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Abstract 

Electrochemical noise (EN) refers to random fluctuations of current and 

potential generated by electrochemical processes. The EN measurement has been 

widely used for corrosion mechanism studies and corrosion monitoring practices. One 

of its advantages is that EN could provide valuable information regarding the 

occurrence and propagation of localised corrosion events. However, the optimal 

approach for the analysis of EN data remains uncertain.  

In this project, two frameworks based on recurrence quantification analysis 

(RQA) of EN data have been developed. One of the frameworks is a principal 

component analysis (PCA)-based corrosion monitoring scheme and the other is a 

random forest (RF)-based corrosion type diagnostic model. Different case studies were 

carried out to demonstrate the feasibility and capability of both frameworks. 

In case study I, the corrosion of carbon steel in aqueous media resulting in 

uniform corrosion, pitting corrosion and passivation was investigated on a laboratory 

scale. Recurrence quantification analysis was applied to short segments of 

electrochemical current noise measurements and four variables were extracted from 

each segment. The PCA-based corrosion monitoring scheme was demonstrated to be 

able to detect non-uniform corrosion automatically and continuously. 

In case study II, electrochemical noise data were generated with carbon steel 

samples immersed in chloride containing solutions with sand deposit on the working 

surfaces. Feature variables extracted with recurrence quantification analysis of EN 

data were demonstrated to be useful indicators for monitoring localised corrosion 

under deposit. 

In case study III, three corrosion systems, i.e. uniform corrosion, pitting 

corrosion and passivation were generated by the same way presented in case study I. 

Twelve features were extracted from the electrochemical noise segments by recurrence 

quantification analysis. Machine learning methods, i.e. linear discriminant analysis 

(LDA) and random forest (RF), were used to identify the different corrosion types 

from those features. Both models gave satisfactory performance, but the RF model 

showed better prediction accuracy of 93% than the LDA model (88%). Furthermore, 
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an estimation of the importance of the variables by use of the RF model suggested the 

RQA variables laminarity (𝐿𝐴𝑀) and determinism (𝐷𝐸𝑇) played the most significant 

role with regard to identification of corrosion types. 

In case study IV, the corrosion of carbon steel immersed in CO2 saturated 

aqueous solutions, in the presence and absence of sand deposits, were investigated by 

electrochemical noise measurement and recurrence quantification analysis. Uniform 

corrosion occurred at samples not covered by sand while localised corrosion took place 

at samples covered with sand. These two different corrosion types can be accurately 

predicted by random forest and principal component models based on recurrence 

quantification analysis. The study demonstrated that the PCA-based framework can be 

used as an automated online corrosion monitoring scheme to ensure the integrity of 

pipelines. 

In case study V, the effect of cargo materials – iron ore and coal – on the 

corrosion of cargo hulls in carriers was investigated. Tests were also conducted with 

the steel samples in contact with moist silica sand and immersed in NaCl solution, 

which generated localised corrosion and general corrosion, respectively. The 

electrochemical noise was measured and recurrence quantification analysis was 

carried out to extract feature variables. A random forest model developed using these 

feature variables as predictors was able to discriminate between the two types of 

corrosion. The effect of iron ore and coal cargoes on the corrosion types of the steel 

samples was identified by the model. Visual and microscopic observations of the 

retrieved steel samples confirmed the prediction results. This work provides a novel 

analytical approach for future on-line monitoring of carrier structures in contact with 

cargoes.   

Overall, this research innovatively combined the use of recurrence 

quantification analysis of electrochemical noise data and machine learning methods to 

develop models for corrosion monitoring and corrosion type identification. Case 

studies demonstrate that the proposed methodologies are potentially feasible for 

automated online corrosion monitoring practices.     
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Corrosion is a risk many structures, including production facilities, pipelines, 

bridges and ships. Failure of these structures may lead to significant economic losses, 

waste of valuable resources and disasters like severe injuries or even loss of lives [1, 

2]. Therefore, it is crucial to closely monitor the corrosion process and design proper 

corrosion mitigation programmes. 

Corrosion monitoring is particularly beneficial to capital intensive industries 

such as oil and gas [3]. It enables the diagnosis of corrosion problems in operating 

equipment and facilitates the scheduling of process shutdowns and the evaluation and 

control of the effectiveness of the corrosion mitigation strategies [3]. 

A number of corrosion monitoring techniques have been applied in the field 

[4], including electrical resistance, linear polarisation resistance and electrochemical 

impedance spectroscopy. Most of these techniques can give an indication of the 

average degradation rate of the monitored structures, but few can detect the occurrence 

of localised corrosion events, which may lead to failures without being noticed [5, 6]. 

Visual observation of weight-loss coupons used widely in industry can give a hint 

about the incidence of localised corrosion, however, this method is subjective and slow, 

which cannot reflect the real-time condition of the monitored structure. 

Electrochemical noise (EN) is one of the few online techniques that is capable 

of monitoring localised corrosion in-situ [7, 8]. It has been applied for corrosion 

mechanism studies [9, 10] and accepted in field corrosion monitoring practices [11, 

12]. EN refers to random fluctuations of current and potential in electrochemical 

processes, which can be measured potentiostatically, galvanostatically and using zero 

resistance ammeter (ZRA). Although EN measured under potentiostatic and 

galvanostatic conditions are useful for mechanistic investigations, they are not 

particularly suitable for online corrosion monitoring since both approaches require 

additional potential or current to be applied. By contrast, with the help of a ZRA and 

a potentiometer, both potential and current can be measured simultaneously at the 

freely corroding conditions of the monitored system. This also facilitates the 
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calculation of the so-called noise resistance, which can be used as the polarisation 

resistance to estimate average corrosion rates [13, 14].  

To correctly apply the EN technique for localised corrosion monitoring, skilled 

and experienced personnel are required to interpret a large amount of data properly 

and make decisions quickly. A variety of analytical approaches have been proposed 

since the emergence of this technique, including: 

(i) Statistical parameters, such as current and potential standard deviations 

[15, 16], skewness and kurtosis [17] as well as localisation index or 

pitting factor [18]; 

(ii) Power spectral density (PSD) with roll-off slope [19, 20]; 

(iii) Shot noise analysis with characteristic charge and frequency [21]; 

(iv) Wavelet analysis with energy distribution plot (EDP) [22], standard 

deviation of partial signal (SDPS) [23] and entropy [24];  

(v) Hilbert spectral transient analysis [25]; 

(vi) Chaos methods with correlation dimension and Lyapunov exponent [26, 

27]; 

(vii) Fractal analysis with fractal dimension and Hurst exponent [28-30]; 

(viii) Recurrence quantification analysis [31, 32]. 

However, over the years, contradictory results have been observed with these 

approaches and there is still no consensus as to what analytical method is optimal, 

leaving the door to exploring suitable indicators for localised corrosion still wide open. 

Recurrence plot (RP) with its quantification analysis (RQA), developed in the 

late 20th century, is a non-linear methodology that allows a 2-D representation of multi-

dimensional non-linear dynamic systems, making it possible to detect graphical 

patterns and structural changes in the time series data. Moreover, it can also reveal 

similarities between data series by direct observation of the plots and comparison of 

quantification variables [31]. RP-based methods have been successfully applied to a 

number of areas such as the detection of dynamical transitions [33, 34], ecological 

regimes [35, 36], economical dynamics [37, 38], medical signal analysis [39, 40], 

chemical reactions [41, 42] and damage detection [43], to name but a few. Cazares-

Ibanez et al. [44] were among the first to apply RQA for the interpretation of EN data 
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generated from corrosion process. A number of investigations [32, 44-49] have 

demonstrated that feature variables extracted from EN data by use of RQA are able to 

characterise the corresponding corrosion processes. 

With the rapid development of machine learning methods, multiple parameters 

could be used collectively as predictors and direct output regarding corrosion types 

could be produced. For example, Li et al. [50] employed the artificial neural network 

to discriminate between pitting, uniform corrosion and passivation. They used noise 

resistance, characteristic charge and frequency and relative energies of wavelet 

crystals D1 – D7 as predictors and various corrosion types as direct outputs. The 

trained neural network showed excellent prediction accuracy regarding the corrosion 

types. 

So far, no reports have been found to treat EN data by combining the multiple 

feature variables from recurrence quantification analysis and machine learning 

methods. It is promising that automated and effective EN monitoring frameworks can 

be developed from this combination.  

1.2 Objectives 

Based on the analysis of literature, the gaps and opportunities lying in the 

interpretation of electrochemical noise data for corrosion monitoring and corrosion 

type identification have been recognised. On this basis, the objectives of this study are 

set as follows: 

1. Design corrosion monitoring and diagnostic frameworks based on the use 

of RQA variables extracted from EN data and machine learning methods. 

The frameworks will be able to: 

a. Discriminate different corrosion types, especially to distinguish 

localised corrosion from uniform corrosion and passivation. 

b. Monitor corrosion processes continuously and flag unexpected 

corrosion processes automatically. 
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2. Examine the feasibility of the designed frameworks using preliminary EN 

data generated from uniform corrosion, pitting and passivation of carbon 

steel samples exposed to NaCl, NaHCO3+NaCl and NaHCO3 solutions. 

3. Carry out different case studies to evaluate the feasibility of the developed 

methodologies for corrosion monitoring and localised corrosion detection. 

1.3 Thesis structure 

This thesis is structured as follows: 

Chapter 2 gives a detailed literature review on the study of electrochemical 

noise, with the emphasis on data interpretation approaches for corrosion monitoring 

and corrosion type identification, especially the detection of localised corrosion. 

Chapter 3 introduces the main methodologies used in this study for the 

development of corrosion monitoring and diagnostic frameworks. Recurrence plot and 

recurrence quantification analysis are presented explicitly, while the descriptions of 

machine learning methods tend to be in a conceptual way in order to assist the 

understanding of the complex mathematical background. At the end of Chapter 3, two 

formal frameworks for corrosion monitoring and diagnosis are proposed based on a 

principal component analysis (PCA) model and a random forest (RF) model. 

Chapter 4 to Chapter 8 show the applications of the proposed methodologies 

to different corrosion case studies. Specifically, in Chapter 4, electrochemical noise 

data are collected from the corrosion of carbon steel in aqueous media resulting in 

uniform corrosion, pitting corrosion and passivation. The automated corrosion 

monitoring scheme based on four RQA variables and PCA model is demonstrated to 

be able to differentiate between uniform and non-uniform corrosion, but the 

discrimination between pitting and passivation is less satisfactory.  

Chapter 5 presents an application of RQA variables derived from 

electrochemical noise data to monitor carbon steel corrosion under sand deposit in an 

aqueous media with the presence of oxygen. 

Chapter 6 investigated the effect of electrode sizes on the EN data with the 

corrosion systems same as in Chapter 4 and with extended length of test for passivation. 
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Twelve RQA variables are extracted and used as predictors for the RF model. Better 

discrimination between pitting and passivation is obtained compared to that in Chapter 

4.  

Chapter 7 is associated with the CO2 corrosion of carbon steel immersed in 

standard brine solution with and without sand deposit. The PCA-based corrosion 

monitoring scheme with twelve RQA variables is mainly applied for the detection of 

under deposit corrosion (UDC). 

Chapter 8 deals with the application of the RF model to study the corrosivity 

of cargo materials – iron ore and coal cargoes. EN data were first collected from two 

model systems which represented general corrosion and localised corrosion. A RF 

model was established to distinguish between the two types of corrosion. Afterwards, 

the corrosion types associated with iron ore and coal were identified by the model and 

the results were confirmed by visual and microscopic observations of the retrieved 

steel samples after tests. 

Chapter 9 summaries the achievements and limitations of this study along with 

some recommendations for the future work. 

Additional information and application are presented in the Appendix 1 and 2.  

Appendix 1 shows the evaluation of the instrument used for data acquisition 

and validation of the measured EN data. 

Appendix 2 shows an application of electrochemical noise and recurrence 

quantification analysis to study microbiologically influenced corrosion. 

Appendix 3 presents the written statements from co-authors of the publications. 

Appendix 4 presents the copyright statements related to all the publications 

included in this thesis.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Development of Electrochemical noise 

When it comes to “noise”, one would most likely associate it with some 

unwanted background signals that may superimpose with the targeted signals, 

compromising the extraction of useful information from the target signals. Indeed, 

studies of “noise” by electrical engineers have long been carried out in order to avoid 

or eliminate the “noise”. However, the study of electrochemical noise (EN) generated 

during corrosion processes has completely opposite goals.  

Electrochemical noise is defined as the spontaneous fluctuations of potential 

and current. The sources of the electrochemical noise depend on particular corrosion 

situations, such as general corrosion, pitting, crevice corrosion, hydrogen evolution, 

erosion and microbiologically induced corrosion.  

Iverson [51] pioneered the use of EN to study corrosion phenomena in the late 

1960s’. At about the same time, Fleischmann and Oldfield [52], Tyagai [53] and Baker 

[54, 55] examined the EN arising from electrochemical reactions from theoretic 

perspectives. Initial work in corrosion studies focused on the analysis of potential or 

current fluctuations independently under galvanostatic or potentiostatic conditions 

[56-59]. The simultaneous acquisition and interpretation of both potential and current 

noise data was subsequently made possible by Eden and Hladky [60] using a zero 

resistance ammeter (ZRA).  

The value of potentiostatic current noise measurement is well appreciated 

mainly in the studies of passivity and pitting corrosion of various materials as well as 

corrosion mechanisms [10, 61-66]. In comparison, fewer applications of galvanostatic 

potential noise measurement are documented [67-69]. Although both techniques are 

valid research methods, the imposition of perturbations to the corrosion system may 

not be able to provide true representations of the actual corrosion situations, making 

them unsuitable for practical corrosion monitoring applications [70, 71]. By contrast, 

the ZRA-based EN measurement allows simultaneous recording of potential and 

current noise originating from natural corroding processes of the electrode [71]. 

Nowadays, EN with ZRA has attracted extensive attentions owing to its ease of setting 
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up, non-destructiveness, non-intrusiveness and especially the ability to indicate the 

occurrence of localised corrosion [13, 21, 24, 72-75]. 

2.2 Data acquisition and analysis 

2.2.1 Data acquisition 

According to a standard guide produced by American Society for Materials and 

Testing [76], the ZRA-based EN measurement typically involves two nominally 

identical working electrodes (WEs) made from the test materials and one reference 

electrode (RE) (either standard reference electrode such as a saturated calomel 

electrode or a third identical WE). The two WEs are short-circuited through a ZRA 

which registers the current fluctuations between them, meanwhile the potential of the 

paired WE is measured with respect to the RE via a high sensitivity voltameter. The 

generated electrochemical noise signals are then sampled in the time domain using 

analogue-to-digital conversion techniques and stored in a PC.  

The concept of the EN measurement may seem simple, but the results are likely 

to be contaminated by a number of factors such as unwanted noise, errors and artefacts 

from the voltage and current measurement devices as well as analogue-to-digital 

converter [70]. Therefore, it is important to evaluate the measuring instrument and 

validate the obtained EN data.  

The ASTM standard gives a suggestion for the evaluation and qualification of 

instrumentation, but the descriptions are not explicit or definitive in terms of the 

capabilities and limitations of the modern EN measuring systems. More recently, a 

detailed guideline for performing and assessing the EN measurement equipment by 

dummy cells has been developed by the European Cooperative Group on Corrosion 

Monitoring of Nuclear Materials (ECG-COMON) as an outcome of the round-robin 

EN testing carried out by sixteen member laboratories [77, 78]. The dummy cell was 

consisted of three resistors with equal resistance value connected in a star-arrangement. 

The dummy cells with resistance values of 100 Ω, 10 kΩ, 1 MΩ or 100 MΩ could be 

used, resembling different corrosion resistance systems. EN measurements were 

conducted on each of the dummy cell with three different sampling rates, e.g.1 Hz, 10 

Hz and 1000 Hz. It was suggested that the evaluation of the instrument and the 
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validation of EN data should be carried out in both time domain and frequency domain. 

In time domain analysis, the EN data were plotted and checked for quantisation which 

appeared as a set of clear steps in the time record. Quantisation is a reflection of the 

resolution of the data acquisition system [70]. In frequency domain, the power spectral 

densities (PSD) of the obtained EN data were calculated. By analysing PSDs and 

comparing them with the thermal noise PSDs of the resistors, whether the baseline 

noise of the measuring system was acceptable or too high can be determined. In 

addition, the good overlap of PSDs of the EN data recorded at different sampling rates 

indicated the presence and proper use of anti-aliasing filter. All the EN tests shown in 

the case studies of this thesis were validated according to this guideline [77]. 

While the conventional identical two WE configuration is used, a number of 

modifications of this design are also proposed by different researchers to suit specific 

investigating purposes [5, 8, 79-86]. However, it is beyond the scope of the present 

thesis to cover them all. More detailed discussion regarding the experimental setup 

and other design aspects such as electrode size and sampling rate can be found in [87, 

88].  

2.2.2 Data interpretation 

The interpretation of EN data can be principally divided into two directions – 

estimation of corrosion rate and identification of the type of corrosion. 

Estimation of corrosion rate 

One of the most common methods for the analysis of electrochemical noise 

data is to calculate the so-called noise resistance (𝑅𝑛). 𝑅𝑛 is generally calculated from 

the equation 𝑅𝑛 =
𝜎𝐸

𝜎𝐼
, where 𝜎𝐸 is the standard deviation of potential noise and 𝜎𝐼 is 

the standard deviation of current noise [60]. Values of 𝑅𝑛 are frequently found to be 

comparable to the polarisation resistance 𝑅𝑝 normally obtained with linear polarisation 

technique [13, 14, 87]. Similarly, a frequency dependent parameter named noise 

impedance (𝑍𝑛 ) can be derived from the power spectral densities (PSD) of both 

potential and current noise based on 𝑍𝑛 =
√𝛹𝑣(𝑓)

√𝛹𝑖(𝑓)
, where 𝛹𝑣(𝑓) is the PSD of potential 
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noise at a specified frequency 𝑓 and 𝛹𝑖(𝑓) is the PSD of current noise at the same 

frequency [13].  

A number of theoretical and experimental efforts have been made to investigate 

the relationships among 𝑅𝑛 , 𝑍𝑛  and 𝑅𝑝  [13, 89-92]. The major conclusions drawn 

from these studies can be summarised as follows: 

 The equation 𝑅𝑛 = 𝑅𝑝 is generally accepted, provided that the response of 

the metal-solution interface can be described by 𝑅𝑝 (i.e. the impedance of 

electrodes is 𝑅𝑝  in the bandwidth of frequency under study) and the 

collected noise data are not affected by considerable instrumental noise or 

other unwanted noise sources. 

 The noise impedance 𝑍𝑛  is equal to the impedance modulus of the 

electrode on condition that a true reference electrode rather than a third 

identical WE is used for potential noise measurement. 

 If the observations (1) and (2) are true, then 𝑅𝑛 and 𝑍𝑛 could be used the 

same way as 𝑅𝑝 to estimate the changes in corrosion rate of the investigated 

metal material. 

Detection/identification of corrosion types 

While the noise resistance methods are widely accepted and well established 

for corrosion rate estimation, more attention has been paid to the possibility of deriving 

valuable information from the EN measurement to identify corrosion types, since other 

corrosion monitoring techniques (e.g. linear polarisation, electrical resistance) could 

not provide such information [92].  

Table 2-1 presents a list of analytical approaches proposed over the past five 

decades and associated parameters for corrosion type identification. 
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Table 2-1: Parameters used for corrosion type identification extracted by analysis of 

electrochemical noise data. 

Method Feature Remark Reference 

Basic statistical 

analysis 

 

Mean 𝐸̅ and 

standard 

deviation 𝜎𝐸 of 

potential noise 

High values of 𝐸̅ and 

𝜎𝐸 indicate the 

occurrence of 

localised corrosion.  

[15, 16] 

Localisation 

index (𝐿𝐼) 

Uniform: 

0.001<𝐿𝐼<0.01; 

Pitting: 0.1<𝐿𝐼<1; 

Mixed: 0.01<𝐿𝐼<0.1. 

[18, 93, 94] 

Skewness and 

Kurtosis 

Skewness describes 

the asymmetry of the 

probability 

distribution of the EN 

data and Kurtosis is a 

measure of the EN 

shape. High value of 

kurtosis indicated 

localised corrosion. 

[17] 

Shot noise Characteristic 

charge 𝑞 and 

characteristic 

frequency 𝑓𝑛 

Localised corrosion: 

high 𝑞 and low 𝑓𝑛; 

 

[95-100] 

Power spectra Roll-off slope 

of potential 

noise 

Corrosion product 

film formation: -14 to 

-32 dB/decade; Pitting 

or crack initiation: -36 

to -50 dB/decade; 

Repassivation: -26 

dB/decade   

[19] 
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Table 2-1: Continued. 

Method Feature Remark Reference 

Power spectral 

density PSD 

Roll-off slope 

of potential 

noise PSD 

Pitting: -20 

dB/decade; 

Uniform: -40 

dB/decade. 

[101-103] 

Roll-off slope 

of current noise 

PSD 

Pitting: -40 

dB/decade.  

[104] 

Roll-off slope 

of potential 

noise PSD 

Passivation: -15 to   

-25 dB/decade; 

Pitting: -20 to -25 

dB/dacade; 

Uniform: 0 to -7 

dB/decade. 

[20] 

Roll-off slope 

of current noise 

PSD 

Passivation: 1 to -1 

dB/decade; 

Pitting: -7 to -14 

dB/decade; 

Uniform: 0 to -7 

dB/decade. 

Roll-off slope 

of current noise 

PSD 

Pitting: -20 

dB/decade; 

decreased pit 

initiation rate is 

indicated by 

decreased absolute 

value of roll-off 

slope; 

Passivation: -40 

dB/decade. 

[105, 106] 

Roll-off slope 

of current noise 

PSD 

Uniform: -9 to -10 

dB/decade; 

Passive state: -3 

dB/decade. 

[107] 
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Table 2-1: Continued. 

 

Method Feature Remark Reference 

Wavelet analysis Energy 

distribution 

plot (EDP) of 

current 

1. The time 

evolution of the 

peak position in an 

EDP plot indicates 

the changes in the 

corroding system; 

2. The maximum 

energy tends to 

accumulate in high 

frequency crystals in 

an EDP for localised 

corrosion process.  

[22, 75, 108-113] 

EDP of 

potential 

[114-119] 

Standard 

deviation of 

partial signal 

(SDPS) of 

current 

The SDPS plot can 

provide a 

discriminating 

power to categorize 

EN signals by the 

intensity of various 

frequencies they 

represent. 

[110, 111, 120-122] 

Entropy The entropy of the 

high-frequency 

crystals in pitting is 

lower than that of 

the passive situation 

[24] 

Hilbert spectral 

transient analysis 

Instantaneous 

frequency 

contribution. 

The instantaneous 

frequency 

contribution of 

individual localized 

corrosion 

phenomena in time 

can be located by the 

Hilbert spectrum. 

[25, 123-127] 



13 

 

Table 2-1: Continued. 

Method Feature Remark Reference 

Chaos methods Correlation 

dimension 

(𝐷𝑐); 

 

The correlation 

dimension increases 

from passivation, 

localised, mixed 

corrosion to uniform 

corrosion. 

[26] 

The correlation 

dimension of 

potential signal 

increases from 

passivation, uniform 

to localised 

corrosion. 

[27, 128-130] 

Largest 

Lyapunov 

exponent 

(𝐿𝐿𝐸) 

The presence of 

positive LLE is an 

indication of chaotic 

process; The value 

of LLE reflects the 

chaotic degree. 

[18, 27, 73, 131-133] 

Fractal analysis Hurst exponent 

(𝐻𝑢); Fractal 

dimension 𝐷𝑓 

Pitting corrosion:  

H<0.5 and by D>1. 

General 

corrosion/passive 

state: H>0.5 and 

D<1.  

[117, 134, 135] 

The fractal 

dimension of the 

electrochemical 

noise signal has a 

direct relationship 

with that of the 

corroded surface.  

[28, 29] 

Recurrence plot Recurrence 

rate (𝑅𝑅) 

𝑅𝑅 quantifies the 

periodicity of the 

signal dynamics. 

 

[31] 
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Table 2-1: Continued. 

DC drift removal 

Since the current and potential signals generated from the natural corrosion 

processes are usually nonlinear and nonstationary, direct current (DC) drift 

components are present in the EN signals, which may significantly affect the outcome 

of any data analysis [123]. To minimise this effect, pre-processing of the current or 

potential noise data to remove the DC drift becomes necessary. Moving average [138, 

139], polynomial [140, 141], linear [97, 140, 142] and wavelet analysis based trend 

removal methods as well as empirical mode decomposition have been employed to 

deal with this issue. Among them, the moving average and polynomial drift removal 

procedures are considered inadequate since they suffer from the risk of eliminating 

Method Feature Remark Reference 

Recurrence plot Determinism 

(𝐷𝐸𝑇) 

𝐷𝐸𝑇 contains 

information about the 

duration of a stable 

interaction; or the 

predictability of the 

system dynamics.  

[32, 44-49] 

Entropy 

(𝐸𝑁𝑇𝑅) 

𝐸𝑁𝑇𝑅 reflects the 

complexity of the 

dynamics contained 

in the signal. 

Maximum 

Line 

(𝑀𝑎𝑥𝐿𝑖𝑛𝑒) 

𝑀𝑎𝑥𝐿𝑖𝑛𝑒 can be 

considered as the 

inverse of 𝐿𝐿𝐸.  

Cross Recurrence 

Plot 

Correlation of 

recurrence 

probability 

(𝐶𝑖𝑛𝑑𝑒𝑥); 

Similarity of 

recurrence 

probability 

(𝑆𝑖𝑛𝑑𝑒𝑥) 

1. 𝐶𝑖𝑛𝑑𝑒𝑥  detects the 

phase synchronisation 

between potential and 

current; 

2. 𝑆𝑖𝑛𝑑𝑒𝑥 measures 

both the phase and 

amplitude related 

synchronisations 

between potential and 

current. 

[136, 137] 



15 

 

useful information [88, 123]. Homborg et al. [123] compared different trend removal 

methods and demonstrated that the wavelet method and empirical mode 

decomposition were able to define a reliable DC drift component which could be 

subtracted from the raw data with high confidence. However, as Robert. A. Cottis, one 

of the pioneering workers who promoted the application of EN measurement, pointed 

out, “it is probably best to limit drift removal to the subtraction of a straight line unless 

there is sound evidence for the existence of an alternative drift function” [92]. In fact, 

most of the analytical methods presented in Table 2-1 were applied on the linearly 

detrended EN data, except for the wavelet methods and Hilbert spectral analysis, which 

intrinsically defined the possible DC drift components. 

Statistical parameters 

Equations (2-1) through (2-3) show the definitions of the commonly used 

statistical parameters skew, kurtosis and localisation index. Here 𝑁 is the number of 

data contained in the current or potential noise signal, 𝑥𝑖  represents the individual 

current or potential value and 𝑥̅ is the mean value of the current or potential signal. 

The localised index is defined as the current standard deviation divided by the root 

mean square (r.m.s) of current. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁 − 1
∑ (

𝑥𝑖 − 𝑥̅

√𝑥𝑖
2

)3
𝑁

𝑖=1
 (2-1) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁 − 1
∑ (

𝑥𝑖 − 𝑥̅

√𝑥𝑖
2

)4
𝑁

𝑖=1
− 3  (2-2) 

 

𝐿𝐼 =
𝜎𝐼

𝐼𝑟.𝑚.𝑠
, 𝐼𝑟.𝑚.𝑠 = √

1

𝑁
(∑ 𝐼𝑖

2
𝑁

𝑖=1
) 

(2-3) 

 

Cottis and his co-workers [97-99] systematically examined the reliability of 

these statistical parameters as indicators for corrosion types and implied that none of 

them was reliable diagnostic parameter for corrosion type identification. Similar 

conclusions were also obtained by [93, 143]. 
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Power spectra 

Apart from the time domain statistics, the EN data can also be transformed to 

frequency domain via fast Fourier transformation (FFT) or maximum entropy method 

(MEM) [19, 101-103]. As a result, the power spectrum is obtained, in which the 

potential or current power spectral density (PSD) (i.e. the power of potential or current 

per unit of frequency) is plotted against frequency. Commonly, the PSD of current or 

potential is denoted as 𝛹𝐸 (𝑉2/𝐻𝑧) or 𝛹𝐼 (𝐴2/𝐻𝑧). Figure 2-1 shows a typical power 

spectrum displayed on a log-log scale. The roll-off slope as indicated by the arrow is 

an important parameter which has been used for corrosion type identification. As 

implied in Table 2-1, -20 dB/decade (roll-off slope of potential power spectrum) might 

be a criterion for the presence of pitting. Nevertheless, contradictory results have been 

observed. Therefore, power spectra with the roll-off slope cannot be regarded as a 

reliable tool for corrosion type identification.  

