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Abstract

In this paper we present the application of an input-output inversion technique for
the open-loop control of an overhead crane modelled as a double pendulum. The
method is mathematically derived, obtaining a parametric trajectory that ensures
reduced residual oscillations. Then, it is shown that the postactuation can be ne-
glected so that the method can be implemented with standard industrial drives.
The robustness of the method is evaluated by means of simulations, and the per-
formance of the method is experimentally compared with the well-known input
shaping technique. The advantages of using a double pendulum model instead of a
simple pendulum one are also shown.

Keywords: Overhead crane, control, residual oscillation, trajectory planning, input-
output-inversion.
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1 Introduction

Overhead cranes are widely used in industry for their capability of moving heavy
payloads despite their relative simplicity and low cost. Much research effort has
been spent in the last thirty years [1] in devising suitable controllers for these sys-
tems, in order to increase their safety and productivity. In fact, the main control
requirement, in addition to minimizing the travelling time or the energy [2–4], is
to reduce the residual oscillation which is in general a difficult task for a human
operator.
Many of the different proposed methodologies are related to the closed-loop con-
trol of the system, in which the angle of the payload is measured. In this context, for
example, a Lyapunov approach [5, 6], a fuzzy logic mechanism [7–9], the model
predictive control concept [10–12], a gain scheduling technique [13, 14], sliding
mode approach [15, 16] and adaptive schemes [17] have been exploited.
However, it has to be recognized that the simplest approach is to apply an open-
loop controller, that is, a motion planning method for which the cart motion is
determined in order to obtain an efficient motion of the payload [18]. This so-
lution is the most appreciated in the industrial context because it avoids the use
of a sensor to measure the angle of the rope (which is unlikely to be available in
practice), it can be easily implemented with standard off-the-shelf motion control
devices (where complex optimization methods cannot be implemented) and it is
fully compatible with the typical (velocity) commands usually performed by crane
operators. In this framework, the most well-known methodology, which has proved
to be very effective in practical cases, is the input shaping [19–28]. This consists
in convolving the motion of the cart, initially defined as if there are no oscillatory
behaviours in the system, with a suitable sequence of impulses in order to generate
the actual cart motion in such a way that no residual payload oscillation appears.
Different modifications of the input shaping technique have been proposed in the
last 10 years to improve robustness and to address practical application issues. In-
deed, the input shaping can be implemented with standard hardware in such a way
that it can help the operator to compensate for the residual vibration in a transparent
way. This is often not straightforward with other motion planning methodologies
such as, for example, [29] where an optimization strategy has been proposed.
It has to be recognized that, in many cases, considering the crane as a simple pendu-
lum is not sufficient in order to obtain an accurate modelling, which is particularly
relevant when open-loop techniques are implemented. Indeed, a double pendu-
lum model can capture much more precisely the dynamics of an overhead crane
in those cases where the mass of the hook and the distance between the centers of
mass of hook and payload are not negligible. Another situation where the simple
pendulum is not sufficient, is the case of distributed mass payloads, for which the
lumped mass simplification hides the presence of a second oscillatory mode of the
system.
For overhead cranes which exhibits double pendulum dynamics, closed-loop tech-
niques have been proposed in the literature [30–34]. In particular, in [31] a robust
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nonlinear closed-loop control is proposed; in [32] a fuzzy approach is applied to
the problem of oscillating payloads with double pendulum dynamics, while in [33]
the sliding mode control is used. A super-twisting-based antiswing controller is
proposed in [34]. However, these closed-loop solutions do not seem practical as,
again, they require the measure of the load angle, which is not available in practice.
Open-loop techniques have also been proposed for the antiswing control of cranes
with double pendulum swing effects. The extension to multimode systems for the
input shaping technique has been proposed in [35–38]. In [39], an optimal en-
ergy trajectory planner is proposed, while in [40, 41] a minimum-time trajectory
planning algorithm is presented. Both the optimization-based approaches include
various states constraints and use the differential flatness of the crane dynamics
to translate the constrained optimization problem into a convex optimization prob-
lem. However, the aforementioned open loop techniques, with the exception of
input shaping, require the solution of non-trivial optimization problems. Solvers
for optimization problems are not present in standard industrial components, and
even if solvers can be implemented, the time required for the solution does not
allow for the use of these techniques for online trajectory planning.

