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Abstract

Low-field Nuclear Magnetic Resonance (NMR) is a non-invasive method widely used in
the petroleum industry for the evaluation of reservoirs. Pore structure and fluid properties
can be evaluated from transverse relaxation (T2) distributions, obtained by inverting the
raw NMR signal measured at subsurface conditions or in the laboratory. This paper aims
to cast some light into the best practices for the T2 data acquisition and inversion in
shales, with a focus on the suitability of different inversion methods. For this purpose,
the sensitivity to various signal acquisition parameters was evaluated from T2 experiments
using a real shale core plug. Then, four of the most common inversion methods were
tested on synthetic T2 decays, simulating components often associated with shales, and
their performance was evaluated. These inversion algorithms were finally applied to real T2

data from laboratory NMR measurements in brine-saturated shale samples. Methods using
a unique regularization parameter were found to produce solutions with a good balance
between the level of misfit and bias, but could not resolve adjacent fast T2 components.
In contrast, methods applying variable regularization – based on the noise level of the
data – returned T2 distributions with better accuracy at short times, in exchange of larger
bias in the overall solution. When it comes to reproducing individual T2 components
characteristic of shales, the Butler-Reeds-Dawson (BRD) algorithm was found to have
the best performance. In addition, our findings suggest that threshold T2 cut-offs may
be derived analytically, upon visual inspection of the T2 distributions obtained by two
different NMR inversion methods.

Keywords: Formation Evaluation, Nuclear Magnetic Resonance, Transverse Relaxation, Porous Media,
Inversion, Shale
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1. Introduction

Nuclear Magnetic Resonance (NMR) is an established technique that has applications

across a wide range of scientific disciplines, including medicine, material science and chem-

istry. One of the key features of this method is that measurements are non-invasive, so5

NMR is routinely used in the study of fluid-saturated porous media. This has proven

particularly useful to the petroleum industry, where NMR tools are routinely used for the

evaluation of reservoirs.

The analysis of NMR data obtained from wireline logging and laboratory measurements

on cores can yield valuable information about the pore system and the different fluids10

present (Dunn et al., 2002; Kenyon, 1997; Freedman, 2002; Prammer et al., 1996; Coates

et al., 1998). One-dimensional experiments are the most common application of the NMR

technique for the study of porous media, and involve T1 and T2 measurements using low-

field NMR spectrometers. Relaxometry experiments inspect the characteristic relaxation

of the rock and fluids within its pores, which can be used to assess porosity and pore size15

distributions. However, a robust quantitative analysis of NMR results is essential before

reliable petrophysical parameters can be derived. The narrow pores and fast relaxation

rates characteristic of NMR measurements in shales generates additional challenges in

NMR data acquisition and interpretation.

Different methods can be used to acquire NMR data and invert it into distributions20

that can yield useful petrophysical information. Previous studies have suggested different

approaches for the application of the NMR technique in shales (Washburn et al., 2015),

but a universal standard is still lacking. This paper will examine the influence of various

methodologies on the results obtained from laboratory NMR measurements in shales, aim-

ing to cast some light on the best practices for T2 data acquisition and inversion. For this25

purpose, both experimental results from NMR measurements on shales and simulated T2

curves will be analyzed. The T2 data presented in Testamanti & Rezaee (2017) will then

be reprocessed to illustrate how the concepts revised in the current work could be applied

for the analytical determination of threshold T2 cut-offs, which will be compared with the

findings from our experimental study.30

2
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2. NMR Theory

Nuclear magnetic resonance can yield valuable information about the petrophysical

characteristics of a reservoir and the different fluids present. Relaxometry experiments, in

particular, are used in reservoir rocks to measure longitudinal (T1) and transverse relax-

ation (T2). The measurement of T2 using the Carr-Purcell-Meiboom-Gill (CPMG) sequence35

is preferred over T1 in porous media, mainly due to the duration of experiments and the

difficulties associated with T1 data acquisition through well-logging (Kleinberg et al., 1993).

The T2 relaxometry technique involves an initial polarization of the nuclei in the direc-

tion of the imposed magnetic field (B0), followed by the application of a series of radio-

frequency (RF) pulses. The decaying signals emitted by the precessing nuclei, are then40

measured. Since the magnetization is induced on hydrogen protons, NMR logging tools are

considered to yield lithology-independent results, thus avoiding the pitfalls of traditional

wireline logging methods (Kenyon, 1997; Anovitz & Cole, 2015). In saturated porous me-

dia, the T2 relaxation rates are a function of individual intrinsic (or bulk), surface and

diffusion relaxation processes, governed by the equation:45

1

T2
=

1

T2b
+ ρ

S

V
+
D(γGTE)2

12
(1)

where T2b is the bulk fluid transverse relaxation, ρ is the surface relaxivity, S/V is the

surface-to-volume ratio of the pore, and the last term represents the diffusion induced

transverse relaxation, controlled by the molecular self-diffusion coefficient (D), the mag-

netic field gradient (G) and the gyromagnetic ratio of the precessing nuclei (Bloembergen

et al., 1948).50

2.1. Data Acquisition

The CPMG Pulse Sequence

The CPMG sequence involves an initial 90° RF pulse that tips the magnetization into

the transverse plane. The loss of coherence suffered by the nuclei will induce a free induction

decay (FID). After a time equivalent to half an echo-spacing (TE), a 180° pulse will refocus55

the spins and the spin-echo will be recorded by the NMR tool. This will then be followed

by a series of 180° pulses, applied at an interval TE , which will produce a spin-echo train, as

3
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Figure 1: Schematic of the CPMG pulse sequence, used to generate an echo train during T2 measurements
(dashed line). TE is the echo-spacing (i.e. time between consecutive 180° pulses).

illustrated in Fig. 1. It is worth noting that the dephasing caused by molecular interactions

and diffusion cannot be reversed or avoided, so the CPMG pulse sequence can only be used

to offset the loss of coherence resulting from B0 inhomogeneities (Coates et al., 1999). Once60

a complete refocusing of all nuclei is no longer possible and the loss of coherence becomes

irreversible, the spin-echo train will decay. T2 may thus be defined as the time it takes

for the nuclear spins to lose coherence with one another, and may either be shorter or

equal to T1. The T2 decays are the primary target of NMR logging tools, from which T2

distributions are derived by signal inversion.65

2.2. Signal Processing

In NMR measurements, the decaying signals decomposed in the time domain describe

a Laplace transform, which must be inverted to obtain the distribution of characteristic

T2 rates. Different approaches can be used in solving the NMR inversion problem, so the

use of a suitable method is crucial for obtaining T2 distributions that can yield meaningful70

petrophysical information.

In the absence of experimental errors or noise, an ideal inversion problem can be rep-

resented by a linear relationship Y = AX, where Y is the measured data for a given

system, A is the operator describing the physics of the problem, and X includes the model

parameters to estimate. Experimental noise (ξ) cannot be suppressed from real NMR75

measurements and, consequently, measured decaying NMR signals m(t) have a structure

similar to a Fredholm integral equation of the first kind (Polyanin & Manzhirov, 2008), as

seen below:

m(t) =

∫
k(t, T2) s(T2) dT2 + ξ (2)

4
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where k(t, T2) is the evaluation matrix (or kernel), s(T2) is the unknown spectrum. The

determination of s(T2) is the key objective of the T2 inversion process.80

The integral in Eq. (2) acts as a low-pass filter that returns the smooth decaying signal

m(t), by attenuating the high-frequency components in s(T2). These high frequency com-

ponents, along with noise, will be amplified if s(T2) is directly estimated by the inversion

of the recorded data m(t). Small perturbations in the measured data could lead to great

variations in the spectra obtained, and such solutions are therefore said to be unstable.85

Furthermore, multiple distributions could produce similarly shaped T2 decays (and vice

versa) in the 1D-NMR inversion problem. Since the uniqueness and stability of solutions

cannot be guaranteed, the NMR inversion problem is considered as ill-posed. In such cases,

where a straightforward inversion to solve the problem stated in Eq. (2) is not possible,

estimating the T2 spectra requires a different approach that includes the use of regular-90

ization techniques (Polyanin & Manzhirov, 2008). The inversion of T2 signal decay must

be transformed into a numerical optimization problem that can admit a unique solution,

ensured by the introduction of constraints. The T2 distribution will then be determined as

the solution that best fits the measured data (under certain constraints).

