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ABSTRACT 
 

Mafic dyke swarms are ubiquitous in cratons worldwide and preserve snapshots of 

their tectonic and magmatic evolution. Mafic dykes also provide important targets 

for paleomagnetic studies and act as barcodes in paleogeographic reconstructions. 

Their utility is often hampered by the lack of high precision geochronology because 

dating mafic rocks can be difficult due to their mineralogy. This PhD study applies a 

two-step U-Pb geochronology technique to date suboptimal samples and presents the 

discoveries of three previously unknown mafic dykes swarms in southwestern 

Yilgarn Craton and the first U-Pb age for a mafic dyke swarm at Bunger Hills in East 

Antarctica.  

 

The discovery of the 2615 Ma Yandinilling dyke swarm provides the first evidence 

of Archean mafic dykes in the Yilgarn Craton. Their emplacement supports a model 

involving post-orogenic collapse and lithospheric delamination following a 

Neoarchean orogeny and cratonisation, possibly associated with assembly of 

Superia. Paleogeographic reconstructions suggest that the Yilgarn and Zimbabwe 

cratons may have been neighbours during the Neoarchean and coeval Stockford 

dykes in the Central Zone of the Limpopo Belt may thus have been produced by the 

same tectonic event. Mafic dykes of this age are rare worldwide and have so far only 

been reported from the Limpopo Belt and the São Francisco Craton in South 

America.  

 

The newly identified 1888 Ma Boonadgin dyke swarm is synchronous with a global 

episode of major crustal growth. This event is present in most Archean cratons 

worldwide but has been unknown in the Yilgarn Craton until now. On a regional 

scale, the emplacement of the dyke swarm coincides with lithospheric extension in 

the northern and southern margins of the craton. Paleogeographic evidence suggests 

that the West Australian Craton was adjacent to India during the Paleoproterozoic 

and raises the possibility that the Boonadgin dykes are part of the 1890 Ma Bastar-

Cuddapah LIP in India. However, new paleomagnetic evidence does not support 
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assembly of Nuna at 1890 Ma and indicates that whereas the West Australian Craton 

was adjacent to the India, it was separated from other free-drifting cratonic blocks by 

oceans. Preliminary geochemical analysis indicates involvement of a predominantly 

depleted mantle source with contribution from the subcontinental lithosphere and/or 

the lower crust.  

 

The 1390 Ma Biberkine dyke swarm coincides with renewed subduction along the 

southern margin of the West Australian Craton after a prolonged period of tectonic 

quiescence. Whereas it is difficult to directly link the dykes to other tectonothermal 

episodes regionally, current models suggest that this was a direct consequence of 

plate reorganisation during transition from Nuna to Rodinia. Initial geochemical 

evidence indicates that the predominant source was the subcontinental lithospheric 

mantle and/or lower crust. The Biberkine dykes are synchronous with mafic dyke 

swarms in many other cratons worldwide. 

 

The first U-Pb age of 1134 Ma for a major mafic dyke swarm at Bunger Hills in East 

Antarctica confirms a previous Rb-Sr age of ca. 1140 Ma. The Bunger Hills, and the 

Windmill Islands 400 km further east, have been interpreted as part of the Yilgarn 

Craton during the Mesoproterozoic and the dykes were emplaced during the final 

stages of the Albany-Fraser Orogeny, which marks the collision of the West 

Australian and Mawson cratons during assembly of Rodinia. Existing and new 

geochemical data suggest that the source of the dykes involved an EMORB-like 

source reservoir that was contaminated by a lower crust-like component. Similar but 

undated dykes at Windmill Islands may be of same age and if this is the case, the 

presence of a dyke swarm of at least 400 km in extent suggests a possible mantle 

plume source.    

 

The new dyke swarm ages presented in this study fall in key periods of 

supercontinent assembly and breakup/reconfiguration between the Neoarchean and 

the Mesoproterozoic and make an important contribution to the global database of 

mafic dyke swarms.  
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Chapter 1  Introduction 

Mafic dykes occur on every continent on Earth and are ubiquitous in Archean 

cratons, where their emplacement history may span several billion years. Because 

they preserve tectonic and magmatic snapshots of the evolution of the craton far back 

in time when other geological evidence may long have been eroded away, they are 

excellent targets for paleomagnetic studies (Ernst and Buchan, 1997; Buchan et al., 

2001; Bleeker and Ernst, 2006; Halls, 2008; Teixeira et al., 2013) and can act as 

proxies for paleostress fields and pre-existing crustal weaknesses (Halls, 1982; Ernst 

et al., 1995b; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 2012; Ju et al., 

2013). Moreover, mafic dyke swarms, which represent the plumbing systems of now 

eroded Large Igneous Provinces (LIPs) (Coffin and Eldholm, 1994), can be 

employed as unique magmatic barcodes and geological piercing points for 

paleogeographic reconstructions (e.g. Ernst and Buchan, 1997; Bleeker, 2004; 

Bleeker and Ernst, 2006; Ernst and Bleeker, 2010; Ernst et al., 2016). LIPs are 

commonly linked to breakup and rifting of supercontinents, which are thought to 

have formed through cyclical assembly and amalgamation of cratonic blocks 

since the late Paleoproterozoic (Yale and Carpenter, 1998; Zhong et al., 2007; 

Nance and Murphy, 2013; Meert, 2014; Nance et al., 2014; Pisarevsky et al., 2014a). 

The supercontinent cycle is a first-order planetary scale process that has 

profoundly influenced the mantle dynamics, surface processes, evolution of life 

and the compositions of the atmosphere and the hydrosphere on Earth (Worsley et 

al., 1984; Nance et al., 1986; Santosh, 2010; Bradley, 2011; Murphy and 

Nance, 2013). The utility of large igneous provinces and their mafic dyke 

swarms fundamentally depends on the availability of precise geochronology and 

for many cratons worldwide, this is still limited due to challenges presented 

by the mineralogical and petrological characteristics of mafic rocks.  

This PhD project focusses on improving the magmatic barcode of the Yilgarn Craton 

of Western Australia and the Bunger Hills of East Antarctica in order to place them 

in the regional and wider tectonic context of the supercontinent cycle. This is 

achieved through systematic dating and, where possible, preliminary geochemical 

characterisation of mafic dykes in an area where dense dyke swarms are known to 
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occur. Moreover, the improved magmatic barcode for the Yilgarn Craton and the 

Bunger Hills contributes to the ongoing effort to date and fingerprint mafic dyke 

swarms globally (Ernst and Buchan, 2001a; Bleeker and Ernst, 2006; Ernst et al., 

2013). This study will demonstrate how targeted sampling of dykes and use of a 

combination of geochronology techniques may be applied to successfully overcome 

some of the difficulties in mafic dyke geochronology.  

1.1 Study field areas 
Unlike some Archean cratons worldwide, such as the Superior Craton in North 

America and the Kola-Karelia Craton in northern Europe (e.g. Ernst et al., 2010; 

Ernst and Bleeker, 2010), the magmatic barcode of the Yilgarn Craton (section 2.2) 

has been limited. For Antarctica, the record is even less defined due to obvious lack 

of outcrop and logistical difficulties for sampling. Prior to this study, two craton-

wide mafic dyke swarms at 2408 Ma and 1210 Ma (e.g. Doehler and Heaman, 1998; 

Wingate et al., 2000; Pidgeon and Nemchin, 2001; Wingate, 2007) and minor 

occurrences of 1075 Ma and 735 Ma dykes (Wingate, 2002, 2017; Wingate et al., 

2004; Spaggiari et al., 2009) were known in the Yilgarn Craton. At Bunger Hills 

(section 2.5), which has been interpreted as part of the Yilgarn Craton at least until 

the Mesoproterozoic (Sheraton et al., 1993, 1995; Clark et al., 2000; Fitzsimons, 

2003; Aitken et al., 2016; Tucker et al., 2017), several geochemically distinctive 

mafic dyke suites have been identified but none have available precise 

geochronology (Sheraton et al., 1990). Mapping (Geological Survey of Western 

Australia) and aeromagnetic data (Geoscience Australia magnetic grid of Australia 

V6 2015 base reference) indicate that many different dyke orientations are present 

across the Yilgarn Craton and many of these have been assigned to the 1210 Ma 

Marnda Moorn LIP, which comprises a number of sub-swarms that extend along the 

craton margins in a variety of orientations. However, on the basis of aeromagnetic 

data and evidence from other Archean cratons worldwide, it is anticipated that other 

dyke generations could be present. Moreover, recent studies have demonstrated that 

dyke orientations alone may not be a reliable indicator between different dyke 

generations, especially near major tectonic boundaries and structures (e.g. Hanson et 

al., 2004; Wingate, 2007; French and Heaman, 2010; Belica et al., 2014).  
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1.2 Aims and objectives 
The main aims of this PhD project were set out as follows: 

1. Obtain high-precision geochronology from mafic dykes in south-western

Yilgarn Craton to establish how many different dyke generations are present

2. Obtain first high-precision geochronology from mafic dykes at Bunger Hills

in East Antarctica, which has been interpreted part of the Yilgarn Craton

during the Mesoproterozoic

3. Where possible, undertake preliminary geochemical analyses for successfully

dated dykes to characterise their mantle source

4. Based on these results, clarify the tectonic setting during emplacement of the

dykes and establish how the timing of their emplacement is related to the

supercontinent cycle

1.3 Thesis structure 
The main body of this thesis consists of four papers on newly discovered or dated 

mafic dyke swarms in Western Australia and East Antarctica, with ages spanning 

from Neoarchean to the Mesoproterozoic. An introductory chapter outlining the 

project aims and the thesis structure is followed by a literature review in Chapter 2 

and an overview of the key aspects of the geochronology techniques in Chapter 3. 

Chapters 5 to 7 comprise papers that have been published/accepted for publication in 

Precambrian Research. Chapter 8 presents conclusions of this study and discusses the 

significance of the newly discovered mafic dykes in the wider context of 

paleogeographic reconstructions and the supercontinent cycle. Copies of the 

published papers and the relevant co-author approvals are found in Appendix A. 

Brief outlines of each chapter are given below. 

Chapter 2. Literature review. This chapter reviews the relevant literature and 

provides background for the results presented in the following chapters. 
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Chapter 3. Overview of the geochronology methods. This chapter outlines the 

geochronology techniques employed in this study, focussing on application of the in 

situ U-Pb ion microprobe dating on mafic dykes and how it has played a key role in 

the success of the project. 

 

Chapter 4. First evidence of 2.62 Ga Archean mafic dykes in the Yilgarn Craton, 

Western Australia and links with the Zimbabwe Craton. This chapter reports the first 

evidence for Archean mafic dykes (named the Yandinilling dyke swarm) in the 

Yilgarn Craton and discusses their links with final stages of cratonisation and 

lithospheric delamination. A possible connection with the Zimbabwe Craton and the 

Limpopo Belt in southern Africa is proposed on the basis of coeval mafic dykes, 

paleomagnetic evidence and tectonothermal history.  

 

Chapter 5. Newly discovered 1.89 Ga mafic dyke swarm in the Yilgarn Craton, 

Western Australia suggests a connection with India. This chapter reports the 

discovery of a new mafic dykes (named the Boonadgin dyke swarm) in southwestern 

Yilgarn Craton. Combined with recent paleomagnetic evidence, the paper proposes 

that the Boonadgin dyke swarm is part of the 1890 Ma Cuddapah Large Igneous 

Province in India. 

 

Chapter 6. 1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna 

to Rodinia transition in the West Australian Craton. This chapter discusses the 

discovery of 1.39 Ga mafic dykes (named the Biberkine dyke swarm) and argues that 

their emplacement marks the Nuna to Rodinia transition in the West Australian 

Craton after a hiatus of 200 m.y. in tectonic activity. 

 

Chapter 7. First U-Pb geochronology for a 1.13 Ga Ma mafic dyke suite at Bunger 

Hills, East Antarctica marks the end of the Albany-Fraser Orogeny. This chapter 

presents the first U-Pb geochronology from a mafic dyke suite at Bunger Hills and 

links their emplacement with the final stages of the Mesoproterozoic Albany-Fraser 

Orogeny.  
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Chapter 8. Conclusions and the significance of mafic dykes as tectonic markers in 

the supercontinent cycle. This chapter discusses the application of mafic dykes in 

paleogeographic reconstructions with focus on the tectonic implications and presents 

conclusions from this PhD study.  
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Chapter 2   Mafic dykes and supercontinent cycles 

This PhD project focusses on the identification and use of mafic dyke swarms as 

magmatic markers in the regional and wider tectonic context of the supercontinent 

cycle. This Chapter presents a literature review of Large Igneous Provinces and 

mafic dyke swarms, and their role in unravelling the supercontinent cycle. Regional 

geology for the areas involved, the Yilgarn Craton of Western Australia and the 

Bunger Hills of East Antarctica, is also reviewed. It should be noted that some 

overlap between this Chapter and Chapters 4-7 necessarily arises from the latter 

being self-contained publications. Specifically,  

• Regional geology, tectonothermal evolution and mafic dykes of the Yilgarn 

Craton are discussed in sections 4.3.1, 5.3 and 6.3.

• Regional geology and mafic dykes of the Bunger Hills are discussed in 

section 7.3.

• The Albany-Fraser Orogen is discussed in sections 6.8.2 and 7.9.2.1. 

2.1 Large Igneous Provinces 
Large igneous provinces (LIPs; Coffin and Eldholm, 1994) are high-volume, short-

duration, predominantly mafic intraplate magmatic events that occur throughout 

Earth’s history (Figure 2.1) (Ernst and Buchan, 1997, 2001a; Isley and Abbott, 1999; 

Abbott and Isley, 2002a; Bryan and Ernst, 2008; Bryan et al., 2010; Ernst et al., 

2010; Ernst, 2014). They are defined as magmatic provinces with areal extents  > 0.1 

Mkm2 and maximum lifespans of ~50 Ma, and include continental and oceanic flood 

basalts, regional dyke swarms, sill provinces and associated silicic and ultramafic 

intrusives (Bryan and Ernst, 2008; Ernst, 2014). The origins of large igneous 

provinces are under debate and they have been variably associated with mantle 

plumes (Richards et al., 1989; Campbell and Griffiths, 1990; Ernst and Buchan, 

2001a, 2001b; Courtillot et al., 2003; Ernst and Bleeker, 2010), back-arc extension 

(Smith, 1992; Rivers and Corrigan, 2000; Puffer, 2003), breakup of supercontinents 
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(Courtillot et al., 1999; Ernst and Bleeker, 2010; Ernst et al., 2013), lithospheric 

mantle delamination events (Elkins Tanton and Hager, 2000; Elkins-Tanton, 2005), 

Earth's deep volatile cycling (Wang et al., 2015, 2016), decompression melting 

during lithospheric extension and rifting (White and McKenzie, 1989), craton edge-

driven convection (Anderson, 1995; King and Anderson, 1995) and meteorite 

impacts (Abbott and Isley, 2002b; Jones et al., 2002; Ingle and Coffin, 2004). Large 

igneous provinces are intimately connected with mantle dynamics and 

supercontinent cycles (e.g. Condie, 2004; Prokoph et al., 2004; Bleeker and Ernst, 

2006; Ernst et al., 2008; Li and Zhong, 2009; Clowes et al., 2010; Goldberg, 2010), 

formation of major mineral deposits (e.g. Pirajno and Hoatson, 2012; Ernst and 

Jowitt, 2013) and the evolution of life and the compositions of the atmosphere and 

the hydrosphere (Worsley et al., 1984; Nance et al., 1986; Wignall, 2001; Jourdan et 

al., 2005; Santosh, 2010; Sobolev et al., 2011; Murphy and Nance, 2013; Young, 

2013; Ernst and Youbi, 2017). The flood basalt members of Phanerozoic LIPs are 

preserved but only plumbing systems remain for the majority of Precambrian LIPs, 

represented by mafic dyke swarms (e.g. Bryan and Ernst, 2008; De Kock et al., 

2014; Ernst, 2014 and references therein).   

 

 
Figure 2.1  Age distribution of Large Igeous Provinces (LIPs) through time. After 
Prokoph et al. (2004).  

2.1.1 Formation mechanisms of large igneous provinces  
Most large igneous provinces have been linked to mantle plumes and their frequency 

and distribution is employed as a proxy of mantle plume events (Ernst and Buchan, 
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1997, 2001a; Bleeker and Ernst, 2006; Ernst and Bleeker, 2010; Condie et al., 2015). 

When a thermal buoyancy-driven mantle plume head rising from deep mantle and 

impinges upon the base of the lithosphere, tholeiitic flood basalts arise from the 

cooler regions of the plume head with a mixture of source mantle and entrained 

lower-mantle material (Figure 2.2) (Richards et al., 1989; Campbell and Griffiths, 

1990; Ernst and Buchan, 2001a; Courtillot et al., 2003). Clusters of plumes, or 

superplumes, have been linked to breakup and rifting of supercontinents (Morgan, 

1971; Cande and Stegman, 2011) including Rodinia (Li et al., 2003, 2008; Li and 

Zhong, 2009) and Pangea/Gondwana (Vaughan and Storey, 2007).  

 

Other proposed mechanisms involve decompression melting of the mantle due to 

thinned lithosphere (Figure 2.2) (at depths greater than ca. 115 km, hydrostatic 

pressure prevents partial melting of fertile non-hydrous mantle). These include 

lithospheric extension during rifting without plume involvement (i.e. with ambient 

mantle potential temperature gradients; Wijk et al., 2001) and with plume  

involvement (White and McKenzie, 1989) and lithospheric delamination of 

gravitationally unstable lower lithosphere (Elkins Tanton and Hager, 2000; Elkins-

Tanton, 2005). Instead of active thinning of the lithosphere, edge-driven convection 

involves decompression melting through focussed thermal upwelling of mantle along 

the edges of cratons, where the lithosphere is thinner (King and Anderson, 1995). 

This model also explains why most LIPs are found near craton margins. All these 

mechanisms would be expected to involve melting of the mantle source at relatively 

shallow depths (<115 km), however partial melting could be deeper if the source 

region was hydrous and/or metasomatically enriched (Hirschmann et al., 1999) such 

as in subduction zones. No lithospheric extension or plume is necessarily required if 

deep upwelling of hydrous mantle material displaced by stagnant subducted slabs at 

the 660 km mantle transition zone rise to the base of the lithosphere and fertilise the 

shallow mantle at the lithosphere-asthenosphere boundary (Figure 2.2) (Wang et al., 

2015, 2016). 
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2.2 Mafic dyke swarms 
2.2.1 Mafic dyke swarms as geodynamic and tectonic indicators 
Mafic dykes are intrusive tabular bodies of mafic composition that intrude pre-

existing crustal fractures and commonly have very high length to width ratios. They 

are excellent indicators of paleostress fields and pre-existing crustal weaknesses 

(Halls, 1982; Ernst et al., 1995b; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 

2012; Ju et al., 2013), and provide good targets for paleomagnetic studies (Evans, 

1968, 1999, Li et al., 1996, 2004; Wingate and Evans, 2003; Pesonen et al., 2003; Li 

and Evans, 2011; Piispa et al., 2011; Belica et al., 2014; Pisarevsky et al., 2015, 

2014b; Liu et al., 2018). Mafic dyke swarms, which are considered to represent  

plumbing systems of now-eroded flood basalts, comprise a large number of parallel 

or radially oriented dykes and can act as important markers for paleogeographic 

reconstructions (Figure 2.3) (Ernst and Buchan, 1997; Buchan et al., 2001; Bleeker 

and Ernst, 2006; Ernst and Srivastava, 2008; Heaman, 2008; Ernst et al., 2010, 

2013). Aerial extent of dyke swarms can be used as proxy of their volume (Ernst, 

2014) and this is assisted by regional aeromagnetic data, where mafic dykes often 

form prominent and distinctive features (e.g. Tucker and Boyd, 1987; Boyd and 

Tucker, 1990; Goldberg, 2010). However, without comprehensive geochronology it 

is difficult to assess the actual size of a dyke swarm and its designation as a LIP can 

be preliminary pending further studies.  

 

The LIP magmatic barcode method is based on systematic use of coeval dyke 

swarms to match conjugate margins of crustal blocks (Bleeker, 2003, 2004; Bleeker 

and Ernst, 2006; Ernst and Srivastava, 2008; Ernst et al., 2008, 2013, 2016; 

Söderlund et al., 2010). Giant dyke swarms are of particular importance because of 

they extend into the craton interior (preservation) and can provide unique piercing 

points (Halls, 1982; Bleeker and Ernst, 2006; Heaman, 2008). Presence of a dyke 

swarm may be the only preserved evidence for a major extensional or rifting event in 

the craton (Goldberg, 2010) and the magmatic barcode method can be employed to 

define the relative orientations of the now-dispersed crustal blocks and to constrain  

correlations in the absence of robust paleomagnetic poles. The LIP magmatic 

barcode method is critically dependent on the availability of robust high-precision 
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Figure 2.2 Various formation mechanisms of continental flood basalts. Redrafted 
and modified from Winter (2014). MORB = mid-ocean ridge basalt, OIB = ocean 
island basalt, SCLM = subcontinental lithospheric mantle. Slab-triggered wet 
upwelling after Wang et al. (2015, 2016). 

geochronology and to this end, global efforts to create a worldwide LIP database are 

ongoing (Ernst and Buchan, 2001a; Bleeker and Ernst, 2006). Some Archean 

cratons, such as the Superior Craton in North America and the Kola-Karelia Craton 

in northern Europe, have well characterised barcodes whereas others, including the 

Yilgarn Craton of Western Australia and the Zimbabwe Craton of southern Africa, 

still lack comprehensive high-precision geochronology (Ernst et al., 2013).  

 

Dyke trends are important indicators of the tectonic setting during their 

emplacement. Dykes originating from the same magmatic event have been found to 

generally exhibit consistent linear trends or regional radiating patterns (e.g. Figure 

2.3) (e.g. Halls, 1982; Tucker and Boyd, 1987; Buchan et al., 2010; Ernst, 2014). For 

example, giant mafic dyke swarms (>300 km long; Ernst et al., 1995) with typical 

average widths between 10 m and 40 m can be traced hundreds of kilometers (Ernst 

et al., 1995a; Ernst, 2014). In some cases, the dyke orientation alone cannot be 

reliably used to distinguish between different dyke generations, especially near major 
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tectonic boundaries and craton scale structures such as continental rifts (e.g. Hanson 

et al., 2004; Wingate, 2007; French and Heaman, 2010; Belica et al., 2014). An 

example of this is the Marnda Moorn LIP of the Yilgarn Craton, which has been 

linked to a mantle plume (Dawson et al., 2003; Wang et al., 2014), and comprises 

several sub-swarms that extend along and often parallel to the craton margins (Isles 

and Cooke, 1990; Evans, 1999; Wingate et al., 2000; Pidgeon and Nemchin, 2001; 

Pidgeon and Cook, 2003; Wingate and Pidgeon, 2005; Wingate, 2007; Claoué-Long 

and Hoatson, 2009).  

 

 
Figure 2.3 Enhanced Google Earth satellite image of the Vestfold Hills, East 
Antarctica, showing five different dyke generations. The NE trending dykes have 
been dated at ca. 1245 Ma, the north-trending dykes at ca. 1380 Ma, the NW 
trending dykes at ca. 1754 Ma, the WNW trending dykes at ca. 2400 Ma and the 
west-trending dykes at ca. 2240 Ma (Lanyon et al., 1993). The centre of the image is 
approximately 68°30'41 S 78° 06'43 E at eye altitude of 1.5 km. 

Regional dyke swarms are generally emplaced parallel to the principal stress 

direction  (i.e. parallel to the maximum compressive stress direction; Pollard, 1987; 
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Hou et al., 2006; Hou, 2012) and on a regional scale their emplacement is controlled 

by plate-boundary stresses (where plates interact, compressive stress during 

convergence and tensional stress during extension). This is demonstrated well by the 

ca. 1267 Ma Mackenzie LIP in North America (Heaman and Le Cheminant, 1988; 

LeCheminant and Heaman, 1989; Baragar et al., 1996; Ernst et al., 2008). The 

Mackenzie dyke swarm has a gently radiating geometry for over 2000 km and was 

emplaced from a deep mantle source, vertically near the plume centre and 

horizontally at distances > 1000 km under a uniform regional stress field acting on 

the craton margin (Ernst and Baragar, 1992; Hou et al., 2010). Moreover, at Vestfold 

Hills in East Antarctica, Hoek and Seitz (1995) used multiple generations of mafic 

dykes (Figure 2.3) to constrain the geodynamic and tectonothermal evolution of the 

region.  

 

2.2.2 Geochemistry of mafic dyke swarms 
Geochemistry of LIPs and mafic dykes reflects the diversity of their sources and 

their mechanisms of formation are under vigorous debate. Of particular interest is 

whether LIPs are mantle plume related because mantle plumes are thought to play a 

key role in the breakup and rifting of supercontinents. This aspect is discussed in 

more detail in section 2.3.2.    

 

Heterogeneities of the subcontinental lithospheric mantle (SCLM), secular changes 

of the asthenospheric mantle composition and crustal contamination play a key role 

in petrogenesis of mafic rocks and complicate interpretation of geochemical data 

(Allègre et al., 1982; Hart, 1984; Zindler and Hart, 1986; Hawkesworth et al., 1990, 

1995; Campbell, 2002; Stracke et al., 2005; Ernst et al., 2005; Jourdan et al., 2007; 

Wang et al., 2013, 2015, 2016; Li et al., 2014; Merle et al., 2014; Heinonen et al., 

2014, 2016; Hughes et al., 2014). The mantle source of many LIPs has been 

interpreted to involve both a depleted asthenospheric component and heterogeneous 

SCLM whereas a mantle plume source has been inferred for others, such as the 

Matachewan (Ciborowski et al., 2015), Marnda Moorn (Wang et al., 2014) and 

Siberian LIPs (Sobolev et al., 2011). Many continental flood basalts display arc-like 

trace element signatures that are characterised by relative depletion of High Field 

Strength elements (HFSE) such as Nb-Ta-Ti and enrichment in Large Ion Lithophile 
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Elements (LILE) such as Rb, Sr and Ba. These are thought to originate from 

hydrated long-term SCLM reservoirs enriched by fluids released from subducted 

slabs (Hawkesworth et al., 1995; Puffer, 2001; Jourdan et al., 2007; Murphy and 

Dostal, 2007; Wang et al., 2008, 2014, 2016) or from crustal contamination or 

asthenospheric mantle melts (Hawkesworth et al., 1995; Jourdan et al., 2007; Xia, 

2014). Recent studies have also raised the possibility that the fluids may originate at 

the mantle transition zone at ca. 660 km depth, where stagnated subducted slabs 

undergo dehydration and phase transitions (Bercovici and Karato, 2003; Ivanov and 

Litasov, 2014; Pearson et al., 2014). The Cenozoic Chifeng continental flood basalts 

have been associated with such deep wet upwelling (Wang et al., 2015). 

Identification of a plume source is not unambiguous but involvement of an ocean 

island basalt (OIB) type component, high mantle potential temperatures during 

partial melting of the source region and lack of HFSE depletion (e.g. Nb, Ta) are 

considered plume characteristics (Puffer, 2001). As discussed above, these can be 

masked if SCLM or crustal contamination is significant.  

 

Geochemical characteristics of dykes emplaced during the same magmatic event can 

be very complex even in a limited geographic area, such as the Bunger Hills of East 

Antarctica (ca. 300 km2 of outcrop) where at least six distinct mantle reservoirs are 

thought to be involved in the genesis of five compositionally distinct dyke groups 

(Sheraton et al., 1990; Condie, 1997). Previous studies have demonstrated that within 

a single dyke swarm, each dyke is a unique emplacement event with consistent 

geochemical composition (incompatible element ratios) and paleomagnetic direction 

along-strike, but these are nevertheless different from a nearby dyke of the same 

swarm (Halls, 1986; Buchan et al., 1993, 2007). This is also the case at Bunger Hills 

(Sheraton et al., 1990). Given the further possibility that in some cases the dyke 

trends are not unique within a dyke swarm, geochemical data for mafic dykes should 

ideally be accompanied by robust geochronology to ensure that the dykes belong to 

the same magmatic episode.  
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2.3 Supercontinent cycles  
2.3.1 Supercontinents through time 
The concept of what constitutes a supercontinent is not strictly defined but in general 

terms the term is applied to a large landmass that consists of an assembly of most, 

but not necessarily all, of Earth's continents (Hoffman, 1999; Gutiérrez-Alonso et al., 

2008; Li et al., 2008; Meert, 2012; Evans et al., 2016). Worsley, Nance and others 

(Worsley et al., 1984, 1985; Nance et al., 1986) predicted the existence of five 

supercontinents at ca. 600 Ma, 1100 Ma, 1800-1600 Ma, 2000 Ma and 2600 Ma and 

there is current consensus on the existence of at least two Precambrian and two 

Phanerozoic supercontinents (Figure 2.4). Timing of Gondwana assembly is 

contentious but it is thought to have amalgamated between ca. 750 Ma and 500 Ma 

(Bradley, 2008, 2011; Li et al., 2008; Stampfli et al., 2013; Evans et al., 2016), 

overlapping with the final breakup of Rodinia at ca. 520 Ma (Bradley, 2008 and 

references therein) whereas Pangea formed by ca. 300 Ma, followed by breakup 

starting at ca. 180 Ma (Bradley, 2011; Stampfli et al., 2013). Rodinia assembled 

between ca. 1300 Ma and 900 Ma (Condie, 2003; Li et al., 2008) and disassembled 

between ca. 750 Ma and  550 Ma (Li et al., 2008), although Bradley (2011) argues 

for ca. 1000-850 Ma tenure on the basis of passive margin and detrital zircon 

records. Timing of pre-Rodinia supercontinents is less certain. Estimates for the 

assembly of Nuna (Hoffman, 1997) or Columbia (Rogers and Santosh, 2002) vary 

between ca. 1850 Ma and 1600 Ma, with breakup sometime between 1450 Ma and 

1380 Ma (Rogers and Santosh, 2002; Zhao et al., 2002; Bradley, 2011; Pisarevsky et 

al., 2014a; Nordsvan et al., 2018), although Bradley (2011) suggests that Nuna 

remained intact until at least 1000 Ma. The oldest hypothesised supercontinents 

include Kenorland at ca. 2500 Ma (Williams et al., 1991) and  Ur/expanded Ur 

between ca. 3000-1500 Ma  (Rogers, 1996) with Arctica and Atlantica supercratons 

at ca. 2500-2000 Ma (Rogers, 1996). Moreover, supercratons Vaalbara, Sclavia and 

Superia have been proposed at ca. 3470-2700 Ma, ca. 2600-2200 Ma and ca. 2700-

2100 Ma, respectively (Bleeker, 2003, 2004; Bleeker and Ernst, 2006; Ernst and 

Bleeker, 2010). Bradley (2008) argued for slightly different timings on the basis of 

passive margin ages, with Vaalbara at ca. 3470-2685 Ma, Superia at ca. 2700-2300 

Ma and Sclavia at ca. 2600-2090 Ma. 
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2.3.2 Supercontinent cycles and LIPs 
Cyclicity in the assembly, amalgamation and breakup of such continents was first 

proposed by Worsley et al. (Worsley et al., 1982, 1984), who argued that these 

would be manifested as episodic peaks in orogenic activity and rifting with 

associated mafic dyke swarms (LIPs).  Increasing evidence suggests that assembly 

and breakup of supercontinents may have been a quasi-periodical phenomenon since 

at least the late Paleoproterozoic (Worsley et al., 1984, 1985, 1986, 1991, Nance et 

al., 1986, 2014; Worsley and Nance, 1989; Hoffman, 1998; Zhao et al., 2002; Rogers 

and Santosh, 2003, 2004; Zhong et al., 2007; Bradley, 2008, 2011; Santosh, 2010; 

Condie, 2011; Ernst et al., 2013; Murphy and Nance, 2013; Nance and Murphy, 

2013; Pisarevsky et al., 2014a; Meert, 2014; Pastor-Galán et al., 2018). 

Hawkesworth et al. (2010, 2016) proposed that peaks of zircon U-Pb crystallization 

ages are associated with periods of crustal thickening, continental collision, and 

thereby also assembly of supercontinents. Similarly, the minima and maxima in U-

Pb ages of zircons from granite (Condie et al., 2009) and from detrital zircon and 

passive margin abundances in both the Phanerozoic and the Precambrian have been 

linked with supercontinent cycles (Bradley, 2008, 2011).  

   

LIPs and giant mafic dyke swarms have commonly been used as proxies for breakup 

and rifting of supercontinents (Figure 2.4) (Yale and Carpenter, 1998; Courtillot et 

al., 1999; Ernst and Bleeker, 2010; Ernst et al., 2013; Condie et al., 2015). Based on 

the LIP record, Yale and Carpenter (1998) defined seven possible supercontinents 

since 3000 Ma (2800-2700 Ma, 2550-2400 Ma, 2250-2000 Ma, 1900-1600 Ma, 

1350-1000 Ma, 850-550 Ma and 350-0 Ma) and identified a 300-500 m.y. periodicity 

in the supercontinent cycle. Similarly, Prokoph et al. (2004) used the global LIP 

record (154 LIPs) to identify four LIP age distribution maxima (2800–2700 Ma, 

2200–2100 Ma, 1800– 1700 Ma  and 1300–1200 Ma) and four minima (2400–2300 

Ma, 1600–1500 Ma, 900–800 Ma and 500–300 Ma). These minima correlate with 

zircon and passive margin records and coincide with some of the proposed tenures of 

Gondwana, Rodinia and Nuna (Bradley, 2011).  Condie et al. (2015) found major 

periodicity at 250, 150, 100 and 50 million years in the LIP record and pointed out 

that not all LIP forming events are associated with zircon-producing events (granite 

formation), commonly linked to orogenic activity. 
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As discussed in section 2.2.1, the LIP method for paleogeographic reconstructions 

method utilises mafic dyke swarms as barcodes to match magmatic events on 

cratonic blocks (Bleeker, 2003; Ernst and Bleeker, 2010). The effectiveness of this 

approach depends on identification of the main (major) intraplate magmatic events 

within a craton and the extent and location of the magmatic event (must be large 

enough to extend across several cratons and not too far away from the craton 

margins). The magmatic barcode method benefits from the inherent characteristics of 

mafic dyke swarms (Bleeker, 2004; Bleeker and Ernst, 2006; Ernst et al., 2013), 

including rapid emplacement that can be dated precisely, typically large footprint 

across the craton, excellent paleostress and piercing point information and ability to 

yield high-quality paleomagnetic poles.  

 
Figure 2.4 Age distribution of Large Igneous Provinces showing hypothesised 
supercontinent tenures and orogenic activity. LIP data after Prokoph et al. (2004) 
and orogenic activity is from Condie and Aster (2013,  Fig.3B). See section 2.3.1 for 
discussion on supercontinents.  
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2.4 Mafic dykes of the Yilgarn Craton, Western Australia 
2.4.1 Regional geology  
The Archean Yilgarn Craton is a ca. 900 x 1000 km granite-greenstone crustal block 

that lies in the southern part of the West Australian Craton. It is divided into the 

South West, Narryer, Youanmi, Kalgoorlie, Kurnalpi and Burtville terranes, the 

latter three forming the Eastern Goldfields Superterrane (Figure 2.5) (Cassidy et al., 

2006). The craton is bounded by three Proterozoic orogenic belts: the ca. 2005─570 

Ma Capricorn Orogen in the north (Cawood and Tyler, 2004; Sheppard et al., 2010a; 

Johnson et al., 2011), the ca. 1815─1140 Ma Albany-Fraser Orogen in the south and 

east (Nelson et al., 1995a; Clark et al., 2000; Spaggiari et al., 2015), and the ca. 

1090–525 Ma Pinjarra Orogen in the west (Myers, 1990; Wilde, 1999; Ksienzyk et 

al., 2012). Most of the terranes formed between ca. 3050 and 2550 Ma and whereas 

the South West and Narryer Terranes in the west comprise high-grade supracrustal 

rocks, granitic gneisses and granites, the Youanmi and Eastern Goldfields Terranes 

in the east are dominated by greenstone belts separated by granites and granitic 

gneisses (Figure 2.6) (e.g., Gee et al., 1981; Pidgeon and Wilde, 1990; Myers, 1993; 

Wilde et al., 1996; Nelson, 1997; Cassidy et al., 2002; Barley et al., 2003). 

