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Abstract

It is generally accepted that drilling with drag bits (Polycrystalline Diamond

Compact bits) simultaneously consists of “pure cutting” and “frictional contact”

processes. To date, the mechanics of rock cutting have been mostly based on

the assumption that these two processes are fully independent as the influence

of wear flat inclination angle (β) with respect to the cutter velocity vector (v)

on the frictional contact force is often not accounted for. The specific aim

of this study is to determine the effect of wear flat inclination angle on the

frictional force acting on the wear flat surface of a single blunt cutter over a wide

range of depths of cut (d). For this purpose, an extensive and comprehensive

set of cutting experiments was performed on two sedimentary rock samples (a

limestone and a sandstone) using a state-of-the-art rock cutting equipment and

a unique cutter holder. The results show that the normal contact stress (σ)

at the wear flat-rock interface (and therefore the normal frictional force acting

on the wear flat) is dependent on the depth of cut within the elastoplastic and

particularly plastic regimes of frictional contact; however, the contact stress is

invariant with depth of cut within the elastic regime. Further investigations

indicate that the assumption that the force acting on the wear flat surface of
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a blunt cutter is independent of the cutting process taking place ahead of the

cutter is not valid in particular, for the large values of inclination angles.

Keywords: Rock cutting, Contact stress, Wear flat inclination angle, Depth of

cut, Pure cutting process, Frictional contact process

List of symbols

F Total force acting on the cutter

Fc, Ff Total cutting and frictional contact forces

Fcn, Fcs Normal and tangential components of the total cutting force

Ffn, Ffs Normal and tangential components of the total frictional contact force

˜Ffn, F̃fs Projected components of the contact force components

d Depth of cut

Ac Cross-sectional area of groove traced by cutter

Af Wear flat area

ω Width of cutter

q Uniaxial compressive strength of the rock material

ζ Ratio of normal component to tangential component of cutting force

ε Intrinsic specific energy

θ Back rake angle

θ∗ Initial back rake angle

∆θ∗ Relative increment of back rake angle

ψ Interfacial friction angle

v Horizontal cutting tool velocity

µ Friction coefficient

σ Normal contact stress

` Length of wear flat surface

β Inclination angle of wear flat with respect to velocity vector

E∗ Plane strain elastic modulus of the rock sample∏
Scaled contact stress

η Dimensionless number
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χ Chamfer angle

∆z Relative vertical displacement of spindle

1. Introduction

Better understanding of rock cutting or fragmenting has been one of the main

objectives of drilling research since the 1950s and has received increased at-

tention in both theoretical and experimental research areas. Drilling has been

performed mainly using roller cone bits, until the introduction of PDC (Poly-5

crystalline Diamond Compact) drag bits in the late 1970’s [1–4]. The application

of this new material reduced the drilling costs by improving the efficiency (their

high rate of penetration ROP) and the lifetime of the bits. Due to the shear cut-

ting mechanism of the PDC drill bits, they drill several times faster than roller

cone bits [5, 6]. A PDC bit consists of a matrix (tungsten carbide metallurgi-10

cally bonded with a metallic binder) or steel body that is covered with inserts

often referred to as PDC cutters which are made of a thin layer of synthetic

polycrystalline diamond bonded on a tungsten carbide substrate. A PDC drag

bit is actually composed of a multiplicity of individual PDC cutters mounted

at the surface of a bit body. Therefore, a study of the drilling response of PDC15

bits can be done by establishing the cutting response of an individual cutter

[7–11].

It is commonly admitted in the literature [12–17] that the cutting action of

a blunt (worn) cutter or drag bit can be divided into two independent processes:

(i) a pure cutting action in front of the cutting face, and (ii) a frictional pro-20

cess mobilized across the wear flat surface. To date, a large body of research

studies (both numerical simulations and experimental investigations) have been

mainly based on this main assumption that these two processes (pure cutting

and frictional contact) are uncoupled. In other words, the total force acting

on a single blunt cutter or drag bit can be simply written as the sum of two25

independent forces, Fc and Ff which coexist and are associated with the pure

cutting (subscript c) and frictional contact processes (subscript f), respectively
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(Eq. 1).

F = Fc + Ff (1)

On the other hand, in the overwhelming majority of research studies on

rock cutting, it is assumed that the contact force acting on the wear flat surface30

(or eventually the normal contact stress (σ) mobilized across the wear flat-rock

interface) is independent of both the inclination angle β (defined as the angle

between the wear flat surface and the linear velocity vector of the cutter v)

and the rate of penetration ROP (defined as the depth of cur per revolution

which is equivalent to the depth of cut (d) for a single cutter [18]), see Fig.35

1. Little research [19–22] has been reported, however, on the predominant

influence of the inclination angle (β) on the normal contact stress at wear flat-

rock interface. Nonetheless, to the best knowledge of the authors, no reliable

and robust study has been devoted to review the validation of the independence

between the cutting and frictional processes (proposed by several authors) with40

a consideration of the variations of wear flat inclination angle (β) at different

cutting depths (d).

