecting N too large can cause a rapid292

growth of errors, which is related to the effect of over-smoothing the training step. This is different293

for delays d, where much larger errors are present for smaller values that underestimate temporal294

variabilities in the data. Accordingly, we set N = 14 and d = 11 as they lead to the best assimilation295

performances for the entire experiment (see more details in Khaki et al., 2018d).296

Figure 3a and Figure 3b plot correlations between the estimated TWS by each filtering method297

and GRACE TWS over Murray-Darling and Mississippi basins, respectively. Correlations between298

the filters estimates and observed soil moistures (from satellites) are also depicted respectively in299

Figure 3c and Figure 3d for the Murray-Darling and Mississippi basins. Note that the correlation300

values are calculated for all grid points within the basins (at 95% confidence interval) and their301

averages at forecast steps for each case is presented in Figure 3.302

The minimum correlation values are found for the open-loop run while all the other cases303

demonstrate higher correlations. Comparable performances are achieved by SQRA and Kalman-304

Takens methods. This is clear from the close correlations for cases 1 and 4, cases 2 and 5, and305

cases 3 and 6, regardless of whether GRACE TWS only, soil moisture measurements only, or both306

of them are assimilated. Based on Figure 3, one can see that both SQRA and Kalman-Takens307

that assimilate GRACE TWS and satellite soil moisture data simultaneously, i.e., case 3 and case308

6, exhibit the highest correlations over the Murray-Darling and Mississippi basins. This can be309

seen for both sets of observations, i.e., GRACE TWS and soil moisture measurements. In cases310

where only one data is assimilated, e.g., cases 1, 2, 4, and 5, the largest correlation is generally311

achieved between the observables and assimilated observations. For example, as it is expected, a312

larger correlation between GRACE TWS and TWS estimates from SQRA and Kalman-Takens are313

achieved when GRACE data is assimilated compared to the cases when satellite soil moisture is314

assimilated. Similarly, the correlation between the estimated and observed soil moisture fields are315
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Figure 3: Average correlations between observable variables and assimilated data sets for each case and open-loop
at forecast steps. (a) and (b) indicate the correlations between estimated and observed TWS over Murray-Darling
and Mississippi basins, respectively. The correlations between estimated top layer soil moisture and observations
(SMOS+AMSR-E) are displayed in (c) for Murray-Darling basin and (d) for Mississippi basin.

the largest for cases 2 and 5 over both basins. Interestingly, the results show that assimilating even316

only one of the observation data sets, e.g., either GRACE TWS or soil moisture products, can also317

improve the correlations for non-observable variables. This demonstrates the efficient impacts of318

data assimilation on all state variables.319

The achieved correlation improvement, however, is largest for the simultaneous assimilation320

cases, where both GRACE TWS and soil moisture products are assimilated. This suggests that321

simultaneous data assimilation can lead to better forecasts. From Figure 3, the simultaneous assim-322

ilation in cases 3 and 6, lead to larger correlations between the filters estimates of soil moisture and323

TWS, and the observations over both basins compared to the case only one observation is assimi-324

lated. In general, in most of the simultaneous assimilation cases, SQRA performs better compared325

to the Kalman-Takens filter. Nevertheless, the correlation values show that this is a marginal326

superiority for TWS correlations while in soil moisture correlation over the Murray-Darling the327

Kalman-Takens filter reaches larger correlation values. To better analyze the impact of data assim-328
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ilation, results of these two simultaneous assimilation cases over Murray-Darling and Mississippi329

basins are plotted in Figure 4. Both cases successfully reduce the misfits between the estimates and330

GRACE TWS as well as soil moisture observations for both basins. Major improvements can also be331

seen compared to open-loop time series. This figure along with Figure 3 illustrate that assimilating332

both observation sets can better balance the effects of observations between all state variables. It333

is particularly of interest to see that the computationally less demanding Kalman-Takens performs334

closely to the dynamical method, and even better in some cases.335

To better show how each method can reduce the misfits between observations and state variables,336

two extreme events including an above average precipitation, mainly caused by El Niño Southern337

Oscillation (ENSO; see, e.g., Boening et al., 2012; Forootan et al., 2016) for the period of 2010–338

2012 over the Murray-Darling basin and the El Niño events in 2010 over the Mississippi basin339