 

Amalgamation of the craton involved repeated collisions during a Neoarchean 

orogeny between ca. 2730 and 2625 Ma (Myers, 1993, 1995; Barley et al., 2003; 

Blewett and Hitchman, 2006; Korsch et al., 2011; Zibra et al., 2017a; Witt et al., 

2018) with development of a stable cratonic lithosphere by ca. 2660 Ma (Zibra et al., 

2017b). Cratonisation was accompanied by widespread granitic magmatism between 

ca. 2690 Ma and 2625 Ma (Compston et al., 1986; Wilde and Pidgeon, 1986; 

Champion and Sheraton, 1997; Nemchin and Pidgeon, 1997; Qiu et al., 1997; 

Smithies and Champion, 1999;  Cassidy et al., 2002; Mole et al., 2012). 
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Figure 2.5 Map of the Yilgarn Craton showing major tectonic units. Inset shows the 
extent  of the West Australian Craton (Pilbara Craton, Yilgarn Craton and 
Capricorn Orogen). From Geological Survey of Western Australia 1:2.5M 
Interpreted Bedrock Geology 2015 and 1:10M Tectonic Units 2016. Dashed lines 
are terrane boundaries within the southwestern Yilgarn Craton after Wilde et al. 
1996:  BaT = Balingup Terrane, BoT = Boddington Terrane and LGT = Lake Grace 
Terrane. For more details see Figure 2.6 

2.4.2 Mafic dykes  
The Yilgarn Craton hosts numerous dyke suites of different orientations, and dyke 

density increases towards the southern and western craton margins (Hallberg, 1987; 

Tucker and Boyd, 1987). The dykes are clearly discernible in aeromagnetic data but 

deep weathering and thick regolith cover make sampling difficult. Two craton-wide 

dyke swarms are well dated and limited occurrences of at least four others have been 

identified (Figure 2.5). The largest dykes belong to the E-W to NE-SW trending 

2418–2408 Ma Widgiemooltha Supersuite (Sofoulis, 1965; Evans, 1968; Campbell 

et al., 1970; Hallberg, 1987; Doehler and Heaman, 1998; Nemchin and Pidgeon, 

1998; Wingate, 1999, 2007; French et al., 2002), which includes the 2401 ±1 Ma 

Eraynia dykes in the eastern part of the craton (Pisarevsky et al., 2015). The 

Widgiemooltha dykes are up to 3.2 km wide, vertical to sub vertical and comprise 

predominantly massive olivine dolerite and gabbro or picrite (Myers, 1990). They 

extend up to 700 km across the craton and the largest intrusions, Jimberlana and 
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Binneringie, show well-developed igneous layering (Campbell et al., 1970; Lewis, 

1994). McCall and Peers (1971) describe flow layering and laminar flow structures 

and stepping in the massive Binneringie dyke, dated at 2418	± 3 Ma by Nemchin 

and Pidgeon (1998), which is 500-1000 m wide and continuous for over 585 km. 

Similarly, the Jimberlana dyke is ~180 km long, with up to 2.5 km wide funnel 

shaped layered intrusion with cumulate textures (Campbell et al., 1970; McClay 

and Campbell, 1976).  

The most extensive dyke swarm in the craton is the 1210 Ma Marnda Moorn LIP 

(Figure 2.5), which was emplaced during stage 2 of the Albany-Fraser Orogeny  (ca. 

1214–1140 Ma; Clark et al., 2000) in association with intracratonic reactivation and 

extension (Clark et al., 2000). The Marnda Moorn LIP consists of several sub-

swarms of different orientations intruding along the craton margins (Isles and Cooke, 

1990; Evans, 1999; Wingate et al., 2000; Pidgeon and Nemchin, 2001; Pidgeon and 

Cook, 2003; Wingate and Pidgeon, 2005; Wingate, 2007; Claoué-Long et al., 2009). 

These include the the 1212 Ma Fraser suite in the east (Wingate et al., 2000), the 

1203 Ma to 1218 Ma Gnowangerup suite in the south (Evans, 1999; Rasmussen and 

Fletcher, 2004), the 1204 Ma to 1214 Ma Boyagin suite in the south-southwest 

(Pidgeon and Nemchin, 2001; Pidgeon and Cook, 2003), the 1215-1216 Ma 

Wheatbelt suite in the central west (Evans, 1999; Qiu et al., 1999) and the 1211-1213 

Ma Muggamurra suite (Wingate and Pidgeon, 2005) in the northwest of the craton. 

Few outcrops from the NE-SW trending Fraser swarm are known and only one 

exposure of an undeformed 30-35 m thick dyke in the Victory gold open pit mine has 

been identified by Wingate et al. (2000), who suggested that these dykes are 

probably continuous southward, extending to the Gnowangerup suite near 

Ravensthorpe. The Gnowangerup dykes trend E-NE to W-SW and are sub-parallel to 

the southern margin of the craton and progressively become more deformed and 

recrystallised as they approach the Albany Orogen (Myers, 1990b), implying that 

they are either pre- or syntectonic. Dykes within the Boyagin suite have variable  
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Figure 2.6 Map of the Yilgarn Craton showing terrane and sub-terrane boundaries 
and greenstone belt and granite distributions. Modified after Witt et al., 2018. South 
West Terrane: sub-terranes are from Wilde et al., 1996, and the boundary with the 
Youanmi Terrane is after Cassidy et al., 2006. 

trends but most are oriented N-NW. The only in-depth geochemical study of mafic 

dykes in the Yilgarn Craton has been conducted on the Gnowangerup-Fraser dykes 

and suggests that the Marnda Moorn LIP was associated with a mantle plume (Wang 

et al., 2014). 
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Other limited occurrences include the SW-trending dykes of the 1075 Ma Warakurna 

LIP in the northern Yilgarn Craton (Wingate et al., 2004), the WNW-trending ca. 

735 Ma Nindibillup dykes in the central and SE Yilgarn Craton (Spaggiari et al., 

2009, 2011; Wingate, 2017), the  NNE-trending ca. 735 Ma Northampton  dykes  in 

the far west (Embleton and Schmidt, 1985) and the undated (likely <1140 Ma) NW-

trending Beenong dykes in the southeastern Yilgarn Craton (Wingate, 2007; 

Spaggiari et al., 2009, 2011).  

2.5 Mafic dykes at Bunger Hills, East Antarctica 
2.5.1 Regional geology  
The Bunger Hills area forms a continuous low relief outcrop of about 300 km2 along 

the coast in Wilkes Land near Shackleton Ice Shelf, approximately 400 km west of 

the Windmill Islands (Figure 2.7). Bunger Hills forms one of three geologically 

distinct regions in the immediate vicinity of the Denman and Scott Glaciers; the 

other two areas are the Obruchev Hills between Scott and Denman Glaciers and a 

group of smaller outcrops west of Denman Glacier. The Highjump Archipelago 

extends just north-northeast from Bunger Hills and comprises a ca. 93 km-long belt 

of small rocky islands.  

 

 

 

 

Figure 2.7 
Location of 
Bunger Hills, 
Highjump 
Archipelago 
and Obruchev 
Hills in East 
Antarctica. 
After Sheraton 
et al. (1990, 
1995).   

 

The outcrop at Bunger Hills comprises predominantly granulite-facies mafic and 

felsic orthogneiss with subordinate paragneiss and voluminous charnockitic plutons 
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intruded by several generations of mafic dykes (Figure 2.8) (Ravich et al., 1968; 

Sheraton et al., 1990, 1992, 1993, 1995; Sheraton and Tingey, 1994; Tucker et al., 

2017). The presence of underlying Archean basement is inferred from a ca. 2800–

2700 Ma zircon population from the mafic–felsic orthogneiss (Tucker et al., 2017), 

which is similar to the ca. 2640 Ma tonalitic orthogneiss at Obruchev Hills ca. 30 km 

to the southwest (Black et al., 1992).  Zircon populations at ca. 1700–1500 Ma from 

granodioritic orthogneiss (Sheraton et al., 1993, 1995), ca. 1900–1500 Ma from the 

extensive metapelite sequence and ca. 1734 Ma and 1666 Ma from tonalitic 

orthogneiss suggest that these lithologies form a Paleoproterozoic cover to Archean 

basement (Sheraton et al., 1992, 1993; Tucker et al., 2017). 

 

 
Figure 2.8 Geological Map of Bunger Hills and Highjump Archipelago showing 
sample locations and regional geology. Modified after Sheraton et al. (1994) and 
Tucker et al. (2017).  

At least four metamorphic events have been identified at Bunger Hills (Stüwe and 

Powell, 1989; Stüwe and Wilson, 1990; Ding and James, 1991; Sheraton et al., 1993, 

1995; Tucker et al., 2017). Peak granulite facies conditions of 850–900° C and 5–6 

kbar were reached at 1183 ± 8 Ma in the Highjump Archipelago (Tucker and Hand, 

2016), whereas conditions of 750–800°C and 5–6 kbar  at 1190 ± 15 Ma were 
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reported at Bunger Hills proper (Sheraton et al., 1993). Recent data also indicate 

metamorphic zircon growth peaks at ca. 1300–1270 Ma and ca. 1250 Ma, with minor 

peaks at ca. 1330 Ma and 1200 Ma (Tucker et al., 2017). Peak metamorphism at ca. 

1190 Ma may have been associated with an extensional setting (Stüwe and Powell, 

1989). This was followed by compressional NNW–SSE-directed deformation under 

granulite facies conditions by the final stage (ca. 1170 Ma)  of deformation during 

uplift and cooling involving formation of extensive shear zones (Stüwe and Powell, 

1989; Sheraton et al., 1992, 1993, 1995; Tucker et al., 2017). 

2.5.2 Mafic dykes 
Sheraton et al. (1990) identified five distinctive dyke suites at Bunger Hills based on 

their trace element compositions. Most dykes fall on the whole-rock Rb/Sr isochron 

giving an emplacement age of ~1140 Ma and a Sm/Nd whole-rock, clinopyroxene 

and isochron age of 1100 ± 330 Ma.  Group 1 sill-like tholeiites are quartz-normative 

with relatively fractionated REE pattern and distinctive negative Th and Y 

anomalies. Group 2 SE-NW oriented olivine-bearing tholeiites are less evolved with 

higher Mg content and have high incompatible element contents and negative Nb, Sr 

and P anomalies. Group 3 and 4 NW-trending dolerites comprise at least 70% of all 

the dykes at Bunger Hills and have highly variable incompatible element 

compositions. Group 4 dolerites are more olivine-normative and have a higher Mg-

number than group 3 dolerites, but all dykes within these groups are relatively 

fractionated with marked negative Sr and Nb anomalies. Alkaline and lamprophyric 

dykes and trachybasalts with a predominantly E-W orientation are the youngest suite 

with Rb/Sr crystallisation ages of ~502 Ma. Chemical variability between and within 

the five dyke groups suggests involvement of dynamic partial melting of variably 

enriched and metasomatised mantle regions (Sheraton et al., 1990). 

2.6 Summary and conclusions 
Large igneous provinces and their mafic dyke swarms, considered to be the 

plumbing systems of flood basalts, were emplaced throughout Earth's history. They 

are intimately connected with mantle dynamics and act as important tectonic and 

magmatic markers for paleogeographic reconstructions and as indicators of 

paleostress fields and pre-existing crustal weaknesses. Whereas their formation is 

commonly linked with mantle plumes and breakup of supercontinents, they have also 
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been linked to other formation mechanisms such as back-arc extension, lithospheric 

delamination and decompression melting during passive rifting. Recent evidence has 

also linked modern flood basalts with the deep Earth volatile cycle and wet 

upwelling from the mantle transition zone. Geochemistry of mafic dykes is complex 

and reflects their varied sources, such as depleted asthenospheric mantle and variably 

metasomatised and isotopically enriched subcontinental lithospheric mantle. Many 

mafic dyke swarms display arc-like geochemical characteristics that may be imparted 

by the mantle source region or crustal contamination. Geochemical studies should be 

considered with precise geochronology and other constraints to correctly interpret the 

tectonic setting during their emplacement.  

 

The Archean Yilgarn Craton of Western Australia and the Bunger Hills of East 

Antarctica share a Mesoproterozoic history, the latter being interpreted as a rifted 

remnant of the Albany-Fraser Orogen. The magmatic barcode for the Yilgarn Craton 

is limited and includes the craton-wide Paleoproterozoic Widgiemooltha Supersuite 

and the Mesoproterozoic Marnda Moorn LIP, with minor occurrences of other 

Proterozoic dykes in various parts of the craton. Mapping and aeromagnetic data 

suggest that many more dyke generations could be present.  Comprehensive 

geochemical study is only available for the Marnda Moorn LIP, which is has been 

linked with a mantle plume. At Bunger Hills, at least three different dyke suites are 

present with imprecise age dates suggesting Meso-and Neoproterozoic mafic 

magmatism. Geochemistry indicates involvement of at least three sources in the 

genesis of the Mesoproterozoic dykes.   
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Chapter 3  U-Pb geochronology of mafic dykes    

The key technique in this PhD project is the use of a combination of in situ 

secondary ion mass spectrometry (SIMS) and isotope dilution thermal ionisation 

mass spectrometry (ID-TIMS) U-Pb techniques on baddeleyite. The in situ SIMS U-

Pb method was employed as a reconnaissance tool to obtain approximate ages from 

samples that are considered unsuitable for conventional dating techniques. Based on 

these results, selected samples were re-dated by ID-TIMS to obtain high-precision 

ages. This Chapter outlines the concept of the in situ technique, and the principles of 

SIMS and ID-TIMS U-Pb dating of baddeleyite. Chapters 4-7 (4.5.1, 4.5.2, 5.5.1, 

5.5.2, 6.5.1, 6.5.2 and 7.7.1) include detailed descriptions of the analyses and data 

processing methods for both SIMS and ID-TIMS and are not discussed here.  

3.1 Geochronology of mafic dykes 
Mafic dykes comprise predominantly of pyroxene, plagioclase and amphibole with a 

wide array of accessory minerals such as micas, Fe-Ti oxides and apatite. The 

methods of choice for precise geochronology of mafic dykes most commonly 

involve the U-Th-Pb and the 40Ar/39Ar systems. Plagioclase, amphibole and K-

bearing mica minerals are targeted by the 40Ar/39Ar method (Kelley, 2002 and 

references therein; Merrihue and Turner, 1966). However, plagioclase is sensitive to 

retrograde metamorphism and hydrothermal alteration, which hampers its use for 

dating most Precambrian dykes. Pyroxene is generally more resistant to alteration 

than plagioclase under the same conditions but so far has only been successfully used 

to date Phanerozoic dolerites (Ware and Jourdan, 2018). The 40Ar/39Ar method on 

pyroxene is currently being refined and may become a viable alternative for dating 

Precambrian mafic dykes in the future (Ware and Jourdan, 2018). 

Target minerals for U-Pb geochronology must have high uranium and low initial lead 

contents and be resistant to the effects of weathering and alteration processes. The 

most commonly used mineral in U-Pb geochronology is zircon (ZrSiO2), which is 

ubiquitous in intermediate and felsic rocks. However, mafic and tholeiitic magmas 

are silica-undersaturated and zircon preferentially precipitates from very late stage 

fractionated melts (e.g. Black et al., 1991; Niu et al., 2002; Schaltegger and Davies, 

2017). Baddeleyite (ZrO2) commonly crystallizes from mafic melts during late stages 
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of fractional crystallisation and has been extensively used in U-Pb dating of mafic, 

ultramafic and alkaline rocks (Krogh et al., 1987; Heaman and LeCheminant, 1993; 

French et al., 2002; Wu et al., 2015; Schaltegger and Davies, 2017; Schoene and 

Baxter, 2017). Baddeleyite is ideal for dating of mafic rocks because it is common, 

rarely xenocrystic, enriched in uranium (200-1000 ppm; e.g. Heaman and 

LeCheminant, 1993) and has negligible common lead. Baddeleyite commonly has 

very low Th content with Th/U ratios <0.05 (e.g. Heaman and LeCheminant, 1993). 

Where both zircon and baddeleyite are found in the same sample, zircon typically 

has a higher uranium content and is more susceptible to Pb loss than baddeleyite due 

to radiation damage and metamictisation (Heaman and Machado, 1992; Heaman and 

LeCheminant, 1993). In contrast to zircon, baddeleyite is more susceptible to 

alteration and reaction with silica-rich fluids or melts, readily developing zircon rims 

or recrystallising to zircon under igneous and metamorphic conditions (Davidson and 

van Breemen, 1988; Heaman and LeCheminant, 1993; Söderlund et al., 2008; Wu et 

al., 2015; Schaltegger and Davies, 2017). As an alternative U-Pb mineral 

chronometer to zircon and baddeleyite, zirconolite (CaZrTi2O7), which is an 

accessory phase in mafic and ultramafic rocks (Heaman et al., 1992; Heaman and 

LeCheminant, 1993) yields excellent precision (Rasmussen and Fletcher, 2004) 

although it has not been widely used.  

 

In addition to their silica-unsaturated mineralogy, further challenges for  

geochronology of mafic dykes arise from their grain size, which limits the choice of 

the techniques and instruments. Mafic dykes form as linear features with very high 

length to width ratios and unless the dyke width is large (>20 m), they generally 

crystallise as basalts and dolerites, in which baddeleyite crystals typically form 

euhedral thin blades and prisms  <10-20 μm in length (e.g. French et al., 2002; 

Heaman and LeCheminant, 1993). Wider dykes, especially those with gabbroic 

central portions, and extremely fractionated late stage felsic segregations associated 

with mafic dykes are usually targeted for geochronology (e.g. Black et al., 1991). 

However, in many areas of the Yilgarn Craton, dykes form discontinuous and 

scattered outcrops of mafic boulders (Fig. 1.1). Most dykes are relatively thin, have 

undergone retrograde metamorphism (destroying plagioclase and pyroxene and 

preventing use of the 40Ar/39Ar method) and are fine- to medium-grained with no 
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felsic segregations (making standard heavy mineral separations for zircon and 

baddeleyite ineffective). Many of these dykes would be very difficult to date using a 

conventional approach either with 40Ar/39Ar or U-Pb. 

 
Figure 3.1 Large mafic dyke outcrop in an agriculturally cleared area in 
southwestern Yilgarn Craton. This dyke was dated at 2615 Ma (see Chapter 4). 

3.2 The in situ method 
The most common approach for separating minerals from a rock involves crushing of 

the bulk rock sample followed by separation of crystals based on their magnetic 

susceptibility and density using methods such as isodynamic magnetic separators, 

heavy liquids lines and water shaking tables (e.g. Jones, 1987; McClenaghan, 2011; 

Silva, 1986; Söderlund and Johansson, 2002; Towie and Seet, 1995). This method 

offers high sample throughput and the potential to extract a large number of crystals 

in one separation (if the dykes are coarse grained or contain felsic segregates). The 

disadvantages of this approach include the risk of cross contamination from 

equipment, mix-up of samples, loss of textural context and, especially for fine 

grained rocks, the damage or loss of exceedingly small crystals targeted for 

geochronology (no yield). Moreover, availability of large amounts of sample (several 

hundred grams to several kilograms) is not always possible although improvements 
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in techniques for extraction of baddeleyite have been made (Söderlund and 

Johansson, 2002). 

 

The in situ method offers an alternative approach, which avoids cross contamination, 

allows for identification and analysis of very small crystals and preserves the  

mineralogical and textural context of the analysed sample (Rasmussen and Fletcher, 

2002, 2010, Rasmussen et al., 2004, 2008; Kröner, 2010; Wu et al., 2015; Zi et al., 

2015; Schaltegger and Davies, 2017). This involves collecting a representative set of 

samples, identifying suitable chronometers from thin sections, obtaining a low-

precision SIMS age to determine whether the dyke is of a previously unknown age 

and finally acquiring a high-precision ID-TIMS age for specifically selected samples.  

Identification of suitable crystals is undertaken using scanning electron microscopy 

(SEM) and energy-dispersive X-ray spectrometry (EDX). Suitable crystals are 

extracted by directly drilling them out of the thin sections using a micro-drill and 

mounting them in an epoxy disk which is coated in conductive material (Figure 3.2). 

Depending on the instrument, a minimum of 8-10 plugs can be embedded in a 

standard mount of ca. 25 mm in diameter but larger mount sizes (megamounts) are 

also available. Since the thin section is already polished, the surface of the mount 

containing the thin section plugs requires no further polishing.  A separate mount 

with relevant standards is analysed with the sample mount throughout the session.  

3.3 In situ SIMS U-Pb geochronology of baddeleyite 
Techniques such as Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry 

(LA-ICP-MS) generally requires crystals of >20 μm in size (e.g. French et al., 2002)  

and baddeleyite in mafic rocks typically forms as thin blades that are too small to 

apply typical laser spot sizes, although recent developments on LA-ICP-MS 

baddeleyite dating have reduced the spot size down to 10 μm (Ibanez-Mejia et al., 

2014). The spot size of the primary ion beam of SIMS can be as small as 5-10 μm in 

size is possible using instruments such as the Sensitive High Resolution Ion 

Microprobe (SHRIMP) (Compston et al., 1984) and the CAMECA IMS 1270/1280  

(Chamberlain et al., 2010; Schmitt et al., 2010; Liu et al., 2011).  
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Figure 3.2 In situ U-Pb ion microprobe mounts (A) Reflected light image of a mount 
showing plugs drilled out of the thin section. Note white dots denoting locations of 
baddeleyites identified suitable for ion microprobe analysis. FOV is approximately 
15 mm (B) Uncoated epoxy mount showing 10 drilled out thin section plugs. Mount 
is ca. 25 mm in diameter (C) Gold coated epoxy mount.  

The SIMS U-Pb dating technique involves ablation of a small spot (~10-15 μm) with 

shallow pit depth (<2 μm) on the surface of the sample by a primary ion beam  

(commonly O- or O+) and double-focussing the resulting secondary ion beam into a 

mass spectrometer using an electrostatic analyser and a large-radius magnetic sector 

(Williams, 1998; Ireland and Williams, 2003; Schoene, 2013). The very high mass 

resolution (up to 10,000) and sensitivity of SIMS allows isobaric (equal mass) 

interferences between critical mass peaks such as 206Pb to be distinguished at very 

low detection limits. The SHRIMP II is capable of mass resolution of 5000 at 

sensitivity of ≥20 counts/sec/ppm/nA for Pb from zircon (Williams, 1998).  

 

Both Pb isotopic compositions and the Pb/U ratios must be measured accurately. 

Instrumentation effects and compositional differences in the analysed materials 

(matrix effects; e.g. Fletcher et al., 2010; Schoene, 2013) can lead to variability in 

the isotopic and elemental composition of the secondary ion beam during the 
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analytical session. To counter this, standard samples are measured together with the 

unknowns, and measurements of the known Pb/U ratio of the standards are used to 

correct for fractionation between Pb and U during sputtering. This is possible 

because the UO+/U+ ratio can be measured directly and Pb+/U co-varies with UO+/U+ 

during a session (Hinthorne et al., 1979). The average precision of single SIMS U-Pb 

dates is ca. 3%, which is due to elemental fractionation during slow sputtering 

(typically 20 min per spot), compositional changes in the analysed mineral and 

standard, and variability of the beam intensity during the session (Williams, 1998; 

Ireland and Williams, 2003; Schoene, 2013). Precision of standard measurements 

generally reflects the precision of the unknown measurements during the analytical 

session and between sessions (Stern and Amelin, 2003).  

 

Baddeleyite crystals are twinned and exhibit crystal orientation effects (fractionation) 

in measured 206Pb/238U ratios under SIMS (Wingate and Compston, 2000; Schmitt et 

al., 2010). However, this does not affect the measured 207Pb/206Pb ratios and poses 

few problems when the radiogenic Pb content of the sample is high, i.e. in older (>1 

Ga) rocks. For younger rocks the achievable accuracy and precision are low, and 

alternative techniques, such as LA-ICP-MS which do not appear to be affected by 

orientation effects on the measured 206Pb/238U ratios (e.g. Ibanez-Mejia et al., 2014), 

should be considered. The uncertainty in the isotopic composition of the common 

lead correction is greater than the analytical uncertainty of single measurments at low 

radiogenic Pb content (young rocks or rocks with low initial U content) and affects 

predominantly the 207Pb/235U system. 

 

Generally, the precision of SIMS measurements from baddeleyite is lower than those 

from zircon mainly due to the their lower U content and their commonly small size 

of baddeleyite crystals, necessitating small spot size and consequently lower 

sensitivity (counts). Analysis of small baddeleyite crystals with SIMS can require a 

large number of measurements to reach acceptable precision. If the number of 

available samples is low, this may be a very difficult task. Better precision may be 

achieved by pooling a large number of analyses together and by applying statistical 

models, such as least-squares linear fit (isochron) and a weighted mean. The 

goodness of fit of the data to the model reflects the accuracy of the obtained age and 
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can be evaluated using the mean square of weighted deviates (MSWD), which is 1 

when there is a perfect match between the data and the model. However, if the 

geological uncertainties (e.g. Pb loss and mixing) are small compared with 

uncertainties of the individual data points (low precision dates), application of 

weighted mean can result in inaccurate but statistically robust ages (Schoene, 2013 

and references therein).    

3.4 Application of the in situ SIMS U-Pb method on mafic dykes in the 
Yilgarn Craton, Western Australia 

In this study, sampling was undertaken in a targeted field area in the southwestern 

Yilgarn Craton, where mapping and aeromagnetic data indicated presence of many 

different dyke trends. In this area, most dyke contacts are not visible, the outcrop is 

limited and felsic segregations are rarely available. Most of the collected samples 

appeared suboptimal for geochronology due to alteration and/or fine grain size but 

they were nevertheless collected due to general scarcity of available outcrop. Out of 

the sampled dykes, SHRIMP dating identified three new but imprecise ages, which 

were followed up by re-dating with ID-TIMS.   

 

Once collected, up to four thin sections per dyke were prepared for petrographic 

assessment to identify potential chronometers. Due to variable alteration of 

plagioclase (and pyroxene), use of the 40Ar/39Ar method was deemed unfeasible and 

alternative targets for U-Pb chronometers were searched using SEM-EDX. Zircon 

crystals were identified in some samples but all were unsuitable due to 

metamictisation.  Baddeleyite was therefore selected as the only viable chronometer. 

Most baddeleyite crystals were too small (<10-15 μm in width) for SHRIMP dating 

and in average <10 % of identified crystals per thin section were suitable. The very 

small size of the baddeleyite crystals discounted use of standard bulk mineral 

separation techniques and the crystals were drilled out directly from the thin sections. 

They were then analysed in situ using the SHRIMP II to obtain an approximate age, 

which was adequate to determine whether the dyke was likely part of an already 

known dyke swarm. For each dyke with an indicated new age, samples with the best 

SHRIMP ages (presumed to have the highest probability of producing dateable 

crystals) were selected for bulk mineral separation using the water table method after 
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Söderlund et al. (2002). For two of the three dykes, only four baddeleyite crystals 

were successfully extracted from the bulk sample (Chapters 3 and 4). 

3.5 ID-TIMS U-Pb geochronology  
Isotope dilution thermal ionisation mass spectrometry of the U-Pb isotope system 

(Tilton et al., 1955; Wetherill, 1956) is based on measurement of the isotopic 

composition of U and Pb and is the highest precision dating method for zircon and 

baddeleyite. It can produce precision and accuracy better than of 0.1% (2σ) of the 

age for single crystals with extremely low concentration (picograms) of Pb (Schoene 

and Baxter, 2017 and references therein). This is mainly due to good ionisation 

efficiency, simple mass spectrum, high signal-to-noise ratio, low mass fractionation, 

negligible U and common Pb contamination and no requirement for standards 

(Parrish et al., 2003 and references therein). However, where high spatial resolution 

is required, e.g. for crystals with highly complex internal structure (multiple age 

domains), the in situ approach should be employed similar to the SIMS and LA-ICP-

MS methods (as described in the previous sections). TIMS ion transmission from the 

source to the analyser is very high and combined with the ability to achieve a stable 

ion beam over periods of hours, allows for very high precision isotope ratios.  

 

Unlike high-resolution SIMS, which has a mass resolution of ~5000, TIMS is not 

capable of resolving isobaric and polyatomic interferences due to its lower mass 

resolution of ~500, and chemical separation using a column with ion exchange resin 

is employed to separate elements based on their chemical properties. However, the 

method of Krogh (1973) allows for a simpler process for decomposition of zircon 

and baddeleyite, and U and Pb are isolated on a Teflon® anion exchange column and 

also permits an exact measurement of the amount of common Pb (Pbc) contained in 

the analysed crystals. This method also uses a silica-gel loading technique, which 

provides stable emission for Pb for small samples and limits isotope fractionation 

during analysis by the mass spectrometer.  

 

Isotope dilution technique, an isotope tracer solution containing concentrated parent 

and daughter element isotopes is added to the sample before the column processing 

and the unknown ratios can then be calculated from the known and calibrated ratios 
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of the tracer (Wasserburg et al., 1981; Condon et al., 2015). Both the sample and the 

tracer are analysed simultaneously, eliminating the potential for variable 

parent/daughter fractionation. Since the initial Pbc of zircon and baddeleyite is 

negligible, the Pbc content of the laboratory blank must be extremely low to achieve 

high precision dates, i.e. the achievable precision is determined by the procedural 

blank.  Similar to SIMS on zircon and baddelelyite, for young rocks the greatest 

source of uncertainty is the common Pb (Pbc) correction because of low radiogenic 

Pb content of the crystal. For Proterozoic and Archean rocks, the sample size can be 

larger because of the higher radiogenic Pb in the sample.  

 

Air abrasion is routinely employed to partially remove of the outer part of a zircon 

crystal, which is likely to have been exposed to Pb loss and would result in 

discordance in the measured compositions (Krogh, 1982). Chemical abrasion is an 

alternative technique involving partial leaching in HF or HF-HNO3 mixtures where 

more soluble radiation-damaged parts of the crystal would be dissolved (Mattinson, 

2005) but this has not been widely adopted. There are currently no established 

procedures to remove the effects of Pb loss in baddeleyite but a two-step HCl-HF 

chemical abrasion method has been developed to analyse composite grains 

containing zircon inter- and overgrowths due to metamorphism (Rioux et al., 2010). 

 

Depending on the approach, after standard bulk separation and cleaning in distilled 

ultrapure HNO3, or petrographic characterisation and extraction from a thin section 

(as discussed in the previous sections), the crystals are typically spiked with the 

isotope tracer and dissolved in Teflon® microcapsules in concentrated HF and HNO3 

and then placed in a pressure vessel in an oven at 200°C over three to six days.  After 

the residue has been repeatedly dried and re-dissolved in H3PO4 and ultrapure HNO3, 

they are re-dissolved in silica gel and loaded onto a thin metal filament (typically 

rhenium or tantalum). The filament is heated under carefully controlled conditions 

and the ionised sample is accelerated and focussed through the magnetic sectors into 

the analyzer for measurement of U and Pb isotope peak intensities. 
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Chapter 4  First evidence of Archean mafic dykes at 2.62 Ga in 
the Yilgarn Craton, Western Australia: links to cratonisation 

and the Zimbabwe Craton1 
 

J. Camilla Stark, Simon A. Wilde, Ulf Söderlund, Zheng-Xiang Li,   

Birger Rasmussen, Jian-Wei Zi 

 

4.1 Abstract 
The Archean Yilgarn Craton in Western Australia hosts at least five generations of 

Proterozoic mafic dykes, the oldest previously identified dykes belonging to the ca. 

2408–2401 Ma Widgiemooltha Supersuite. We report here the first known Archean 

mafic dyke dated at 2615 ±	6 Ma by the ID-TIMS U-Pb method on baddeleyite and 

at 2607 ± 25 Ma using in situ SHRIMP U-Pb dating of baddeleyite. Aeromagnetic 

data suggest that the dyke is part of a series of NE-trending intrusions that potentially 

extend hundreds of kilometres in the southwestern part of the craton, here named the 

Yandinilling dyke swarm. Mafic magmatism at 2615 Ma was possibly related to 

delamination of the lower crust during the final stages of assembly and cratonisation, 

and was coeval with the formation of late-stage gold deposit at Boddington. 

Paleogeographic reconstructions suggest that the Yilgarn and Zimbabwe cratons may 

have been neighbours from ca. 2690 Ma to 2401 Ma and if the Zimbabwe and 

Kaapvaal cratons amalgamated at 2660-2610 Ma, the 2615 Ma mafic magmatism in 

the southwestern Yilgarn Craton may be associated with the same tectonic event that 

produced the ca. 2607–2604 Ma Stockford dykes in the Central Zone of the Limpopo 

Belt. Paleomagnetic evidence and a similar tectonothermal evolution, including 

coeval low-pressure high-temperature metamorphism, voluminous magmatism, and 

emplacement of mafic dykes, support a configuration where the northern part of the 

Zimbabwe Craton was adjacent to the western margin of the Yilgarn Craton during 

                                                
11 This chapter is published as Stark, J.C., Wilde, S.A., Soderlund, U., Li, Z.-X., Rasmussen, B., Zi,   

J.-W., 2018. First evidence of Archean mafic dykes at 2.62 Ga in the Yilgarn Craton, Western 

Australia: links to cratonisation and the Zimbabwe Craton. Precambrian Res. 317, 1-13. 
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the Neoarchean. Worldwide, reliably dated mafic dykes of this age have so far been 

reported from the Yilgarn Craton, the Limpopo Belt and the São Francisco Craton. 

4.2 Introduction 
Mafic dyke swarms are important markers for supercontinent reconstructions and 

mantle plumes (e.g., Ernst and Buchan, 1997; Buchan et al., 2001; Bleeker and Ernst, 

2006; Ernst and Srivastava, 2008; Ernst et al., 2010, 2013) and act as indicators of 

local tectonic setting, including paleostress fields and pre-existing crustal weaknesses 

(Ernst et al., 1995b; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 2012; Ju et 

al., 2013). Throughout the geological evolution of the Earth, mafic dykes have been 

associated with processes causing intracratonic extension of the crust, such as 

subduction (back-arc extension), post-orogenic collapse, plumes and rifting during 

supercontinent breakup. However, mafic dykes may also be linked with early 

cratonisation history soon after amalgamation and stabilization of crustal blocks. A 

recent example is reported from the North China Craton, where emplacement of ca. 

2516–2504 Ma dykes signifies the presence of a deep subcontinental lithosphere and 

constrains the time of final cratonisation during the Neoarchean (Li et al., 2010).  

 

The Archean Yilgarn Craton of Western Australia hosts at least five generations of 

Proterozoic mafic dykes, including the 2408–2401 Ma Widgiemooltha Supersuite 

(Sofoulis, 1965; Evans, 1968; Hallberg, 1987; Doehler and Heaman, 1998; Nemchin 

and Pidgeon, 1998; Wingate, 1999; French et al., 2002; Pisarevsky et al., 2015), the 

1888 Ma Boonadgin dykes (Stark et al., in press), the 1210 Ma Marnda Moorn Large 

Igneous Province (LIP; Wingate et al., 1998, 2000; Wingate, 2007), and limited 

occurrences of the 1075 Ma Warakurna LIP dykes (Wingate et al., 2002, 2004) and 

the 735 Ma Nindibillup dykes (Spaggiari et al., 2009, 2011; Wingate, 2017). The 

Widgiemooltha Supersuite has been linked with a mantle plume and rifting of an 

Archean supercraton (Heaman, 1997; Halls et al., 2007; Mohanty, 2015), the 

Boonadgin dykes with post-orogenic far-field extension or a mantle plume (Stark et 

al., in press) and the Marnda Moorn and Warakurna LIPs also with mantle plumes 

(Wingate et al., 2004; Wang et al., 2014).  We present here in situ SHRIMP and ID-

TIMS U-Pb results for the first known Archean mafic dyke within the Yilgarn 

Craton, emplaced during the final stages of cratonisation and marking one of the 
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earliest tectonothermal events affecting the stabilized craton. We discuss the tectonic 

setting, timing of emplacement and the possible association of the mafic dykes with 

post-orogenic processes during final stages of cratonisation. We also consider 

evidence from paleogeographic reconstructions and coeval tectonothermal events 

that may link the evolution of the Yilgarn and Zimbabwe cratons during the 

Neoarchean. 

4.3 Regional geology 
4.3.1 The Yilgarn Craton 
The Archean Yilgarn Craton of Western Australia is a ca. 900 x 1000 km granite-

greenstone crustal block, which is divided into the South West, Narryer, Youanmi, 

Kalgoorlie, Kurnalpi and Burtville terranes, the latter three forming the Eastern 

Goldfields Superterrane (Figure 4.1) (Cassidy et al., 2006). The craton is bounded by 

three Proterozoic orogenic belts: the ca. 2005─570 Ma Capricorn Orogen in the 

north (Cawood and Tyler, 2004; Sheppard et al., 2010a; Johnson et al., 2011), the ca. 

1815─1140 Ma Albany-Fraser Orogen in the south and east (Nelson et al., 1995a; 

Clark et al., 2000; Spaggiari et al., 2015), and the ca. 1600–525 Ma Pinjarra Orogen 

in the west (Myers, 1990; Wilde, 1999; Ksienzyk et al., 2012). Most of the terranes 

formed between ca. 3050 and 2550 Ma and whereas the South West and Narryer 

Terranes in the west comprise high-grade supracrustal rocks, granitic gneisses and 

granites, the Youanmi and Eastern Goldfields Terranes in the east are dominated by 

greenstone belts separated by granites and granitic gneisses (Figure 4.2) (e.g., Gee et 

al., 1981; Pidgeon and Wilde, 1990; Myers, 1993; Wilde et al., 1996; Nelson, 1997; 

Cassidy et al., 2002; Barley et al., 2003).  Recent Sm-Nd isotopic mapping suggests 

the presence of an older western proto-craton comprising the Narryer, South West 

and Youanmi Terranes and a younger (more juvenile) eastern part, which comprises 

the Eastern Goldfields Superterrane (e.g. Champion and Cassidy, 2007; Mole et al., 

2013; Witt et al., 2018).   