Figure 2-1: An example potential power spectrum plotted on a log-log scale.  

Shot noise parameters 

The parameters “characteristic charge (𝑞)” and “characteristic frequency (𝑓𝑛)” 

derived based on shot noise theory seem to be more robust measures for the detection 

of localised corrosion [98]. The q and fn can be calculated according to equations (2-4) 

Roll-off slope 
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and (2-5), where q is the charge in transient, 𝑓𝑛 is the frequency of the transient, 𝛹𝐸  

and 𝛹𝐼 are the low frequency limits of potential and current PSD respectively and 𝐵 is 

the Stern-Geary coefficient.  

𝑞 =
√𝛹𝐸𝛹𝐼

𝐵
  (2-4) 

𝑓𝑛 =
𝐵2

𝛹𝐸
 (2-5) 

Transients featured with large value of q and low frequency 𝑓𝑛 are expected to 

indicate localised corrosion. 𝑓𝑛 has been used together with the noise resistance 𝑅𝑛 to 

discriminate between corrosion types and severity with some success [144]. However, 

it would be an issue for the calculation of 𝑓𝑛 when there is no low frequency plateau 

in the power spectrum, thereby no accurate potential PSD. In this case, Cottis [14] 

recommended the power spectral density at 10-3 Hz or 10-2 Hz may be feasible in 

practice.   

Wavelet analysis 

Generally, the precondition of calculating the PSD is that the signal should be 

stationary. However, this is rarely the case for natural corrosion processes [14, 22, 109, 

127]. Wavelet analysis can be considered as a superior technique to the classic FFT 

methods because it can be used confidently without the presumption of signal 

stationarity [22]. Unlike the Fourier transform which uses the combinations of sine 

and cosine waves for the construction or decomposition of original EN signals, wavelet 

analysis employs a series of wavelet functions that allow for the simultaneous 

conservation of frequency information on different scales and the time domain aspects 

such as the transient amplitude and duration [14, 22]. By scaling and translation of 

these wavelets, the EN signal can be analysed at different timescales, also known as 

crystals [127, 145]. The fraction of total energy in each crystal can be calculated and 

plotted against the crystal index. The resultant plot is called an energy distribution plot 

(EDP). The corresponding literatures shown in Table 2-1 have demonstrated that 

comparing the relative energy contained in different crystals could reveal underlying 

corrosion mechanisms and differentiate between corrosion types. Specifically, it is 

generally accepted that: 



18 

 

 The crystals D1 – D3 corresponding to short time scale processes that are 

under activation control and related to metastable pitting. 

 Crystals D7 and D8 represent long time scale processes such as uniform 

corrosion that are under diffusion control.  

 Crystals D4 – D6 are associated with medium time scale processes that are 

under activation-diffusion mixed control. Localised corrosion is indicated 

if the peak of EDP is located in these crystals.    

Recently, Cottis et al. [146] carried out a comprehensive comparison of the 

spectral and wavelet techniques in the analysis of electrochemical noise data. They 

concluded that the energy was similar to the PSD and the peak of EDP in medium time 

scales (i.e. crystals D4 – D6) as an indication of localised corrosion was equivalent to 

the criterion based on a roll-off slope more negative than -1 in a power spectrum, 

although the EDP provided a more positive indication. Similar to the EDP, Shahidi et 

al. [120] proposed a standard deviation of partial signal (SDPS) plot and claimed that 

the SDPS plot could provide better understanding of the corrosion behaviour than the 

EDP. A partial signal is the signal reconstructed via multiplying each contributing 

wavelet by its corresponding coefficients. In other words, each partial signal is related 

to a certain wavelet crystal. Plotting the standard deviation of the partial signal against 

its corresponding crystal index produces the SDPS plot. Comparing the slope values 

of the SDPS plots in the region after the peak seemed to be able to reveal the 

information about corrosion severity in terms of the pit density. However, this method 

remains to be seen whether it has the general applicability. Another parameter derived 

from wavelet analysis is called wavelet entropy [24], which was shown to be able to 

distinguish between passivation and pitting corrosion. Unfortunately, this was just one 

case study and no further applications were found in the literatures. 

Hilbert spectra 

The Hilbert spectra was innovatively introduced for the analysis of 

electrochemical noise by Homborg et al. [124]. To some extent, the idea of Hilbert 

spectral analysis is similar to that of the wavelet methods, i.e. to characterise the EN 

data in both time and frequency domain at the same time. However, Homborg et al. 

[124] argued that the empirical mode decomposition of EN followed by Hilbert-Huang 

transformation outweighed the wavelet methods since the former allowed the use of 
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intrinsic properties of the EN signal rather than user-defined scales and wavelet 

functions, making it more flexible and adaptive. Basically, the Hilbert spectrum is 

presented in a triaxial coordinate system, i.e. time (s), instantaneous frequency (Hz) 

and a colour bar indicating the relative contributions of the instantaneous frequencies. 

For an easier interpretation of information visible in a Hilbert spectrum, the relative 

amplitudes of the original EN signal is also displayed at the left hand side of the Hilbert 

spectrum. Alternatively, the Hilbert spectrum can be represented in a 2-dimensional 

plot, which shows the relative contribution of the cumulated instantaneous frequency 

over the entire analysed time span. Overall, the Hilbert spectra can improve the 

discrimination of the frequency characteristics of different corrosion mechanisms 

[147]. However, the interpretation of the Hilbert spectra is somehow complicated and 

counter-intuitive at times. It can be considered as a powerful tool for corrosion 

mechanistic studies, but may not be feasible for corrosion monitoring in practice.  

Chaotic analysis 

The electrochemical noise data have also been analysed from the perspective 

of chaos theory. In corrosion studies, the EN time record after DC trend removal is 

usually embedded in a so-called phase space and represented by an 𝑚-dimensional 

attractor with certain geometrical structures. The features of the trajectories obtained 

from different corrosion systems can yield crucial information on the nature and 

behaviour of the dynamic systems [148]. The most widely used parameters to 

characterise the topology of an attractor are probably correlation dimension and 

Lyapunov exponent, respectively representing the static and dynamic features of an 

attractor [26]. Correlation dimension measures the degree of freedom of the 

evolutionary dynamical system, while the Lyapunov exponent characterises the 

unpredictability of the investigated process. More specifically, if there exists at least 

one positive Lyapunov exponent, then the system is said to exhibit deterministic chaos. 

Otherwise, if there is no positive Lyapunov exponents, then long-term evolution of the 

system is predicable. Early work done by Legat and Dolecek [26] suggested that the 

potential noise signals obtained from uniform corrosion processes had a higher 

correlation dimension than that from localised corrosion process. However, Xia et al. 

[27, 128] arrived at the opposite conclusion. In spite of this, they all agreed that 

passivating system generated potential noise with the lowest correlation dimension. 
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On the contrary, according to Men et al. [133], passivity showed the highest correlation 

dimension, while uniform corrosion had the lowest correlation dimension. Unlike the 

correlation dimension, the presence of positive 𝐿𝐿𝐸 was found in most of the EN 

signals regardless of their origins, indicating that the electrochemical corrosion 

processes are intrinsically chaotic. Nonetheless, the degree of the chaotic behaviour 

for different corrosion systems may vary. Men et al. [133]  reported a passivating 

system with the lowest 𝐿𝐿𝐸, whereas Bahena et al. [149] and Rodriguez et al. [150] 

found the lowest 𝐿𝐿𝐸 value during localised corrosion and the highest in passivation. 

The inconsistency of observations could be attributed to a number of factors, such as 

the actual corrosion systems chosen to study, data acquisition methods (e.g. 

instrumentation, data sampling rate, length of data analysed), choices of embedding 

parameters (i.e. time delay and embedding dimension) and the approaches used for DC 

trend removal, etc. 

Fractal analysis 

EN time series can also be analysed from fractal point of view. In corrosion 

studies, the fractal features of EN signals are usually depicted with three parameters – 

spectral power exponent (𝛽), fractal dimension (𝐷𝑓) and Hurst exponent (𝐻𝑢). The 

relationship between these parameters [151] can be expressed as equation (2-6): 

𝐷𝑓 = 2 − 𝐻𝑢 = (5 − 𝛽)/2  (2-6) 

Where 𝛽 is the exponent of the frequency dependent part of the potential or current 

PSD. The Hurst exponent 𝐻𝑢 is usually calculated based on rescaled range analysis 

[30] according to equation (2-7): 

𝑅/𝑆 = (𝑇/2)𝐻𝑢  (2-7) 

Where 𝑅 represents the difference between the maximum and minimum values of the 

variable, 𝑆 the standard deviation of the time series, 𝑇 is the period of time measured. 

𝐻𝑢 varies between 0 and 1. 𝐻𝑢 = 0.5 indicates a complete random behaviour, i.e. there 

is no correlation between the present and the future element; when 0.5 < 𝐻𝑢 < 1, it 

means that the phenomenon is persistent or autocorrelated; 𝐻𝑢  < 0.5 implies anti-

persistence or negative autocorrelation [29]. Naturally, the fractal dimension should 

be in the range of 1 – 2. The application of fractal analysis to interpret EN data has 
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focused on the assessment of corrosion inhibition [30, 151-153] or the effectiveness of 

coatings [154, 155]. Basically, if an inhibitor was effective or a coating was less 

susceptible to corrosion, then the derived 𝐻𝑢  was normally less than 0.5. Another 

interesting finding was that the fractal dimension of the EN signal had a linear 

relationship with the fractal dimension of the actual corrosion morphology [29]. 

Recurrence plot based analysis 

The term “recurrence plot” was established in 1987 by Eckmann et al. [156], 

and it was designed for visualisation of the possible recurrent behaviours in the 

dynamics of a dynamical system. It was 18 years later that the RP was first introduced 

in EN analysis by Cazares-Ibanez et al. [44] in a study on the pitting corrosion of 

copper in different saline solutions at various potentials. Cazares-Ibanez et al. found 

that, by qualitative and quantative analysis of the recurrence plots generated from the 

electrochemical current signals, it was able to characterise the electrochemical 

dynamics like the passive layer formation and the presence of pitting corrosion of 

copper. They also concluded that pitting corrosion was associated with a high value 

(approximately 0.9) of the quantification parameter “determinisim”, thereby should be 

deemed as a quasi-periodic process. The low level of chaoticity of pitting corrosion 

process was also confirmed by the relatively high values of a second quantification 

parameter named “maximum line”, which was considered as the inverse of the largest 

Lyapunov exponent (the parameter obtained from chaotic analysis and mentioned 

before). After this pioneering work, a few more applications were found using the 

recurrence plots to study the corrosion dynamics from the corresponding 

electrochemical potential or current oscillations. The corrosion systems investigated 

include pitting [48], corrosion fatigue crack initiation [46] and intergranular corrosion 

[31] of stainless steels, hydrostaticpressure influenced corrosion [157] and crevice 

corrosion [32] of Ni-Cr-Mo-V high strength steels, corrosion protection by 

nanostructured films on stainless steel [47], the corrosion behaviours of AZ80 

magnesium alloy influenced by ultrasonic vibration solidification treatment [158], 

reinforce steel corrosion [49], copper corrosion under non-uniform magnetic field [159] 

and the corrosion behaviour of carbon steel in the presence of a specific inhibitor [160]. 

Recurrece plot and its quantification have been proved to be a powerful tool for 
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understanding and tracking changes of the corrosion dynamics by extracting useful 

information from EN data.  

Lately, Liu et al. [136, 137] proposed the use of cross recurrence plot (CRP) 

for EN analysis. Unlike RP that uses only potential or current signal, CRP calculates 

the distances between the simultaneously obtained current and potential data. The 

parameters “determinism” and synchronisation indices extracted from the CRPs were 

used for detecting localised corrosion on nickel alloy 718. The proposed method may 

be instructive for corrosion mechanism investigations and field monitoring practices.  

Combinative use of EN parameters 

Another branch of mathematical approaches associated with the EN 

measurement has set its target specifically at corrosion type discrimination and 

identification with the help of modern machine learning (or pattern recognition) 

techniques. This has involved training unsupervised or supervised models with 

combinative use of the aforementioned feature parameters, e.g. standard deviation, 

skew, kurtosis, characteristic frequency and the relative energy in different wavelet 

crystals, etc. 

For example, Reid et al. [161] trained a supervised neural network model to 

distinguish various types of corrosion. Statistical parameters skew and kurtosis 

calculated from a set of current and potential data segments were used as inputs of the 

model. Each set of inputs was assigned with a corresponding corrosion form as output, 

e.g. general corrosion, pit initiation, pit propagation, transgranular stress corrosion 

cracking and intergranular corrosion cracking. During training, the network was 

required to learn and establish a sort of relationship between the given inputs and 

outputs according to certain learning rules. After training, the neural network would 

be able to categorise new inputs (data not used for training and associated corrosion 

form not known) as certain corrosion forms. Similarly, Li et al.  [50] also employed 

the artificial neural network to determine corrosion types, but the input arguments were 

noise resistance, characteristic charge and frequency and relative energies of wavelet 

crystals D1 – D7. In both studies, the neural network models showed excellent (100%) 

discriminating power with respect to corrosion types.  
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Additionally, Huang et al. [162, 163] implemented non-supervised cluster 

analysis (CA) and supervised discriminant analysis (DA) on EN statistical parameters 

to separate and identify the pitting stages of carbon steel samples in a typical pitting 

environment (0.5 M NaHCO3 solution with the presence of Cl−). Three clusters were 

identified corresponding to metastable pitting, intermediate state and stable pitting. 

The beginning of stable pitting state was confirmed by the occurrence of macroscopic 

pit on the steel surface. Similarly, Hu et al. [8] used cluster analysis to identify crevice 

corrosion stages. More recently, Meng et al. [164] also employed the combination of 

CA and DA to classify failure states of a coating under marine alternating hydrostatic 

pressure. 

From these investigations, it can be expected that automated diagnostic scheme 

for on-line corrosion monitoring will be developed by using feature parameters 

collectively and machine learning techniques.  

2.3 Industrial application of electrochemical noise technique 

In addition to various laboratory studies, EN technique has been gradually 

accepted by many fields of industry as part of the corrosion monitoring programmes 

[11]. 

Amoco's Corporate Research facility (located in Naperville, Illinois, USA) 

employed EN measurement to detect localised corrosion on a heat transfer surface in 

a cooling water environment [12]. The obtained current and potential data were 

analysed by visual check of time records for transients, in combination with the 

monitoring of maximum, minimum, mean and standard deviation values as well as 

localisation index. It was proved that EN was sensitive to the onset of localised 

corrosion and it facilitated the optimisation of biocide and inhibitor treatment. 

Chevron installed EN probes at Canada’s Simonette sour oil processing facility 

in 1997 for corrosion monitoring [17]. The aim was to gain a better understanding of 

corrosion activities in the stabiliser system and to improve the inhibition program. The 

parameters being monitored were mainly raw current and potential time records and 

noise resistance based corrosion rate. This application was considered successful 

because corrosion engineers were able to determine the effect of temperature on 
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corrosion rate and evaluate the efficiency of the chemical treatment in real time 

through the analysis of EN data. 

Pitting and stress corrosion cracking were identified as the most likely modes 

of corrosion failure for the underground nuclear waste storage tanks at Hanford site in 

the US [11]. Conventional corrosion monitoring techniques like coupon exposure, 

linear polarisation resistance and electrical resistance showed limited capability to 

provide early warnings of such localised corrosion attack. Instead, electrochemical 

noise monitoring system was introduced inspired by the encouraging results obtained 

from laboratory studies. Three parameters were mainly monitored as indicators for 

further operations, i.e. noise resistance, localised index and a so-called pitting function 

which was associated with the characteristics of current transients.  

More recently, electrochemical noise measurement was adopted by a Kuwaiti 

refinery to monitor corrosion rate of their cooling water systems [165]. The corrosion 

rate was calculated from the noise resistance according to equation: 𝐶𝑅 = 𝐺/𝑅𝑛 , 

where 𝐺 was a calibrated factor with respect to the weight loss corrosion rate instead 

of the Stern-Geary constant 𝐵.  

Moreover, there are a number of patents revolve around the electrochemical 

noise measurement and analysis that have been archived over the past few decades 

[166-170]. Apart from introducing more reliable data acquisition apparatus to 

distinctive service environment, these patents also endeavoured to develop more 

robust and intuitive indicators to monitor the average corrosion rate, identify localised 

corrosion events in real time and assist timely remediation of the dangerous corrosion 

events. 

2.4 Summary 

The literature review discussed the development of electrochemical noise as a 

tool for corrosion studies, factors influencing the measurement of reliable EN data, 

various analytical methods proposed for data interpretation and industrial applications 

of EN for corrosion monitoring. The gaps and opportunities in EN analysis are 

summarised as follows: 
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 It is well appreciated that EN is capable of offering an indication of the 

nature of the corrosion process, especially the occurrence and propagation 

of localised corrosion events. However, the optimal approach for the 

analysis of EN data remains uncertain. 

 Currently, the established method for identifying the specific patterns such 

as transients (typical for metastable pitting and pit propagation) in current 

or potential signals, relies on ‘manual’ examination or interpretation by 

professional and experienced users. For long-term corrosion monitoring 

practices in a plant or in the field, training of skilled personnel is needed, 

which can be costly and time consuming.  

 An efficient corrosion monitoring program requires quick screening of a 

large amount of raw data and transforming the raw data into a few pertinent 

indicators to convey the maximum amount of information [161]. Hence, it 

is necessary to develop sensitive and intuitive indicators for automated EN 

monitoring. 

 The machine learning methods seem attractive since they could produce 

direct output regarding corrosion types using multiple predictor variables 

simultaneously as inputs, which could potentially deskill the corrosion 

monitoring task. Among them, artificial neural network and cluster and 

discriminant analysis are mainly reported in literature. The most frequently 

used input variables include statistical parameters, characteristic frequency 

and the relative energy in different wavelet crystals.    

 Recurrence plot and its quantification appear to be suitable for the analysis 

of EN data since a number of parameters could be extracted from the image 

representations of the EN signals, without having to make any 

presumptions. So far, no studies using variables obtained from recurrence 

quantification analysis (RQA) of EN data in combination with the 

advanced machine learning methods are available. An automated EN 

monitoring framework can be developed with this combination. 

Based on the above observations, the objectives of this study are: 
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1. Design corrosion monitoring and diagnostic frameworks based on the use 

of RQA variables extracted from EN data and machine learning methods. 

The frameworks will be able to: 

a. Discriminate different corrosion types, especially to distinguish 

localised corrosion from uniform corrosion and passivation. 

b. Monitor corrosion processes continuously and flag unexpected 

corrosion processes automatically. 

2. Examine the feasibility of the designed frameworks using preliminary EN 

data generated from uniform corrosion, pitting and passivation of carbon 

steel samples exposed to NaCl, NaHCO3+NaCl and NaHCO3 solutions. 

3. Carry out different case studies to evaluate the feasibility of the developed 

methodologies for corrosion monitoring and localised corrosion detection. 
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CHAPTER 3 METHODOLOGY 

3.1 Recurrence plot and quantifications 

Recurrence plot (RP) is a graphical tool first introduced by Eckmann et al. [156] 

to visualise the recurrence behaviours in dynamic systems based on phase space 

reconstruction. It can be mathematically expressed as a matrix according to equation 

(3-1) 

𝑹𝑖,𝑗 = 𝐻(𝜀 − ‖𝒙𝑖 − 𝒙𝑗‖), 𝑖, 𝑗 = 1, 2, … , 𝑁 (3-1) 

where 𝒙𝑖  and 𝒙𝑗 represent the states of the reconstructed phase space trajectory at time 

𝑖 and 𝑗, respectively; 𝑁 is the total number of states in the trajectory; ‖∙‖ calculates the 

distance between 𝒙𝑖  and 𝒙𝑗 ; 𝜀  is a user defined threshold and 𝐻  is the Heaviside 

function which gives 0 and 1 depending on the sign of the content within the bracket. 

Therefore, 𝑹𝑖,𝑗  refers to the (𝑖, 𝑗)𝑡ℎ point in the recurrence matrix. For more 

information about the phase space trajectory, please refer to [171]. In this thesis, the 

recurrence plots are constructed without converting the original time recordings into 

phase space trajectories. Instead, for a given signal, the Euclidean distance between 

each pair of the current or potential values is computed and compared with a pre-

defined threshold value. If the distance is equal to or less than the threshold, then 

𝑹𝑖,𝑗 = 1 (a white dot in the RP), otherwise 𝑹𝑖,𝑗 = 0 (a black dot in the RP). As a result, 

the RP is represented by a black-and-white image, in which, the white dots could form 

different patterns, as illustrated in Figure 3-1. 

Figure 3-1: Illustration of the patterns present in a RP. 

 

a b c 
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Apparently, the RPs always have a white main diagonal line, i.e. the line of 

identity (LOI). Other basic features include single white dot, i.e. the recurrence point 

(Figure 3-1(a)), diagonal lines which are the white lines parallel to the LOI (Figure 

3-1(b)) and horizontal/vertical lines which are those parallel to the main axes (Figure 

3-1(c)). Note that both the 𝑥 and 𝑦 axes of the RP are time indices. 

Thanks to the pioneering work done by Zbilut and Webber [172, 173], the RPs 

can be quantified by several variables on the basis of the abovementioned features. 

They defined measures of complexity using recurrence rate, determinism, divergence 

(the inverse of the maximum length of the diagonal line structures), entropy and trend. 

Marwan [174] further extended their work and defined new variables named 

laminarity, maximum length of vertical line structures and trapping time. He also 

developed a comprehensive Matlab toolbox named “Cross Recurrence Plot (CRP)” 

toolbox, which allowed for the generation of RPs and various quantification variables. 

This software is currently available online and free to download and use. In fact, in the 

present study, all the calculations regarding RPs and their quantifications are carried 

out using this toolbox. The quantification variables employed in this work are 

summarised in Table 3-1. 

Recurrence rate (𝑅𝑅 ) simply counts the fraction of white dots in the RP. 

Determinism (𝐷𝐸𝑇) measures the ratio of recurrence points that form diagonal line 

structures to the total number of recurrence points. The length of a diagonal or vertical 

line means the number of consecutive recurrence points that form the line. The 

minimum line length can be specified by user and the default is 2. The entropy of the 

diagonal lines (𝐸𝑁𝑇𝑅1) refers to the Shannon entropy of the frequency distribution of 

the diagonal line lengths. Analogous to the definition of determinism, laminarity (𝐿𝐴𝑀) 

is the ratio of the recurrence points forming vertical lines to the entire recurrence points 

in the RP. Trapping time (𝑇𝑇) simply calculates the average length of the vertical lines. 

The two types of recurrence time were introduced by Gao [175]. The 1st type of 

recurrence times refer to the time difference between any two recurrence points 

aligning in the vertical direction and the 2nd type of recurrence times excludes the 

recurrence points forming the vertical line structures except the first points. Average 

recurrence times (𝑅𝑇1 and 𝑅𝑇2) are reported in this study. Further, the entropy of the 
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recurrence time density ( 𝐸𝑁𝑇𝑅2 ) can be obtained. Lastly, the RQA variable 

transitivity (𝑇𝑅𝐴𝑁𝑆) is generated based on complex network theory [176, 177].  

Table 3-1: Recurrence quantification variables used in present work. 

Number RQA variable Equation 

1 Recurrence rate 

𝑅𝑅 =
1

𝑁2
∑ 𝑅𝑖,𝑗(𝜀)

𝑁

𝑖,𝑗=1

 

2 Determinism 
𝐷𝐸𝑇 =

∑ 𝑙 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑅𝑖,𝑗(𝜀)𝑁
𝑖,𝑗

 , 𝑙𝑚𝑖𝑛 = 2 

𝑃(𝑙) – Histogram of the diagonal lines of length 𝑙. 

3 Averaged length 

of diagonal lines 𝐿𝑚𝑒𝑎𝑛 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 

4 Maximal length of 

diagonal line 
𝐿𝑚𝑎𝑥 = max ({𝑙𝑖; 𝑖 = 1,2, … 𝑁𝑙}) 

𝑁𝑙 − Total number of diagonal lines. 

5 Entropy of 

diagonal line 

length 

𝐸𝑁𝑇𝑅1 = − ∑ 𝑝(𝑙) ln𝑝(𝑙)

𝑁

𝑙=𝑙𝑚𝑖𝑛

 

𝑝(𝑙) – Probability distribution of diagonal lines. 

6 Laminarity 
𝐿𝐴𝑀 =

∑ 𝑣𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

 , 𝑣𝑚𝑖𝑛 = 2 

𝑃(𝑣) – Histogram of vertical lines of length 𝑣.  

7 Trapping time 
𝑇𝑇 =

∑ 𝑣𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 

8 Maximal length of 

vertical line 

𝑉𝑚𝑎𝑥 = max ({𝑣𝑖; 𝑖 = 1, 2, … , 𝑁𝑣}) 

𝑁𝑣 – Total number of vertical lines. 

9 Recurrence times 

of 1st type 
𝑅𝑇1, {𝑅𝑇1(𝑖) = 𝑡𝑖 − 𝑡𝑖−1|𝑖 = 1,2, … } 

10 Recurrence times 

of 2nd type 
𝑅𝑇2, {𝑅𝑇2(𝑖) = 𝑡𝑖

′ − 𝑡𝑖−1
′ |𝑖 = 1,2, … } 
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Table 3-1: Continued. 

The threshold (𝜀) has a significant influence on the RQA variables. If 𝜀 is too 

small, there may not be enough recurrence points or recurrence structures. On the other 

hand, if 𝜀 is too large, almost every point would be recurrence point, which may lead 

to many artefacts [171]. Several options for the selection of 𝜀 have been advocated in 

literature. For example, 𝜀 can be chosen according to the phase space diameter [178, 

179], recurrence rate [180], standard deviation of the observational noise [181], and 

standard deviation of the measured time series [176]. Nevertheless, the selection of 

optimal criterion is strongly dependent on the system under study [171]. 

In this work, the threshold value is determined according to the standard 

deviation of the collected current or potential signals. 

3.2 Machine learning methods 

3.2.1 Principal component analysis 

Principal component analysis (PCA) is a statistical procedure that transforms 

the original multivariate data to a new set of variables containing the linear 

combinations of original variables [182]. The main purpose is to reduce the 

dimensionality meanwhile retaining the majority of the variance of the original dataset 

[183]. The new variables are called the principal components (PCs) and the individual 

Number RQA variable Equation 

11 Entropy of 

recurrence period 

density  
𝐸𝑁𝑇𝑅2 = −

1

ln (𝑡𝑚𝑎𝑥)
∙ ∑ 𝑃(𝑡) ∙ ln (𝑃(𝑡))

𝑡𝑚𝑎𝑥

𝑡=1

 

𝑃(𝑡) = 𝑅(𝑡)/ ∑ 𝑅(𝑘)
𝑡𝑚𝑎𝑥
𝑘=1  – Recurrence time 

probability density. 

𝑅(𝑡) – The histogram of recurrence times.   

𝑡𝑚𝑎𝑥 – The maximum recurrence time.  

12 Transitivity 
𝑇𝑅𝐴𝑁𝑆 =  

∑ 𝑅𝑖,𝑗 ∙ 𝑅𝑗,𝑘 ∙ 𝑅𝑘,𝑖
𝑁
𝑖,𝑗,𝑘=1

∑ 𝑅𝑖,𝑗 ∙ 𝑅𝑘,𝑖
𝑁
𝑖,𝑗,𝑘=1
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values in the PCs are called the PC scores. The number of PCs to keep can be 

determined by the cumulative percentage of variance explained by the PCs, typically 

between 70% − 95% [184].  

For example, given a dataset containing three variables and 50 measurements 

for each variable, it can be visualised in a 3D scatter plot shown in Figure 3-2 (red 

circles). The maximum variation of the original variables lies along the direction of t1 

and the second largest lies along the direction of t2, which is orthogonal to t1. Principal 

component analysis of this dataset results in three principal components. The first PC 

accounts for 69% of the variance, which is corresponding to the variation in t1, while 

the second PC accounts for 30% of the variance, corresponding to the variation in t2. 

That is to say, the cumulative variance explained by the first two PCs is 99%. Therefore, 

the three dimensional dataset can be represented by two principal components. The 

advantage of this procedure will become more obvious if the original dataset contains 

more variables, e.g. twelve. In fact, PCA has been widely used for process monitoring 

in many fields [185-188]. 

Figure 3-2: Three-dimensional scatter plot of a dataset, showing the maximum 

variations lying along the directions of t1 and t2. 

3.2.2 Linear discriminant analysis 

Linear discriminant analysis (LDA) is similar to PCA regarding the linear 

transformation of original dataset to a new set of features. The major difference is that 

PCA captures the maximum variance of original multivariate data without considering 
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its class information, while LDA attempts to project the data onto the directions that 

optimise the class separability [189, 190].  

Figure 3-3 shows a simple two-variable, two-class dataset that illustrates the 

idea of LDA. The solid blue squares represent data of class 1 and solid red circles 

represent data of class 2. There are many directions that the data can be projected onto. 

