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Abstract—In this paper, we study a two-hop amplify-and-
forward (AF) multiple-input multiple-output (MIMO) relay sys-
tem, where the relay node has no self-power supply, and relies
on harvesting the radio frequency energy transferred from the
source node to forward information from source to destination.
We apply the time switching (TS) protocol between wireless
information and energy transfer. As a novel contribution of this
paper, we propose a more general energy consumption constraint
at the source node during the information and energy transfer,
which includes the constant power constraints used in existing
works as special cases. We study the joint optimization of the
source precoding matrices, the relay amplifying matrix, and the
TS factor to maximize the source-destination mutual information
(MI). The optimal structure of the source and relay matrices
is derived, which reduces the original transceiver optimization
problem to a simpler power allocation problem. Numerical
simulations show that the proposed algorithm yield higher system
MI and better rate-energy tradeoff than an existing approach.

I. INTRODUCTION

Recently, wireless power transfer techniques received in-

creasing interests from both academia and industry due to the

current proliferation of low power sensors and electronic de-

vices [1]. An ideal receiver capable of performing information

decoding (ID) and energy harvesting (EH) simultaneously has

been proposed in [2]. The trade-off between the achievable

information rate and the harvested energy is also characterized

by a capacity-energy function in [2]. To coordinate wireless

information transfer and wireless energy transfer in practical

systems, a time switching (TS) protocol and a power splitting

(PS) protocol have been proposed in [3].

It is well-known that both multiple-input multiple-output

(MIMO) and relay communication techniques can improve the

system coverage and energy efficiency [4]-[6]. The application

of EH in MIMO relay systems has been studied in [7]-[11].

In [7], performance trade-offs of several receiver architectures

have been discussed by applying EH in MIMO relay systems.

Future research challenges in this area have also been outlined

in [7]. Precoder design for decode-and-forward (DF)-based

MIMO relay networks has been studied in [8] and [9].

A TS protocol and a PS protocol have been developed in

[10] for an amplify-and-forward (AF) MIMO relay system,
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where the achievable rate is maximized for each protocol by

jointly optimizing the source and relay precoding matrices.

In [11], an orthogonal space-time block code (OSTBC) based

AF-MIMO relay system with a multi-antenna EH receiver has

been investigated.

In this paper, we consider a two-hop AF MIMO relay

system with a wireless powered relay node. The TS protocol

is adopted during the source phase, where the source node

transfers energy and information signals to the relay node

during the first and second time intervals, respectively. Then,

during the relay phase, the relay node uses the harvested

energy to forward the received information to the destination

node. As a novel contribution of this paper, we propose an

energy consumption constraint at the source node during the

information and energy transfer, which is more general than

the constant power constraints in [10].

We study the joint optimization of the source precoding

matrices, the relay amplifying matrix, and the TS factor to

maximize the source-destination mutual information (MI),

subjecting to the harvested energy constraint at the relay node

and the proposed source energy constraint at the source node.

The optimal structure of the source and relay matrices is

derived, which reduces the original problem to a simpler power

allocation problem. Based on the observation that the system

MI is a unimodal function of the TS factor, we develop a two-

step method to efficiently solve the power allocation problem.

In particular, we show that the optimal TS factor can be

efficiently found by a golden section search. Whereas for a

given TS factor, we show that the remaining variables can be

optimized through solving a power allocation problem in a

two-hop AF MIMO relay system with sum power constraint

across the source and relay nodes. We propose an upper bound

based algorithm to solve the power allocation problem which

has a closed-form solution. Numerical simulations show that

the proposed algorithm yield much higher system MI and

better rate-energy tradeoff than the approach in [10].

II. SYSTEM MODEL

We consider a three-node two-hop MIMO communication

system where the source node transmits information to the

destination node with the aid of one relay node as shown in
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Fig. 1. A two-hop MIMO relay communication system with a wireless
powered relay node.