 

Amalgamation of the Yilgarn Craton involved repeated collisions during a 

Neoarchean orogeny between ca. 2730 and 2625 Ma (Myers, 1993, 1995; Barley et 

al., 2003; Blewett and Hitchman, 2006; Korsch et al., 2011; Zibra et al., 2017a; Witt 

et al., 2018) with development of a stable cratonic lithosphere by ca. 2660 Ma (Zibra 
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et al., 2017b). The Youanmi Terrane is considered to be the isotopically oldest 

nucleus of the Yilgarn Craton onto which other terranes accreted (Cassidy et al., 

2002, 2006; Champion and Cassidy, 2008; David C Champion, 2013), with 

collisions between the Youanmi and Narryer terranes sometime between ca. 2780 

and 2630 Ma (Myers, 1993, 1995; Nutman et al., 1993; Cassidy et al., 2002), the 

Youanmi and Kalgoorlie Terranes between ca. 2678 and 2658 Ma (Standing, 2008; 

Czarnota et al., 2010) and the Youanmi and the South West Terranes between ca. 

2652 and 2625 Ma (Wilde and Pidgeon, 1987; Nemchin et al., 1994; Qiu et al., 

1997a; Qiu and Groves, 1999; McFarlane, 2010). Cratonisation was accompanied by  

 

 
Figure 4.1 Map of the Yilgarn Craton showing major tectonic units. Inset shows the 
extent  of the West Australian Craton (Pilbara Craton, Yilgarn Craton and 
Capricorn Orogen). From Geological Survey of Western Australia 1:2.5M 
Interpreted Bedrock  Geology 2015 and 1:10M Tectonic Units 2016. Dashed lines 
are terrane boundaries within the southwestern Yilgarn Craton after Wilde et al. 
1996:  BaT = Balingup Terrane, BoT = Boddington Terrane and LGT = Lake Grace 
Terrane.  

widespread granitic magmatism between ca. 2690 Ma and 2625 Ma (Compston et 

al., 1986; Wilde and Pidgeon, 1986; Champion and Sheraton, 1997; Nemchin and 

Pidgeon, 1997; Qiu et al., 1997; Smithies and Champion, 1999;  Cassidy et al., 2002; 

Mole et al., 2012). Extensive gold mineralisation was associated with the late stages 
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of cratonisation (Kent et al., 1996; McNaughton and Groves, 1996; Yeats et al., 

1996; Allibone et al., 1998; Witt and Vanderhor, 1998; Qiu and Groves, 1999; 

Blewett et al., 2010).  

4.3.2 The South West Terrane 
Following the model of Wilde et al. (1996), the South West Terrane is divided (from 

west to east) into the Balingup, Boddington and Lake Grace sub-terranes (Figs. 1 and 

2) based on U-Pb geochronology, deep crustal seismic data and re-evaluation of 

regional geology. It should be noted that Mole et al.  (2012) proposed that the eastern 

part of the South West terrane could be part of the Youanmi Terrane crust on the 

basis of zircon U-Pb geochronology and spatial occurrence of granite pulses.   

 

The Balingup Terrane comprises ca. 3070–2830 Ma amphibolite facies supracrustal 

rocks of the Balingup and Chittering metamorphic belts (Figure 4.2), interpreted as 

sedimentation at an evolving continental margin (Wilde, 1980, 1990; Gee et al., 

1981; Fletcher et al., 1985). Granitoids emplaced in the central and northern part of 

the terrane include the ca. 2677–2626 Ma Darling Range batholith (Wilde and Low, 

1978; Nieuwland and Compston, 1981; Nemchin and Pidgeon, 1997) and the ca. 

2612 Ma Logue Brook Granite, although the latter may represent a recrystallisation 

age  (Compston et al., 1986; Nemchin and Pidgeon, 1997).  

 

The Boddington Terrane is separated from the Balingup Terrane by a ca. 2 km-wide 

shear zone and consists predominantly of granitoids of the Darling Range batholith, 

which enclose the greenschist facies Saddleback and Morangup greenstone belts and 

parts of the Jimperding metamorphic belt  (Figure 4.2) (Wilde and Low, 1978; 

Wilde, 1980, 1990; Wilde et al., 1996). The ca. 3177 to 3100 Ma amphibolite facies 

Jimperding metamorphic belt consists of supracrustal rocks (Gee et al., 1981; Wilde, 

1990) whereas the ca. 2714–2660 Ma Saddleback greenstone belt (Wilde, 1976; 

Wilde and Pidgeon, 1986; Pidgeon and Wilde, 1990; Allibone et al., 1998) within the 

Boddington domain has been interpreted as a remnant oceanic island or continental 

margin arc (Wilde et al., 1996; Korsch et al., 2011) and hosts the ca.  2675 to 2611 

Ma Boddington Cu-Au deposit (e.g. Roth et al., 1990, 1991; Allibone et al., 1998). 

The greenschist facies Morangup greenstone belt in the northern part of the terrane is 



J.C. Stark    Chapter 4 - 2.62 Ga Yandinilling dyke swarm 
 

 69 

considered to be coeval with the Saddleback belt and comprises rocks with similar 

arc-type geochemical signatures (Wilde, 1990; Wilde and Pidgeon, 1990).  

 

 
Figure 4.2 Map of the Yilgarn Craton showing terrane and sub-terrane boundaries 
and greenstone belt and granite distributions. Modified after Witt et al., 2018. South 
West Terrane sub-terranes are from Wilde et al., 1996 and the boundary with the 
Youanmi Terrane is after Cassidy et al., 2006. 



J.C. Stark    Chapter 4 - 2.62 Ga Yandinilling dyke swarm 
 

 70 

The transition to the Lake Grace Terrane is marked by a change in structural style 

and increasing metamorphic grade (Wilde and Low, 1978; Wilde et al., 1996) across 

a major crustal discontinuity marked by the South West Seismic Zone (Figure 4.2) 

(Doyle, 1971; Dentith et al., 2000; Dentith and Featherstone, 2003). The terrane 

comprises deformed granitoids, felsic gneisses, several greenstone belt remnants and 

the eastern apart of the Jimperding metamorphic belt, all metamorphosed under low-

pressure granulite facies conditions (Gee et al., 1981; Wilde, 1990; Wilde et al., 

1996). Estimates of timing of peak metamorphism range between ca. 2649 and 2625 

Ma (Wilde and Pidgeon, 1987; Nemchin et al., 1994; Qiu et al., 1997b; McFarlane, 

2010)  and  lower amphibolite facies conditions may have been reached at ca. 2645 

Ma (McFarlane, 2010). Griffin's Find, a small gold deposit ca. 175 km ESE of 

Boddington (Figure 4.1), records peak metamorphic conditions with temperatures of 

820-870°C and at least 5.5 kbar (Tomkins and Grundy, 2009). Charnockites 

emplaced at ca. 2627 Ma have been interpreted as emplaced during syn-peak 

metamorphism (Wilde and Pidgeon, 1987; Wilde et al., 1996), although younger ca. 

2587 Ma granitoids are also present (Wilde and Pidgeon, 1987).  

4.3.3 Mafic dykes 
The Yilgarn Craton hosts numerous dyke suites of different orientations and dyke 

density that increase towards the southern and western craton margins (Hallberg, 

1987; Tucker and Boyd, 1987). The dykes are clearly discernible in aeromagnetic 

data but deep weathering and thick regolith cover make sampling difficult. The 

largest dykes belong to the E-W to NE-SW trending 2418–2408 Ma Widgiemooltha 

Supersuite (Sofoulis, 1965; Evans, 1968; Campbell et al., 1970; Hallberg, 1987; 

Doehler and Heaman, 1998; Nemchin and Pidgeon, 1998; Wingate, 1999, 2007; 

French et al., 2002), which includes the 2401 ± 1 Ma Eraynia dykes in the eastern 

part of the craton (Pisarevsky et al., 2015). The Widgiemooltha dykes are up to 3.2 

km wide and extend up to 700 km across the craton, with the largest intrusions 

(Jimberlana and Binneringie) showing well-developed igneous layering (Campbell et 

al., 1970; Lewis, 1994). The most extensive dyke swarm in the craton is the 1210 Ma 

Marnda Moorn LIP which consists of several sub-swarms of different orientations 

intruding along the craton margins (Isles and Cooke, 1990; Evans, 1999; Wingate et 

al., 2000; Pidgeon and Nemchin, 2001; Pidgeon and Cook, 2003; Wingate and 
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Pidgeon, 2005; Wingate, 2007; Claoué-Long et al., 2009). Outcrops in the southeast 

are limited to a single occurrence, and the extent of the dykes in the northeast is 

unknown due to cover rocks, although one E-W oriented dioritic dyke dated at 1215 

± 11 Ma has been reported further inland (Qiu et al., 1999). Recently, a NW-

trending 1888 Ma dyke swarm of unknown extent has been identified in the 

southwestern Yilgarn Craton and may be part of the Bastar-Cuddapah LIP of India 

(Stark et al., in press; Shellnutt et al., 2018). Other known dyke swarms with limited 

occurrences include the SW-trending dykes of the 1075 Ma Warakurna LIP in the 

northern Yilgarn Craton (Wingate et al., 2004), the WNW-trending ca. 735 Ma 

Nindibillup dykes in the central and SE Yilgarn Craton (Spaggiari et al., 2009, 2011; 

Wingate, 2017), the  NNE-trending ca. 750 Ma Northampton  dykes  in the far west 

(Embleton and Schmidt, 1985) and the undated (likely <1140 Ma) NW-trending 

Beenong dykes in the southeastern Yilgarn Craton (Wingate, 2007; Spaggiari et al., 

2009, 2011).  

4.4 Samples 
4.4.1 Field sampling 
The field sampling area was selected using satellite imagery (Landsat/Copernicus or 

Astrium/CNES from Google Earth) and 1:250 000 geological maps from the 

Geological Survey of Western Australia (GSWA). The Corrigin map sheet (GSWA 

Corrigin 1:250,000 geological map, SI 50-3, 1985) shows several NE-trending 

mapped dykes in the area and the aeromagnetic data roughly coincides with some of 

these. Sample 16WDS13 (32 06.588 S, 117 09.072 E) was collected from a small 

ridge within an agriculturally cleared area adjacent to the main road (Figure 4.3), ca. 

21 km east of the town of Beverley and is interpreted to be representative the NE-

trending dykes in the area. Basement rocks are not exposed at the outcrop but 

geological mapping indicates that the dyke intrudes Archean metagranite at this 

location. The outcrop at the sample location is fresh and shows minor surficial 

weathering.   

4.4.2 Sample description 
Petrography indicates that the dyke is a fresh dolerite with intergranular ophitic to 

sub-ophitic texture, comprising ca. 45-50% plagioclase, 35-40% pyroxene, up to 5% 

ilmenite and magnetite, 1-2% sulfides (mainly pyrite and chalcopyrite) and  <1% 
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chlorite, quartz and apatite (Figure 4.4). Plagioclase is slightly affected by 

sericitisation and most pyroxene grains have been altered to a variable degree. The 

main U- and Th-bearing accessory mineral is baddeleyite, only identifiable using an 

SEM due to small crystal size (typically ≤70 µm long and 20-30 µm wide). Rare 

zirconolite crystals are also present and form euhedral to subhedral prisms and laths 

up to 60 µm long and 10 µm wide. 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.3 Field 
photos of the dyke at 
the sample location 
(sample 16WDS13) 
Upper photo looking 
NE and lower photo 
looking north. The 
dyke forms a wide NE-
trending ridge, which 
extends along strike as 
a series of similar 
discontinuous ridges. 

4.5 U-Pb geochronology and geochemistry  
4.5.1 SHRIMP U-Pb geochronology 
Polished thin sections were scanned to identify baddeleyite, zircon and zirconolite 

with a Hitachi TM3030 scanning electron microscope (SEM) equipped with energy 
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dispersive X-ray spectrometer (EDX) at Curtin University. For SHRIMP (Sensitive 

High Resolution Ion Microprobe) U-Pb dating, selected grains were drilled directly 

from the thin sections using a micro drill and mounted into epoxy disks, which were 

cleaned and coated with 40 nm of gold. Baddeleyite in thin sections forms subhedral 

to euhedral equant, prismatic and tabular grains and laths, some with thin zircon 

rims, and most are <70 µm long and up to 30 µm across. Only one crystal with 

suitable dimensions for SHRIMP dating was identified, closely associated with 

quartz (Figure 4.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Plane (A) 
and crossed polar (B) 
photomicrographs of 
sample 16WDS13E.  

 

Baddeleyite was analysed for U, Th and Pb using the SHRIMP II at the John de 

Laeter Centre at Curtin University in Perth, Australia, following standard operating 

procedures after Williams (1998). The SHRIMP analysis method for mounts with 

polished thin section plugs, as outlined in Rasmussen and Fletcher (2010), was 
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modified for baddeleyite.  Mass resolution for all analyses was ≥5000. During the 

session, 19 baddeleyite and 13 standard analyses were undertaken, with standard 

zircon OG1 (Stern et al., 2009) employed for monitoring of instrumental mass 

fractionation and BR266 zircon (Stern, 2001) for calibration of U and Th 

concentration and as an accuracy standard. Phalaborwa baddeleyite (Heaman, 2009) 

and NIST were analysed as additional standards. Spot size was ca. 11µm with 

primary O2
- current at 0.5 nA and count times 10 s for 204Pb, 206Pb, 208Pb and 30 

seconds for 207Pb. Data were processed with Squid version 2.50 (Ludwig, 2009) and 

Isoplot version 3.76.12 (Ludwig, 2012).  For common Pb correction, common Pb 

isotopic composition was calculated from the Stacey and Kramers (1975) two-stage 

terrestrial Pb isotopic evolution model. The assigned 1σ external Pb/U error is 1% 

and analysis is given with 1σ error. 

 

 

 

 

 

 

Figure 4.5 SEM backscatter 
image showing SHRIMP spot 
on baddeleyite crystal 
16WDS13E-409B        

4.5.2 ID-TIMS U-Pb geochronology 
One block was sawn from the field bulk rock sample 16WDS13E to remove 

weathering and approximately 40 baddeleyite grains were separated using the 

technique of Söderlund and Johansson (2002). The best-quality baddeleyite grains 

were split into three fractions of 5-6 grains each and thereafter transferred into 

Teflon© capsules. The grains were carefully washed in several steps using ultrapure 

3M HNO3. A small amount of a 205Pb-233-236U tracer solution and 10 drops of 

concentrated HF and HNO3 (in proportion 10:1) were added to the Teflon© capsules. 

The capsules were inserted into steel jackets and placed in an oven at 200°C for 3 

days. After being dried down on a hotplate, 1 drop of 0.25M H3PO4 was added to 

each capsule along with 10 drops of 6.2 M ultra-pure HCl. The capsules were dried 



J.C. Stark    Chapter 4 - 2.62 Ga Yandinilling dyke swarm 
 

 75 

again on a hotplate at 100°C. Each sample was re-dissolved in 2 µl of silica gel and 

then loaded on an out-gassed, single Re filament. 

  

The intensities of U and Pb isotopes were measured on a Finnigan Triton thermal 

ionization multi-collector mass spectrometer at the Swedish Museum of Natural 

History in Stockholm. The mass spectrometer is equipped with Faraday cups and an 

ETP Secondary Electron Multiplier. Lead was analysed at filament temperatures of 

1210-1240°C, while the intensities of 233U, 236U and 238U were recorded 

subsequently at filament temperatures exceeding 1320°C. The initial Pb composition 

was taken from Stacey and Kramers (1975), and the 238U and 235U decay constants 

are from Jaffey et al. (1971). Procedural blank level was 0.6 pg for Pb and 0.06 pg 

for U.  

4.6 Results 
4.6.1 SHRIMP U-Pb geochronology 
As part of preliminary reconnaissance SHRIMP dating of several dykes sampled in 

the area, one analysis (Table 4.1) was obtained from one baddeleyite grain during the 

SHRIMP session  (Figure 4.5). The analysed baddeleyite crystal had U and Th 

concentrations of 59.7 ppm and 1.4 ppm, respectively, and yielded a common Pb-

corrected 207Pb/206Pb date of 2607  ±  25 Ma (1σ), which is interpreted as indicative 

of the crystallisation age of the dyke. Based on this preliminary result, TIMS U-Pb 

analysis was carried out on baddeleyite from the same sample.  It should be noted 

that despite only having one analysis available, the decision to proceed with TIMS 

dating was based on the initial identification of a potentially new dyke age from 

SHRIMP dating.  

4.6.2 ID-TIMS U-Pb geochronology 
U-Pb data for the samples is presented in Table 4.2 and the calculated isotopic ages 

are shown in the concordia diagram in Figure 4.6.  One fraction of five grains and 

two fractions of six grains yielded slightly discordant common Pb-corrected 
207Pb/206Pb dates of 2615.7 ±	2.9 Ma, 2616.7 ±	3.1 Ma and 2611.3 ±	3.3 Ma, 

respectively, giving a weighted mean 207Pb/206Pb date of 2615 ±	6 Ma (MSWD = 

2.8). Forced regression through 0 Ma yields an upper intercept date of 2615 ± 3 Ma. 

However, despite higher uncertainty, the weighted mean 207Pb/206Pb date is preferred 
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due to slight discordance of the analyses. Thus, the 207Pb/206Pb age is interpreted as 

the best, though conservative, emplacement age of the mafic dyke.   

 

 
Figure 4.6 Concordia plot for analysed baddeleyite ID-TIMS U-Pb results from 
sample 16WDS13E  

4.7 Discussion 
We have identified the oldest known mafic dyke within the Yilgarn Craton, here 

informally named as the Yandinilling dyke. The extent of dykes of this age within 

the craton is currently unknown but aeromagnetic data (Geological Survey of 

Western Australia magnetic anomaly grids with 20-40 m cell size, Geoscience 

Australia magnetic grid of Australia V6 2015 base reference) show that linear NE-

trending features interpreted as dykes extend at least 150 km northeast from 

Boddington and across the Boddington and Lake Grace terrane boundary. The dyke 

dated in this study lies on one of these features, suggesting it is part of a much longer 

intrusion that may belong to a major dyke swarm. The temporally closest known 

mafic magmatic event within the Yilgarn Craton produced the ca. 2410 Ma 

Widgiemooltha Supersuite (Sofoulis, 1965; Evans, 1968; Campbell et al., 1970; 

Hallberg, 1987; Doehler and Heaman, 1998; Nemchin and Pidgeon, 1998; Wingate, 
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1999, 2007; French et al., 2002). The E- to ENE-trending Widgiemooltha dykes 

traverse nearly the entire width of the craton approximately orthogonally to the 

regional structural grain, similar to the ca. 2480 - 2450 Ma Matachewan and Hearst 

dykes in North America (Heaman, 1997). Worldwide, mafic dykes of similar age to 

the Yandinilling dyke are found in the São Francisco Craton in Brazil, dated at 2624 

± 7 Ma (Oliveira et al., 2013), and in the high-grade Limpopo Belt between the 

Zimbabwe and Kaapvaal cratons in of southern Africa, where deformed dykes have 

been dated at 2559 ± 4 Ma, 2607 ± 5 Ma and 2604 ± 6 Ma (Xie et al., 2017). 

Evidence for a possible connection between the Yilgarn and Zimbabwe cratons is 

discussed in the following sections.  

4.7.1 Assembly of the South West Terrane 
Amalgamation of the South West Terrane is considered to have involved subduction 

in the west and continental collision in the east. The ca. 2715–2675 Ma Saddleback 

greenstone belt has been interpreted as an island or continental arc (Wilde, 1990; 

Wilde et al., 1996; Korsch et al., 2011).  Subduction of the Balingup Terrane beneath 

the Boddington Terrane between ca. 2714 Ma and 2969 Ma (Korsch et al., 2011) and 

collision between ca. 2696 and 2675 Ma is constrained by calc-alkaline magmatism 

and granitic intrusions within the Saddleback Group (Allibone et al., 1998; Cassidy 

et al., 1998; Wilde and Pidgeon, 2006). Following their amalgamation, the Lake 

Grace Terrane was subducted under the newly formed Balingup-Boddington Terrane 

producing the pyroclastic and intrusive rocks of the upper Saddleback Group at ca. 

2675–2650 Ma (Wilde and Pidgeon, 1986; Allibone et al., 1998; Zhao et al., 2006).  

Collision and final formation of the South West Terrane along a suture now marked 

by the South West Seismic Zone (Doyle, 1971; Middleton et al., 1993; Wilde et al., 

1996; Dentith et al., 2000) is uncertain but probably took place sometime between 

ca. 2649 and 2625 Ma, constrained by low-pressure amphibolite to granulite facies 

metamorphism at ca. 2649–2640 Ma (Nemchin et al., 1994; McFarlane, 2010),  
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emplacement of charnockites at ca. 2627 Ma (Wilde and Pidgeon, 1987; Wilde et al., 

1996) and monazite and zircon growth at ca. 2625 Ma (McFarlane, 2010) in the 

eastern Lake Grace Terrane.  

4.7.2 Mechanism and timing of 2615 Ma mafic magmatism: post-
orogenic lithospheric delamination beneath the Yilgarn Craton? 

The nature of widespread granitic magmatism during the amalgamation of the 

Yilgarn Craton provides evidence for significant changes in tectonic setting during 

the Neoarchean. The ca. 2690–2650 Ma high-Ca granites (Champion and Sheraton, 

1997) were associated with orogenic thickening of the crust and partial melting of an 

isotopically young, deep source of basaltic composition, whereas the ca. 2650–2625 

Ma low-Ca granites were emplaced craton-wide and involved partial melting of a 

shallow, isotopically older tonalitic source (Champion and Sheraton, 1997; Qiu and 

Groves, 1999; Cassidy et al., 2002; Mole et al., 2012). Smithies and Champion 

(1999) proposed that emplacement of the low-Ca granites and syenites in the Eastern 

Goldfields (Figure 4.1) at ca. 2650–2630 Ma was a result of delamination or 

convective thinning of dense eclogitic lower crust ca. 10-15 m.y. after a major partial 

melting event.  Cassidy et al. (2002) argued that the craton-wide extent of low-Ca 

magmatism at ca. 2650–2630 Ma indicates that the entire craton was undergoing 

extension or post-orogenic attenuation at this time, possibly associated with the end 

of a major compressional event in the Eastern Goldfields, as originally proposed by 

Smithies and Champion  (1999).  Geophysical investigations of the deep crustal 

architecture beneath the Eastern Goldfields Superterrane (Figure 4.2) are also 

consistent with delamination of the lower lithosphere (Nelson, 1992), including ca. 

40 km thick crust underlain by a flat, east-dipping Moho and a high-velocity layer at 

100–200 km (Blewett et al., 2010).  Delamination of the lower lithosphere can occur 

through thermal, compositional or phase changes, which render it gravitationally 

unstable (denser than the underlying material) and viscous enough to allow flow 

(Schott and Schmeling, 1998; Elkins Tanton and Hager, 2000; Elkins-Tanton, 2005). 

Smithies and Champion (1999) advocate a model where the delamination (or 

convective thinning) was a direct result of partial melting and eclogitic restite 

formation in the lower crust due to orogenic thickening. The timing of the proposed 

delamination ca. 10-15 m.y. after the partial melting event, the consequent A-type 

syenitic and widespread low-Ca granitic magmatism and high-temperature 
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metamorphism fit well with this scenario. An alternative mechanism could be the 

arrival of a mantle plume, which would cause the thickened lithospheric root to 

become less viscous and thermally unstable. Other workers have proposed that a 

mantle plume event at ca. 2700 Ma was responsible for komatiitic and felsic 

magmatism and a diachronous regional metamorphic peak at ca. 2690-2630 Ma 

(Campbell and Hill, 1988; Upton et al., 1997) but this model is not favoured by 

Smithies and Champion (1999) because it would be difficult to explain the timing 

and duration of the felsic alkaline and low-Ca granitic magmatism and the craton-

wide E-W shortening at ca. 2690-2650 Ma.  

 

In the western Yilgarn Craton, low-pressure granulite facies metamorphism at ca. 

2649–2625 Ma, emplacement of charnockites at ca. 2652–2627 Ma within the Lake 

Grace Terrane (Wilde and Pidgeon, 1987; Nemchin et al., 1994; McFarlane, 2010) 

and the emplacement of the Darling Range batholith at ca. 2648–2626 Ma within the 

Boddington and Balingup Terranes (Nemchin and Pidgeon, 1997) are also consistent 

with the delamination model. Granites of ca. 2612 Ma age near the western margin 

of the South West Terrane have isotopic compositions of εNd(2612) = -2.9 and 

εNd(2612) = 0, respectively, suggesting that their source involved significant mixing of 

younger mantle-derived crust with older crust (Compston et al., 1986) or that the 

granitic magmas could have originated from partial melting of recently crystallised 

mafic rocks in the lower crust (e.g. Smithies et al., 2015). Qiu and Groves (1999)  

suggested that the geochemical characteristics of the ca. 2640–2630 Ma granites, the 

presence of igneous charnockites, and coeval widespread intrusion of other 

granitoids in the southern Lake Grace and Youanmi terranes collectively suggest 

massive melting of lower crust at high temperatures at ca. 2640–2630 Ma. They 

attributed the sudden significant increase in geothermal gradient over <10 m.y. and 

the lower partial melting pressures of the younger granites (indicating thinner crust) 

to lithospheric delamination during a late orogenic stage and suggested that the lack 

of known significant mafic intrusions of this age probably indicated partial, instead 

of complete, removal of the lower crust.  

 

Collectively, these data and the newly discovered mafic magmatism in the South 

West Terrane are consistent with the presence of hot mantle material impinging on a 
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thinned crust beneath most of the Yilgarn Craton, if not the entire Yilgarn Craton, 

between ca. 2652 Ma and 2615 Ma. Several lines of evidence suggest possible 

thermal effects that were associated with intrusion of the 2615 Ma mafic dykes, 

similar to the effects the Marnda Moorn LIP dykes in the middle Proterozoic 

Albany-Fraser Orogen (Dawson et al., 2003). Nemchin and Pidgeon (1997) reported 

extensive recrystallisation of zircon rims at 2628–2616 Ma and growth of titanite at 

ca. 2615 Ma within the Darling Range batholith. The 2615 ± 3 Ma titanite and the 

2616 ± 21 Ma zircon recrystallisation ages are within uncertainty of the 2615 ±	6 

Ma mafic dyke age reported here and strongly suggest that they are related. 

Moreover, zircons from a ca. 2612 Ma granite ca. 130 km southwest of the 2615 Ma 

dyke, yield dates of 2612 ±	5 Ma and 2613 ±	5 Ma, which could represent either the 

timing of recrystallisation or the emplacement (Nemchin and Pidgeon, 1997).  Other 

coeval magmatism includes a felsic intrusive at ca. 2611 Ma within the Saddleback 

greenstone belt (Allibone et al., 1998) and a monzogranite dyke and a granodiorite at 

2610 ± 6 Ma and 2610 ± 8 Ma, respectively, in the southern Boddington Terrane 

(Sircombe, 2007). The NE-SW trend of the Yandinilling dyke suggests NW-SE 

oriented regional extension, which is consistent with the inferred NE-SW oriented 

contraction and strike-slip movement in the eastern part of the craton, constrained by 

syn-kinematic emplacement of low-Ca granites at 2637 ± 7 Ma (Dunphy et al., 

2003).  

4.7.3 Timing of mafic magmatism and gold mineralisation  
Craton-wide (> 400,000 km2) gold mineralisation at ca. 2640–2630 Ma was 

associated with a major tectonothermal event (Groves, 1993; Kent et al., 1996; Yeats 

and McNaughton, 1997; Qiu and Groves, 1999 and references therein) involving a 

deep crustal fluid source (McNaughton and Groves, 1996; Qiu and Groves, 1999), 

which Qiu and Groves (1999) argued was driven by lithospheric delamination. The 

mafic magmatism dated at 2615 ±	6 Ma in the South West Terrane thus post-dates 

the main mineralisation event but may have been synchronous with formation of 

late-stage gold deposits. Gold mineralisation at Boddington may also have been 

synchronous with the ca. 2611 Ma felsic intrusives and movement along brittle shear 

zones (Allibone et al., 1998).  
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4.7.4 The Neoarchean tectonic and paleogeographic setting of the 
Yilgarn Craton: links with the Zimbabwe Craton 

Using coeval mafic dyke swarms as a magmatic barcode (Bleeker and Ernst, 2006) 

between the Zimbabwe and Yilgarn cratons, Söderlund et al. (2010) proposed that 

both could have been part of the ca. 2510–2100 Ma Superia supercraton (Bleeker and 

Ernst, 2006; Ernst and Bleeker, 2010). Paleomagnetic data from the E- to ENE-

trending ca. 2408 Ma Widgiemooltha and ca. 2401 Ma Erayinia dykes (Sofoulis, 

1965; Evans, 1968; Campbell et al., 1970; Hallberg, 1987; Doehler and Heaman, 

1998; Nemchin and Pidgeon, 1998; Wingate, 1999, 2007; French et al., 2002; 

Pisarevsky et al., 2015) and the NNW-trending ca. 2408 Ma Sebanga dyke swarm  

(Wilson et al., 1987; Mushayandebvu et al., 1995; Söderlund et al., 2010) permit a 

possible configuration where the western Yilgarn Craton is attached to the northern 

Zimbabwe Craton and the Sebanga dyke swarm could be a continuation of the 

Widgiemooltha/Erayinia dyke swarm (Figure 4.7A) (Pisarevsky et al., 2015). The 

Yandinilling dyke swarm is older than the 2575 Ma Great Dyke (Oberthür et al., 

2002) and the Umvimeela satellite dyke (Söderlund et al., 2010), which are currently 

the oldest known mafic dykes with robust geochronology in the Zimbabwe Craton. 

However, the Sebanga dyke swarm includes two dyke generations at ca. 2512 Ma 

and 2470 Ma, both considered to be part of the same swarm (Söderlund et al., 2010). 

This suggests that if the Yilgarn and the Zimbabwe cratons were neighbours, yet to 

be identified mafic magmatism of these ages could be present in the Yilgarn Craton. 

If the configuration of Söderlund et al. (2010) and Pisarevsky et al. (2015) at ca. 

2400 Ma is accepted and the Yandinilling dyke and the Umvimeela/Great Dyke are 

considered as part of the same swarm (despite their up to 40 m.y. age difference), the 

barcode between the two cratons does not match unless one of the cratons rotated 

significantly between ca. 2575 Ma and 2512 Ma (or their respective regional stress 

fields were very different) (Figure 4.7C). If the Yilgarn and Zimbabwe cratons were 

adjacent to each other between 2615 Ma and 2408 Ma, continuous but episodic mafic 

magmatism on these cratons lasting for more than 200 m.y. suggests that at least 

some of the dyke swarms could be associated with processes other than a mantle 

plume, or that several plumes were involved. 

 

In contrast to the reconstructions of Söderlund et al. (2010), Smirnov et al. (2013) 

proposed that at ca. 2410 Ma, the eastern margin of the Yilgarn Craton was adjacent 
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to the southern margin of the Zimbabwe Craton, forming the Zimgarn supercraton 

and aligning the Sebanga swarm approximately parallel to the Widgiemooltha dykes 

(Figure 4.7B). Whilst noting that the paleomagnetic data used for such a 

reconstruction were limited, these authors preferred the position of the Zimbabwe 

Craton north of the Yilgarn Craton because the juvenile eastern margin of the 

Yilgarn Craton was a better match with the progressive west to east cratonisation of 

the Zimbabwe Craton, and because offsets on major terrane-bounding shear zones in 

the eastern Yilgarn Craton could be restored to a feasible proto-Zimgarn 

configuration at ca. 2690 Ma (Figure 4.7D). In the ca. 2690 Ma configuration, 

Smirnov et al. (2013) aligned the southeastern margin of the Yilgarn Craton directly 

with the southwestern margin of the Zimbabwe Craton. Pisarevsky et al. (2015) 

noted that if the Zimgarn model of Smirnov et al. (2013) at ca. 2400 Ma is accepted, 

then paleomagnetic constraints imply that the Zimbabwe and Yilgarn cratons were 

not part of Superia. This does not preclude the Smirnov et al. (2013) configuration, 

but there is currently no evidence of mafic dykes or sills older than 2401 Ma in the 

eastern Yilgarn Craton.  

 

Xie et al. (2017) recently obtained  2607 ± 5 Ma and 2604 ± 6 Ma SHRIMP U-Pb 

zircon ages for tholeiitic Stockford dykes within the Central Zone of the Limpopo 

Belt, which separates the Archean Kaapvaal and Zimbabwe cratons in South Africa. 

The Stockford dykes were deformed and metamorphosed under granulite facies 

conditions at ca. 2014 –2005 Ma (Xie et al., 2017) and intrude the Paleoarchean 

Sand River Gneiss, which records high-grade metamorphic events at ca. 2640 Ma 

and ca. 2025 Ma (Zeh et al., 2007, 2010; Gerdes and Zeh, 2009). The timing of the 

amalgamation of the Central Zone to the Zimbabwe Craton is uncertain, but is 

thought to have occurred during the collision and amalgamation between the 

Kaapvaal and Zimbabwe cratons at ca. 2660-2610 Ma (Burke et al., 1986; Kramers 

et al., 2011; Xie et al., 2017; Brandt et al., 2018) or at ca. 2020 Ma (e.g. Holzer et al., 

1998; Söderlund et al., 2010). If the Zimbabwe and Kaapvaal Cratons amalgamated 

at this time, the 2615 Ma mafic magmatism in the southwestern Yilgarn Craton may 

be associated with the same tectonic event that produced the ca. 2607–2604 Ma 

Stockford dykes in the Central Zone of the Limpopo Belt. The South West Terrane 

and the Central Zone share a similar tectonothermal evolution in an orogenic setting 
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that involved contemporaneous low-pressure granulite facies metamorphism 

associated with voluminous felsic magmatism, closely followed by mafic 

magmatism. Voluminous magmatism in the Central Zone at ca. 2650–2610 Ma 

includes the 2612 ± 7 Ma Bulai pluton and the 2613 ± 7 Ma Zanzibar gneiss 

 

 
Figure 4.7 Paleogeographic reconstructions of the Yilgarn and Zimbabwe cratons. 
(A) Superia configuration after Söderlund et al. (2010) and Pisarevsky et al. (2015) 
at ca. 2500–2400 Ma. Only the Yilgarn and Zimbabwe cratons are shown. (B) 
Reconstruction of Smirnov et al. (2013) at ca. 2410 Ma, (C) Relative orientations  of 
the Yilgarn and Zimbabwe cratons rotated from (A) to an approximate alignment of 
the 2615 Ma Yandinilling swarm with the 2575 Ma Great Dyke. and (D) 
reconstruction  of Smirnov et al. (2013) at ca. 2690 Ma. Yilgarn Craton: green = 
Widgiemooltha/ Eraynia dykes, BD = Binneringie Dyke and JD = Jimberlana Dyke  
(both part of the Widgiemooltha swarm), blue = Yandinilling swarm, green star = 
possible mantle plume location. Zimbabwe Craton: GD (orange) = the Great Dyke, 
SPD (green) =  the Sebanga Poort Dyke, SD = Sebanga dykes   
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(Zeh et al., 2007; Millonig et al., 2008), which are coeval with the ca. 2612–2611 Ma 

Logue Brook Granite (Compston et al., 1986; Nemchin and Pidgeon, 1997) and ca. 

2611–2610 felsic magmatism elsewhere within the South West Terrane (Allibone et 

al., 1998; Sircombe, 2007). Moreover, a low-pressure high-grade tectonothermal 

event at ca. 2650–2644 Ma in the Central Zone of the Zimbabwe Craton (Holzer et 

al., 1998; Zeh et al., 2007, 2010; Millonig et al., 2008), possibly linked to magmatic 

underplating (e.g. Holzer et al., 1998), is  coeval with the ca. 2650 Ma low-pressure 

granulite facies metamorphism in the Lake Grace Terrane and the  timing of 

proposed lithospheric delamination beneath the Yilgarn Craton (section 4.7.2). 

Furthermore, Brandt et al. (2018) propose that the UHT metamorphic event in the 

Central Zone at ca. 2660-2610  was likely due to lithospheric delamination and 

Kröner et al. (1999), Kamber and Biino (1995) and Berger et al. (1995) favoured a 

lithospheric delamination (or mantle plume) model for the ca.2700-2600 Ma high-

grade event in the Northern Marginal Zone. Similar to the Yandinilling swarm 

reported here, Xie et al. (2017) argued that the Stockford dykes may have formed in 

a post-collisional extensional environment during orogenic collapse, which they 

consider to represent the Neoarchean amalgamation of the Zimbabwe and Kaapvaal 

cratons.  Alternatively, an upwelling mantle plume could explain the wide extent of 

magmatic underplating and low-pressure high-temperature metamorphism followed 

by the emplacement of mafic dykes. Such an event would be expected to show up as 

mafic magmatism in other nearby crustal blocks but reliably dated mafic dykes of ca. 

2620–2600 Ma age are currently not known from other cratons. If the Zimbabwe and 

Kaapvaal cratons amalgamated at ca. 2660-2610 Ma, the Smirnov et al. (2013) 

reconstruction at ca. 2410 Ma (Figure 4.7B) would not be feasible and would require 

adjustment to accommodate the consolidated Zimbabwe-Kaapvaal Craton. This also 

raises the possibility that ca. 2615 Ma mafic magmatism coeval with the 

Yandinilling dyke may be present in the Kaapvaal Craton (Figure 4.7C). 