Discretisation95

The raw data recorded during NMR measurements is a complex signal, sampled at

intervals TE ; however, only the real part of the NMR signal is generally used for further

analysis in spectroscopy (Rutledge, 1996). The continuous integral in Eq. (2) can be

transformed into a linear algebraic system by discretization, taking the form:

M = KS + E (3)

where the vector M ∈ Rm contains the data acquired at times ti, K ∈ Rm×n is the100

kernel, S ∈ Rn is the distribution evaluated for the relaxation times T2j , and E ∈ Rm is

the error (or noise). In saturated rocks, the relaxation components are assumed to decay

exponentially, so Eq. (3) can be rewritten as:

mi =

N∑
j=1

sj e
−(ti/T2j) i = 1, 2, ...,M (4)

5
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where the relaxation times T2j are typically logarithmically spaced (Borgia et al., 1990;

Whittall, 1996).105

Singular Value Decomposition

The stability and computing cost of the NMR inversion problem can be improved by

projecting the data onto a subspace, defined from a truncated singular value decomposition

(SVD) of the kernel matrix (Mitchell et al., 2012; Hürlimann & Venkataramanan, 2002;

Song et al., 2002; Venkataramanan et al., 2002). The matrix K can then be factorized by110

means of SVD:

K = U Σ V T (5)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal singular matrices, and Σ ∈ Rm×n is a

diagonal matrix of the singular values in descending order (Hansen, 1987).

The next step involves the compression of data by truncating the singular values in Σ.

The inclusion of a large number of values enhances the effect of noise in the spectrum, but115

limiting their number when the signal-to-noise ratio (SNR) is low may lead to solutions

with artificially broad peaks (Song et al., 2005). Thus, only the first components of Σ that

hold significant information should be retained, while those that contain mostly noise are

to be discarded. The number of significant singular values ñr depends on the condition

number, calculated as the ratio of the largest to smallest singular values in the rank reduced120

Σr. The truncation level is commonly determined based on the signal-to-noise ratio of the

data (Mitchell et al., 2012; Song et al., 2005), and should satisfy the necessary conditions to

ensure well-conditioned matrices (Hansen, 1987). The truncated matrices will be Ur (m×

r), Σr (diagonal, r × r), Vr (n × r). The compressed data vector will then be calculated

as Mr = UTr M , and the reduced kernel is Kr = ΣrV
T
r .125

The truncated SVD approach can be used for regularization, but requires previous

knowledge about the solution to identify the optimal truncation value and cannot guarantee

positive solution elements, and should thus be used in combination with other methods

(Venkataramanan et al., 2002).

6
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The NMR Optimization Problem130

The NMR data inversion process is equivalent to finding the best possible solution to

an optimization problem. Additional constraints are imposed on the algebraic system, to

ensure that the T2 spectra obtained is physically representative of the real NMR phenomena

in porous media. Since multiple possible solutions could fit the observed data relatively

well, several numerical methods have been proposed to find the best possible result. The135

techniques most commonly used for NMR inversion are described below.

The problem described by Eq. (3) can be solved with the non-negative least squares

(NNLS-LH) method proposed by Lawson & Hanson (1974). In the NNLS-LH method,

solutions are obtained by minimizing the misfit between measured (M) and predicted

data (K S), subject to non-negativity constraints. Based on the dimensionality reduction140

previously explained, the NMR problem can be written as:

arg min
Sr>0

‖Mr −Kr Sr ‖22 (6)

where ‖ · ‖22 is the squared Euclidean L2 norm. The NNLS-LH method is very stable,

but convergence can be slow and solutions may consist of only a few isolated components,

as opposed to the smooth distributions associated with NMR relaxation in porous media

(Whittall, 1996). Furthermore, solutions are quite sensitive to noise so adjacent peaks may145

be merged during the inversion process (Whittall, 1994).

The solutions to the general NMR inversion problem are generally found based on the

methodology introduced independently by Twomey (1963) and Tikhonov (1963), which

addresses both the non-negativity and smoothness requirements. In this method, a penalty

smoothing term ‖ LSr − Sr 0 ‖22 is included to avoid solutions featuring numerous sharp150

peaks that are not physically representative (despite being a good numerical fit). The

problem described by Eq. (6) is then extended to:

arg min
Sr>0

‖Mr −Kr Sr ‖22 +λ ‖ LSr − Sr 0 ‖22 (7)

where L is the regularization operator (matrix of additional constraints), and λ is a variable

known as the regularization parameter. The L operator can regularize the solution via

7
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an L0, L1 or L2 norm penalty function, often referred to as norm (or energy), slope or155

curvature smoothing (Dunn et al., 1994). The tuning parameter (λ) in Eq. (7) regulates

the smoothness of the solution relative to the misfit term. Larger values of λ will dampen

the smallest significant singular values (associated with noise) and thus lead to smoother

solutions. The incorrect selection of the regularization parameter λ can result in either

under or over-smoothed spectra, so several methods have been developed to find the optimal160

λopt that provides the best trade-off between misfit and smoothness of solutions to return

realistic T2 distributions.

The Tikhonov regularization described by Eq. (7) may be implemented using a direct

(forward) or an indirect approach. The direct methodology involves an initial analysis

to determine the optimal regularization parameter which is later used to calculate the165

best possible solution, often using the NNLS-LH method (Lawson & Hanson, 1974). In

contrast, the indirect approach finds the solution to the NMR problem with the help of

auxiliary functions, such as the method proposed by Butler et al. (1981). Four methods

for determining λopt are presented below: the L-curve, GCV, BRD and UPEN.

Choice of Regularization Parameter170

The L-curve method, proposed initially by Lawson & Hanson (1974) and further de-

veloped by Hansen (1992) and Hansen & O’Leary (1993), was one of the first algorithms

introduced to solve the NMR inversion problem. The plot of the solution norm versus

its corresponding residual norm, as a function of a given range of λ values results in an

L-shaped curve as illustrated in Fig. 2, giving its name to this method. The point at175

which the slope of the curve abruptly changes is then selected as the optimal smoothing

coefficient λopt. The selection of the best regularization parameter may thus be somewhat

arbitrary with the L-curve method, depending on the data analyzed.

The generalized cross-validation (GCV) method, proposed by Golub et al. (1979), finds

the optimal regularization parameter λopt that minimizes the function:180

GCV (λopt) =
‖Mr −Kr Sr,λ ‖22
[trace (I− Sr,λ)]2

(8)

where I is the identity matrix, and Sr,λ is the solution calculated for a certain smoothing

8
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coefficient λ.

In the Butler-Reed-Dawson (BRD) method, an auxiliary convex function is minimized

to find the λopt (instead of performing direct iterations over cr) based on the discrepancy

principle (Butler et al., 1981; Morozov, 1984). The regularization parameter may be em-185

pirically determined as a function of a specified level of misfit in the data, such as RMSE.

It is also common for solutions to be obtained based on the SNR of the data, generally

defined as SNR = M(0)/σ, where σ is the noise standard deviation (Song et al., 2005).

Using the Newton method, the estimated λ values are updated stepwise as a function of
√
nr/ ‖ cr ‖ (Mitchell et al., 2012), and the misfit error is calculated as:190

χ(cr, λ) =
λ ‖ cr ‖

σ
(9)

The S-curve is commonly used to find the optimal regularization parameter, which evalu-

ates the sigmoidal shape displayed in the log-log graph of the misfit error, as a function

of λ (Fordham et al., 1995). The optimal solution is found at the “heel” of the S-curve,

where λ satisfies:
d(logχ(cr, λ))

d(log λ)
= TOL (10)

for a predetermined tolerance value (TOL) selected by the user.195

The UPEN method proposed by Borgia et al. (1998) uses a quadrature regularization

function, where λ varies with the relaxation time to obtain a uniform application of the

smoothing penalty term. The method was later refined, introducing a combination of

regularization functions to effectively obtain a variable smoothing (Borgia et al., 2000).