Fig. 1. The source, relay, and destination nodes are equipped

with Ns, Nr, and Nd antennas, respectively. We assume that

the source node has its own power supply, while the relay node

is powered by harvesting the radio energy sent from the source

node. In particular, there are two phases in one communication

cycle. In the source phase, energy-carrying and information-

bearing signals are transmitted from the source node to the

relay node. Then, in the relay phase, the information signals

received at the relay node are linearly precoded and trans-

mitted to the destination node [10]. Among various relaying

protocols, the AF scheme is chosen at the relay node due

to its implementation simplicity and shorter processing delay.

Moreover, compared with the DF relay protocol [8], [9], the

AF scheme does not need to decode and re-encode the signals

at the relay node, which is energy-saving, making it suitable

for wireless powered communication.

We adopt the time switching protocol [3] for the energy

harvesting and information transmission at the source phase.

In this protocol, the total time T of one communication cycle

is divided into three intervals. In the first time interval, energy

is transferred from the source node to the relay node with a

duration of αT , where 0 < α < 1 denotes the time switching

factor. In the second time interval, information signals are

transmitted from the source node to the relay node with a

duration of (1−α)T/2. The last time interval of (1−α)T/2
is used for relaying the information signals from the relay node

to the destination node. For the simplicity of presentation, we

set T = 1 hereafter.

During the first interval, the N1 × 1 energy-carrying signal

vector s1 is precoded by an Ns ×N1 matrix B1 at the source

node and transmitted to the relay node. The optimal value of

N1 will be determined later. We assume that E{s1sH1 } = IN1
,

where E{·} stands for the statistical expectation, In is an n×n
identity matrix, and (·)H denotes the Hermitian transpose. The

received signal vector at the relay node is given by

yr,1 = HB1s1 + vr,1 (1)

where H is an Nr × Ns MIMO channel matrix between the

source and relay nodes, yr,1 and vr,1 are the received signal

and the additive Gaussian noise vectors at the relay node

during the first interval, respectively. Based on [3], the energy

harvested at the relay node is proportional to the baseband

received signal in (1) without the noise component, and is

given by

Er = ηαtr(HB1B
H
1
HH) (2)

where tr(·) denotes the matrix trace and 0 < η ≤ 1 is the

energy conversion efficiency.

During the second interval, an N2 × 1 information-bearing

signal vector s2 with E{s2sH2 } = IN2
is precoded by an

Ns × N2 matrix B2 at the source node and transmitted to

the relay node. The received signal vector at the relay node

can be written as

yr,2 = HB2s2 + vr,2 (3)

where vr,2 is the additive white Gaussian noise (AWGN)

vector at the relay node during the second interval with zero-

mean and E{vr,2v
H
r,2} = σ2

rINr
.

Finally, during the third internal, the relay node linearly

precodes yr,2 with an Nr × Nr matrix F and transmits the

precoded signal vector

xr = Fyr,2 (4)

to the destination node. From (3) and (4), the received signal

vector at the destination node can be written as

yd =Gxr + vd

=GFHB2s2 +GFvr,2 + vd (5)

where G is an Nd ×Nr MIMO channel matrix between the

relay and destination nodes, yd and vd are the received signal

and the AWGN vectors at the destination node, respectively,

with E{vdv
H
d } = σ2

dINd
. From (5), the mutual information

between source and destination is given as [12]

MI(α,B2,F) =
1− α

2
log |IN2

+BH
2
HHFHGH

×(σ2

rGFFHGH+σ2

dINd
)−1GFHB2|(6)

where | · | and (·)−1 denote the matrix determinant and matrix

inversion, respectively.

We assume that H and G are quasi-static and known at

the relay node. We also assume that without wasting the

transmission power at the source and relay nodes, N2 ≤
min(rank(H), rank(G)) and rank(F) = rank(B2) = N2,

where rank(·) stands for the rank of a matrix.

Note that the energy used to transmit s1 and s2 from the

source node is αtr(B1B
H
1
) and 1−α

2
tr(B2B

H
2
), respectively.

Therefore, the constraint on the energy consumed by the

source node can be written as

αtr(B1B
H
1
) +

1− α

2
tr(B2B

H
2
) ≤ 1 + α

2
Ps (7)

where Ps is the nominal (average) power available at the

source node. It is worth noting that in [10], a constant power



is assumed at the source node for both energy transferring and

information transmission as

tr(B1B
H
1
) ≤ Ps, tr(B2B

H
2
) ≤ Ps. (8)

It can be seen that under the same α, both (7) and (8) lead to

the same amount of energy consumption at the source node.