4.8 Conclusions 
We have identified the oldest known mafic dyke in the Yilgarn Craton of Western 

Australia, dated at 2615 ±	6 Ma by ID-TIMS on baddeleyite and at 2610 ± 25 Ma 

utilizing in situ SHRIMP U-Pb dating of baddeleyite. Aeromagnetic data suggest that 

the dyke is part of a series of NE-trending intrusions, here named the Yandinilling 

dyke swarm, that extend hundreds of kilometers within the southwestern part of the 
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craton. The 2615 Ma mafic magmatism postdates the ca. 2650–2630 Ma craton-wide 

emplacement of low-Ca granites that have been linked with post-orogenic collapse 

and delamination of the lower crust beneath the Yilgarn Craton. The Yandinilling 

swarm also postdates the ca. 2640–2630 Ma craton-wide gold mineralisation event, 

but may be coeval with some late-stage gold mineralisation at Kambalda and 

Boddington. Paleogeographic reconstructions suggest that the Yilgarn and 

Zimbabwe cratons may have been neighbours between ca. 2690 Ma and 2401 Ma. If 

the Zimbabwe and Kaapvaal Cratons amalgamated at ca. 2660-2610 Ma, the 2615 

Ma mafic magmatism in the southwestern Yilgarn Craton may be associated with the 

same tectonic event that produced the ca. 2607–2604 Ma Stockford dykes in the 

Central Zone of the Limpopo Belt. Paleomagnetic evidence, coeval granitic 

magmatism, high-grade metamorphism, and emplacement of mafic dykes support a 

configuration where the northern part of the Zimbabwe Craton may have been 

adjacent to the western margin of the Yilgarn Craton during the Neoarchean. 

Worldwide, reliably dated mafic dykes of this age have so far been reported from the 

Yilgarn Craton, the Limpopo Belt and the São Francisco Craton.  
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Chapter 5  Newly identified 1.89 Ga mafic dyke swarm in the 
Archean Yilgarn Craton, Western Australia, suggests a 

connection with India2 
 

J. Camilla Stark,  Xuan-Ce Wang,  Steven W. Denyszyn,  Zheng-Xiang Li,  Birger 

Rasmussen,  Jian-Wei Zi,  Stephen Sheppard and Yebo Liu 

 

5.1 Abstract 
The Archean Yilgarn Craton in Western Australia is intruded by numerous mafic 

dykes of varying orientations, which are poorly exposed but discernible in 

aeromagnetic maps. Previous studies have identified two craton-wide dyke swarms, 

the 2408 Ma Widgiemooltha and the 1210 Ma Marnda Moorn Large Igneous 

Provinces (LIP), as well as limited occurrences of the 1075 Ma Warakurna LIP in the 

northern part of the craton. We report here a newly identified NW-trending mafic 

dyke swarm in southwestern Yilgarn Craton dated at 1888 ± 9 Ma with ID-TIMS U-

Pb method on baddeleyite from a single dyke and at 1858 ± 54 Ma, 1881 ± 37 and 

1911 ± 42 Ma with in situ SHRIMP U-Pb on baddeleyite from three dykes. 

Preliminary interpretation of aeromagnetic data indicates that the dykes form a linear 

swarm several hundred kilometers long, truncated by the Darling Fault in the west. 

This newly named Boonadgin dyke swarm is synchronous with post-orogenic 

extension and deposition of granular iron formations in the Earaheedy basin in the 

Capricorn Orogen and its emplacement may be associated with far field stresses. 

Emplacement of the dykes may also be related to initial stages of rifting and 

formation of the intracratonic Barren Basin in the Albany-Fraser Orogen, where the 

regional extensional setting prevailed for the following 300 million years. Recent 

studies and new paleomagnetic evidence raise the possibility that the dykes could be 

part of the coeval 1890 Ma Bastar-Cuddapah LIP in India. Globally, the Boonadgin 

dyke swarm is synchronous with a major orogenic episode and records of 

intracratonic mafic magmatism on many other Precambrian cratons. 

                                                
2 This chapter is published as Stark, J.C., Wang, X.-C., Denyszyn, S.W., Li, Z.-X., Rasmussen, B., Zi, 
 J.-W., Sheppard, S., Liu, Y.,. Newly identified 1.89 Ga mafic dyke swarm in the Archean 
 Yilgarn Craton, Western Australia suggests a connection with India. Precambrian Res. In 
 press.  https://doi.org/10.1016/j.precamres.2017.12.036, online on 19 December 2017 
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5.2 Introduction 
Regardless of their proposed mechanism of formation (e.g. mantle plume, flux 

melting, passive rifting or global mantle warming), large igneous provinces (LIPs; 

Coffin and Eldholm, 1994), including mafic dyke swarms, appear to be intimately 

connected with deep-Earth dynamics and supercontinent cycles (e.g. Condie, 2004; 

Prokoph et al., 2004; Bleeker and Ernst, 2006; Ernst et al., 2008; Li and Zhong, 

2009; Clowes et al., 2010; Goldberg, 2010).  Mafic dyke swarms act as important 

markers for supercontinent reconstructions (e.g. Ernst and Buchan, 1997; Buchan et 

al., 2001; Bleeker and Ernst, 2006; Ernst and Srivastava, 2008; Ernst et al., 2010, 

2013) and as indicators of paleostress fields and pre-existing crustal weaknesses 

(Ernst et al., 1995b; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 2012; Ju et 

al., 2013).  Key to such application is the availability of high-precision 

geochronology for mafic dykes. Recent studies have shown that orientation alone 

cannot be reliably used to distinguish between different dyke generations, especially 

near major tectonic boundaries and craton scale structures such as continental rifts 

(e.g. Hanson et al., 2004; Wingate, 2007; French and Heaman, 2010; Belica et al., 

2014).  

 

Like many other Archean cratons worldwide, the Yilgarn Craton in Western 

Australia is intruded by many generations of dyke suites with different orientations. 

Currently, robust geochronology is only available for two craton-wide dyke swarms 

at 2408 Ma (Sofoulis, 1965; Evans, 1968; Hallberg, 1987; Doehler and Heaman, 

1998; Nemchin and Pidgeon, 1998; Wingate, 1999; French et al., 2002) and at 1210 

Ma (Marnda Moorn LIP; Wingate et al., 1998, 2000; Wingate, 2007), and for limited 

dyke occurrences at 1075 Ma (Warakurna LIP; Wingate et al., 2002, 2004) and ca. 

735 Ma (Nindibillup dykes; Spaggiari et al., 2009, 2011; Wingate, 2017). The 

magmatic record ("barcode") for the Yilgarn Craton dyke swarms is very limited 

compared with other Archean cratons, such as the Superior and Kola-Karelia Cratons 

(Ernst and Bleeker, 2010; Ernst et al., 2010). The apparent absence of mafic 

magmatism in the Yilgarn Craton during the major global episode of juvenile 

magmatism and crustal growth at ca. 1890 Ma is surprising since this event is found 

on most other Precambrian cratons worldwide (Heaman et al., 1986, 2009; Hanson et 

al., 2004; French et al., 2008; Minifie et al., 2008; Buchan et al., 2010; Ernst and 



J.C. Stark        Chapter 5 - 1.89 Ga Boonadgin dyke swarm 

     104 

Bell, 2010; Söderlund et al., 2010). The lack of geochronology and paleomagnetic 

data from the Yilgarn Craton between ca. 1900 Ma and 1300 Ma, the proposed time 

interval for the supercontinent Nuna/Columbia, is especially problematic for 

paleographic reconstructions.  

 

Here we report in situ SHRIMP and ID-TIMS U-Pb results for a previously 

unidentified NW-trending Paleoproterozoic mafic dyke suite in the southwestern 

Yilgarn Craton and discuss the tectonic setting during its emplacement. A direct 

record of Paleoproterozoic tectonic events in the craton margins is largely absent due 

to extensive overprinting by younger events, so we also evaluate evidence from 

remnant Proterozoic sedimentary basins, which preserve a history of past tectonic 

setting, crustal architecture and lithospheric stress fields. In light of previous studies 

suggesting India-Yilgarn connection (Mohanty, 2012, 2015) and recent 

paleomagnetic data (Belica et al., 2014; Liu et al., 2016, 2018) we consider the 

possibility that the dykes may be associated with the coeval Bastar-Cuddapah LIP in 

India. 

5.3 Regional geology 
The Yilgarn Craton is a ca. 900 x 1000 km Archean crustal block comprising six 

accreted terranes: the Southwest, Narryer, Youanmi, Kalgoorlie, Kurnalpi and 

Burtville terranes, the latter three forming the Eastern Goldfields Superterrane 

(Figure 5.1). These comprise variably metamorphosed granites and volcanic and 

sedimentary rocks with protolith ages between ca. 3730 and 2620 Ma (Cassidy et al., 

2005, 2006 and references therein) and are thought to represent a series of volcanic 

arcs, back arc basins and microcontinents, which amalgamated between ca. 2900 and 

2700 Ma (Myers, 1993; Wilde et al., 1996). Abundant granites were emplaced 

between ca. 2760 Ma and 2630 Ma (Cassidy et al., 2006 and references therein) and 

the entire craton underwent intense metamorphism and hydrothermal activity 

between 2780 and 2630 Ma (Myers, 1993; Nemchin et al., 1994; Nelson et al., 

1995a; Wilde et al., 1996). The Southwest Terrane comprises multiply deformed ca. 

3200–2800 Ma high-grade metasedimentary rocks and ca. 2720─2670 Ma meta-

igneous rocks intruded by 2750─2620 Ma granites (Myers, 1993; Wilde et al., 1996; 

Nemchin and Pidgeon, 1997).  
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Figure 5.1 Map of the Yilgarn showing major tectonic units and the Capricorn and 
Albany-Fraser Orogens. Inset shows the extent of the West Australian Craton 
(Pilbara Craton, Yilgarn Craton and Capricorn Orogen). From Geological Survey 
of Western Australia 1:2.5M Interpreted Bedrock Geology 2015 and 1:10M Tectonic 
Units 2016 

The Yilgarn Craton is bounded by three Proterozoic orogenic belts: the ca. 

2005─570 Ma Capricorn Orogen in the north (Cawood and Tyler, 2004; Sheppard et 

al., 2010a; Johnson et al., 2011), the ca. 1815─1140 Ma Albany-Fraser Orogen in the 

south and east (Nelson et al., 1995a; Clark et al., 2000; Spaggiari et al., 2015), and 

the ca. 1090-525 Ma Pinjarra Orogen in the west (Myers, 1990; Wilde, 1999; 

Ksienzyk et al., 2012). Prolonged lateritic weathering has produced the modern 

denuded landscape and poor exposure of basement rocks (Anand and Paine, 2002).   

 

Following cratonisation toward the end of the Archean, the Yilgarn Craton collided 

along the Capricorn Orogen with the combined Pilbara Craton-Glenburgh Terrane by 

1950 Ma to form the West Australian Craton (WAC: Sheppard et al., 2004, 2010; 

Johnson et al., 2011).  Four syn- to post-orogenic sedimentary basins developed 

along the southern Capricorn Orogen, including the Earaheedy Basin in the east 

(Pirajno et al., 2009). The Earaheedy succession was thought to be post-1800 Ma in 

age, but new dating (Rasmussen et al., 2012; Sheppard et al., 2016) shows that the 
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basin comprises three unconformity-bound packages at ca. 1990─1950 Ma, ca. 1890 

Ma and ca. 1890─1810 Ma. 

 

The Yilgarn Craton is intruded by a large number of dykes of different orientations 

with the dyke density increasing towards the southern and western craton margins 

(Hallberg, 1987; Tucker and Boyd, 1987). The dykes are discernible in aeromagnetic 

data but difficult to sample due to deep weathering and thick regolith cover. The 

oldest known dykes belong to the E-W to NE-SW trending 2408 Ma Widgiemooltha 

Supersuite (Sofoulis, 1965; Evans, 1968; Campbell et al., 1970; Hallberg, 1987; 

Doehler and Heaman, 1998; Nemchin and Pidgeon, 1998; Wingate, 1999, 2007; 

French et al., 2002). The Widgiemooltha dykes are up to 3.2 km wide and extend up 

to 700 km across the craton, with the largest intrusions (Jimberlana and Binneringie) 

showing well developed igneous layering (Campbell et al., 1970; Lewis, 1994). The 

dykes exhibit dual magnetic polarity (Tucker and Boyd, 1987; Boyd and Tucker, 

1990) and recent geochronology and paleomagnetic data suggest that their 

emplacement may have involved several pulses  (Wingate, 2007; Pisarevsky et al., 

2015).  The second craton-wide suite is the 1210 Ma Marnda Moorn LIP which 

consists of several sub-swarms of different orientations intruding along the craton 

margins (Isles and Cooke, 1990; Evans, 1999; Wingate et al., 2000; Pidgeon and 

Nemchin, 2001; Pidgeon and Cook, 2003; Wingate and Pidgeon, 2005; Wingate, 

2007; Claoué-Long and Hoatson, 2009). Outcrops in the southeast are limited to a 

single occurrence, and the extent of the dykes in the northeast is unknown due to 

cover rocks but one E-W oriented dioritic dyke dated at 1215 ± 11 Ma has been 

reported further inland (Qiu et al., 1999). Other identified dyke swarms with limited 

occurrences include the SW-trending dykes of the 1075 Ma Warakurna LIP in the 

northern Yilgarn Craton (Wingate et al., 2004), the WNW-trending ca. 735 Ma 

Nindibillup dykes in the central and SE Yilgarn Craton (Spaggiari et al., 2009, 2011; 

Wingate, 2017) and the undated (likely <1140 Ma) NW-trending Beenong dykes in 

the SE Yilgarn Craton (Wingate, 2007; Spaggiari et al., 2009, 2011). 

5.4  Samples 
5.4.1 Field sampling 
Field sampling sites were targeted using satellite imagery (Landsat/Copernicus or 

Astrium/CNES from Google Earth), aeromagnetic data (20-40 m cell size, 
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Geoscience Australia magnetic grid of Australia V6 2015 base reference) and 1:250 

000 geological maps from the Geological Survey of Western Australia.  

 

Four block samples were collected from outcrops within agriculturally cleared areas 

where the dykes stand out as small ridges. Sample WDS09 was collected from an 

outcrop ca. 18 km southwest of the town of Pingelly, sample 16WDS01 and 

16WDS02 ca. 29 km northwest of Pingelly and sample 16WDS06 ca. 14 km 

southwest of the village of Gwambygine (Figure 5.2). Coordinates for sample 

locations are given in Table 5.1.  Basement rocks are only exposed at the WDS09 

outcrop where the dyke intrudes Archean migmatitic gneiss with a sharp chilled 

margin. At the 16WDS01/16WDS02 and 16WDS06 sites, geological mapping 

indicates that the country rocks to the dykes are mainly Archean granites. The 

outcrops are fresh with weathering forming a thin crust best visible along fractures. 

5.4.2 Sample description 
All samples are dolerites with intergranular ophitic to sub-ophitic texture, comprising 

ca. 50% plagioclase, 45% clinopyroxene, 1-2 % quartz, 2-3 % opaque minerals 

(ilmenite, magnetite and minor pyrite) and trace biotite and apatite. Sample WDS09 

is relatively fresh but samples 16WDS01/02 and 16WDS06 in the northern part of 

the sampling area are more altered, with most clinopyroxene grains partially altered 

to chlorite and green amphibole. Plagioclase is affected by sericitisation but most 

grains still show twinning. Biotite is associated with the opaque minerals, forming 

corona like rims. The main U- and Th-bearing accessory minerals are baddeleyite 

and zirconolite, only identifiable under SEM due to their small size, typically ≤ 70 

µm long and 20-30 µm across. Some crystals show thin zircon rims or alteration to 

zircon along fractures but most appear pristine. 

 

5.5 U-Pb geochronology and geochemistry  
5.5.1 SHRIMP U-Pb geochronology 
Polished thin sections were scanned to identify baddeleyite, zircon and zirconolite 

with a Hitachi TM3030 scanning electron microscope (SEM) equipped with energy 

dispersive X-ray spectrometer (EDX) at Curtin University. For SHRIMP U-Pb 

dating, selected grains were drilled directly from the thin sections using a micro drill 
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and mounted into epoxy disks, which were cleaned and coated with 40 nm of gold. 

Baddeleyite forms unaltered subhedral to euhedral equant and tabular grains and 

 

 
Figure 5.2 Sampling locations. See Table 5.1 for detailed information 

 
Dyke ID Dlat / Dlon Samples Comments 

WDS09 32 39.339 S 116 57.132 E 
WDS09M-N, 

WDS09RSA-B 
NW trending dolerite dyke near West Pingelly 

 

16WDS01 32 24.738 S 116 48.818 E 16WDS01A-D NNW trending dolerite dyke west of Brookton, ridge 

    

16WDS02 32 24.740 S 116 48.798 E 16WDS02A-D 

NNW trending dolerite dyke west of Brookton. 

Same dyke as 16WDS01 

 

16WDS06 31 59.973 S 116 39.699 E 16WDS06A-D NW trending dyke near Talbot 

Table 5.1 Sample locations. Datum WGS84, Dlat = decimal latitude, Dlon = decimal 
longitude 

laths, some with thin zircon rims, and most are <60 µm long and up to 20-30 µm 

across (Figure 5.3). 

 

Baddeleyite was analysed for U, Th and Pb using the sensitive high-resolution ion 

microprobe (SHRIMP II) at the John de Laeter Centre at Curtin University in Perth, 

Australia, following standard operating procedures after Compston et al. (1984). The  
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Figure 5.3 SEM backscatter images showing SHRIMP baddeleyite spots and dates. 
(A) WDS09-2B (B) 16WDS01-372B (C) 16WDS06-405B (D) 16WDS06-406B 

SHRIMP analysis method for mounts with polished thin section plugs outlined in 

Rasmussen and Fletcher (2010) was modified for baddeleyite (SHRIMP operating 

parameters in Table 5.2. During each analysis session, standard zircon OG1 (Stern et 

al., 2009) was used to monitor instrumental mass fractionation and BR266 zircon 

(Stern, 2001) was used for calibrating U and Th concentration and as an accuracy 

standard. Phalaborwa baddeleyite (Heaman, 2009) was employed as an additional 

accuracy standard. Typical spot size with primary O2
- current was 10-15 µm at 0.8-

1.4 nA. Data were processed with Squid version 2.50 (Ludwig, 2009) and Isoplot 

version 3.76.12 (Ludwig, 2012).  For common Pb correction, 1890 Ma common Pb 

isotopic compositions were calculated from the Stacey and Kramers (1975) two-

stage terrestrial Pb isotopic evolution model. Analyses with >1% common Pb (in 
206Pb) or >10% discordance (see footnote in Table 5.3 for definition) are considered 

unreliable and were disregarded in age calculations. The assigned 1σ external Pb/U 

error for all analyses is 1%, except for 1.04% for 16WDS06. All weighted mean ages 
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are given at 95% confidence level, whereas individual analyses are presented with 

1σ error. 
Mount CS16-1 CS16-6 CS16-7 

Dykes analysed WDS09, WDS09RS 16WDS01 16WDS06 

Date analysed 21-Jul-16 14-Sep-16 6-Sep-16 

Kohler aperture (µm) 50 50 50 

Spot size (micrometres) 11 9 7 

O2- primary current (nA) 0.9 0.6 0.2 

Number of scans per analysis 8 8 8 

Total number of analyses 23 32 34 

Number of standard analyses 13 13 14 

Pb/U external precision % (1σ) 1.00 1.00 1.00 

Raster time (seconds) 120 180 180 

Raster aperture (µm) 90 90 80 

Table 5.2 SHRIMP operating parameters. Notes 1) Mass resolution for all analyses 
≥ 5000 at 1% peak height 2) BR266, OGC, Phalaborwa and NIST used as standards 
for each session 3) Count times for each scan: 204Pb, 206Pb, 208Pb = 10 seconds, 
207Pb = 30 seconds 

5.5.2 ID-TIMS U-Pb geochronology 
A sample for ID-TIMS U-Pb geochronology was selected based on results from the 

SHRIMP dating and the highest number of identified baddeleyites in thin section. A 

block sample was first sawn from the field sample to remove weathering, then 

crushed, powdered and processed using a mineral-separation technique amended 

from Sӧderlund and Johansson (2002). Baddeleyite grains were hand picked under 

ethanol under a stereographic optical microscope and selected grains were cleaned 

with concentrated distilled HNO3 and HCl.  Due to the small size of the grains, no 

chemical separation methods were required. 

 

Samples were spiked with a University of Western Australia in-house 205Pb-235U 

tracer solution, which has been calibrated against SRM981, SRM982 (for Pb), and 

CRM 115 (for U), as well as an externally-calibrated U-Pb solution (the JMM 

solution from the EarthTime consortium). This tracer is regularly checked using 

“synthetic zircon” solutions that yield U-Pb ages of 500 Ma and 2000 Ma, provided 

by D. Condon (BGS). Dissolution and equilibration of spiked single crystals was by 

vapour transfer of HF, using Teflon microcapsules in a Parr pressure vessel placed in 

a 200°C oven for six days. The resulting residue was re-dissolved in HCl and H3PO4 
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and placed on an outgassed, zone-refined rhenium single filament with 5 µL of 

silicic acid gel. U–Pb isotope analyses were carried out using a Thermo Triton T1 

mass spectrometer, in peak-jumping mode using a secondary electron multiplier. 

Uranium was measured as an oxide (UO2). Fractionation and deadtime were 

monitored using SRM981 and SRM 982. Mass fractionation was 0.02 ± 0.07%/amu. 

Data were reduced and plotted using the software packages Tripoli (from 

CIRDLES.org) and Isoplot 4.15 (Ludwig, 2011). All uncertainties are reported at 2σ. 

U decay constants are from Jaffey et al. (1971). The weights of the baddeleyite 

crystals were calculated from measurements of photomicrographs and estimates of 

the third dimension. The weights are used to determine U and Pb concentrations and 

do not contribute to the age calculation. An uncertainty of ± 50% may be attributed 

to the concentration estimate. 

5.6 Geochemistry 
Slabs were sawn from block samples to remove weathering. After an initial crush, a 

small fraction of material was separated and chips with fresh fracture surfaces were 

hand picked under the microscope and pulverised in an agate mill for isotope 

analysis. Remaining material was pulverised in a low-Cr steel mill for major and 

trace element analysis. 

 

Major element analysis was undertaken at Intertek Genalysis Laboratories in Perth, 

Western Australia using X-ray fluorescence (XRF) using the Geological Survey of 

Western Australia (GSWA) standard BB1 (Morris, 2007) and Genalysis laboratory 

internal standards SARM1 and SY-4. Trace element analysis was carried out at 

University of Queensland (UQ) on a Thermo XSeries 2 inductively coupled plasma 

mass spectrometer (ICP-MS) equipped with an ESI SC-4 DX FAST autosampler, 

following  procedure for ICP-MS trace element analysis by Eggins et al. (1997) 

modified by the UQ Radiogenic Isotope Laboratory (Kamber et al., 2003). Sample 

solutions were diluted 4000 times and 12ppb 6Li, 6ppb 61Ni, Rh, In and Re, and 

4.5ppb 235U internal spikes were added. USGS W2 was used as reference standard 

and crossed checked with BIR-1, BHVO-2 or other reference materials. All major 

element analyses have precision better than 5 % and all trace element analyses have 

relative standard deviation (RSD) < 2%. 
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Rb-Sr and Sm-Nd isotope analyses were carried out at the University of Melbourne 

(e.g. Maas et al., 2005, 2015). Small splits (70 mg) of rock powders were spiked with 
149Sm-150Nd and 85Rb-84Sr tracers, followed by dissolution at high pressure in an 

oven, using Krogh-type PTFE vessels with steel jackets. Sm, Nd and Sr were 

extracted using EICHROM Sr-, TRU- and LN-resin, and Rb was extracted using 

cation exchange (AG50-X8, 200-400 mesh resin). Isotopic analyses were carried out 

on a NU Plasma multi-collector ICP-MS coupled to a CETAC Aridus desolvation 

system operated in low-uptake mode. Raw data for spiked Sr and Nd fractions were 

corrected for instrumental mass bias by normalizing to 88Sr/86Sr = 8.37521 and 
146Nd/145Nd = 2.0719425 (equivalent to 146Nd/144Nd = 0.7219), respectively, using 

the exponential law as part of an on-line iterative spike-stripping/internal 

normalization procedure. Sr and Nd isotope data are reported relative to SRM987 = 

0.710230 and La Jolla Nd = 0.511860 and have typical in-run precisions (2sd) of ± 

0.000020 (Sr) and ± 0.000012 (Nd). External precision (reproducibility, 2sd) is ± 

0.000040 (Sr) and ± 0.000020 (Nd). External precisions for 87Rb/86Sr and 
147Sm/144Nd obtained by isotope dilution are ± 0.5% and ± 0.2%, respectively.  

5.7 Results 
5.7.1 SHRIMP U-Pb geochronology 
Seventeen analyses were obtained from thirteen baddeleyite grains (9 grains from 

WDS09, 1 grain from 16WDS01 and 3 grains from 16WDS06) during three 

SHRIMP sessions (Figure 5.4; detailed U-Pb data are given in Table 5.3. The 

analysed baddeleyites have low to moderate U concentrations varying from 47 to 449 

ppm (median = 181 ppm) and low Th from 5 to 76 ppm, with Th/U ratios ranging 

from 0.02 to 0.47. Eight analyses were excluded based on their high common Pb 

(>1% 206Pb) and/or >10% discordance. Sample WDS09 yielded a common Pb-

corrected weighted mean 207Pb/206Pb date of 1858 ± 54 Ma (MSWD = 1.80, 4 

analyses from 4 grains). If spot WDS09N5.29B-1, which is near-concordant (6% 

discordance) but contains slightly higher common Pb (1.45%) is included, the 

weighted mean is 1860 ± 41 Ma (MSWD = 1.4, n = 5).  Two analyses on a single 

grain from 16WDS01 yield a 207Pb/206Pb weighted mean of 1881 ± 37 Ma (MSWD = 

0.00075) and three analyses on 2 grains from 16WDS06 give a weighted mean of 

1911 ± 42 Ma. Collectively, the 9 analyses on five baddeleyite grains from three 

samples give 207Pb/206Pb dates overlapping with each other within uncertainties; 
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combining them yields a weighted mean of 1874 ±	25 Ma (MSWD = 1.3), which is 

interpreted as the best approximation of the crystallisation age of the dykes. 

5.7.2 ID-TIMS U-Pb geochronology 
Four baddeleyite crystals were analyzed from sample WDS09 (Table 5.4, Figure 

5.5). Calculated weights are on the order of 0.1 µg, with low calculated U 

concentrations, all below 50 ppm. One grain has an apparently very low U content (3 

ppm) and a concomitant low 206Pb/204Pb ratio of 30. This results in a relatively  

Figure 5.4 Tera-
Wasserburg plot 
of SHRIMP U-
Pb baddeleyite 
results for 
samples WDS09, 
16WDS01 and 
16WDS06. Grey 
squares denote 
excluded data 
(see section 
5.7.1 for details) 

imprecise age determination and large analytical uncertainties for all data are the 

result of very low radiogenic Pb concentrations. Calculated U concentrations are 

unusually low for baddeleyite; this may reflect an overestimate of the grain weights, 

but the low Pb abundance (both radiogenic and common Pb) also implies a low 

initial U concentration. Th/U ratios are <0.1, a typical value for baddeleyite. One 

datum is discordant but the coherence in 207Pb/206Pb age for all baddeleyite crystals 
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supports our interpretation of the analyses representing a single magmatic 

crystallization age.  The weighted-mean 207Pb/206Pb dates of the four single-crystal 

analyses is 1863 ± 50 Ma (2σ, MSWD = 0.24, n = 4), and the concordia age of the 

three concordant analyses is 1888.4 ± 8.8 Ma (2σ, decay-constant errors included). 

5.8 Geochemistry 
Due to limited age control, only three samples were available for geochemical 

analyses and clearly only preliminary conclusions about the geochemical 

characteristics of the dykes can be made based on these data. Two samples from 

WDS09 and one sample from 16WDS02 (same dyke as 16WDS01) were analysed 

for major and trace elements and for Sr and Nd isotopes. Data for the samples are  

Figure 5.5 
Concordia plot 
for analysed 
baddeleyite ID-
TIMS U-Pb 
results from 
sample WDS09  

presented together with major and trace element geochemistry from the 1210 Ma  

Marnda Moorn LIP dykes because the latter are the only known tholeiitic dyke 

swarm within the Yilgarn Craton with detailed studies available both in 

geochronology and geochemistry.  

5.8.1 Major and trace elements 
All samples have LOI <1.0 wt% and display low MgO (6.18-6.73 wt%), SiO2 

(50.12-50.43 wt%), relatively high iron (FeOtot = 14.10-15.09 wt%), normal to 

intermediate CaO (10.71-11.28 wt%) and slightly high Al2O3 (13.37-13.87 

wt%)(Table 5.5). The samples have low total alkalis (Na2O+K2O = 2.39-2.49 wt%) 

and high Na2O/K2O ratios (6.32-6.44), suggesting sodium enrichment. The 
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Boonadgin samples are classified as sub-alkaline basalts on the TAS diagram (Figure 

5.6 A) and belong to tholeiitic series on the AFM diagram (Figure 5.6 B) similar to 

Group 1 of the Marnda Moorn dykes (Wang et al., 2014). The chondrite normalised 

rare earth element (REE) distribution patterns are relatively flat (Figure 5.6 C) with 

slight enrichment of light REE (LREE), as evidenced by LaN/YbN  = 1.48 to 1.57 and 

LaN/SmN = 1.18 to 1.26. The low TbN/YbN ratios (1.16 to 1.18) are similar to the 

average N-MORB (1.0; Sun and McDonough, 1989) and the primitive mantle-

normalised trace element patterns show strong enrichment of Cs, Rb, U and Pb and a 

prominent negative Nb anomaly (Figure 5.6 D). With the exception of these fluid-

mobile elements and the negative Nb anomaly, the studied samples displayed a 

relative flat trace element distribution patterns without significant enrichment or 

depletion in specific elements.  

5.8.2 Nd and Sr Isotopes 
The same three samples were analysed for Nd and Sr isotopes (Table 5.5). Ratios of 
147Sm/144Nd and 143Nd/144Nd are 0.1825–0.1848 and 0.512533–0.512562, 

respectively. The corresponding initial εNd1.89Ga values range from +1.3 to +1.6, 

suggesting a slightly depleted mantle component. The 87Rb/86Sr ratio ranges from 

0.39999 to 0.5464, the 87Sr/86Sr ratio from 0.714588 to 0.716562, corresponding 

initial Sr isotopes of (87Sr/86Sr)i ratio varying from 0.70124 to 0.70391. The larger 

range of initial Sr isotope compositions is in contrast with the uniform initial Nd 

isotopes, and may reflect mobility of Rb. Therefore, the measured Sr isotope 

compositions of the studied samples may not accurately represent their primary 

signature. 
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5.9 Discussion 
We have identified a previously unrecognized NNW-trending swarm of mafic dykes 

in the Yilgarn Craton, which, based on preliminary aeromagnetic interpretation, 

covers an area of ca. 33 000 km2 in the southwestern part of the craton. However, 

until further sampling within the craton allows better delineation of the extent of the 

dykes, their designation as a swarm is preliminary. Emplacement of the Boonadgin 

dykes was synchronous with many 1890-1880 Ma LIPs worldwide, such as the 

Bastar-Cuddapah dykes in India (French et al., 2008; Belica et al., 2014), the 

Circum-Superior magmatism of the Superior Craton (Heaman et al., 1986; Halls and 

Heaman, 2000; Ernst and Bell, 2010), the Ghost-Mara dyke swarm of the Slave 

Craton (Buchan et al., 2010), the  Uatuma dyke swarm of the Amazonian Craton 

(Klein et al., 2012; Antonio et al., 2017) and the Mashonaland sill province of the 

Zimbabwe Craton (Söderlund et al., 2010), the Soutpansperg sill province (Hanson et 

al., 2004) and the Black Hills dyke swarm (Olsson et al., 2016) of the Kaapvaal  

 

Figure 5.6 (A) Total alkali-silica (TAS) plot after LeMaitre, 1989. Blue dots are 
Marnda Moorn group 1 dykes from Wang et al., 2014. (B) AFM plot after Irvine and 
Baragar, 1971. (C) Chondrite and (D) primitive mantle normalised multi- element 
lots for Boonadgin and Marnda Moorn group 1 dykes (Wang et al., 2014). LCC = 
lower continental crust after Rudnick and Gao, 2004; OIB = ocean island basalt and 
NMORB = mid ocean ridge basalt after Sun and McDonough, 1989. 
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Craton. In the following sections, we discuss the emplacement of the dykes within 

the regional tectonic setting, coeval magmatism elsewhere in the region, and the 

implications for a recently proposed tectonic reconstruction, which raises the 

possibility that the dykes may be associated with the Bastar-Cuddapah LIP in India. 

5.9.1 Coeval magmatism in Australia 
No other mafic magmatism within uncertainty of the 1888 ± 9 Ma age for the 

Boonadgin dyke swarm is currently known in the WAC or elsewhere in Australia. 

However, felsic tuffs from a succession of granular iron formation (GIF) in the Frere 

Formation in the Earaheedy Basin have been dated at 1891 ± 8 Ma and 1885 ± 18 

Ma, and linked to voluminous mantle input from an oceanic mafic source during a 

major global episode of mantle upwelling and crustal growth (Rasmussen et al., 

2012). Evidence of synchronous magmatism elsewhere in the Capricorn Orogen is 

limited to a 1900 Ma zircon population peak from the Chiall Formation in the upper 

sequence of the Earaheedy Basin (Halilovic et al., 2004).  

 

Ameen and Wilde (2006) reported WSW-trending mafic dykes with a zircon 

SHRIMP U-Pb age of 1852 ± 12 Ma from the Yalgoo greenstone belt in the 

Youanmi Terrane in the northwestern Yilgarn Craton (Figure 5.1), ca. 360 km NNE 

of Perth and ca. 350 km north of sample 16WDS06. Their emplacement suggests a 

further episode of lithospheric extension ca. 35 Ma after the Boonadgin dykes. The 

WSW orientation of the Yalgoo dykes may reflect a change in the regional stress 

field, the influence of local crustal architecture, or a change in the position of plume 

centre. There is limited, but suggestive, evidence of magmatism within the Capricorn 

Orogen coeval with the Yalgoo dykes. The age of the Yalgoo dykes is within 

uncertainty of an 1842 ± 5 Ma detrital zircon population from the Leake Spring 

Metamorphics, a predominantly siliciclastic sequence within the northern Gascoyne 

Province (Sheppard et al., 2010b) and a ca. 1860 Ma detrital zircon population from 

turbidites in the Ashburton Basin (Sircombe, 2002). 

 

The temporally closest mafic magmatism in the North Australian Craton (NAC) 

consist of the predominantly mafic volcanic rocks of the Biscay Formation in the 

Halls Creek Orogen in northwestern Australia, which yielded a U-Pb zircon age of 

1880 ± 3 Ma (Blake et al., 1999). The Woodward Dolerite, which comprises sills 
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intruding the succession, has maximum and minimum ages, respectively, of ca. 1847 

Ma and 1808 Ma (Blake et al., 1997)  and its emplacement age is thus closer to the 

Yalgoo dykes. However, the Halls Creek bimodal volcanism has been associated 

with convergence of two cratons unrelated to the West Australian Craton, and pre-

dates amalgamation of the West Australian Craton with other cratons (Bagas, 2004; 

Cawood and Korsch, 2008). 

5.9.2 Tectonic and magmatic events in the WAC at ca. 1890 Ma 
The Boonadgin dyke swarm was emplaced into the western margin of the WAC, 

about 60 million years after the WAC was assembled along the Capricorn Orogen 

during the Glenburgh Orogeny at 2005-1950 Ma (Sheppard et al., 2004, 2010a; 

Johnson et al., 2011). Following amalgamation of the WAC, the Capricorn Orogen 

was the site of episodic intracontinental reworking and reactivation for more than 

one billion years (Cawood and Tyler, 2004; Sheppard et al., 2010a; Johnson et al., 

2011). At the time the Boonadgin dykes were emplaced, the WAC was under a 

period of tectonic quiescence. The ca. 1891-1885 Ma felsic volcanic rocks in the 

Earaheedy Basin (Rasmussen et al., 2012) were emplaced during limited rifting and 

suggest that at least the eastern part of the Capricorn Orogen underwent lithospheric 

extension at this time (Sheppard et al., 2016).  

 

Emplacement of the NW-trending Boonadgin dykes indicates regional SW-NE 

oriented lithospheric extension, which is consistent with direction of coeval 

extension within the NW-trending Earaheedy basin. In aeromagnetic images the 

dykes are linear, appear to have a single magnetic polarity and extend across the 

southwestern craton before being apparently truncated by the Darling Fault in the 

west and by the Albany-Fraser Orogen in the south. The orientation of the dykes is 

roughly parallel to the regional NW-SE tectonic grain imparted by terrane accretion 

during the Archean (Middleton et al., 1993; Wilde et al., 1996; Dentith and 

Featherstone, 2003) and suggests that they intruded along existing crustal 

weaknesses controlled by a regional stress field (Hou et al., 2010; Hou, 2012; Ju et 

al., 2013). A seismic survey south of sample WDS09 identified a ca. 20° NE-dipping 

high-velocity zone, which was interpreted to represent a mafic-ultramafic body in the 

lower crust at ca. 30 km depth; this may be either a possible conduit for mafic 
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magma that intruded along the suture, a zone of intrusions, or a fault-bounded terrane 

of possible oceanic affinity (Dentith et al., 2000; Dentith and Featherstone, 2003).  