The main objective of this paper is to investigate experimentally, how the

inclination angle affects the normal contact stress at the wear flat-rock interface

of a single blunt cutter tracing a groove on the surface of a rock sample at dif-45

ferent depths of cut (or ROP). In addition, the main assumption of the bit-rock

interaction model, indicating the independence between the cutting and friction

processes, is also reviewed and discussed with consideration of the inclination

angle. To this end, an extensive campaign of cutting tests equivalent to the ex-

cavation process (but under dry conditions) with different wear flat inclination50

angles (β), different depths of cut (d), and two rock materials was conducted

using a state-of-the-art scratching device (Wombat) and a novel cutter holder

allowing for precise adjustment of the angle of inclination (β) by steps of 0.10◦.
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Figure 1: (a) 3D drawing of a PDC bit (updated from [23]), and (b) sketches
of a worn cutter tracing a groove of depth d on the bottom hole. The angle
β is the angle between the cutter wear surface and the cutter linear velocity
(v).

In this paper, we first review the models of rock cutting, with consideration

given to the ductile mode of failure [24]. Then, the phenomenological model of55

rock cutting [14] commonly used in rock cutting, is derived. We then describe

the experimental setup, equipment specifications, and the physical properties of

the rock materials used in this study. Finally, we provide compelling evidence

that the frictional force is a function of depth of cut and that the “pure cutting”

and “frictional contact” processes are not fully two independent processes.60

2. Models of cutting process with a single cutter

Rock cutting or rock scratching can be described as the shaving or machining

of a layer of rock from a free surface with the tool moving parallel to the free

surface. The first cutting models were inspired from the metal cutting model

presented by Merchant in 1944 [25, 26]. Merchant’s semi-empirical model was65
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based on a Mohr-Coulomb plasticity criterion and force equilibrium of a single

shear plane in orthogonal cutting action. The application of Merchant’s model

was limited to rock cutting as it was based on the assumption of a perfectly

sharp cutter while, in practice, the cutters develop a wear flat which affects

the force on the cutter. Subsequently, other authors [27–31] have proposed the70

Merchant based models.

Nishimatsu [29] was one of the first to offer a model suitable for cutting

rocks. His study has inspired other researchers to develop models based on

different concepts of mechanical destruction of the rock. Nishimatsu’s model

was more applicable for chip formations and discontinuous rock cutting but this75

model fails for the ductile mode of failure. Another limitation of Nishimatsu’s

model was that the effect of wear flat was not accounted for [17, 29, 32, 33].

Lebrun [30], extending Nishimatsu’s theory, developed a three dimensional

model for the failure of the rock subjected to the action of a cutting tool. Lebrun

proposed that the cutting force and the depth of cut are linearly related, with80

a coefficient of proportionality that depends on the width, wear and rake angle

of the cutter. He also stated that the cutting and normal forces are linearly

related, with a proportionality coefficient that depends mainly on the degree of

wear. Cheatham [34] has shown that the cutter forces are functions of cutting

area and rock shear strength. This researcher has also shown that the cutter85

forces are independent of the particular cutter shape and can be predicted with

Merchant’s metal cutting model.

The limitation of many models available in the literature is that the effect

of wear flat is often not accounted for. Therefore, a model of rock cutting was

then developed by Glowka [13, 32] while the frictional contact between the cutter90

and free surface of the rock was taken into account. He analyzed the effect of

temperature on wear and also studied the effect of wear on the efficiency of the

cutting tool.

A phenomenological model proposed by Detournay & Defourny [14] (referred

to as the “DD-model”) was based on the suggestion of Fairhurst and Lacabanne95

[16] that the force acting on a single cutter is governed by the coexistence of
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two independent processes: the “pure cutting” process in front of the cutting

face and the “frictional contact” mobilized across the wear flat surface. This

model was validated against experimental results published by Glowka (1987)

and developed to describe the rock cutting process under conditions when the100

mode of rock failure induced by the cutter can be described as plastic. This

is typically the failure mode (ductile mode of failure) observed in sedimentary

rocks at shallow depth of cut (typically less than 1 mm) [14, 24, 35–38]. Since

then, Almenara (1992), Samiselo(1992), Lasserre (1994) and Adachi (1996) also

provided experimental support to the DD-model.105

The DD-model is mainly based on the following assumptions:

1. the cutting process can be decomposed into two independent processes:

the “pure cutting” process and the “frictional contact” at the wear flat-

rock interface,

2. the force acting on the cutting face is proportional to the cross-sectional110

area of the groove (Ac), and

3. the total force (frictional force) acting on the wear flat-rock interface of a

blunt cutter is independent from the depth of cut (d) and its normal and

tangential components are related by a frictional law.