In the second version of the UPEN method, the averaged signal within a defined window200

and the corresponding weight factors are used to provide feedback for a uniform penalty

smoothing.

9
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Figure 2: Graphical analysis of the solution norm ‖ s ‖2, calculated for discrete regularization parameter
values (λ) and plotted against the corresponding residual norm ‖ KS−M ‖2, known as the L-curve method.
The horizontal part of the curve indicates the residual norms that are most sensitive to errors arising from
the incorrect selection of λ. The vertical part illustrates the solution norms that are most sensitive to errors
associated with amplification of random noise. The optimal λopt is found at the corner of the discrete L-
curve, either visually or based on a numerical method such as the adaptive pruning algorithm (Hansen,
2015).

3. Methodology

Experimental results from NMR measurements conducted in shales and simulated T2

decay curves were utilized to study the impact of different variables involved in the NMR205

signal acquisition and inversion process.

In Subsection 4.1, the impact of various acquisition parameters on the T2 signal mea-

sured in shales is analyzed. All NMR experiments were performed on a 2 MHz Magritek

Rock Core Analyzer set to 30°C, equipped with either a P29 or P54 probe and using dif-

ferent settings. The real T2 decays presented in this subsection were obtained on the same210

1” diameter core plug, in the as-received state, which was tightly wrapped in a plastic

film to prevent moisture evaporation or absorption. The sample belongs to the Carynginia

Formation, a dry gas-prone shale section found in most of the northern Perth Basin (Mory

& Iasky, 1996).

10



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

The inversion methods included in the previous section of this paper are tested on215

synthetic T2 data, as shown in Subsection 4.2. The T2 decays were generated to replicate

the equivalent relaxation response that would be obtained from measurements conducted

in real shale samples. The Lexus module in the Prospa software (Magritek) was used for the

BRD inversions, whereas the NNLS-LH/L-curve, NNLS-LH/GCV and UPEN algorithms

were implemented in Matlab (Mathworks), using purposely written code. In the latter case,220

final computations were done using the NNLS function included in the MERA Toolbox for

Matlab (Does, 2014).

In Subsection 4.4, the four inversion methods are then tested on real NMR data. The

raw T2 decays were originally obtained from brine-saturated core plugs, in the experimental

study presented in Testamanti & Rezaee (2017). The T2 decays were acquired using 10,000225

echoes and a 100 µs echo time, with the magnet temperature set to 30 °C. The number

of scans was automatically adjusted to collect data with a minimum SNR of 200 and

the background signal – corresponding to the probe and plastic wrap – was subtracted

from the total measured T2 decays. The raw data was phased using the Prospa software

(Magritek) to maximize the contribution from the real component in the signal, later used230

for inversion. More information on the geological background of these six samples and

preparation procedures can be found in the original paper (Testamanti & Rezaee, 2017).

4. Results and Discussion

4.1. T2 Data Acquisition

As reviewed in the previous section, the CPMG sequence involves an initial polarization235

of the nuclear spins, followed by the application of a series of magnetic pulses NE , spaced

by a TE time. Consecutive CPMG pulse trains are separated by a wait time or inter-

experimental delay (TW ), during which the polarization of the system builds up. The

parameters NE , TE , TW , as well as the pulse specifications, are all necessary inputs of T2

CPMG experiments and must be suitably chosen by the user. The output will be a vector240

with the raw T2 data, recorded at fixed intervals TE . The impact of various acquisition

parameters on results is discussed below.
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Figure 3: T2 decay curves showing (a) the effect of the inter-experimental delay parameter on M(0); (b)
the influence of the number of complex points sampled per echo on signal quality.

Inter-Experimental Delay

The magnitude of M0 is estimated from the signal amplitude measured after the first

RF pulse in the sequence. Thus, TW should be set to at least three times the expected245

T1 value, to allow a 95% polarization of the spins and avoid underestimating M0. Shales

have very fast relaxation rates, so generally short TW times can be safely used for T2

measurements. This is illustrated in Fig. ??, where the impact of the inter-experimental

delay parameter on the measured M0 of a shale core sample is examined. The T2 decays

were acquired with the P54 probe for 3,000 echoes, with a TE = 100 µs and the same target250

SNR = 220 but using short and long TW values, set to 3,000 and 20,000 ms respectively.

Similarly shaped T2 decay curves emerge from the graph, while the difference between the

calculated M0 was about 7%. The use of longer inter-experimental delays was thus found

to only marginally improve the estimation of M0 values. The impact of the TW parameter

on the overall duration of measurements, however, becomes more significant in shales and255

should be evaluated against time constrains if applicable.

Signal-to-Noise Ratio

Despite being relatively weak, NMR signal can be detected in rocks owing to the abun-

dance of hydrogen protons in the reservoir fluids. Improving the quality of NMR data
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measurements can be seen as equivalent to reducing the experimental noise, which im-260

proves the effective SNR of the data. After signal is detected, the in-phase and quadrature

signals for each spin-echo are sampled, according to the number of complex points and

dwell time set by the user, and digitized in the spectrometer before returning to the com-

puter (Kleinberg, 1999). To enhance the quality of the results, a signal averaging – or

stacking – process is performed on the raw data, followed by a phase correction. The final265

outputs are two data vectors, one containing the real components of the spin-echo train

from which T2 distributions will be obtained, and another containing the imaginary portion

of the complex signal that represents the noise with zero mean (Coates et al., 1999).

The acquisition of a large number of echoes NE allows the decay of real components

in the signal to noise level, ensuring the detection of all the T2 relaxation rates present in270

the core sample. In practice, the experimental settings should satisfy the condition NE

≥ T2,max/3TE to detect the full range of T2 components (Coates et al., 1999). As observed

in Fig. ??, shales have fast relaxation rates so most of the signal should be captured within

the first few hundred milliseconds.

The SNR of the acquired data may be enhanced by performing a signal averaging275

or stacking. This technique relies on the random feature of noise, as opposed to the

reproducibility of the NMR signal, and therefore cannot filter out coherent noise. By

averaging the signal from a number of successive scans N , the amplitude will grow at a

rate of N whereas the growth rate of noise will be
√
N . The SNR improvement will then be

proportional to
√
N averaged, where the number of scans should be a multiple of 4 for a full280

phase cycling. Another method often used to enhance the SNR consists in increasing the

number of complex points sampled per echo. The product of this sampling number (ideally

a power of 2) and the dwell time will determine the total acquisition time (Tacq) for each

spin-echo; the spectral width is given by the reciprocal of the dwell time. The minimum

TE available for the instrument will be limited by the acquisition time, and should be285

greater than Tacq plus an added delay to avoid artifacts in the signal due to the acoustic

ringing of the probe. Nonetheless, the law of diminishing returns applies to both of the

SNR enhancement techniques previously described and should be carefully considered when

experimental parameters are selected. The acquisition of a large number of points per echo

may overheat the RF amplifier and thus damage the instrument, while an increase in the290
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number of scans can extend the duration of experiments considerably. Fig. 3b shows the T2

curves obtained from CPMG sequences on a real shale core sample, where the raw signal

was sampled using a variable number of complex points. Measurements were conducted

using Magritek’s P29 probe, with 2,000 echoes and a TE = 100 µs. Increasing the number

of complex points sampled per echo from 8 to 32 leads to a 15% rise in the initial signal295

amplitude, similar to increasing the sampled points from 32 to 64, and then from 64 to

72. No substantial variations are observed between the curves acquired with 72 and 128

points per echo. The proportional rise in the noise standard deviation, however, prompts

to question whether the increase in the first few data points could be in fact an artificial

enhancement, caused by acoustic ringing effects (Gerothanassis, 1987). The use of a long300

acquisition delay is often recommended to prevent the collection of spin-echoes distorted

by the probe free ringing, but that could also lead to the loss of valuable information in

tight porous media. Since most of the signal decay generally occurs in the first few data

points, the use of post-acquisition filters and alternative data fitting techniques that can

compensate for offset and acoustic ringing effects may be more suitable for processing NMR305

data in shales (Freedman, 2002; Venkataramanan et al., 2013; Salimifard et al., 2017).