Clearly, if the data are projected onto direction d1, the two classes (represented by 

empty red circles and blue squares) cannot be well separated. By contrast, in the case 

of direction d2, the two classes are well separated after projection. LDA produces the 

optimal projection direction like d2 such that the between class scatter of the data is 

maximised and the within class scatter is minimised.  

Figure 3-3: Two-variable, two-class dataset projection on direction (d1) random and 

(d2) used by LDA. 

LDA is also suitable for multi-class problems. For 𝑐 classes, LDA generates 

(𝑐 − 1) projections that best discriminate the classes. Usually, the results are presented 

with a scatter plot showing the projected data on the two most discriminative directions 

[190].  

In the present work, LDA is carried out on the labelled recurrence variables. 

Firstly, the recurrence variables are stacked into a matrix 𝐗 ∈ 𝑅𝑛×𝑚 , where 𝑛 

represents the total number of data points for all the 𝑐 classes (i.e. forms of corrosion), 
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and 𝑚 represents the total number of RQA variables which is equal to twelve (Table 

3-1) in this study. 

The core of LDA is to find a projection matrix 𝐖 so that the various classes 

can be best separated. Mathematically, this is realised by maximizing the ratio of  

𝐽(𝐖) =
|𝐖𝑇𝐒𝐵𝐖|

|𝐖𝑇𝐒𝑤𝐖|
 , where 𝐒𝐵  is the between-class scatter calculated according to 

equation (3-2) and 𝐒𝑤 is the within-class scatter computed from equation (3-3). 𝑁𝑘 is 

the total number of data points pertaining to class 𝑘, 𝐦𝑘  is the mean vector of data 

points belonging to class 𝑘, 𝑚 is the total mean of all the samples, and 𝑥𝑛 represents 

the data points of the variable matrix 𝐗.  

   After the best solution of 𝐖 is obtained, 𝐗 can be projected onto the vectors 

of 𝐖 by equation (3-4), where 𝐲1 and 𝐲2 can be expressed as LDA feature 1 and LDA 

feature 2, respectively.  

𝐒𝐵 = ∑ 𝑁𝑘(𝑥𝑛 − 𝐦𝑘)(𝐦𝑘 − 𝑚)𝑇

𝐶

𝑘=1

 (3-2) 

𝐒𝑤 = ∑ ∑ (𝑥𝑛 − 𝐦𝑘)

𝑛∈𝐶𝑘

𝐶

𝑘=1

(𝑥𝑛 − 𝐦𝑘)𝑇 (3-3) 

𝐘 = [𝐲1, 𝐲2] = 𝐗𝐖 (3-4) 
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3.2.3 Random forest 

Random forest (RF) is an ensemble learning method, consisting of multiple 

decision trees designed to solve classification or regression problems [191]. For a 

classification task, such as to identify different corrosion types in current study, the 

tree model produces discrete outputs corresponding to different classes. Figure 3-4 

shows a simple classification task performed by a tree model. 

Figure 3-4: Three-class classification problem with discrimination boundaries and 

associated classification tree. 

As can be seen, a number of nodes and splits constitute the decision tree model. 

Popular learning algorithm for a decision tree model recursively search for a binary 

partition on each node to generate output variables with the purest class labels. In the 

case of multivariate input data space, the splitting creates a collection of non-

overlapping hyper-rectangular subspaces with the splits perpendicular to one of the 

coordinate axes of the input data space [182, 192].   

The decision tree algorithm is potentially capable of fitting almost all data 

distributions, but it is susceptible to overfitting. Random forest, suggested by Breiman 

[193], improves the generalisation of the model by constructing an ensemble of 

decision trees using (a) randomly selected subsets of the original data to train 

individual trees and (b) randomly selected subsets of predictor variables for splitting 

at each node. For each tree in the forest, there exists a set of data that is excluded during 

training, which is called out-of-bag (OOB) sample. The classification error of the RF 

model can be estimated by predicting the OOB data using the tree grown from the 

bagged data and aggregating the predictions of OOB data from all the trees in the forest 
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[193]. The generated prediction error is known as OOB error. It has been shown that 

this error of the RF model converges to a limit when the number of trees grown in the 

forest is sufficiently large [191].  

The RF algorithms also facilitate the quantification of the importance of each 

variable in the tree ensemble with respect to the final prediction accuracy. This is 

realised by permuting the OOB objects of each predictor variable, one at a time, and 

determine the decrease in model accuracy [182].   

Given that 𝑅  is a random forest containing 𝑇  trees and 𝑝 is the number of 

predictor variables in the training data. In this study, the predictor variables refer to 

the twelve RQA variables extracted from the EN signals of different corrosion systems. 

The importance of each RQA variable 𝐼𝑚𝑝𝑗 can be obtained following the procedures 

presented below: 

1. For tree 𝑡, where 𝑡 =  1, 2, . . . , 𝑇: 

 Identify the OOB objects and the indices of the predictor variables that 

were used to grow tree 𝑡; 

 Estimate the OOB error 𝜀𝑡; 

 For each predictor variable 𝑥𝑗 , 𝑗 ∈ {1, 2, … , 𝑝} , firstly permute the 

values of 𝑥𝑗  randomly, followed by estimating the model error, 𝜀𝑡𝑗 , 

using the OOB objects containing the permuted values of 𝑥𝑗 . 

Afterwards, take the difference 𝑑𝑡 = 𝜀𝑡𝑗 − 𝜀𝑡 . Note that predictor 

variables not used when growing tree t are attributed with a difference 

of 0. 

2. For each predictor variable in the training data, compute the mean, 𝑑𝑗̅, and 

standard deviation, 𝜎𝑗, of all the differences. 

3. Compute the importance estimation of the OOB predictor variable 𝑥𝑗 with 

𝐼𝑚𝑝𝑗 = 𝑑𝑗̅/𝜎𝑗. 
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If the RQA variable is significant for the model, then permuting its values 

should result in greater model error. Otherwise, it should have little or even no 

influence on the model. Therefore, larger 𝐼𝑚𝑝𝑗 values correspond to more influential 

RQA variables. 

3.3 Corrosion monitoring and diagnostic frameworks 

In this study, two scenarios are considered: 

1. Unsupervised corrosion monitoring: EN data collected under normal 

operation conditions (NOC) are considered as a reference and any 

unexpected changes from NOC need to be captured by the monitoring 

program. However, the reason for the change is unknown and related 

personnel need to check for it. 

2. Supervised corrosion monitoring: EN data collected from several known 

corrosion forms are used as the database and associated treatment plan 

regarding each case scenario has been scheduled. During the corrosion 

process monitoring, newly measured EN data are automatically classified 

as one of the known corrosion conditions and corresponding treatment can 

be carried out promptly. 

In this study, two frameworks for corrosion monitoring and diagnosis are 

proposed targeting at these two scenarios. Both frameworks require segmentation of 

the EN recordings followed by recurrence quantification analysis to extract the 

predictor variables. The pre-treatment of the EN data is illustrated in Figure 3-5. 

Figure 3-5: Pre-treatment of EN recordings by consecutive segmentation and 

recurrence quantification analysis 
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The collected electrochemical noise signal over a period of time is segmented 

into  𝑛  non-overlapping time series each containing 𝑁  measurements. The distance 

matrix 𝐃𝑗 contains the Euclidean distances between each pair of points in the time 

series segment 𝐲𝑗 and 𝐑𝑗 the recurrence matrix, is simply the thresholded version of 

𝐃𝑗. Vector 𝐪𝑗 is derived from 𝐃𝑗 and contains 𝑚 recurrence variables. The matrix 𝐐 

contains the 𝑛 recurrence variable vectors extracted from all the 𝑛 segments of the 

electrochemical noise signal.  

3.3.1 PCA model for scenario 1 

Regarding scenario 1, a PCA model consisting of an off-line calibration stage 

and an on-line application stage is proposed, as shown in Figure 3-6.  

Figure 3-6: Off-line calibration (left) and on-line monitoring of corrosion from 

electrochemical noise (right). 

In the off-line stage, 𝐐 ∈ ℝ𝑛x𝑚  and represents the reference data containing 

the variables from RQA. The principal components of 𝐐 can be obtained according to 

equations (3-5) and (3-6). 
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𝐒 =
𝐐T𝐐

𝑛 − 1
= 𝐏𝑘 𝚲𝑘𝐏𝑘

𝐓 + 𝐏̃𝑘𝚲̃𝑘𝐏̃𝑘
𝐓 (3-5) 

𝐓𝑘 = 𝐐𝐏𝑘  (3-6) 

Where 𝐒 is the covariance matrix of 𝐐, typically scaled to zero mean and unit 

variance in the columns, 𝐏𝑘  is the loading matrix of the first 𝑘  < m principal 

components, 𝚲𝑘  is a diagonal matrix containing the 𝑘  eigenvalues of the 

decomposition, 𝐏̃𝑘 is the loading matrix of the 𝑚-𝑘 remaining principal components 

and 𝚲̃𝑘  is a diagonal matrix containing the 𝑚 - 𝑘  remaining eigenvalues of the 

decomposition, and 𝐓𝑘 ∈ ℝ𝑛x𝑘  is the score matrix of the principal component model 

consisting of the first 𝑘  principal components. The value of 𝑘  is determined on 

condition that the cumulative percentage of variance explained by the first 𝑘  PCs 

reaches at least 80%. 

To calibrate the PCA model, a decision boundary ℒ𝑇  is calculated for the 

principal component scores 𝐓𝑘 of the reference data. In this study, a Gaussian mixture 

model is proposed to generate the decision boundary, which can be done using a free 

Matlab toolbox developed by Tax [194]. 

A Gaussian Mixture Model (GMM) is a parametric probabilistic model, which 

can be represented by equation (3-7), where 𝑿 is the multivariate data with dimension 

𝐷, 𝐺 is the total number of Gaussian components, 𝜔𝑘  is the prior probability of the 

𝑘 th component satisfying ∑ 𝜔𝑘 = 1𝐺
𝑘=1 , 𝜃𝑘 = {𝜇𝑘 , Ʃ𝑘}  denotes the probability 

parameters of the 𝑘th Gaussian component, 𝑝(𝑿|𝜃𝑘) represents the probability density 

function of the 𝑘th Gaussian component, which can be expressed as equation (3-8), 

𝛩 = {{𝜔1, 𝜃1}, {𝜔2, 𝜃2}, … , {𝜔𝐺 , 𝜃𝐺 } }  denotes the parameters for all the 𝐺 

components and 𝑝(𝑿|𝛩) is the weighted sum of the individual probability functions, 

i.e. the probability density of the overall mixture model [195]. 

𝑝(𝒙|𝛩) = ∑ 𝜔𝑘𝑝(𝑿|𝜃𝑘)

𝐺

𝑘=1

 (3-7) 

𝑝(𝑿|𝜃𝑘) =
1

(2𝜋)𝐷/2|Ʃ𝑘|1/2
𝑒𝑥𝑝 {−

1

2
(𝑿 − 𝜇𝑘)𝑇 ∑ (𝑿 − 𝜇𝑘)

−1

𝑘
} (3-8) 
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Training of the GMM is to estimate the above set of parameters 𝛩 normally by 

using the modified expectation-maximisation (EM) approach [196].  In this study, the 

GMM used to fit the reference scores 𝐓𝑘 contains five Gaussian components and the 

rejection rate of the decision boundary that encloses 𝐓𝑘 is set as 5%, i.e. the decision 

boundary is a 95% control limit.  

In the on-line monitoring stage (Figure 3-6), newly measured EN data will be 

subjected to RQA to generate a new set of variables 𝐪𝑛𝑒𝑤. Then 𝐪𝑛𝑒𝑤 is projected onto 

the PCA model to generate new principal component scores 𝐭𝑛𝑒𝑤 = 𝐪𝑛𝑒𝑤𝐏𝑘 . If it falls 

out of the control limit ℒ𝑇 , then the alarm flag will be activated, implying that 

unexpected changes of the corrosion process have occurred and the system needs to 

be checked for fault conditions. 

3.3.2 RF model for scenario 2 

In the case that EN data originating from several corrosion types can be 

collected, a supervised RF model can be established to identify these corrosion types.  

Pre-processing of the EN data is also based on recurrence quantification 

analysis to generate the variable matrix 𝐐 ∈ ℝ𝑛x𝑚 , as illustrated by Figure 3-5. Since 

the EN data are collected from different corrosion types, the variables are labelled, 

such as ‘1’ for uniform corrosion, ‘2’ for pitting corrosion and ‘3’ for passivation. 

The RF diagnostic framework also involves an off-line training stage and an 

on-line application stage. Training of the RF model is conducted on the labelled 

variable matrix 𝐐, of which 70% are used as training dataset and 30% are used as test 

dataset in order to check the generalisation of the trained model. 

Once the model is established, it can be used for on-line corrosion monitoring. 

Newly measured EN data is processed to obtain the RQA variables, which are 

subsequently fed to the RF model for prediction. As a result, the corrosion type of the 

monitored system can be identified without having to retrieve the sensors from the 

system. 

In the following chapters, case studies will be presented to demonstrate the 

capability and feasibility of the frameworks for corrosion monitoring and diagnosis.    
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CHAPTER 4 CASE STUDY I 

Y. Hou, C. Aldrich, K. Lepkova, L.L. Machuca, B. Kinsella, Monitoring of 

carbon steel corrosion by use of electrochemical noise and recurrence quantification 

analysis, Corrosion Science, 112, 63-72 (2016). 

This chapter presents the published paper with modified formats and contents 

that match the overall style of the thesis.  
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Monitoring of Carbon Steel Corrosion by Use of 

Electrochemical Noise and Recurrence Quantification 

Analysis 

Abstract 

The corrosion of carbon steel in aqueous media resulting in uniform corrosion, 

pitting corrosion and passivation was investigated on a laboratory scale. Recurrence 

quantification analysis was applied to short segments of electrochemical current noise 

measurements. These segments were converted to recurrence variables, which could 

be used as reliable predictors in a multilayer perceptron neural network model to 

identify the type of corrosion. In addition, an automated corrosion monitoring scheme 

is proposed, based on the principal component scores of the recurrence variables. This 

approach used the uniform corrosion measurements as reference data and could 

differentiate between uniform and non-uniform corrosion.   

Keywords: Carbon steel; Electrochemical noise; Pitting corrosion; Recurrence 

quantification analysis; Process monitoring; Neural networks 
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4.1 Introduction 

It is well-established that corrosion is a major global problem causing damage 

in the order of hundreds of billions of dollars in the USA alone [1, 2] and damage on 

a similar scale in other developed economies. The most dangerous form of corrosion 

is localized, where unexpected, rapid damage to local metal structures can lead to 

catastrophic failure [3]. These failures are difficult to prevent, since localized corrosion 

is difficult to measure reliably, despite extensive investigation over many years. For 

example, although visual observation of weight-loss coupons used widely in industry 

can give an indication of the incidence of localized corrosion, these methods are very 

slow and cumbersome. Likewise, electrical resistance methods are also not particularly 

useful, as localized corrosion is often associated with negligible change on the 

electrical resistance of the metal. In contrast, methods based on electrochemical noise 

(EN) measurement have shown more promise as reliable indicators of localized 

corrosion [3-6].  

Electrochemical noise can be ascribed to the formation of microcells on the 

surfaces of metals subject to corrosion. These microcells give rise to oscillating current 

and potentials that contain important information on the dynamics of the corrosion 

process [7, 8]. As a consequence, the detection of localized corrosion based on 

electrochemical noise measurements has been studied based on a number of different 

analytical approaches. These include statistical analysis of the data [9-11], Fast Fourier 

transforms, maximum entropy methods [12, 13] with power spectral density analysis, 

wavelet transforms [14] with transient analysis and energy distribution, phase space 

methods with correlation dimension [7, 15] and recurrence quantification analysis [8, 

16-22].  

Recurrence quantification analysis (RQA) in particular, is an emerging 

approach to the analysis of time series data. The RQA approach allows 

characterization of data by a similarity matrix, typically containing the Euclidean 

distances between subsequent measurements in the time series. A number of variables, 

such as recurrence ratio (𝑅𝑅), determinism (𝐷𝐸𝑇), entropy (𝐸𝑁𝑇𝑅1) and average 

diagonal line length (𝐿𝑚𝑒𝑎𝑛), can be derived from a binary or thresholded version of 

the similarity matrix. In previous studies [16-22], authors implied that recurrence ratio 

and determinism were related to the initiation rate and interaction time of microcells 
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on the metal respectively. The dynamics of uniform corrosion tends to be associated 

with higher recurrence ratio and low determinism value, while localized corrosion is 

characterised with low recurrence ratio and higher determinism. In spite of all the 

efforts of applying RQA to study corrosion dynamics based on EN data, recurrence 

variables have not been used for corrosion type identification and process monitoring.  

Table 4-1 gives an overview of corrosion systems studied via RQA of 

electrochemical noise measurements. On the one hand, a large proportion of scholarly 

work has focused on the study of the corrosion of stainless steel using RQA. This is 

the first time a study applies RQA to corrosion processes at carbon steel. On the other 

hand, the authors mostly used the physical meanings of RQA variables 𝐷𝐸𝑇 and/or 

𝑅𝑅 to indicate the dynamics of different corrosion stages or regimes.  
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Table 4-1: Recurrence quantification analysis of electrochemical noise in corrosion 

systems. 

In this study, four RQA variables, i.e. 𝐷𝐸𝑇, 𝐸𝑁𝑇𝑅1, 𝑅𝑅, 𝐿𝑚𝑒𝑎𝑛  are used 

simultaneously from the statistical point of view, rather than exploring the relationship 

of specific parameter(s) with corrosion processes. The automated corrosion 

monitoring scheme based on RQA variables and PCA model is established, aiming at 

detecting different corrosion mechanisms online. In addition, these variables are used 

as predictors in a neural network model to predict different corrosion behaviour in the 

steel.  

 

 

Variables Corrosion System References 

𝐷𝐸𝑇 Analysis of electrochemical oscillations 

generated from pitting corrosion of copper in 

different saline solutions at various potentials 

[8] 

𝐷𝐸𝑇 Changes in the dynamics of corrosion fatigue in 

UNS S31603 stainless steel immersed in natural 

seawater 

[16] 

𝐷𝐸𝑇, 𝑅𝑅 Protective effect of nanostructured films on 

austenitic stainless steel 304 

[17] 

𝐷𝐸𝑇, 𝐸𝑁𝑇𝑅1, 𝑅𝑅 Initiation, steady state progress and decay of 

pitting in austenitic stainless steel 316 in 300 

mg/L of NaCl in deionized water 

[18] 

𝐷𝐸𝑇, 𝐸𝑁𝑇𝑅1, 𝑅𝑅 Intergranular corrosion of sensitized stainless 

steel USN S30400 immersed in 0.5 M H2SO4 & 

0.01 M KSCN solution 

[19] 

𝐷𝐸𝑇, 𝑅𝑅 Effect of hydrostatic pressure on corrosion of Ni-

Cr-Mo-V stainless steel in a 3.5%NaCl solution 

[20] 

𝐷𝐸𝑇, 𝑅𝑅 Effect of ultrasonic vibrational solidification 

treatment on corrosion of AZ80 Mg alloy 

[21] 

𝐷, 𝑅 Carbon reinforcement steel in concrete exposed 

to a 3% NaCl solution 

[22] 
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4.2 Experimental work 

The chemical composition of the carbon steel (1030) used in the experiments 

is as follows (wt.%): C (0.37), Mn (0.80), Si (0.282), P (0.012), S (0.001), Cr (0.089), 

Ni (0.012), Mo (0.004), Sn (0.004), Al (0.01), and Fe (balance). Two rectangular 

samples with surface area of 1.4 cm × 1.5 cm were made from the same material and 

soldered with a conducting wire to each for electrical connection. Subsequently, the 

samples were electro-coated (Powercron 6000CX) and embedded in epoxy resin 

(Epofix), leaving 2.1 cm2 of the steel surface exposed. The final shape of the sample 

is illustrated in Figure 4-1. Before tests, the exposed surfaces of the steel samples were 

abraded on silicon carbide paper up to 1200 grit, rinsed with ultra-pure water and 

ethanol and dried with nitrogen. This procedure was conducted prior to each run of the 

tests. The same set of steel samples with identical grinding procedures prior to each 

run were used in all the tests. After tests, the surfaces of the samples were examined 

for localized corrosion and the maximum pit depth was measured using optical 3D 

microscopy (Infinite focus microscope, Alicona Instruments, Austria). 

Three test solutions were used, viz.  0.1 M sodium chloride (NaCl; Merck, 

99.7%), 0.5 M sodium hydrogen carbonate (NaHCO3; Merck, 99.7%), and a solution 

containing 0.45 M sodium hydrogen carbonate and 0.1 M sodium chloride (0.45 M 

NaHCO3 + 0.1 M NaCl). These solutions were used to set up uniform corrosion, 

passivation and pitting systems, respectively. All the solutions were prepared with 

ultra-pure water (Milli-Q system, resistivity 18.2 MΩ cm) and analytical reagents. 

Figure 4-1: Experimental setup. 
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Electrochemical noise (EN) measurement were carried out in a configuration 

which is schematically shown in Figure 4-1. Two nominally identical aforementioned 

carbon steel samples were placed parallel to each other as working electrodes (WE 1 

and WE 2). The inter-electrode spacing was fixed at 2.4 cm (centre-to-centre). In 

addition, a commercial Ag/AgCl electrode was used as reference electrode (single 

junction electrode placed in a capillary with a porous ceramic tip and filled with 3 M 

KCl solution designed to give a potential of 0.210 V against S.H.E). The current 

flowing through the two working electrodes was measured using a zero resistance 

ammeter mode (ZRA) of Gamry Reference 600 and the potential of the short-circuited 

WEs was measured with regard to the commercial reference electrode. ESA410 data 

acquisition software was employed to collect the EN data. The sampling rate was 2 

Hz. 

All the test solutions were air-saturated in a separate cell before pumping into 

the test cell equipped with the electrodes. During the tests, the temperature of the 

solution was controlled at 30 ± 1 ̊C by a hot plate with a temperature probe. The oxygen 

level in the solution was kept constant by continuously pumping air through the cell, 

creating an air blanket on top of the solution. 

For uniform and passivation tests, the EN measurement started immediately 

after immersion of the test samples. After exposure to the test solutions, the samples 

were taken out of the test cell and rinsed immediately with ultra-pure water and ethanol, 

followed by drying with nitrogen gas. Afterwards, the surfaces of the two working 

electrodes were directly observed under optical microscope. 

For pitting corrosion tests, the specimens were pre-passivated in 0.5 M 

NaHCO3 solution for four hours (without EN recording), before NaCl was added to 

yield a solution of 0.45 M NaHCO3 + 0.1 M NaCl. The EN signals were recorded 

immediately after the NaCl solution was added. The experimental conditions are 

summarized in Table 4-2. All the tests were done in duplicate. Potential and current 

noise were recorded simultaneously and the electrochemical current noise (ECN) was 

subjected to the analytical process described above. The electrochemical potential 

noise (EPN) signals were used as an indicator of the repeatability of the tests. 
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Table 4-2: Experimental conditions. 

4.3 Results and discussion 

4.3.1 Electrochemical noise measurements 

The electrochemical noise (EN) data (after linear detrending) associated with 

the three types of corrosion in Table 4-2 are shown in Figure 4-2 (a)-(c). The 

microscopic appearance of the same sample surface associated with three different 

types of corrosion is shown in Figure 4-2 (d)-(f). Amplified images of current and 

potential noise signals corresponding to the time intervals starting from vertical dashed 

lines in Figure 4-2 are displayed in Figure 4-3. 

It can be seen from Figure 4-2 and Figure 4-3 that the electrochemical current 

and potential signals show different behaviours for different corrosion systems. During 

the test period for uniform corrosion, high frequency fluctuations were observed for 

both potential and current noise. The maximum amplitude for potential was 12 mV 

while that for current was around 15 µA. The enlarged portion of EN signals presented 

in Figure 4-3 (a) shows no distinctive peaks. In the case of pitting corrosion, current 

noise fluctuated rapidly around zero with very small amplitude (approx. 0.02 µA) for 

about seven hours. Afterwards, the current signal showed typical peaks for metastable 

pitting, i.e., sudden rise followed by exponential decline, as indicated in Figure 4-3 (b). 

The amplitude was increased to approximately 0.03 µA at this stage. After 10 h of EN 

recording, the amplitude grew larger with a maximum value of 0.63 µA. Potential 

noise showed similar patterns. It also should be noted that after pitting test, only one 

of the working electrodes was pitted. The maximum pit depth measured was 55 μm. 

But the other working electrode had a passive-like appearance. In contrast, for 

Corrosion Type Solution pH Test Duration 

Uniform 0.1 M NaCl 6.6 18 h 

Pitting 0.45 M NaHCO3+0.1 M NaCl 8.6 19 h 

Passivation 0.5 M NaHCO3 8.4 2.5 h 
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passivation system, the EN signals fluctuated with a relatively lower frequency with 

amplitudes no more than 0.02 µA and 2 mV, respectively. 

Figure 4-2: Electrochemical potential (bottom line) and current (top line) noise 

signals and associated appearance of steel surfaces for three types of corrosion (a, d) 

uniform (b, e) pitting (c, f) passivation. 
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Figure 4-3: Enlarged portions of marked areas in Figure 4-2 (a) Uniform corrosion 

(b) Pitting (c) Passivation. 

The recurrence plots of the signals are shown in Figure 4-4. The ECN data for 

uniform corrosion, pitting and passivation is chopped into 70, 75 and 10 non-
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overlapping time series segments respectively. Each of the segments contains 1800 

data points. The threshold used to generate the RPs is 0.2σ, where σ refers to the 

standard deviation of individual current noise data segments. Four randomly selected 

RPs from the uniform corrosion process are given in the top row of the figure, to give 

an indication of the recurrence structures and their variation. Likewise, the images in 

the second and third rows represent the recurrence plots for pitting corrosion and 

passivation respectively. 

Figure 4-4: Recurrence plots for different current data segments of three corrosion 

types, i.e., uniform (first row), pitting (second row) and passivation (third row). 

The calculated RQA variables (variable numbers 1, 2, 3 and 5 shown in Table 

3-1) for the different corrosion systems are shown in Figure 4-5. The vertical lines 

separate the three different corrosion systems, i.e. uniform corrosion, pitting corrosion 

and passivation, from left to right. It is indicated that, in the studied systems, 𝐷𝐸𝑇 and 

𝐸𝑁𝑇𝑅1 were capable of distinguishing different corrosion types to some extent. For 

example, the 𝐸𝑁𝑇𝑅1 values fluctuate between 0 and 2 for uniform corrosion, while 

that for pitting corrosion are located in the range of -2 to 0. It is difficult, however, to 

distinguish passivation from pitting. Apparently, 𝑅𝑅 had no capability to discriminate 

different corrosion systems since all the values fluctuated at around zero. 𝐿𝑚𝑒𝑎𝑛  is 
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similar to 𝑅𝑅, but to some extent, 𝐿𝑚𝑒𝑎𝑛 performs better in the separation of uniform 

and pitting corrosion. 

Figure 4-5: Line plots of the zero mean, unit variance scaled values 𝐷𝐸𝑇, 𝐸NTR1, 

𝑅𝑅 and 𝐿𝑚𝑒𝑎𝑛 (from top to bottom). The vertical lines separate uniform corrosion, 

pitting corrosion and passivation, from left to right. 

The correlational structure of the four variables is shown in Table 4-3. The 

values in the table represent the linear correlation coefficients between any two 

variables. This can be calculated from equation  

𝑟 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (4-1) 

Where 𝑋  and 𝑌  represent any two RQA variable vectors, 𝑐𝑜𝑣(∙)  calculates the 

covariance between these two vectors, 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 and 

𝑌, and 𝑟 is the correlation coefficient of these two RQA variables. Since it has been 

mentioned before that the four RQA variables formed a data matrix 𝐐, the actual 

calculation was conducted on 𝐐 using a simple Matlab code. 
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Table 4-3: Correlation among four RQA variables. 

It can be seen from Table 4-3, 𝐷𝐸𝑇  is strongly correlated with 𝐸𝑁𝑇𝑅1 , 

indicating that the information contained in 𝐐 is redundant. In order to reduce the 

redundancy, principal component analysis (PCA) was conducted on 𝐐 to extract its 

principal components (PC). Finally, the first two scores of the corresponding PCs were 

retained as they collectively explained approximately 89% of the variance of 𝐐. 

Figure 4-6 shows the scatter plot of the principal component scores for each of 

the three corrosion systems. Where t1 and t2 are the scores of the first two PCs. The 

percentage of variance explained by each PC is 66.6% and 22.7% respectively. 

Uniform corrosion appears to be clearly distinguishable from the other two systems, 

yet it is not possible to discriminate between passivation and pitting corrosion. 