3. Pure cutting/frictional contact115

As mentioned in the section 2, Detournay and Defourny (1992) proposed a

phenomenological model (DD-model) for the forces acting on a single cutter

and/or PDC drag bit which were compared to the experimental data. The

model dealt with the pure cutting (sharp cutter) and the frictional contact

(blunt cutter), separately [14]. In rock cutting, the mode of failure shifts from120

ductile (plastic failure) to brittle (propagation of fractures) with an increase of

depth of cut [35–38], and the main focus of the DD-model is only on the ductile

mode of the failure taking place at the shallow depths of cut [24, 35].
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First, a perfectly sharp cutter is considered in Fig. 2a. According to the

DD-model, for the sharp cutter and before the formation of a wear flat at the125

cutter tip, the total force acting on the cutter represents only the cutting force

(F = Fc) [8]. In other words, the force acting on the cutting face is only uti-

lized in cutting rocks. The cutter traces a groove at a constant depth of cut

(d) and moves in a horizontal direction, as depicted by the velocity vector (v).

The cutting process, under kinematic control, is assumed to be steady state.130

Therefore, instead of considering peak forces, the model takes into account the

forces “averaged over a distance, large compared to the depth of cut” [24]. Con-

sidering the second assumption of the DD-model in section 2, the total cutting

force (Fc) can be decomposed into components; normal (Fcn) and tangential

(Fcs) to the rock surface and can be written as:135

 Fcn = ζεAc

Fcs = εAc

(2)

where ε is the intrinsic specific energy (minimum energy to remove a unit volume

of the rock with the dimension of stress MPa [43]) that is found well correlated

with the uniaxial compressive strength of the rock (q) [24, 44–47], Ac is the

cross-sectional area of the groove traced by the cutter (which for a rectangular

shaped cutter, is equal to cutter width (ω) multiplied by the depth of cut (d))140

and the number ζ (ζ = tan(θ + ψ) = Fcn

Fcs
) can be simply interpreted as the

ratio of normal to tangential components of the cutting force. Here, ψ is the

interfacial friction angle and θ is the back rake angle (positive when inclined

forward) which is defined as the angle between the normal to the cutting face

(k) and the velocity vector (v).145
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Figure 2: Forces acting on (a) a sharp PDC cutter, and (b) a blunt PDC
cutter.

When a sharp cutter wears, the cutter turns blunt and a wear flat emerges.

This wear flat is in contact with the rock and therefore transmits an additional

force, next to the cutting force, which is utilized in overcoming friction at the

wear flat-rock interface, see Fig. 2b. Under the wear flat, the normal and

tangential components of the total frictional force (Ff ) are constrained by the150

following friction law:

µ(d) =
F̃fs
˜Ffn

(3)

where µ is the friction coefficient mobilized at the interface, ˜Ffn and F̃fs are,

respectively, the frictional force components projected on the normal and tan-

gent to the wear flat surface with precise consideration of the inclination angle

of the wear flat surface (β). These force components are given as:155  ˜Ffn = Ffn cosβ + Ffs sinβ

F̃fs = Ffs cosβ − Ffn sinβ
(4)

where on account of Eq. 1, the frictional force components can be readily
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obtained by: Ffs(d, θ) = Fs(d, θ)− Fcs(d, θ)

Ffn(d, θ) = Fn(d, θ)− Fcn(d, θ)
(5)

and Ff (d, θ) is the force measured on a blunt cutter at a given depth of cut

(d) and at a given back rake angle (θ), and Fc(d, θ) is the force measured on a

sharp cutter for the same depth of cut and back rake angle. It is important to160

reiterate that the normal Fcn(d, θ) and tangential Fcs(d, θ) components of the

pure cutting force are measured from tests performed with a sharp cutter [48].

In addition, the normal contact stress mobilized at the wear flat-rock inter-

face reads as:

σ(d) =
Ffn cosβ + Ffs sinβ

ω`
=

˜Ffn
Af

(6)

where σ is the contact stress mobilized across the wear flat (which is of the165

order of the uniaxial compressive strength q [21, 39, 41, 42, 49–51]) and Af is

the wear flat area (Af = ω× ` for a rectangular shaped cutter with ` being the

length of wear flat surface, see Fig. 2b).

Experimental results reveal three distinct phases in the cutting response of

a worn cutter (or drilling response of a drag bit) with respect to the depth of170

cut (d) [19, 49–52], see Fig. 3. At shallow depth of cut (phase I), it is assumed

that the two contacting surfaces (the cutter wear flat and the rock surfaces)

are not entirely conforming, and increase in depth of cut leads to an increase

in both the cutting force associated with the pure cutting process but also in

the effective contact area (Af ), up to a critical depth of cut (d < d∗). In175

phase II (d∗ ≤ d ≤ d∗∗), the effective contact area has reached a limit value

(Af = Af∗), and the incremental drilling-cutting response is governed by the

pure cutting process [51]. On a drill bit, phase III is marked by the occurrence

of an additional contact between the rock and bit body as an excess of cuttings

is not efficiently flushed away from the bit face.180
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𝐴𝑓 

𝐴𝑓∗ 

Phase I Phase II Phase III 

Figure 3: Conceptual Evolution of contact area (Af) with depth of cut (d)
for a blunt cutter.