However, (8) is a special case of (7) and the feasible region

defined by (7) is larger than that of (8). In fact, in (7) the source

precoding matrices B1 and B2 are linked through one energy

constraint. This enables the source node to operate at different

power levels adapted to the purpose of energy transferring at

the first interval and information transmission at the second

interval, which is more flexible than (8). Hence, transceivers

designed under (7) are expected to have a better performance

than that with (8) as in [10].

From (3) and (4), the energy consumed by the relay node

to transmit xr to the destination node is given by

tr(E{xrx
H
r }) = 1− α

2
tr(F(HB2B

H
2
HH+σ2

rINr
)FH). (9)

Based on (2) and (9), we obtain the following energy constraint

at the relay node

1− α

2
tr(F(HB2B

H
2
HH+σ2

rINr
)FH)≤αηtr(HB1B

H
1
HH).

(10)

From (6), (7), (10), the transceiver optimization problem for

linear AF wireless information and energy transfer MIMO

relay systems can be written as

max
0<α<1,B1,B2,F

MI(α,B2,F) (11)

s.t. αtr(B1B
H
1
) +

1− α

2
tr(B2B

H
2
) ≤ 1 + α

2
Ps (12)

tr(F(HB2B
H
2
HH+σ2

rINr
)FH)≤ 2αη

1−α
tr(HB1B

H
1
HH).(13)

As will be shown in the next section, the energy consumption

constraint greatly increases the technical difficulty of solving

the problem (11)-(13) compared with the constant power

constraint in [10].

III. PROPOSED ALGORITHM

The problem (11)-(13) is non-convex with matrix variables

and is challenging to solve. In the following, we derive the

optimal structure of B1, B2, and F, under which the problem

(11)-(13) can be simplified to a power allocation problem. Let

us introduce

H = UhΛ
1

2

hV
H
h , G = UgΛ

1

2

g V
H
g (14)

as the singular value decompositions (SVDs) of H and G,

respectively, with the diagonal elements of Λh and Λg sorted

in decreasing order.

THEOREM 1: The optimal B1, B2, and F as the solution

to the problem (11)-(13) has the following structure

B∗
1
= λ

1

2

b vh,1, B∗
2
= Vh,1Λ

1

2

2
, F∗ = Vg,1Λ

1

2

f U
H
h,1 (15)

where λb is a positive scalar, vh,1 is the first column of Vh,

Λ2 and Λf are N2 ×N2 diagonal matrices, Vg,1, Uh,1, and

Vh,1 contain the leftmost N2 columns from Vg , Uh, and Vh,

respectively.

It is interesting to see from (15) that the optimal B1 is a

vector matching vh,1. This indicates that in order to maximize

the energy harvested by the relay node, all transmission

power at the source node should be allocated to the channel

corresponding to the largest singular value of H during the

first interval. As a result, we only need to optimize λb in

B1, and the transmission power of the source during the first

interval is tr(B1B
H
1
) = λb. It can also be seen from (15) that

the optimal structure of B2 and F is similar to that in two-

hop MIMO relay systems where the relay node has self-power

supply [12].

By substituting (15) back into (11)-(13), the transceiver opti-

mization problem (11)-(13) with matrix variables is simplified

to the following power allocation problem with scalar variables

max
α,λb,λ2,λf

1− α

2

N2
∑

i=1

log

(

1 +
λ2,iλh,iλf,iλg,i

1 + λf,iλg,i

)

(16)

s.t. αλb +
1− α

2

N2
∑

i=1

λ2,i ≤
1 + α

2
Ps (17)

N2
∑

i=1

λf,i(λh,iλ2,i + 1) ≤ 2αη

1− α
λh,1λb (18)