 

Variables 𝐷𝐸𝑇 𝐸𝑁𝑇𝑅1 𝑅𝑅 𝐿𝑚𝑒𝑎𝑛 

𝐷𝐸𝑇 1 0.816 0.339 0.550 

𝐸𝑁𝑇𝑅1 0.816 1 0.126 0.638 

𝑅𝑅 0.339 0.126 1 0.319 

𝐿𝑚𝑒𝑎𝑛 0.550 0.638 0.319 1 
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Figure 4-6: Principal component score plot of three corrosion types. 

Although Figure 4-5 and Figure 4-6 give some indication of the ability of the 

variables to discriminate between the different types of corrosion, further quantitative 

analysis was done by constructing a multilayer neural network model to classify the 

data, as shown in Figure 4-7. The input layer of the network consisted of four nodes 

associated with four predictor variables. The hidden layer consisted of 8 nodes, while 

the output layer had three nodes, since the three different output classes (corrosion 

types), were coded in a [1 0 0; 0 1 0; 0 0 1] format. Both the hidden and output nodes 

had bipolar sigmoidal activation functions (tansig) and the Levenberg-Marquardt 

algorithm was used to train the network in Matlab 14b with a cross-entropy error 

function. 

The training data (70 samples from the uniform corrosion system, 75 samples 

from the pitting corrosion system and 10 samples from the passivation system) were 

randomly divided between a training data set (60% of the samples), and a validation 

and test data set, each containing 20% of the samples. The training and validation data 

sets were used during the construction of the classification models, while the test data 

served as an independent data set to assess the performance of the trained models.  
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Figure 4-7: Architecture of two-layer feed-forward neural network. 

The results are shown in the so-called confusion matrix in Figure 4-8, where 

classes 1, 2 and 3 correspond with passivation, pitting corrosion and uniform corrosion, 

respectively. The test data were not used in the development of the model and is used 

as an indication of the generalized performance of the trained neural network. From 

Figure 4-8, it can be seen that there were 31 samples in the test set, of which 3 belonged 

to Class 1, 13 to Class 2 and 15 to Class 3. The neural network was unable to identify 

Class 1 reliably and misallocated 2 of the 3 samples to Class 2. These results are 

consistent with the information shown in Figure 4-6, where it is clear that it would be 

difficult to discriminate between Classes 1 and 2. The overall accuracy of the model 

was 93.5%. However, since the data sets used in this model were relatively small, 

especially the data set associated with passivation, these results should be interpreted 

as indicative only. 
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Figure 4-8: Confusion matrix for the test data set consisting of 31 samples (Class 1 = 

passivation, Class 2 = pitting and Class 3 = uniform corrosion). 

The significance of the predictor variables in the classification model could 

also be assessed. This was done by training a multilayer perceptron as before, but with 

five predictor variables. Four of these were the recurrence variables, 𝐷𝐸𝑇, 𝐸𝑁𝑇𝑅1, 𝑅𝑅 

and 𝐿𝑚𝑒𝑎𝑛 and the fifth was a random variable with no predictive power. This variable 

was used to assess the statistical significance of the recurrence variables, as discussed 

in [24-26].  

In the analysis, the classification model was interrogated by repeatedly 

randomizing each of the predictor variables, one at a time and observing the 

deterioration of the performance of the model in each case. The results are shown in 

the variable importance plot in Figure 4-9. 
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Figure 4-9: Variable importance plot of the recurrence predictor variables in the three 

corrosion systems.  

The black dots in the figure show the average increase in the error rates of the 

model (in this case based on 30 runs or variable permutations). The top of each box 

shows the mean value plus three standard deviations, while the bottom of each box 

indicates the mean value minus three standard deviations. The broken and solid 

horizontal lines indicate the 95% and 99% significance levels of the increases in the 

errors, as determined by the dummy (random) variable that was included with the 

model and discussed in [26]. According to this plot, determinism (𝐷𝐸𝑇) played the 

most important role in discriminating between the three corrosion systems, while the 

recurrence rate (𝑅𝑅) did not play a statistically significant role. 

4.3.2 Application of corrosion monitoring scheme 

The efficacy of the corrosion monitoring scheme is illustrated by the data in 

Figure 4-10. It is essentially the same as Figure 4-6, except that the data representing 

uniform corrosion or normal operating conditions have been delineated with a 95% 

control limit based on the use of a five-Gaussian mixture model. 

The first two principal components accounted for 89.3% of the variance of the 

variables and as indicated, this map can be used in the online monitoring of the 

corrosion of the system. 
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Figure 4-10: Principal component score plot showing uniform corrosion (*) as 

normal operating conditions and pitting corrosion (+) and passivation (o) as fault 

conditions. 

Some suggestions for other interested researchers towards using the proposed 

techniques: 

 Firstly, the EN data should be recorded continuously under normal 

operation conditions, i.e. non-localized corrosion conditions, for a 

sufficient time depending on the actual corrosion system and sampling rate. 

Ideally, it is better to collect as many data as possible in this condition for 

computation of a reliable control limit. 

 There are no strict rules regarding the choice of sampling rate. Users could 

customise their own sampling rate as they deem appropriate for the 

corrosion process under study. However, it is recommended to use a 

sampling rate of more than 1 Hz. 

 After collection of the EN data, users need to decide how many data points 

there should be contained in each segment. In principle, the length of the 

time series segment should be sufficient to capture characteristic 

fluctuations or periodic behaviour in the time series. This can be estimated 

from the autocorrelation function or the average mutual information of the 

time series. The point where the autocorrelation function reaches its first 

minimum value or point of decorrelation, can be used as an indication of 
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the minimum length of the time series segment (see for example [27, 28], 

where the same principle is applied to the phase space embedding of time 

series data). 

 After calculating the control limit for normal operation conditions 

according to the procedures proposed in this paper, users could then record 

EN data under different test conditions either continuously or intermittently. 

The sampling rate and the number of points in the new segment should be 

identical to those used for the normal operating conditions. If the data 

projected onto the map falls outside the normal operation condition control 

limit, a potential fault condition is flagged. 

4.4 Summary 

In this study, the corrosion tests with carbon steel in three different conditions 

have indicated that the corrosion monitoring map generated based on the use of 

recurrence quantification analysis and principle component analysis appears to be a 

promising approach for continuous corrosion process monitoring. New 

electrochemical noise measurements can be projected onto the map continuously and 

will be flagged as potential fault conditions if these projections are located outside the 

boundaries.  

It should be pointed out that there are still some issues in need of further 

investigation. Firstly, the proposed method is not based on any fundamental physical 

or chemical models at work. The corrosive effects of the different environments to 

which the steel samples were exposed could not be studied quantitatively and more 

reliable corrosion data are needed. Secondly, it requires the user to be experienced in 

deciding when normal conditions prevail, as they are used as a benchmark for the 

identification of fault or abnormal conditions. Finally, the present monitoring map 

could not distinguish between passivation and pitting, and this needs to be improved, 

for example, by considering the use of additional recurrence quantification variables.  

However, despite these minor issues, it is possible to promote the automation 

of corrosion monitoring in industry if the proposed method is carefully used.     
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CHAPTER 5 CASE STUDY II 

Y. Hou, C. Aldrich, K. Lepkova, L.L. Machuca, B. Kinsella, Application of 

electrochemical noise technique to monitor carbon steel corrosion under sand deposit, 

paper no. 9103, NACE International Corrosion Conference Series, 2017. 

This chapter presents the published paper with modified formats and contents 

that match the overall style of the thesis. 
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Application of Electrochemical Noise Technique to Monitor 

Carbon Steel Corrosion under Sand Deposit 

Abstract 

The corrosion process of carbon steel in the presence of silica sand deposit in 

chloride-containing solution at 30 °C was monitored by use of electrochemical noise 

(EN). Noise resistance calculated from EN was compared with the polarization 

resistance obtained from conventional corrosion monitoring techniques, such as linear 

polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). 

Recurrence quantification analysis (RQA) was employed to characterize the current 

noise data associated with different corrosion types and the extracted variables were 

used for UDC process monitoring. After tests, the corroded steel surfaces were 

examined using a 3D profilometry to gather information about localized defects. The 

results demonstrated that electrochemical noise associated with recurrence 

quantification analysis is a useful tool for monitoring localized corrosion of under 

deposit corrosion. 

Keywords: Carbon steel; Sand deposit; Electrochemical noise; Corrosion 

monitoring; Recurrence quantification analysis 
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5.1 Introduction 

It is well know that the presence of accumulated sand, debris, biofilm and 

carbonate species on the bottom of oil and gas pipelines can cause severe localized 

corrosion, viz. under deposit corrosion (UDC). Monitoring of corrosion processes 

under deposits could provide valuable information for the development of mitigation 

programs. However, since UDC often occurs in the form of pitting [1-3], the 

conventional electrochemical methods such as linear polarization resistance (LPR), 

electrochemical impedance spectroscopy (EIS) and electrical resistance (ER) may not 

be particularly useful for early detection and continuous monitoring of localized 

corrosion, due to the negligible change in resistances associated with pitting. In 

contrast, methods based on electrochemical noise have been reported as promising 

indicators of localized corrosion [4-7].  

Electrochemical noise (EN) can be ascribed to the formation of micro-cells on 

the surfaces of metals subject to corrosion. These microcells give rise to oscillating 

current and potentials that contain important information on the dynamics of the 

corrosion process [8]. The analysis of EN data relies on two main aspects – 

determination of electrochemical noise resistance (Rn) and identification of various 

corrosion types [9]. The electrochemical noise resistance Rn is commonly determined 

as the standard deviation of potential divided by the standard deviation of current, and 

it is considered to be equivalent to the polarization resistance. Therefore, it can be used 

for estimating the general corrosion rate. The derivation of information regarding the 

corrosion types from EN measurement has attracted even more attention. A number of 

analytical approaches have been proposed, including fast Fourier transforms, 

maximum entropy methods based power spectral density analysis [10], wavelet 

transforms [11], transient analysis [5, 12-13], chaos analysis [14-17] and recurrence 

quantification analysis [18-22].  

Recurrence quantification analysis, in particular, is an emerging approach for 

studying the dynamics of time series data. It is based on the quantification of a so-

called recurrence plot that typically contains the Euclidean distances between 

measurements in the time series. A number of variables can be extracted from the 

recurrence plot [23]. Among them, recurrence rate and determinism are frequently 

used in corrosion studies. It is reported that the dynamics of uniform corrosion tends 
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to be associated with a higher recurrence rate and a low determinism value, while 

localized corrosion is characterized with lower recurrence rate and higher determinism 

[24]. Despite its promise, the recurrence quantification analysis has not yet been used 

in the study of EN data obtained from UDC processes.   

In order to determine if the EN technique associated with recurrence 

quantification analysis can be used to study and monitor UDC processes, carbon steel 

covered with a sand deposit, immersed in 0.1 M NaCl solution was chosen as the 

corrosion system to be studied. The calculated noise resistance Rn was compared with 

Rp from LPR and Rct from EIS measurements. In addition, recurrence quantification 

analysis was performed on the electrochemical current noise data. Four variables viz. 

recurrence rate (RR), determinism (DET), entropy (ENTR) and trapping time (TT) 

were extracted. These variables were used to characterize and monitor the corrosion 

process.  

5.2 Experimental procedure 

5.2.1 Test materials and procedures 

The test samples were made of carbon steel 1030 with a dimension of 1.4 x 1.5 

x 0.5 cm3. The chemical composition of the steel is as follows (by weight %): C 

(0.30%), Mn (0.80%), Si (0.25%), S (<0.01%), P (0.01%), Ni (<0.01%), Cr (<0.01%), 

Mo (<0.01%), Cu (<0.01%), V (<0.01%) and Fe (balance). The samples were electro-

coated, leaving 2.1 cm2 of the surface exposed. Afterwards, the exposed surface was 

ground and polished using SiC paper to 1200 grit, rinsed with ultrapure water and AR 

grade ethanol and finally dried with nitrogen prior to testing.  

Silica sand was used as a deposit. It was acid washed and dried in an oven prior 

to use. The thickness of the sand layer covering the sample surface was maintained at 

8 mm. Specifically, The samples were placed in a glass sample holder with working 

surfaces facing upwards. Then the silica sand was gradually added to the samples 

holder and carefully flattened using fingers, until the top of the sand layer was about 8 

mm above the surface of the steel sample. The sand loaded holder was placed in the 

test cell (as shown in Figure 5-1) before the test solution was transferred into the cell 

using a pump. 
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 The test solution composed of 0.1 M sodium chloride (NaCl; Merck, 99.7%), 

was prepared with ultrapure water and air saturated using an air pump before 

transferring it into the test cell. An air blanket was created in the cell above the water 

level and the temperature of the solution was controlled at 30 ˚C using a hotplate. All 

tests were carried out under stagnant conditions. 

5.2.2 Electrochemical measurements 

Electrochemical noise (EN) measurement was carried out in the configuration 

shown in Figure 5-1. Two of the carbon steel samples, i.e. working electrodes WE1 

and WE2, were placed in glass sample holders (facing upwards and parallel to each 

other) and covered with sand deposit. The inter-electrode spacing was fixed at 

approximately 3 cm (centre-to-centre). A commercial Ag/AgCl (3 M KCl) electrode 

was used as reference electrode. The current flowing through the two working 

electrodes was measured using a Gamry Reference 600 operating in the zero resistance 

ammeter (ZRA) mode. The potential of the short-circuited WEs was measured with 

respect to the same reference electrode as used in LPR and EIS measurements. 

ESA410 data acquisition software was used to collect the EN data. The sampling rate 

was 2 Hz and the EN data were continuously recorded for 14 days.  

Linear polarization resistance (LPR) measurements and potentiostatic 

electrochemical impedance spectroscopy (EIS) were carried out in a similar 

configuration, except for the electrodes with only one steel sample covered with sand 

deposit used as working electrode and a platinum-coated titanium mesh served as the 

counter electrode. An Ag/AgCl (3 M KCl) electrode was also employed as the 

reference electrode. The measurements were obtained with a Bio-logic VMP3 multi-

channel potentiostat/galvanostat/ZRA. For LPR, the potential range of ± 10 mV 

against open circuit potential (OCP) was applied with a scan rate of 0.167 mV/s. For 

EIS, a frequency range of 10 mHz to 10 kHz at 10 points per decade was employed 

and the AC excitation amplitude was 10 mV vs. OCP. The samples were allowed to 

rest for 6 h before the first LPR was performed, followed by EIS measurement. During 

14 days of testing, LPR and EIS were carried out every 6 h and OCP was recorded 

during the intervals. There was a 10 min rest between the LPR and EIS measurements. 

In addition, two samples covered with sand without electrical connections were also 
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placed in the test cell to conduct microscopy analysis. One of them was taken out after 

7 days and the other one was taken out after 14 days, when the test was completed.  

Figure 5-1: Diagrammatic configuration for electrochemical noise measurement. 

5.2.3 Surface analysis 

After tests, all the samples were flushed with ultrapure water and AR grade 

ethanol to remove the sand and loose corrosion products. This was followed by 

immersion in Clarke solution for 30 seconds to remove possible adherent corrosion 

products on the steel surface. Finally, the samples were dried with nitrogen and stored 

in a desiccator under vacuum until further analysis. 

Visible light microscopy (infinite focus microscope, Alicona instruments) was 

conducted to characterize the surface morphology of steel samples. Surface profiles of 

the samples were acquired with the Alicona Infinite Focus software 5.1. 

5.3 Results and discussion 

5.3.1 Open circuit potential 

The open circuit potential was recorded during the interval of the LPR and EIS 

measurement cycle. The average value recorded during the interval is shown in Figure 

5-2. It can be seen that the OCP rapidly decreased during the first day and then 

gradually increased to the starting level after four days of immersion. Afterwards, the 

OCP slowly increased at a lower rate from day 5 to day 14.    
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Figure 5-2: Variation of the average open circuit potential with time for carbon steel 

covered with sand deposit and immersed in 0.1 M NaCl solution. 

5.3.2 Electrochemical impedance measurements 

Figure 5-3 shows the Nyquist plots and Bode plots obtained from EIS 

performed on days 1, 4, 7 and 14. The EIS measurements were performed every six 

hours during 14 days of immersion. Figure 5-3 only shows typical results. The 

equivalent circuit used for fitting the EIS data is shown as the inset of Figure 5-3 (a). 

Although after 7 days immersion, corrosion products formed between the sand layer 

and steel surface, the scale was not sufficient to produce a second constant phase 

element. Therefore, it was decided to use the simple randles circuit to fit all the EIS 

data. The circuit elements are solution resistance (Rs), charge transfer resistance (Rct) 

and a constant phase element (CPE) that represents the interfacial capacitance [2]. The 

CPE was used because of the non-ideal frequency response observed in the Nyquist 

plots (Figure 5-3 (a)), which can be attributed to the non-homogeneity of the steel 

surface [25]. The fitted parameters, Rs, Rct and n* are shown in Table 5-1, where n* is 

the exponent for the constant phase element.  
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Figure 5-3: Impedance spectra of sand-covered steel surfaces immersed in 0.1 M 

NaCl solution on days 1, 4, 7 and 14. 

Table 5-1: Electrochemical parameters derived from impedance analysis of carbon 

steel immersed in 0.1 M NaCl solution for 1, 4, 7 and 14 days with sand deposit. 

5.3.3 Resistance comparisons 

The electrochemical noise resistance is commonly considered as comparable 

with the polarization resistance obtained from LPR or the total resistance obtained 

Time Rs ohm Rct ohm Error % n* 

Day 1 45.30 2208 0.59 0.80 

Day 4 42.77 2986 1.92 0.74 

Day 7 79.75 2387 1.36 0.82 

Day 14 71.94 2656 2.02 0.83 
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from EIS, thus it can be used for corrosion rate estimation based on the Stern-Geary 

relationship. In order to prove this, the potential and current noise data segments, 

obtained around the same time that LPR and EIS measurements were performed were 

selected. Each of the noise segments contains 3600 data points, corresponding to 30 

minutes of recordings. The DC drift in potential and current noise data segments were 

removed by fitting the data with a straight line and subtracting it from the original data. 

Afterwards, Rn was calculated. Figure 5-4 shows Rn values from EN measurements, 

along with Rp and Rct values derived from LPR and EIS measurements, respectively. 

It should be pointed out that solution resistances obtained from EIS were subtracted 

from the Rp values obtained from LPR. The inset of Figure 5-4 shows the fluctuation 

of Rp and Rct with time.   

Figure 5-4: Variations of Rn, Rp and Rct with time for carbon steel covered with sand 

deposit and immersed in 0.1 M NaCl solution. 

As can be seen from Figure 5-4, the charge transfer resistance (Rct) calculated 

from impedance data is close to the polarization resistance (Rp) from LPR. 

Nevertheless, the noise resistance (Rn) is much higher than Rp and Rct during the entire 

test period. In this case, the corrosion rate estimated by Rn would be much lower than 

that estimated by Rct/Rp.  
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5.3.4 Electrochemical noise 

Figure 5-5 shows the typical EN data recorded on days 1, 4, 7 and 14. In Figure 

5-5(a) and Figure 5-5(b), corresponding transients in current and potential signals 

indicate the presence of metastable pitting process [14]. The surface morphology of 

the steel sample after 14 days of immersion, as shown in Figure 5-6, confirms this 

assumption. The color bar in Figure 5-6(b) reveals that the maximum pit depth is 

around 8 μm, which gives a maximum penetration rate of approximately 0.2 mm/y. 

All the test samples were subjected to 3D profilometry after tests. It was found that the 

pit depth ranged from 4 μm to 8 μm. It is worth mentioning that from the 3D 

profilometry of the sample removed from the test cell after 7 days of immersion, the 

pit depths were in the same range.  

Figure 5-5: Electrochemical current and potential noise signals (after DC trend 

removal) obtained from (a) day 1, (b) day 4, (c) day 7 and (d) day 14. 
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Figure 5-6: 3D image of a steel surface after immersion in 0.1 M NaCl solution at 

30 °C for 14 days showing pitting (maximum pit depth 8 µm). 

Additionally, it is observed that the maximum amplitude of the current 

transient decreased from around 100 nA on day 1 to around 20 nA on day 4. Meanwhile, 

the maximum amplitude of potential transient decreased from approximately 0.6 mV 

to about 0.15 mV. For simplicity, the EN signals with typical transients recorded on 

day 1 and day 4 only are present here, in fact, such features appear intermittently in 

the EN recordings of the first 7 days. In contrast, from day 7 onwards, there were few 

such transients present in EN signals. Instead, the current and potential fluctuated with 

amplitudes less than 0.1 mV and 6 nA, respectively, as shown in Figure 5-5(c) and 

Figure 5-5(d). This indicates that the steel specimens were undergoing uniform 

corrosion with a low corrosion rate or had achieved a passive state [26]. This fact is 

also reflected by the changing open circuit potential with time (Figure 5-2). 

5.3.5 Recurrence quantification analysis (RQA) 

Figure 5-7 shows the RPs of the current data segments shown in Figure 5-5. 

The threshold value 𝜀 was determined as 20% of the standard deviation of the current 

data segment [22]. Four variables, viz. RR, DET, ENTR and TT were extracted to 

quantify the recurrence plots. The results are listed in Table 6-2. All the calculations 

were implemented via a publicly available Matlab toolbox, i.e. the Cross Recurrence 

Plot Toolbox (version 5.17) developed by Nobert Marwan [23].  

The recurrence rate RR quantifies the percentage of recurrent points in the RP. 

The more periodic the current signal, the higher RR value. Determinism DET and 

entropy ENTR are computed based on the diagonal line segments present in an RP. A 
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diagonal line segment refers to line segments formed by diagonally adjacent recurrent 

points parallel to the main diagonal line (45° bottom left to top right) in the RP. DET 

quantifies the ratio of recurrent points that form diagonal line segments to the entire 

set of recurrent points. It contains information about the duration of a stable interaction. 

The longer the interactions, the higher the DET value. Similarly, the entropy ENTR 

comes from Shannon’s information theory. It quantifies the distribution of the diagonal 

lines as an indication of the complexity of the RP [23]. A more complex dynamic will 

result in an RP with higher ENTR value. In contrast, the trapping time TT is derived 

from the vertical line segments. Similarly to the definition of diagonal line segments, 

a vertical line segment is formed by two or more vertically adjacent recurrent points. 

TT calculates the average length of the vertical lines. It reflects the mean time that the 

system stays at a specific state or the duration of entrapment of the state.  

Figure 5-7: Recurrence plots corresponding to the current data shown in Figure 5-5 

(a) day 1, (b) day 4, (c) day 7 and (d) day 14. 
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Table 5-2: Recurrence quantification variables extracted from Figure 5-7. 

As indicated in Table 5-2, there is little difference between the RR during the 

period of metastable pitting (days 1 and 4) and that of uniform corrosion (days 7 and 

14). On the contrary, the DET and ENTR values for pitting data are both higher than 

those for the uniform corrosion data [24]. This means that, compared to uniform 

corrosion, pitting processes involve longer interaction times among the micro-

corrosion cells formed on the steel surface, and the dynamics of this kind of interaction 

is more complex. In addition, it seems that in pitting processes, the system was trapped 

at a specific state for a longer time. Indeed, for metastable pitting, an initiated micro-

corrosion cell on the steel surface usually takes a longer time to re-passivate compared 

to the case of uniform corrosion, thus contributing to a higher TT value. 

The variations of the RQA variables RR, DET, ENTR and TT during 14 days 

are plotted as functions of time, shown in Figure 5-8. Each point represents one current 

data segment mentioned above, i.e. 30 min recordings. Three stages can be assigned. 

Specifically, in the first 4 days, the corrosion of steel samples under sand deposits has 

higher DET, ENTR and TT values that are similar to those obtained from metastable 

pitting process (Table 5-2), indicating that the dominant corrosion type during this 

period is metastable pitting. From day 7 to day 14, these values fluctuated at lower 

levels, which are close to those obtained from the uniform corrosion processes (Table 

5-2). From day 5 to day 6, the under sand deposit corrosion type seems to be 

undergoing a transition period from metastable pitting to uniform corrosion. However, 

the recurrence rate RR was low during the whole test period. 

  

 

Time RR DET ENTR TT 

Day 1 0.2109 0.9079 2.5299 9.9227 

Day 4 0.1252 0.8944 2.5043 10.1458 

Day 7 0.1128 0.4527 0.8584 2.6574 

Day 14 0.1443 0.5745 1.0635 2.9395 
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Figure 5-8: Corrosion process monitoring with recurrence quantification variables. 

5.4 Summary 

The present study explores the potential of electrochemical noise as a useful 

tool for under deposit corrosion monitoring.  

1. It is shown that the noise resistance Rn values were much higher than the Rp 

and Rct values obtained from conventional electrochemical techniques, 

namely linear polarization resistance and electrochemical impedance 

spectroscopy. Therefore, Rn could not be used for the estimation of general 

corrosion rates in the studied UDC system. It should be used in combination 

with LPR and EIS techniques in order to provide more reliable data on the 

general corrosion rate. 

2. Recurrence quantification analysis of the electrochemical current noise data 

shows that RQA variables DET, ENTR and TT could detect metastable pitting 

from uniform corrosion or passive state of steels under sand deposit. These 

variables are suitable for long term corrosion type estimation and monitoring, 

while the recurrence rate RR is not. The results indicate that during the first 4 
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days of the UDC test, the steel samples mainly underwent metastable pitting, 

followed by a transition period from day 5 to day 6. From day 7 onwards, the 

dominant corrosion type became uniform. The surface profiles of steel 

samples confirmed the presence of metastable pits.  

3. Although there are limitations in the proposed monitoring technique and 

further studies are needed, the preliminary tests have demonstrated that 

electrochemical noise associated with recurrence quantification analysis is a 

promising tool for detecting and monitoring localized corrosion of carbon 

steel under sand deposit. 
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CHAPTER 6 CASE STUDY III 

Y. Hou, C. Aldrich, K. Lepkova, L.L. Machuca, B. Kinsella, Analysis of 

electrochemical noise data by use of recurrence quantification analysis and machine 

learning methods, Electrochimica Acta, 256, 337-347 (2017). 

This chapter presents the published paper with modified formats and contents 

that match the overall style of the thesis. 
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Analysis of Electrochemical Noise Data by Use of 

Recurrence Quantification Analysis and Machine Learning 

Methods 

Abstract 

By use of recurrence quantification analysis (RQA), twelve features were 

extracted from the electrochemical noise signals generated by three types of corrosion: 

uniform, pitting and passivation. Machine learning methods, i.e. linear discriminant 

analysis (LDA) and random forests (RF), were used to identify the different corrosion 

types from those features. Both models gave satisfactory performance, but the RF 

model showed better prediction accuracy of 93% than the LDA model (88%). 

Furthermore, an estimation of the importance of the variables by use of the RF model 

suggested the RQA variables laminarity (LAM) and determinism (DET) played the 

most significant role with regard to identification of corrosion types. In addition, the 

comparison of noise resistance with the resistance obtained from EIS measurement 

showed that the noise resistance can be used for monitoring corrosion rate variations 

not only for uniform corrosion and passivation, but also for pitting. 

Keywords: Electrochemical noise; Recurrence quantification analysis; Linear 

discriminant analysis; Random forest; Corrosion type identification 
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6.1 Introduction 

The concept of electrochemical noise (EN) was first introduced by Iverson [1] 

and Tyagai et al. [2] decades ago. Back then, the research focus was merely on 

potential fluctuations. Subsequently, in 1986, Eden et al. [3] further developed the 

noise measurement setup, which included two identical working electrodes (WE) 

connected by a zero resistance ammeter (ZRA), a reference electrode (RE) and a 

potentiometer, allowing the recording of current and potential noise simultaneously. 

Since then, EN with ZRA has been widely studied in the corrosion field, owing to its 

ease of setting up, non-destructiveness, non-intrusiveness and the ability to provide 

information on both the corrosion rate and type which other electrochemical 

techniques failed to offer [4-9].  

Among various research areas, the identification of different types of corrosion 

has always attracted considerable interest from corrosion researchers and engineers. 

Numerous efforts have been made to extract discriminative features from collected EN 

data to indicate corrosion types. These features can be sourced from three kinds of 

analytical domains, namely the time domain, frequency domain and time-frequency 

domain. The primary feature obtained from frequency domain analysis is the roll-off 

slope of the power spectral density (PSD) plot [10]. A large number of indicators have 

been extracted from the time domain analysis of the EN data, including: 

 Statistics, such as the standard deviation, kurtosis, skewness, and 

localization index of measurements [11]; 

 The cumulative probability of corrosion events and Weibull probability 

plots from transient analysis [12]; 

 Largest Lyapunov exponent and correlation dimension from chaotic 

analysis [13, 14]; 

 Recurrence rate, determinism, maxline, etc. from recurrence quantification 

analysis [15]; 

 Hausdorff exponent, Hurst exponent and spectral-power exponents from 

fractal analysis [16]; 

 Energy distribution plot from wavelet analysis [17]; 
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 In addition, Homborg et al. [18] have published several papers on the time-

frequency joint analysis by Hilbert-Huang transformation which showed 

good application prospect.  