In this paper we propose an input-output inversion technique for the residual
oscillation reduction, by considering both velocity and position control tasks. In
particular, we devise our technique using a double-pendulum model that can cap-
ture the dynamics of distributed payloads, and we systematically validate the pro-
posed approach through simulations and experimental results. Finally, we provide
a fair comparison with the input shaping technique, thus allowing the user to ponder
the pros and cons of each technique and to choose the most appropriate one. Note
that the use of input-output inversion techniques has already been demonstrated
to be effective for the control of oscillatory systems [42]. In particular, in [43]
the input-output method has been employed in conjunction with an observer-based
state-space controller while in [44] a simplified inversion methodology is proposed
for the control of a single oscillatory mode overhead crane. However, both con-
tributions rely on the single-pendulum model, which seems unrealistic and limits
the practical applicability to non-distributed payloads. Moreover, the use of an ad-
vanced control paradigm and the lack of experimental results renders the technique
proposed in [43] unsuitable for the practical implementation in industry, while
in [44] the robustness issue is overlooked. Finally both contribution do not pro-
vide a comparison with other methodologies available in the literature.
The inversion-based design technique is based on a two steps procedure. First, a
desired monotonic output function, with a required order of continuity and with a
finite transition time τ , is defined. For this purpose, a transition polynomial is an
appropriate choice [45]. Secondly, the system dynamics is inverted to determine
an input signal in such a way that, at least in the nominal case, the actual output is
equal to the desired one. In this paper, the procedure is used to obtain the desired
cart position or velocity once the oscillation-free desired motion of the payload has
been defined. As such, the input-output inversion approach results in the synthesis
of suitable reference (feedforward) signals. It is worth stressing that this approach
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do not require an ad hoc control architecture and for this reason it can be applied
to standard off-the-shelf industrial controllers. This makes the methodology very
suitable for a practical usage in industry. In fact, we use the standard feedback
cascade PI control architecture to cope with the unavoidable model uncertainties
and we determine in closed-form the analytical expression of the reference signals,
making our approach suitable for the implementation on commercial devices. In
addition, a feedforward torque signal for the cart motion can be determined in or-
der to improve the performance of the cart control. In this regard, despite being
deemed as an open-loop technique, the input-output inversion allows the full ex-
ploitation of the commercial closed loop-control control systems, thus combining
the advantages of both approaches.
The main issue in the application of this design technique is that, because of the
presence of a negative zero, the input signal and the state of the system do not attain
the steady state value together with the system output at time t = τ . In other words,
a postaction results [46] and this implies that a control action has to be applied even
when the payload has already attained its final position or velocity (depending on
the motion control task).
Hence, in order to further improve the practical applicability of the devised method-
ology, we propose the use of a modified version of the input-output inversion tech-
nique where the postaction is neglected. After tailoring the general methodology to
the overhead crane dynamics, we show that, when the pendulum damping ratio is
negligible (as it is often the case in practical applications, and as normally assumed
in the literature), the time constant of the exponential function that generates the
postaction is also negligible. This greatly improves the industrial applicability of
the proposed methodology. Indeed, the control action attains its steady-state value
when the load reaches its final position/velocity, i.e., in a finite time τ .
Eventually, we experimentally show the effectiveness of the proposed approach
both for velocity and position control. The experimental laboratory scale setup
is built using exclusively off-the-shelf components. In order to thoroughly assess
the applicability of the methodology in an industrial environment, we also test its
robustness against model uncertainties. In this context, we compare the proposed
methodology to the input shaping technique, by analyzing pros and cons of both
the approaches in terms of performance and robustness. In particular, we show that
one of the main advantages of the inversion-based methodology is that, differently
from the input shaping, the transient time of the payload velocity/position is not
limited by the system natural oscillation period. This allows the full exploitation of
the crane actuator. In fact, the transient time can be selected by the user by taking
into account the actuator limitations and the trade-off between performance and
robustness.
Compared with the existing techniques, the main contributions of the proposed
approach can be summarized as follows:

1. all the trajectories and signals necessary to implement the proposed tech-
nique are polynomial, smooth and parametric, and they can be computed
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analytically in closed-form. The trajectory of the payload is monotonic by
construction;

2. the proposed technique does not require optimizations to be solved, and can
therefore be easily be implemented on standard industrial off-the-shelf com-
ponents as demonstrated by the experimental results;

3. the proposed approach hinges on a single tuning parameter (the transition
time τ) that has a clear and immediate physical meaning, allowing the oper-
ator to easily handle the robustness/performance trade-off depending on the
application.

This paper is structured as follows: in Section 2 the double pendulum model is
obtained and in Section 3 the general idea of input-output inversion technique is
briefly reviewed. In Section 4 the control scheme is presented, while in Section 5
the polynomial control laws are calculated by inverting the double pendulum model
of the crane. Simulation results are presented in Section 6, while in Section 7 the
robustness of the method is compared with input-shaping techniques. In Section 8,
the experimental set-up is presented. Finally, experimental results are presented in
Section 9 and concluding remarks are given in Section 10.

2 Double pendulum model

As mentioned in the introduction, whenever the hook mass is not negligible and/or
the payload is distributed, the single-pendulum model is not sufficient to accurately
describe the dynamics of an overhead crane system. As such, we consider the two-
mass pendulum shown in Figure 1. The system consists of a concentrated payload
and a hook with relevant mass. In the model, xc is the position of the cart, u(t)
is the force applied to the cart, mC, m1, m2 are, respectively, the mass of the cart,
of the hook and of the payload, CC, C1, C2 are, respectively, the viscous friction

Figure 1: Sketch of an overhead crane, seen as a double pendulum connected to a
sliding cart.
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coefficients of the cart, of the first and of the second cable, θ1, θ2 are the angles
between the vertical and the first and second cable, while l1, l2 are, respectively,
the lengths of first and of the second cable.
Note that the double pendulum model is very general. Indeed, in the case of dis-
tributed payload (with non-negligible moment of inertia), an equivalent dynamical
two-mass system can be calculated. By considering the first mass as positioned on
the upper extremity of the payload, the values of the masses m1 and m2 and the
length l2 are given by the solution of a system of three equations:

m1 +m2 = M
m1lg = m2(l2− lg)
m1l2

g +m2(l2− lg)2 = I,

(1)

where M is the total mass of the payload, lg is the distance of the center of gravity
of the distributed payload to the top of the payload itself, and I is its centroidal
moment of inertia.
Note that the first equation ensures that the equivalent system has the same total
mass of the distributed payload, the second one places the center of gravity of the
equivalent two-masses system congruently to the position of the center of gravity of
the distributed payload, and the third one ensures an equivalence of the centroidal
moment of inertia.
On the other hand, a reduced simple pendulum model [1], starting from the model
in Figure 1, can be obtained by solving the system of two equations:{

Ms = m1 +m2

LsMs = m1l1 +m2(l1 + l2)
(2)

where Ms is the mass of the payload and Ls the length of the cable in the simple
pendulum model. Note that the first equation ensures that both simple and double
pendulum model have the same total mass, while the second equation ensures the
same moment of inertia with respect to the center of rotation of the pendulum, that
is the cart pivot.