The response of a blunt cutter in a force-depth of cut relationship is illus-

trated in Fig. 4. The extent of phase I is controlled by the size of the wear

surface and the angle β [21]; in phase II, the response is parallel to the response

of a sharp cutter [14, 39, 42, 50].
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𝑑∗ 
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𝑃ℎ𝑎𝑠𝑒 𝐼 𝑃ℎ𝑎𝑠𝑒 𝐼𝐼 

Figure 4: Conceptual plot of force against depth of cut for both a sharp
and blunt cutters.

Furthermore, numerical [20] and experimental studies [21, 22, 48] with a185

single blunt PDC cutter consistently indicate that the scaled contact stress

(
∏

= σ
q ) at the wear flat-rock interface is predominantly controlled by one

dimensionless number η = E∗ tan β
q where E∗ is the plane strain elastic modulus

of the rock sample. As a consequence, three regimes of frictional contact exist

(identified as elastic, elastoplastic and fully plastic) depending on the value of β190

(or eventually the dimensionless number η), see Fig. 5. More recently, [21, 22], a

comprehensive set of cutting experiments was carried out on Tuffeau limestone

and Mountain Gold sandstone using a single blunt PDC cutter to confirm the

existence and location of these three regimes of frictional contact. Experimental

observations show that the elastic (βe) and plastic (βp) limits sit at about the195

same angle for both rock samples (βe ' 2.40◦ and βp ' 7.40◦), as shown in Fig.

5. This dependency of the contact stress on the angle β should be accounted

for when modeling the dynamic response (torsional or axial vibrations) of PDC

drill bits [53–62].
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Figure 5: Scaled contact stress (
∏

) versus inclination angle (β) at d=0.70
mm. Tests conducted on Tuffeau limestone and Mountain Gold sandstone
[21, 22].

4. Full scale drilling case200

It is generally accepted that different types of wear mechanism are in effect

during the process of drilling including the steady wear as a result of abrasion

and other wear modes, such as chipping, mostly caused by drilling dynamics.

The wear flat studied in this work is mostly caused by the former mode of

wear which erodes the cutter due to continuous frictional contact with the rock205

abrasive minerals. Normally, in the absence of drilling dynamic phenomena,

this should be the predominant type of wear observed on a PDC cutter.

Limited information exists within the current literature relating the inclina-

tion angle (β) to drilling parameters. Ersoy and Waller [63] reported that soft

formations tend to wear the cutter at a higher inclination angle compared to210

hard/brittle formations. Remarks have been made by Zijsling and Djurre [64]

that can lead to a general understanding of the range of β values expected in
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practice. The document states that (supported by claimed field observations)

the wear flat tends to create an angle of between 10◦ to 15◦ with the hole

bottom.215

If the observations stated above are accepted, results of this work may have

immediate implications in hard/brittle rock drilling; among any other future

applications. Glowka [65] observed that a PDC cutter “thermally accelerated

wear” in hard rock drilling instigates when [in effect] the scaled contact stress

(
∏

= σ
q ) is near or above 1.0. Therefore, to avoid this accelerated mode of wear220

and to prolong the bit run, it may be desirable to stay within the elastic regime

of frictional contact for the rock types presented in Fig. 5 and Fig. 6.

0

1

2

3

4

5

6

-5 -3 -1 1 3 5 7 9 11 13 15 17
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d=0.60 mm d=0.70 mm
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d=1 mm

𝛽°

∏

Figure 6: Scaled contact stress versus inclination angle at different depths
of cut. Tests conducted on Mountain Gold sandstone [21, 48].

The inclination between the wear surface and the cutter velocity vector is

controlled by the location of the cutter along the bit profile (in particular the

radial distance (R) with respect to the bit axis of rotation), the rate of penetra-225
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tionon, and angular velocity (rotary speed). As a numerical example, consider

drilling into a hard rock formation with an 8
3
4 inch PDC bit that has already

developed some wear flat on the cutters. Further, for example, let us assume

that the magnitude of
∏

is near or less than 1.0 at β < 2◦ for this rock type.