Recently, owing to the rapid development in machine learning techniques, new 

ideas have been proposed for the interpretation of electrochemical noise. For example, 

Huang et al. [19-21] made use of cluster analysis of current and potential signals and 

LDA models to identify different pitting states in low carbon steel exposed to 

NaHCO3 + NaCl solutions. Li et al. [22] have used features extracted from EN signals 

generated by uniform corrosion, pitting and passivation in 304 stainless steel as 

predictors in artificial neural network models designed to distinguish between different 

types of corrosion.    

More recently, the authors [23] have proposed a formal methodology for the 

identification of localized corrosion in low carbon steel from uniform corrosion based 

on the use of recurrence quantification analysis (RQA). This statistical process control 

approach could be used to monitor corrosion in a continuous way with high reliability, 

although the discrimination between localized corrosion and passivation needs to be 

further improved. In the previous study, only four RQA variables were used to set up 

the corrosion monitoring scheme and the number of data in the passivation system was 

limited.  

In this study, to improve the separability of pitting and passivation, the EN 

signals were collected from the same corrosion systems with different sizes of 

electrodes, creating a larger database for the following model development. 

Meanwhile, an extended set of feature variables were extracted by recurrence 

quantification analysis (RQA) of the EN signals. LDA and RF models were 

subsequently developed with the extracted RQA variables as predictors to identify 

different corrosion types. In addition, noise resistance was compared with the 

corrosion resistance obtained from electrochemical impedance spectroscopy (EIS) to 

explore its usefulness as a corrosion rate indicator. 
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6.2 Experimental work 

6.2.1 Materials 

The material employed in this study was carbon steel 1030. The chemical 

composition was (wt. %): C (0.37), Mn (0.80), Si (0.282), P (0.012), S (0.001), Cr 

(0.089), Ni (0.012), Mo (0.004), Sn (0.004), Al (0.01), and Fe (balance). Rectangular 

steel samples with surface areas of 0.5 cm × 0.3 cm, 1.4 cm × 1.5 cm, 2.0 cm × 3.1 cm 

and 3.1 cm × 3.3 cm were made from the same material and soldered with a conducting 

wire to each for electrical connection. Subsequently, the samples were electrocoated 

(Powercron 6000CX) and embedded in epoxy resin (Epofix), leaving 0.15 cm2, 2.1 

cm2, 6.2 cm2 and 10.2 cm2 of the surface exposed respectively. For simplicity, 

hereafter, these electrodes with different surface areas will be denoted as electrode 

A0.15, A2, A6 and A10 respectively. Before tests, the exposed surfaces of the steel 

samples were abraded on silicon carbide paper up to 1200 grit, rinsed with ultrapure 

water and ethanol and dried with nitrogen. This procedure was conducted prior to each 

run of the tests. The same set of steel samples with identical grinding procedures prior 

to each run were used in all the tests. All the tests were conducted at least in duplicate. 

Three test solutions were used, viz. 0.1 M sodium chloride (NaCl; Merck, 

99.7%), 0.5 M sodium hydrogen carbonate (NaHCO3; Merck, 99.7%), and a solution 

containing 0.45 M sodium hydrogen carbonate and 0.1 M sodium chloride (0.45 M 

NaHCO3 + 0.1 M NaCl). These solutions were used to set up uniform corrosion, 

passivation and pitting corrosion, respectively to the carbon steel. All the solutions 

were prepared with ultrapure water (Milli-Q system, resistivity 18.2 MΩ cm) and 

analytical reagents. 

6.2.2 Electrochemical tests 

Electrochemical noise measurement 

Electrochemical noise (EN) measurement was carried out in a configuration 

which has been described in detail in our previous work [23]. Only important points 

and differences are reported here. Two nominally identical (same surface area and 

same material) aforementioned carbon steel samples were placed parallel to each other 

as working electrodes (WE 1 and WE 2), facing the operator. The inter-electrode 
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spacing was fixed at 2.4 cm (centre-to-centre). In addition, a commercial Ag/AgCl 

electrode was used as reference electrode (single junction electrode placed in a 

capillary with a porous ceramic tip filled with 3 M KCl solution (0.210 V vs. S.H.E). 

The current flowing through the two working electrodes was measured using a zero 

resistance ammeter mode (ZRA) of Gamry Reference 600 and the potential of the 

short-circuited WEs was measured with regard to the commercial reference electrode. 

ESA410 data acquisition software was employed to collect the EN data. The sampling 

rate was 2 Hz.  

All the test solutions were air-saturated in a separate cell before pumping into 

the test cell equipped with the electrodes. During the tests, the temperature of the 

solution was controlled at 30 ± 1 ̊C by a hot plate with a temperature probe immersed 

in the test solution. Air was continuously pumped through the blank space on top of 

the solution level in the cell, creating an air blanket. This was done to keep the oxygen 

levels relatively constant in solutions for different experiments. All the tests were 

carried out under stagnant conditions (without any stirring). 

For uniform corrosion, the EN measurements were started immediately after 

immersion of the test samples and continuously recorded for 20 h. For passivation tests, 

the duration was different for different electrode sizes. For A2 WEs, the EN data were 

continuously recorded for 20 h, while for A0.15, A6 and A10 WEs, the EN data were 

recorded for 4 h after immersion in 0.5 M NaHCO3 solution. For pitting corrosion tests, 

the specimens were firstly immersed in 0.5 M NaHCO3 solution for 4 h. Then NaCl 

was added to yield a pitting solution – 0.45 M NaHCO3 + 0.1 M NaCl. The EN 

measurement started immediately after NaCl addition and the data were recorded 

continuously for 20 h. However, one should bear in mind that the electrodes could 

continue to be passivated after chloride addition for some time. Therefore, the 20 h 

recordings in pitting solutions could contain some passivation-related data at the 

beginning as well. This may to some extent affect the discrimination of the type of 

corrosion when RQA is applied. 

Potentiostatic electrochemical impedance spectroscopy 

 Potentiostatic electrochemical impedance spectroscopy (EIS) was carried out 

to obtain the relevant resistances of the specimens under different corrosion conditions. 
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A platinum mesh counter electrode and the same Ag/AgCl reference electrode were 

used in the measurement. Different sizes of steel samples were used as working 

electrode. A frequency range of 10 mHz to 10 kHz at 10 points per decade was 

employed and the AC excitation amplitude was 10 mV versus OCP. For general 

corrosion, the EIS measurement was conducted 2 h after immersion, and the relevant 

resistance obtained was compared with the noise resistance calculated from the EN 

data collected in the time period of 2 - 2.5 h. Similarly, for pitting corrosion, EIS test 

was conducted twice at different times, i.e., 12 h and 19.5 h after NaCl addition and 

the obtained resistances were compared with noise resistances calculated from EN data 

collected in the time intervals of 12 – 12.5 h and 19.5 – 20 h. The EIS data were 

analysed using Gamry Echem Analyst software. 

6.2.3 Surface analysis 

After each test, the steel samples were rinsed with ultrapure water and ethanol 

followed by drying with nitrogen. The corrosion products on the steel surfaces were 

removed using Clarke’s solution to facilitate the examination of localized corrosion 

and the measurement of the maximum pit depth using optical 3D microscope (Infinite 

focus microscope, Alicona Instruments, Austria). 

6.3 Results and discussion 

6.3.1 Surface morphologies of specimens 

The surface morphologies of the working electrodes were observed under an 

optical 3D microscope after EN tests. As expected, in the solutions chosen to produce 

uniform and passive corrosion, the electrode surfaces showed corresponding 

behaviour. Nevertheless, in the pitting tests, the surface conditions varied according to 

different electrode sizes. Specifically, none of the A0.15 electrode couple showed any 

pits after immersion. For A2 and A6 working electrode couples, only one electrode in 

each couple was pitted. Unlike the others, deep pits were present on both working 

electrodes A10. Table 6-1 summarises pitting information on electrodes A2, A6 and 

A10. The maximum pit depth found with working electrode A10 was 89 μm after 20 

h immersion, as presented in Figure 6-1 and Table 6-1. All the pits showed similar 

morphologies and the same trend was observed in repeated measurements.  
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Table 6-1: Pitting information for working electrodes A0.15, A2, A6 and A10. 

Electrode Total 

Area, 

cm2 

Total number of 

pits 

Pit depth 

range, µm 

Number of pits Depth/Average 

depth, µm 

Test 1 Test 2 Test 1 Test 2 

A0.15 0.3 0 0 0 0 0 0 

A2 4.2 1 1 41-60 1 1 42.5 

A6 12.4 4 4 20-40 2 1 31 

41-60 1 2 48.5 

81-89 1 1 82.5 

A10 20.4 14 12 20-40 2 3 25 

41-60 10 8 54 

61-80 1 1 65.5 

81-89 1 0 89 
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Figure 6-1: A pit found on electrode A10 and its depth measured with a 3D optical 

microscope. The measurement was made along with the line where the two arrows 

are placed. 

6.3.2 Corrosion type identification 

Electrochemical noise signals 

The electrochemical noise signals obtained from three different corrosion 

systems with various electrode sizes are shown in Figure 6-2. The presented EN 

segments were generated in a different cell but around the same time when EIS tests 

were conducted. These segments are referred to as uniform, pitting I, pitting II and 

passivation. Specifically, uniform is related to 30 min recordings after 2 h of 

immersion in 0.1 M NaCl; pitting I represents 30 min recordings after 12 h of 
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immersion in 0.45 M NaHCO3+0.1 M NaCl; pitting II refers to 30 min recordings after 

19.5 h of immersion in 0.45 M NaHCO3+0.1 M NaCl; and passivation corresponds to 

30 min recordings after 3.5 h of immersion in 0.5 M NaHCO3. 

Figure 6-2: Electrochemical potential and current data segments collected with 

different corrosion systems and electrode sizes.  

The DC drift of the EN signal was removed by linear regression. After drift 

removal, all the EN signals should have average values of zero. However, for ease of 

visualization and comparison, certain offset values were applied to some of the signals 

(i.e. signals that are not fluctuating around zero), as shown in Figure 6-2. Note that the 
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markers represent different electrode sizes and are not related to any filtering of the 

original data. 

As indicated, the EN generated by uniform corrosion was smooth with no sharp 

potential or current transients. The potential noise signals in passivation systems were 

similar to those in uniform systems, while the current signals were composed of very 

frequent oscillations instead of smooth fluctuations. In comparison, EN collected from 

pitting systems with electrodes A2, A6 and A10 showed typical pitting transients, 

which mostly occurred simultaneously in potential and current measurements. 

Moreover, some small and fast transients were found superimposed on larger transients. 

Additionally, as mentioned before, the electrodes may not start pitting at the beginning. 

Indeed, profound transients were only observed after 7 h, 2.5 h and 1 h after chloride 

addition for electrode A2, A6 and A10, respectively. Despite several individual 

discontinuous transients present during the first few hours, the noise signals resembled 

those from passivation processes. This situation was observed more clearly for 

electrode A0.15, i.e., the noise signals for electrodes A0.15 were always similar to 

those obtained from passivation systems within the entire 20 h recordings.  Due to the 

absence of pits on electrodes A0.15, the generated EN signals could not represent the 

pitting process of electrodes A0.15. Therefore, the associated EN segments were 

excluded from further analysis.  

Although indicators extracted from both current and potential noise signals 

could be used to represent underlying corrosion behaviours, the characteristic of 

current noise signals seems to be more distinctive than that of potential signals, based 

on Figure 6-2. Moreover, a number of similar studies [15, 24-26] also carried out EN 

analysis based on current noise data. Therefore, in this study, the electrochemical 

current noise (ECN) was chosen to demonstrate the proposed corrosion type 

identification method. 

Feature extraction  

Electrochemical current noise (ECN) associated with electrodes A2 is used as 

an example to show the feature extraction process.  

i. ECN data preparation. As observed from the raw EN signals obtained 

from passivation systems, both potential and current data gradually 
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increased first for 2 h and then reached plateaus. Hence the electrodes in 

0.5 M NaHCO3 solution were considered to have reached stable states 

after 2 h of immersion. On this basis, the associated ECN data in the first 

2 h obtained from passivation systems were excluded from the following 

corrosion type identification process. For all other ECN time series data, 

generated by uniform corrosion, pitting corrosion and passivation, were 

divided into small continuous segments. Each segment consisted of 1800 

points (15 min recordings). The DC drift of each segment was removed 

by linear regression.  

ii. Recurrence plots (RP) computation. For ECN segment, in which the DC 

drift had been removed an RP was generated. 0.02σ (σ is the standard 

deviation of the linear-detrended data segment) was used as the threshold. 

iii. Recurrence quantification analysis. Twelve variables (Table 3-1) were 

extracted to quantify each RP. These variables are referred to as RQA 

variables, i.e. 1 − 𝑅𝑅 , 2 − 𝐷𝐸𝑇 ,  3 − 𝐿𝑚𝑒𝑎𝑛 , 4 − 𝐿𝑚𝑎𝑥 , 5 − 𝐸𝑁𝑇𝑅1, 

6 − 𝐿𝐴𝑀, 7 − 𝑇𝑇, 8 − 𝑉𝑚𝑎𝑥 , 9 − 𝑅𝑇1, 10 − 𝑅𝑇2, 11 − 𝐸𝑁𝑇𝑅2, 12 −

𝑇𝑅𝐴𝑁𝑆.  

iv. Constructing feature vectors.  The extracted RQA variables for each 

segment were arranged in a row vector called feature vector. Afterwards, 

these feature vectors were labelled as 1, 2, or 3 based on the 

corresponding corrosion types, i.e., uniform corrosion, pitting and 

passivation, respectively. Finally, all the labelled feature vectors were 

stacked into a feature matrix or RQA variable matrix. 

Figure 6-3 shows the calculated RQA variables extracted from different 

corrosion systems. The vertical lines at segment 80 and 160 separate the three 

corrosion types, i.e. uniform, pitting and passivation, from left to right. It can be seen 

that most of the RQA variables are scattered around the same level except for 𝐷𝐸𝑇, 

𝐸𝑁𝑇𝑅1 and 𝐿𝐴𝑀 which seems to be capable of discriminating different corrosion 

types to some extent, since their values tend to be restrained within certain limits for 

different systems.  
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Figure 6-3: Variations of RQA variables (1 − 𝑅𝑅, 2 − 𝐷𝐸𝑇,  3 − 𝐿𝑚𝑒𝑎𝑛, 4 − 𝐿𝑚𝑎𝑥, 

5 − 𝐸𝑁𝑇𝑅1, 6 − 𝐿𝐴𝑀, 7 − 𝑇𝑇, 8 − 𝑉𝑚𝑎𝑥 , 9 − 𝑅𝑇1, 10 − 𝑅𝑇2, 11 − 𝐸𝑁𝑇𝑅2, 12 −

𝑇𝑅𝐴𝑁𝑆) extracted from electrochemical current noise signals collected with 

electrodes A2. 

Results of LDA 

Figure 6-4 shows the classification results with the linear discriminant analysis 

(LDA) model using the labelled recurrence variables. As can be seen, uniform 

corrosion is well separated from pitting and passivation, despite a few overlapping 

points. Passivation and pitting are segregated to a lesser extent. However, some 

overlap between passivation and pitting should be expected because as mentioned 

before, the electrodes were still passivated for some time after the chloride addition 
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into the NaHCO3 solution. This phenomenon was more evident with electrodes A0.15 

which were still passivated even after 20 h of immersion in the pitting solution. Despite 

the overlap, it is clear that the passivation data are located in a small area in the LDA 

feature space, bordering on the edge of the region occupied by the pitting data. The 

overall classification accuracy (defined as the number of accurately classified data 

divided by the total number of data) of the trained LDA model was 88.3%.   

Figure 6-4: LDA feature plot of RQA variables associated with three corrosion 

systems of electrodes A2. 

In order to explore if the electrode size would affect the identification of the 

corrosion types, a special LDA model was established, as shown in Figure 6-5. In this 

model, the RQA variables for electrodes A2, A6 and A10, regardless of the corrosion 

types, were labelled as class A, B and C, respectively. These labelled RQA variables 

were then presented to the LDA model for training. As indicated in Figure 6-5, all the 

data are randomly scattered and completely intertwined. Therefore, the electrode sizes 

cannot be discriminated. In other words, the electrode size is not a major factor for the 

identification of corrosion types in these systems investigated. 
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Figure 6-5: LDA feature plot of RQA variables associated with three electrode sizes, 

i.e. A for A2, B for A6 and C for A10. 

Results of RF 

As the electrode size does not appear to play a significant role in the 

identification of corrosion types, the RQA variables corresponding to electrodes A2 

were used as a representative dataset to train and test the RF classification model. 

Among the extracted feature vectors associated with electrodes A2, 75% of which 

were randomly selected for training and the rest (25%) served as test data to evaluate 

the generalization of the model in addition to the OOB model error. Test datasets were 

not involved in the training process.  

A random forest composed of 100 decision tree classifiers was constructed. For 

each tree grown in the forest, four features and 70% of their observations were selected 

at random for training. The out-of-bag (OOB) classification error decreased as the 

number of grown trees increased, as shown in Figure 6-6. The OOB error stabilised at 

a fraction of 0.09 after approximately 30 trees. That is to say, only 9 out of 100 data 

points were misclassified. 
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Figure 6-6: Out-of-bag classification errors of the RF model. 

The test datasets were presented to the model for corrosion type identification 

and the result is shown in Figure 6-7. The vertical axis represents corrosion types, i.e. 

1 for uniform, 2 for pitting and 3 for passivation. The horizontal axis shows the indices 

for the test datasets, where the datasets with numbers 1 - 20 were originally from 

uniform system, 21 - 40 were from pitting system and 41 - 57 were from passivation. 

It can be seen that three data originally from uniform corrosion were misclassified as 

pitting and only one data from passivation was misclassified as pitting. In other words, 

53 out of 57 data points were correctly classified. Therefore, the classification accuracy 

of the RF model is 93%. In other words, the classification error is around 0.07, in line 

with the OOB error. Comparing the 88% accuracy of the LDA model for electrodes 

A2, the RF model is no doubt better and more promising. 
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Figure 6-7: Comparison of the predicted corrosion types by RF model with the actual 

corrosion types for test datasets. 

The importance of the RQA variables contributing to the accuracy of the model 

was estimated by permuting each variable in the OOB samples and evaluating the error 

in the model. The results are shown in Figure 6-8. 

Figure 6-8: RQA variable importance estimates. 

It is suggested that all the variables played a role on the improvement of the 

RF model. Among them, the RQA variable number 6 (𝐿𝐴𝑀) was the most significant, 
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closely followed by variable number 2 (𝐷𝐸𝑇), 5 (𝐸𝑁𝑇𝑅1), 4 (𝐿𝑚𝑎𝑥) and 3 (𝐿𝑚𝑒𝑎𝑛).  

This in part agrees with the observations from Figure 6-3. 

6.3.3 Electrochemical impedance spectroscopy (EIS) 

The noise resistance, defined as the ratio of potential standard deviation to 

current standard deviation of the EN segment, is considered to be similar to the 

corrosion resistance, thus can be potentially used for corrosion rate monitoring. In this 

study, EIS was carried out as a complementary and comparative method to investigate 

the corrosion resistances of the steel samples with various corrosion types. 

The Nyquist and Bode plots generated by EIS measurements for electrodes 

A10 in different corrosion systems are shown in Figure 6-9. The inset of Figure 6-9(a1) 

represents the equivalent circuit used to fit the impedance data for uniform corrosion. 

Rs represents the solution resistance, Rct represents charge transfer resistance and CPE 

represents a constant phase element. The CPE is used instead of a double layer 

capacitor is because of the non-ideal capacitance behaviour due to surface roughness 

and nonhomogeneous corrosion products, etc., which is indicated by the depressed 

semi-circle shown in the Nyquist plot. It should be noted that this one time constant is 

a probably apparent overall behaviour that appears as the combination of different 

processes with time constants close enough to be individually resolved. The equivalent 

circuit applied in analysis of passivation (Figure 6-9 (b1, b2)) and pitting (Figure 6-9 

(c1, c2) and (d1, d2)) was chosen according to [26] and is shown as an inset in Figure 

6-9 (b1, c1 and d1). Based on [26], CPE1 represents the constant phase element for the 

film formed on the steel surface, R1 represents the film resistance, CPE2 and R2 parallel 

combination represents the contribution of the movement of charged species through 

the surface film at lower frequency. Table 6-2 shows all the fitting results, where n1 

and n2 represent the exponents for the constant phase elements CPE1 and CPE2. 
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Figure 6-9: Nyquist plots and Bode plots for A10 working electrodes (electrode 

surface area of 10.2 cm2) for (a1, a2) uniform corrosion, (b1, b2) passivation, (c1, c2) 

pitting I, (d1, d2) pitting II. 
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Table 6-2: Calculated parameters used to fit the equivalent circuit. 

It has been established [27 – 29] that a precipitation film can be formed at the 

surface of carbon steel immersed in bicarbonate solutions, possibly consisting of 

Fe3O4/Fe2O3. However, the film is vulnerable to chloride ions at certain conditions, 

leading to local breakdown of the film and decrease of its resistance. Indeed, the film 

resistances Rf for the electrodes undergoing pitting corrosion were significantly lower 

than that for passivation.  

It is known that the noise resistance is comparable with polarisation resistance 

[30], which is equivalent to the sum of Rs, Rf and Rct, based on the equivalent circuit 

used in this study. Therefore, the noise resistance was compared with Rs+ Rf + Rct. The 

results are shown in Table 6-3, where the noise resistances were computed from the 

EN segments given in Figure 6-2. 

 

 

 

Parameters Uniform Passivation Pitting I Pitting II 

Rs (Ω cm2) 76.92 26.06 18.35 18.21 

CPE (μF/cm2) 788.60 - - - 

n* 0.74 - - - 

Rf (kΩ cm2) - 218.2 47.66 35.50 

CPE1 (μF/cm2) - 90.69 98.66 105.6 

n1 - 0.97 0.90 0.90 

Rct (kΩ cm2) 1.43 14.55 4.58 2.28 

CPE2 (μF/cm2) - 179.9 312.8 398.9 

n2 - 0.84 0.98 0.99 

Chi-square 1.47 × 10-3 4.61 × 10-4 5.36 × 10-4 3.98 × 10-4 
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Table 6-3: Electrochemical noise resistance (Rn) for electrode A10 in uniform 

corrosion, pitting and passivation systems and the corresponding resistance sum 

obtained from EIS. 

Apparently, the Rn value coincides with the Rs + Rct value in uniform corrosion 

and with the summed Rs + Rf + Rct value in passivation. In comparison, the Rn values 

in pitting process are not comparable with Rs + Rf + Rct values. Nevertheless, it is 

noticed that both Rn and Rs + Rf + Rct values showed a decreasing trend from pitting I 

to pitting II. Therefore, in the studied systems, Rn can be used as an indicator for 

corrosion rate variations (changing trends) not only for uniform corrosion and 

passivation but also for pitting, although these values may not correspond to the exact 

corrosion rate. It should be noted that the estimation of corrosion rate from a resistance 

is only valid for a system that complies with the Butler-Volmer equation. When pitting 

or passivation occur, only loose indication of corrosion rate can be gained from the 

resistance value. 

6.4 Summary 

In this study, carbon steel electrodes with different sizes, i.e., 0.15 cm2, 2.1 cm2, 

6.2 cm2 and 10.2 cm2, were immersed in different solutions, creating three types of 

corrosion, i.e. uniform, pitting and passivation. Linear discriminant analysis (LDA) 

and random forests (RF) models were used to identify the corrosion types from twelve 

features, which were extracted by use of recurrence quantification analysis from the 

electrochemical noise signals associated with different corrosion systems. In addition, 

the noise resistance was compared with the resistances obtained from electrochemical 

impedance spectroscopy. The main conclusions drawn from the experimental study 

and statistical analysis are as follows: 

 Rn (kΩ cm2) Rs + Rf + Rct (kΩ cm2) 

Uniform 1.03 1.51 

Passivation 273.43 232.78 

Pitting I 120.90 52.26 

Pitting II 103.37 37.80 
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 Recurrence quantification analysis of the electrochemical current noise 

data provided valuable features which can be used to differentiate between 

various corrosion types. 

 On the basis of the methodology proposed in our previous work [23], LDA 

and RF models established in this study with an extended set of RQA 

features improved the differentiation accuracy between passivation and 

pitting. The RF model presented better overall prediction accuracy of 93% 

than the LDA model (88%). 

 From the LDA model built with different electrode sizes (A2, A6 and A10) 

as classes, it was inferred that the electrode size was not a major factor for 

the corrosion type identification. 

 Variable importance estimation by use of the RF model suggested that the 

RQA features laminarity (𝐿𝐴𝑀) and determinism (𝐷𝐸𝑇) played the most 

significant role with regard to the identification of corrosion types. 

 The noise resistance Rn calculated from EN can be used for monitoring 

corrosion rate variations during uniform corrosion, passivation and pitting. 

It should be pointed out that the above conclusions are based on just one set of 

corrosion systems under study. It may not be generally applicable. Further 

investigations are needed to extend the application of the proposed methods. 
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CHAPTER 7 CASE STUDY IV 

Y. Hou, C. Aldrich, K. Lepkova, B. Kinsella, Detection of under deposit 

corrosion in a CO2 environment by using electrochemical noise and recurrence 

quantification analysis, Electrochimica Acta, 274, 160-169 (2018).  

This chapter presents the published paper with modified formats and contents 

that match the overall style of the thesis.
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Detection of Under Deposit Corrosion in a CO2 

Environment by using Electrochemical Noise and 

Recurrence Quantification Analysis 

Abstract 

In this study, the corrosion of carbon steel immersed in CO2 saturated aqueous 

solutions, in the presence and absence of sand deposits, were investigated by 

electrochemical noise measurement and recurrence quantification analysis. Uniform 

corrosion occurred at samples without sand deposit while localised corrosion took 

place at the sand-covered steel samples. These two different corrosion types can be 

accurately predicted by random forest and principal component models based on 

recurrence quantification analysis of either electrochemical potential or current noise 

data regardless of threshold values. The study provides a potential automated online 

corrosion monitoring scheme to ensure the integrity of pipelines.  

Keywords: Carbon steel; Under deposit corrosion; Electrochemical noise; 

Recurrence quantification analysis; Corrosion monitoring; Random forests 
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7.1 Introduction 

For economic reasons, carbon steel pipelines are widely used for oil and gas 

transmission and distribution. However, when operating in CO2 environments, these 

pipelines are vulnerable to corrosion. The situation is exacerbated in the presence of 

mineral deposits, such as silica sand, which can be transported along with fluids. Apart 

from causing erosion-corrosion of the pipelines, these solid particles can also induce 

severe localized corrosion (e.g. pitting and mesa attack), which is referred to as under 

deposit corrosion (UDC) when the solids settle at the bottoms of pipelines, owing to 

low fluid flow velocities or stagnant conditions during shutdowns [1-3].  

The control of UDC is currently achieved by pigging and addition of corrosion 

inhibitors [4, 5]. Effective application of these mitigation techniques should also be 

carefully considered and is closely related to monitoring pipeline corrosion. 

Conventionally, some corrosion monitoring techniques, such as linear polarisation 

resistance (LPR), electrochemical impedance spectroscopy (EIS) and electrical 

resistance (ER) are employed in laboratory testing or in the field for corrosion rate 

estimations. The results obtained from these approaches have some instructive value 

in the development of corrosion control programs. Nevertheless, these techniques may 

not be particularly useful for monitoring of localized corrosion, which occurs in the 

case of UDC, since they can only provide information regarding the average corrosion 

rate [6, 7]. One may find a pipeline with very low corrosion rates, suggested by these 

approaches, exhibiting severe pitting corrosion beneath a large volume of sediment [5]. 

Therefore, it is crucial that the occurrence of UDC can be detected and closely 

monitored.    

Electrochemical noise (EN) measurement has been widely used for corrosion 

studies and field monitoring, owing to its ease of setting up, non-destructiveness, non-

intrusiveness and particularly the ability to provide information on the initiation and 

propagation of localized corrosion events [8-12]. The challenge of this technique lies 

in the extraction of suitable feature variables from the noise data to distinguish between 

different types of corrosion. A number of parameters have been proposed for this 

purpose, including the roll-off slope of power spectral density plot [13], statistical 

parameters such as standard deviation, skewness and kurtosis [14], energy distribution 

plot from wavelet analysis of EN data [15] and characteristic charge [16], etc. 



129 

 

Nevertheless, the optimal approach for the analysis of EN data remains uncertain, 

especially when the automated corrosion monitoring program is considered. Recently, 

studies have shown the variables extracted by recurrence quantification analysis of EN 

data, such as recurrence rate and determinism, could be used to characterize the EN 

signals associated with localized corrosion processes [8, 17-24]. 