0<α<1, λf,i ≥ 0, λ2,i ≥ 0, i = 1, · · · , N2 (19)

where λ2 = [λ2,1, · · · , λ2,N2
]T , λf = [λf,1, · · · , λf,N2

]T ,

λh,i = λ̃h,i/σ
2

r , λg,i = λ̃g,i/σ
2

d, λf,i = λ̃f,iσ
2

r , λ2,i, λ̃f,i,

λ̃h,i, λ̃g,i denote the ith diagonal element of Λ2, Λf , Λh

and Λg, respectively. By introducing zi = λf,i(λh,iλ2,i + 1),
i = 1, · · · , N2, the problem (16)-(19) becomes

max
α,λb,λ2,z

1− α

2

N2
∑

i=1

log

(

1 +
λ2,iλh,iziλg,i

1 + λ2,iλh,i + ziλg,i

)

(20)

s.t. αλb +
1− α

2

N2
∑

i=1

λ2,i ≤
1 + α

2
Ps (21)

N2
∑

i=1

zi ≤
2αη

1− α
λh,1λb (22)

0<α<1, λ2,i ≥ 0, zi ≥ 0, i = 1, · · · , N2 (23)

where z = [z1, · · · , zN2
]T .

As for any λb, the optimal z maximizing (20) must satisfy

equality in (22), i.e.,

N2
∑

i=1

zi =
2αη

1− α
λh,1λb. (24)

Using (24), the problem (20)-(23) can be equivalently rewritten

as

max
α,λ2,z

1− α

2

N2
∑

i=1

log

(

1 +
λ2,iλh,iziλg,i

1 + λ2,iλh,i + ziλg,i

)

(25)

s.t.
1− α

2ηλh,1

N2
∑

i=1

zi +
1− α

2

N2
∑

i=1

λ2,i ≤
1 + α

2
Ps (26)

0<α<1, λ2,i ≥ 0, zi ≥ 0, i = 1, · · · , N2.(27)



By introducing ai = λh,i, bi = ηλg,iλh,1, xi = λ2,i, yi =
zi/(ηλh,1), i = 1, · · · , N2, the problem (25)-(27) becomes

min
α,x,y

1− α

2

N2
∑

i=1

log
1 + aixi + biyi

(1 + aixi)(1 + biyi)
(28)

s.t.

N2
∑

i=1

xi +

N2
∑

i=1

yi ≤ Ps

1 + α

1− α
(29)

0<α<1, xi ≥ 0, yi ≥ 0, i = 1, · · · , N2 (30)

where x = [x1, · · · , xN2
]T and y = [y1, · · · , yN2

]T . Inter-

estingly, although the problem (28)-(30) is still a non-convex

optimization problem, it has a nice symmetric structure with

respect to x and y in both the objective function (28) and the

constraint (29).

Let M(α) be the optimal value of the problem (28)-(30)

with a given α written as

min
x,y

N2
∑

i=1

log
1 + aixi + biyi

(1 + aixi)(1 + biyi)
(31)

s.t.

N2
∑

i=1

xi +

N2
∑

i=1

yi ≤ Pα (32)

xi ≥ 0, yi ≥ 0, i = 1, · · · , N2 (33)

where

Pα = Ps

1 + α

1− α
. (34)

Then the objective function (28) can be written as F (α) =
1−α
2

M(α). From (34), we know that Pα monotonically in-

creases with α. Thus, it can be seen from (32) that the feasible

region of the problem (31)-(33) expands as α increases.

Therefore, M(α) monotonically decreases as α increases. On

the other hand, 1− α monotonically decreases as α increases.

Considering the effects of α on M(α) and 1 − α, and the

fact that M(α) < 0, we can expect that F (α) is a unimodal

function of α. However, we note that the unimodality of F (α)
is difficult to prove rigorously for N2 > 1 since α changes

the value of M(α) through varying the feasible region of

the optimization problem (31)-(33), and the objective function

(31) is a complicated function. As a result, the closed-form

expression of M(α) is difficult to obtain. Based on this

observation, the problem (28)-(30) can be efficiently solved

by a two-step algorithm, where for a given α we optimize x

and y by solving the problem (31)-(33). And then a simple

one dimensional search can be applied to obtain the optimal

α.

Interestingly, the problem (31)-(33) can be viewed as a

power allocation problem for a two-hop AF MIMO relay

system with sum power constraint across the source and relay

nodes. To the best of our knowledge, the globally optimal

solution to such problem is not available in existing works. In

the following, we propose an upper bound based algorithm to

solve the power allocation problem which has a closed-form

solution.