In order to have a tractable model of the crane, we make the following standing
assumptions:

• the mass of the cable is negligible compared to the mass of the payload;

• the movements of the system is on a x−y plan, with no lateral swing, result-
ing in a 2D dynamic model.

• the rope is considered as an inflexible rod (this assumption is motivated by
the fact that, in the normal movements of an industrial crane, the rope is
always stretched and its elasticity is in fact negligible);

Remark. Note that the assumption of an infinite rigidity of the cable is very com-
mon in literature [1]. There are some special cases, see [47], where the effects of
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elasticity in the cables are non-negligible. However, these effects only appear with
rare particularly heavy payloads, and impact on the lateral dynamics, which is out
of the scope of this paper. In the vast majority of the applications, the standing
assumption of rigid cable, which is also assumed in this paper, works perfectly.

The Lagrangian method can be used to find the differential equations that describe
the dynamics of the system in Figure 1, obtaining:

(mC +m1 +m2)ẍ+(m1 +m2)l1θ̈1 cosθ1 +m2l2θ̈2 cosθ2

− (m1 +m2)l1θ̇
2
1 sinθ1−m2l2θ̇

2
2 sinθ2 = u(t)−CCẋ

(m1 +m2)l1ẍcosθ1 +(m1 +m2)l2
1 θ̈1 +m2l1l2θ̈2cos(θ1−θ2)

+m2l1l2θ̇
2
2 sin(θ1−θ2)+(m1 +m2)gl1 sinθ1 =−

C1

l1
θ̇1

m2l2ẍcosθ2 +m2l2
2 θ̈2 +m2l1l2θ̈1 cos(θ1−θ2)

−m2l1l2θ̇
2
1 sin(θ1−θ2)+m2gl2 sinθ2 =−

C2

l2
θ̇2.

(3)

The model can be linearized around its sole stable equilibrium point, that is for
θ1 = 0 and θ2 = 0 (and obviously zero velocities), obtaining the state-space repre-
sentation {

ẋss(t) = Axss(t)+Bu(t)
xp(t) =Cxss(t),

(4)

where
xss =

(
xc ẋc xp ẋp

)T
, (5)

A=



0 1 0 0 0 0

0 −CC

mC

(m1 +m2)g
mC

C1

l2
1mC

0 0

0 0 0 1 0 0

0
CC

l1mC
−g(m1 +m2)(m1 +mc)

l1m1mC
−C1(m1 +mC)

l3
1m1mC

gm2

l1m1

C2

l1l2
2m1

0 0 0 0 0 1

0 0
g(m1 +m2)

l2m1

C1

l2
1 l2m1

−g(m1 +m2)

l2m1
−C2(m1 +m2)

l3
2m1m2


,

(6)

B =

(
0

1
mC

0 − 1
l1mC

0 0
)T

, (7)

C =
(
1 0 l1 0 l2 0

)
. (8)

From system (4) the transfer function of the system is determined as

F(s) :=
XP(s)
U(s)

=
NF(s)
DF(s)

, (9)

where

NF(s) = (C1C2)s2 +(C1gm2l2
2 +C2(gl2

1m1 +gl2
1m2))s+g2l2

2 l2
1m2(m1 +m2)
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and

DF(s) =p6s6 + p5s5 + p4s4 + p3s3 + p2s2 + p1s,

where

p6 =l3
1 l3

2m2m1mC,

p5 =C1l3
2m1m2 +C2l3

1m1mC +C1l3
2m2mC +C2l3

1m2mC +CCl3
1 l3

2m1m2,

p4 =gmCl3
1 l2

2m1m2 +gmCl3
1 l2

2m2
2 +C2CCl3

1m1 +C2CCl3
1m2 +gl2

1 l3
2m2

1m2

+gl2
1 l3

2m1m2
2 +gmCl2

1 l3
2m1m2 +gmCl2

1 l3
2m2

2 +C1CCl3
2m2 +C1C2m1

+C1C2m2 +C1C2mC,

p3 =+CCgl3
1 l2

2m1m2 +CCgl3
1 l2

2m2
2 +CCgl2

1 l3
2m1m2 +CCgl2

1 l3
2m2

2

+C2gl2
1m2

1 +2C2gl2
1m1m2 +C2gmCl2

1m1 +C2gl2
1m2

2 +C2gmCl2
1m2

+C1gl2
2m1m2 +C1gl2

2m2
2 +C1gmCl2

2m2 +C1C2CC,

p2 =g2l2
1 l2

2m2
1m2 +2g2l2

1 l2
2m1m2

2 +mCg2l2
1 l2

2m1m2 +g2l2
1 l2

2m3
2

+mCg2l2
1 l2

2m2
2 +C2CCgl2

1m1 +C2CCgl2
1m2 +C1CCgl2

2m2,

p1 =CCg2l2
1 l2

2m2
2 +CCm1g2l2

1 l2
2m2.