Recurrence plot (RP) is a graphical tool first introduced by Eckmann et al. [25] 

to visualise the recurrence behaviours in dynamic systems based on phase space 

reconstruction [26]. It can be mathematically expressed as a matrix according to 

equation (7-1) 

𝑹𝑖,𝑗 = 𝐻(𝜀 − ‖𝒙𝑖 − 𝒙𝑗‖), 𝑖, 𝑗 = 1, 2, … , 𝑁             (7-1)   

where 𝒙𝑖 and 𝒙𝑗 represent the states of the reconstructed phase space trajectory 

at time 𝑖  and 𝑗 , respectively; 𝑁  is the total number of states in the trajectory; ‖∙‖ 

calculates the distance between 𝒙𝑖 and 𝒙𝑗; 𝜀 is a user defined threshold and 𝐻 is the 

Heaviside function which gives 0 and 1 depending on the sign of the content within 

the bracket. 𝑹𝑖,𝑗  refers to the (𝑖, 𝑗)𝑡ℎpoint in the recurrence matrix. The RPs can be 

quantified by a number of variables. The quantification of the RPs is called recurrence 

quantification analysis (RQA). EN signals could be characterised by the variables 

generated by RQA.  Recently, the authors have proposed a corrosion type monitoring 

scheme [27] and an identification model [28] based on RQA of electrochemical current 

noise data. In these studies, the recurrence plots were generated without reconstructing 

the original time recordings to phase space trajectories. Instead, for a given signal, the 

Euclidean distance between each pair of the measured current values was computed 

and compared with a pre-defined threshold value. It was demonstrated that the 

variables extracted from the noise data by RQA were applicable in distinguishing 

between uniform, pitting and passivation (pseudo-passivation) corrosion processes [27, 

28]. 

In the present study, previously established approaches were applied to analyse 

the electrochemical noise data obtained from CO2 corrosion of carbon steel samples 

with and without sand deposits. Detailed investigations regarding the mechanisms 

associated with UDC have been carried out previously by other electrochemical 

methods, including potentiodynamic polarisation, cyclic voltammetry and linear 
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polarisation resistance [1, 3, 4, 29]. It is expected that localized corrosion would occur 

at the carbon steel samples covered with sand while uniform corrosion would take 

place at steel without sand. The aim of the current study was to apply electrochemical 

noise technique to this corrosion system and examine whether the previously proposed 

methodology could be used for UDC analysis. It was of particular interest to use EN 

to detect and monitor localized corrosion (pitting) that has been associated with the 

UDC. Moreover, comparative studies were conducted on the effect of different model 

parameters, e.g. the length of a data segment and the threshold value, with respect to 

the prediction accuracy of the model for identifying different types of corrosion.  

7.2 Experimental work 

7.2.1 Materials 

The samples used in the present work were carbon steel (grade 1030) with 

chemical compositions of (wt%): C (0.37), Si (0.282), Mn (0.80), P (0.012), S (0.001), 

Cr (0.089), Ni (0.012), Mo (0.004), Sn (0.004), Al (0.01), and Fe (balance). The steel 

samples were soldered with conducting wires for electrical connection and then 

electro-coated using Powercron 6000CX to avoid potential crevice corrosion. 

Afterwards, the sample was mounted in epoxy resin (Epofix), leaving approximately 

2 cm2 as working surface. Prior to the test, the working surface was ground using 

silicon carbide paper up to 1200 grit, followed by rinsing with ultrapure water and 

ethanol and drying with nitrogen.  

The test solution was prepared with analytical grade chemicals and ultrapure 

water (Milli-Q system, resistivity 18.2 MΩ cm), which consisted of 3 wt% sodium 

chloride (NaCl; Merck, 99.7%) and 0.01 wt% sodium bicarbonate (NaHCO3; Merck, 

99.7%). Before performing a test, the solution was saturated with CO2 (oxygen content 

<10 ppb) at 30 °C. The pH of the test solution was approximately 4.7. The silica sand 

used as deposit was purchased from Sigma Aldrich. The properties of sand and 

washing methods employed have been published previously [3]. 

7.2.2 Electrochemical noise measurement 

Two nominally identical steel samples were used as working electrodes (WE1 

and WE2). The two samples were positioned as shown in Figure 7-1. 
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Figure 7-1: Schematic diagram of the working electrodes for EN measurements (total 

working surface area 4.2 cm2). 

Two test cells were set up for the electrochemical noise measurement, one with 

sand-deposited steel (WE1 and WE2) and one with bare steel samples (no deposit). In 

both cells, the WEs were placed on a Teflon sample holder with working surfaces 

facing upwards. For the sand-covered WEs, a mounting cup (Struers) was used to hold 

the sand. The mass of the silica sand was 15 g, resulting in a thickness of approximately 

8 mm above the steel samples. In a separate glass vessel, the test solution was heated 

up to 30 °C ± 1 °C and purged with CO2 for about 2 h. The two test cells, equipped 

with steel samples with (cell 1) or without sand (cell 2) deposit, were purged with N2 

for 30 min to create a deaerated environment. Afterwards, the CO2 saturated test 

solution was pumped into the test cells. During all the tests, the temperature of the test 

solution was kept at 30 °C ± 1 °C with the use of thermocouple controlled hotplates. 

The electrochemical noise signals were measured using Gamry ESA410 

software and Gamry Reference 600 potentiostat operating in the zero resistance 

ammeter (ZRA) mode. In addition to the working electrodes, a Metrohm single-

junction Ag/AgCl (3 M) electrode was used as reference electrode and placed in 

Luggin capillary in close proximity to the working electrodes in order to minimize the 

iR drop between reference and working electrodes. The current flowing between the 

two WEs and the potential between the coupled WEs and the reference electrode were 

recorded simultaneously. In our previous studies with pitting corrosion systems [27, 

28], it was found that the sampling rate of 2 Hz was able to pick up most (if not all) of 
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the pitting events. Therefore, the same sampling frequency was used in this study. 

During the EN measurements, the test solution was continuously purged with CO2. 

Low flow rates in the tests with and without sand deposit were controlled by a gas 

flowmeter to minimise an impact on the EN measurement. 

The EN measurements were carried out for 30 and 17 days respectively for 

tests with and without sand deposits. Over the test durations, the data were mostly 

recorded for 4 h per day, unless otherwise stated in this paper. 

7.2.3 Post-test surface analysis 

After tests, the samples were rinsed with ultrapure water (resistivity – 18.2 

MΩ.cm) and ethanol to remove loose corrosion products and/or sand. To further 

remove the adherent products on the steel surfaces, the samples were treated with 

Clarke’s solution according to ASTM standard G1. Afterwards, the samples were dried 

with nitrogen and stored in a vacuum desiccator until further analysis. Finally, surface 

profilometry (Infinite Focus, Alicona Instruments) was used to obtain 3D profile of 

the corroded samples and the root mean square roughness parameter (Rq). 

7.3 Results and discussion 

7.3.1 Surface morphology 

Figure 7-2 shows surface morphologies of the steel samples after the tests with 

and without sand deposits. As can be seen that samples without deposit were uniformly 

corroded during the 17 days of immersion and the surface roughness Rq was 12.9 μm. 

In fact, previous publication [29] showed that even if the immersion time was extended 

to 30 days, uniform corrosion was still predominant. In comparison, the samples 

covered with sand showed less uniform corrosion and the surface roughness was 8.7 

μm. However, there were approximately 30 small pits (depths ranging from 40 μm to 

77 μm) present on the steel surface, as shown in the circled areas in Figure 7-2(b). 

Figure 7-3 shows the 3D images of a typical area on the steel surface for each case, 

which further demonstrates the occurrence of localized corrosion with sand deposit 

and the uniform corrosion of the steel sample without sand. The depth of the deepest 

point shown in Figure 7-3(b) was 77 µm. 
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Figure 7-2: The 2D images of the steel surfaces after corrosion products removal 

(magnification 5x): (a) WE1 without sand after 17 days; (b) WE1 with sand after 30 

days. Similar surface conditions were also observed on WE2s. 

Figure 7-3: The 3D images of the steel surfaces after corrosion products removal 

(magnification 10x): (a) WE1 without sand after 17 days; (b) WE1 with sand after 30 

days. The colour bars indicate the depth values. 
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7.3.2 Electrochemical noise 

Figure 7-4 shows the electrochemical potential and current noise signals 

obtained on days 1 and 14 from both test cells. All the signals were detrended using 

linear regression. As can be seen, on day 1, the EN signal for the cell with sand deposit 

was dominated by a corresponding large transient in both the current and potential 

noise signals, which was an indication of the occurrence of pitting events on the steel 

surface [30]. The amplitude of the large transient in potential and current signal was 

around 2500 μV and 5 μA, respectively. The enlarged views of the EN transients 

[insets of Figure 7-4(a1, a2)] revealed that, with sand deposit, both potential and 

current signals had smaller transients occurring simultaneously (at 7.2ks, 7.6ks and 

7.8ks) on the descending parts of the large transients. The amplitudes of the smaller 

transients for potential were about 100 μV – 200 μV and 0.25 μA – 0.5 μA for current. 

The repetition of the smaller transients reflects the competition of initiation and 

repassivation of metastable pits on the steel surface [30]. In contrast, without sand 

coverage, the electrochemical potential and current signals generated by the steel 

samples showed frequent oscillations with an amplitude of 1000 μV and 20 μA 

respectively. No pitting transients were found on the EN signal. On day 14, the 

representative transients were less obvious on the EN signal obtained with the sand-

covered steel samples, which implied that the steel surface had reached a relatively 

stable state [30]. The amplitude of the potential fluctuation was decreased to around 

400 μV and that of the current was around 4 μA. The EN collected with the bare steel 

specimens showed an increased amplitude in the potential noise signals with a 

significant decrease in frequency of the oscillations, whereas the frequency of the 

current noise remained rapid and essentially unchanged. 
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Figure 7-4: EN signals obtained with and without sand deposit on day 1 (a1) and 

(a2), day 14 (b1) and (b2), for potential and current noise respectively. The insets 

show the enlarged view of the corresponding EN segments. 

Homborg et al. [10] have suggested that the potential data before trend removal 

reflects the evolution of the open circuit potentials (OCP) of the corrosion system. 

Therefore, the average potential values calculated from the raw potential noise data 

obtained each day for both cells are shown in Figure 7-5. As can be seen, without sand 

deposit, the OCP increased first from day 1 (-0.63 V) to day 6 (-0.57 V) and then 

stabilized thereafter. In contrast, the OCP of the steel samples covered with sand was 

relatively lower than that of bare steel samples and it was almost unchanged during 

the 30-day test. These occurrences could probably be attributed to two aspects: (a) 

depletion and reduced mass transfer of the corrosive species such as dissolved CO2 to 

the sand covered steel surface, resulting in differences in the micro-environment at the 

deposit-covered steels compared to the deposit-free steels; (b) restriction of the 
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transportation of iron species between the sand-covered steel surface and the 

electrolyte, leading to the formation of local anodes and cathodes and hence the 

occurrence of localized corrosion [31]. 

Figure 7-5: Evolution of OCPs for the steel samples with and without sand deposit. 

7.3.3 Recurrence quantification analysis (RQA) of EN signals 

To extract the recurrence quantification variables from EN signals, the first two 

parameters that need to be determined is the length of a segment, i.e. the optimal 

number of data points that should be included in each segment, and the threshold value 

ε for the generation of recurrence plot. 

The threshold has a significant influence on the recurrence plots and thereby 

the quantification variables that are generated subsequently. It is a specified criterion 

to determine whether the distance between a pair of data points is close enough to be 

considered as recursive. If ε is too small, there may not be enough recurrence points 

or recurrence structures. On the other hand, if ε is too large, almost every point would 

be recurrence point, which may lead to many artefacts [26]. Several options for the 

selection of ε  have been advocated in literature. For example, ε  can be chosen 

according to the phase space diameter [32, 33], recurrence rate [34], and standard 

deviation of the measured time series [35]. Nevertheless, the selection of optimal 

criterion is strongly dependent on the system under study [26]. In this study, since the 

measured EN segments are used without embedding in phase space, the diameter of 
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phase space is not considered. Both a fixed recurrence rate and the standard deviation 

of the measured EN segment can be used as the criteria. In this work, it was decided 

to follow the previous work [27, 28] and choose the threshold value according to the 

standard deviation 𝜎 of the detrended EN segments. In order to show the variations of 

the RQA variables with different threshold values and to determine an optimal 

threshold that suit the corrosion systems under study, a range of threshold values, i.e. 

[0, 0.5 𝜎] were investigated.  

Twelve RQA variables (Table 3-1) were extracted from each EN segment with 

various threshold values. These variables were numbered as 1 – 12 for simplicity.  

(1) Determination of segment length 

Figure 7-6 shows two different current segments obtained with bare steel and 

sand-deposited steel samples, where NS is the abbreviation for “no sand” and WS is 

for “with sand”. 

To investigate the effect of segment length on the recurrence quantification 

variables, 512 (i.e. 256 s), 1024 (i.e. 512 s) and 2048 (i.e. 1024 s) data points were 

used as the lengths of each segment, resulting in NS1, NS2, NS3, WS1, WS2 and WS3. 
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Figure 7-6: Electrochemical current data segments obtained with steel samples (a) 

without and (b) with sand deposits.  

Prior to the calculation of the recurrence plots, the linear trend of each segment 

was removed and then 12 RQA variables were calculated with a set of threshold values 

over the range [0, 0.5]. The results are presented in Figure 7-7. 

The threshold values ranged from 0.01σ (σ is the standard deviation of the trend 

removed EN segment) to 0.5σ at a step of 0.01σ. It can be seen that, in general, the 

RQA variables had similar trends with the increasing threshold values. Specifically, 

for the current signal from the NS system (Figure 7-6(a)), the length of the segment 

did not have any significant influence on the calculated RQA variables. In comparison 

with the signal from the WS system (Figure 7-6(b)), which contained some typical 

pitting peaks, the total number of data points included in a segment did affect some of 

the RQA variables. Apart from those which showed no apparent change with 

increasing segment lengths, the RQA variables either increased or decreased with 

segment lengths, and overall, the difference between WS2 and WS3 was relatively 

small (Figure 7-7(b)). This could be attributed to the difference in the number and 

interval of pitting transients that are included in a segment. For example, as shown in 

Figure 7-6(b), with 512 data points, the segment is dominated by a number of frequent 

pitting transients. When the length of the segment is extended to contain 1024 data 

points, a part of signal that contains a different feature (i.e. no obvious pitting transients 

present for the part from 512 to 1024) is included in the segment. After converting this 

segment to the recurrence plot, different recurrence structures will appear compared to 

the shorter segment with only 512 data points, leading to different values of the 
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quantification variables. When the length of the segment is increased from 1024 to 

2048 data points, because the characteristic of the added portion (1024 – 2048) already 

exists in the previous portion (0 – 1024), the recurrence plots would have similar 

structures, thus similar RQA variables. Based on these analyses, it was decided that 

the segment with 1024 data points will be used in this investigation. 
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Figure 7-7: Variations of RQA variables with different threshold values and segment 

lengths: NS1 – NS3 (no sand deposited) and WS1 – WS3 (sand deposited) 

correspond to the segments shown in Figure 7-6(a) and Figure 7-6(b) respectively. 

(2) Selection of threshold value 

The threshold value is another important parameter for reliable identification 

of the EN signals from different corrosion processes using RQA measures. From 

Figure 7-7, it can be seen that all twelve RQA variables changed and changed 
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differently with the increase of threshold values, making it difficult to determine the 

optimal threshold value from inspection of the individual RQA variables.  

In order determine how this parameter influences RQA of the EN signals, the 

random forest (RF) classification model outlined in our previous work [22] was 

employed. The idea was to compare the prediction accuracy of the RF model using 

RQA variables calculated with different threshold values. The data processing 

procedures are summarized as follows: 

i. All the raw EN data (collected with steel samples with and without sand 

deposits) were divided into small segments with 1024 points in each.  

ii. The EN segments were detrended by linear regression. 

iii. Twelve RQA variables were extracted from each EN segment using a 

threshold value of 0.02σ. For each segment, a row vector consisted of the RQA 

variables was labelled with ‘1’, if the segment was obtained with non-deposited steel 

samples, or ‘2’ if obtained with sand-deposited steel. Due to the length of testing (17 

days without sand and 30 days with sand), a total of 630 vectors labelled ‘1’ and 2,040 

vectors labelled ‘2’ were obtained. 

iv. Of the 2,670 vectors, 70% were randomly selected as a training dataset to 

build the RF model and the remaining 30% were used as a test dataset to validate the 

prediction accuracy of the RF model.  

v. Step iii was repeated with threshold values equivalent to 0.05σ, 0.2σ, 0.3σ, 

0.4σ and 0.5σ and then a repeat of step iv was conducted.  

The prediction accuracies with different threshold values were compared, as 

shown in Figure 7-8. Surprisingly, in all circumstances under study, the prediction 

accuracy of corresponding RF model was very high – over 99%. Particularly, when 

the RQA variables were extracted from the current data and the threshold value was 

equal to or larger than 0.05σ, the test data gave a prediction accuracy of 100%. In 

addition, when only the potential data were used for extracting RQA variables, the 

results were slightly worse than those with current data RQA variables.  
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Figure 7-8: Discrimination (between uniform corrosion and UDC) accuracies of the 

RF models using RQA variables extracted from potential, current and their 

combination with various threshold values. 

For different thresholds, RQA variable 11 (𝐸𝑁𝑇𝑅2  or the entropy of the 

recurrence density) consistently appeared to be the most influential variable. This can 

be seen in Figure 7-9, which shows the importance estimations (𝐼𝑚𝑝) of the current 

RQ variables used for RF model training. Detailed explanation of how the variable 

importance was estimated can be found in [22], but essentially the importance is linked 

to the decrease in performance of the model when the variable is omitted from the 

analysis, so that variables with larger 𝐼𝑚𝑝 values are more important. 
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 Figure 7-9: RQA variable importance estimations for various threshold values. The 

variable indices refer to 1 – 𝑅𝑅, 2 – 𝐷𝐸𝑇, 3 – 𝐿𝑚𝑒𝑎𝑛, 4 – 𝐿𝑚𝑎𝑥, 5 – 𝐸𝑁𝑇𝑅1, 6 – 

𝐿𝐴𝑀, 7 – 𝑇𝑇, 8 – 𝑉𝑚𝑎𝑥 , 9 – 𝑅𝑇1, 10 – 𝑅𝑇2, 11 – 𝐸𝑁𝑇𝑅2, 12 – 𝑇𝑅𝐴𝑁𝑆.  

With the exception of RQA variable 11, as mentioned above, the importance 

of the other variables varied with different threshold values. For instance, following 
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ENTR2, the next three variables that contributed most during the training of the RF 

model were variable numbers 3, 5 and 7 for a threshold = 0.02σ, while variable 

numbers 6, 8 and 2 were more influential for threshold values larger than 0.2σ. In the 

case of threshold = 0.05σ, all the other variables had nearly equal impacts on the 

prediction accuracy of the RF model. However, without further validation, not too 

much emphasis should be placed on these results.  

Overall, it can be concluded that, for the corrosion systems investigated, the 

threshold value should not be a significant influencing factor in the identification of 

different corrosion processes for the specific set of predictor variables. 

7.3.4 Application of corrosion monitoring map 

To apply the corrosion monitoring map proposed in our previous work [21], in 

this current study, the RQA variables extracted from electrochemical current data with 

threshold equivalent to 0.2σ were chosen. In brief, the monitoring scheme was 

composed of an off-line calibration stage and an on-line monitoring stage. In this study, 

the uniform corrosion of bare steel samples in a CO2 environment without sand deposit 

was regarded as the normal operation condition (NOC).  

From the RQA variables associated with NOC, 70% were randomly selected 

and normalised to zero mean and unit standard deviation. After normalisation, these 

variables were subjected to principal component analysis (PCA). Subsequently, the 

PCA model was established and calibrated with a 95% control limit based on the use 

of a five-component Gaussian mixture model. The remaining 30% of the RQA 

variables served as a test dataset to verify the effectiveness of the control limit. In the 

on-line monitoring stage, the RQA variables representing the under deposit corrosion 

process were continuously projected to the calibrated PCA model. Figure 7-10 

illustrates the monitoring process step by step, where the green markers represent the 

test dataset of NOC and the red markers are used to highlight the newly projected UDC 

data. 

It is clear that the NOC test data were well encapsulated by the 95% control 

boundary. When the sand was present on the steel surfaces, all the data projected onto 

the monitoring map were located outside of the control limit, except for a few 
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individual samples. This demonstrates that when sand is present, the monitoring map 

is capable of capturing localised corrosion with high reliability.  

Figure 7-10: Evolution of the corrosion monitoring map (a) Off-line calibrated PCA 

model, (b) NOC test data projected, (c) UDC RQA data for days 1 – 7 projected, (d) 

UDC RQA data for days 8 – 30 projected. 

7.4 Summary 

In this study, electrochemical current and potential noise data were recorded 

simultaneously at carbon steel samples in the presence and absence of sand deposits 

in CO2 environments. The surface morphologies of the steel samples after retrieving 

from the test cells revealed that the bare steel essentially underwent uniform corrosion, 

while the sand-covered steel samples were subjected to pitting. These two different 

types of corrosion can be accurately distinguished from each other by random forest 

models using variables extracted through recurrence quantification analysis of the EN 

data.  
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Moreover, it was found that when current data alone were used for extracting 

RQA variables, the discrimination result of the RF model was marginally better than 

that with RQA variables derived from potential measurements, although they both had 

very high prediction accuracies (> 99%). Additionally, the comparative study on the 

effect of segment length on the recurrence variable values suggested that for the EN 

signal corresponding to uniform corrosion, the length of a so-called segment had little 

impact on its RQ features, while for the EN signal associated with UDC, the segment 

length affected some of the RQ variables. Hence the determination of the segment 

length should be carefully considered according to the sampling frequency used and 

the actual corrosion system under study.  

A principal component score plot of the current RQA variables could be used 

highly effectively for real-time detection of UDC. 
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CHAPTER 8 CASE STUDY V 

Y. Hou, C. Aldrich, K. Lepkova, B. Kinsella, Identifying corrosion of carbon 

steel buried in iron ore and coal cargoes based on recurrence quantification analysis of 

electrochemical noise, Electrochimica Acta, 283, 212 – 220 (2018). 

This chapter presents the published paper with modified formats and contents 

that match the overall style of the thesis. 
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Identifying Corrosion of Carbon Steel Buried in Iron Ore 

and Coal Cargoes Based on Recurrence Quantification 

Analysis of Electrochemical Noise 

Abstract 

The effect of bulk cargo materials - iron ore and coal – on the corrosion of 

cargo hulls in carriers was investigated using electrochemical noise (EN). Two 

reference corrosion systems were carried out first with the steel samples in contact 

with moist silica sand and immersed in NaCl solution, which generated localised 

corrosion and general corrosion, respectively. The electrochemical noise was 

measured and recurrence quantification analysis was used to extract feature variables. 

A random forest model developed using these feature variables as predictors was able 

to discriminate between the two reference corrosion systems. This model was 

successfully applied to assessment of carbon steel corrosion in iron ore and coal. The 

results predicted by the model were in agreement with visual and microscopic 

observations of the relevant corroded steel samples. This work provides a novel 

analytical approach for future on-line monitoring of carrier structures in contact with 

bulk cargoes.   

Keywords: Bulk Cargo Carriers; Corrosion; Electrochemical Noise; 

Recurrence Quantification Analysis; Corrosion Type Identification; Random Forests 
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8.1 Introduction 

Steel carriers are commonly used for transportation of cargoes, such as coal 

and iron ore [1, 2]. Corrosion has been identified as one of the major causes of ship 

structural failures [3-5]. Fortunately, with adequate maintenance and proper protection 

of the steel structures, the impact of corrosion could be controlled. However, field 

observations revealed that the maintenance practices were not always sufficient and 

some areas, such as the lower parts of the bulk coal and iron ore carriers, might not be 

suitable for the implementation of protection measures [3]. Therefore, an enhanced 

corrosion monitoring program is called for to guide efficient inspections and timely 

maintenance plans. 

Corrosion can occur in different forms at different positions of the cargo hold 

of the bulk carrier. The overall thickness of the steel structure could be considerably 

reduced due to continuous general corrosion. In comparison, localized corrosion may 

result in little mass loss, but could lead to decrease of the strength of the steel structure 

and cause crack or penetration of the steel structure without pre-warning [6, 7]. Real-

time monitoring of the corrosion processes could increase the chance of capturing the 

fault conditions of the steel structures and reduce unnecessary inspections, thereby 

decreasing the maintenance cost. 

Previous experimental studies on corrosion of steels by bulk cargoes, like coal 

and iron ore, mainly focused on the factors that influenced general corrosion rates, 

including particle size, quantity of moisture, pH level as well as chloride and sulphate 

concentrations in the water phase of the ores [8-10]. To date, little attention has been 

paid to the real-time monitoring of the corrosion process at steels in contact with bulk 

cargoes and no studies have been carried out on the identification of different corrosion 

types. 

There are a number of corrosion monitoring techniques that are frequently used 

in industries to assist the development and implementation of inspection and 

maintenance programs, such as electrical resistance (ER), linear polarisation resistance 

(LPR) and electrochemical impedance spectroscopy (EIS). Although these techniques 

could provide near real-time corrosion rate related to general corrosion process, they 

are not particularly useful in detecting localised corrosion events [11, 12]. 
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It is widely recognized that electrochemical noise (EN) generated from 

corrosion processes bears valuable information regarding the underlying forms of 

corrosion [13-16]. Localised corrosion events can be revealed by indicators derived 

from the collected EN signals with appropriate analytical approaches. Over the past 

few decades, a variety of parameters derived from the EN data have been proposed for 

corrosion monitoring and corrosion type identification, e.g. localisation index or 

pitting factor [17], characteristic charge and frequency [18], roll-off slope of the power 

spectral density plot [19], correlation dimension [20], energy distribution plot (EDP) 

[21]. Nevertheless, contradictory results have been observed and no agreement has 

been reached as to the optimal measures. 

More recently, recurrence quantification analysis (RQA) has been employed to 

interpret EN data [22-24]. It was demonstrated that feature variables extracted from 

EN data by use of RQA were capable of capturing the characteristics of different types 

of corrosion processes. Furthermore, in our recent studies [25-27], the combination of 

RQA and advanced machine learning methods was shown to be capable of 

distinguishing localised corrosion from general corrosion in-situ. 

Specifically, the EN data segment was first converted to a so-called recurrence 

plot, from which twelve variables were then extracted. A recurrence plot is in essence 

a graphical representation of a square matrix, which is commonly expressed as 𝑅𝑖,𝑗 =

𝐻(𝜀 − ‖𝒙𝑖 − 𝒙𝑗‖). In our studies, 𝑅𝑖,𝑗 represents the (𝑖, 𝑗)th point in the recurrence plot, 

ε is a predefined threshold value, 𝒙𝑖 , 𝒙𝑗 are the measured EN values at times 𝑖 and 𝑗, 

and  ‖∙‖  refers to the Euclidean distance between this pair of data points. H(∙) 

represents the Heaviside function, which gives the value of one, if the distance between 

𝒙𝑖 and 𝒙𝑗 falls within the threshold. Otherwise, it is zero. The quantification of the 

recurrence plots is termed as recurrence quantification analysis (RQA), by which 

various feature variables can be derived. 

In previous investigations [25, 26], twelve variables extracted by RQA method, 

as shown in Table 3-1, were used as predictors of a random forest (RF) model to 

distinguish between uniform, pitting and passivation processes of carbon steel in NaCl 

solution, NaHCO3 + NaCl solution, and NaHCO3 solution respectively. Furthermore, 
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the RF model was capable of identifying pitting corrosion of carbon steel beneath sand 

deposit and general corrosion in CO2-saturated brine [27].  

The present study is an extended application of the existing methodologies [25-

27]. The objective is to identify the types of corrosion process that take place at carbon 

steel exposed to the two bulk cargoes investigated. Two other corrosive systems, which 

are expected to result in general and localized corrosion, are used to obtain 

electrochemical noise data for development of the random forest model. Specifically, 

carbon steel immersed in NaCl solution will be used for general corrosion assessment, 

and silica sand moist with NaCl solution is used for localized corrosion assessment. 

Deposits of silica sand at carbon steel have been previously shown to cause pitting 

[28]. A random forest model will be developed based on recurrence quantification 

analysis of the EN data generated from these two reference corrosion systems to 

discriminate between the two types of corrosion. Once established, this model will be 

applied to identify the corrosion types of specimens buried in iron ore and coal cargoes 

on the basis of associated EN recordings. This could be accomplished in real time, 

without having to take the specimens out. It is expected that this work could offer an 

additional analytical method for corrosion monitoring of bulk cargo carriers. 