Under the assumption that a wear flat has formed parallel to the rock surface230

(or in other words, perpendicular to drill-bit axis), the angle β is given by:

β ≈ tan(β) =
ROP. cos γ

5N.2πR
(7)

in which, ROP is rate of penetration in ft/hr, N is rotary speed in rotation

per minute, and R is the radius from the bit center axis in inches, and γ is

the angle that the normal to bit profile makes with the bit axis. For the sake

of simplicity, we only consider cutters on the nose area (assuming R ≈ 2.56235

inch) for which γ ≈ 0◦, and therefore cos(γ) ≈ 1. Applying these parameters

to the equation results in the condition of N > ROP
2.74 in order to have β < 2◦

and minimize thermally accelerated wear. In other words, for instance, rotary

speeds of less than 15 RPM while drilling at 40 ft/hr are not advisable in terms

of cutter wear. Although this numerical example may not be close enough to240

normal drilling parameters in the field to be of a concern, for formations with

lower critical angles or certain bit profiles with lower angle cones, the minimum

rotary speed may be much higher. Even in this same example, assuming a cone

angle of 30◦ for this bit, for the cutter(s) at 0.50 inch radius, we should have

N > ROP
0.63 before the cutter acceleration wear starts; i.e. the minimum rotary245

speed at 40 ft/hr would be 64 RPM.

This application example should be generic enough to be utilized in finding

the inclination angle (β) for given conditions (and cutters). However, the con-

cept of limiting the inclination angle to a given range is only interpreted from

the results presented here and is only applicable for the range of parameters250

discussed here (including depth of cut), see Fig .6. Although one can anticipate

similar rocks and/or operating conditions; no claim is made herein for such cir-

cumstances. The available data for several other rock types [21, 48], however,
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show similar behavior to that of Fig. 6; but are not included for briefness.

5. Experimental setup255

5.1. Scratching device and cutter holder

The cutting apparatus used for the cutting tests is called the “Wombat”1 ma-

chine which was designated to scratch rocks (using either a single blunt or a

single sharp cutter) by tracing a groove on the rock surface (Fig. 7). The

Wombat is a kinematically controlled apparatus, i.e. cutting tests are carried260

out under controlled depth of cut (d) with a predetermined constant horizontal

velocity (v = 4 mm
s ) along the entire cut, while the tangential (Fs) and normal

(Fn) components of the total force acting on the cutter are recorded separately

with a precision less than 1 N over a range of 0 to ±3500 N. Note that all cutting

tests in this study were based on the standard procedure explained in several265

references such as [21, 24, 66].

1This machine is housed in the Rock Mechanics Testing Laboratory, CSIRO, Perth, Aus-
tralia.
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Figure 7: The rock cutting machine.

A unique cutter holder was designed (using AutoCad 2015) and manufac-

tured to adjust the back rake angle of the cutter θ (and therefore the inclination

angle β) by steps of 0.10◦ [21, 22]. The main mechanical parts of this novel

cutter holder are shown in Fig. 8.270
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Figure 8: Schematic of the new cutter holder with fine adjustable inclina-
tion angle.

As the blunt cutter is mounted on the cutter seat of the cutter holder with

a forward inclination (θ ≥ 0◦), the back rake angle of the cutter is first set to

an initial back rake angle (θ∗) and then incrementally increased by step of ∆θ∗

to reach the desired value of back rake angle θ (θ = θ∗ + ∆θ∗). Therefore, the

inclination angle of wear flat surface (Fig. 9) is derived by:275

β = χ− θ∗ −∆θ∗ (8)

where χ is the chamfer angle of the blunt cutter (and is a constant value for a

given blunt cutter and defined as the angle between the wear flat surface and

18



the direction of velocity vector when θ = 0◦2), see Fig. 9a, and ∆θ∗ can be

written as:

∆θ∗ = arcsin(
∆z

L
) (9)

Here, ∆z is the vertical displacement of the spindle of the micrometer and L is280

the radius of rotation, see Fig. 8. Note that the procedure and validation of the

method of measuring β is well described in Refs. [21, 22, 48].

(a) (b)

Figure 9: Definition of (a) the chamfer angle χ, and (b) the inclination angle
β between the wear flat surface of a blunt PDC cutter and the velocity
vector (v).

5.2. Cutters specifications

Two rectangular shaped PDC cutters (one sharp and one blunt) were used in

this research with a width of 10 mm (ω = 10 mm). Note that the wear flat285

surface of a blunt cutter is precisely machined by grinding an originally sharp

cutter. The main geometrical properties of both the sharp and blunt cutters

used for cutting tests are presented in Table 1. In order to measure the length

of a wear flat (`) and the chamfer angle (χ), as schematically shown in Fig. 9, a

high resolution optical microscope (model AxioScope Imager A1) was used [21].290

2The chamfer angle is also defined as the angle between the wear flat surface and the
normal to the cutting face.
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Table 1: Geometrical specifications of the cutters used for testing [21].

Cutter geometry Sharp cutter Blunt cutter

Width (mm) 10 10

Wear flat length (mm) 0 1

Wear flat area (mm2) 0 10

Chamfer angle 0◦ 18.44◦

5.3. Rock samples

One limestone (Tuffeau) and one sandstone (Mountain Gold) sample were in-

vestigated for the purpose of this study, and were selected based on their homo-

geneity and isotropic behavior in relation to rock cutting (meaning the cutting

response is not affected by the direction in which the cut is carried out). The295

mechanical and physical properties of these two rock samples are listed in Table

2. The methods used to determine the physical properties of the rock samples

are detailed in Refs. [21, 22].