Since in typical industrial cranes only the position/speed of the motor (that is, of
the cart) is measured, it is convenient to represent (9) as the product of two different
transfer functions, namely

F(s) =
XP(s)
U(s)

= P(s)
1
s

G(s), (10)

where

P(s) :=
VC(s)
U(s)

=
NP(s)
DP(s)

(11)

is the transfer function between the force applied to the cart and the velocity of the
cart, where

NP(s) =λ4s4 +λ3s3 +λ2s2 +λ1s+λ0,

with

λ4 =
l1 l2 m1

g2 (m1 +m2)
,

λ3 =
C2 l3

1 m1 +C1 l3
2 m2 +C2 l3

1 m2

g2 l2
1 l2

2 m2 (m1 +m2)
,

λ2 =
gl3

1 l2
2 m2

2 +gm1 l3
1 l2

2 m2 +gl2
1 l3

2 m2
2 +gm1 l2

1 l3
2 m2 +C1C2

g2 l2
1 l2

2 m2 (m1 +m2)
,

λ1 =
C2 l2

1 m1 +C1 l2
2 m2 +C2 l2

1 m2

gl2
1 l2

2 m2 (m1 +m2)
,

λ0 =1,
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and

DP(s) = DF(s), (12)

and

G(s) :=
XP(s)
XC(s)

=
VP(s)
VC(s)

=
NF(s)
DP(s)

(13)

is the transfer function between the position (velocity) of the cart and the position
(velocity) of the payload.

3 Input-Output inversion

The input-output inversion methodology is described in details in [44]. In brief,
the desired output trajectory is defined as the normalized transition polynomial
function

ȳ(t,τ) =


0 t ≤ 0
(2k+1)!
k!τ2k+1 ∑

k
i=0

(−1)k−it2k−i+1

i!(k−i)!(2k−i+1) 0 < t < τ

1 t ≥ τ.

(14)

where τ is the transition time. The analytical form of the input that results in (14)
is then calculated as

W (s;τ) = H−1(s)Ȳ (s;τ), (15)

where H−1(s) is the inverse of the system transfer function and Ȳ (s;τ) is the
Laplace transform of (14).

4 Control scheme

A major advantage of the input-output inversion technique is the possibility to de-
compose the transfer function of the system and to invert the obtained transfer
functions separately. This is very useful when the control system allows a feedfor-
ward signal to be implemented.
Two control schemes can be used to control the crane, depending on the required
task. If a constant velocity is required, the control scheme shown in Figure 2(a) is
employed. The cart velocity command signal ṽ to be applied as input of the closed-
loop control system can be determined using the input-output inversion technique
on the transfer function (13) from the cart velocity to the payload velocity. The cart
velocity is measured and the cart velocity is controlled by using a PI controller. The
force feedforward signal ũv is then obtained by inverting the transfer function be-
tween the force acting on the cart and the velocity of the payload, obtained from
(10):

I(s) =
VP(s)
U(s)

= P(s)G(s). (16)
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(a) (b)

Figure 2: (a) Velocity control scheme and (b) position control scheme.

In the case where a given displacement of the payload is desired, the position con-
trol scheme in Figure 2(b) is used. A cascade control scheme is then employed
with an inner cart velocity control loop and an outer cart position control loop, as
customary in industrial motion control applications. The position command signal
x̃ is obtained by inverting the transfer function (13) between the cart position and
the payload position. Then two different feedforward signals are used in the con-
trol system. The cart velocity feedforward signal ˙̃x is obtained by differentiating
the position signal x̃, while the force feedforward signal ũp is calculated by invert-
ing the transfer function (9) between the force applied to the cart and the position
of the payload.

The force feedforward signals ũv and ũp, and the velocity feedforward signal ˙̃x
increase the tracking performance of the control system. Industrial off-the-shelf
drives usually by default allow the implementation of a feedforward signal (at least
for the force). Most control techniques for residual oscillation reduction do not
provide a force feedforward signal, decreasing the tracking performance, which
only relies on the feedback controllers.

5 Inversion of the Crane Dynamics

The input-output inversion technique presented in Section 3 is now applied to invert
the crane model developed in Section 2, in order to calculate the command and
feedforward signals of the control schemes of Figures 2(a) and Figure 2(b).

5.1 Cart position (velocity) to payload position (velocity) inversion

The transfer function (13) describes the relation between the position of the cart
and the position of the payload. Its inverse can be expressed as

G−1(s) = γ2s2 + γ1s+ γ0 +
ρ1s+ρ0

NF(s)
, (17)

where γ2,γ1,γ0,ρ1,ρ0 are constants that depend on the parameters of the system.
Having defined the unitary load trajectory (14), the desired trajectory for a dis-
placement of q can be obtained as x̄p(t;τ) = qȳ(t;τ). Remembering that (13) is
also the transfer function between the cart velocity and the load velocity, the same
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procedure can be applied to determine the cart velocity by defining the desired
load speed as v̄p(t;τ) = qȳ(t;τ). Using (17), the corresponding trajectory of the
cart x̃(t;τ) such that (x̃(t;τ), x̄p(t;τ)) is an input-output pair for (13) can be calcu-
lated, and the cart trajectory is unique and bounded [44].
Defining the inverse Laplace transform of the zero dynamics of the system as

η0(t) = L −1
{

ρ1s+ρ0

NF(s)

}
(18)

from (17) we obtain

x̃(t;τ) = γ2x̄(2)p (t;τ)+ γ1x̄(1)p (t;τ)+ γ0x̄p(t;τ)+
∫ t

0
η0(t−υ)ȳ(υ , t)dυ . (19)

The determination of x̃(t;τ) involves the calculation of both the derivative of the
polynomial (14) and the convolution integral. The formers can be obtained by
explicitly deriving (14):

Dα ȳ(t,τ) =


0 t ≤ 0
(2k+1)!
k!τ2k+1 ∑

k
i=0

(−1)k−iτ i(2k−i+1)
i!(k−i)!(2k−i+1)(2k−i+1−α)! τ

it2k−i+1−α 0 < t < τ

1 t ≥ τ.