Alternatively, the use of relatively larger core samples, where hydrogen nuclei are more

abundant, can yield an improvement of the signal quality. Since this is not always possible,

the use of instruments with smaller RF coils could be another option for achieving higher

SNR levels during measurements.310

Echo-Spacing (TE)

The use of shorter TE enables the earlier detection of NMR signal, desirable in the

case of rocks with fast relaxing components. The number of complex points sampled per

spin-echo, the pulse length and the acquisition bandwidth – along with the instrument’s

characteristics – will limit the minimum echo time that can be used for measurements.315

SNR will generally increase with decreasing TE , as more data points will be generated (and

recorded) at shorter intervals. The reduction in TE also has the unintended consequence

of accentuating acoustic ringing effects. The first echoes are generally more affected by

the acoustic ringing of the probe which would consequently become part of the recorded

signal, causing a very high initial amplitude followed by a coherent transient (Coates et al.,320
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1999). This effect can be observed in Fig. 4a, where the background signal acquired with

a TE of 40 µs shows a higher initial amplitude, compared to the value obtained at a 100

µs echo-spacing.

The ringing noise can be filtered out to some extent by manipulating the digital filter

bandwidth, at the expense of loss in sensitivity owing to the limitations on the minimum325

TE possible (Salimifard et al., 2017), or attenuated by the use of smaller probes. The effect

of random noise can be mitigated by simply subtracting the NMR signal corresponding to

the instrument, from measurements on core samples. While background noise generally

has little impact on results from high porosity rocks, it can contribute substantially to the

NMR signal measured in shales (Saidian, 2015; Salimifard et al., 2017). It is therefore good330

practice to obtain the background signal emitted by sample containers or plastic wraps and

by the instrument itself, which should be then subtracted from the T2 decays – prior to

data inversion. The effect of subtracting the background signal from T2 measured on a real

shale core sample is illustrated in Fig. 4b, where experiments were conducted at 40 µs and

100 µs echo-spacings using a P29 probe. A greater portion of the fast T2 components could335

be detected using a shorter TE , although this difference becomes less significant beyond

0.5 ms. These fast T2 relaxation rates are typically associated with organic and inorganic

micropores, so short echo-spacings should be used whenever possible to investigate the full

range of pore size ranges found in the shale matrix.

A final point to consider is the issue of thermodynamic stability, crucial for T2 mea-340

surements based on the CPMG pulse sequence. In core samples where narrow pores are

abundant, the duration of experiments can increase considerably and span several hours.

Failure to achieve isothermal conditions could lead to the underestimation of M0, so core

samples should always be allowed to stabilize to the magnet temperature prior to measure-

ments. Alternatively, samples could be pre-heated before loading them into the spectrome-345

ter, provided that they are tightly sealed to avoid unintended fluid loss due to vaporisation.
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Figure 4: T2 decay curves showing (a) the background signal measured; (b) the effect of removing the
background noise from the main signal, acquired at different echo-spacing. Measurements conducted using
Magritek’s P29 probe.

4.2. T2 Data Inversion

The ultimate goal of the T2 inversion process is finding the spectrum that best repre-

sents the real relaxation mechanisms in the saturated porous media. Most NMR inversion

methods can correctly find solutions for systems where the dominant T2 components are350

sufficiently separated, so the choice of the inversion algorithm is not a significant source

of concern. This, however, is not usually the case in complex porous systems with abun-

dant small pore sizes such as shales. The shale matrix typically has a substantial clay and

organic content, with protons susceptible to magnetization that yield fast T2 relaxation

rates, often generating most of the total NMR signal acquired. Inversion algorithms must355

be therefore carefully selected, as the reconstructed signal should include sharper peaks at

short T2 times, which are associated with the relaxation of fluids in the smaller pores, clay

bound water and solid organic matter present in shales. Caution must be nonetheless ap-

plied, to avoid artifacts in the spectrum at longer T2 times that may not be representative

of real nuclei relaxation within the larger pores.360

The inversion algorithms described in the previous section were tested on a set of sim-

ulated T2 decays emulating the relaxation rates commonly associated with sandstones and

shales, designated as case A and B in this study. The T2 curves were obtained from syn-
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thetic distributions with the following distinctive features: (A) three peaks, centred on 2,

14 and 44 ms, displaying maximum normalized amplitudes of 20%, 50%, and 30% respec-365

tively; (B) four peaks, centred on 0.1, 2, 14 and 44 ms, displaying maximum normalized

amplitudes of 20%, 40%, 30%, and 10% respectively. The T2 components used as input

for the simulations are indicated with black lines in Fig. 5. The T2 decays were generated

for 3,000 and 10,000 echoes, based on a 100 µs echo time. Gaussian noise was also added

to the raw T2 decay curves, to obtain SNR levels comparable to those of the experimental370

NMR data presented in the previous subsection.

Data Compression

Before inversion, the size of acquired data is reduced for computational efficiency pur-

poses and to filter out noisy values. The initial compression of NMR data can be com-

puted with the TSVD method, which requires the selection of an optimal truncation value375

(Venkataramanan et al., 2002). Choosing this threshold incorrectly can lead to substantial

attenuation of the shortest T2 (Prammer, 1994; Song et al., 2005), and consequent loss of

valuable information in systems where fast components are expected. If a large number

of singular values are kept before inversion, the identification of individual adjacent peaks

in the T2 spectrum could be compromised and lead to distributions featuring one broad380

peak at short T2 times. In shales, the earliest raw data points will likely contain the most

valuable information and must be preserved, whereas the noisy part of the T2 curve should

be pruned before inversion. The truncation criteria also becomes more critical as the size

of acquired data increases, relative to the time vector on which the inversion is evaluated.

The data compression methodology can therefore have a more significant impact on re-385

sults obtained in shales, compared to other types of reservoirs. In this study, the optimal

number of significant singular values to preserve for the inversion were examined based on

the L-curve method described in Hansen et al. (2007). The algorithm was implemented

in Matlab (MathWorks), using the Regularization Toolbox (Hansen, 2015). For the simu-

lated T2 decays, a prune to between 25–50 significant values was generally found to produce390

stable solutions.
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Inversion Method

The incorrect selection of NMR inversion algorithms could potentially lead to gross

interpretation errors, especially when the T2 spectra are correlated to porosity and pore size

distribution obtained from other core analysis methods. To assess the influence of inversion395

algorithms on shale results, the simulated T2 curves were inverted for a logarithmically

spaced vector with 200 points, within the range 0.01–600 ms for data simulated with

3,000 echoes, and between 0.01–2,000 ms for the cases with 10,000 echoes. Solutions were

regularized with the energy of the T2 spectrum, also know as norm-smoothing, except for

inversions based on the UPEN method where curvature-smoothing was used instead. For400

the forward inversions using the NNLS-LH method, the optimal smoothing coefficients

were chosen based on the L-curve (continuous blue line) and GCV criteria (light blue

line), whereas distributions obtained by indirect approaches were computed with the BRD

(dashed grey line) and UPEN algorithms (dotted grey line). The resulting T2 distributions

by the different methods are presented in Fig. 5, while the signal intensities are included405

in Table 1. The goodness of fit of the different inversion methods were evaluated by the

sum of absolute error (SAE), root-mean squared error (RMSE), peak signal-to-noise ratio

(PSNR) and structural similarity index (SSIM) (Wang et al., 2004; Miao et al., 2008); the

residual statistics are summarized in Table 2.

For the case A, no significant differences are observed between the total signal simulated,410

recovered and calculated by the four NMR inversions, irrespective of the number of echoes

(Table 1). In contrast, about 15% of the NMR signal in the simulated spectrum B is lost

by the use of a 100 µs echo time (which allows only a partial detection of the peak centred

on 0.1 ms), while the acquisition of a larger number of echoes has a minor positive effect

on the total amount of signal recovered. The comparison of case B results reveals that the415

BRD and UPEN algorithms can closely reproduce the original T2 signal recovered (13.01

and 13.19 for 3,000 and 10,000 echoes, respectively), with an error < 0.5%. The differences

between the original and inverted signal intensities are greater for the NNLS-LH method,

based on both the L-curve (1–2%) and GCV criteria (2.5–4.5%).