Table 2: Mechanical and physical properties of rocks used in this study
[21].

Rock name Tuffeau Mountain Gold

Uniaxial compressive strength (MPa) 8.51 34
Elastic modulus (GPa) 1.70 8.10

Poisson’s ratio 0.24 0.20
Dry Porosity (%) 41.49 15.70

Dry density (Kg/m3) 1360 2180
Permeability (mD) 39.07 2.09

E∗

q 211.97 248.16

D10(µm) 24 8
Grain size distribution diameters D50(µm) 181 401

D90(µm) 533 792

D10 is the diameter at which 10% of a sample’s mass is comprised of smaller particles.
D50 is the diameter at which 50% of a sample’s mass is comprised of smaller particles.
D90 is the diameter at which 90% of a sample’s mass is comprised of smaller particles.
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6. Results and discussion

A series of cutting tests using a new sharp PDC cutter was first carried out to300

characterize the force associated with the pure cutting process as a function of

the back rake angle based on Eq. 2. Those results were then used to estimate

the force mobilized on the wear flat from the total force recorded during tests

carried out with a blunt cutter at similar back rake angle (see Eq. 5); and

eventually the contact stress (σ) mobilized across the wear flat surface (see Eqs.305

4 and 6) [22, 48]. The inclination angle (β) of the blunt cutter was varied in an

interval of -4.26◦ to 14.90◦ while the depth of cut ranges from 0.03 to 1 mm.

6.1. Effect of depth of cut on the frictional contact

A series of laboratory cutting experiments was performed with the blunt cutter

on the samples of Tuffeau limestone and Mountain Gold sandstone at a wide310

range of depths of cut. According to the three regimes of frictional contact

(elastic, elastoplastic and plastic) presented in the literature [21, 22] and Fig.

5, three values of the inclination angles were selected; 0.44◦, 5.40◦ and 9.41◦

which correspond to the elastic, elastoplastic and plastic regimes, respectively

[21, 22].315

In Fig. 10 and Fig. 11 are shown the plots of scaled contact stress (
∏

= σ
q )

at the wear flat-rock interface as a function of depth of cut (d) for Tuffeau and

Mountain Gold, respectively. The results clearly indicate that the depth of cut

has a significant effect on the response of cutting with a single blunt cutter in

the elastoplastic regime and particularly plastic regime. However as shown in320

the figures below, the contact stress remains invariant with an increase in depth

of cut for both rock samples when the regime of frictional contact between a

blunt cutter and the substrate is within the elastic regime (for small inclination

angles 0◦ ≤ β ≤ 2◦).
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Figure 10: Plot of scaled contact stress (
∏

) as a function of depth of cut
(d) at three different inclination angles (β). Tests conducted on Tuffeau
limestone.
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Figure 11: Plot of scaled contact stress (
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) as a function of depth of cut
(d) at three different inclination angles (β). Tests conducted on Mountain
Gold sandstone.
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Within the elastoplastic regime, the contact stress progressively increases325

with the depth of cut (consistent with the results of Lhomme (1999)) and then

saturates at a limit value when the depth of cut reaches a critical depth of

cut denoted as d∗. This observed trend could be attributed to the fact that, at

shallow depths of cut, it is postulated that the two contacting surfaces (wear flat

surface of the blunt cutter and the rock samples) are not entirely conforming.330

Hence, the contact stress is proportional to the depth of cut, in other words, any

increase in depth of cut (d) leads to an increase in the cutting force associated

with the pure cutting process and also in the effective contact area Af (or length

of wear flat surface `) before the depth of cut reaches d∗ (function of bit bluntness

[20, 51]). Beyond the critical depth of cut (d ≥ d∗), the normal component of335

frictional force stabilizes at a stationary value and therefore the effective contact

stress has also reached a limited value. In this phase, the incremental cutting

response is governed by the pure cutting process. These findings are in good

agreement with the results of other studies [42, 50, 51].

It is interesting to note that the magnitude of the critical depth of cut is340

roughly similar for both rock samples (Tuffeau and Mountain Gold) but in-

creases steadily with the inclination angle (β). As supported by results shown

in Fig. 12 at a wide range of inclination angles, one can intuitively argue that

the critical depth of cut (d∗) scales with the normal height of the wear flat

(where the term “normal” means measured in a plane normal to the velocity345

vector). Note that past the inclination angle of β ' 11.91◦, the critical depth

of cut could not be estimated as the depth of cut was limited to 0.80 mm.
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Figure 12: Evolution of stabilized value of depth of cut (d∗) as a function
of height of the wear flat surface (` sinβ), d∗ ' 4 ` sinβ.