Let us introduce the upper bound of

1 + aixi + biyi
(1 + aixi)(1 + biyi)

<
1 + aixi + biyi + 1

(1 + aixi)(1 + biyi)

=
1

1 + aixi

+
1

1 + biyi
. (35)

Using (35), the problem of optimizing x and y with a given

α can be written as

min
x,y

N2
∑

i=1

log

(

1

1 + aixi

+
1

1 + biyi

)

(36)

s.t.

N2
∑

i=1

xi +

N2
∑

i=1

yi ≤ Pα (37)

xi ≥ 0, yi ≥ 0, i = 1, · · · , N2. (38)

The problem (36)-(38) is convex and can be efficiently solved

by the Lagrange multiplier method. The Lagrangian function

of (36)-(37) is

L(x,y, ν) =

N2
∑

i=1

log

(

1

1 + aixi

+
1

1 + biyi

)

+ν

(

N2
∑

i=1

xi +

N2
∑

i=1

yi − Pα

)

(39)

where ν ≥ 0 is the Lagrange multiplier.

Considering the KKT conditions, we have from (39) that

for i = 1, · · · , N2

∂L

∂xi

= −
(

1

1 + aixi

+
1

1 + biyi

)−1
ai

(1 + aixi)
2
+ ν = 0 (40)

∂L

∂yi
= −

(

1

1 + aixi

+
1

1 + biyi

)−1
bi

(1 + biyi)
2
+ ν = 0. (41)

From (40) and (41), we obtain the following equation

ai

(1 + aixi)
2
=

bi

(1 + biyi)
2
, i = 1, · · · , N2. (42)

By substituting (42) back into (40) and (41) and considering

that xi ≥ 0 and yi ≥ 0, the optimal x∗
i and y∗i can be obtained

as

x∗
i =

[ √
bi

(√
ai +

√
bi
)

ν
− 1

ai

]†

, i = 1, · · · , N2 (43)

y∗i =

[ √
ai

(√
ai +

√
bi
)

ν
− 1

bi

]†

, i = 1, · · · , N2 (44)

where for a real-valued number x, [x]† = max(x, 0).
The Lagrange multiplier ν can be computed by solving the

following nonlinear equation

N2
∑

i=1

(x∗
i + y∗i ) = Pα (45)

where x∗
i and y∗i are given in (43) and (44), respectively. As

the left hand side of (45) is monotonically decreasing with



respect to ν, (45) can be efficiently solved by the bisection

method [13]. Interestingly, when Pα is sufficiently large, for

i = 1, · · · , N2, there is

x∗
i =

√
bi

(√
ai +

√
bi
)

ν
− 1

ai
, y∗i =

√
ai

(√
ai +

√
bi
)

ν
− 1

bi
.

(46)

Substituting (46) back into (45), we obtain ν as

ν = N2/Qα (47)

where Qα = Pα+
∑N2

i=1
( 1

ai
+ 1

bi
). Substituting (47) back into

(46), we obtain for i = 1, · · · , N2

xi =

√
biQα

(
√
ai +

√
bi)N2

− 1

ai
, yi =

√
aiQα

(
√
ai +

√
bi)N2

− 1

bi
.

(48)

IV. SIMULATIONS

In this section, we study the performance of the pro-

posed algorithm through numerical simulations. We consider

a scenario where the three nodes are located in a line as

shown in Fig. 2. The distance between the source node and

the destination node is Dsd = 40 meters, and the source-

relay and relay-destination distances are Dsr = 20d and

Drd = 20(2−d), where the value of 0 < d < 2 is normalized

over a distance of 20 meters. Thus, the relay node is located

closer to the source node if 0 < d < 1, and closer to

the destination node if 1 < d < 2. The channel matrices

H and G have independent and isotropically distributed

(i.i.d.) complex Gaussian entries as CN (0, 1/(NsD
ζ
sr)) and

CN (0, 1/(NrD
ζ
rd)), respectively, where ζ = 3 is the path loss

exponent. The noise power at the relay and the destination

nodes is fixed as σ2

r = σ2

d = −50dBm. For all simulation

examples, we fix Ns = Nr = Nd = N2 = N . We compare the

performance of the proposed algorithm with the algorithm in

[10], which is denoted as the constant power based algorithm

as the constraints (8) are employed in [10]. All the numerical

simulation results are averaged over 1000 independent channel

realizations.