(e.g., Munoz and Dee, 2004) are selected. This experiment is undertaken to monitor each case340

performance for reflecting the above events in the system. Average TWS estimates from each case341

are compared with GRACE TWS in Figure 5, where the first row shows precipitation and GRACE342

TWS time series while the second row demonstrates differences between assimilated observations343

and filter estimates. It can be seen that least errors are calculated for simultaneous assimilation344

using SQRA and to a lesser degree simultaneous assimilation by the Kalman-Takens method. This345

shows that both methods perform well in reducing the discrepancy between model and observations346

in such extreme anomalies. GRACE data assimilation using SQRA and Kalman-Takens appear to347

be more successful to capture these events that satellite soil moisture only assimilation.348

4.1. Groundwater evaluation349

To assess the results of each data assimilation scenario, independent groundwater in-situ350

measurements are used. Estimated groundwater in-situ measurements are spatially interpolated351

to the location of model grid points using the nearest neighbor (the closest four grid values) to352

compare with groundwater time series by each method. Error time series, as a difference between353

in-situ and estimated groundwater values, are then calculated. For every station, we compute354

the Root-Mean-Squared Error (RMSE), standard deviation (STD) of error time series and also355

the correlation between in-situ measurements and filters results. Figure 6 displays the results356

corresponding all assimilation cases over the Murray-Darling and Mississippi basins. One can see357

that the simultaneous data assimilation using both filtering schemes perform closely and better than358
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Figure 4: (a) and (b) show soil moisture and TWS variation time series of simultaneous data assimilations using
SQRA and Kalman-Takens over the Murray-Darling, respectively. (c) and (d) are the same as (a) and (b) but for
the Mississippi basins. The figure also contains average time series of open-loop and observations.

other cases. The least RMSE values are achieved from these cases compared to other scenarios.359

After these, assimilating only GRACE TWS using SQRA, and the Kalman-Takens filter, obtain360

smaller RMSE and STD values. This figure further demonstrates the capability of Kalman-Takens361

for assimilating multiple observation data sets, leading to comparable results to the traditional362
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Figure 5: (a) and (b) represent the average rainfall and GRACE TWS variations, respectively, over the Murray-
Darling basin. The average rainfall and GRACE TWS variations over the Mississippi basin are shown in (c) and (d),
respectively. Note that rainfall bar plots are shifted (-100mm) for a better presentation. Second row: the differences
between GRACE TWS and TWS estimated by each data assimilation case, as well as the open-loop run for the
corresponding basins.

data assimilation system. Detailed results of all tested cases are presented in Table 2. Note that363

a significance test for the correlation coefficients is applied using t-distribution. The estimated364

t-value and the distribution at 0.05 significant level are used to calculate p-value. The correlations365

with p-values that lie under 5% are assumed to be significant.366

Results in Table 2 demonstrates improved estimates after assimilation for all the cases in com-367

parison to the open-loop, 25% RMSE reduction and 28% correlations (on average). The best368

performance is achieved from case 3 (simultaneous assimilation using dynamics method) for the369

Murray-Darling basin and from case 6 (simultaneous assimilation using Kalman-Takens) for the370

Mississippi basin. In most of the cases, more RMSE reductions are obtained over the Mississippi371

basin, especially using Kalman-Takens. The better performance of Kalman-Takens in cases 4 and 6372

in comparison to the cases 1 and 3 within the Mississippi basin could be attributed to model errors373

that can degrade the performance of the parametric approach that relies on the model algorithms.374
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Figure 6: Comparison between different data assimilation cases over the Murray-Darling (a) and Mississippi (b)
basins. Groundwater estimates by filters are compared with in-situ measurements to calculate RMSE, STD, and
correlation.

GRACE TWS suggests larger effects on RMSE reduction than satellite soil moisture products.375

Simultaneous assimilation using either SQRA or Kalman-Takens results in the least RMSEs. Over376

Murray-Darling, assimilation of GRACE TWS only leads to better results in comparison to assimi-377

lating only soil moisture measurements. This, however, is different for the Mississippi basin, where378

assimilating only soil moisture observations in case 2 provides better results. On the other hand,379

Kalman-Takens leads slightly to better results when assimilating GRACE TWS.380

Overall, based on Table 2, simultaneous data assimilation gives the best groundwater estimates381

with larger correlations and less RMSE with respect to the in-situ groundwater measurements.382