The effect of depth of cut on the apparent contact stress has sometimes

been related to an actual increase of the effective contact area between the

cutter and the rock, with an increase of depth of cut converging towards a350

more conformal contact. A similar explanation invokes the volume of rock being

forced underneath the cutter, as the depth of cut increases this volume increases

steadily (up to a limit) which in turn affects the resulting contact stress. As

a result, the extent of the elastoplastic region increases with the depth of cut

and eventually converges at a depth of cut of about 0.70-0.80 mm in the current355

examples [67]. Visual observations support this explanation as tests carried out

at large depth of cut in the plastic regime (β ' 7◦ − 9.5◦) are accompanied by

a clear accumulation of powder in the bottom of the groove, as compared with

the tests performed at a shallower depth of cut. Consequently, although this is

not included in the original bit-rock interaction model proposed by Detournay360

and Defourny [14], it can be deduced from these results that the frictional

force as well as the contact stress are dependent on the depth of cut. These
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observations suggest that the assumption that the forces acting on the wear

flat are independent of the cutting process taking place ahead of the cutter, is

invalid and is discussed analytically in the following section.365

6.2. Review of two independent processes

The experimental results presented in this study suggest that the total force

acting on a blunt cutter cannot be captured by the simple addition of the force

measured on an inclined wear flat in contact with the rock, and the one mea-

sured on a sharp cutter at the same depth of cut and back rake angle. This is370

particularly true for large inclination angles.

The immediate implication of the results presented in this paper is ques-

tioning the common assumption that allows bit-cutter performance models to

decouple the wear flat from the cutting face. Although a convenient assumption

to enable combining models for sharp cutters and those of frictional sliders, here375

it is demonstrated that significant errors may result from such an assumption.

Below we simply compare the force recorded on a blunt cutter at a back rake

angle (θ) at depth of cut (d) with the force recorded on the same blunt cutter

but with only the wear surface in contact with the rock d1 and the force recorded

on a sharp cutter for the same back rake angle (θ) and depth of cut d− d1, see380

Fig. 13. Results summarized in Table 3 implies that the cutting response of the

blunt cutter is not simply the sum of the forces independently measured on the

wear flat and on the cutting face (∆F ). The results in Table 3 clearly indicate

that there is a noticeable difference between the values of normal and tangential

components of the forces acting on the cutting face of a blunt cutter (∆F ) and385

the similar force components acting on the cutting face of a sharp cutter.
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Table 3: Comparison of force responses acting on a sharp cutter and a
blunt cutter at different inlcination angles.

Depth of cut Fn (N) Fs (N)

β = 5.44◦, θ = 13◦

Mountain Gold

Blunt cutter
d1 0.10 mm 795.22 168.08

d 0.60 mm 1368.90 403.21

∆F d− d1 0.50 mm 573.68 235.12

Sharp cutter d− d1 0.50 mm 100.51 158.26

Tuffeau

Blunt cutter
d1 0.10 mm 144.40 50.45

d 0.60 mm 245 116.09

∆F d− d1 0.50 mm 100.66 65.64

Sharp cutter d− d1 0.50 mm 31.53 49.53

β = 11.91◦, θ = 6.53◦

Mountain Gold

Blunt cutter
d1 0.20 mm 645.48 297.87

d 0.60 mm 1033.41 493.74

∆F d− d1 0.40 mm 387.92 195.87

Sharp cutter d− d1 0.40 mm 75.34 101.27

Tuffeau

Blunt cutter
d1 0.20 mm 132.63 85.56

d 0.60 mm 177.198 113.77

∆F d− d1 0.40 mm 44.56 28.21

Sharp cutter d− d1 0.40 mm 28.34 42.23

β = 13.91◦, θ = 4.53◦

Mountain Gold

Blunt cutter
d1 0.25 mm 578.99 302.09

d 0.45 mm 796.23 428.70

∆F d− d1 0.20 mm 217.24 126.61

Sharp cutter d− d1 0.20 mm 15.91 49.72

Tuffeau

Blunt cutter
d1 0.25 mm 145.36 102.82

d 0.45 mm 173.04 124.75

∆F d− d1 0.20 mm 27.68 21.93

Sharp cutter d− d1 0.20 mm 8.88 16.93
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As discussed in the literature [14, 51], the incremental response of a blunt

cutter is similar to the one of a sharp cutter beyond a critical depth of cut; but

as well illustrated in the results shown in Fig. 14a to Fig. 14f for Mountain Gold

sandstone, the threshold depth of cut d∗ is found significantly larger than the390

projection of the wear flat length in the plane normal to the groove (d∗ > d1),

see Fig. 15. At large inclination angle (where the wear flat acts more as chamfer

or secondary cutting face), the incremental cutting response has not converged

towards the response of a sharp cutter at a depth of cut associated with the onset

of the brittle cutting regime (d > 1.2 mm). As mentioned in the previous section,395

the possible explanation for this observation is the relative backward flow of the

crushed particles which were visually observed during the experimental tests.