8.2 Experimental work 

8.2.1 Materials 

Carbon steel specimens (grade 1030) with chemical compositions of (wt.%): C 

(0.37), Si (0.282), Mn (0.80), P (0.012), S (0.001), Cr (0.089), Ni (0.012), Mo (0.004), 

Sn (0.004), Al (0.01), and Fe (balance) were used in this study. Two rectangular 

specimens with the same dimensions of 1.5 cm × 1.4 cm × 0.5 cm were soldered with 

a conducting wire for electrical connection and then electrocoated using Powercron 

6000CX. Afterwards, the two specimens were mounted together in epoxy resin 

(Epofix), leaving approximately 2 cm2 for each specimen as a working surface. This 

assembly, named as EN electrode, was used as working electrode in the 

electrochemical noise tests. Prior to EN tests, the electrode was ground on silicon 

carbide paper up to 240 grit, followed by rinsing with ultrapure water and ethanol and 

finally drying with nitrogen.  
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Corrosiveness of two different bulk cargo materials, iron ore and coal, was 

assessed in separate tests. The moisture contents of the as-received iron ore and coal 

materials were 8.6 wt.% and 5.8 wt.%, respectively. In addition, test with 0.04 wt.% 

NaCl solution (no solid material tested), and one with silica sand moistened with NaCl 

(0.04 wt.%) were carried out as reference systems. The concentration of NaCl of 0.04 

wt.% in the test solution was used to match the conductivity of the leached solutions 

from iron ore and coal materials. The conductivity was determined using 500 g of iron 

ore that was immersed in 500 mL ultrapure water at room temperature. The 

conductivity of the supernatant after 24 h of immersion was 372 μS/cm. Similarly, the 

conductivity of the supernatant from coal was 654 μS/cm. Therefore, 0.04 wt.% NaCl 

solution equivalent to a conductivity value of 625 μS/cm was chosen. The moist silica 

sand used in the electrochemical test was prepared using silica sand (Sigma Aldrich) 

with average particle size of 303 μm mixed with NaCl solution. The sand amount of 1 

kg was mixed thoroughly with 10 ml of the NaCl solution (0.04 wt.%) for the test..  

8.2.2 Electrochemical noise measurement 

The EN test with NaCl solution was conducted in at ambient temperature 

(22±1 °C). The EN electrodes was placed horizontally in the cell with the working 

surface facing upwards and then 50 ml of the test solution was added. A double 

junction Ag/AgCl electrode (Orion) used as reference electrode was placed in a Luggin 

capillary filled with agar (1.5 wt.%) and KCl (3.5 wt.%) mixture. The Luggin capillary 

was inserted in the test cell with the tip in close proximity to the EN electrode. The 

test cell was aerated throughout the test. For sand and iron ore, the test was conducted 

in a 1 L glass vessel with glass lid at ambient temperature. The cell was filled with the 

test materials to the vessel neck. The solids were added to the cell by layering the tested 

material. The thickness of the first layer was about 40 mm. The bottom layer was 

compacted using a ‘D’ type Proctor/Fagerberg hammer specific for these material 

compaction. Then the carbon steel electrode was placed on top of this layer with the 

working surface facing upwards. In addition, the Luggin capillary was inserted into 

the cell and its tip was kept as close as possible to the working surface of the electrode 

by using an iron stand to maintain its position. Afterwards, the second layer of the 

solids with a thickness of 15 mm was added and gently compacted with fingers. 

Similarly, another 5 layers with a thickness about 15 mm for each was added in 
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sequence. The total height of the solids in the cell was 130 mm. Finally, the cell was 

covered with the glass lid fitted with Luggin capillary and the conducting wires of the 

EN electrode. All the unused openings were closed with fittings. For the test with coal 

cargo, the cell setup was similar except that the cell lid was additionally equipped with 

a condenser and the test cell was placed in a water bath to maintain constant 

temperature of 55±1 °C. This temperature is generally considered the maximum 

temperature simulating real cargo shipping conditions and is also prescribed in 

classification procedures of corrosive substances (in liquids) [29]. The cell was 

carefully sealed with Parafilm to ensure no loss of moisture during the test.   

A Gamry potentiostat Reference 600 operating in the zero resistance ammeter 

(ZRA) mode using ESA410 data acquisition software was used in this study. The 

current flowing between the two steel specimens and the potential between the coupled 

WEs and the reference electrode were recorded simultaneously. The data sampling 

rate was 2 Hz since the preliminary work showed that the sampling rate of 2 Hz 

allowed for detection of pitting events. All the tests were conducted for 7 days, 

following the test methods recommended by the United Nations on the classification 

of corrosive substances for transportation [29]. 

An open source Matlab toolbox, Cross Recurrence Plot Toolbox, developed by 

Marwan et al. [30] was used for the recurrence quantification analysis of EN data.  

8.2.3 Surface profile analysis 

After completing a test, the electrodes retrieved from the test cells, were 

flushed with ultrapure water and ethanol to remove any residual ore cargo material, as 

well as loose corrosion products. To further remove adherent products, the EN 

electrode was treated repeatedly with Clarke’s solution according to ASTM standard 

G1 [31] in an ultrasonic water bath.  Afterwards, the EN electrode was dried with 

nitrogen gas and stored in a vacuum desiccator for further analysis. The 3D profiles of 

the specimens were examined using a 3D profilometer (Alicona Instruments, IFM G4).  
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8.3 Results and discussion 

8.3.1 Corrosion of carbon steel in NaCl solution and in moist silica sand 

Post-immersion surface profilometry analysis  

For the specimens immersed in NaCl solution (0.04 wt.%), it was expected that 

the specimens would undergo minor general corrosion. Indeed, as indicated in Figure 

8-1(a1), the specimen exhibited general corrosion and no localised corrosion was 

observed at the surface. The image (Figure 8-1 (a2)) with a larger magnification further 

confirmed the corrosion morphology of the specimen. By contrast, the specimens 

buried in silica sand were subjected to localised corrosion, as shown in Figure 8-1 (b1). 

The pit depths were in the range of 20-120 μm. Figure 8-1 (b2) shows a magnified area 

with a large pit. The deepest point marked by an arrow has a depth of 113 μm.   

Figure 8-1: Surface morphologies of specimens retrieved from tests cell with (a1, a2) 

NaCl solution (0.04 wt.%), (b1, b2) silica sand +  NaCl solution (0.04 wt.%). The 

arrow indicates the deepest point of the pit. 
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Development of the classification model for corrosion type identification 

To distinguish between the general corrosion and localised corrosion generated 

by the reference tests, the raw electrochemical current data were first divided into short 

contiguous segments. Each of the segments contained 1024 data points, equivalent to 

a time frame of 512 s. After removing the linear trend of each current segment, 

recurrence plots were generated by applying a threshold to the distance matrices 

derived from each segment. The threshold (ε) has a significant influence on the 

appearance of the recurrence plots and by extension the quantification variables 

subsequently generated from these plots. If ε is too small, there may not be enough 

recurrence points or recurrence structures. On the other hand, if ε is too large, almost 

every point would be recurrence point, which may lead to many spurious artefacts [30]. 

Several options for the selection of ε have been proposed in literature.  

For example, ε can be chosen according to the phase space diameter [32, 33], 

recurrence rate [34], standard deviation of the observational noise [35], and standard 

deviation of the measured time series [36]. Nevertheless, selection of the optimal 

criterion is strongly dependent on the system under study [30]. In this investigation, 

the threshold value was selected following previous studies [25-27], i.e. based on the 

standard deviation (𝜎) of the measured electrochemical current time series.  

In the preliminary work, several threshold values (0.02𝜎, 0.2𝜎 and 0.5𝜎) were 

examined and 0.5𝜎 was selected since the developed RF model could best differentiate 

between the two types of corrosion. Figure 8-2 shows two examples of detrended 

current segments and associated recurrence plots using 0.5𝜎 as the threshold. As can 

be seen, the pattern of the RP obtained from uniform corrosion process differs from 

that associated with localised corrosion. It can be expected that the quantification 

variables extracted from these RPs would have different values, by which localised 

corrosion and uniform corrosion processes can be discriminated. 
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Figure 8-2: Detrended current segments and associated recurrence plots selected 

from corrosion processes (a) general corrosion and (b) localised corrosion. 

The discrimination of corrosion general corrosion and localised corrosion was 

realised by random forest (RF) model trained with recurrence quantification variables 

(denoted as RQA variables) extracted from the recurrence plots. The procedures are 

briefly outlined below. Details about the calculations and concepts related to the RF 

model can be obtained from previous studies by Hou et al. [25-27].  

a. Twelve RQA variables were extracted from each one of the current noise 

segments. 

b. Row vectors comprising the RQA variables were labelled with ‘A’ and ‘B’ 

depending on the type of corrosion from which the current signals were 

recorded. As a result, 2349 row vectors with labels were obtained in total. 

c. From the 2349 labelled vectors, 70% were randomly selected as training data 

to build the RF model and the remaining 30% constituted a test dataset for 

validation purpose. 
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d. The trained RF model was evaluated by the so-called ‘out-of-bag’ (OOB) 

errors approach. 

e. The test datasets were submitted to the RF model for classification. Finally, 

the misclassification error, defined as the ratio of incorrectly classified data to 

the total number of test data, was calculated.  

Figure 8-3 shows the OOB errors of the developed RF model. The results from 

five independent runs suggest that when the number of trees contained in the ensemble 

was more than 40, the RF model based on the current data exhibited low classification 

errors for the discrimination between general corrosion and localised corrosion. The 

misclassification error of the test dataset was 0.12, meaning only 12 out of 100 data 

were misclassified by the RF model. This is in line with the result presented in Figure 

8-3. In other words, the classification accuracy of the RF model was 88%. 

Subsequently, the current RF model was employed to identify the corrosion types for 

the specimens buried in coal and iron ore. 

Figure 8-3: Out-of-bag classification errors of random forest models. 

In addition, the importance (𝐼𝑚𝑝) of individual RQA variables was estimated 

during training of the RF model. Detailed explanation of how the 𝐼𝑚𝑝 was computed 

can be found in [26], but essentially the importance is linked to the decrease in 

performance of the model when the variable is omitted from the analysis. Variables 
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with larger 𝐼𝑚𝑝  values are more important. As shown clearly in Figure 8-4, the 

variables 𝐿𝑚𝑎𝑥  and 𝐸𝑁𝑇𝑅2 have the highest values, and were thus the most predictive 

variables in the RF model.   

Figure 8-4: Current RQA variable importance estimations. The variable indices refer 

to 1 – 𝑅𝑅, 2 – 𝐷𝐸𝑇, 3 – 𝐿𝑚𝑒𝑎𝑛, 4 – 𝐿𝑚𝑎𝑥, 5 – 𝐸𝑁𝑇𝑅1, 6 – 𝐿𝐴𝑀, 7 – 𝑇𝑇, 8 – 𝑉𝑚𝑎𝑥 , 9 

– 𝑅𝑇1, 10 – 𝑅𝑇2, 11 – 𝐸𝑁𝑇𝑅2, 12 – 𝑇𝑅𝐴𝑁𝑆. 

8.3.2 Corrosion of carbon steel exposed to coal and iron ore  

Identification of corrosion types for coal and iron ore 

Figure 8-5 shows an EN segment (after linear trend removal) obtained on the 

first day of the tests with coal and iron ore. It can be seen that the patterns of the 

segments appear to be close to those generated with sand (Figure 8-2(b)). 



163 

 

Figure 8-5: EN signals obtained from tests with (a) iron ore and (b) coal. 

Similar to the EN data treatment associated with NaCl solution and sand, after 

segmentation and trend removal, RQA variables were extracted from the 

abovementioned current noise signals and submitted to the previously developed RF 

model for corrosion type identification. The prediction results are displayed in Figure 

8-6, where each star corresponds to a current segment measured during the test. As it 

can been seen, the RF model predicted that during the 7-day tests the steel samples 

buried in iron ore and coal underwent different types of corrosion. Specifically, the 

iron ore mainly produced localised corrosion (98%) while the coal cargo generated 

both general corrosion (41%) and local corrosion (59%) corrosion on the specimens. 

Figure 8-6: Predicted types of corrosion during the 7-day tests with (a) iron ore and 

(b) coal by the random forest model. 

 

(a) (b) 
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Table 8-1 shows the percentages of the current segments predicted as general 

corrosion and localised corrosion on a daily basis. For instance, for each day, the EN 

data obtained for 24 h were divided into 168 segments. The RF model would predict 

the corrosion type for each data segment. Therefore, on day 1, 3.6% for general 

corrosion means only 6 out of the 168 segments were identified as general corrosion. 

It can be seen that localised corrosion occurred predominantly on the specimens buried 

in iron ore during the entire test period. In comparison, the specimens buried in coal 

mainly underwent localised attack from day 1 to day 5. Afterwards, from day 6 

onwards, the majority of localised corrosion events appeared to cease and the 

specimens managed to reach a relatively stable state with general corrosion taking 

place until the end of the test. 

Table 8-1: Percentages of current segments identified as general and localised 

corrosion for the tests with coal and iron ore. 

Post-immersion surface profilometry analysis 

The prediction results presented in Figure 8-6 are confirmed by the surface 

morphologies of the retrieved specimens, which are shown in Figure 8-7(a1, a2). The 

specimens retrieved from the test cell with iron ore exhibited localised corrosion 

morphologies similar to that observed in Figure 8-1(b1, b2). Figure 8-7(a2) is an 

enlarged image of the red circled area shown in Figure 8-7(a1), the deepest point of 

Day 
Iron ore Coal 

General (%) Localised (%) General (%) Localised (%) 

1 3.6 96.4 33.3 66.7 

2 1.8 98.2 17.8 82.2 

3 1.8 98.2 11.3 88.7 

4 1.8 98.2 24.8 75.2 

5 1.2 98.8 32.1 67.9 

6 1.2 98.8 85.1 14.9 

7 1.8 98.2 77.4 22.6 
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which reached 120 μm. By contrast, from Figure 8-7(b1), it is clear that the entire 

surface area was corroded to some extent. The average surface roughness Rq 

(excluding pitted areas) was 4.8 μm, which was close to that observed with the 

specimens immersed in 0.04 wt.% NaCl solution (3.6 μm). In addition, there were 

some local areas that showed more severe corrosion, such as the one marked by the 

dashed red line. An enlarged image of this area is presented in Figure 8-7 (b2). The 3D 

surface profile measurement suggested a maximum depth of 170 μm. Other locally 

corroded areas ranged from 100 μm to 120 μm in depth.  

Figure 8-7 Surface morphologies of the specimens retrieved from test cells with (a1, 

a2) iron ore and (b1, b2) coal. 
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8.3.3 Discrimination of corrosion types using localisation index and shot 

noise parameter 

Localisation index 

Localisation index (LI) or pitting index is one of the most widely used 

parameters to indicate localised corrosion. It is defined as the standard deviation of 

current divided by the root mean square current [37, 38]. In general, a value 

approaching 1 is considered as indicative of localised corrosion. 

The LI values for all the corrosion systems under investigation were calculated 

and plotted against the segment number of the current noise signals, as shown in Figure 

8-8. Please be reminded that the current noise data were firstly divided into continuous 

segments. Each segment contained 1024 data points, which is equivalent to a time 

frame of 512 s. 

As can be seen from Figure 8-8(a), from segment 300 to 400, the corrosion 

system with NaCl solution produced high LI values (close to 1), which is an indication 

of localised corrosion. However, it has been shown in Figure 8-1 that only uniform 

corrosion occurred to the steel samples. Moreover, the moist sand produced localised 

corrosion to the steel samples (as presented in Figure 8-1), thus high LI values were 

expected. Nevertheless, as can be seen from Figure 8-8(b), all the LI values were below 

0.01. In addition, for the localised corrosion system generated with carbon steel buried 

in iron ore (Figure 8-8(c)), most of the LI values were below 0.4. 
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Figure 8-8 Localisation index for all the corrosion systems tested: (a) 0.04 wt.% 

NaCl (b) sand mixed with 0.04 wt.% NaCl (c) iron ore (d) coal. 

According to these observations, it can be concluded that the 

localisation/pitting index is not a reliable indicator of localised corrosion for the 

investigated systems.  

Shot noise parameter 

The characteristic frequency 𝑓𝑛 is a parameter derived from shot noise theory. 

It can be expressed as 𝑓𝑛 =
𝐵2

𝜓𝐸𝐴
 , where 𝐵 is the Stern-Geary coefficient, 𝜓𝐸  is the 

low-frequency power spectral density (PSD) of the potential noise, and 𝐴 is the surface 

area of the sample [37-39]. In this study, a value of 0.026 V per decade was used for 

the coefficient 𝐵 and 𝜓𝐸 was determined as the potential PSD at 10−3Hz. It is reported 

that uniform corrosion would have a large 𝑓𝑛, while pitting corrosion is expected to 

have a lower 𝑓𝑛 [39]. 
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Figure 8-9 Characteristic frequency for all the data segments collected from uniform 

corrosion system (NaCl) and pitting system (Iron ore). 

However, as can be seen from Figure 8-9, which shows the calculated 𝑓𝑛 for 

the uniform corrosion system (0.04 wt.% NaCl) and pitting system (iron ore), the 

characteristic frequency values overlap within the same frequency range. In other 

words, for the present study, 𝑓𝑛 is not an effective measure for the discrimination of 

localised corrosion and uniform corrosion processes. 

8.4 Summary 

In this study, carbon steel electrode immersed in NaCl solution (0.04 wt.%) 

and buried in silica sand that was moistened with NaCl solution were used as 

references to create different types of corrosion. Surface analyses of the retrieved steel 

specimens from the NaCl solution and silica sand revealed two distinct corrosion types, 

viz. general corrosion and localised corrosion. Electrochemical current noise data 

collected from the reference tests were subjected to recurrence quantification analysis 

and the extracted RQA variables were used as predictors to develop a random forest 

classification model.  

The RF model could discriminate between these two types of corrosion with 

an accuracy of 88%. Subsequently, the established model was used to identify and 

monitor the corrosion processes of the carbon steel specimens buried in iron ore and 
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coal cargoes. Prediction results showed that during the 7-day tests, dominant form of 

corrosion to the steel specimens buried in coal at 55 °C was localised corrosion during 

the first 5 days, whereas general corrosion predominantly took place from day 6 

onwards. By contrast, the iron ore resulted in localised corrosion (pitting) for the 

duration of the test. The morphologies of the retrieved steel specimens at the end of 

the tests agreed well with the predictions by the RF model. 

Localisation index and the shot noise parameter 𝑓𝑛 were also investigated for 

identification of localised corrosion. However, it was demonstrated that neither of 

them were effective measures for the discrimination of different corrosion processes 

under investigation. 

The present work is an extended application and demonstration of the concepts 

and methodologies proposed in our previous studies [25-27]. The results yielded by 

this investigation further underscore the applicability of the proposed techniques. It 

can be expected that the combined recurrence quantification analysis of EN data and 

machine learning are valuable for future automated monitoring and identification of 

specific corrosion phenomena. Moreover, it provides a possible analytical method for 

investigation of the corrosive effects of cargoes on the carrier structures and can 

possibly be extended to corrosion under deposits with low moisture content.  
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CHAPTER 9 CONCLUSIONS AND FUTURE 

WORK 

The objectives of this thesis were to: 

1. Design corrosion monitoring and diagnostic frameworks based on the use 

of RQA variables extracted from EN data and machine learning methods. 

The frameworks will be able to: 

a. Discriminate different corrosion types, especially to distinguish 

localised corrosion from uniform corrosion and passivation. 

b. Monitor corrosion processes continuously and flag unexpected 

corrosion processes automatically. 

2. Examine the feasibility of the designed frameworks using preliminary EN 

data generated from uniform corrosion, pitting and passivation of carbon 

steel samples exposed to NaCl, NaHCO3+NaCl and NaHCO3 solutions. 

3. Carry out different case studies to evaluate the feasibility of the developed 

methodologies for corrosion monitoring and localised corrosion detection. 

In light of these objectives, a PCA-based corrosion monitoring model and a 

RF-based corrosion type diagnostic model have been developed and demonstrated 

with several case studies. Recurrence quantification analysis (RQA) of EN data laid 

the foundation for the development of both models. It provided multiple discriminative 

variables (referred to as RQA variables) so that various corrosion types could be 

successfully identified by these models. Overall, twelve RQA variables were used, 

including recurrence rate (𝑅𝑅), determinism (𝐷𝐸𝑇), average diagonal line length 

(𝐿𝑚𝑒𝑎𝑛 ), maximum diagonal line length ( 𝐿𝑚𝑎𝑥 ), entropy of diagonal line length 

(𝐸𝑁𝑇𝑅1), laminarity (𝐿𝐴𝑀), trapping time (𝑇𝑇), maximum vertical line length (𝑉𝑚𝑎𝑥), 

recurrence time of 1st type (𝑅𝑇1), recurrence time of 2nd type (𝑅𝑇2), entropy of the 

recurrence period density (𝐸𝑁𝑇𝑅2) and transitivity (𝑇𝑅𝐴𝑁𝑆). 
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9.1 Development and application of a PCA model for 

corrosion process monitoring 

9.1.1 Development of the framework 

Consider the following scenario: uniform corrosion prevails at normal 

operation conditions (NOC) and it is unknown whether non-uniform corrosion will 

take place if the operating condition changed. The condition could be changed 

intentionally by operators or unintentionally because of some unknown reasons. A 

corrosion monitoring scheme based on a PCA model was developed to deal with this 

kind of situation. 

In summary, this framework contains two stages, i.e. off-line calibration stage 

and on-line monitoring stage. 

(1) Off-line calibration stage 

a. Electrochemical noise data should be recorded continuously under normal 

operation conditions (NOC) for a sufficient time depending on the actual corrosion 

system and sampling rate. 

b. The collected EN data need to be properly segmented according to desired 

inspection interval. In principle, the length of the time series segment should be 

sufficient to capture characteristic fluctuations or periodic behaviour in the time series. 

c. The EN segments are then converted to recurrence plots, from which twelve 

variables can be extracted. 

d. Principal component analysis is implemented to transform the RQA 

variables into principal component scores. 

e. A control limit based on a Gaussian mixture model is calculated to enclose 

the principal component scores for NOC. With this, the calibration of the PCA model 

is completed. Ideally, it is better to collect as many data as possible in this stage for 

computation of a reliable control limit.  

(2) On-line monitoring stage 
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a. For the on-line corrosion process monitoring, EN could be measured 

continuously or intermittently. The newly measured EN data should be processed 

exactly the same way as for NOC data to generated new RQA variables. 

b. The RQA variables are then projected to the calibrated PCA model and 

compared with the control limit. If the projected data fall outside the NOC control limit, 

a potential change of the corrosion form is signalled. 

For this corrosion monitoring scheme to work successfully, the quality of the 

collected data in the off-line stage is of vital importance. The user should ensure that 

the associated corrosion process is representative of the normal operation conditions 

and is well understood as well as under control. This may require some experience and 

knowledge from corrosion experts.  

9.1.2 Case studies 

The efficacy of this corrosion monitoring framework was demonstrated by two 

case studies. 

Preliminary tests involving three corrosion systems (i.e. uniform corrosion, 

pitting and passivation) were carried out with carbon steel samples immersed in 

aqueous media. Electrochemical current noise data collected from uniform corrosion 

process were used as NOC data, while that collected from pitting and passivating 

processes were regarded as being obtained during the on-line monitoring process. Four 

RQA variables were used in this case study. Results showed that the calibrated PCA 

monitoring scheme could differentiate between uniform and non-uniform corrosion.  

The second case study using the PCA based corrosion monitoring framework 

was associated with under deposit corrosion of carbon steel in CO2 saturated brine 

solution. EN data were measured with carbon steel samples with and without sand 

deposit. Uniform corrosion occurred at samples not covered by sand while localised 

corrosion took place at samples covered with sand. The former was considered as NOC 

and the latter was the change that needs to be captured. In this case study, twelve RQA 

variables were used. The obtained PCA monitoring model could effectively detect the 

UDC process. 
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9.2 Development and application of a RF model for corrosion 

type diagnosis 

9.2.1 Development of the framework 

The random forest model is designed to deal with the task of identifying 

different forms of corrosion. The idea of this diagnostic framework is as follows: 

a. EN data should be collected from several corroding systems of interest that 

generate different types of corrosion. 

b. The collected EN data need to be divided into short segments. The length of 

each segment should be determined by taking into consideration the inspection time 

interval later at the on-line monitoring stage.  

c. Each data segment need to be labelled with a symbol to represent the 

corresponding corrosion type. Then the data segments are converted into the 

recurrence plots to extract RQA variables.  

d. A proportion (e.g. 70%) of the RQA variables with labels are given to the 

RF model for “learning”, so that different types of corrosion can be identified. 

e. The remaining labelled RQA variables are used as a test dataset to examine 

the classification accuracy of the trained RF model. 

f. Once the RF model is established, it can be applied for on-line corrosion type 

diagnoses. Newly measured EN data is processed the same way as in step c to obtain 

RQA variables. Then the label, i.e. corrosion type, of the new data can be identified 

by the RF model. 

9.2.2 Case studies 

The efficacy of the RF model was demonstrated in three case studies. 

Firstly, the RF model was applied to the preliminary tests which generated 

uniform corrosion, pitting and passivating systems. Since the passivating data were 

found not sufficient when the PCA model was applied, it was decided to extend the 
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length for passivating. Moreover, an extended set of RQA variables (twelve in total) 

were extracted from each current noise data segment. 75% of the labelled RQA 

variables were used for training the RF model and the remaining 25% served as a test 

dataset to examine the accuracy of the developed model. Results showed that the RF 

model could correctly identify the three types of corrosion with an overall accuracy of 

93%. In addition, a linear discriminant analysis (LDA) model was also tried to 

distinguish uniform corrosion, pitting and passivating. Nevertheless, the classification 

accuracy was lower (88%) compared to that of the RF model. 

The second application was also carried out with the UDC experiments. In this 

case study, three different RF models, i.e. potential RF model, current RF model and 

the combination model, were developed and compared. The potential RF model is 

simply the model based on the use of electrochemical potential noise data and current 

RF model is related to current noise data. The combination model refers to the model 

based on the collective use of both potential and current data. All three RF models 

showed very high discrimination accuracy (over 99%) between the corrosion of bare 

steel and that of sand-deposited steel. 

Furthermore, the developed methodology was applied to investigate corrosion 

processes occurring in solids. Firstly, two reference tests using carbon steel immersed 

in NaCl solution (0.04 wt.%) and buried in moistened silica sand were carried out. 

Two distinct corrosion types were observed: general corrosion and localised corrosion. 

RQA variables were extracted from the obtained electrochemical current noise data 

and then used to set up the RF model to distinguish the two corrosion types. The 

developed RF model could reliably differentiate general and localised corrosion with 

a classification accuracy of 88%. Then this model was employed to identify the 

corrosion types of carbon steel samples associated with iron ore and coal cargoes over 

7 days. Prediction results showed that, the dominant form of corrosion to the steel 

specimens buried in coal at 55 °C was localised corrosion during first 5 days, whereas 

general corrosion predominantly took place from day 6 onwards. By contrast, the iron 

ore only generated localised corrosion over 7 days on the buried EN electrode at room 

temperature. Microscopic analysis of the retrieved steel samples after tests agreed well 

with the classification results of the RF model.       
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9.2.3 Estimation of variable importance 

The RF method provided a means to evaluate the importance of different RQA 

variables for the discrimination of different corrosion types. It was done by permuting 

each predictor variable during the training of the RF model and observing the variation 

in the prediction error of the model in each case. The more errors generated by this 

procedure, the more important the associated variable is. 

In the case study where the RF model was used to distinguish between uniform 

corrosion, pitting and passivating, the RQA variables 𝐷𝐸𝑇, 𝐿𝑚𝑒𝑎𝑛, 𝐿𝑚𝑎𝑥, 𝐸𝑁𝑇𝑅1 and 

𝐿𝐴𝑀 presented similar high importance for the classification accuracy of the RF model. 

In the case study associated with under deposit corrosion (UDC), 𝐸𝑁𝑇𝑅2 played the 

most significant role for the discrimination between uniform corrosion and UDC. 

Similarly, 𝐸𝑁𝑇𝑅2 and 𝐿𝑚𝑎𝑥 were the most important variables in the study correlated 

with cargo corrosion.        

9.3 Recommendations for future work 

This research innovatively used recurrence quantification analysis to extract 

feature variables from electrochemical noise data for corrosion monitoring and 

corrosion type identification. Two frameworks based on the use of multiple predictor 

variables and machine learning methods have been proposed and their capabilities 

being demonstrated with different case studies. Some recommendations for further 

research in this area are presented below. 

 Apply the proposed methodologies to study the efficacy of corrosion 

inhibitors and corrosion resistant coatings. 

 Current case studies mainly focus on the differentiation between uniform 

corrosion and pitting corrosion. It is worthwhile to apply the random forest 

based framework to distinguish between various types of localised 

corrosion. 