Fig. 5 shows that – in all cases – direct inversion approaches (NNLS-LH combined420

with L-curve and GCV methods) yields smoother T2 spectra than the BRD and UPEN

algorithms. In conventional reservoirs, smooth solutions featuring broad spectral peaks
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are generally considered to be physically representative of the saturated porous media,

and therefore selected as the best fits. On the other hand, solutions including sharp peaks

are typically discarded, while strong signals at short relaxation times are often attributed425

to noise magnification effects. Based on common practice, T2 curves determined by the

combination of the NNLS-LH method with either the L-curve or GCV are generally less

biased and would thus be preferred for evaluating petrophysical properties. However, the

use of a single regularization parameter in systems where adjacent peaks have different

widths and amplitudes may also lead to either excessive broadening of narrow features, or430

sharpening of broad peaks (Borgia et al., 1998). This effect becomes apparent in all the T2

distributions obtained by NNLS-LH inversion with either the L-curve or GCV techniques,

as the λopt could not correctly resolve the adjacent components centred on 12 and 44 ms.

Instead, the individual features seem to emerge as a combined unique broad peak, visible in

all the T2 spectra generated by direct inversion approaches. Since the NMR signal measured435

in shales will exhibit a sharp decay at short T2 times where high experimental SNR levels

are often unattainable, the lack of sensitivity to noise of the NNLS-LH inversion method is

certainly a source of concern. Separating the contributions from individual fast relaxing T2

components would likely be difficult with the use of inversion methods that apply a fixed

amount of smoothing (e.g. NNLS-LH), however, the solutions would also be less biased440

and therefore more representative of global properties such as NMR porosity. On the other

hand, noise-sensitive algorithms (e.g. BRD) may extrapolate the NMR signal well below

the detection limit of the spectrometer and introduce significant bias in the determination

of T2 spectra, but could also help to distinguish individual adjacent peaks. This particular

attribute could facilitate the identification of threshold T2 cut-offs, as will be discussed445

later in this paper. These threshold parameters may ultimately be applied to experimental

T2 data, from which the porosity fractions associated with bound (BVI) and free fluids

(FFI) can be estimated (Coates et al., 1999; Prammer et al., 1996; Chen et al., 1998).

Turning now to the overall accuracy of each method, it is evident from Fig. 5 that the

contribution of individual peaks to the final T2 spectra cannot be accurately distinguished450

by the use od forward inversion methods. The particular features in the simulated NMR

data disappear after the NNLS-LH/GCV inversion (cases A & B), while the NNLS-LH/L-

curve algorithm returns seemingly better fits with more precise peak locations (case B).
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Figure 5: T2 spectra from simulated decay curves for 3,000 (left panel) and 10,000 echoes (right panel),
inverted with the NNLS-LH/Lcurve, NNLS-LH/GCV, BRD and UPEN methods. The black vertical lines
indicate the T2 components from which the decays were generated.

Interestingly, the NNLS-LH/L-curve produces larger residuals than the NNLS-LH/GCV

inversion, and has poorer PSNR, RMSE and SSIM scores (Table 2). The global perfor-455

mance of the NNLS-LH/L-curve method seems to improve when the number of echoes

acquired increases (case B), matching the inversion quality metrics of the NNLS-LH/GCV

algorithm. On the other hand, indirect NMR inversion approaches return T2 spectra dis-

playing well-defined peaks. The BRD algorithm produces the best fits, in terms of both

locating and estimating the amplitudes of the main peaks. The UPEN method is able to460

preserve the details of the original simulated data but fails to determine peak locations

and amplitude correctly, while the weak associated PSNR, RMSE and SSIM scores render

it the least reliable method out of the four herein analyzed. Overall, the best fits are

obtained with the BRD method, as confirmed by the superior inversion quality metrics.

Surprisingly, the acquisition of a larger number of echoes appears to negatively impact the465

T2 inversions on the simulated dataset A, while positive effects are observed on the dataset

B results.
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Table 1: Comparison of NMR signal intensities for the simulated T2 data sets, obtained by the NNLS-LH
with L-curve, NNLS-LH with GCV, BRD and UPEN inversion methods.

Sample No. Original Recovered NNLS-LH NNLS-LH BRD UPEN
Echoes (L-curve) (GCV)

A 3,000 13.69 13.44 13.46 13.45 13.45 13.42
A 10,000 13.69 13.47 13.48 13.42 13.51 13.45
B 3,000 15.32 13.01 12.85 12.67 13.01 12.95
B 10,000 15.32 13.19 12.96 12.64 13.18 13.14

Table 2: Goodness of fit for the simulated NMR data sets, inverted with the NNLS-LH/L-curve, NNLS-
LH/GCV, BRD and UPEN methods. Quality of the inversion is assessed by the sum of absolute error
(SAE), root-mean squared error (RMSE), peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM). Errors are computed as the residuals between the initial data (M) and the predicted decay curves
from each method (Mp = KSreg). Low RMSE, and high PSNR and SSIM values are indicative of good
quality inversions.

Sample No. Original NNLS-LH NNLS-LH BRD UPEN
Echoes (L-curve) (GCV)

SAE (×102)

A 3,000 8.22 1.57 1.50 1.46 1.71
A 10,000 18.70 5.48 5.39 5.16 5.67
B 3,000 4.15 1.67 1.63 1.39 1.82
B 10,000 10.16 5.40 5.37 5.03 5.56

PSNR

A 3,000 241 234 238 241 227
A 10,000 236 231 232 236 228
B 3,000 245 229 231 244 222
B 10,000 239 233 233 239 231

RMSE (×10−2)

A 3,000 41.12 6.76 6.46 6.24 7.33
A 10,000 36.95 7.01 6.91 6.59 7.25
B 3,000 21.83 7.13 7.02 6.02 7.72
B 10,000 19.27 6.83 6.83 6.39 7.02

SSIM

A 3,000 0.96 0.95 0.96 0.96 0.95
A 10,000 0.89 0.88 0.88 0.89 0.88
B 3,000 0.94 0.91 0.92 0.94 0.90
B 10,000 0.88 0.87 0.87 0.88 0.86
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4.3. Relaxation Mechanisms in Shales

Hydrogen-rich particles confined to a bounded domain are often abundant in organic

shales. Micro-porosity associated with kerogen, clays and particles adsorbed to the surface470

of the pore has a solid-like appearance from an NMR tool perspective (Washburn, 2014).

These quasi-rigid molecules are typically absent in conventional reservoir rocks, where

surface relaxation mechanisms are considered to dominate the measured T2 signal decay

provided that the applied magnetic field is homogeneous (Coates et al., 1999; Kleinberg,

1999; Kenyon, 1997). In very tight porous media, however, Brownian processes may arise475

from the abundance of molecules confined to a virtually restricted domain. The diffusing

spins in a quasi-solid state would follow an approximately motional-narrowing regime that

can be described by a Gaussian distribution, influencing the shortest T2 components in

shales (Grebenkov, 2007; Washburn et al., 2015).

One of the inherent issues with NMR experiments is the limitation of signal acquisition480

in time, which could give way to distortions in the inverted spectrum that may appear as

“feet” on either side of true peaks (Eveleigh, 1996). These distinctive signatures could be

the result of signal “leaks”, or in fact correspond to a separate peak that cannot be entirely

detected owing to spectrometer limitations. The challenge is then to determine whether

these features in the T2 spectra are artifacts or if they have an actual physical meaning. For485

instance, relaxation rates below the first spin echo acquired are customarily excluded from

the NMR data inversion, yet their decaying signal may still be partially detected on the

earliest data points. If the mean of the fastest relaxing component is relatively close to the

first T2 data point acquired and measurement conditions ensure a high enough SNR, then

some extrapolation can be safely done below the first real T2 component (Moody & Xia,490

2004). Furthermore, the actual detection of components below the threshold of the NMR

instrument might be possible if stochastic resonance is generated. This naturally occurring

phenomenon could be exploited by the dithering technique to amplify experimental noise

and enhance the signal from very fast T2 components that would generally be too weak

to be detected (Pearce et al., 2008). Nonetheless, distinguishing between fast relaxing T2495

components produced by real relaxation mechanisms and those associated to ringing noise,

would likely be an impossible task.