The Kalman-Takens results are not only close to those of SQRA but also in some cases show383

larger improvements. More importantly, the Kalman-Takens method is found to be less demanding384

computationally, i.e., ∼ 6 times faster for the study period, compared to SQRA. Knowing that385

both methods exploit similar analysis scheme, the main reason for such superiority refers to faster386

forecasting in the Kalman-Takens filter, which is based on a local approximation (using the proxy387

model) and requires much less computation than a physics-based model.388
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Table 2: Summary of statistical values derived from implemented methods using the groundwater in-situ measure-
ments. For each method the RMSE average and its range (±XX) at the 95% confidence interval is presented. The
improvements in the analysis state RMSE estimates are calculated using the in-situ measurements in comparison to
the forecast states and open-loop run.

Murray-Darling basin Mississippi basin RMSE Reduction (%)

Method RMSE (mm) Correlation RMSE (mm) Correlation Murray-Darling Mississippi

Case 1 26.90±6.32 0.78 33.54±7.56 0.73 36.42 27.59

Case 2 40.72±7.29 0.75 42.08±8.24 0.65 3.76 9.15

Case 3 24.85±5.74 0.80 29.51±6.18 0.82 41.27 36.29

Case 4 28.68±7.18 0.76 31.72±7.06 0.77 32.21 31.52

Case 5 40.09±8.92 0.74 44.29±8.15 0.68 5.25 4.38

Case 6 25.78±5.46 0.82 27.11±6.25 0.84 39.07 40.47

4.2. Soil moisture evaluation389

We further examine the assimilation results by comparing the soil moisture estimates with390

independent in-situ measurements. Here, we only investigate the correlation between the estimate391

and in-situ data because converting the assimilation outputs (as column water storage measured in392

mm) into volumetric units similar to the in-situ soil moisture measurements is likely to introduce a393

bias (Renzullo et al., 2014). Estimated soil moisture at the model top layer is compared with 0-8 cm394

measurements over the Murray-Darling basin and 0-10 cm over the Mississippi basin. We also use395

0-30 cm and 0-50 cm measurements over the Murray-Darling and Mississippi basins, respectively,396

to examine the summation of the model top, shallow and a portion of deep-root soil layers. Lastly,397

0-90 cm (for Murray-Darling) and 0-100 cm (for Mississippi) soil measurements are compared with398

the summation of the model top, shallow, and deep soil moisture layers. Similar to groundwater399

assessment, estimated soil moisture time series are spatially interpolated at the locations of the in-400

situ measurements using the nearest neighbor. The correlation is then calculated between estimated401

and in-situ time series and the results are demonstrated in Figure 7.402

It is clear from Figure 7 that assimilating observations, especially GRACE TWS, mainly affect403

deep soil moisture layers and improve their estimates. The least improvement can be seen for the404

model top layer. Improvements with respect to the open-loop are achieved in all scenarios. These405

improvements, however, are different for each filtering method. Overall, assimilating only soil406

moisture measurements (as in cases 2 and 5) achieves better results in comparison to GRACE only407

assimilation (as in cases 1 and 4) over top layers. Simultaneous data assimilation using either SQRA408
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Figure 7: Average correlations between soil moisture estimated by each applied case and the open-loop run with
in-situ measurements at different layers including 0-8 cm (a), 0-30 cm (b), and 0-90 cm (c) over the Murray-Darling
basin, and 0-10 cm (a), 0-50 cm (b), and 0-100 cm (c) over the Mississippi basin.

or Kalman-Takens achieves the largest correlations to the in-situ measurements for all layers. This409

demonstrates the benefit of assimilating multiple data sets. Again, comparable results are obtained410

from both filtering schemes.411

4.3. Water fluxes assessment412

Comparison between estimated water storage changes, ∆s, and water fluxes, namely precip-413

itation p, evaporation e, discharge q, is assumed here. These components are related to each other414

in reality through the water balance equation (i.e., ∆s = p− e− q). The correlation between the415

estimated ∆s from all assimilation cases and each flux observation is calculated over the Murray-416

Darling and Mississippi basins. The average correlation values are presented in Figure 8. Larger417

correlations are obtained for assimilation cases compared to the open-loop run results. Smaller418

improvements are achieved from the assimilation of only soil moisture measurements in comparison419

to the GRACE, as well as simultaneous data assimilation. Similar to the previous results, it can be420

concluded that GRACE TWS has larger impacts on state estimates during data assimilation than421
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satellite soil moisture measurements, which basically update only the model top layer soil moisture422

component.423
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Figure 8: Average correlations between water storage changes, ∆s, estimated by each applied case and the open-loop
run with water flux observations over the Murray-Darling (a) and Mississippi (b) basin.