 

No direct Paleoproterozoic record along the western margin of Yilgarn Craton has 

been preserved due to younger orogenic and rifting events and it is uncertain whether 

it was an active plate boundary when the Boonadgin dykes were emplaced. Along 

the southern margin of the craton, the only known event coeval with emplacement of 

the Boonadgin dyke swarm could be deposition of the Stirling Range Formation in 

the Paleoproterozoic Barren Basin in the western Albany-Fraser Orogen.  The Barren 

Basin comprises structural remnants of a much larger basin system deposited in an 

intra-continental rift or back-arc setting (Clark et al., 2000; Spaggiari et al., 2011, 

2014b, 2015). Formation age of the basin is unclear, but detrital zircon and monazite 

dating suggests that it is younger than ca. 2016 Ma and possibly formed at ca. 1895 

Ma (Rasmussen and Fletcher, 2002; Rasmussen et al., 2004). Given the uncertainty 

of timing of early rifting in the southwest, it is difficult to link emplacement of the 

Boonadgin dykes with any tectonic events adjacent to the southwestern part of the 

craton.  

5.9.3 Source of the Boonadgin dykes 
Ratios of incompatible trace elements sensitive to source composition and partial 

melting effects but insensitive to crystal fractionation can be used to investigate 

mantle source characteristics. Zirconium can be used to evaluate mobility of major 

and trace elements during alteration and metamorphism (e.g. Polat et al., 2002). The 

Nb, Ta, Hf, Th and REE concentrations in the samples show good correlation with 

Zr (not shown) suggesting that these elements represent the primary composition of 

the dykes. The primitive mantle-normalised profile of the Boonadgin dykes ( Figure 

5.6 D, Table 5.5) is remarkably similar to that of the lower continental crust (LCC; 

Rudnick and Gao, 2004) with average ratios of Nb/La = 0.66, Th/Nb = 0.26 and 

Ce/Pb = 5.20 (0.63, 0.24 and 5.0, respectively for LCC). Ratios of La/Sm = 1.89 and 

Sm/Nd = 0.30 are near-chondritic (1.55 and 0.33, respectively; Sun and McDonough, 

1989) and close to the Marnda Moorn Group 1 dykes (ca. 1.70 and 0.28, 

respectively). The ratio of Nb/Ta = 14.75 is much higher than the lower crust (8.33) 

but close to that of depleted mantle (ca. 15; Salters and Stracke, 2004) and Marnda 
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Moorn Group 1 dykes (ca. 15; Wang et al., 2014). The ratio of Zr/Sm = 24.36 is 

similar to the lower crust (ca. 24) and much lower than depleted mantle (ca. 29).  

 

The similarity of the trace element compositions of the studied samples to the 

average value of lower continental crust suggests the possibility of lower continental 

crust contamination. We conducted preliminary binary mixing modelling (Donald J. 

DePaolo, 1981) using data from the three Boonadgin dykes samples. If the primary 

melt had a N-MORB-like trace element composition and εNd1.9Ga = +8, 

incorporating 20-30% of mafic lower continental crust (εNd1.9Ga = -10, estimated by 

Nd isotope mapping of the Yilgarn (D C Champion, 2013) and the method proposed 

by DePaolo (1987)) into the primary melt can produce the observed Nd isotope and 

trace element compositions.  The lack of prominent fractionation of HREE indicates 

that partial melting likely occurred within the spinel stability field (at <70 km depth).  

If this is correct, the sub-continental lithospheric mantle (SCLM) beneath the margin 

of the Yilgarn Craton may have been largely removed or thinned. This could be 

attributed to lithospheric extension, consistent with basin formation along the 

southern margin of the craton (section 5.9.2).  

 

Another possible mechanism to produce the observed trace element compositions 

and slightly depleted Nd isotope signature is via melt-rock interaction with 

asthenospheric mantle. Because lower continental crust can founder into the 

convecting mantle (e.g. Gao et al., 2004), melts derived from recycled lower 

continental crust could interact with the ambient peridotite to form enriched 

pyroxenitic lithologies (Sobolev et al., 2005, 2007; Wang et al., 2014), imparting a 

lower continental crust signature and a slightly depleted Nd isotope signature on the 

resultant melts.  

5.9.4 Was the WAC connected to other cratons at ca. 1890 Ma? 
The position of WAC in Paleoproterozoic reconstruction models is highly debated 

partly due to the absence of robust paleomagnetic and high precision 

geochronological data for dyke swarms. For example, the WAC has been placed near 

India (Rogers and Santosh, 2002; Zhao et al., 2002; Mohanty, 2012, 2015), Kaapvaal 

and Zimbabwe Cratons (Zhao et al., 2002; Hou et al., 2008; Belica et al., 2014), or 

Siberia (Hou et al., 2008; Belica et al., 2014) in reconstructions for various 
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Paleoproterozoic time intervals. Halls et al. (2007) used paleomagnetic data to argue 

that India and Australia were at high paleolatitudes but ~2000 km apart at ca. 2400-

2350 Ma. Similarly, Mohanty (2012, 2015) proposed a juxtaposition of the western 

margin of the WAC and the eastern margin of the Bastar-Dharwar craton at ca. 2400-

2300 Ma (the South India-Western Australia SIWA supercraton; Figure 5.7) based 

on paleomagnetic data, synchronous mafic magmatism and matching dyke 

orientation but their relative positions by ca. 1900 Ma were unknown. Mohanty 

(2012, 2015) nonetheless noted that the lack of 2.0-1.8 Ga dykes in the Yilgarn 

Craton implies that the breakup of SIWA must have taken place during an earlier 

rifting event. Our discovery of the 1888 Ma Boonadgin dykes in the Yilgarn Craton 

makes such an early breakup unnecessary. With such a configuration at 1890 Ma, 

NE-SW extension and emplacement of the NW-oriented 1888 Ma Boonadgin dykes 

in the Yilgarn Craton is synchronous with E-W extension initiating the Cuddapah 

Basin and the associated 1890 Ma NW-oriented mafic dykes and ultramafic 

magmatism in the Dharwar Craton (Anand, 2003; French et al., 2008), as well as the 

emplacement of NW-oriented dykes in the Bastar Craton (French et al., 2008) as 

segments of a single radiating dyke swarm.  

 

Liu et al. (2018) obtained a high quality paleomagnetic pole from the Boonadgin 

dykes and used available robust paleomagnetic data to test the SIWA connection and 

other possible configurations. The new Boonadgin dyke pole falls close to the Frere 

Formation (Capricorn Orogen) pole of Williams et al. (2004), which has been 

considered to be 1891-1885 Ma in age (e.g. Antonio et al., 2017; Klein et al., 2016) 

based on zircon data from tuffs within the basal Frere Formation (Rasmussen et al., 

2012). However, Williams et al. (2004) sampled the upper part of the formation, 

implying that the actual magnetization age for their Frere Formation pole is likely 

younger than 1885 Ma. Consequently, Liu et al. (this volume) suggest that the ca. 

1890 Ma Boonadgin pole is coeval with the 1888-1882 Ma Dharwar-Bastar pole 

(Belica et al., 2014) and that the age difference between the Boonadgin and the 

<1885 Ma Frere Formation poles may explain the slight difference in their positions. 

The Boonadgin and Dharwar-Bastar dyke poles are about 50° apart after restoration 

of the two continental blocks to the SIWA configuration (Figure 5.7 A), indicating 

that the SIWA fit is invalid at ca. 1890 Ma. In contrast, an alternative configuration 
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juxtaposing the northern WAC (Pilbara) and north-eastern India (Singhbhum) is not 

only consistent with paleomagnetic data (Figure 5.7 B), but still allows the 

contemporaneous mafic dykes in India and the WAC to form a radiating dyke 

swarm. If this interpretation is correct, the 1888 Ma Boonadgin dykes in the Yilgarn 

Craton may be part of the Bastar-Cuddapah LIP event (French et al., 2008; Belica et 

al., 2014). 

 

 
Figure 5.7 Possible configurations of the WAC and Dharwar, Bastar and Singhbum 
cratons tested with paleomagnetic data at ca. 1890 Ma. Coeval paleopoles are 
plotted on the left-hand side and color coded with the respective cratons. The WAC 
was rotated to the Indian coordinates and more detailed reconstructions are shown 
on the right side. Indian dykes shown in red have been dated with U-Pb or Ar-Ar 
methods at 1879-1894 Ma (Chatterjee and Bhattacharji, 2001; Halls et al., 2007; 
French et al., 2008; Belica et al., 2014). Black undated dykes in India are modified 
after French et al. (2008) and Srivastava et al. (2015). Red star denotes possible 
location of a mantle plume. (A) SIWA configuration modified from ca. 2400 Ma 
reconstruction of Mohanty (2012); (B) Alternative onfiguration of Liu et al. (2018) 
supported by paleomagnetic data. 
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5.9.5 Could the Boonadgin dyke swarm be part of the Bastar-Cuddapah 
LIP? 

Abundant, predominantly NW-SE to NNW-ESE oriented 1890-1880 Ma Bastar-

Cuddapah LIP dykes intrude the Bastar and Dharwar cratons and form a radiating 

dyke swarm over at least 90,000 km2 (Anand, 2003; Halls et al., 2007; French et al., 

2008; Belica et al., 2014). In the southern Bastar Craton, BD2 dykes are oriented 

predominantly NW-SE to WNW-ESE (French et al., 2008). In the Dharwar craton, 

baddeleyite from the Pulivendla sill in the Cuddapah basin yielded an ID-TIMS 
207Pb/206Pb age of 1885 ± 3 Ma (French et al., 2008) and paleomagnetic data suggest 

that dykes of this age also have NW-SE, E-W and NE-SW orientations depending on 

their location within the craton (Halls et al., 2007; Belica et al., 2014). The NW-

trending dykes appear to be sub-parallel to the regional Archean structural grain in 

both the Bastar and Dharwar cratons, suggesting that they may have intruded along 

pre-existing faults and fabrics (Crookshank, 1963; Chatterjee and Bhattacharji, 

2001). New SHRIMP U-Pb dating of felsic tuffs from the lowermost succession of 

the Cuddapah Basin, the Tadpatri Formation, yielded ca. 1864 Ma and ca. 1858 Ma, 

and mafic-ultramafic sills intruding this stratigraphic level (and higher) indicate that 

mafic magmatism continued until after ca. 1860 Ma (Sheppard et al., 2017).. Dykes 

of <1900 Ma age are present in both Bastar and Dharwar Cratons but their ages are 

currently either poorly constrained or unknown (Murthy, 1987; Mallikharjuna et al., 

1995; Meert et al., 2010), making any comparison highly speculative. 

 

Extensive coeval mafic magmatism and intracontinental rifting in the Dharwar 

Craton at ca. 1899-1885 Ma have been linked to a mantle plume beneath India or 

east of the Cuddapah Basin (Ernst and Srivastava, 2008; Belica et al., 2014; Mishra, 

2015), or to passive rifting associated with a short lived global mantle upwelling 

(Anand, 2003; French et al., 2008). Two models have been proposed for formation of 

the Cuddapah Basin, one arguing for failed rifting (Chaudhuri et al., 2002) and 

another for full rifting and opening of an ocean basin (Kumar and Leelanandam, 

2008; Kumar et al., 2010). Dasgupta et al. ( 2013) proposed that formation of the 

Cuddapah Basin at ca. 1890 Ma was associated with continental rifting between 

India and another craton. If this was the WAC, no evidence of equivalent basins is 

preserved on the western or southern margin of the Yilgarn Craton. 
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In contrast to the Boonadgin dykes, the Cuddapah sills are more enriched and contain 

a more significant melt component from the Archean lithosphere, with LaN/SmN 

ratios between 1.4 and 2.5, LaN/YbN ratios between 2.4 and 4.3 (1.18-1.26 and 1.48-

1.57 for Boonadgin dykes, respectively) and εNd1.89Ga values between +1 and -10 

(+1.3 to +1.6 for Boonadgin dykes) (Anand, 2003). Modelling of the Cuddapah sills 

suggests that they were produced by 15-20% partial melting of a lherzolitic mantle 

with a potential temperature of ~1500°C, similar to ambient mantle of similar age 

and not necessarily indicative of a mantle plume (Anand, 2003). Current 

geochemical evidence is insufficient to determine whether the Boonadgin dykes and 

the Bastar-Cuddapah LIP are associated with the same mantle source. 

 

Similar to the Yilgarn Craton where the Boonadgin and Yalgoo dykes are interpreted 

to be associated with discrete episodes of lithospheric extension, sills intruding the 

unconformity-bound sedimentary successions within the Cuddapah basin are coeval 

with episodes of lithospheric extension (Sheppard et al., 2017) In both cases, mafic 

magmatism appears to span 35-40 Ma (ca. 1890 to 1855 Ma) rather than comprising 

a very short-lived event.  

5.10 Conclusions 
The Archean Yilgarn Craton in Western Australia is intruded by multiple generations 

of Precambrian mafic dykes, identified by previous studies. Until now, evidence for 

mafic magmatism in the Yilgarn Craton at ca. 1890 Ma has been absent, surprising 

since mafic magmatism of this age is found on most other Precambrian cratons 

worldwide. The newly named, NW-trending 1888 Ma Boonadgin dyke swarm is 

interpreted to extend across an area of at least 33 000 km2 in the southwestern 

Yilgarn Craton. The dykes were emplaced along the southwestern margin of the 

Yilgarn Craton more than 50 million years after it was amalgamated with the Pilbara 

Craton-Glenburgh Terrane along the Capricorn Orogen to form the West Australian 

Craton. Intrusion of the Boonadgin dyke swarm was synchronous with minor rifting, 

felsic volcanism and deposition of granular iron formation in the Earaheedy Basin at 

the southeastern end of the Capricorn Orogen. Evidence for another pulse of mafic 

magmatism at ca. 1852 Ma in the northern Yilgarn Craton was also coeval with 

magmatism in the Capricorn Orogen, suggesting that mafic magmatism spanned at 

least 35 million years. Emplacement of the Boonadgin dyke swarm is 
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contemporaneous with the Bastar-Cuddapah LIP and opening of the Cuddapah Basin 

on the eastern margin of India, and the ca. 1852 Ma Yalgoo dykes in northern 

Yilgarn may be coeval with ca. 1860 mafic magmatism in the Cuddapah basin. 

Moreover, existing studies and recent paleomagnetic data suggest that the Yilgarn 

and Bastar-Cuddapah cratons were adjacent to each other at c. 1890 Ma, raising the 

possibility that the Boonadgin dyke swarm may be part of a wider Bastar-Cuddapah 

LIP. However, Meso- to Neoproterozoic orogenic activity and Phanerozoic rifting 

along the western margin in the Yilgarn Craton have obliterated stratigraphic 

successions equivalent to the Cuddapah Basin, and poor age control of extension and 

initial rifting in southern Yilgarn Craton do not provide reliable geological piercing 

points. In contrast to proposed rifting of the Yilgarn Craton from India at ca. 2300 

Ma, new evidence presented in this paper suggests that the cratons may still have 

been neighbours at 1890 Ma.   
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Chapter 6  1.39 Ga mafic dyke swarm in southwestern Yilgarn 
Craton marks Nuna to Rodinia transition in the West 

Australian Craton3 

 
J. Camilla Stark,  Xuan-Ce Wang,  Zheng-Xiang Li,  Steven W. Denyszyn, Birger 

Rasmussen and  Jian-Wei Zi  

 

6.1 Abstract 
The Archean Yilgarn Craton in Western Australia hosts at least five generations of 

mafic dykes ranging from Archean to Neoproterozoic in age, including the craton-

wide ca.  2408 Ma Widgiemooltha and the 1210 Ma Marnda Moorn Large Igneous 

Provinces (LIP), the 1888 Ma Boonadgin dykes in the southwest and the 1075 Ma 

Warakurna LIP in the northern part of the craton. We report here a newly identified 

NNW-trending mafic dyke swarm, here named the Biberkine dyke swarm, in the 

southwestern Yilgarn Craton dated at 1390 ± 3 Ma by ID-TIMS U-Pb geochronology 

of baddeleyite. The regional extent of the dyke swarm is uncertain but aeromagnetic 

data suggest that the dykes are part of a linear swarm several hundred kilometers 

long, truncated by the Mesoproterozoic Albany-Fraser Orogen to the south. 

Geochemical data indicate that the dykes have tholeiitic compositions with a 

significant contribution from metasomatically enriched subcontinental lithospheric 

mantle and/or lower continental crust. Paleogeographic reconstructions suggest that a 

prolonged tectonic quiescence in the Yilgarn Craton from ca. 1600 Ma was 

interrupted by renewed subduction along the southern and southeastern margin at ca. 

1400 Ma, reflecting a transition from Nuna to Rodinia configuration. The 1390 Ma 

Biberkine dykes are likely a direct consequence of this transition and mark the 

change from a passive to active tectonic setting, which culminated in the Albany-

Fraser Orogeny at ca. 1330 Ma. The Biberkine dykes are coeval with a number of 

other mafic dyke swarms worldwide and provide an important target for 

paleomagnetic studies. 
                                                
3 This chapter is published as Stark, J.C., Wang, X.-C., Li, Z.-X., Denyszyn, S.W., Rasmussen, B., Zi, 
J.-W., Sheppard, S., 2018. 1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to 
Rodinia transition in the West Australian Craton. Precambrian Res. 316, 291-304. 
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6.2 Introduction 
Mafic dyke swarms act as important markers for supercontinent reconstructions (e.g. 

Ernst and Buchan, 1997; Buchan et al., 2001; Bleeker and Ernst, 2006; Ernst and 

Srivastava, 2008; Ernst et al., 2010, 2013) and as indicators of paleostress fields and 

pre-existing crustal weaknesses (Ernst et al., 1995b; Hoek and Seitz, 1995; Halls and 

Zhang, 1998; Hou, 2012; Ju et al., 2013). They appear to be intimately connected 

with deep-Earth dynamics and supercontinent cycles (e.g. Condie, 2004; Prokoph et 

al., 2004; Bleeker and Ernst, 2006; Ernst et al., 2008; Li and Zhong, 2009; Clowes et 

al., 2010; Goldberg, 2010) and their presence acts as a tectonic fingerprint of 

intracratonic crustal extension associated with processes such as subduction (back-

arc extension), mantle plumes and rifting during supercontinent breakup.   

 

The Archean Yilgarn Craton in Western Australia shared a large part of its tectonic 

evolution with Antarctica during the Mesoproterozoic and is thus an important 

component in reconstructions for the Nuna and Rodinia supercontinents (Dalziel, 

1991; Meert, 2002; Rogers and Santosh, 2002; Wingate et al., 2002; Li et al., 2008; 

Nance et al., 2014; Pisarevsky et al., 2014a; Meert and Santosh, 2017). The transition 

from Nuna to Rodinia likely occurred after ca. 1400 Ma (Li et al., 2008; Evans and 

Mitchell, 2011; Pisarevsky et al., 2014a; Aitken et al., 2016), after an interval of 

apparent tectonic quiescence in the Yilgarn Craton since ca. 1600 Ma. Here we 

report the discovery of a Mesoproterozoic (1390 Ma) NNW-trending mafic dyke 

swarm in the southwestern Yilgarn Craton, identified by U-Pb geochronology using 

a combination of in situ SHRIMP and ID-TIMS methodologies. We also present 

results from a preliminary geochemical analysis and discuss the tectonic setting 

during emplacement of the dykes and implications for regional tectonic models.  

6.3 Regional geology 
The Yilgarn Craton is a ca. 900 x 1000 km Archean crustal block comprising six 

accreted terranes: the Southwest, Narryer, Youanmi, Kalgoorlie, Kurnalpi and 

Burtville terranes, the latter three forming the Eastern Goldfields Superterrane 

(Figure 6.1). These comprise variably metamorphosed granites and volcanic and 

sedimentary rocks with protolith ages between ca. 3730 and 2620 Ma (Cassidy et al., 

2005, 2006 and references therein) and are thought to represent a series of volcanic 

arcs and back- arc basins, which amalgamated during a Neoarchean orogeny between 
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ca. 2730 and 2625 Ma (Myers, 1993, 1995; Wilde et al., 1996; Barley et al., 2003; 

Blewett and Hitchman, 2006; Korsch et al., 2011; Witt et al., 2018). Abundant 

granites were emplaced between ca. 2760 Ma and 2630 Ma (Cassidy et al., 2006 and 

references therein) and the entire craton underwent intense metamorphism and 

hydrothermal activity between 2780 and 2630 Ma (Myers, 1993; Nemchin et al., 

1994; Nelson et al., 1995a; Wilde et al., 1996). The Southwest Terrane comprises 

multiply deformed ca. 3200–2800 Ma high-grade metasedimentary rocks and ca. 

2720─2670 Ma meta-igneous rocks intruded by 2750─2620 Ma granites (Myers, 

1993; Wilde et al., 1996; Nemchin and Pidgeon, 1997).  

 

 
Figure 6.1 Map of the Yilgarn Craton showing major tectonic units and the 
Capricorn and Albany-Fraser orogens. Inset shows the extent of the West Australian 
Craton (Pilbara Craton, Yilgarn Craton and Capricorn Orogen). From Geological 
Survey of Western Australia 1:2.5M Interpreted Bedrock Geology 2015 and 1:10M 
Tectonic Units 2016. 

The Yilgarn Craton is bounded by three Proterozoic orogenic belts: the ca. 

2005─570 Ma Capricorn Orogen in the north (Cawood and Tyler, 2004; Sheppard et 

al., 2010a; Johnson et al., 2011), the ca. 1815─1140 Ma Albany-Fraser Orogen in the 

south and east (Nelson et al., 1995a; Clark et al., 2000; Spaggiari et al., 2015), and 

the ca. 1090-525 Ma Pinjarra Orogen in the west (Myers, 1990; Wilde, 1999; 

Ksienzyk et al., 2012). Following cratonisation toward the end of the Archean, the 
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Yilgarn Craton collided along the Capricorn Orogen with the combined Pilbara 

Craton-Glenburgh Terrane by 1950 Ma to form the West Australian Craton (WAC) 

(Sheppard et al., 2004, 2010; Johnson et al., 2011). Prolonged lateritic weathering 

has produced the modern denuded landscape and poor exposure of basement rocks 

(Anand and Paine, 2002). 

 

The Yilgarn Craton hosts a large number of mafic dykes of different orientations 

with the dyke density increasing towards the southern and western craton margins 

(Hallberg, 1987; Tucker and Boyd, 1987). The dykes are discernible in aeromagnetic 

data but outcrops are difficult to identify and sample due to deep weathering and 

thick regolith cover. The oldest known mafic dyke in the Yilgarn Craton is the NE-

trending ca. 2620 Ma Yandinilling dyke, which has been dated from one outcrop 120 

km east of Perth but is probably part of a large dyke swarm that extends at least 

across the South West Terrane (Stark et al., 2018). The oldest mafic dykes with 

craton-wide extent belong to the E- to NE-trending 2418-2408 Ma Widgiemooltha 

dyke swarm (Sofoulis, 1965; Evans, 1968; Campbell et al., 1970; Hallberg, 1987; 

Doehler and Heaman, 1998; Nemchin and Pidgeon, 1998; Wingate, 1999, 2007; 

French et al., 2002; Pisarevsky et al., 2015). The Widgiemooltha dykes are up to 3.2 

km wide and extend up to 700 km across the craton, with the largest intrusions 

(Jimberlana and Binneringie) showing well-developed igneous layering (Campbell et 

al., 1970; Lewis, 1994). The dykes exhibit dual magnetic polarity (Tucker and Boyd, 

1987; Boyd and Tucker, 1990) and recent geochronology and paleomagnetic data 

suggest that their emplacement may have involved several pulses  (Wingate, 2007; 

Smirnov et al., 2013; Pisarevsky et al., 2015).  The second craton-wide suite is the 

1210 Ma Marnda Moorn LIP, which consists of several sub-swarms of different 

orientations intruding along the craton margins (Isles and Cooke, 1990; Evans, 1999; 

Wingate et al., 2000; Pidgeon and Nemchin, 2001; Pidgeon and Cook, 2003; 

Rasmussen and Fletcher, 2004; Wingate and Pidgeon, 2005; Wingate, 2007; Claoué-

Long and Hoatson, 2009). Outcrops in the southeast are limited to a single 

occurrence, and the extent of the dykes in the northeast is unknown due to cover 

rocks but one E-trending dioritic dyke dated at 1215 ±11 Ma has been reported 

further inland (Qiu et al., 1999). Other identified dyke swarms include the NW-

trending ca. 1888 Ma Boonadgin dyke swarm in the southwest (Stark et al., 2017) 
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the SW-trending dykes of the 1075 Ma Warakurna LIP in the northern Yilgarn 

Craton (Wingate et al., 2004), the WNW-trending ca. 735 Ma Nindibillup dykes in 

the central and southeast Yilgarn Craton (Spaggiari et al., 2009, 2011; Wingate, 

2017) and the undated (likely <1140 Ma) NW-trending Beenong dykes in the 

southeast Yilgarn Craton (Wingate, 2007; Spaggiari et al., 2009; 2011).  

6.4 Samples 
6.4.1 Field sampling 
Field sampling sites were targeted using satellite imagery (Landsat/Copernicus or 

Astrium/CNES from Google Earth), aeromagnetic data (20-40 m cell size, 

Geoscience Australia magnetic grid of Australia V6 2015 base reference) and 1:250 

000 geological maps from the Geological Survey of Western Australia.  

Three block samples were collected from outcrops SW to WSW of the town of 

Pingelly from outcrops within agriculturally cleared areas near accessible roads 

(Figure 6.2 and Table 6.1). Basement rocks are not exposed at any of the sampling 

sites but geological mapping indicates that the country rocks to the dykes are 

Archean granites (Baxter et al., 1980). Dykes form gentle ridges often associated 

with large trees, where farming is difficult due to concentrations of large boulders of 

dolerite (Figure 6 .3). Due to the lack of exposed contacts, the widths of the 

dykes are unknown, however at WDS10 the dyke is probably more than 60 m wide, 

based on the extents of partially exposed rock. All outcrops appear relatively 

fresh and weathering forms a light red-brown crust of varying thickness that 

is best visible along fractures (Figure 6.3).  

6.4.2 Sample description 
All samples are dolerites with intergranular ophitic to sub-ophitic texture, comprising 

45-50% plagioclase, 25-35% pyroxene, up to 10% quartz and 10-15% opaque 

minerals (magnetite and ilmenite) and trace apatite. The samples are relatively fresh 

apart from uralitic alteration of pyroxene and variable but relatively minor 

sericitisation of plagioclase (Figure 6.4). Most clinopyroxene grains have been
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Figure 6.2 Sample localities. See Table 1 for detailed information 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 (A) 15WDS16 sample 
location, looking SSE. (B) 
Satellite image showing the 
location of sample 15WDS16. 
Note the faint but visible NNW 
trending trace of the dyke, 
associated with clusters of trees.  
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affected by alteration, ranging in intensity from the growth of brown amphibole near 

grain boundaries to pervasive alteration of the entire grain into a mixture of brown 

and green amphibole. Plagioclase preserves original twinning and some zoned grains 

exhibit weak alteration along fractures. Abundant opaque minerals appear as 

subhedral to euhedral grains in the groundmass but also as extremely fine-grained 

masses within altered pyroxene and along grain boundaries. 

 

 

 

 

 

 

Figure 6.4 
Photomicrograph of 
sample WDS10C. (A) 
Plane polarised light (PPL) 
image showing subophitic 
growth of plagioclase 
within clinopyroxene in the 
lower right quadrant and 
the growth of brown and 
green amphibole near and 
within intercumulus grain 
boundaries. (B) Cross-
polarized light (XPL) 
image showing twinning in 
the poikilitic clinopyroxene 
in the lower right quadrant. 
Plg = plagioclase, Cpx = 
clinopyroxene, Amp = 
amphibole, Se = sericite, 
Ilm = ilmenite. 

6.5 U-Pb geochronology and geochemistry  
6.5.1 SHRIMP U-Pb geochronology 
Polished thin sections were scanned to identify baddeleyite, zircon and zirconolite 

with a Hitachi TM3030 scanning electron microscope (SEM) equipped with energy 

dispersive X-ray spectrometer (EDX) at Curtin University. For SHRIMP U-Pb 

dating, selected grains were drilled directly from the thin sections using a micro drill 
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and mounted into epoxy disks, which were cleaned and coated with 40 nm of gold. 

Baddeleyite forms mostly unaltered, subhedral to euhedral equant and tabular grains, 

some with thin zircon rims. Most baddeleyite grains are up to 100 µm long and up to 

30 µm across (Figure 6.5).  

  

 
Figure 6.5 SEM backscatter images showing SHRIMP baddeleyite spots and dates. 
(A) WDS09-2B (B) 16WDS01-372B (C) 16WDS06-405B (D) 16WDS06-406B 

Baddeleyite was analysed for U, Th and Pb using the sensitive high-resolution ion 

microprobe (SHRIMP II) at the John de Laeter Centre at Curtin University in Perth, 

Australia, following standard operating procedures after Williams (1998). The 

SHRIMP analysis method for mounts with polished thin section plugs outlined in 

Rasmussen and Fletcher (2010) was modified for baddeleyite (SHRIMP operating 

parameters in Table 6.2). During each analytical session, standard zircon OG1 (Stern 

et al., 2009) was used to monitor instrumental mass fractionation and BR266 zircon 

(Stern, 2001) was used for calibrating U and Th concentration and as an accuracy 

standard. Phalaborwa baddeleyite (Heaman, 2009) was employed as an additional 

accuracy standard. Typical spot size with primary O2
- current was 10-15 µm at 0.1-

0.2 nA. Data were processed with Squid version 2.50 (Ludwig, 2009) and Isoplot 

version 3.76.12 (Ludwig, 2012).  For common Pb correction, 1390 Ma common Pb 

isotopic compositions were calculated from the Stacey and Kramers (1975) two-

stage terrestrial Pb isotopic evolution model. Analyses with >1% common Pb (in 
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Dyke ID Dlat / Dlon Samples Comments 

WDS09 32 39.339 S 116 57.132 E 
WDS09M-N, 

WDS09RSA-B 
NW trending dolerite dyke near West Pingelly 

 

16WDS01 32 24.738 S 116 48.818 E 16WDS01A-D 
NNW trending dolerite dyke west of Brookton, 
ridge 

    

16WDS02 32 24.740 S 116 48.798 E 16WDS02A-D 
NNW trending dolerite dyke west of Brookton. 
Same dyke as 16WDS01 
 

16WDS06 31 59.973 S 116 39.699 E 16WDS06A-D NW trending dyke near Talbot 

Table 6.1 Sample locations. Datum WGS84, Dlat = decimal latitude, Dlon = decimal 
longitude 
206Pb) or >10% discordance (see footnote in Table 6.3 for definition) are considered 

unreliable and were disregarded in age calculations. The assigned 1σ external Pb/U 

error for all analyses is 1%. All weighted mean ages are given at 95% confidence 

level, except 15WDS16 where 2σ internal error is used. All individual analyses are 

presented with 1σ error. 

6.5.2 ID-TIMS U-Pb geochronology 
A sample for ID-TIMS U-Pb geochronology was selected based on results from the 

SHRIMP dating and the highest number of identified baddeleyite crystals in thin 

section. A block sample was first sawn from the field sample to remove weathering, 

then crushed, powdered and processed using a mineral-separation technique 

modified after Sӧderlund and Johansson (2002). Baddeleyite grains were hand 

picked under ethanol under a stereographic optical microscope and selected grains 

were cleaned with concentrated distilled HNO3 and HCl.  Due to the small size of the 

separated fractions, no chemical separation methods were required. 

 

Samples were spiked with a University of Western Australia in-house 205Pb-235U 

tracer solution, which has been calibrated against SRM981, SRM982 (for Pb), and 

CRM 115 (for U), as well as an externally-calibrated U-Pb solution (the JMM 

solution from the EarthTime consortium). This tracer is regularly checked using 

“synthetic zircon” solutions that yield U-Pb ages of 500 Ma and 2000 Ma, provided 

by D. Condon (British Geological Survey). Dissolution and equilibration of spiked 
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Mount CS16-1 CS16-6 CS16-7 

Dykes analysed WDS09, WDS09RS 16WDS01 16WDS06 

Date analysed 21-Jul-16 14-Sep-16 6-Sep-16 

Kohler aperture (µm) 50 50 50 

Spot size (micrometres) 11 9 7 

O2- primary current (nA) 0.9 0.6 0.2 

Number of scans per analysis 8 8 8 

Total number of analyses 23 32 34 

Number of standard analyses 13 13 14 

Pb/U external precision % (1σ) 1.00 1.00 1.00 

Raster time (seconds) 120 180 180 

Raster aperture (µm) 90 90 80 

Table 6.2 SHRIMP operating parameters. Notes 1) Mass resolution for all analyses 
≥ 5000 at 1% peak height 2) BR266, OGC, Phalaborwa and NIST used as standards 
for each session 3) Count times for each scan: 204Pb, 206Pb, 208Pb = 10 seconds, 
207Pb = 30 seconds 

single crystals was by vapour transfer of HF, using Teflon microcapsules in a Parr 

pressure vessel placed in a 200°C oven for six days. The resulting residue was re-

dissolved in HCl and H3PO4 and placed on an outgassed, zone-refined rhenium 

single filament with 5 µL of silicic acid gel. U–Pb isotope analyses were carried out 

using a Thermo Triton T1 mass spectrometer, in peak-jumping mode using a 

secondary electron multiplier. Uranium was measured as an oxide (UO2). 

Fractionation and deadtime were monitored using SRM981 and SRM 982. Mass 

fractionation was 0.02 ± 0.06%/amu. Data were reduced and plotted using the 

software packages Tripoli (from CIRDLES.org) and Isoplot 4.15 (Ludwig, 2011). 

All uncertainties are reported at 2σ. U decay constants are from Jaffey et al. (1971). 

The weights of the baddeleyite crystals were calculated from measurements of 

photomicrographs and estimates of the third dimension. The weights are used to 

determine U and Pb concentrations and do not contribute to the age calculation. An 

uncertainty of ± 50% may be attributed to the concentration estimate. 

6.6 Geochemistry 
Slabs were sawn from block samples to remove weathering. After an initial crush, a 

small fraction of material was separated and chips with fresh fracture surfaces were 

hand picked under the microscope and pulverised in an agate mill for isotope 
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analysis. Remaining material was pulverised in a low-Cr steel mill for major and 

trace element analysis. 

 

Major element analysis was undertaken at Intertek Genalysis Laboratories in Perth, 

Western Australia using X-ray fluorescence (XRF) using the Geological Survey of 

Western Australia (GSWA) standard BB1 (Morris, 2007) and Genalysis laboratory 

internal standards SARM1 and SY-4. Trace element analysis was carried out at 

University of Queensland (UQ) on a Thermo XSeries 2 inductively coupled plasma 

mass spectrometer (ICP-MS) equipped with an ESI SC-4 DX FAST autosampler, 

following  procedure for ICP-MS trace element analysis by Eggins et al. (1997) 

modified by the UQ Radiogenic Isotope Laboratory (Kamber et al., 2003). Sample 

solutions were diluted 4,000 times, and 12 ppb 6Li, 6ppb 61Ni, Rh, In and Re, and 4.5 

ppb 235U internal spikes were added. USGS W2 was used as reference standard and 

crossed checked with BIR-1, BHVO-2 or other reference materials. All major 

element analyses have precision better than 5% and all trace element analyses have 

relative standard deviation (RSD) <2%. 

 

Rb-Sr and Sm-Nd isotope analyses were carried out at the University of Melbourne 

(e.g. Maas et al., 2005, 2015). Small splits (70 mg) of rock powders were spiked with 
149Sm-150Nd and 85Rb-84Sr tracers, followed by dissolution at high pressure in an 

oven, using Krogh-type PTFE vessels with steel jackets. Sm, Nd and Sr were 

extracted using EICHROM Sr-, TRU- and LN-resin, and Rb was extracted using 

cation exchange (AG50-X8, 200-400 mesh resin). Isotopic analyses were carried out 

on a NU Plasma multi-collector ICP-MS coupled to a CETAC Aridus desolvation 

system operated in low-uptake mode. Raw data for spiked Sr and Nd fractions were 

corrected for instrumental mass bias by normalizing to 88Sr/86Sr = 8.37521 and 
146Nd/145Nd = 2.0719425 (equivalent to 146Nd/144Nd = 0.7219), respectively, using 

the exponential law as part of an on-line iterative spike-stripping/internal 

normalization procedure. Sr and Nd isotope data are reported relative to SRM987 = 

0.710230 and La Jolla Nd = 0.511860 and have typical in-run precisions (2sd) of ± 

0.000020 (Sr) and ± 0.000012 (Nd). External precision (reproducibility, 2sd) is ± 

0.000040 (Sr) and ± 0.000020 (Nd). External precisions for 87Rb/86Sr and 
147Sm/144Nd obtained by isotope dilution are ± 0.5% and ± 0.2%, respectively.  
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6.7 Results 
6.7.1 SHRIMP U-Pb geochronology 
Twenty-three analyses were obtained from 13 baddeleyite crystals (4 grains from 

WDS10, 5 grains from WDS14 and 4 grains from 15WDS16) during two SHRIMP 

sessions (Figure 6.6; detailed U-Pb data are given in Table 6.3). The analysed 

baddeleyite crystals have low to moderate U concentrations varying from 40 to 330 

ppm (median = 163 ppm) and low Th concentrations ranging from 1 to 89 ppm, with 

Th/U ratios ranging from 0.23 to 0.28. Fourteen analyses were excluded based on 

their high common Pb (>1.58% 206Pb) and/or >18% discordance. The small size and 

narrow shape of the baddeleyite crystals made it difficult to place the ion beam 

without overlapping onto adjacent minerals (e.g. Figure 6.5 B). Crystal orientation 

dependent Pb/U fractionation effects in baddeleyite during secondary ion mass 

spectrometry (SIMS) can lead to biased 206Pb/238U ages but this is not necessarily the 

case for all crystals (e.g. Wingate and Compston, 2000; Schmitt et al., 2010), and in 

some instances, the 204Pb-corrected 206Pb/238U dates were more precise than the 
204Pb-corrected 207Pb/206Pb dates (Table 3). Four analyses from three grains from 
sample WDS10 yielded a common Pb-corrected 207Pb/206Pb weighted mean of 1442 

± 250 Ma (MSWD = 3.3), four analyses from two grains from 15WDS16 gave a 

common Pb-corrected 207Pb/206Pb weighted mean of 1470 ± 58 Ma (MSWD = 2.11, 

2σ internal error) and one analysis from one grain from WDS14 gave 1433  ±  74 

Ma. Despite the low precision of the individual analyses, we consider the age 

difference between the dykes insignificant relative to the analytical uncertainty. 