The degree of heterogeneity associated with shales, often displaying a wide separa-
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tion between the smallest and largest length scales, favors the broadening of features in

the T2 spectra (Watson & Chang, 1997). Additionally, the intricate shale pore network500

may induce large internal magnetic field gradients and thus the Brownian motion of spins,

leading to deviations from the fast diffusion regime (Hürlimann, 1998; Song, 2000, 2003;

Washburn, 2014). These diffusion effects can be quantified based on laboratory 2D–NMR

experiments, from which T2 data corrections may be derived and the contribution from

diffusion-induced signals estimated (Sun & Dunn, 2004). Unfortunately, obtaining sound505

results from borehole measurements remains impractical in shale reservoirs with the tech-

nology currently available, owing to the high levels of noise and consequently low SNR, and

T2 experiments therefore remain as the most viable NMR data source to yield petrophysical

information. One final point to consider is the impact of non-negligible internal gradients

on the accuracy of NMR porosity determination, which may lead to its overestimation510

(McPhee et al., 2015). To minimize gradient-induced T2 relaxation effects in shales, the

use of the use of larger core samples, low field spectrometers and short echo-spacings in

the CPMG sequence, is recommended.

4.4. Comparison of NMR Inversion Methods for the Analytical Determination of Threshold

T2 cut-offs515

Our previous paper (Testamanti & Rezaee, 2017) presented a methodology for the

experimental determination of threshold T2 cut-offs in shales, based on the analysis of

cumulative NMR porosity curves which were acquired on brine-saturated, centrifuged and

oven-dried core plugs (Fig. 6). In that study, two experimental threshold T2 cut-off were

identified after the samples were centrifuged and oven-dried: an upper T2U (in the range 1–2520

ms) and a lower T2L (between 0.2–0.3 ms), respectively. In this current section, we will show

that these threshold T2 cut-offs could also be derived analytically, from the comparison of

T2 distributions obtained by two different NMR inversion methods. The four inversion

methods applied on the synthetic T2 data were thus used to reprocess experimental T2

decays, which were obtained from brine-saturated shale core plugs as part of our previous525

study (Testamanti & Rezaee, 2017).

The T2 decays were initially processed based on the NNLS-LH method, using the Law-

son and Hanson module in the Prospa software (Magritek), by which the T2 distributions
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Figure 6: Methodology used in our previous study for the experimental determination of threshold T2

cut-offs (T2c), from laboratory NMR experiments on shale samples brine-saturated (Sw=100%) and at irre-
ducible saturation level (Sw,irr measured after centrifugation and oven-drying procedures). Figure modified
from Testamanti & Rezaee (2017).

and porosity values originally reported in Testamanti & Rezaee (2017) were obtained. In

addition, the raw NMR data from the brine-saturated shale samples were inverted with530

the BRD, UPEN and NNLS-LH/GCV algorithms. The BRD inversions were also per-

formed in Prospa, using the Asym option in the Lexus module, which approximates the

regularization weights based on the asymptotic analysis of the noise (P. Aptaker, personal

communication, October 2017). Moreover, the UPEN and NNLS-LH/GCV algorithms

were implemented in MATLAB (MathWorks). Prior to inversion, the raw T2 data sizes535

were reduced by the SVD method.

Fig. 7 shows the inverted T2 data from the brine-saturated shale core plugs, obtained by

the BRD, UPEN and NNLS-LH/GCV methods, and compared with the T2 distributions

included in the original study (labeled NNLS-LH/L-curve). It can be seen from the graph

that these last three methods produce similarly shaped T2 curves, where one broad peak540

is displayed below 3 ms. In contrast, an additional peak seems to emerge in some of the

distributions obtained by the BRD inversion at short T2 relaxation times.

The results obtained by BRD and NNLS-LH/L-curve inversions, from brine-saturated

shale core plugs, are reproduced again in Fig. 8 for clarification purposes, along with the

T2 distributions from oven-dried samples (seen in dotted gray lines). While one broad peak545

can be observed at early times in the original T2 spectra (NNLS-LH) from experiments
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Figure 7: T2 spectra for experimental decays from saturated shale core samples, obtained by the NNLS-
LH/GCV, NNLS-LH/L-curve, BRD and UPEN methods.

in saturated shale core plugs, multiple peaks appear on the BRD inversion results. When

comparing these two curves to the spectra from oven-dried samples, the main peak in

the T2 distribution corresponding to the NNLS-LH method can be reinterpreted as the

overlapped response of at least two individual features, which emerge on the T2 curve550

obtained by the BRD inversion. A portion of the fastest peak in the BRD inverted curves

fall below the detection limit of the spectrometer used, however, they may still represent

the real NMR signals which are partially detected during T2 measurements. The signal

close to and below 0.1 ms has been associated with the transverse relaxation of structural

hydroxyls in clays (Fleury et al., 2013; Washburn & Birdwell, 2013) and protons in solid555

organic matter (Washburn, 2014). Despite the uncertainty in the real amplitude and exact

location of the additional peak distinguished by the BRD inversion around 0.1 ms, the

feature is indeed consistent with the NMR response expected in shales. Furthermore, two
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threshold T2 cut-off could be identified from the contrast of NNLH-LH and BRD inverted T2

distributions (Fig. 8), which are also consistent with the thresholds T2L, T2U determined560

experimentally in our previous study (Testamanti & Rezaee, 2017).
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Figure 8: T2 spectra from experimental decays on brine-saturated and oven-dried core samples, obtained by
the NNLS-LH and BRD methods. The red dashed lines indicate the approximate locations of the threshold
T2 cut-offs determined analytically, from the contrast of brine-saturated T2 distributions obtained by the
different inversion methods.
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5. Conclusion

In this paper, various aspects of the nuclear magnetic resonance (NMR) technique have

been examined, with a focus on one-dimensional transverse relaxation (T2) experiments for

shale applications. The main findings of this research can be summarized as:565

• Good quality laboratory NMR data can be difficult to obtain in shales. Increasing

the number of scans could lead to improvements in the experimental SNR, but may

also extend the duration of T2 tests considerably. Alternatively, the SNR may be

enhanced with the acquisition of a large number of data points, many of which

will contain only noise. A good balance between noise and sensitivity to short T2570

components is therefore essential.

• The fast relaxation rates in shales pose unique challenges for the inversion of NMR

data. Direct inversion approaches (e.g. NNLS-LH/L-curve) may produce very smooth

T2 distributions and lead to the potential loss of valuable qualitative information.

Methods targeting noise level (e.g. BRD) may improve the quality of T2 data inver-575

sion in shales, but may also bias the results.

• The shape of the T2 distributions at short times were found to be greatly influenced by

the choice of inversion algorithm, highlighting the importance of choosing a method

that can yield results which are representative of the real T2 relaxation mechanisms

in shales.580

• The threshold T2 cut-offs determined experimentally in our previous work are consis-

tent with values herein identified, based on the comparison of T2 spectra obtained by

forward and indirect inversion approaches. Overall, the present findings suggest that

this analytical methodology could be feasibly used to estimate T2 cut-off parameters

in shales. Research into the petrophysical applications of these threshold T2 cut-off is585

currently underway.
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Acronyms

BRD Butler-Reeds-Dawson Algorithm.595

CBW Clay Bound Water.

CPMG Carr-Purcell-Meiboom-Gill.

FID Free Induction Decay.

GCV Generalised Cross-Validation Algorithm.

LH Lawson-Hanson Algorithm.600

NMR Nuclear Magnetic Resonance.

NNLS Nonnegative Least Squares Method.

PSNR Peak Signal-to-Noise Ratio.

RF Radio Frequency.

RMSE Root Mean Squared Error.605

SAE Sum of Absolute Error.