(20)

with α ∈N, while the latter can be computed by solving the integral by part. How-
ever, when the zero dynamics of the system exhibits a fast decay (namely much
faster than the system poles), it can be neglected, as its contribution is filtered by
the slow poles of the system.
The zeros of the crane are given by the zeros of the polynomial NF(s) in (9), namely

z1 =−
gl2

1(m1 +m2)

C1
,

z2 =−
gl2

2m2

C2
.

(21)

From (21) it can be seen that the smaller the values of the pivot friction coefficients
C1,C2, the higher the frequencies at which the zeros occur. From a physical point
of view, this means that if the load frictions C1,C2 are small, the zero dynamics
can be neglected with respect to the dynamics of the system, which implies that
the convolution integral

∫ t
0 η0(t −υ)ȳ(υ , t)dυ is also negligible. In other words,

the so-called post-action (or post-actuation) [46] can be avoided when controlling
systems like overhead cranes, which are characterized by very small friction coef-
ficients C1,C2.
This simplification is a major advantage from the control point of view. The negli-
gibility of the convolution integral in (19) implies that the inversion of the system
dynamics only involves the derivatives of the desired output. Being the output de-
fined as (14), its derivatives are zero for t ≥ τ . This means that the corresponding
input is constant for t ≥ τ , which implies that the control signal does not change
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after the time τ has elapsed (see Sections 6 and 9).
Thus, if the frictions coefficients C1,C2 are small enough, for the input-output in-
version purpose only, the transfer function (13) can be approximated as

G(s)≈ K
DG(s)

, (22)

where K = g2l2
1 l2

2m2 (m1 +m2). The inversion of the simplified transfer function
(22) gives the simplified polynomial trajectory of the cart

x̃(t;τ) =
1
K

(
λ4x̄(4)p (t;τ)+λ3x̄(3)p (t;τ)+λ2x̄(2)p (t;τ)+λ1x̄(1)p (t;τ)+λ0x̄p(t;τ)

)
.

(23)
The previous procedure can be applied straightforwardly also to determine the cart-
to-load speed inverting signal in the case of velocity control, as (13), and conse-
quently (22), describe both the relation between the positions of cart and payload
and the relation between the velocities of cart and payload. To this end, it is suffi-
cient to substitute x̄p(·) with the desired speed v̄p(·) (defined as a transition poly-
nomial) and x̃(·) with the cart inverting speed ṽ(·).
Finally, the order k of the transition polynomial x̄p(t;τ) can be selected as k = 3
while, in the case of velocity control, the order of the transition polynomial v̄p(t;τ)
can be selected as k = 2, so that the inverting cart reference position signal x̃(t;τ)
is of order C(1), while the inverting set-point reference ṽ(t;τ) is of order C(0) (con-
tinuous).

5.2 Cart force to payload position (velocity) inversion

As mentioned before, even if industrial motion controllers have position/velocity
feedback control loops, typically a feedforward torque signal can be given to the
motor in order to improve the tracking performance. In the case of input-output
inversion, a feedforward force signal can be calculated by inverting the transfer
function between the force applied to the cart and the desired output trajectory (or
velocity profile) of the payload. Obviously, the obtained force signal has to be
converted into a torque signal by taking into account the transmission ratio of the
particular hardware.
Transfer functions (9) and (13) share the same zeros, so that the simplification
introduced by neglecting the post-action caused by the convolution integral, which
lead to (22), can be used also in this case. For position control, by applying the
simplified inversion procedure to (9) we obtain

ũp(t;τ) =K(p6x̄(6)p (t;τ)+ p5x̄(5)p (t;τ)+ p4x̄(4)p (t;τ)p3x̄(3)p (t;τ)

+ p2x̄(2)p (t;τ)+ p1x̄(1)p (t;τ)).
(24)

In the case of velocity control, the transfer function to be inverted is the one
between the force applied to the cart and the velocity of the payload (16). The
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feedforward input force signal can be obtained by applying the simplified inversion
procedure to (16), obtaining

ũv(t;τ) =K(p6x̄(5)p (t;τ)+ p5x̄(4)p (t;τ)+ p4x̄(3)p (t;τ)p3x̄(2)p (t;τ)

+ p2x̄(1)p (t;τ)+ p1x̄p(t;τ)).
(25)

Remark. Theoretically, the value of the transition time τ can be selected arbitrar-
ily. In practical cases, however, the actuator limits and the robustness of the system
have to be considered in the choice of this value. Nevertheless, there is no lower
bound of the transition time imposed by the periods of the oscillatory modes of the
system, and this represent a clear advantage with respect to other techniques.