Combining all valid analyses from WDS10, WDS14 and 15WDS16 yields a 
207Pb/206Pb weighted mean age of 1458 ± 76 Ma (MSWD = 2.09; n = 9, six grains). 
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Figure 6.6 Tera-Wasserburg plot of SHRIMP U-Pb baddeleyite results for samples 
WDS10, WDS14 and 15WDS16. Grey squares denote excluded data (see section 
5.7.1 and Table 6.3 for details) 

6.7.2 ID-TIMS U-Pb geochronology 
Four baddeleyite crystals were analyzed from sample WDS10  (Table 6.4, Figure 

6.7). Calculated weights are on the order of 0.1 µg, with low calculated U 

concentrations between 21 ppm and 80 ppm. Calculated U concentrations are 

unusually low for baddeleyite and this may reflect an overestimate of the grain 

weights, but the low Pb abundance (both radiogenic and common Pb) also implies a 

low initial U concentration. Th/U ratios are <0.1, a typical value for baddeleyite. 

Coherence in age of all measured baddeleyite crystals supports our interpretation of 

the analyses representing a single magmatic crystallization age.  The weighted mean 
207Pb/206Pb age of the four concordant single-crystal analyses is 1389 ± 14 Ma (2σ, n 

= 4, MSWD = 0.57) and the weighted mean 206Pb/238U age of these analyses is 

1389.9 ± 3.0 Ma (2σ, n = 4, MSWD = 1.4). This precise 1390 ± 3 Ma age is within 

the uncertainty of our baddeleyite SHRIMP U-Pb 207Pb/206Pb date of 1458 ± 76 Ma, 
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and is therefore considered as the best estimate of the crystallisation age of the 

sampled dykes. 

 

 
Figure 6.7 Concordia plot for analysed baddeleyite ID-TIMS U-Pb results from 
sample WDS10 

6.7.3 Geochemistry  
Due to limited age control, only four samples from three dykes were available for 

geochemical analyses. Consequently, only preliminary conclusions about the 

geochemical characteristics of the dykes can be made. Two samples from WDS10, 

one sample from WDS14 and one sample from 15WDS16 were analysed for major 

and trace elements and for Sr and Nd isotopes. Data for the samples are presented 

together with major and trace element geochemistry from the 1210 Ma Marnda 

Moorn and the 1888 Ma Boonadgin dykes.  

6.7.3.1 Major and trace elements 
Three samples have LOI <1.0 wt% and one (15WDS16A) has LOI of 1.63%. All 

samples display low MgO (5.99-6.90 wt%), moderate SiO2 (49.02-50.84 wt%), 

FeOtot (12.92-14.55 wt%) and CaO (9.55-10.48 wt%), and moderate to high Al2O3 
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(13.31-14.29 wt%)  (Table 6.5). All samples have moderate total alkalis (Na2O + 

K2O = 2.79-3.08 wt%) and Na2O/K2O ratios (2.54-3.81). The sampled dykes are 

classified as sub-alkaline basalts on the TAS diagram (Figure 6.8A; Irvine and 

Baragar, 1971; Le Maitre et al., 1989) and belong to the tholeiitic series on the AFM 

diagram (Figure 6.8B; Irvine and Baragar, 1971), similar to Group 1 of the ca. 1210 

Ma Marnda Moorn LIP (Wang et al., 2014) and the ca. 1888 Ma Boonadgin dykes 

(Stark et al., in press). The chondrite-normalised rare earth element patterns (Figure 

6.8C) shows moderate enrichment of light REE (LREE) with LaN/YbN = 4.50 to 4.80 

and LaN/SmN = 2.40 to 2.51, whereas the heavy REE (HREE) profiles are flat, with 

low TbN/YbN ratios (1.32 to 1.37) slightly higher than the average values of N-

MORB and E-MORB (1.0; Sun and McDonough, 1989). The primitive mantle-

normalised trace element patterns show depletion of high field strength elements 

(HFSE) with prominent negative Nb-Ta and slightly negative Zr-Hf and Ti 

anomalies (Figure 6.8D) and enrichment in Cs, Rb and Ba (large ion lithophile 

elements LILEs, not shown).  

 

6.7.3.2 Nd and Sr Isotopes 
All four samples were analysed for Nd and Sr isotopes (Table 6.5 ). Ratios of 
147Sm/144Nd and 143Nd/144Nd are 0.1355–0.1380 and 0.511845–0.511877, 

respectively. The corresponding initial εNd1389Mavalues range from -4.4 to -4.5, 

which are much lower than the inferred lower estimate of εNdDM = +4.8 for the 

contemporaneous depleted mantle (calculated using the method of DePaolo, 1981), 

suggesting involvement of an enriched reservoir (crustal component or enriched 

subcontinent lithospheric mantle). The 87Rb/86Sr ratio ranges from 0.2398 to 0.8046 

and the 87Sr/86Sr ratio from 0.710143 to 0.726251, the corresponding initial ratios 

(87Sr/86Sr)1390 Ma varying from 0.70497 to 0.71050. The latter are significantly higher 

than 0.7017 estimated for contemporaneous mantle (calculated using 87Rb/86Sr = 

0.046 and 87Sr/86Sr = 0.7026 for modern depleted mantle; Taylor and McLennan, 

1985) and also suggest involvement of an enriched reservoir or an effect of alteration 

of the Rb-Sr isotope system. In contrast with the uniform initial Nd isotopes, the 

wide range of initial Sr isotope compositions and positive correlation between LOI 

and the initial 87Sr/86Sr ratios (not shown) suggest mobility of Rb during alteration, 
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leading to disturbance of the Rb-Sr isotope system. Consequently, Sr isotope data are 

excluded from the following discussion.   

 

 

 
Figure 6.8 (A) Total alkali-silica (TAS) plot after LeMaitre (1989) with alkaline-sub-
alkaline boundary after Irvine and Baragar (1971). Orange dots denote ca. 1888 Ma 
Boonadgin dykes from Stark at al. (in press) and blue field the ca. 1210 Ma Marnda 
Moorn group 1 dykes from Wang et al. (2014). (B) AFM plot after Irvine  and 
Baragar (1971). (C) Chondrite and (D) primitive mantle normalised multi-element 
plots for Biberkine, Boonadgin and Marnda Moorn group 1 dykes.  LCC = lower 
continental crust after Rudnick and Gao (2004); OIB = ocean island basalt, NMORB 
= mid ocean ridge basalt and EMORB = enriched  MORB after Sun and 
McDonough (1989).  

6.8 Discussion 
We have identified a previously unknown Mesoproterozoic NNW-trending mafic 

dyke swarm in the southwestern Yilgarn Craton, here named the Biberkine dykes. 

Aeromagnetic data suggest that the dyke swarm extends several hundred kilometers 

across the South West Terrane, truncated by the Albany-Fraser Orogen in the south 

and the Darling Fault in the west (Figure 6.1). However, until further sampling  
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within the craton allows a better delineation of the extent of the dykes, their 

designation as a swarm is preliminary. The Biberkine dykes are coeval with several 

mafic magmatic events worldwide, such as the ca. 1386-1380 Ma Hart River dykes 

(Abbott, 1997) and the ca. 1379 Ma Salmon River Arch sills (Doughty and 

Chamberlain, 1996) in North America, the ca. 1384 Ma Chieress dykes in Siberia 

(Okrugin et al., 1990; Ernst et al., 2000), the ca. 1380 Ma dykes at Vestfold Hills in 

East Antarctica (Lanyon et al., 1993),  the ca. 1382 Ma Zig Zag Dal Formation in 

Greenland (Upton et al., 2005), the giant Lake Victoria dyke swarm in east Africa 

(Mäkitie et al., 2014) and the ca. 1385 Ma Mashak igneous event (Ronkin et al., 

2005; Ernst et al., 2006). No other mafic magmatism within uncertainty of the 1390 

± 3 Ma age for the Biberkine dykes is currently known in the WAC or elsewhere in 

Australia and the temporally closest magmatic events within the WAC are the ca. 

1360 Ma Gifford Creek carbonatite in the Edmund Basin of the Capricorn Orogen 

(Zi et al., 2017) and the ca. 1465 Ma mafic sills of the Narimbunna dolerite 

(Wingate, 2002; Morris and Pirajno, 2005; Sheppard et al., 2010b).   

6.8.1 Nature of the mantle source of the Biberkine dykes 
Zirconium can be used to evaluate mobility of major and trace elements during 

alteration and metamorphism (e.g. Polat et al., 2002; Wang et al., 2008, 2014). The 

Nb, Ta, Hf, Th and REE concentrations in the samples display good correlation with 

Zr (not shown) indicating that these elements have been unaffected by post-

magmatic processes and reflect the primary composition of the magma. The 

Biberkine dykes display arc-like geochemical characteristics, including depletion of 

HFSE, unradiogenic initial Nd isotopes and enrichment of LILE and radiogenic Sr 

isotopes, which may have been imparted either by crustal contamination or inherited 

from heterogeneous metasomatically enriched source region, or both (Hawkesworth 

et al., 1990; Hawkesworth, 1993; Puffer, 2001; Zhao et al., 2013; Wang et al., 2016).   

Crustal contamination during magma ascent would produce synchronous changes 

between major and trace elements and radiogenic isotope compositions (Brandon et 

al., 1993; Hawkesworth et al., 1995; Wang et al., 2008, 2014). Relative to rocks 

sourced from asthenospheric mantle, crustal material is characterised by high La/Sm 

and Th/La and low Sm/Nd, Nb/La and εNd, and crustal contamination during magma 

ascent would therefore produce negative and positive correlations, respectively, with 

Mg# (e.g. Wang et al., 2008, 2014).  No such correlations are evident in the data or 
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in the Sm/Nd and Nb/La ratios. The nearly constant initial εNd(t)  values, near 

uniform SiO2  contents (49.02-50.84 wt%) and incompatible trace element ratios 

(Sm/Nd = 0.23 and La/Sm = 3.9-3.7)  with a large range of Mg# values (49-55) do 

not support significant crustal contamination in the generation of these dykes.  This 

is supported further by primitive mantle–like trace element ratios of Nb/Ta (16.3-

16.5), Zr/Hf (39.1-40.0) and Zr/Sm (26.2-28.9) of the dykes (primitive mantle: 

Nb/Ta = 17.39, Zr/Hf = 36.25 and Zr/Sm = 25.23; Sun and McDonough, 1989), 

which are also similar to typical asthenospheric mantle-derived melts, such as 

MORB (Sun and McDonough, 1989).  Although significant crustal contamination 

appears unlikely, the dykes display arc-like trace element signatures such as 

depletion of HFSE and enrichment of LILE.  These characteristics may be attributed 

to Earth deep volatile cycling (e.g. Wang et al., 2016) or partial melting of SCLM 

enriched by previous subduction processes or recycled components (Wang et al., 

2008, 2014). On the basis of the above evidence and the unradiogenic initial Nd 

isotopes, we prefer an interpretation where the predominant source of the dykes is an 

enriched SCLM. Geochemical analysis of a much larger number of samples across 

the dyke swarm is required to further constrain the nature of the source of the 

Biberkine dykes.  

 

The flat HREE profiles of the 1390 Ma Biberkine, 1888 Ma Boonadgin and 1210 Ma 

Marnda Moorn dykes indicate that partial melting likely occurred within the spinel 

stability field (at <75 km depth), suggesting that the SCLM at least beneath and near 

the margin of the Yilgarn Craton may have been largely removed or thinned 

sometime before 1888 Ma. Smithies et al. (1999)  argued for a craton-wide 

delamination of the lower crust at ca. 2650 Ma during the final stages of 

cratonisation and seismic data from eastern Yilgarn Craton supports presence of a 

delaminated lower crustal layer that foundered in the upper mantle (Blewett et al., 

2010). Moreover, evidence for a mafic-ultramafic layer in the lower crust beneath the 

southwestern Yilgarn Craton may be related to underplating during crustal extension 

(Dentith et al., 2000). The Biberkine and Boonadgin dykes, although separated by ca. 

500 m.y. in age, were emplaced through the same SCLM because they were sampled 

in areas where they outcrop close to each other (Figure 6.2). Whereas the Boonadgin 

dykes have similar primitive mantle-normalised profiles and LCC-like trace element 
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ratios, they have significantly higher εNd(t)  values of +1.3 to +1.6 (Stark et al., in 

press) than the Biberkine dykes, suggesting that their source involved a higher 

proportion of depleted mantle with less contribution from the enriched component.  

The enriched LREE, LILE and isotopic compositions of both the Biberkine and the 

Boonadgin dykes could have been produced either via mixing of lower crust and 

depleted asthenospheric mantle, or through interaction between asthenospheric 

mantle and metasomatically enriched regions within the SCLM (and possibly the 

lower crust) that formed during earlier subduction events.  

6.8.2 Tectonic setting of the WAC at 1390 Ma 
The interval between ca. 1600-1350 Ma is considered a period of relative tectonic 

quiescence in the West Australian Craton, characterised by the formation of 

extensive basins in a passive margin setting along the southern and southeastern 

margins of the craton (Spaggiari et al., 2015). Aitken et al. (2016) argued that 

reorganization of Nuna to Rodinia occurred between ca. 1500 Ma and 1300 Ma and 

involved relative motion and rotation between the South Australian/Mawson cratons 

and the West and North Australian cratons.  They suggested that this adjustment was 

responsible for the renewed subduction along the southern and southeastern margins 

of the craton. If this model is correct, and the subduction was west dipping, the 

Biberkine dykes may be a direct consequence of the plate movement during this 

transition. Alternatively, regional dyke swarms may be associated with laterally 

injected magma propagating from a distal plume (Baragar et al., 1996; Ernst and 

Buchan, 1997, 2001a). If this were the case, the trace element profiles of the 

Biberkine dykes could reflect compositional variation in the SCLM and the lower 

crust at a much greater distance. 

 

Paleogeographic reconstructions at ca. 1400 Ma suggest that the southern and 

southeastern margins of the West Australian Craton were in a back-arc setting, 

converging with the northwestern margin of the Mawson Craton (Figure 6.9) (Boger, 

2011; Kirkland et al., 2011; Spaggiari et al., 2011, 2014b, 2015, Aitken et al., 2014, 

2016). This NW-SE movement led to Albany-Fraser Orogeny stage 1 at ca. 1345 Ma 

with continent-continent collision inferred at ca. 1310-1290 Ma (Clark et al., 2000; 

Bodorkos and Clark, 2004a, 2004b; Aitken et al., 2016), although some workers 
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suggest that this represents a west-directed soft collision at ca. 1310 Ma involving 

accretion of the oceanic Loongana arc (Madura Province; Figure 6.9 and Figure 

6.10) to the southeastern margin of the West Australian Craton (Spaggiari et al., 

2015). Aitken et al. (2016) argue that after predominantly east-dipping subduction 

and clockwise rotation of the Mawson Craton until ca. 1400 Ma, a switch in polarity  

 
Figure 6.9 Simplified paleogeographic reconstruction of the Yilgarn and Mawson 
cratons at ca.  1400 Ma. Modified after Aitken et al. (2016), only the Yilgarn Craton 
and Capricorn Orogen of the WAC and the northern part of the Mawson Craton are 
shown. Note stars denoting the inferred original locations of Bunger Hills and 
Windmill Islands (based on interpretations of Tucker et al., 2017 and Morrissey et 
al., 2017, respectively).  

to west-dipping subduction beneath the West Australian Craton ended in hard 

collision at ca. 1290 Ma.   Further evidence for a change in tectonic setting from 

passive to a convergent margin is recorded in the Arid Basin in eastern Albany-

Fraser Orogen (Figure 6.9 and Figure 6.10), where detritus previously sourced 
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predominantly from the Yilgarn Craton became dominated by input from the 

approaching Loongana arc at ca. 1425 Ma (Spaggiari et al., 2014b, 2015).  

 

It is difficult to link the 1390 Ma mafic magmatism in the southwestern Yilgarn 

Craton directly with known contemporaneous tectonic or magmatic events within the 

West Australian Craton because there is limited evidence for tectonic activity 

between ca. 1400 Ma and 1345 Ma (Aitken et al., 2016). However, a small ca. 1388 

Ma detrital zircon population in the Fraser Complex in southeastern Albany-Fraser 

Orogen suggests coeval active magmatism (Clark et al., 1999; Spaggiari et al., 2009).   

Furthermore, ca. 1390-1370 Ma inherited and detrital zircon populations have been 

identified at the Windmill Islands and zircon rim growth at ca. 1397-1368 Ma at 

Bunger Hills in East Antarctica, both of which have been interpreted as part of the 

Albany-Fraser Orogen during the Mesoproterozoic (Figure 6.9 and Figure 6.10) 

(Zhang et al., 2012; Morrissey et al., 2017; Tucker et al., 2017). At ca. 1410 Ma, the 

Arid Basin (ca. 1600-1305 Ma, Figure 6.9 and Figure 6.10) likely formed in a 

passive margin setting with east-dipping subduction of the Yilgarn Craton crust 

beneath the Loongana oceanic arc (Spaggiari et al., 2011, 2014b, 2015) or as a back-

arc basin with west-dipping subduction of the approaching Loongana arc from the 

east beneath the Yilgarn Craton (Morrissey et al., 2017).  The ca. 1415-1400 Ma 

magmatism in the Madura Province (Figure 6.9 and Figure 6.10) has also been 

interpreted as evidence for subduction (Kirkland et al., 2013; Spaggiari et al., 2014b; 

Aitken et al., 2016). Collectively, this evidence suggests the presence of an active 

subduction zone and NW-directed convergence along the southeastern (and possibly 

southern) margin of the Yilgarn Craton at ca. 1410-1310 Ma. If the Biberkine dykes 

are associated with subduction (back-arc extension or intracontinental rifting), this 

implies presence of a west dipping subduction zone as suggested by Morrissey et al. 

(2017) and Aitken et al. (2016).  Alternatively, if the dykes intruded through lateral 

propagation of magma from a distal source, their emplacement could be due to 

intracontinental rifting and lithospheric extension associated with a mantle plume. 

 

The Capricorn Orogen north of the Yilgarn Craton (Figure 6.1) formed during 

assembly of the West Australian Craton during the Glenburgh Orogeny at 2005-1950 

Ma and was subjected to repeated episodic intracontinental reworking and 
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reactivation over the following billion years (Cawood and Tyler, 2004; Sheppard et 

al., 2004, 2010a; Johnson et al., 2011). Hydrothermal monazite in the Abra 

polymetallic deposit in the Edmund Basin (Figure 6.1) records a tectonothermal 

event at 1375  ± 14 Ma, possibly a regional-scale episode of intracontinental 

reworking (Zi et al., 2015). The ca. 1360 Ma Gifford Creek carbonatite complex, 

also in the Edmund Basin, occurs within a major crustal suture, and may have 

formed in response to reactivation of this suture during far field stresses associated 

with plate reorganization (Zi et al., 2017). The ca. 1888 Ma Boonadgin dyke swarm 

in the southwestern Yilgarn Craton has also been linked with possible far-field 

tectonic stresses and lithospheric extension in the eastern Capricorn Orogen (Stark et 

al., in press),   where coeval felsic volcanic rocks were emplaced during limited 

rifting at ca. 1891-1885 Ma  (Rasmussen et al., 2012; Sheppard et al., 2016).  

 
Figure 6.10 Possible configuration of the Yilgarn and Mawson cratons during the 
Mesoproterozoic showing common tectonic elements between the Yilgarn Craton, 
Bunger Hills and Windmill Islands. Modified after Aitken et al. (2016) and Tucker et 
al. (2017, 2015). Interpreted bedrock geology of Western Australia (Geological 
Survey of Western Australia, 2015). Piercing points of between the Darling–Conger 
and Rodona–Totten Faults are from Aitken et al. (2014, 2016). 
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Emplacement of the NNW-trending Biberkine dykes indicates regional SSW-NNE 

oriented lithospheric extension, which is consistent with interpreted NW-trending 

convergence and subduction along the southeastern craton margin. The orientation of 

the dykes is roughly parallel to the regional NW-SE tectonic grain imparted by 

terrane accretion during the Archean (Middleton et al., 1993; Wilde et al., 1996; 

Dentith and Featherstone, 2003) and suggests that, like the NW-trending 1889 Ma 

Boonadgin dyke swarm (Stark et al., in press), they intruded along existing crustal 

weaknesses controlled by a regional stress field (Hou et al., 2010; Hou, 2012; Ju et 

al., 2013). This may be supported by the presence of a ca. 20° NE-dipping high-

velocity zone at ca. 30 km depth south of sample 15WDS16, interpreted as a mafic-

ultramafic body in the lower crust that could represent a conduit for mafic magma 

that intruded along the suture (Dentith et al., 2000; Dentith and Featherstone, 2003).    

6.9 Conclusions 
Newly discovered NNW-trending ca. 1390 Ma mafic dykes, here named the 

Biberkine dykes, have been identified in the southwestern Yilgarn Craton in Western 

Australia using in situ SHRIMP and ID-TIMS U-Pb methods. The extent of the dyke 

swarm is unknown but in aeromagnetic data they appear to extend several hundred 

kilometres across the South West Terrane. The Biberkine dykes are coeval with a 

number of other mafic dyke swarms worldwide and thus provide an important target 

for paleomagnetic studies. Preliminary geochemical analysis indicates that the dykes 

have tholeiitic compositions with a significant contribution from metasomatically 

enriched subcontinental lithosphere and/or lower crust. Current models for the 

Yilgarn Craton infer a tectonically quiescent period between ca. 1600 Ma and 1345 

Ma but indirect evidence from the Albany-Fraser Orogen and from Windmill Islands 

and Bunger Hills in East Antarctica support renewed subduction along the 

southeastern and possibly southern margin of the craton by ca. 1410 Ma. 

Paleogeographic reconstructions suggest that this was a result of relative motion and 

rotation between the West Australian, South Australian and Mawson cratons and 

represents transition from Nuna to Rodinia configuration for the three cratons. The 

1390 Ma Biberkine dykes are likely a direct consequence of this transition and mark 

the change from passive to active tectonic setting, which culminated in the Albany-

Fraser Orogeny at ca. 1330 Ma.  
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Chapter 7   In situ U-Pb geochronology and geochemistry of a 
1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: 

the end of the Albany-Fraser Orogeny4 

J. Camilla Stark, Xuan-Ce Wang, Zheng-Xiang Li, Birger Rasmussen4, Stephen Sheppard,

Jian-Wei Zi, Christopher Clark, Martin Hand, Wu-Xian Li 

7.1 Abstract 
Antarctica contains continental fragments of Australian, Indian and African 

affinities, and is one of the key elements in the reconstruction of Nuna, Rodinia and 

Gondwana. The Bunger Hills region in East Antarctica is widely interpreted as a 

remnant of the Mesoproterozoic Albany–Fraser Orogen, which formed during 

collision between the West Australian and Mawson cratons and is linked with the 

assembly of Rodinia. Previous studies have suggested that several generations of 

mafic dyke suites are present at Bunger Hills but an understanding of their origin and 

tectonic context is limited by the lack of precise age constraints. New in situ 

SHRIMP U-Pb zircon and baddeleyite dates of, respectively, 1134 ±	9 Ma and 

1131± 16 Ma confirm an earlier Rb-Sr whole-rock age estimate of ca. 1140 Ma for 

emplacement of a major mafic dyke suite in the area. Existing and new geochemical 

data suggest that the source of the dyke involved an EMORB-like source reservoir 

that was contaminated by a lower crust-like component. The new age constraint 

indicates that the dykes post-date the last known phase of plutonism at Bunger Hills 

by ca. 20 million years and were emplaced at the end of Stage 2 of the Albany-Fraser 

Orogeny. In current models, post-orogenic uplift and progressive tectonic thinning of 

the lithosphere were associated with melting and reworking of lower and middle 

4 This chapter is published as Stark, J.C., Wang, X.-C., Li, Z.-X., Rasmussen, B., Sheppard, S., Xi, J.-

W., Clark, C., Hand, M., Li, W.-X., 2018. In situ U-Pb geochronology and geochemistry of 

a 1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: the end of the Albany-Fraser 

Orogeny. Precambrian Res. 310, 76–92.  
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crust that produced abundant plutonic rocks at Bunger Hills. A major episode of 

mafic dyke emplacement following uplift, cooling, and plutonic activity with 

increasing mantle input, suggests that the dykes mark the end of a prolonged interval 

of thermal weakening of the lithosphere that may have been associated with 

continued mafic underplating during orogenic collapse.  If the undated olivine 

gabbro dykes with similar trend, geochemistry and petrology at Windmill Islands are 

coeval with the ca. 1134 Ma dyke at Bunger Hills, this would suggest the presence of 

a major dyke swarm at least 400 km in extent. In such case, the dykes could have 

been emplaced laterally from a much more distant mantle source, possibly a plume, 

and interacted with the locally heterogeneous and variably metasomatised 

lithosphere. 

7.2 Introduction 
Mafic dykes are products of lithospheric extension that was sufficient to allow 

propagation of mantle-derived magma through rigid lithosphere. Emplacement of 

mafic dykes therefore acts as a proxy for paleostress fields and pre-existing crustal 

weaknesses (Ernst et al., 1995b; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 

2012; Ju et al., 2013). Mafic dykes are also important targets of paleomagnetic 

analyses for continent reconstructions (e.g., Ernst and Buchan, 1997; Buchan et al., 

2001; Bleeker and Ernst, 2006; Teixeira et al., 2013) and precisely dated dyke 

swarms, which represent the plumbing systems of now eroded Large Igneous 

Provinces (LIPs) (Coffin and Eldholm, 1994),  can provide a unique magmatic 

barcode and geological piercing points  (Ernst and Buchan, 1997; Bleeker, 2004; 

Bleeker and Ernst, 2006; Ernst and Bleeker, 2010; Ernst et al., 2016).  

 

Antarctica contains key elements of the supercontinents Nuna, Rodinia and Pangea 

that existed since ca. 2000 Ma. Some of these elements are fragments that share close 

affinities to the Australian, Indian and African continental blocks (Fitzsimons, 

2000a, 2000b, 2003; Boger, 2011; Harley et al., 2013). Mafic dykes are widespread 

in Archean cratonic blocks in East Antarctica, being readily identifiable in the field 

and satellite imagery in ice-free areas.  Several generations of Precambrian mafic 

dykes have been identified at Vestfold Hills (Collerson and Sheraton, 1986; John W 

Sheraton et al., 1987; Black et al., 1991; Lanyon et al., 1993; Sheraton et al., 1993), 
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Bunger Hills (Sheraton et al., 1990; Sheraton et al., 1993), Windmill Islands (Blight 

and Oliver, 1977; Post et al., 1997; Post, 2000; Zhang et al., 2012), Commonwealth 

Bay (Sheraton et al., 1989) and the Napier Complex (Sheraton et al., 1980; Sheraton 

and Black, 1982; J. W. Sheraton et al., 1987; Suzuki et al., 2008). However, with the 

exception of the Vestfold Hills where U-Pb geochronology has permitted precise 

dating of five different dyke generations (Black et al., 1991; Lanyon et al., 1993), 

only Rb–Sr and/or Sm–Nd isotope ages are available for most dykes in Antarctica, 

which is problematic since these isotope systems are often disturbed by younger 

tectonothermal events.  

 

The Bunger Hills, a short coastal segment outcropping in Wilkes Land in East 

Antarctica, have long been proposed to represent a fragment of the Mesoproterozoic 

Albany-Fraser Orogen in Western Australia (e.g., Sheraton et al., 1990, 1993; Black 

et al., 1992; Fitzsimons, 2000a; Duebendorfer, 2002). The Windmill Islands, ca. 400 

km east of Bunger Hills, appear to preserve a similar tectonothermal and magmatic 

history (Sheraton et al., 1993; Post et al., 1997; Post, 2000; Morrissey et al., 2017). 

Data from the Bunger Hills were first obtained during field campaigns in 1956–57 

(Ravich et al., 1968) and 1986 (Sheraton et al., 1990, 1992, 1993, 1995; Stüwe and 

Wilson, 1990; Ding and James, 1991).  In 2016, another field campaign was 

undertaken to study the crustal evolution at Bunger Hills (Tucker and Hand, 2016; 

Tucker et al., 2017) and Windmill Islands (Morrissey et al., 2017) and has led to 

improved tectonic models. However, current models and derived continent 

reconstructions have not incorporated mafic dykes in this part of Antarctica due to 

the imprecise age constraints for the dykes (Blight and Oliver, 1977; Sheraton et al., 

1990, 1995; Post et al., 1997; Post, 2000; Zhang et al., 2012; Morrissey et al., 2017). 

 

We present here the first baddeleyite and zircon U-Pb geochronology obtained from 

one of the largest and widest dykes at Bunger Hills sampled during the 2016 field 

campaign. We investigate the nature of the mantle source using existing and new 

major-trace element and isotope data, followed by a discussion on a possible tectonic 

setting during dyke emplacement at Bunger Hills in the wider context of the Albany–

Fraser Orogen. 
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7.3 Regional geology 
The Bunger Hills area forms a continuous low relief outcrop of about 300 km2 along 

the coast in Wilkes Land near Shackleton Ice Shelf, approximately 400 km west of 

the Windmill Islands (Figure 7.1). Bunger Hills forms one of three geologically 

distinct regions in the immediate vicinity of the Denman and Scott Glaciers; the 

other two areas are the Obruchev Hills between Scott and Denman Glaciers 

 
Figure 7.1 Location of Bunger Hills, Highjump Archipelago and Obruchev Hills in 
East Antarctica. After Sheraton et al. (1990, 1995).   

and a group of smaller outcrops west of Denman Glacier. The Highjump 

Archipelago extends just north-northeast from Bunger Hills and comprises a ca. 93 

km-long belt of small rocky islands.  

7.4 Basement lithology 
At least four metamorphic events have been identified at Bunger Hills (Stüwe and 

Powell, 1989; Stüwe and Wilson, 1990; Ding and James, 1991; Sheraton et al., 1993, 

1995; Tucker et al., 2017). Peak granulite facies conditions of 850–900° C and 5–6 

kbar were reached at 1183 ± 8 Ma in the Highjump Archipelago (Tucker and Hand, 

2016), whereas conditions of 750–800°C and 5–6 kbar  at 1190 ± 15 Ma were 

reported at Bunger Hills proper (Sheraton et al., 1993). Recent data also indicate 
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metamorphic zircon growth peaks at ca. 1300–1270 Ma and ca. 1250 Ma, with minor 

peaks at ca. 1330 Ma and 1200 Ma (Tucker et al., 2017). 

 

Peak metamorphism at ca. 1190 Ma may have been associated with an extensional 

setting (Stüwe and Powell, 1989). This was followed by compressional NNW–SSE-

directed deformation under granulite facies conditions by ca. 1170 Ma (Stüwe and 

Powell, 1989; Sheraton et al., 1992, 1993, 1995; Tucker et al., 2017), the final stage 

of deformation during uplift and cooling involving formation of extensive shear 

zones.  

7.5 Plutonism and mafic dykes 
Three major mafic to felsic intrusive units - the Algae Lake pluton and the Paz Cove 

and Booth (Charnockite) Peninsula batholiths (Figure 7.1and  Figure 7.2)  - outcrop 

in the Bunger Hills area. Their compositions range from subalkaline gabbro to quartz 

monzogabbro and they were likely emplaced at deep crustal levels (ca. 20 km) as a 

series of small intrusions syn- to post-peak metamorphism and deformation, between 

ca. 1203 Ma and 1151 Ma (Ravich et al., 1968; Sheraton et al., 1992, 1993, 1995; 

Tucker et al., 2017). Late-stage felsic dykes are uncommon and may be genetically 

related to the plutonic rocks (Sheraton et al., 1992, 1995).  Several generations of 

mafic dyke suites have been identified at Bunger Hills (Stüwe and Powell, 1989; 

Sheraton et al., 1990; Stüwe and Wilson, 1990; Sheraton et al., 1993) but mafic 

dykes are rare west of Denman Glacier (L P Black et al., 1992; Sheraton et al., 

1995). 

 

The oldest identifiable dykes are mafic granulites of unknown age and comprise 

boudinaged and deformed (proto-)olivine or quartz tholeiites within the plutons as 

well as mafic layers in basement gneisses. Most of the undeformed dykes cut both 

the basement and plutonic rocks and have a maximum age limit of ca. 1203 Ma, 

defined by the youngest dated pluton intruded by the dykes (Sheraton et al., 1990, 

1992, 1993; Tucker et al., 2017). 

 

The undeformed dykes comprise five compositionally distinctive groups ranging 

from olivine tholeiites and slightly alkaline dolerites to picrites–ankaramites 
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(Sheraton et al., 1990, 1995). Group 1 tholeiitic dykes are <2 m thick, relatively 

uncommon and found mainly in the southwestern part of Bunger Hills. Rare NW to 

NNW trending group 2 high-Mg dolerites have varying thicknesses whereas the most 

common dykes belong to groups 3 and 4, trend NW and have thicknesses up to 50 m. 

The youngest dykes are EW-trending alkali basalt dykes, which are generally  <1m 

thick.  Whole-rock Rb–Sr and Sm–Nd mineral isochron data suggest emplacement of 

Group 3 and 4 dykes at ca. 1140 Ma (the former group possibly slightly older) and 

alkali dykes at ca. 502 Ma (Sheraton et al., 1990, 1992, 1995). Group 1 dykes appear  

 
 Figure 7.2 Geological Map of Bunger Hills and Highjump Archipelago showing 
sample locations and regional geology. Modified after Sheraton et al. (1994) and 
Tucker et al. (2017). Samples in this study are from locations BHD1 and BHD4 (blue 
stars), the 8-digit numbers (yellow stars) denote samples of Sheraton et al. (1990). 

to be the oldest of the undeformed dyke suites and may be coeval with the ca. 1151 

Ma Booth Peninsula monzodiorite.  Mineral Rb–Sr analyses from the tholeiites and 

dolerites also reveal partial resetting events at ca. 907 Ma and 514 Ma. Sheraton et 

al. (1990) interpreted the variation in incompatible element ratios between and within 

the ca. 1140 Ma dyke groups  (3 and 4) as lateral and vertical source heterogeneity in 

at least six distinctive mantle source regions. Group 1 dykes probably originated 

from an enriched lithospheric mantle source with an OIB-like component, whereas 
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other dyke groups likely had at least two source components ranging from slightly 

depleted (Sri = 0.7029, εNd = +6.3) to moderately enriched (Sri = 0.7046 - 0.7053, 

εNd = +6.3) in composition. It was proposed that the source of group 3 and 4 dykes 

consisted of a depleted mantle component and Archean or Paleoproterozoic long-

term enriched lithospheric mantle containing subducted crustal materials.  

7.6 Samples 
7.6.1 Field sampling 
Fourteen block samples were collected from two locations along the largest dyke on 

the island  Figure 7.2 and Figure 7.3). Seven samples were collected from each 

location: six samples from the mafic component for geochemistry and one sample 

from the associated leucocratic segregation for geochronology (Table 7.1). 

 

 
Figure 7.3 Sampled dyke at Algae Lake near sampling location of BHD4, looking 
SSW.   

Sample locality BHD1 is near Paz Cove where the dyke is ca. 50 m wide and 

intrudes the Paz Cove batholith. Chilled margins up to 10 cm wide are visible along 

the contact with the charnockite.  Sample locality BHD4 is at the shore of Algae 

Lake, just south of the old Polish station Dobrowolski (Figure 7.3). Here the dyke is 

still ca. 50 m wide and intrudes migmatitic pelitic gneiss. Samples BHD1-4, BHD1-
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5, and BHD1-6 (Paz Cove), and BHD4-3, BHD4-5, and BHD4-6 (Algae Lake) are 

gabbroic and were collected from the center of the dyke. Samples BHD1-1, BHD1-2, 

and BHD1-3 (Paz Cove), and BHD4-1 and BHD4-2 (Algae Lake) are doleritic and 

were collected closer to the edges of the dyke.  Samples BHD1-7 and BHD4-7 were 

collected from associated leucocratic segregations. The dyke has a visible strike 

length of >10 km from Algae Lake to Paz Cove and is identical to the major dyke 

crossing the entire Bunger Hills in a NW–SE direction that was mapped by Sheraton 

and Tingey (1994). 
 