SNR Signal-to-Noise Ratio.

SSI Structural Similarity Index.

SVD Singular Value Decomposition.

UPEN Uniform Penalty Algorithm.610

Symbols

B0 Static Magnetic Field.

D Molecular Self-diffusion Coefficient.

γ Gyromagnetic Ratio of Precessing Nuclei.
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G Magnetic Field Gradient.615

λ Regularization Parameter.

M(t) Proton Magnetization as a Function of Time.

M0 Proton Magnetization at Time Zero.

NE Number of Echoes.

ρ Surface Relaxivity.620

S/V Pore Surface Area to Volume.

T1 Longitudinal Relaxation.

T2 Transverse Relaxation.

T2b Transverse Relaxation of bulk fluid.

Tacq Total Acquisition Time.625

TE Echo Spacing.

TW Wait Time.
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Quantification of Water in Smectites with Low-Field NMR. The Journal of Physical Chemistry C , 117 ,

4551–4560. doi:10.1021/jp311006q.

Fordham, E. J., Sezginer, A., & Hall, L. D. (1995). Imaging Multiexponential Relaxation in the (y, LogeT1)

Plane, with Application to Clay Filtration in Rock Cores. Journal of Magnetic Resonance, Series A,

113 , 139–150. doi:10.1006/jmra.1995.1073.665

Freedman, R. (2002). Processing NMR data in the presence of coherent ringing. URL: https://patents.

google.com/patent/US6838875B2/en.

Gerothanassis, I. P. (1987). Methods of avoiding the effects of acoustic ringing in pulsed fourier transform

nuclear magnetic resonance spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy , 19 ,

267–329. doi:10.1016/0079-6565(87)80005-5.670

Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized Cross-Validation as a Method for Choosing a

Good Ridge Parameter. Technometrics, 21 , 215–223. doi:10.2307/1268518.

Grebenkov, D. S. (2007). NMR survey of reflected Brownian motion. Reviews of Modern Physics, 79 ,

1077–1137. doi:10.1103/RevModPhys.79.1077.

Hansen, P. C. (1987). The truncated SVD as a method for regularization. BIT Numerical Mathematics,675

27 , 534–553. doi:10.1007/BF01937276.

Hansen, P. C. (1992). Numerical tools for analysis and solution of Fredholm integral equations of the first

kind. Inverse Problems, 8 , 849. URL: http://stacks.iop.org/0266-5611/8/i=6/a=005.

Hansen, P. C. (2015). Regularization Tools for Matlab. URL: http://www.imm.dtu.dk/{~}pcha/

Regutools/.680

Hansen, P. C., Jensen, T. K., & Rodriguez, G. (2007). An adaptive pruning algorithm for the discrete

L-curve criterion. Journal of Computational and Applied Mathematics, 198 , 483–492. doi:10.1016/j.

cam.2005.09.026.

Hansen, P. C., & O’Leary, D. (1993). The Use of the L-Curve in the Regularization of Discrete Ill-Posed

Problems. SIAM Journal on Scientific Computing , 14 , 1487–1503. doi:10.1137/0914086.685

Hürlimann, M. D. (1998). Effective Gradients in Porous Media Due to Susceptibility Differences. Journal

of Magnetic Resonance, 131 , 232–240. doi:10.1006/jmre.1998.1364.

Hürlimann, M. D., & Venkataramanan, L. (2002). Quantitative Measurement of Two-Dimensional Distri-

bution Functions of Diffusion and Relaxation in Grossly Inhomogeneous Fields. Journal of Magnetic

Resonance, 157 , 31–42. doi:10.1006/jmre.2002.2567.690

31

http://dx.doi.org/10.1021/jp311006q
http://dx.doi.org/10.1006/jmra.1995.1073
https://patents.google.com/patent/US6838875B2/en
https://patents.google.com/patent/US6838875B2/en
https://patents.google.com/patent/US6838875B2/en
http://dx.doi.org/10.1016/0079-6565(87)80005-5
http://dx.doi.org/10.2307/1268518
http://dx.doi.org/10.1103/RevModPhys.79.1077
http://dx.doi.org/10.1007/BF01937276
http://stacks.iop.org/0266-5611/8/i=6/a=005
http://www.imm.dtu.dk/{~}pcha/Regutools/
http://www.imm.dtu.dk/{~}pcha/Regutools/
http://www.imm.dtu.dk/{~}pcha/Regutools/
http://dx.doi.org/10.1016/j.cam.2005.09.026
http://dx.doi.org/10.1016/j.cam.2005.09.026
http://dx.doi.org/10.1016/j.cam.2005.09.026
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1006/jmre.1998.1364
http://dx.doi.org/10.1006/jmre.2002.2567


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Kenyon, W. E. (1997). Petrophysical Principles of Applications of NMR Logging. The Log Analyst , 38 ,

21–43.

Kleinberg, R. L. (1999). 9. Nuclear Magnetic Resonance. In P.-z. B. T. E. M. i. t. P. S. Wong (Ed.), Methods

in the Physics of Porous Media (pp. 337–385). Academic Press volume 35. doi:10.1016/S0076-695X(08)

60420-2.695

Kleinberg, R. L., Straley, C., Kenyon, W. E., Akkurt, R., & Farooqui, S. A. (1993). Nuclear Magnetic

Resonance of Rocks: T1 vs. T2. In SPE Annual Technical Conference and Exhibition. Houston, Texas,

USA: Society of Petroleum Engineers. doi:10.2118/26470-MS.

Lawson, C. L., & Hanson, R. J. (1974). 26. Examples of Some Methods of Analyzing a Least Squares

Problem. In Solving Least Squares Problems chapter 26. (pp. 199–206). doi:10.1137/1.9781611971217.700

ch26.

McPhee, C., Reed, J., & Zubizarreta, I. (2015). Chapter 11 - Nuclear Magnetic Resonance (NMR). In

J. R. Colin McPhee, & Z. Izaskun (Eds.), Developments in Petroleum Science (pp. 655–669). Elsevier

volume Volume 64. doi:10.1016/B978-0-444-63533-4.00011-1.

Miao, J., Huo, D., & Wilson, D. L. (2008). Quantitative image quality evaluation of MR images using705

perceptual difference models. Medical Physics, 35 , 2541–2553. doi:10.1118/1.2903207.

Mitchell, J., Chandrasekera, T. C., & Gladden, L. F. (2012). Numerical estimation of relaxation and

diffusion distributions in two dimensions. Progress in Nuclear Magnetic Resonance Spectroscopy , 62 ,

34–50. doi:10.1016/j.pnmrs.2011.07.002.

Moody, J. B., & Xia, Y. (2004). Analysis of multi-exponential relaxation data with very short components710

using linear regularization. Journal of Magnetic Resonance, 167 , 36–41. doi:10.1016/j.jmr.2003.11.

004.

Morozov, V. A. (1984). Methods for Solving Incorrectly Posed Problems. New York: Springer.

Mory, A., & Iasky, R. (1996). Stratigraphy and structure of the onshore northern Perth Basin, Western

Australia. Technical Report Western Australia: Western Australia Geological Survey.715

Pearce, C. E. M., Abbott, D., McDonnell, M. D., & Stocks, N. G. (2008). Stochastic resonance: its

definition, history, and debates. In Stochastic Resonance: From Suprathreshold Stochastic Resonance to

Stochastic Signal Quantization chapter 2. (pp. 6–46). Cambridge: Cambridge University Press. doi:10.

1017/CBO9780511535239.004.

Polyanin, A. D., & Manzhirov, A. V. (2008). Handbook of Integral Equations: Second Edition. Handbooks720

of Mathematical Equations (2nd ed.). CRC Press.