6 Simulation results

Simulation results have been obtained using Simscape Multibody [48]. In partic-
ular a nonlinear model of a double pendulum crane has been built by considering
the nominal values of the parameters listed in Table 1. The zeros of the system are
in [−588.6,−294.3] [Hz] and the poles in[
0,−8.3 ·10−5,−0.014±3.391i,−0.0029±1.494i

]
[Hz]. It can be seen that the

zeros are strongly shifted to the left of the complex plane compared to the poles,
justifying the assumption of negligible zero dynamics.
As a first example we consider the velocity control with final velocity q = 5 [m/s]
and transition time τ = 4.21 [s].
This value of the transition time has been selected in order to perform a fair com-
parison with the input shaping methodology as it will be shown hereafter. The
application of the input-output inversion methodology yields the command signal
ṽ (23) and the feedforward signal ũv (25) shown in Figure 3, where the desired
output (i.e., the transition polynomial (14)) is also shown, along with the system
response of the nonlinear model. A comparison with the ZV input shaping tech-
nique [27] has been performed by considering the same task. In this case, the
reference signal has been selected as a ramp with a transient time equal to 1 [s].
The use of a shaper introduces a delay in the reference signal equal to a multiple
of the sum of the semi-periods of the system. In particular, the delay introduced by
the ZV shaper is equal to 0.5(T1 +T2), where T1 and T2 are the periods of the first
and second oscillatory modes of the system.
For the considered crane, it can be determined that T1 = 4.54 [s] and T2 = 1.88 [s],
so that the total transient time is equal to τ = 4.21 [s], which is the same transient
time used for the input-output inversion. Results obtained with the input shaping
are shown in Figure 4.

As a second example we consider a position control task with q = 10 [m] and
τ = 4.21 [s] The signals x̃ , ˙̃x e ũp obtained with the inversion based methodology
are shown in Figure 5 together with the obtained results. The comparison with ZV
input shaping technique (where the same reasoning related to the transition time
made for the velocity case applies) can be evaluated in Figure 6.
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Figure 3: Velocity command signal ṽ (blue dash-dot line), desired payload trajec-
tory (solid black) and actual payload trajectory obtained with the nonlinear model
(orange dashed line) (top). Force feedforward signal ũv for velocity control ob-
tained with input-output inversion of the model (bottom).
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Figure 4: Velocity ramp trajectory reference of the cart (black dash-dot line),
shaped cart velocity signal (blue solid line) using the ZV shaper, and actual payload
trajectory (dashed orange line).
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Table 1: Parameters of the model used in simulations.

Model data
mC 100 [kg] CC 0.1 [Ns

m ]
m1 10 [kg] C1 3 [Nms

rad ]
m2 10 [kg] C2 3 [Nms

rad ]
l1 3 [m] l2 3 [m]
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Figure 5: Position commend signal x̃ (purple dash-dot line), desired payload tra-
jectory (black solid line) and actual payload trajectory (dashed orange line) (top).
Cart velocity feedforward signal ˙̃x (center). Force feedforward signal ũp for posi-
tion control obtained with input-output inversion of the model (bottom).
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Figure 6: Position trajectory reference of the cart (black dashed line) and shaped
cart position signal (blue solid line), using the ZV shaper, and resulting payload
trajectory (dashed orange line).
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7 Robustness

Robustness is a key issue in open-loop control techniques. In particular, it is inter-
esting to study the robustness of open-loop techniques with respect to structured
uncertainties, that is to errors in the model parameters. In the case of gantry cranes,
the parameters that are more likely to vary are the length of the hoisting cable l1
and the mass of the payload m2. In this section the robustness of input-output in-
version and input shaping techniques applied to the double pendulum crane model
of Section 6 is investigated by means of systematic simulations.

Remark. The measure of robustness adopted in this paper is the sensitivity curves
surface, which correlates the maximum residual oscillation of the payload with the
parameters uncertainty. The chosen metric is a de facto standard for the evaluation
of open-loop techniques [19,23–25,35,38], and it is also exploited for the definition
of extra-insensitive input shapers [25]. The reason of the success of the maximum
residual oscillation for the evaluation of the robustness lies in its simplicity and
at-a-glance understandability, which renders the adopted metric very suitable for
non highly-specialized engineers and industrial practitioners. This is in line with
our objective of devising a industrially feasible solution, easily implementable by
using off-the-shelf automation components.

Different input shapers have been applied, namely those listed in Table 2,
where, for each case, the associated delays and the resulting total transient times
are also shown.

For a fair comparison between input-output inversion and input shaping tech-

Table 2: Delays introduced by the input shaping techniques. T is the sum of the
periods of the system to be controlled.

IS technique Delay Total transient time [s]
ZV 0.5T 4.21
ZVD T 7.42
EI T 7.42
ZVDD 1.5T 10.63
Two-hump EI 1.5T 10.63

niques, the transient time τ of the reference polynomial (23) has been set, in each
case, equal to the total transient time of input shaping techniques.
The results obtained simulating the response of the system varying l1 and m2 are
plotted in Figure 7. The robustness is measured as the maximum value of the resid-
ual oscillation, that is the maximum distance of the payload from the equilibrium
position after the transient time. First of all, in Figure 7(a) and 7(b) it can be seen
that the performance of the input-output inversion technique is comparable with
the performance of ZV input shaping techniques. More robust techniques, such
as ZVD, ZVDD, EI IS and Two-hump EI IS have an increased robustness when
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Figure 7: Comparison of the robustness to parameter errors of input shaping and
input-output inversion technique for both position (left) and velocity (right) control.
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compared with the input-output inversion technique with the same transient time
τ . From the results in Figure 7(c), 7(d), 7(e), 7(f), it can be seen that, even if input
shaping techniques are more robust, the input-output inversion methods present a
similar behaviour in the region of the correct parameters, i.e., the advantages of in-
put shaping over the input-output inversion can only be appreciated when the mod-
eling errors are extremely high. Further, the input-output inversion performance in
terms of robustness is comparable to the one of the two-hump input shaping tech-
nique.
These observations are valid for both position and velocity control, as input shap-
ing and input-output inversion have the same response in terms of robustness.
Due to the strong dependence of the frequencies of the system on the length of the
cable, open-loop techniques for the control of overhead cranes are generally robust
with respect to changes in the mass of the payload, while they are more sensitive
to changes in the length of the cable. This dependence is well represented by the
V-shape of the graphs in Figure 7. In any case it also appears that the robustness of
the input-output inversion technique increases when the transient time increases,
which makes the role of this design parameter clear.