Location Dlat DlLon Easting Northing Zone Samples Comments 

BHD1 
66 14 

43.001 S 

100 42 

13.312 E 
576574 2651708 47D 

BHD1-1 to BHD1-6 

(mafic) BHD1-7 

(felsic segregation) 

Near Paz Cove, cross-

cuts Paz Cove 

batholith 

 

BHD4 

 

66 16 

36.626 S 

 

100 45 

21.554 E 

 

578825 

 

2648126 

 

47D 

 

BHD4-1 to BHD4-6 

(mafic) BHD4-7 

(felsic segregation) 

Shore of Algae Lake, 

intrudes migmatitic 

pelitic gneiss 

Table 7.1 Sampling locations.  Samples were collected along strike and across the 
dyke. Datum WGS84, Dlat = decimal latitude, Dlon = decimal longitude 

7.6.2 Sample descriptions 
The dyke is an olivine gabbro with intergranular to sub-ophitic and ophitic 

(poikilitic) texture (Figure 7.4). The gabbroic samples comprise ca. 55– 60% 

plagioclase, 15–25% augitic clinopyroxene, 5–10% olivine, up to 5% of 

orthopyroxene, 3-5% biotite, accessory opaques (ilmenite, magnetite and hematite) 

and apatite. Clinopyroxene is commonly poikilitic and encloses olivine and 

plagioclase crystals. Olivine crystals are rimmed by a thin reaction corona where in 

contact with plagioclase. Most plagioclase grains are strongly clouded by minute 

inclusions of black and brown particles (likely Fe–Ti oxides) and larger, green 

spherical to needle shaped grains, possibly amphiboles, and both inclusion types 

appear to grow preferentially, possibly along twin planes. Post-magmatic alteration 

appears minimal but growth of the inclusions in the plagioclase crystals may be due 

to emplacement and slow cooling at depth or a later thermal event (Halls and Palmer, 

1990; Halls et al., 2007). Apatite forms acicular colourless needles. Brown biotite is 

associated with, and grows around, ilmenite, possibly due to late stage reaction with 

magmatic fluids common in gabbros. Leucocratic segregations comprise 75-80% 
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plagioclase, 5-10% quartz and green amphibole, 5% brown biotite and accessory 

apatite, zircon and chevkinite.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4 Thin sections of 
sample BHD1-5. Note 
plagioclase and olivine 
poikilitically enclosed  in 
clinopyroxene, biotite 
associated with ilmenite  
and abundant minute 
inclusions clouding the  
plagioclase. (A) Plane 
polarised light (B) Crossed 
polars. 
 

No petrography was available from Sheraton et al. (1990) samples 86286091 and 

86286097, which they obtained from the same dyke. However, samples from BHD1 

and BHD4 are petrographically similar to samples 86286075 and 86285872 (dyke 

Group 4B), which Sheraton et al. (1990, 1995) collected from a NW-trending dyke 

east of Paz Cove. They comprise fine- to medium-grained intergranular to sub-

ophitic dolerite with olivine, clinopyroxene, plagioclase and minor reddish-brown 

biotite associated with Fe-Ti oxides. 
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7.7 U-Pb geochronology and geochemistry 
7.7.1 SHRIMP U-Pb geochronology 
Polished thin sections were scanned for baddeleyite (ZrO2) and zircon with a Hitachi 

TM3030 scanning electron microscope (SEM) equipped with energy dispersive X-

ray spectrometer (EDX) at Curtin University, Perth, Australia. For SHRIMP U-Pb 

dating, selected grains were drilled directly from the thin sections using a micro drill 

and then mounted into epoxy disks, which were cleaned and coated with 40 nm of 

pure gold.  Standards used for the SHRIMP sessions were mounted in one separate 

epoxy disk and coated at the same time with the sample mounts. 

 

In the leucocratic segregation samples from BHD1 and BHD4, zircon crystals are 

predominantly subhedral, prismatic to elongate ranging between 100 µm and 2 mm 

long, and many show thin, non-radial fractures (Figure 7.5 A and C). Some crystals 

have sharply delineated metasomatic zones but most are free from alteration. Many 

crystals appear skeletal or incomplete and some have quench-like textures, indicating 

rapid growth, consistent with their formation in a late-stage leucocratic segregation 

of the dyke. All crystals appear bright and unzoned under backscattered electron 

(BSE) microscopy and most are weakly zoned under cathodoluminescence (CL) 

imaging, brighter CL being associated with rims and fractures (Figure 7.5 B and D). 

Collectively, these characteristics support an igneous origin for the zircon (e.g. Corfu 

et al., 2003). Baddeleyite crystals form predominantly euhedral laths between 50 and 

70 µm long (Figure 7.5 E and F). Thin zircon rims are common but fracture-

associated alteration appears insignificant.   

 

Zircon and baddeleyite were analysed for U, Th and Pb using the sensitive high-

resolution ion microprobe (SHRIMP II) at the John de Laeter Centre at Curtin 

University, following standard operating procedures after Compston et al. (1984). 

The SHRIMP analysis method for mounts with polished thin section plugs outlined 

in Rasmussen and Fletcher (2010) was modified for baddeleyite (SHRIMP operating 

parameters are given in Table 7.2). BR266 zircon (206Pb/238U age of 559 Ma, U 

concentration of 903 ppm; Stern, 2001) was used as a primary standard for 

calibrating Pb/U ratio and U concentration, and OG1 zircon with a 207Pb/206Pb age of 

3465 Ma  (Stern et al., 2009) was used to monitor the instrumental mass fractionation  
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Figure 7.5 SEM backscatter (BSE) and cathodoluminescence (CL) images showing 
SHRIMP spots and 207Pb/206Pb dates with 1σ error. (A) BSE and (B) CL images of 
zircons from BHD4-7B (note the rotation of the CL image). (C) BSE and (D) CL 
images of zircons from BHD4-7A. (E) and (F) SEM images of baddeleyite from 
BHD1-4.  
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Mount CS15-5 CS15-6 

Samples analysed BHD1-7, BHD4-7 

BHD1-4, BHD4-1, 

BHD4-5 

Date analysed 25-Nov-15 20-Oct-15 

Kohler aperture (µm) 70 50 

Spot size (micrometres) 20  13 

O2- primary current (nA) 1.3 1.5 

Number of scans per analysis 6 8 

Total number of analyses 27 23 

Number of standard analyses 22 21 

Pb/U external 1σ precision % (assigned 

minimum 1%) 1.0 1.0 

Raster time (seconds) 120 120 

Raster aperture (µm) 90 90 

Notes 1) Mass resolution for all analyses ≥ 5000 at 1% peak height 2) BR266, OGC, Phalaborwa and NIST 611 
used as standards 3) Count times for each scan for baddeleyite: 204Pb, 206Pb, 208Pb = 10 seconds, 207Pb = 30 
seconds; count times for zircon: 204Pb, 208Pb = 10 seconds, 206Pb = 20 seconds, 207Pb = 30 seconds 

Table 7.2 SHRIMP operating parameters 

(IMF) in 207Pb/206Pb. For the baddeleyite analyses, the Phalaborwa baddeleyite (ca. 

2060 Ma; Heaman, 2009) was employed as an additional standard. Typical spot size 

of the primary O2
- beam was 13-20 µm with 1.3-1.5 nA current. 

 

Data were processed with Squid version 2.50 (Ludwig, 2009) and Isoplot version 

3.76.12 (Ludwig, 2012).  For common Pb correction, 1134 Ma common Pb isotopic 

compositions were calculated from the Stacey and Kramers (1975) two-stage 

terrestrial Pb isotopic evolution model. Analyses with >1% common Pb (in 206Pb) or 

>10% discordance for baddeleyite or >5% discordance for zircon (see footnote in 

Table 7.3 for definition of discordance) are considered unreliable and were 

disregarded in age calculations. All weighted mean ages are given at 95% confidence 

level and individual analyses are presented with 1σ error. 

7.7.2 Geochemistry 
Twelve blocks (BHD1-1 to BHD1-6 and BHD4-1 to BHD4-6) were cut from the 

hand specimens to remove weathered and altered parts. After initial crushing, 

approximately one quarter of the chips was split from each sample and the remaining 

material was pulverised in a chrome steel mill with quartz wash between each 

sample. From the quarter sample, chips with fresh fracture surfaces were picked 
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under the microscope, washed and pulverised manually in an agate mill for isotope 

analysis.  

 

Major elements were analysed at Intertek Genalysis Laboratories, Perth using X-ray 

fluorescence (XRF) and Genalysis laboratory internal standards SARM1 and SY-4. 

Trace elements were analysed with a Perkin-Elmex Sciex ELAN 6000 inductively 

coupled plasma mass spectrometer (ICP-MS) at Guangzhou Institute of 

Geochemistry, Chinese Academy of Sciences, following analytical procedures as 

described in Li (1997) and Liu et al. (1996). Sample powders were dissolved in high-

pressure Teflon bombs using HF-HNO3 mixture and an internal standard solution 

with Rh was used to monitor instrumental drift. A set of USGS standards including 

BHVO-2, AGV-2, GSR-3, W-2 and SARM4 were used for calibration of element 

concentrations. The uncertainty for major element analyses is <5% and most trace 

element analyses have relative standard deviation (RSD) < 3%. 

 

Sr, Nd and Hf isotope analyses for six samples (three samples from BHD1 and 

BHD4 each) were carried out at the Earth and Planetary Sciences Geoanalytical Unit 

at Macquarie University, Sydney (e.g., Genske et al., 2016). Whole-rock samples and 

USGS reference material BHVO-2 (~100 mg) were digested in Teflon beakers and 

loaded onto Teflon columns. Hafnium was collected with the matrix after 5.4 mL 

and Sr after 34.9 mL, followed by Nd. Neodymium was further separated from Sm, 

Ba, La, Ce using a second column and Hf was separated from the matrix using two 

further columns.  Isotopic analyses of Sr and Nd were obtained using a Thermo 

Finnigan Triton thermal ionisation mass spectrometer (TIMS). Samples for Sr 

isotope analysis were loaded onto single rhenium filaments and analysed (1380–

1430°C, 1–11 V). Ratios were normalised to 86Sr/88Sr = 0.1194 to correct for mass 

fractionation. Samples for Nd isotope analysis were loaded onto double rhenium 

filaments and analysed (1200–1600 °C, 0.5–10 V). Ratios were normalised to 
146Nd/144Nd = 0.7219 to correct for mass fractionation. Hafnium isotope analyses 

were obtained using a Nu Instruments multi-collector (MC) ICP-MS Nu034 and 

ratios were normalised to 176Hf/177Hf = 0.7325 to correct for mass fractionation.  
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7.8 Results 
7.8.1 SHRIMP U-Pb geochronology 
Twenty-seven analyses were obtained from seven zircon crystals (four from BHD1 

and three from BHD4) in one SHRIMP session (Figure 7.6 A and Table 7.3). The 

U and Th concentrations in most analyses are, respectively, <500 ppm (59–1551 

ppm, median 385 ppm) and <850 ppm (40–4390 ppm, median 565 ppm). All Th/

U ratios are >0.5 (0.55–2.83, median 1.55). Seven analyses were excluded on the 

basis of >5% discordance (all analyses had <0.55% common 206Pb). The 

remaining twenty analyses (from seven crystals) yielded a weighted mean 
206Pb*/238U (Pb* denotes radiogenic Pb) date of 1133 ± 7 Ma (MSWD = 1.2) 

and a weighted mean 207Pb*/206Pb* date of 1134 ± 9 Ma (MSWD = 0.87).   

Twenty-three analyses were obtained from eleven baddeleyite crystals (six grains 

from BHD1 and five grains from BHD4) in one SHRIMP session ( 

Figure 7.6 B  and Table 7.3).  The U and Th concentrations range from, respectively, 

56–703 ppm (median 135 ppm) and from 1–83 ppm (median 13 ppm). All Th/U 

ratios are <0.13 (0.014–0.126, median 0.075). Twelve analyses were excluded due to 

>1% common 206Pb or >10% discordance, or both. The remaining eleven analyses

(from eight crystals) yielded a weighted mean 207Pb*/206Pb* date of 1131 ± 16 Ma

(MSWD = 0.95). Only 207Pb*/206Pb* results are discussed here because 206Pb*/238U

ratios measured with an ion microprobe may be significantly affected by orientation

effects in baddeleyite crystals (Wingate, 1997; Wingate et al., 1998; Wingate and

Compston, 2000; Schmitt et al., 2010).

The respective zircon and baddeleyite 207Pb*/206Pb* weighted mean dates of 1134 ±

9 Ma and 1131 ±	16 Ma are within analytical uncertainty of each other, indicating 

that the leucocratic segregation from which the zircons were sampled is part of the 

dyke. The more precise date of 1134 ±	9 Ma for zircons extracted from the 

leucocratic segregation (samples BHD1-7 and BHD4-7) is therefore considered to be 

the best estimate of the crystallisation age of the dyke. At BHD1, the dyke intrudes 

the Paz Cove charnockite, which has yielded U-Pb zircon dates of 1170 ±	4 Ma 

(Sheraton et al., 1992) and 1200 ±	6 Ma (Tucker et al., 2017). The pelites and 
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orthogneisses contain zircon populations, respectively, between 1900 and 1500 Ma 

and between ca. 1700 and 1500 Ma, and are underlain by (unexposed) basement of  

Archean age (Tucker et al., 2017). These data further support the interpretation that 

the analysed zircons are not xenocrysts originating from the basement. The 

previously estimated emplacement age of ca. 1140 Ma for most of the group 3 and 4 

dykes was based on Rb–Sr whole-rock and limited Sm–Nd isochron analyses by 

Sheraton et al. (1990) and is confirmed by our geochronology results. The most 

precise ages from their study were 1220 ± 80 Ma for group 3A dykes, 1120 ±	40 Ma 

for group 4D dykes (Sm–Nd mineral isochron) and 1160 ±	160 Ma for group 4E 

dykes. It is notable that the group 4D age is within uncertainty of the U-Pb ages 

reported here. Close agreement between the Rb-Sr (and some Sm-Nd) ages obtained 

from a number of NW-trending group 3 and 4 dykes by Sheraton et al. (1990) and 

the new U-Pb ages from the single NW-trending dyke in this study suggests that 

most group 3 and 4 dykes, and possibly other NW-trending dykes at Bunger Hills 

may be coeval and belong to the same dyke swarm.  

7.8.2 Geochemistry 
7.8.2.1 Major and trace elements 
The results for geochemical analyses of 12 samples, collected along strike from the 

same dyke, are listed in Table 7.4. All samples have loss on ignition (LOI) <1 wt%, 

consistent with petrographic evidence for insignificant alteration. They display a 

wide range in MgO (6.15–9.27 wt%; Mg# = 47.37–63.66), low but near-constant 

SiO2 (45.52–47.32 wt%) and relatively low CaO (7.69–9.23 wt%). They are also 

characterized by enrichment in FeOtotal (12.03–15.94 wt%) and Al2O3 (15.82 to 19.30 

wt%). The total alkali contents (Na2O + K2O = 3.52–4.06 wt%) and Na2O/K2O ratios 

(3.43 to 5.14) are high, indicating alkali and sodium enrichment. All samples plot 

just outside the sub-alkaline field, in the alkaline corner of the basaltic field on the 

TAS diagram (Figure 7.7 A) (Irvine and Baragar, 1971; Le Maitre et al., 2002) and 

despite their alkaline character, display a tholeiitic trend on the AFM diagram (Irvine 

and Baragar, 1971;  Figure 7.7 B). Modal calculations (Johannsen, 1931) indicate 

that all samples are hypersthene-normative with up to 5% olivine, 50–60% 

plagioclase, up to 5% orthoclase, 4–10% diopside, 5–16% hypersthene, up to 20% 
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Figure 7.6 Tera-
Wasserburg plot 
of SHRIMP U-
Pb results for 
(A) zircon and 
(B) baddeleyite 
analyses. Grey 
squares denote 
excluded data 
(see section 
7.8.1 for 
details). 

 

 

Fe–Ti oxides (ilmenite and hematite), <1% quartz and traces of apatite, spinel and 

zircon. Samples from BHD4 (central part of Bunger Hills) contain more normative 

olivine and no quartz.   

 

Trace element profiles on a chondrite-normalised plot show moderate enrichment of 

light rare earth elements (LREE) with (La/Sm)CN = 1.44–1.68 and (La/Yb)CN = 3.15–

4.17 and slight fractionation of heavy rare earth elements (HREEs) with (Sm/Yb)CN 
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= 1.98–2.31,  (Gd/Yb)CN =  1.53–1.79 and (Tb/Yb)CN =  1.47–1.59 (Sun and 

McDonough, 1989, Figure 7.7 C). Most samples display a positive Eu anomaly 

(Figure 7.7 C, Table 7.4). The primitive mantle-normalised patterns show negative 

Nb and Ta and negative to positive Ti anomalies, elevated large ion lithophile 

elements (LILE) and elevated Th ( Figure 7.7 D). 

 

Some samples also display a Zr and Hf trough. Aside from the positive Ti anomalies 

of the samples, the overall trace element profile of the samples is very similar to that 

of lower continental crust (Rudnick and Gao, 2003). BHD1 samples have higher 

incompatible element contents than those of BHD4 samples, and the doleritic 

samples (BHD1-1 to BHD1-3) are higher in most incompatible elements. Two 

samples from the same dyke were collected by Sheraton et al. (1990), who classified 

sample 86286097 in the southeastern part of Bunger Hills as part of group 4A (Mg # 

= 47.5) and sample 86286091 in the northwestern part as a less evolved variant of 

Group 4A. The latter has a higher Mg number of 63.33, consistent with the highest 

Mg number of 63.66 of the BHD1 samples nearby.  Major element data in this study 

are consistent with compositions of samples 86286091 and 86286097 of Sheraton et 

al. (1990). Previous studies have shown that major element compositions and trace 

element ratios of a single dyke belonging to a major regional swarm (>10 m in 

width) will be consistent along strike but may be different from an adjacent dyke, 

suggesting that each dyke represents a single magmatic pulse injected laterally from 

a magmatic chamber (Halls, 1986; Buchan et al., 2007; Ernst, 2014).    

7.8.2.2 Nd and Sr isotopes 
Six samples were analysed for Nd and Sr isotopes (Table 7.5). Measured ratios of 
147Sm/144Nd and 143Nd/144Nd are, respectively, 0.1451–0.1602 and 0.5124390–

0.5124560.  Calculated initial ratios 143Nd/144Nd at 1134 Ma yielded 0.51125–

0.51134, corresponding to εNd1134Ma = +1.51 to +3.32, which is lower than the 

inferred lower estimate of εNdDM = +5.4 for contemporaneous depleted mantle, 

calculated using the method of DePaolo (1981). The 87Rb/86Sr and 87Sr/86Sr ratios 

are, respectively, 0.1246–0.1771 and 0.7035–0.7071, with corresponding initial 

ratios (87Sr/86Sr)1134Ma = 0.703625–0.7043372. These values are higher than the 

contemporaneous depleted mantle (ca. 0.7019; Taylor and McLennan, 1985) and 

compatible with those expected in lower crust, which is strongly depleted in Rb 
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(Rudnick and Fountain, 1995; Rudnick and Gao, 2003; Hacker et al., 2015) and thus 

has low initial 87Sr/86Sr ratios similar to depleted mantle (Weaver and Tarney, 1980; 

Rollinson, 1993). 

7.9 Discussion 
7.9.1 Petrogenesis of the dykes 
7.9.1.1 Fractional crystallisation 
The range of Mg# (47–63) and low concentrations of compatible elements (Cr = 

80.63-210.50 ppm, Ni = 88.9–220.0 ppm and MgO = 6.15-9.27 wt%) indicate that 

the dyke is evolved. The strong positive co-variation between Mg# and Ni (r2 = 0.90) 

suggests olivine fractionation, consistent with presence of early (poikilitic) olivine in 

thin section (Figure 7.4). Elevated Al2O3 (15.82–19.30 wt%) can be attributed to a 

hydrous source (e.g. Wang et al., 2016) or accumulation of plagioclase. The latter is 

supported by low Rb/Sr ratios (0.03–0.06) and marked positive Eu anomalies mainly 

in the gabbroic samples. The degree of the Eu anomaly can be estimated using 

Eu/Eu* = EuCN/[(SmCN+GdCN)]1/2 where Eu* is the expected extrapolated Eu 

concentration (Taylor and McLennan, 1985). Magmas evolving along liquid line of 

descent will have Eu/Eu* ≤1, assuming that there was no initial Eu/Eu* anomaly. All 

studied samples have Eu/Eu* >1 (1.04–1.28) with doleritic samples showing the 

smallest anomalies. The presence of positive Eu anomalies thus suggests that 

plagioclase is a cumulate mineral in the gabbroic samples.  

 

The lack of correlation between Mg# and CaO (r2 = 0.07) and Mg# and Sc/V (r2 = 

0.02) suggests that clinopyroxene fractionation may have been insignificant during 

magma evolution. Similarly, the presence of a strong negative covariance between 

Mg# and FeOtot (r2 = 0.83) and TiO2 (r2 = 0.83) indicates that fractionation of Fe-Ti 

oxides was insignificant as this would have resulted in strong depletion of these two 

elements.  
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Figure 7.7 (A) Total alkali-silica (TAS) plot after LeMaitre, 1989. Blue field denotes  
1.21 Ga Marnda Moorn LIP dykes from Wang et al., 2014. (B) AFM plot  after 
Irvine and Baragar, 1971. (C) Chondrite and (D) primitive mantle  normalised multi-
element plots with blue shaded area denoting range of Marnda Moorn dykes (Wang 
et al., 2014). LCC = lower continental crust after Rudnick and Gao, 2004; OIB = 
ocean island basalt, NMORB = mid ocean ridge basalt and EMORB = enriched 
MORB after Sun and McDonough, 1989 

.  
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Figure 7.7 Continued.  

7.9.1.2 Crustal contamination 
Arc-like characteristics, such as negative Nb-Ta and Zr-Hf (HFSE) anomalies and 

elevated LILE contents on primitive mantle-normalised plots, may be due to 

subduction-related metasomatic enrichment, crustal contamination, or both (e.g. 

Saunders et al., 1992; Puffer, 2001; Wang et al., 2016). Relative to mantle, crust has 

high SiO2, La/Sm, Th/La and 87Sr/86Sri but low εNdt, MgO, Sm/Nd and Nb/La. 
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Contamination by (upper or middle) crustal material would produce positive 

correlations between Mg# and εNdt, Nb/La and Sm/Nd and negative correlations 

between Mg# and La/Sm, Th/La and 87Sr/86Sri   (e.g., Wang et al., 2012, 2014, 2016). 

Such predicted covariance is not observed in the analysed samples. Despite 

variations in the Mg number, the εNdt values are nearly constant and the range of 
87Sr/86Sri values is relatively small. In addition, ratios of La/Sm and Th/La are nearly 

constant and show weak positive correlation whereas ratios of Nb/La and Sm/Nd are 

nearly constant with a weak negative correlation. This implies that crustal 

contamination was not a significant process during magma evolution. 

 

Trace element and isotope results from this study are consistent with those of 

Sheraton et al. (1990), who reported 87Sr/86Sri of 0.704 ± 0.002 for Group 4A 

dolerites (which includes the dyke sampled in this study) and εNd1140 between +2.9 

and +6.3 for groups 4B, 4D and 4E, which have similar trace element profiles to 

group 4A. In addition, samples 86285833 from Geomorfologov Peninsula and 

86286075 from the north-eastern part of Paz Cove (Group 4D and 4B dykes, 

respectively) have similar Sri (0.7044 and 0.7030, respectively) and εNdt values 

(+2.9 and +3.9, respectively) as the dyke in this study. Sheraton et al. (1990) 

proposed that crustal contamination was significant only in Group 3A dykes and 

significant variability in trace element abundances and isotope compositions between 

dyke groups 1 to 4 was attributed to source heterogeneity. 

 

As discussed above, crustal contamination was probably insignificant and the 

observed geochemical diversity likely reflects the source characteristics. As shown in 

Figs. 6C and 6D, the trace element composition of the samples is very similar to the 

lower continental crust (Rudnick and Gao, 2003) and the εNdt values of the samples 

(+1.5 to +3.3) show slight but clear enrichment relative to the contemporary depleted 

mantle at 1134 Ma (+5.4; DePaolo, 1981). These characteristics suggest that the 

source probably involved a depleted mantle type component that interacted with 

material that had a lower εNdt, slightly higher (but NMORB-like) 87Sr/86Sri and a 

lower crust-like trace element composition.  
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7.9.1.3 Nature of the mantle source 
Mantle source characteristics in mafic systems can be investigated using ratios of 

incompatible trace elements that are sensitive to source composition and partial 

melting processes but insensitive to crystal fractionation. Ratios of Nb/La, Nb/Ta, 

Th/Nb, La/Sm, La/Yb, La/Ba, Sm/Nd and Th/U in the analysed samples are near 

constant despite a wide range of Mg#, indicating that they behaved in an essentially 

incompatible manner during fractional crystallisation and likely reflect their source 

composition. The average ratio of Nb/La = 0.71 falls between average depleted 

mantle values (0.90–0.93; Sun and McDonough, 1989; Salters and Stracke, 2004) 

and lower crust (0.63; Rudnick and Gao, 2003) whereas the ratio of Nb/Ta  = 16.23 is 

close to that of NMORB or enriched MORB (EMORB) (17.65/17.66; Sun and 

McDonough, 1989). The ratio of Th/Nb = 0.18 is close to lower crust (0.24; Rudnick 

and Gao, 2003) and much higher than NMORB/EMORB or OIB (0.05/0.07 and 

0.08, respectively; Sun and McDonough, 1989). The average ratios of La/Sm = 2.72, 

Sm/Nd = 0.25 and Th/U = 5.38 are all very close to lower crustal values (2.83, 0.25 

and 6.0, respectively; Rudnick and Gao, 2003). The ratio of La/Yb = 5.82 is slightly 

higher than the lower crust (5.33) but much higher than MORB (0.82) and much 

lower than typical OIB (17.13).    

 

The composition of the source region may also be constrained by using ratios of 

incompatible trace elements with identical bulk partition coefficients (D) (Sims and 

DePaolo, 1997; Willbold and Stracke, 2006; Wang et al., 2014). In log-log plots, 

slopes plot near unity if the ratios of two such elements remain constant. In the 

studied samples, calculated slopes are near unity for Tb/Yb (log(Tb) - log(Yb) = 1.05 

±	0.02 (1se), r2 = 1.0), Lu/Yb (log(Lu) - log(Yb) = 1.01 ±	0.02 (1se), r2 = 0.99), 

Gd/Yb (log(Gd) - log(Yb) = 1.03 ±	0.07 (1se), r2 = 0.95), Zr/Hf (log(Zr) - log(Hf) = 

0.94 ±	0.04 (1se), r2 = 0.98) and Nb/Ta (log(Nb) - log(Ta) = 0.98 ±	0.04 (1se), r2 = 

0.98). The unit slopes of correlation between Tb and Yb, Gd and Yb, and Yb and Lu 

indicate that the bulk partition coefficients of middle REE and HREE are identical 

during partial melting and magma evolution (e.g. Wang et al., 2012). Because DTb/Yb, 

DGd/Yb and DYb/Lu are >1 between melt and garnet (e.g., Irving and Frey, 1978; 

Weaver and Tarney, 1981; Van Westrenen et al., 2001), this suggests that garnet is 

not the dominant phase in the residual mineral assemblage (e.g., Wang et al., 2012). 



J.C. Stark     Chapter 7 - 1.13 Ga Bunger Hills dyke swarm 
 

     219 

J.C
. Stark 

 
 

  C
hapter 7 - 1.13 G

a B
unger H

ills dyke sw
arm

 
 

However, the observed slight overall HREE depletion could be due to a phase with a 

more uniform KD for HREE, such as clinopyroxene. The slope of log (Nb) versus log 

(La) (0.77, r2 = 0.74) indicates DNb/La <1, which is a typical characteristic of partial 

melts of peridotitic dominant source (Wang et al., 2014). However, the near-unity 

slopes of log (Nb)-log(Ta) and log (Zr)-log (Hf) indicate presence of rutile in the 

source (e.g., Foley et al., 2000; Münker et al., 2004; Wang et al., 2014) because the 

calculated bulk partition coefficients DZr/Hf and DNb/Ta for peridotitic sources are less 

than one (DNb/Ta ~ 0.4 ; Münker et al., 2004; Salters and Stracke, 2004; Pfänder et al., 

2007; Wang et al., 2012; Zr/Hf (DZr/Hf  = 0.3 - 0.4; Wang et al. 2012 and references 

therein). These observations support a predominantly peridotitic source composition 

with at least one other rutile-bearing component. 

 

The studied samples have elevated Th/Yb ratios similar to lower continental crust 

(LCC), Nb/Yb ratios close to both LCC and EMORB (Figure 7.8A) and, apart from 

elevated Th and enrichment in LILEs (Cs, Rb, K, Pb and Sr), the overall trace 

element distribution profiles of the samples share similarities with EMORB of Sun 

and McDonough (1989; Figure 7.8B). All samples lie near a binary mixing line 

between EMORB and LCC rather than assimilation and fractional crystallisation 

trajectories (AFC; Depaolo, 1981;  Figure 7.8C). Binary mixing of EMORB with a 

depleted mantle-like εNdt (+5.4) and 87Sr/86Sri (0.7030) and 20–30% of LCC -like 

component (εNdt  = -3.5, same as sample 86285815 of Charnockite Peninsula 

pluton) would require the latter to have 87Sr/86Sri  ≤0.705 (sample 86285815 has 
87Sr/86Sri  = 0.708) to produce a reasonable mixing line between the two end member 

components (not shown in Figure 7.8C). The above evidence is consistent with the 

interpretation of Sheraton et al. (1990) who on the basis of isotope data proposed that 

the source of group 3 and 4 dykes involved a depleted mantle component, which was 

probably mixed with a lithospheric component enriched in subducted crustal material 

and/or long-term enriched late Archean or Paleoproterozoic mantle. However, 

Sheraton et al. (1990) also argued that significant differences in incompatible 

element ratios between the various dyke groups (presumed to be of similar age) 

preclude simple two-component mixing, requiring a more complex source and 

suggesting that the source region of the dykes was both laterally and vertically 

heterogeneous.  
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7.9.1.4 Relationship between plutonic rocks and mafic dykes at 
 Bunger Hills 

Emplacement of the plutons at Bunger Hills pre-dates the unmetamorphosed mafic 

dykes by 20 myr (and possibly less), although syn-plutonic dykes have also been 

reported (Sheraton et al., 1990, 1992, 1995). Compositions of the plutons range from 

subalkaline gabbro to quartz monzogabbro with tholeiitic affinity, and have primitive 

mantle-like HFSE ratios and LREE and LILE enrichment (Sheraton et al., 1992).  

The parental magmas of the gabbroic rocks had a high 87Sr/86Sri (0.7091 - 0.7147) 

and low εNdt (-9.4) composition that likely originated from a common 

heterogeneous, long-term LILE- and LREE-enriched, Nb-poor mantle source.  

Compared to the Nb/La ratios of the older plutonic rocks at Bunger Hills, the Nb/La 

ratio (0.81, sample 86286051) of the youngest known pluton, the 1151 ± 4 Ma Booth 

Peninsula batholith, is much higher and comparable to the average Nb/La ratio (0.71) 

of the dyke in this study. In addition, the higher εNd (-3.5) and lower 87Sr/86Sri 

(0.7082, sample 86285815) of the Booth Peninsula batholith suggest a larger 

contribution from asthenospheric mantle than is the case for the older plutons (Nb/La 

= 0.19–0.25, Paz Cove sample 86286082; εNd = -9.4 and 87Sr/86Sri = 0.71435, Algae 

Lake sample 86265962, Sheraton et al., 1992). Moreover, probable syn-plutonic 

mafic granulite dykes with high Nb contents have been reported in the Booth 

Peninsula batholith (Sheraton et al., 1995). 

 

Sheraton et al. (1992) suggested that Group 1 mafic dykes and the Charnockite 

Peninsula pluton could be coeval and originate from long-term (strongly) enriched 

lithospheric mantle with an OIB-like Nb-enriched component, whereas mafic dyke 

groups 3 and 4 tapped varying proportions of depleted asthenospheric mantle and 

only moderately enriched lithospheric mantle. Group 3 dykes have higher 87Sr/86Sri 

(0.7043) than most Group 4 dykes, which results in an older apparent whole-rock 

Rb-Sr isochron age (1220 ±	80 Ma; Sheraton et al., 1990). If correct, this would 

suggest a time-progressive increase in contribution from less enriched, more depleted 

mantle material in the dykes, which in turn is consistent with a similar trend 

observed in the plutonic rocks. 
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Figure 7.8 
Incompatible trace 
element plots for 
samples from this study 
and from Marnda 
Moorn LIP dykes 
(Wang et al., 2014). 
NMORB, EMORB and 
OIB data are from 
McDonough, 1989 and 
lower crust (LCC) from 
Rudnick and Gao, 
2004. MCC denotes 
middle continental 
crust and UCC upper 
continent crust.  

(A) Nb/Yb vs Th/Yb 
after Pearce (2008)  

(B) NMORB-
normalised 
incompatible trace 
element profile of 
samples from BHD1 
and BHD4  

(C) Th/Nb vs La/Sm 
plot showing 
assimilation-fractional 
crystallisation (AFC; 
after DePaolo, 1981) 
and binary mixing 
between EMORB of 
Sun and McDonough 
(1989) and lower crust 
of Rudnick and Gao 
(2004). Numbers 
denote r values. Bulk 
partition coefficients 
DTh = 0.01, DNb = 
0.02, DLa = 0.11 and 

DSm = 0.19 after Rollinson (1993) assuming for 5% olivine, 35% clinopyroxene, 4% 
orthopyroxene, 55% plagioclase and 1% magnetite.  
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7.9.2 Tectonic setting of Bunger Hills at ca. 1130 Ma 
7.9.2.1 Bunger Hills as part of the Albany-Fraser Orogen 
The Mesoproterozoic Albany-Fraser Orogen records two major tectonothermal 

events. The first stage at ca. 1340–1260 Ma was associated with the initial collision 

between the Western Australian and Mawson Cratons and the second at ca. 1214–

1140 Ma with intracratonic reactivation and extension (Clark et al., 2000), both 

stages involving NW-directed compression in a transpressional setting (Myers, 1993; 

Nelson et al., 1995b; Bodorkos and Clark, 2004b). The Bunger Hills have widely 

been interpreted as a rifted fragment of the Albany–Fraser Orogen on the basis of 

similarities in lithology, structural style, kinematics, timing and degree of 

metamorphism (Black et al., 1992; Sheraton et al., 1993, 1995; Nelson et al., 1995; 

Clark et al., 2000; Duebendorfer, 2002; Fitzsimons, 2003; Boger, 2011; Tucker et al., 

2017) and more recently geophysical evidence (Aitken et al., 2014, 2016).  The 

Windmill Islands, ca. 400 km east along strike of Bunger Hills, have also been 

proposed as an along-strike extension of the Albany–Fraser Orogen through similar 

arguments (Paul et al., 1995; Post et al., 1997; Zhang et al., 2012; Morrissey et al., 

2017).   In the recent reconstruction of Aitken et al. (2014, 2016), at ca. 1150 Ma the 

Bunger Hills are directly aligned with the southwestern Albany-Fraser Orogen 

(Figure 7.9). 

 

Tucker et al. (2017) proposed a revised model for the tectonic evolution of the 

Bunger Hills during the Paleo- and Mesoproterozoic, suggesting that they evolved as 

part of the Biranup and/or Nornalup zones of the Albany–Fraser Orogen. At ca. 

1815–1650 Ma, Bunger Hills (then part of the southern margin of the Yilgarn 

Craton) was part of a back-arc (Biranup Zone) above a north-dipping subduction 

zone along the southern margin of the Yilgarn Craton (Kirkland et al., 2011; 

Spaggiari et al., 2015; Aitken et al., 2016). The period between ca. 1710 and 1650 

Ma in the Albany-Fraser Orogen coincides with widespread magmatism, formation 

of a series of sedimentary basins and high-temperature metamorphism associated 

with the Biranup Orogeny (Kirkland et al., 2011; Spaggiari et al., 2011). Consistent 

with this scenario, isotope evidence suggests that recycling of an Archean basement 

source beneath the Bunger Hills was diluted by significant formation of new crust at 

ca. 1700 Ma (Tucker et al., 2017).   
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The ca. 1700 Ma volcaniclastic sequence at Bunger Hills described by Tucker et al. 

(2017) formed as part of the Biranup Zone during extension and voluminous 

magmatism in a back-arc setting, likely isolating the area as a basement high. The 

extensive metapelite sequence was deposited between ca. 1700 and 1500 Ma during 

uplift and erosion, possibly in a passive margin setting some distance away from the 

Yilgarn Craton margin (Tucker et al., 2017). After a relative period of quiescence, 

intense deformation and metamorphism at ca. 1330-1150 Ma followed during the 

two-stage Albany–Fraser Orogeny and collision of the Western Australian and 

Mawson cratons with peak metamorphic conditions at ca. 1200–1150 Ma associated 

with emplacement of voluminous isotopically evolved charnockites produced mainly 

by crustal reworking and varying contributions from depleted mantle. The revised 

model is in agreement with the interpreted location of Bunger Hills in the model of 

Aitken et al. (2014, 2016) and consistent with evidence for back-arc setting at 

Windmill Islands at ca. 1410 Ma (Morrissey et al., 2017). 