32

http://dx.doi.org/10.1016/S0076-695X(08)60420-2
http://dx.doi.org/10.1016/S0076-695X(08)60420-2
http://dx.doi.org/10.1016/S0076-695X(08)60420-2
http://dx.doi.org/10.2118/26470-MS
http://dx.doi.org/10.1137/1.9781611971217.ch26
http://dx.doi.org/10.1137/1.9781611971217.ch26
http://dx.doi.org/10.1137/1.9781611971217.ch26
http://dx.doi.org/10.1016/B978-0-444-63533-4.00011-1
http://dx.doi.org/10.1118/1.2903207
http://dx.doi.org/10.1016/j.pnmrs.2011.07.002
http://dx.doi.org/10.1016/j.jmr.2003.11.004
http://dx.doi.org/10.1016/j.jmr.2003.11.004
http://dx.doi.org/10.1016/j.jmr.2003.11.004
http://dx.doi.org/10.1017/CBO9780511535239.004
http://dx.doi.org/10.1017/CBO9780511535239.004
http://dx.doi.org/10.1017/CBO9780511535239.004


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Prammer, M. G. (1994). NMR Pore Size Distributions and Permeability at the Well Site. doi:10.2118/

28368-MS.

Prammer, M. G., Drack, E. D., Bouton, J. C., & Gardner, J. S. (1996). Measurements of Clay-Bound Water

and Total Porosity by Magnetic Resonance Logging. Log Analyst , 37 , 61–69. doi:10.2118/36522-MS.725

Rutledge, D. N. (1996). Signal Treatment and Signal Analysis in NMR volume 18. (1st ed.). Elsevier

Science.

Saidian, M. (2015). Effect of rock composition and texture on pore size distributions in shales: Applications

in low field nuclear magnetic resonance. Ph.D. thesis Colorado School of Mines.

Salimifard, B., Dick, M., Green, D., & Ruth, D. W. (2017). Optimizing NMR Data Acquisition and730

Data Processing Parameters for Tight-Gas Montney Formation of Western Canada. In International

Symposium of the Society of Core Analysts. Vienna, Austria: Society of Core Analysts.

Song, Y. Q. (2000). Determining Pore Sizes Using an Internal Magnetic Field. Journal of Magnetic

Resonance, 143 , 397–401. doi:10.1006/jmre.1999.2012.

Song, Y. Q. (2003). Using internal magnetic fields to obtain pore size distributions of porous media.735

Concepts in Magnetic Resonance Part A, 18A, 97–110. doi:10.1002/cmr.a.10072.

Song, Y. Q., Venkataramanan, L., & Burcaw, L. (2005). Determining the resolution of Laplace inversion

spectrum. The Journal of Chemical Physics, 122 , 104104. doi:10.1063/1.1858436.

Song, Y. Q., Venkataramanan, L., Hürlimann, M. D., Flaum, M., Frulla, P., & Straley, C. (2002). T1T2

Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion. Journal of Magnetic740

Resonance, 154 , 261–268. doi:10.1006/jmre.2001.2474.

Sun, B., & Dunn, K.-J. (2004). Methods and limitations of NMR data inversion for fluid typing. Journal

of Magnetic Resonance, 169 , 118–128. URL: http://www.sciencedirect.com/science/article/pii/

S1090780704001028. doi:10.1016/j.jmr.2004.04.009.

Testamanti, M. N., & Rezaee, R. (2017). Determination of NMR T2 cut-off for clay bound water in shales:745

A case study of Carynginia Formation, Perth Basin, Western Australia. Journal of Petroleum Science

and Engineering , 149 , 497–503. doi:10.1016/j.petrol.2016.10.066.

Tikhonov, A. N. (1963). Solution of Incorrectly Formulated Problems and the Regularization Method.

Soviet Math. Dokl., 5 , 1035–1038. URL: http://ci.nii.ac.jp/naid/10004315593/en/.

Twomey, S. (1963). On the Numerical Solution of Fredholm Integral Equations of the First Kind by the750

Inversion of the Linear System Produced by Quadrature. Journal of the ACM , 10 , 97–101. doi:10.1145/

321150.321157.

33

http://dx.doi.org/10.2118/28368-MS
http://dx.doi.org/10.2118/28368-MS
http://dx.doi.org/10.2118/28368-MS
http://dx.doi.org/10.2118/36522-MS
http://dx.doi.org/10.1006/jmre.1999.2012
http://dx.doi.org/10.1002/cmr.a.10072
http://dx.doi.org/10.1063/1.1858436
http://dx.doi.org/10.1006/jmre.2001.2474
http://www.sciencedirect.com/science/article/pii/S1090780704001028
http://www.sciencedirect.com/science/article/pii/S1090780704001028
http://www.sciencedirect.com/science/article/pii/S1090780704001028
http://dx.doi.org/10.1016/j.jmr.2004.04.009
http://dx.doi.org/10.1016/j.petrol.2016.10.066
http://ci.nii.ac.jp/naid/10004315593/en/
http://dx.doi.org/10.1145/321150.321157
http://dx.doi.org/10.1145/321150.321157
http://dx.doi.org/10.1145/321150.321157


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Venkataramanan, L., Gruber, F. K., Habashy, T. M., Akkurt, R., Vissapragada, B., Lewis, R. E., &

Rylander, E. (2013). Methods of investigating formation samples using NMR data. URL: https:

//patents.google.com/patent/US9939506B2/en.755

Venkataramanan, L., Song, Y. Q., & Hürlimann, M. D. (2002). Solving Fredholm integrals of the first kind

with tensor product structure in 2 and 2.5 dimensions. IEEE Transactions on Signal Processing , 50 ,

1017–1026. doi:10.1109/78.995059.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error

visibility to structural similarity. IEEE Transactions on Image Processing , 13 , 600–612. doi:10.1109/760

TIP.2003.819861.

Washburn, K. (2014). Relaxation mechanisms and shales. Concepts in Magnetic Resonance Part A, 43A,

57–78. doi:10.1002/cmr.a.21302.

Washburn, K., Anderssen, E., Vogt, S., Seymour, J. D., Birdwell, J. E., Kirkland, C. M., & Codd, S. L.

(2015). Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR765

relaxometry. Journal of Magnetic Resonance, 250 , 7–16. doi:10.1016/j.jmr.2014.10.015.

Washburn, K., & Birdwell, J. (2013). Updated methodology for nuclear magnetic resonance characterization

of shales. Journal of Magnetic Resonance, 233 , 17–28. doi:10.1016/j.jmr.2013.04.014.

Watson, A. T., & Chang, C. T. P. (1997). Characterizing porous media with NMR methods. Progress in

Nuclear Magnetic Resonance Spectroscopy , 31 , 343–386. doi:10.1016/S0079-6565(97)00053-8.770

Whittall, K. P. (1994). Analysis of Large One-Dimensional and Two-Dimensional Relaxation Data Sets.

Journal of Magnetic Resonance, Series A, 110 , 214–218. doi:10.1006/jmra.1994.1207.

Whittall, K. P. (1996). Analysis of NMR Relaxation Data. In D. N. Rutledge (Ed.), Signal Treatment and

Signal Analysis in NMR chapter 3. (pp. 44–67). Elsevier volume Vol. 18, Data Handling in Science and

Technology. doi:10.1016/S0922-3487(96)80040-2.775

34

https://patents.google.com/patent/US9939506B2/en
https://patents.google.com/patent/US9939506B2/en
https://patents.google.com/patent/US9939506B2/en
http://dx.doi.org/10.1109/78.995059
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1002/cmr.a.21302
http://dx.doi.org/10.1016/j.jmr.2014.10.015
http://dx.doi.org/10.1016/j.jmr.2013.04.014
http://dx.doi.org/10.1016/S0079-6565(97)00053-8
http://dx.doi.org/10.1006/jmra.1994.1207
http://dx.doi.org/10.1016/S0922-3487(96)80040-2


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

• Evaluation of critical parameters in NMR T2 data acquisition and processing for shale applications

• Sensitivity analysis to various signal acquisition parameters from T2 experiments in shale cores

• Short echo spacings (TE) can improve signal quality but also enhance early experimental noise

• Inversion methods using fixed smoothing cannot resolve adjacent T2 components correctly

• Inversion methods based on noise level produce better fits but may bias solutions

• The BRD algorithm can differentiate the contribution from adjacent peaks at short T2 times

• Threshold T2 cut-offs are determined analytically by using two different NMR inversion methods  

View publication statsView publication stats

https://www.researchgate.net/publication/328726200