The results of Tuffeau limestone compared with Mountain Gold sandstone are

also presented in Appendix A. Also, the evolution of d∗ as a function of the

inclination angle (β) is presented in Appendix B.400

Figure 13: Schematic of two blunt cutters and a sharp cutter with the same
back rake angles and different depths of cut.
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Figure 14: Evidence of d∗ with increase of inclination angle (β). Tests
conducted on Mountain Gold sandstone.
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Figure 15: Schematic of the normal behavior of a sharp cutter and a blunt
cutter as a function of depth of cut.

7. Conclusions

In the present study, results of cutting tests using a single blunt PDC (Polycrys-

talline Diamond Compact) cutter and a single sharp PDC cutter conducted in

two different rock samples (a coarse grain sandstone and a soft grain limestone)

were presented. An extensive and comprehensive set of cutting tests was carried405

out not only on a wide range of depths of cut but also at different inclination

angles of the wear flat. A unique cutter holder was purposely designed and

manufactured along with a precise experimental protocol implemented so as to

change the angle of inclination (β) in steps of 0.10◦.

The experimental results indicate that the contact force (and therefore the410

contact stress σ) at the wear flat-rock interface is affected by both the depth of

cut (or rate of penetration ROP) and the inclination angle (β). In view of the

three regimes of frictional contact (identified as elastic, elstoplastic and fully

plastic) were introduced in the previous studies [21, 22], the normal contact

stress remains unchanged within the elastic regimes which typically occurs at415
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small inclination angles. Within the elastoplastic regime of the frictional con-

tact, the findings of this study is consistent with the work of Adachi (1996); the

contact stress increases with depth of cut due to non-conformal contact at the

wear flat-rock interface and then it levels off once the depth of cut (d) reaches

d∗. When the regime of interaction between the wear flat and the substrate is420

within the plastic regime, the contact stress increases steadily with the depth

of cut.

The findings of this research have also shown that the two simultaneous

processes of rock cutting, frictional contact and pure cutting, cannot simply

be considered as fully independent processes. The incremental response of a425

blunt cutter becomes similar to the response of a sharp cutter beyond a depth

of cut (d∗) which is significantly larger than the wear flat projected normal

height (dcr = `sinβ). Also, the results indicate that for a large inclination

angle (β > 7◦, for which the wear flat acts more as a chamfer or second cutting

face [22]) the incremental response of the cutter has not yet converged to the430

response of a sharp cutter beyond a depth of cut greater than 1 mm at, which

the occurrence of the brittle regime occurs.

This research implies that the drilling with a PDC drag bit or cutting model

with a single blunt cutter cannot readily be considered as two independent

“pure cutting” and “frictional contact” processes, Also, value of the inclination435

angle of the wear flat has a significant effect on the cutting response of a drag

bit. This finding plays an important role in analysis of the data obtained from

laboratory experiments and in particular, the numerical simulations of rock

cutting which are generally based on many simplifications. Further work (such

as finite element modeling (FEM) and/or discrete element modeling (DEM)) is440

necessary to compare the experimental results with numerical modeling.
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Appendix A. Results of cutting tests-Tuffeau

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2

Fn (Blunt cutter)

Fn (Sharp cutter)

𝐹 𝑛
(N

)

𝑑 (mm)

(a) β = 0.64◦, θ = 17.80◦

0

40

80

120

160

200

0 0.2 0.4 0.6 0.8 1 1.2

Fn (Blunt cutter)

Fn (Sharp cutter)

𝐹 𝑛
(N

)

𝑑 (mm)

(b) β = 1.94◦, θ = 16.50◦

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2

Fn (Blunt cutter)

Fn (Sharp cutter)

𝐹 𝑛
(N

)

𝑑 (mm)

(c) β = 3.58◦, θ = 14.86◦

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2

Fn (Blunt cutter)

Fn (Sharp cutter)
𝐹 𝑛

(N
)

𝑑 (mm)

(d) β = 5.40◦, θ = 13.04◦

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2

Fn (Blunt cutter)

Fn (Sharp cutter)

𝐹 𝑛
(N

)

𝑑 (mm)

(e) β = 9.40◦, θ = 9.04◦

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

Fn (Blunt cutter)

Fn (Sharp cutter)

𝐹 𝑛
(N

)

𝑑 (mm)

(f) β = 14.90◦, θ = 3.54◦

Figure A.1: Evidence of d∗ with increase of inclination angle (β). Tests
conducted on Tuffeau limestone.
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Appendix B. Evolution of d∗ as a function of in-645

clination angle (β)
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Figure B.1: Plot of normal force (Fn) as a function of depth of cut for
different inclination angles (β). Tests carried out on Mountain Gold sand-
stone.
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Figure B.2: Plot of normal force (Fn) as a function of depth of cut for
different inclination angles (β). Tests carried out on Tuffeau limestone.
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