8 Experimental setup

In order to test the performance and the applicability of the proposed technique, a
3x3 [m] laboratory overhead crane has been used. For the purpose of this paper,
the bearing structure can be considered rigid. Two different payloads have been
used: a cylindrical concrete block with non-negligible moment of inertia, and two
iron discs, linked by means of a cable, that simulates the presence of a hook and
a concentrated payload. The laboratory overhead crane used can be seen in Figure
8 with the distributed payload configuration and with the hook and concentrated
payload configuration.
For the cylindrical distributed payload like the one used for this setup, an equivalent
two-mass pendulum model can be obtained by solving (1), resulting in

m1 =
1
4 M

m2 =
3
4 M

l2 = 7
12 L,

(26)

where M and L are the mass and the length of the cylindrical payload. The equiv-
alent values of both double and simple pendulum that fully describe the dynamics
of the real system are listed in Table 3. These values have been directly measured
(masses and lengths) or experimentally obtained. The corresponding zeros and
poles, expressed in [s−1] are

Z1 = [−1206,−60.8] ,P1 = [0,−1.923,−0.556±9.840i,−0.1711±2.656i] ,

Z2 = [−529.3,−39.18] ,P2 = [0,−1.957,−0.266±5.728i,−0.157±2.622i] .
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Figure 8: The 2D laboratory overhead crane used for the experimental evaluation
of the method proposed. Distributed payload (left) and hook and concentrated
payload (right) cofigurations.

Table 3: Parameters of the crane model with distributed payload and hook plus
concentrated payload.

Distributed payload Hook plus payload
mC 38.0 [kg] 38.0 [kg]
m1 2.45 [kg] 4.57 [kg]
m2 7.35 [kg] 3.78 [kg]
l1 1.12 [m] 1.03 [m]
l2 0.581 [m] 0.86 [m]
M 9.80 [kg] 8.35 [kg]
L 1.556 [m] 1.419 [m]
CC 85 [Ns/m] 85 [Ns/m]
C1 0.1 [Nms/rad] 0.15 [Nms/rad]
C2 0.4 [Nms/rad] 0.7 [Nms/rad]
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Figure 9: Cart position tracking error during a displacement of 1.2 [m] using input-
output inversion technique, with (solid line) and without (dotted line) the torque
feedforward.

It can be seen that the zeros of the system exhibits a faster dynamics with respect
to the poles, justifying the assumption of negligible post action.

The control system has been implemented by means of a standard industrial
PLC. In particular, the position and velocity control systems in Figure 2(a) and Fig-
ure 2(b), respectively, are embedded into the motor drive; the PI controllers have
been tuned by a trial-and-error procedure. The use of a torque feedforward and
the slow dynamics of the crane justify a non-optimal tuning of the PI controllers,
provided that the reference trajectory is followed with a satisfactory tracking per-
formance (note that this is almost always the case in industry). Indeed, using a
torque feedforward, the PI controllers only compensate for the possible mismatch
between the model and the real crane, and, at least in the nominal case, they could
be ignored. In any case, even without using the torque feedforward, the obtained
tracking error is negligible, as shown in Figure 9, as evidence of the good tuning of
the controllers. If then we use the torque feedforward, the dynamic tracking error
becomes virtually zero, and the only source of (negligible) tracking error remains
the unmodeled passage from static to kinetic friction (clearly visible at the begin-
ning of the motion task in Figure 9). Moreover, another torque feedforward signal
compensates the nonlinearity introduced by the Coulomb friction that affects the
sliding of the cart in our setup. The parametric command signals described by
(23), (ṽ and x̃ in Figure 2(a) and Figure 2(b) respectively), and (24) and (25), (ũv

and ũp in the same figures) are generated by means of function blocks written in
IEC 61131-3 structured text. The feedforward velocity signal ˙̃x in Figure 2(b) is
automatically calculated by the servo drive numerically differentiating the noise-
free signal x̃.
It is worth stressing that the system has been assembled using off-the-shelf indus-
trial components. The presented method results in a computationally light polyno-
mial reference signal, that can be calculated in closed form, and it is thereby imple-
mentable in virtually every commercially available servo drive and PLC. Moreover,
the obtained reference signal (13) is parametrized in τ , that is, the total transition
time, and in the parameters of the model in Figure 1, which are easy to measure.
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The angles during the tests have been measured using a narrow-band camera that
acquires markers positioned on the payload and reconstructing frame by frame the
angles θ1 and θ2 of the model in Figure 1 [35]. Note that this measurement has
never been employed in the control algorithm, but its only purpose is to evaluate
the achieved performance.

9 Experimental results

Experimental results obtained with the setup described in Section 8 are presented
and discussed in this section. In particular, the effectiveness of the simplified input-
output inversion technique for double pendulum cranes, is experimentally demon-
strated.