Source Relay Destination

Dsr Drd

Dsd=Dsr+Drd

Fig. 2. Source, relay, and destination placement.

In the first example, we set d = 1. The MI of two algorithms

versus the nominal power Ps is shown in Fig. 3 with N = 3
for η = 0.8 and η = 0.5, and with N = 5 for η = 0.8. We

observe from Fig. 3 that for both N = 3 and N = 5, the

proposed algorithm performs better than the constant power

based algorithm in [10]. Moreover, the MI gap between the

proposed algorithm and that of the constant power based

algorithm increases with Ps. In fact, at Ps = 20dB, the

proposed algorithm achieves a 50% increase of the MI of the

constant power based algorithm. As expected, the achievable

rate increases with the number of antennas. It can also be

seen from Fig. 3 that the system achieves a lower rate at

η = 0.5 compared with that at η = 0.8. For the simplicity of

presentation, we choose η = 0.8 in the following simulations.
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Fig. 3. Example 1: MI versus Ps, d = 1.

In the second example, we set N = 3 and d = 1. The time

switching factors α calculated as optimal by two algorithms

versus the nominal power Ps are shown in Fig. 4. It can

be seen from Fig. 4 that for both algorithms, the optimal α
monotonically decreases as the nominal power Ps increases.

The reason is that as Ps increases, a smaller α is sufficient for

the relay node to harvest the energy required for forwarding

the information signals. Moreover, we observe from Fig. 4 that

the variation of α in the proposed algorithm throughout the

range of Ps is lager than that of the fixed power algorithm.

The reason is that when Ps is large enough, λb (the power

level at the source node at the first interval) obtained by the

proposed algorithm increases. Thus, even though α is small,

the energy αλh,1λb harvested by the relay node is sufficient for

forwarding the signal to the destination node. Therefore, for

the proposed algorithm, more time is allocated for information

transmission so that a higher data rate can be achieved at large

Ps.

In the third example, we investigate the energy consumption

of the proposed algorithm. Fig. 5 shows the MI versus energy

(measured in Joule per time T ) of two algorithms for N = 3
and d = 1. It can be clearly seen from Fig. 5 that the energy

efficiency of the proposed algorithm is much better than that

of the constant power based algorithm. In fact, with energy

of 50 J/T, the MI achieved by the proposed algorithm is 60%

more than that of the constant power based algorithm.

In the last example, we study the impact of distance d on

the achievable MI. Fig. 6 shows the MI of both algorithms

versus d with N = 3 and Ps = 15dB. It can be seen from

Fig. 6 that for both algorithms the achievable MI first decreases

when d increases and then increases again with the growth of

d. The reason is that when the relay node is closer to the

source node, it can harvest more energy and consequently,

the MI is higher. When the relay node is very close to the
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Fig. 4. Example 2: Optimal α versus Ps, N = 3, d = 1.
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Fig. 5. Example 3: MI versus energy, N = 3, d = 1.

destination node, although the harvested energy is smaller, the

shorter relay-destination distance and thus a better second-hop

channel improves the system MI. Moreover, it can be observed

from Fig. 6 that the proposed algorithms have an MI gain of

2-3 bits/s/Hz over the constant power based algorithm over

the whole range of d.

V. CONCLUSIONS

We have investigated the transceiver optimization for TS-

based wireless information and energy transfer in two-hop

AF MIMO relay systems. Compared with the fixed power

constraint at the source node used in existing works, a more

general energy constraint at the source node has been pro-

posed. The optimal structure of the source and relay precod-

ing matrices has been derived, which reduces the original

problem to a simpler power allocation problem. Based on

the observation that the achievable source-destination MI is

a unimodal function of the TS factor, a two-step method has

been developed. Numerical simulations show that the proposed
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Fig. 6. Example 4: MI versus d, Ps = 15dBm, N = 3.

algorithm yields much higher system MI and better rate-energy

tradeoff than the constant power based method.
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