 The discrimination between metastable pitting and stable pitting is as 

important as the separation of uniform and localised corrosion. It is 

worthwhile to explore the feasibility of the proposed methodology in this 

regard. 
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 Apply the proposed methods to field corrosion monitoring programmes. 

 Further improve the accuracy of the proposed models by optimising the 

selection of threshold values while converting EN data to recurrence plots 

and developing more discriminative variables with recurrence 

quantification analysis.    



181 

 

CHAPTER 10 APPENDICES 

Appendix 1. Validation of EN measurements 

The validation of EN measurements were conducted according to [1]. The 

procedures are shown as follows: 

(1) Estimation of instrumental noise 

i. Connect dummy cell which consists of three 1 MΩ resistors with a star 

arrangement. 

ii. Warm up the system (t>15 min). 

iii. EN measurement with a sampling rate of 1 Hz for 1 h 10 min to obtain 

16384 data points. 

iv. EN measurement with a sampling rate of 10 Hz for 30 min. 

v. Calculate the PSDs of the EN data sets using the programme described 

in [1]. 

vi. Plot the raw EN data to check for quantisation. Quantisation appeared 

as a set of clear steps in the time record, which is a reflection of the 

resolution of the data acquisition system. 

vii. Analyse the PSDs to see whether a proper anti-aliasing filter is used 

and to check the overlap of the PSDs obtained with different sampling 

rates. 

(2) Validation of the EN measurement in real corrosion systems 

i. Collect EN data with a sampling rate of 2 Hz for 2 h 17 min. 

ii. Collect EN data with a sampling rate of 10 Hz for 30 min. 

iii. Calculate the PSDs of the EN data. 

iv. Plot the raw EN data. 

v. Check the overlap of the PSDs. 

vi. Compare the PSDs with those obtained in step (1). 

Figure 10-1 shows the raw EN data measured using dummy cell with sampling 

rates of 1 Hz and 10 Hz. As can be seen, there is no sign of quantisation in the time 
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domain data. The amplitudes for potential and current are approximately 30 μV and 8 

pA, respectively. 

Figure 10-1: Raw EN data obtained with 1 MΩ dummy cell (a) sampling rate 1 Hz 

(b) sampling rate 10 Hz. 

 

 

 

 

 

(a) 

(b) 
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Figure 10-2 presents the calculated potential and current PSDs by dividing the 

raw EN data into 1024 data points segments and averaging the PSDs of all segments. 

Figure 10-2: Potential (a) and current (b) PSDs of EN data measured with dummy 

cell. 

As can be seen, there is a decrease towards the highest frequency in each PSD, 

indicating that the data acquisition device is equipped with efficient anti-aliasing filters. 

Moreover, both the potential and current PSDs associated with 1 Hz and 10 Hz 

sampling rates show good overlaps. In addition, at 0.1 Hz, the potential PSD is in the 

order of 10-11 V2/Hz, while the current PSD is in the order of 10-24 A2/Hz. In this study, 

these two values are used as the baseline instrumental noise level for easy comparison.   

Figure 10-3 shows the raw EN data measured in a pitting system with sampling 

rates of 2 Hz and 10 Hz. No quantisation phenomena are observed. 

(a) 

(b) 
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Figure 10-3: Raw EN data measured in a pitting system with sampling rate (a) 2 Hz 

(b) 10 Hz. 

 

 

 

 

 

 

(a) 

(b) 
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Figure 10-4: Potential (a) and current (b) PSDs of EN data measured in pitting 

system. 

It can be seen from Figure 10-4, both the potential and current PSDs associated 

with sampling rates of 2 Hz and 10 Hz overlap well. In addition, at 0.1 Hz, the potential 

PSD is approximately in the order of 10-9 V2/Hz, while the current PSD is in around 

the order of 10-16 A2/Hz. Both values are higher than the instrumental noise level, 

which means the EN measurements are reliable and valid. 

Reference 

[1]  S. Ritter, F. Huet, R.A. Cottis, Guideline for an assessment of electrochemical 

noise measurement devices, Mater Corros, 63 (2012) 297-302. 

 

(a) 

(b) 
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Appendix 2. Application of Electrochemical Noise Technique 

to Study Corrosion Induced by Sulphate Reducing Bacteria  

This is an experimental report on the corrosion of carbon steel induced by 

sulphate reducing bacteria. 

It was expected that the sulphate reducing bacteria (SRB) could induce 

localised corrosion in carbon steel, which could be detected by electrochemical noise. 

Therefore, the objective was to apply the proposed methodologies to study this 

microbial corrosion process. However, it was observed that the differences between 

the corrosion morphologies of carbon steel samples in the presence and absence of 

SRBs were not as obvious as expected. 

This appendix mainly presents the test procedures and observations during and 

after tests.  
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Experimental 

Materials 

The specimens used in this study was carbon steel 1030, which was the same 

as those used in aforementioned case studies. Rectangular samples with dimensions 

approximately 2.4 cm × 2.5 cm were firstly soldered with conductive wires and then 

electrocoated with Powercron 6000CX. The average working surface area of the 

samples was 6 cm2. All samples were abraded with silicon carbide paper up to 600 grit, 

rinsed with ultrapure water and ethanol, dried with nitrogen and stored in a vacuum 

desiccator until used. 

The test media used in this study was natural seawater obtained from Indian 

Ocean at Hillarys, Perth, Western Australia. Three test cells, A, B and C, were set up 

in this study. Cell A was filled with 800 mL of the natural seawater and supplemented 

with 1 mL sodium DL-lactate (60% syrup in water, Sigma Aldrich). Pure culture 

sulphate reducing bacteria (SRB), Desulfovibrio alaskensis DSM 17464, was 

inoculated in cell A at the beginning of the test. However, because the SRBs did not 

grow as expected, a second inoculation was performed on day 4 in combination with 

supplements addition – 1 mL of vitamin solution, 1 mL of modified Wolfe’s mineral 

elixir and 0.2 g/L FeSO4·7H2O. The compositions and concentrations of the vitamin 

solution and modified Wolfe’s mineral elixir are presented in Table 10-1 and Table 

10-2 respectively. These solutions were prepared with DI water (Milli-Q system, 

resistivity 18.2 MΩ·cm) and analytical grade reagents. Before adding to cell A, these 

solutions were sterilized with syringe filters (0.2 μm). The added chemicals were to 

facilitate bacteria growth. Test cells B and C were used as controls. In cell B, the test 

solution was filtered seawater without SRB addition and supplemented with nutrients 

same as in cell A. In cell C, only filtered seawater was used with no supplements or 

SRB.  
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Table 10-1: Composition and concentration of vitamin solution. 

Table 10-2: Composition and concentration of modified Wolfe’s mineral elixir. 

Chemical Ascorbic 

acid  

Nicotinic 

acid 

Vitamin 

B1 

Vitamin 

B12 

Vitamin 

B2 

Vitamin 

B5 

Vitamin 

B6 

Vitamin 

H 

Concentration 

(mg/L) 

100  0.5 0.6 0.05 0.2 0.6 0.6 0.01 

Chemical Concentration (g/L) 

C6H9NO6 1.5 

MgSO4·7H2O 3.0 

MnSO4·H2O 0.5 

NaCl 1.0 

FeSO4·7H2O 0.1 

CoSO4·7H2O 0.1 

NiCl2·6H2O 0.1 

CaCl2·2H2O 0.1 

ZnSO4·7H2O 0.1 

CuSO4·5H2O 0.01 

AlKSO4 0.01 

H3BO3 0.01 

Na2MoO4·2H2O 0.01 

Na2SeO3 0.001 
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Before tests, all glassware, fittings and tubes were wrapped with aluminium 

foil and sterilized in an autoclave (134 °C and 3.1 bar) for about 43 min. The solutions 

were deaerated by purging with 80 N2/20 (volume %) CO2 gas mixture for over 2 h 

before pumping into the test cells equipped with steel samples. In addition, the test 

cells were also deaerated with pure N2 (99.99%) for 30 min before test media 

transferring. The initial pH values of the test solutions in all the cells were adjusted to 

around 7 with syringe filtered (0.2 μm) NaHCO3 (Merck, 99.7%) solution (saturated). 

During the test, half volume of the solution in cell A was pumped out of the 

cell and replaced with fresh natural seawater every 7 days. Specifically, 400 mL of 

natural seawater with 1 mL sodium DL-lactate was purged with N2/CO2 mixture for 

one hour. Before transferring, the pH of the fresh media was adjusted to 7 with syringe 

filtered saturated NaHCO3 solution. This was done in order to make sure the SRB had 

enough nutrition for growing. No replacements were conducted for cell B and cell C. 

Bacteria cultures 

The bacteria D. alaskensis served as inoculums was cultivated in Postgate B 

solution in a 10 mL vial modified with 2 wt. % NaCl. The compositions of the culture 

media are presented in Table 10-3. 

The addition of the D. alaskensis was conducted according to the following 

procedures. 

1) The cell density in the culture vial was counted using Thoma counting 

chamber. 

2) 1 mL SRB containing media was taken out of the 10 mL culture vial and 

injected into a 15 mL sterile falcon tube which was previously filled with 

9 mL natural seawater.  

3) The falcon tube was centrifuged at 1000 xg and 4 °C for 3 min to remove 

the iron sulphide precipitates.  

4) The supernatant was collected and transferred into a new falcon tube. 
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5) The new falcon tube was centrifuged at 3800 xg and 4 °C for 20 min. Then, 

the supernatant was discarded and the pellet was resuspended in 10 mL 

natural seawater.  

6) Procedure 5) was repeated. 

7) 1 mL of the SRB suspended natural seawater was taken out and diluted in 

9 mL natural seawater. 

8) 1 mL solution was taken out from the solution obtained in 7) and injected 

into test cell A. By calculation, the final cell density of the D. alaskensis in 

cell A was around 103 cell/mL. 

However, as the SRBs did not grow as expected, a second inoculation was 

performed on day 4 following the same procedures.  

Table 10-3: Compositions of Postgate B culture media (pH = 7.3). 

Composition Concentration (g/L DI water) 

KH2PO4 0.5 

NH4Cl 1.0 

CaSO4 1.0 

MgSO4·7H2O 2.0 

Sodium DL-Lactate (Syrup, 60% (w/w)) 10 mL 

Yeast extract 1.0 

Thioglycollate broth 0.1  

Ascorbic acid 0.1 

FeSO4·7H2O 0.5  
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Analytical methods 

Bacteria cell density and activity 

The SRB cell density in test cell A was estimated via serial dilution method. 

The sample solution was extracted from the test cell under sterile conditions. Then 1 

mL of the extracted sample was injected into a 10 mL vial which contained 9 mL 

Postgate B culture media (sterile and deaerated). Afterwards, the vial was vigorously 

shaken to make the solution even. Then 1 mL of the mixed solution was extracted 

using a sterile syringe with needle and injected into a second culture vial. Again, 1 mL 

of the mixture was extracted from the second vial and injected into a third vial and so 

on until the 9th culture vial. At last, these vials were incubated in a hot room at 30 °C. 

The viable SRB cell density was indicated by the number of vials that turned black 

after three days. For instance, if the vial numbers 1 – 5 turned black after incubating 

for three days, it means the original cell density of the test solution in cell A was 

approximately 105 cell/mL.  

Test media chemistry 

Sulphate (SO4
2-) and sulphide (S2-) concentrations of test solutions were 

measured by spectrophotometer (Hatch, DR3900). The method for determination of 

SO4
2- was USEPA SulfaVer 4 and that for S2- was Methylene Blue.  

Electrochemical noise measurement 

The electrochemical noise was measured using Gamry Reference 600 

potentiostat/galvanostat/ZRA and ESA410 software. Two nominally identical steel 

samples aforementioned were used as working electrode and counter electrodes. A 

commercial Ag/AgCl reference electrode was placed in a long Luggin capillary filled 

with Agar (1.5 wt.%) and KCl (3.5 wt.%) mixture. The current flowing between the 

two steel samples was recorded via the zero resistance ammeter (ZRA) and the 

potential between the coupled working electrodes and the reference electrode was 

recorded simultaneously by the potentiometer of the Gamry instrument. In each day, 

the electrochemical noise data were recorded for 4 h at a sampling frequency of 2 Hz.  
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Post-test analysis 

Apart from the two samples for EN measurement in the three cells, another 

three samples with no electric connection were also placed in cell A and two samples 

each in cell B and C. At the end of the test period, cell A was moved to a glovebox 

with pure N2 atmosphere. All the samples were taken out from the cell within the 

glovebox and rinsed with sterile phosphate buffer saline (PBS) buffer (pH=7.3). Two 

of the samples were used for weight loss measurements, one for ATP analysis and the 

two electrode samples were used for SEM/EDS analysis.  

ATP analysis 

ATP analysis of the total sessile bacteria on the sample surface was carried out 

using LuminUltra 2nd Generation ATP® test kit, specifically, the Deposit and Surface 

Analysis (DSA) test kit. It is designed to test attached/sessile microorganisms.   

SEM/EDS 

The morphology and chemical composition of the corrosion products/biofilm 

was investigated by Zeiss Neon 40EsB dual beam focussed ion beam scanning electron 

microscope (FIBSEM), equipped with energy dispersive X-ray spectroscopy (EDS). 

The surfaces were prepared following the steps below. 

1) Rinse the steel sample with sterile PBS buffer to remove loose 

deposits/bacteria cells. 

2) Immerse the steel sample in 0.025M PBS solution containing 2.5 (w/v) % 

glutaraldehyde (Sigma-Aldrich, USA) and 0.15 (w/v)% Alcian blue 

(Sigma-Aldrich, USA) for 24 h at room temperature. 

3) Take out the sample and rinse it with sterile PBS. 

4) Dehydrate the sample by sequentially immersing it in 30 %, 50 %, 70 %, 

80 %, 90 %, 95 % and 100 % ethanol for 10 min in each. 

5) Dry the dehydrated sample with nitrogen. 

6) Sputter coat the sample with 5 nm of platinum.    



193 

 

Weight loss measurement 

Corrosion products were removed according to according to the standard 

chemical cleaning procedure and the weight loss corrosion rates were determined 

based on ASTM G1 standard from duplicate steel samples. 

Corrosion depth measurement 

All the sample surfaces after corrosion products removal were observed under 

an infinite focus optical microscope (Alicona Instruments) to determine the depth of 

corrosion.  

Results and discussion 

Visual observations 

Figure 10-5 shows the test cell A and control cells B and C after 15 days. It can 

be seen that test cell A was characterised with black precipitates on the surfaces of 

samples and solution was black as well. In cell B, there were also black corrosion 

products present on the surfaces of the samples whereas the solution was clear. 

Moreover, the thick brown precipitates formed not only on the sample surfaces but 

also at the bottom and the surface on the sample holder. The black corrosion products 

in cell A can be attributed to the SRB metabolic activities while the black precipitates 

in cell B without bacteria were probably due to the addition of the supplementary 

chemicals, i.e. lactate, vitamin solution, modified Wolfe’s mineral elixir and 0.2 g/L 

FeSO4·7H2O. In addition, these products were relatively loose and easier to be rinsed 

away compared to the biogenic black corrosion products observed in cell A. By 

contrast, without these supplements, in cell C, no black corrosion products were 

formed on the sample surfaces. 

 

 

 



194 

 

Figure 10-5: Photos of test cells A (with SRB), B (without SRB but with 

supplements) and C (without SRB and supplements) after 15 days. 

Monitoring of bacteria activities and solution chemistry 

Since the bacteria started growing after three days of the second inoculation, 

which was indicated by the colour of the test solution in cell A turning to black, 

measurements of the bacteria cell densities and the solution chemistry were performed 

from day 7. Table 10-4 shows the variations of the D. alaskensis cell densities as well 

as the solution chemistry. 

As can be seen, the cell densities of SRB increased in general and the sulphate 

concentration decreased during the test period between two solution replacements. 

Theoretically, the decrease in sulphate concentration should be associated with an 

increase in sulphide concentration due to the metabolic activities of the SRB. 

Surprisingly, during the whole test period, the concentration of dissolved sulphide in 

the solution was undetectable even though the test solution was blackening with time. 

This might be because of the free S2- being oxidised by the dissolved oxygen or by 

chemical interference from other solution components with the kit reagents. In addition, 
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it was noticed that between the solution replacements, the pH values of the test solution 

were almost unchanged. 

By contrast, the sulphate concentrations of cell B and C remained constant at 

around 3000 mg/L and 2700 mg/L, respectively. 

Table 10-4: Cell density and chemical monitoring for cell A. 

Microscopic analysis 

Figure 10-6 shows the SEM images of the corrosion products formed at the 

steel surfaces. The associated EDS spectra are shown in Figure 10-7. 

As can be seen from Figure 10-6(a), on the sample retrieved from cell A after 

37 days, the curved rod-like bacteria (enclosed by a dashed circle) were incorporated 

inside of the corrosion products instead of forming a biofilm and the volume fraction 

Time 

(day) 

SRB cell density 

(cell/mL) 

SO4
2- 

(mg/L) 

pH Notes 

7 104 3,200 7.03 First solution replacing 

10 105 - 7.04 

15 - 3,600 7.04 Second solution replacing 

17 106 3,300 7.01 

20 - 3,200 7.02 

22 105 3,900 7.05 Third solution replacing 

24 107 3,800 7.07 

27 - 3,200 7.07 

30 - 4,000 7.08 Fourth solution replacing 

34 - 3,000 7.04  

36 106 2,700 7.06  

37 - 3,000 7.09 ATP analysis: 2107.88 

pg/cm2 
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of the bacteria was rather small. At a lower magnification (Figure 10-6 (b)), aggregated 

granular products were found to be intertwined with other products featured with 

straight rod and needle shapes.   

Figure 10-6: SEM images of corrosion products formed on the steel surface after (a, 

b) 37 days in cell A with SRB (c) 21 days in cell B without SRB but with 

supplements (d) 21 days in cell C without SRB and supplements. 

Based on the EDS spectra shown in Figure 10-7, the granular products were 

mainly composed of S, Fe, Ca and O, whereas the straight rod shaped products were 

consisted of C, O and Ca. Because of the seawater environment and the presence of 

sulphate reducing bacteria, it can be inferred that the primary corrosion products 

formed on the steels in cell A were iron sulphide, iron oxides/hydroxides and calcium 

carbonate [1, 2]. However, it should be noted that the corrosion product layer was 

heterogeneous. The element S shown in spectrum S1 may also come from sulphated 

green rust (GR(SO4
2-) = Fe4

IIFe2
III(OH)12SO4·8H2O), which is commonly found for 

carbon steels immersed in seawater [1, 3, 4]. 
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Figure 10-7: EDS spectra of the marked positions in Figure 10-6. 

Figure 10-6(c) shows the SEM image of an area with black deposits on the 

surface of the steel sample in cell B. Similarly, the straight rod-like products 

constituted of flower-shaped structures (Figure 10-6(c)), which were determined to be 

calcium carbonate by the EDS spectrum S3. The chemical elements detected at site S4 

(Figure 10-7(S4)) were also similar to those at site S1 (Figure 10-7(S1)), i.e. S, Fe, Ca 

and O. In combination with the black deposits observed in Figure 10-5(B), site S4 

could be composed of calcareous products intermingled with FeS or Fe3O4. In addition, 

Figure 10-8 shows an EDS spectrum of a site in the area without black deposits on the 

same steel sample retrieved from cell B. As can be seen, apart from the calcareous 

products, it was mainly composed of elements Fe and O, suggesting that the 

brown/yellowish products were iron oxides/hydroxides. 
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Figure 10-8: EDS spectrum of a site (indicated by the cross mark) within the area 

without black deposits on the steel sample retrieved from cell B after 21 days of 

immersion. The inset image shows the micromorphology of the examined area.  

In comparison, for the steel samples immersed in the filtered seawater, the 

morphologies of the corrosion products were different. As can be seen from Figure 

10-6(d) and Figure 10-7(S5), calcium carbonate products were also formed. In addition, 

the particulate products (enlarged image shown in Figure 10-7(S6)) were composed of 

elements Fe, O, Ca, C and Mg, which could be the constituents of mixed carbonate 

minerals. 

Electrochemical noise 

Figure 10-9 shows the typical EN segments obtained on days 2, 8 and 18 for 

cells A, B and C. The signals were linearly detrended and certain offset was applied 

for better visualisation. As can be seen, the potential fluctuations for different cells 

were all similar on various days. The average potential values (V vs. Ag/AgCl) of each 

potential segment (before drift removal) are presented in Table 10-5. It can be seen 

that the potential values of the steel samples in test cell A were lower than those in the 

control cells B and C at all times. Without the addition of chemical supplements in the 

test solution (cell C), the average potential values of the steel samples were slightly 
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lower than those in cell B on days 2 and 8, but on day 18, the potential value was 

increased and reached a similar level as cell B.  

Figure 10-9: Electrochemical noise segments obtained on days 2, 8 and 18 for (a1, a2) 

Cell A with SRB, (b1, b2) Cell B without SRB but with supplements, (c1, c2) Cell C 

without SRB and supplements. 
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Table 10-5: Average potential values (V vs. Ag/AgCl) of cells A, B and C obtained 

on days 2, 8 and 18. 

From the current signals, it is noticed that at the beginning (day 2) of all the 

tests, the current fluctuations were all similar with relatively large amplitudes which 

decreased later with time. On day 18, the characteristic pitting transients were shown 

in the current signal obtained with the steel samples in test cell A, while no such 

transients were observed for the two control cells. It was expected that similar 

transients should be present in the corresponding potential signal. Nevertheless, it 

seems that such peaks were not very obvious in the potential noise data. This could be 

traced back to the actual corrosion morphologies of the steel samples underneath the 

corrosion products. 

Figure 10-10 shows the microscopic images of steel electrodes after corrosion 

product removal. As can be seen, the steel samples in the control cells B and C 

basically underwent uniform corrosion during 21 days of immersion in the seawater 

environment without bacteria. In contrast, the samples retrieved from cell A with SRB 

addition exhibited specific areas where more severe corrosion were concentrated, 

while only mild general corrosion attack was observed outside of the area. Clearly, it 

can be seen from Figure 10-10(a1) and (a2), the areas with lighter colour were more 

corroded with a depth in the range of 5 – 10 µm and width about 200 µm, compared 

to the darker area. Therefore, it could be inferred that, in the presence of indigenous 

bacteria and the added D. alaskensis in seawater, the steel samples underwent mixed 

type of corrosion processes with general corrosion as the dominant form. This could 

be correlated with the electrochemical noise signals shown in Figure 10-9(a1, a2), 

where only a few characteristic current transients were observed and the potential 

transients were not clearly visible.  

Cell A Cell B Cell C 

Day 2 -0.7387 -0.6799 -0.7058

Day 8 -0.7247 -0.6948 -0.7145

Day 18 -0.7539 -0.6846 -0.6740



201 

Figure 10-10: Microscopic images of steel electrodes after corrosion product 

removal. 

 Specifically, Figure 10-10(a) is a 2D image (5x) of the general surface of a 

working electrode retrieved from cell A after 37 days; (a1, a2) 3D images (10x) of an 

area showing concentrated corrosion on the steel sample (a); (b) 2D image (5x) of the 
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general surface of a working electrode retrieved from cell B after 21 days; (b1, b2) 3D 

images (10x) of a typical area showing general corrosion of the steel sample (b); (c) 

2D image (5x) of the general surface of a working electrode retrieved from cell C after 

21 days; (c1, c2) 3D images (10x) of a typical area showing general corrosion of the 

steel sample (c). 

It is commonly acknowledged that the electrochemical noise resistance, 

defined as the ratio of potential standard deviation to current standard deviation, is 

equivalent to the polarisation resistance obtained from LPR technique, thus can be 

used as an indicator of the variation of general corrosion rate. In this study, the EN 

signals obtained from each day were divided into small segments, followed by linear 

trend removal. Each segment contained 1024 data points for the current and potential, 

respectively. The noise resistances were calculated with the EN segments for each day 

and the average values are shown in Figure 10-11. 

Figure 10-11: Variation of electrochemical noise resistances with time for different 

test cells. 

Evidently, the noise resistances of the steel samples in cell A were relatively 

higher than those obtained with the samples from two control cells, indicating a lower 

general corrosion rate. This is in line with the corrosion rates computed from weight 

loss, as shown in Table 10-6, where the Rn values were the average values of the those 

shown in Figure 10-11, the corrosion rates by Rn were determined based on ASTM 
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standard G102 using the parameter B = 0.026 V/decade, and the corrosion rates from 

weight loss were determined with duplicate coupons according to ASTM standard G1. 

Table 10-6: Corrosion rates of the steel samples in different cells. 

Interestingly, the corrosion rates calculated with the average Rn were very close 

to those from weight loss. It should be noted that since the specimens in cell A 

underwent some extent of localised corrosion, the mass loss in g per unit area per day 

was reported as the corrosion rate.  

Recurrence quantification analysis of EN 

The current segments shown in Figure 10-9 were converted to recurrence plots 

with a threshold value of 0.1σ, as presented in Figure 10-12. Twelve variables 

described in previous chapters were extracted from each current data segment and the 

results are displayed in Figure 10-13. Please note that the recurrence quantification 

analysis of each current segment was conducted on an epoch by epoch basis. Each 

epoch contained 1024 data points (corresponding to 512 s), which was shifted by 100 

data points to the later progressively. For example, in the case of the current segment 

associated with cell A – day 2, the first epoch was associated with data points 1 – 1024, 

which was shifted by 100 data points in the next step, resulting in the second epoch 

containing data points 101 – 1124, and so on. Twelve variables were obtained from 

each epoch and there were 10 epochs in total for each current segment.  

 

 

 

 Average 

Rn (Ω) 

Corrosion rate 

(mm/y, by Rn) 

Corrosion rate 

(mm/y, by weight loss) 

Cell A 1,513 0.65* 0.65* 

Cell B 994 0.05 0.08 

Cell C 247 0.18 0.11 

* The unit of corrosion rates for cell A is g·m-2·day-1.   
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Figure 10-12: Recurrence plots of the current segments shown in Figure 10-9. 
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Figure 10-13: RQA variables calculated from the current segments presented in 

Figure 10-9. Indices (1-10) correspond to day 2, (11 - 20) day 8 and (21-30) day 18. 

It can be seen from Figure 10-13, for all the cells, almost all the RQA variables 

decreased from day 2 to day 8 and day 18. Moreover, as mentioned before, on day 18, 

the characteristic pitting transients were shown in the current signal obtained with the 

steel samples in test cell A, which is distinct from those obtained in cell B and cell C. 

From Figure 10-13, it appears that on day 18 (index 20 – 30), only variables 𝐷𝐸𝑇 and 

𝐿𝐴𝑀 showed relatively large difference between cell A, B and C. Similar trend is 

observed, i.e. the values associated with cell A are higher than those related to cell B 

and cell C. 

Summary 

In this study, the effect of SRB on corrosion of carbon steel was investigated 

by using electrochemical noise and microscopic analysis. 

Scanning electron microscopy (SEM) images of the corrosion products formed 

at the steel surfaces indicated that curved rod-like bacteria were incorporated inside of 

the corrosion products instead of forming a biofilm. The composition of corrosion 

products formed on the steel samples of biotic and abiotic tests was determined with 
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energy dispersive spectroscopy (EDS). Results showed that, in the presence of SRB, 

the main corrosion products were iron sulphide, iron oxides/hydroxides and calcium 

carbonate. In the control cells, the corrosion products were mainly composed of 

calcium carbonate and other carbonate minerals. 

The surface profile analysis of the steel samples after removal of corrosion 

products revealed that, in the presence of SRB, the corrosion of steel exhibited some 

extent of localisation, while only low general corrosion occurred to the steel in the 

control tests. Overall, the differences between the surface morphologies of biotic and 

abiotic samples were not as distinctive as expected. 

The electrochemical current noise data obtained from the test with SRB 

showed a few pitting transients after 18 days, yet no such transients were observed for 

the control tests. This in part agreed with the observed surface morphologies. 

The average corrosion rates of the samples in all the tests were evaluated by 

weight loss measurements and the results were compared with those obtained with 

electrochemical noise resistance (Rn) calculated from EN data. It was found that the 

corrosion rates calculated with the average Rn were very close to those from weight 

loss. Moreover, the average corrosion rates for all the tests were low, but the steels in 

the control cells were corroded with a relatively higher rate than those in the test cell 

with SRB. 

In addition, from recurrence quantification analysis of the selected EN data, 

RQA variables 𝐷𝐸𝑇 and 𝐿𝐴𝑀 appeared to be able to capture the difference between 

the EN signals associated with different test cells. 

Overall, the added SRB did not induce significant localised corrosion to steel 

as expected. It also happens often in the industry that there is active bacteria present 

but there is no MIC issues in the system. This is due to the fact that microorganisms 

and biofilms are very complex and can influence the surface reactions in different ways 

and at different times.  
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