Between flux observations, it is found that, in general, larger correlations are achieved between424

∆s and p, which is due to the larger influences of rainfall on water storage variations over the425

basins. SQRA reaches higher correlation values to q over both basins. In terms of p and e, on the426

other hand, the Kalman-Takens filter obtains larger correlations over the Mississippi basin. It can427

also be seen that larger correlation of ∆s to p, generally leads to larger correlation to e in different428

cases (e.g., simultaneous assimilation using SQRA and Kalman-Takens). From Figure 8, it is also429

clear that GRACE only data assimilation has better influences on the Murray-Darling basin, close430

to the simultaneous assimilation results. These results confirm previous outcomes that the Kalman-431

Takens filter performs well during assimilation comparable to the standard data assimilation using432

SQRA.433

5. Discussion434

The results of Section 4 suggest that in all cases, assimilation improves groundwater esti-435

mates in comparison to the open-loop (∼ 38% RMSE reduction). Simultaneous data assimilations,436

i.e., simultaneous assimilations of observations using dynamical method (case 3) and the Kalman-437

Takens (case 6) lead to the largest RMSE reductions of 41.27% with 39.07%, respectively. This is in438
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agreement with the founding of previous literature (see, e.g., Montzka et al., 2012; Renzullo et al.,439

2014; Zobitz et al., 2014; Tian et al., 2017), which suggested that better results can be achieved by440

assimilating multi-satellite products when properly accounting for the measurement errors. Larger441

impacts on results are found for assimilating GRACE compared to satellite soil moisture obser-442

vations. This, in particular, is evident by monitoring data assimilation results against in-situ soil443

moisture networks with the Murray-Darling and Mississippi basins. More pronounced improve-444

ments (12% on average) are obtained in the deep soil moisture layers, where GRACE TWS has the445

larger impacts on state estimates. Approximately 31% improvements in groundwater estimations446

are obtained from GRACE TWS only (in cases 1 and 4) as compared to soil moisture assimilation447

in cases 2 and 5 regardless of the filtering method. A similar impact was also suggested by Khaki448

et al. (2017a). Overall, close performances are observed from the dynamical and data-driven ap-449

proaches. Interestingly, the Kalman-Takens outperforms SQRA filter in some cases, e.g., 2.23%450

more RMSE reduction over the Mississippi basin. Hamilton et al. (2016) explained that in cases451

where the model is subjected to larger errors, the Kalman-Takens could provide better forecasts.452

We further find that the Kalman-Takens is much less computationally demanding (∼ 6 times faster)453

compared to the standard SQRA implementation, which can be very important especially in cases454

with high spatio-temporal resolutions.455

6. Conclusion456

Assimilation of multi-mission satellite products can be achieved using model-based and457

data-driven techniques. We assimilate the Gravity Recovery And Climate Experiment (GRACE)458

terrestrial water storage (TWS) and soil moisture products from the Advanced Microwave Scanning459

Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS)460

using the Square Root Analysis (SQRA) and data-driven Kalman-Takens techniques to assess461

their performances. Independent groundwater and soil moisture in-situ measurements are used to462

examine the data assimilation results over the Murray-Darling and Mississippi basins. Our results463

indicate that in most of the cases, simultaneously assimilation of observations using either SQRA or464

Kalman-Takens provides the best results with respect to in-situ measurements. These variants can465

also better distribute the effects of observations between all state compartments such as different466

soil layers and groundwater. This is shown by the better agreement between assimilation results467

corresponding to cases 3 and 6 and both groundwater and soil moisture in-situ measurements.468
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More improvements in both water components estimates are obtained within Mississippi basin,469

particularly using Kalman-Takens. This could be attributed to the larger model errors, which have470

larger impacts on the parametric method that uses model dynamics. It can be concluded that the471

Kalman-Takens can perform better for the cases the model is subject to error. In general, the472

performances of the data-driven Kalman-Takens approach are comparable to those of the standard473

SQRA. This study suggests that the data-driven filtering technique can be a capable alternative474

for the traditional data assimilation.475
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