9.1 Velocity control

For the velocity control task, the payload is required to move from zero velocity
to a velocity of q = 500 [mm/s] with different transient times. For the distributed
payload, which have periods T1 = 2.36 [s] and T2 = 0.64 [s], a ramp reference sig-
nal with an acceleration of 1720 [mm/s2], considering the delay introduced by the
use of ZV technique in Table 2, gives a total transient time of τ = 1.79 [s]. For
the hook plus payload setup, the values of the parameters in Table 3 give periods
of T1 = 2.38 [s] and T2 = 1.01 [s]. A ramp with an acceleration of 4300 [mm/s2]
gives a transient time τ = 1.81 [s]. The tests have been executed using input shap-
ing multimode ZV technique and input-output inversion technique based both on
simple and double pendulum models. The results in terms of residual oscillations
can be seen in Figure 10.The displacement from the nominal position after the
movement when anti-sway techniques are not used reaches 0.06 [m] in the case of
distributed payload and 0.10 [m] in the case of hook and point mass payload.
The transient time has then been reduced to 1.2 [s]. This is not feasible with the in-
put shaping, as for both the setups the use of input shaping techniques introduces a
delay (listed in Table 2) that is more than 1.2 [s]. The results applying input-output
inversion technique based both on the simple and the double pendulum model for a
transient time of τ = 1.2 [s] are shown in Figure 11. In this case, the displacement
from the nominal position after the movement when anti-sway techniques are not
used reaches 0.03 [m] in the case of distributed payload and 0.12 [m] in the case of
hook and pointmass payload.

9.2 Position control

Input-output inversion and input shaping techniques have been applied also to the
position control of the system. In particular, the payload has been moved for a
total displacement of 1.2 [m] in the transient times τ = 4 and τ = 3 [s]. Given a
maximum acceleration of 3000 [mm/s2] and a trapezoidal law of motion for the
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Figure 10: Residual oscillations in the case of velocity control for the distributed
payload (left) with τ = 1.79 [s] and the hook and pointmass payload (right) with
τ = 1.81 [s] using input shaping technique based on a simple (dotted violet line)
and double (dash-dot yellow line) pendulum model and using input output inver-
sion technique based on a simple (dashed red line) and double (solid blue line)
pendulum model.
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Figure 11: Residual oscillations in the case of velocity control for the distributed
payload (left) and the hook and pointmass payload (right) with τ = 1.20 [s] using
input output inversion technique based on a simple (dashed red line) and double
(solid blue line) pendulum model.
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Figure 12: Residual oscillations in the case of position control for the distributed
payload (left) and the hook and pointmass payload (right) with τ = 4 [s] using
input shaping technique based on a simple (dotted violet line) and double (dash-
dot yellow line) pendulum model and using input output inversion technique based
on a simple (dashed red line) and double (solid blue line) pendulum model.
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Figure 13: Residual oscillations in the case of position control for the distributed
payload (left) and the hook and pointmass payload (right) with τ = 3 [s] using input
output inversion technique based on a simple (dashed red line) and double (solid
blue line) pendulum model.

input shaping control, only the transient time of 4 [s] is feasible for the input shap-
ing technique. The results in terms of residual oscillations are in Figure 12. The
displacement from the nominal position when anti-sway techniques are not used
reaches 0.32 [m] in the case of distributed payload and 0.29 [m] in the case of hook
and point mass payload.
The transient time has then been reduced to 3 [s], which is not feasible with the in-
put shaping. The results obtained with the input-output inversion technique, based
both on the simple and the double pendulum model, for a transient time of τ = 3 [s]
are shown in Figure 13. In this case, the displacement from the nominal position
after the movement when anti-sway techniques are not used reaches 0.13 [m] in
the case of distributed payload and 0.17 [m] in the case of hook and concentrated
payload.

23



9.3 Results analysis

From the analysis of the experimental results of both velocity and position control,
it can be seen that the use of a double pendulum model in an anti sway technique
leads to superior performance. The improvement in performance is more signifi-
cant, for both the distributed payload and the hook and point mass payload, when
the transient time τ decreases. With a decreased transient time, in fact, the high
frequency-components of the system are more excited, and they affect more the re-
sponse of the system. While a simple pendulum model is able to describe only the
main frequency of the crane, the double pendulum model also captures the second
oscillation mode, higher in frequency, yielding small residual oscillations also in
fast movements.
By analyzing the results in Figure 11 and in Figure 13 it appears that the input-
output inversion guarantees a significant improvement in the performance com-
pared to the one obtained without anti-sway techniques, even when, due to the
reduced transient time, input shaping techniques are not implementable.

10 Conclusions

In this paper, we propose an input-output inversion technique for the reduction of
residual oscillations of overhead cranes modelled as a double pendulum. Both ve-
locity and position control tasks have been considered.
The method can be easily implemented with commercial off-the-shelf industrial
components, thanks to the provided analysis that shows that the postaction can be
neglected, which allows the analytical determination of the inversion-based com-
mand as a simple parametric polynomial. A relevant feature of the technique is
that the transient time τ of the desired output function is a design parameter that
can be selected in order to fully exploit the actuator capabilities and to handle the
trade-off between performance and robustness.
Simulation and experimental results have shown the effectiveness of the proposed
methodology in handling those situations where the mass of the hook is significant
with respect to the mass of the payload or, equivalently, when there is a distributed
payload. A comparison with the input shaping technique has shown that the two
techniques provide a similar robustness. However, the inversion-based method
does not constrain the minimum transient time to be a function of the sum of the
periods of the system.
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