 

7.9.2.2 Mesoproterozoic mafic magmatism within the Albany-
Fraser    Orogen 

The interpreted location of Bunger Hills as part of the south-western Albany–Fraser 

Orogen (now Nornalup Zone) at ca. 1134 Ma suggests that dykes of this age could 

also be present further east within the orogen. Moreover, probable syn-plutonic 

mafic granulite dykes reported from the ca. 1151 Ma Booth Peninsula batholith at 

Bunger Hills (Sheraton et al., 1995) implies that dykes of this age may also be 

present elsewhere  within the Albany–Fraser Orogen. Mafic dykes at Windmill 

Islands are undated, the only available age constraint being from a late aplite dyke 

dated at 1138 ± 9 Ma with zircon U-Pb (Post, 2000). Post et al. (1997, 2000) 

proposed that the up to 50 m-wide unmetamorphosed WNW–NW-trending olivine 

gabbro dykes at Windmill Islands were emplaced after peak metamorphism between 

ca. 1160 Ma and 1138 Ma, postdating the Ardery charnockite and the aplite dykes. 
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Figure 7.9 Approximate reconstructed configuration of the Yilgarn Craton, Bunger 
Hills and Windmill Islands at ca. 1150 Ma. Modified after Tucker et al. (2017, 
2015), Aitken et al. (2014, 2016), Boger (2011), Spaggiari et al. (2009) and 1:2 500 
000 interpreted bedrock geology of Western  Australia (Geological Survey of 
Western Australia, 2015). Piercing points of between the Darling–Conger and 
Rodona–Totten Faults are from Aitken et al. (2014, 2016). 

Similarly to the studied dyke at Bunger Hills, the olivine gabbro dykes at Windmill 

Islands post-date syn- to late-tectonic charnockites and appear to have similar 

chemical and mineralogical characteristics (Sheraton et al., 1995). The consistencies 

in trend, geochemistry and petrology between dyke groups 3 and 4 at Bunger Hills, 

the olivine gabbro dykes at Windmill Islands and the dyke in this study suggest that 

these dykes could be part of the same NW trending swarm with a >400 km lateral 

extent.  

 

Mafic dykes of similar age are not known within the Albany–Fraser Orogen or 

elsewhere in the Yilgarn Craton. The youngest identified Gnowangerup dykes of the 

Marnda Moorn LIP are 1203 ± 15 Ma (Evans, 1999) and the oldest known 

Warakurna LIP dykes in north-western Yilgarn are 1075 ± 10 Ma (Wingate, 2003). 
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However, undated NE-trending dykes in the Tropicana region (Spaggiari et al., 2011) 

and NW-trending Beenong dykes in the south-east Yilgarn Craton are visible in 

aeromagnetic imagery and cross-cut all structures in the orogen (Wingate, 2007; 

Spaggiari et al., 2009, 2011). Field evidence indicates that the NE-trending 

undeformed amphibolitic dykes formed after deformation had ceased but before 

cooling, suggesting that they are younger than ca. 1140 Ma and may have formed 

late in stage II of the Albany–Fraser Orogeny (Spaggiari et al., 2011). Whilst these 

dykes may belong to the Warakurna LIP, or another as yet unidentified event, it is 

equally possible that they could be part of the same magmatic event that produced 

the 1134 Ma mafic dykes at Bunger Hills and possibly the olivine gabbro dykes at 

Windmill Islands. If so, the Bunger Hills and the Windmill Islands must have cooled 

much more rapidly after peak metamorphism because the dykes there are 

unmetamorphosed. Many dykes within the Albany–Fraser Orogen that have trends 

similar to the Gnowangerup and Fraser dykes of the Marnda Moorn LIP have been 

ascribed as belonging to the Marnda Moorn suite. However, as demonstrated by 

evidence from other mafic dyke studies in the Yilgarn and elsewhere, it cannot 

always be assumed that similarly oriented dykes in a region are part of the same 

magmatic event (Hanson et al., 2004; Wingate, 2007; French and Heaman, 2010; 

Stark et al., 2017). 

  

If the Bunger Hills and Windmill Islands areas were juxtaposed with the Albany-

Fraser Orogen at the time, the NW trend of the ca. 1134 Ma dykes in both areas 

(assuming they are coeval) probably also reflects the regional tectonic setting of the 

Albany-Fraser Orogen. The structural style and kinematics between the Albany-

Fraser Orogen and the Bunger Hills area have been correlated (Duebendorfer, 2002) 

and peak metamorphism at Bunger Hills area corresponds closely with stage 2 of the 

Albany Fraser Orogeny (Sheraton et al., 1993; Clark et al., 2000; Tucker and Hand, 

2016; Tucker et al., 2017). The NW-trending Bunger Hills dykes were emplaced 

during the final phase of stage 2, which within the Albany-Fraser Orogen has been 

interpreted as an episode of intracratonic reactivation, metamorphism and significant 

extension in a NNW to NW oriented transpressional setting (Bodorkos and Clark, 

2004b; Kirkland et al., 2011). Moreover, the ca. 1214–1203 Ma Marnda Moorn 

dykes emplaced early during stage 2, have a similar NW to NNW orientation in the 
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southwestern part of the Albany-Fraser Orogen (Wingate and Pidgeon, 2005; 

Wingate et al., 2005; Wingate, 2007, 2017) 

 

7.9.2.3 Tectonic setting during emplacement of the 1134 Ma mafic 
 dykes at Bunger Hills 

As discussed in section 6.1.4, clues to the tectonic evolution leading to mafic dyke 

emplacement at Bunger Hills may come from the plutonic rocks in the area. 

Mesoproterozoic charnockites in East Antarctica have been attributed to continental 

collision, their formation resulting from high temperature decompression melting of 

dehydrated but fertile granulites in the lower crust during post-

collisional exhumation and decompression (Young et al., 1997; Zhao et al., 1997; 

Mikhalsky et al., 2006). The presence of abundant, largely unmetamorphosed late-

tectonic charnockites and clockwise P–T paths at Bunger Hills and Windmill Islands 

is consistent with this scenario. The ca. 1203–1151 Ma Bunger Hills charnockites are 

synchronous with the ca. 1200–1140 Ma Esperance Supersuite of the Albany–Fraser 

Orogen, the ca. 1205–1163 Ma Ardery charnockite, and the youngest known Marnda 

Moorn LIP dykes (the Gnowangerup suite) dated at 1203 ±15 Ma (Evans, 1999; 

Post, 2000; Zhang et al., 2012; Morrissey et al., 2017). Coeval emplacement of 

orogen-wide plutonic rocks and the Marnda Moorn LIP dykes (Wang et al., 2014) 

suggests that extensive melting of lower crust and the lithospheric mantle was 

synchronous with emplacement of vast amounts of mafic magma along the southern, 

western and eastern margins of the Yilgarn Craton. Emplacement of the Marnda 

Moorn dykes required lithospheric extension along the entire length of the orogen 

(Wingate et al., 2000) and probably caused the elevated regional thermal gradient 

that produced metamorphic monazite growth at ca. 1205 Ma (Dawson et al., 2003). 

Onset of rapid uplift and cooling between 1169 Ma and 1159 Ma in the western 

Albany–Fraser Orogen (Scibiorski et al., 2015) coincides with ca. 1170 Ma plutonic 

magmatism at Bunger Hills, followed by an increase in (depleted and/or less 

enriched) mantle input in the Ardery charnockite at Windmill Islands by ca. 1163 Ma 

(Morrissey et al., 2017) and in the Booth Peninsula batholith by ca. 1151 Ma 

(Sheraton et al., 1992).    
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The source of the ca. 1203–1170 Ma Bunger Hills plutons probably involved a 

heterogeneous, highly enriched mantle region with contributions from the lower 

crust and metasomatised SCLM (Sheraton et al., 1992; Zhang et al., 2012; Morrissey 

et al., 2017; Tucker et al., 2017) similar to the Esperance Supersuite granites, which 

were derived mainly by crustal recycling (Kirkland et al., 2011; R. Smithies et al., 

2015; Tucker et al., 2017). In contrast, the Booth Peninsula batholith and the Ardery 

charnockite at Windmill Islands had a distinctively less enriched source (Sheraton et 

al., 1992; Morrissey et al., 2017). The apparent age-progressive increase of 

asthenospheric mantle input in the Bunger Hills and Windmill Islands charnockites is 

consistent with mafic underplating associated with orogenic collapse or rapid uplift 

interpreted as syn-tectonic active transpression (Scibiorski et al., 2015). This uplift 

appears to have affected both the Bunger Hills and Windmill Islands regions and 

may have been long-lived, with first plutonic activity commencing by ca. 1203 Ma 

and continuing at least until ca. 1151 Ma.  Following cooling, at the latest by 1134 

Ma, the crust was brittle enough to allow emplacement of the mafic dykes. 

 

Geochemical evidence is consistent with a depleted or slightly enriched mantle 

source which interacted with a component of the sub-continental lithospheric mantle 

(SCLM) and/or lower crust that was metasomatically enriched and hybridized by an 

earlier subduction event or events during the Paleoproterozoic, and possibly in the 

Neoarchean (Sheraton et al., 1990, 1995). At Bunger Hills, formation of 

orthogneisses and the mantle extraction ages of the studied dyke all fall within the 

ca. 1815–1650 Ma interval, which is coeval with basin formation in a back-arc 

setting along the southern margin of the Yilgarn Craton during active subduction. 

During Paleoproterozoic arc activity, the mantle wedge would have been hybridized 

by addition of slab-derived fluids and/or melts and later incorporated into the 

continental lithospheric mantle during the Biranup and Albany-Fraser orogenies. The 

metasomatised and highly heterogeneous (at least in part, long-term enriched) sub-

arc mantle was later tapped by parent magmas to the various plutons and dykes 

during active tectonic uplift and cooling associated with the final stages of the 

Albany–Fraser Orogeny. The emplacement of the 1134 Ma mafic dyke suite could 

thus mark the final phase of a prolonged episode of post-orogenic uplift which was 

associated with continued mafic underplating, decompression melting of the SCLM 
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and lower crust that produced the plutonic rocks and, lastly, a thinned and thermally 

weakened lithosphere that permitted (asthenospheric) mantle material to dominate 

and intrude to at least middle crustal levels.  

 

An alternative mechanism for the formation of the dykes could involve a mantle 

source much further away. If the NW-trending Windmill Island dykes are coeval 

with the NW-trending dykes at Bunger Hills, the extent of such a dyke swarm of at 

least 400 km could suggest a possible plume-like mantle source, similar to the giant 

ca. 1270 Ma Mackenzie (e.g. Ernst and Baragar, 1992; Baragar et al., 1996; Hou et 

al., 2010) and the ca. 2500-2540 Ma Matachewan dyke swarms  (e.g. Ernst and 

Bleeker, 2010; Ciborowski et al., 2015). Moreover, dyke widths more than 10 m are 

characteristic of regional dyke swarms that acted as plumbing systems for LIPs (e.g. 

Ernst and Bell, 1992; Ernst, 2014). In this scenario, the dykes could have been 

emplaced laterally from a distant source, interacting with the locally heterogeneous 

and variably metasomatised continental lithosphere. If this is the case, dykes of ca. 

1134 Ma age could also be present within the Albany-Fraser Orogen.  

7.9.3 Conclusions 
New U-Pb geochronology for the largest NW-trending olivine gabbro dyke at 

Bunger Hills yields a 1134 ± 9 Ma age, which is interpreted as the crystallisation age 

of the dyke. The new age constraint indicates that, according to current tectonic 

models, the dykes were emplaced in a late- to post-orogenic extensional setting that 

followed the collision of the West Australian and Mawson cratons during the final 

stage of the Mesoproterozoic Albany-Fraser Orogeny. Post-orogenic uplift and 

thinning of the lithosphere was associated with at least 50 million years of episodic 

crustal melting and reworking that produced the abundant plutonic rocks at Bunger 

Hills. Geochemical evidence suggests that the source of the dyke contained at least 

two distinctive components: a significant proportion of material with depleted 

mantle-like 143Nd/144Ndi composition and a minor lower crust-like, metasomatically 

enriched lithospheric contaminant. A progressive increase in mantle-derived material 

in the plutonic rocks suggests that lithospheric extension was accompanied by mafic 

underplating. Uplift, extension and continued thermal weakening of the lithosphere 

by 1134 Ma culminated in the emplacement of several generations of mafic dykes 

within a relatively short period of time, which appear to carry variable imprints of 
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the reworked lower crust underlying Bunger Hills. The undated WNW-NW trending 

olivine gabbro dykes at Windmill Islands also appear to post-date syn- to late-

tectonic charnockites there and similarities in trend, geochemistry and petrology with 

the dykes at Bunger Hills suggest that these dykes could all be part of the same NW 

trending swarm at least 400 km in extent. This suggests an alternative mechanism of 

dyke formation involving a distant mantle source, potentially a plume, with the 

laterally propagating magma interacting locally with the heterogeneous lithosphere.  
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This PhD project has extended the number of known mafic dyke swarms in the 

Yilgarn Craton from five to eight and provided the first U-Pb age for a mafic dyke 

swarm at Bunger Hills in East Antarctica (Figure 8.1). As discussed in Chapter 3, the 

the success of the project was based on the use of two different U-Pb geochronology 

techniques (in situ SIMS followed by TIMS), which used in tandem allowed 

suboptimal samples of mafic dyke to be dated. The new data presented in Chapters 

4-7 demonstrate the importance and application of mafic dyke swarms as magmatic 

and tectonic markers that position the Yilgarn Craton and the Bunger Hills in the 

wider context of regional and global tectonic evolution. The new ages fall in key 

periods of supercontinent assembly and breakup/reconfiguration between the 

Neoarchean and the Mesoproterozoic, and facilitate their use in paleomagnetic 

studies to refine paleogeographic reconstructions for this period.  

 
Figure 8.1 Mafic dyke swarms of the Yilgarn Craton plotted against worldwide age 
distribution of LIPs (after Prokoph et al., 2004), orogenic activity (from (Condie and 
Aster, 2013)  and proposed supercontinents. Yellow lines denote previously known 
dyke swarms and red lines are new dyke ages presented in this study. See Chapter 2 
for discussion on supercontinent tenures. 
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8.1 The Neoarchean: cratonisation, lithospheric delamination and 
Superia 

The discovery of the 2.62 Ga Yandinilling dyke (Chapter 4) provides the first 

evidence for Archean mafic dykes in the Yilgarn Craton. The dykes were emplaced 

during the final stages of its cratonisation during a Neoarchean orogeny. The 

emplacement of the dykes supports the previously proposed lithospheric 

delamination event at ca. 2.65 Ga (Smithies and Champion, 1999) and is consistent 

with impingement of hot mantle material at the base of the lithosphere that resulted 

in craton-wide, high-temperature metamorphism, voluminous felsic magmatism and 

late-stage gold mineralisation (Qiu and Groves, 1999). Globally, mafic dykes of this 

age have only been reported from the Limpopo Belt of southern Africa (Xie et al., 

2017) and the So Francisco Craton of South America (Oliveira et al., 2013). Current 

paleogeographic reconstructions suggest that the Zimbabwe Craton was adjacent to 

the Yilgarn Craton at this time and because the Limpopo Belt is thought to represent 

the collision between the Zimbabwe and Kaapvaal cratons at ca. 2.66-2.61 Ga 

(Brandt et al., 2018), the Limpopo and Yandinilling dykes could be related to the 

same tectonic event.  

 

Based on paleomagnetic data from the 2.40 Ga Widgiemooltha and Erayinia dykes, 

Pisarevsky et al. (2015)  proposed that the Yilgarn and Zimbabwe cratons were part 

of the ca. 2.70-2.10 Ga Superia supercontinent (Bleeker, 2003; Bleeker and Ernst, 

2006; Ernst and Bleeker, 2010), consistent with the interpretation of Söderlund et al. 

(2010) (Figure 8.2). This suggests that the Neoarchean orogeny between ca. 2.73 and 

2.63 Ga, which led to amalgamation of the Yilgarn Craton (Myers, 1993, 1995; 

Barley et al., 2003; Blewett and Hitchman, 2006; Korsch et al., 2011; Zibra et al., 

2017a; Witt et al., 2018) may be related to assembly of Superia. Moreover, Condie 

(2002) suggested that the delamination rate should be highest during supercontinent 

formation when many collisions occur between cratons, and it is notable that the ca. 

2.70-2.60 Ga high-temperature thermal events in the Yilgarn Craton and the 

Limpopo Belt have both been linked to orogenic collapse and lithospheric 

delamination (Smithies and Champion, 1999; Moller et al., 2003; Brandt et al., 

2018). Recent seismic studies also suggest that widespread lateral crustal flow in the 
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Yilgarn Craton at ca. 2.70-2.60 Ga resulted from collapse of thickened but weak 

early continental crust (Calvert and Doublier, 2018).  

. 

 
Figure 8.2 Paleogeographic reconstructions of the Yilgarn and Zimbabwe cratons. 
(A) Superia configuration after Söderlund et al. (2010) and Pisarevsky et al. (2015) 
at ca. 2500–2400 Ma. Only the Yilgarn and Zimbabwe cratons are shown.  (B) 
Reconstruction of Smirnov et al. (2013) at ca. 2410 Ma, (C) Relative orientations  of 
the Yilgarn and Zimbabwe cratons rotated from (A) to an approximate alignment of 
the 2615 Ma Yandinilling swarm with the 2575 Ma Great Dyke. and (D) 
reconstruction  of Smirnov et al. (2013) at ca. 2690 Ma. See Chapter 4 for details. 

No geochemical data for the 2.62 Ga Yandinilling dykes are yet available but they 

appear to be related to upwelling and impingement of asthenospheric mantle at the 

base of a thinned lithosphere, which could be due to a mantle plume. Extensive 

komatiitic flows at ca. 2.72 Ga in the Eastern Goldfields and in the Kaapvaal and 

Pilbara cratons have been linked to mantle plumes during a global-scale magmatic 
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eruption (Campbell and Hill, 1988; Nelson, 1998; Barnes et al., 2012) and it is 

possible that the lithospheric delamination beneath the Yilgarn Craton and the 

Limpopo Belt at ca. 2.65 Ga was also expedited by such upwelling. 

8.2 The Paleoproterozoic: India, the Bastar-Cuddapah LIP but no Nuna 
The discovery of the NW-trending 1.89 Ga Boonadgin dyke swarm (Chapter 5) 

presents the first evidence for this global magmatic event in the Yilgarn Craton and 

importantly, provides a precise date to support paleomagnetic data (Liu et al., 2018) 

and a matching barcode with the Bastar-Cuddapah LIP in India (French and Heaman, 

2010; Sheppard et al., 2017) (Figure 8.3). The dykes were emplaced soon after 

amalgamation of the West Australian Craton, which involved collision of the Pilbara 

Craton-Glenburgh Terrane and the Yilgarn Craton during the ca. 2.01-1.95 Ga 

Glenburgh Orogeny (Cawood and Tyler, 2004; Sheppard et al., 2010a; Johnson et 

al., 2011). Current tectonic models suggest active subduction along the southern 

margin of the Yilgarn Craton between ca. 1.82 Ga and 1.65 Ga (Kirkland et al., 

2011; Spaggiari et al., 2014b; Aitken et al., 2016) and on a regional scale, the 1.89 

Ga Boonadgin dyke swarm is linked to lithospheric extension that was synchronous 

with basin formation in northern and southern parts of the West Australian Craton 

(the Capricorn Orogen and the Barren Basin, respectively). Collectively, this 

evidence is consistent with NW-SE oriented compression, subduction along the 

southern margin and extension both near the margin and 1000 km away within the 

newly formed Capricorn Orogen. It has been proposed that subduction related 

processes can result in far-field intracratonic effect that propagates 1500 km into the 

plate interior (Giles et al., 2002). The Boonadgin dykes may be an expression of a 

similar process.  

 

The 1.90-1.85 Ga worldwide crustal growth event has been linked to planetary-scale 

mantle upwelling or increased mantle plume (superplume) activity (Condie, 2002; 

French et al., 2008), which was associated with voluminous intraplate and plate 

margin mafic magmatism, basin development and the return of iron formations (e.g. 

Condie, 2002; Rasmussen et al., 2012). A plume origin for the 1.89 Ga Boonadgin 

dykes is possible, especially if it is confirmed that they are part of coeval Bastar-

Cuddapah LIP in India, which is supported by paleomagnetic data (Liu et al., 2018). 
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The 1.9-1.85 Ga event has also been linked to amalgamation of arc systems to 

cratonic blocks during assembly of Nuna (Condie, 2002) sometime between ca. 2.10 

Ga and 1.7 Ga (Condie, 2002; Zhao et al., 2002; Rogers and Santosh, 2003; Bradley, 

2011; Pisarevsky et al., 2014a). However, new paleomagnetic data from the 

Boonadgin dykes (Liu et al., 2018) do not support assembly of Nuna at 1.89 Ga and 

indicate that whereas the West Australian Craton was adjacent to the India, it was 

Figure 8.3 Possible configurations of the WAC and Dharwar, Bastar and Singhbum 
cratons tested with paleomagnetic data at ca. 1890 Ma. Coeval paleopoles are 
plotted on the left-hand side and color coded with the respective cratons. The WAC 
was rotated to the Indian coordinates and more detailed reconstructions are shown 
on the right side. Indian dykes shown in red have been dated with U-Pb or Ar-Ar 
methods at 1879-1894 Ma (Chatterjee and Bhattacharji, 2001; Halls et al., 2007; 
French et al., 2008; Belica et al., 2014). Black undated dykes in India are modified 
after French et al. (2008) and Srivastava et al. (2015). Red star denotes possible 
location of a mantle plume. (A) SIWA configuration modified from ca. 2400 Ma 
reconstruction of Mohanty (2012); (B) Alternative  configuration of Liu et al. (2018) 
supported by paleomagnetic data. See Chapter 5 for details. 
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separated from other free-drifting cratonic blocks by oceans. The new 

paleogeographic configuration thus excludes the West Australian Craton from Nuna 

at 1.89 Ga. 

8.3 The Mesoproterozoic: renewed subduction and Nuna to Rodinia 
transition  

The discovery of the 1.39 Ga Biberkine dykes (Chapter 6) is very interesting because 

few tectonothermal or magmatic events of this age are currently known in the West 

Australian Craton but dykes of similar age are common in other cratons worldwide. 

In the Capricorn Orogen there is some evidence for a thermal event at 1.38 Ga, 

interpreted to result from regional-scale intracontinental reworking (Zi et al., 2015). 

Indirect evidence for tectonic activity in the southern part of the Yilgarn Craton is 

represented by a small 1.39 Ga detrital zircon population in the Fraser Complex in 

southeastern Albany-Fraser Orogen suggesting coeval magmatism there (Clark et al., 

1999; Spaggiari et al., 2009). Moreover, ca. 1390-1370 Ma inherited and detrital 

zircon populations at Windmill Islands and zircon rim growth at ca. 1397-1368 Ma at 

Bunger Hills in East Antarctica (both of which have been interpreted as part of the 

Albany-Fraser Orogen during the Mesoproterozoic) indicate that the orogen was 

active (Zhang et al., 2012; Morrissey et al., 2017; Tucker et al., 2017). It is 

interesting to note that the emplacement of both the 1.89 Ga Boonadgin and the 1.39 

Ga Biberkine dykes coincided with synchronous, although minor, tectonothermal 

events in the Capricorn Orogen, which is known to have been repeated reactivated 

over nearly one billion years following its formation (Sheppard et al., 2010a; 

Johnson et al., 2011). 

 

Current models suggest a period of relative tectonic quiescence from ca. 1.60 Ga 

until ca. 1.40 Ga, when NW-oriented convergence with the northwestern margin of 

the Mawson Craton led to rejuvenated subduction and placed the southern margin of 

the craton in a back-arc setting (Boger, 2011; Kirkland et al., 2011; Spaggiari et al., 

2011, 2014b, 2015, Aitken et al., 2014, 2016) (Figure 8.4). Aitken et al. (2016) 

argued that this was due to relative motion and rotation between the South 

Australian/Mawson the West and North Australian cratons during reorganization of 

Nuna to Rodinia and the NNW trend of the Boonadgin dykes is consistent with the 



J.C. Stark      Chapter 8  - Conclusions 
 

 253 

inferred NW-directed compression. The paleogeographic reconstruction of 

Pisarevsky et al. (2014) is also compatible with this model.  

 

Preliminary geochemistry of the dykes indicates significant involvement of a 

subcontinental lithospheric mantle and possibly lower crustal component. This is 

compatible with a scenario where upwelling asthenospheric mantle interacts with a 

metasomatised subcontinental lithospheric mantle in a back-arc setting. The 

Biberkine dykes could also represent a prelude to the 1.21 Ga mantle plume event 

that produced the Marnda Moorn LIP (Dawson et al., 2003; Goldberg, 2010; Wang 

et al., 2014) and if this is the case, the latter would represent a repeated plume event 

180 million years later.  

 
Figure 8.4 Simplified paleogeographic reconstruction of the Yilgarn and Mawson 
cratons at ca.  1400 Ma. Modified after Aitken et al. (2016), only the Yilgarn Craton 
and Capricorn Orogen of the WAC and the northern part of the Mawson Craton are 
shown. Note stars denoting the inferred original locations of Bunger Hills and 
Windmill Islands (based on interpretations of Tucker et al., 2017 and Morrissey et 
al., 2017, respectively). See Chapter 6 for details. 



J.C. Stark      Chapter 8  - Conclusions 
 

 254 

8.4 The Mesoproterozoic Albany-Fraser Orogeny: continental collision, 
mantle plume and a second LIP? 

Because the Bungers Hills of East Antarctica, and the Windmill Islands 400 km 

further east along the coast, have both been interpreted as part of the Albany-Fraser 

Orogen during the Mesoproterozoic (e.g. Morrissey et al., 2017; Tucker et al., 2017), 

their tectonic evolution is closely linked to that of the Yilgarn Craton. The new U-Pb 

geochronology (Chapter 7) dates a widespread dyke swarm at Bunger Hills at 1.13 

Ga and confirms a previous 1.14 Ga Rb-Sr age by Sheraton et al. (1990). The dated 

Bunger Hills olivine gabbro dyke matches a similarly oriented but undated olivine 

gabbro dyke at Windmill Islands raising a possibility that they are part of a LIP.  

 

The new age for the Bunger Hills dykes indicates that they were emplaced during the 

final stages of the Albany-Fraser Orogeny. The first stage of the orogeny at ca. 1.35-

1.26 Ga is linked to collision of the Mawson and West Australian Cratons whereas 

the second stage at ca. 1.22-1.14 Ga was mainly a thermal event linked to 

reactivation of the Orogen and emplacement of the 1.21 Ga Marnda Moorn LIP 

(Clark et al., 2000, 2014; Wingate et al., 2000; Dawson et al., 2003; Bodorkos and 

Clark, 2004b; Spaggiari et al., 2011, 2014a; Scibiorski et al., 2015) (Figure 8.5). 

Mesoproterozoic plutonic magmatism has commonly been associated with 

continental collision and high-temperature decompression melting during post-

collisional exhumation (Young et al., 1997; Zhao et al., 1997; Mikhalsky et al., 

2006) and this is consistent with the onset of plutonic magmatism at Bunger Hills at 

ca. 1.20 Ga and at ca. 1.21 Ga at Windmill Islands (Sheraton et al., 1992; Post, 2000; 

Zhang et al., 2012; Morrissey et al., 2017). The Bunger Hills dykes were emplaced 

soon after the onset of rapid uplift and cooling between 1.17 Ga and 1.16 Ga in the 

western Albany–Fraser Orogen (Scibiorski et al., 2015), which also coincides with 

increase in (depleted and/or less enriched) mantle input in the plutonic rocks at 

Windmill Islands by ca. 1.16 Ga (Morrissey et al., 2017) and at Bunher Hills by ca. 

1151 Ma (Sheraton et al., 1992). The Marnda Moorn LIP, which is linked to a mantle 

plume (Wang et al., 2014), was emplaced 80 million years earlier and if the Bunger 

Hills and Windmill Islands dykes are part of a 1.13 Ga LIP, their wide extent  may 

suggest a third plume event in the region between 1.39 Ga (Biberkine dykes) and 

1.13 Ga. If correct, dykes of this age may also be present in southern Yilgarn Craton.  
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Figure 8.5 Approximate reconstructed configuration of the Yilgarn Craton, Bunger 
Hills and Windmill Islands at ca. 1150 Ma. Modified after Tucker et al. (2017, 
2015), Aitken et al. (2014, 2016), Boger (2011), Spaggiari et al. (2009) and 1:2 500 
000 interpreted bedrock geology of Western  Australia (Geological Survey of 
Western Australia, 2015). Piercing points of between the Darling–Conger and 
Rodona–Totten Faults are from Aitken et al. (2014, 2016). See Chapter 7 for details. 

8.5 Outlook and further studies 
Fundamental questions in LIP research include the determination of their age and 

mantle source. Dating of mafic dykes is often challenging (Chapter 3) and without 

precise geochronology, it is also difficult to conduct comprehensive geochemical 

studies because dykes with similar trends may not be part of the same dyke swarm 

(Chapter 2). The main limitation of this study is that each new dyke age is based on 

dating of 1-3 dykes, which were sampled in a relatively small, targeted area. 

Consequently, the size estimate for each new swarm is based mainly on 

aeromagnetic data and mapping, and geochemical analysis necessarily only presents 

a preliminary characterisation of the mantle source. Whereas outcrop (and drill core) 
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availability naturally determine the quality of the samples, continuous refinement of 

dating techniques should be the main focus for improvement in LIP research. This 

study has shown that a combination of in situ SIMS and TIMS is an effective way to 

obtain precise ages from difficult samples but these techniques have not changed 

significantly since their introduction, and future studies should focus on the 

development and refinement of small-grain baddeleyite dating. Promising new 

techniques currently include SIMS dating of microbaddeleyite (Chamberlain et al., 

2010; Schmitt et al., 2010; Liu et al., 2011), improvements in the spot size achieved 

by LA-ICP-MS (Ibanez-Mejia et al., 2014) and 40Ar/39Ar dating of pyroxene (Ware 

and Jourdan, 2018), although the latter may be difficult in old and/or altered rocks.  

  

8.6 Conclusions 
This study has demonstrated the successful application of a two-step U-Pb 

geochronology technique to dating of mafic dykes. Three new dyke swarm ages for 

the Yilgarn Craton and the first U-Pb age for a mafic dyke swarm at Bunger Hills of 

East Antarctica fall in key time periods in the tectonic evolution of the Yilgarn 

Craton and the supercontinent cycle between the Neoarchean and the 

Mesoproterozoic. The 2.62 Ga Yandinilling dykes support the previously proposed 

ca. 2.65 Ga lithospheric delamination event following post-orogenic collapse of the 

newly amalgamated craton and together with paleomagnetic evidence, providing a 

possible barcode match with the Zimbabwe Craton and the Limpopo Belt of southern 

Africa. The 1.89 Ga Boonadgin dykes incorporate the Yilgarn Craton as part of the 

global ca. 1.89 Ga crustal growth event and together with associated paleomagnetic 

evidence indicate that while neighbours with India, it was not part of a 

supercontinent Nuna at this time. Emplacement of the 1.39 Ga Biberkine dykes is 

consistent with a back-arc setting and supports models where active subduction 

along the southern margin of the West Australian Craton was associated with plate 

movement during the transition from the Nuna to Rodinia configuration. The 

Biberkine dykes may also represent a prelude to the 1.21 Ga mantle plume event that 

produced the Marnda Moorn LIP but the time gap requires an explanation. The 

confirmed 1.13 Ga age of a dyke swarm at Bunger Hills links their emplacement to 

the final stages of the Albany-Fraser Orogen during rapid cooling and uplift. Similar 
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but undated dykes at Windmill Islands 400 km away raise the possibility that both 

could be part of a LIP, which was emplaced ca. 80 million years after the plume-

associated Marnda Moorn LIP. Collectively, the existing and new mafic dykes of the 

Yilgarn Craton now extend the magmatic barcode from 2620 Ma to ca. 735 Ma. 
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A R T I C L E I N F O

Keywords:
Yilgarn Craton
Mafic dykes
Geochronology
U-Pb baddeleyite
Large Igneous Province
Boonadgin dykes

A B S T R A C T

The Archean Yilgarn Craton in Western Australia is intruded by numerous mafic dykes of varying orientations,
which are poorly exposed but discernible in aeromagnetic maps. Previous studies have identified two craton-
wide dyke swarms, the 2408Ma Widgiemooltha and the 1210Ma Marnda Moorn Large Igneous Provinces (LIP),
as well as limited occurrences of the 1075Ma Warakurna LIP in the northern part of the craton. We report here a
newly identified NW-trending mafic dyke swarm in southwestern Yilgarn Craton dated at 1888 ± 9Ma with ID-
TIMS U-Pb method on baddeleyite from a single dyke and at 1858 ± 54Ma, 1881 ± 37 and 1911 ± 42Ma
with in situ SHRIMP U-Pb on baddeleyite from three dykes. Preliminary interpretation of aeromagnetic data
indicates that the dykes form a linear swarm several hundred kilometers long, truncated by the Darling Fault in
the west. This newly named Boonadgin dyke swarm is synchronous with post-orogenic extension and deposition
of granular iron formations in the Earaheedy basin in the Capricorn Orogen and its emplacement may be as-
sociated with far field stresses. Emplacement of the dykes may also be related to initial stages of rifting and
formation of the intracratonic Barren Basin in the Albany-Fraser Orogen, where the regional extensional setting
prevailed for the following 300million years. Recent studies and new paleomagnetic evidence raise the possi-
bility that the dykes could be part of the coeval 1890Ma Bastar-Cuddapah LIP in India. Globally, the Boonadgin
dyke swarm is synchronous with a major orogenic episode and records of intracratonic mafic magmatism on
many other Precambrian cratons.

1. Introduction

Regardless of their proposed mechanism of formation (e.g., mantle
plume, flux melting, passive rifting or global mantle warming), large
igneous provinces (LIPs; Coffin and Eldholm, 1994), including mafic
dyke swarms, appear to be intimately connected with deep-Earth dy-
namics and supercontinent cycles (e.g., Condie, 2004; Prokoph et al.,
2004; Bleeker and Ernst, 2006; Ernst et al., 2008; Li and Zhong, 2009;
Goldberg, 2010). Mafic dyke swarms act as important markers for su-
percontinent reconstructions (e.g., Ernst and Buchan, 1997; Buchan
et al., 2001; Bleeker and Ernst, 2006; Ernst and Srivastava, 2008; Ernst
et al., 2010, 2013) and as indicators of paleostress fields and pre-ex-
isting crustal weaknesses (Ernst et al., 1995; Hoek and Seitz, 1995;
Halls and Zhang, 1998; Hou, 2012; Ju et al., 2013). Key to such ap-
plication is the availability of high-precision geochronology for mafic
dykes. Recent studies have shown that orientation alone cannot be

reliably used to distinguish between different dyke generations, espe-
cially near major tectonic boundaries and craton scale structures such
as continental rifts (e.g., Hanson et al., 2004; Wingate, 2007; French
and Heaman, 2010; Belica et al., 2014).

Like many other Archean cratons worldwide, the Yilgarn Craton in
Western Australia is intruded by many generations of dyke suites with
different orientations. Currently, robust geochronology is only available
for two craton-wide dyke swarms at 2408Ma (Sofoulis, 1965; Evans,
1968; Hallberg, 1987; Doehler and Heaman, 1998; Nemchin and
Pidgeon, 1998; Wingate, 1999; French et al., 2002) and at 1210Ma
(Marnda Moorn LIP; Wingate et al., 1998, 2000; Wingate, 2007), and
for limited dyke occurrences at 1075Ma (Warakurna LIP; Wingate
et al., 2002, 2004) and ca. 735Ma (Nindibillup dykes; Spaggiari et al.,
2009, 2011; Wingate, 2017). The magmatic record (“barcode”) for the
Yilgarn Craton dyke swarms is very limited compared with other Ar-
chean cratons, such as the Superior and Kola-Karelia Cratons (Ernst and
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Bleeker, 2010; Ernst et al., 2010). The apparent absence of mafic
magmatism in the Yilgarn Craton during the major global episode of
juvenile magmatism and crustal growth at ca. 1890Ma is surprising
since this event is found on most other Precambrian cratons worldwide
(Heaman et al., 1986, 2009; Hanson et al., 2004; French et al., 2008;
Minifie et al., 2008; Buchan et al., 2010; Ernst and Bell, 2010;
Söderlund et al., 2010). The lack of geochronology and paleomagnetic
data from the Yilgarn Craton between ca. 1900Ma and 1300Ma, the
proposed time interval for the supercontinent Nuna/Columbia, is
especially problematic for paleographic reconstructions.

Here we report in situ SHRIMP and ID-TIMS U-Pb results for a
previously unidentified NW-trending Paleoproterozoic mafic dyke suite
in the southwestern Yilgarn Craton and discuss the tectonic setting
during its emplacement. A direct record of Paleoproterozoic tectonic
events in the craton margins is largely absent due to extensive over-
printing by younger events, so we also evaluate evidence from remnant
Proterozoic sedimentary basins, which preserve a history of past tec-
tonic setting, crustal architecture and lithospheric stress fields. In light
of previous studies suggesting India-Yilgarn connection (Mohanty,
2012, 2015) and recent paleomagnetic data (Belica et al., 2014; Liu
et al., 2016, 2017) we consider the possibility that the dykes may be
associated with the coeval Bastar-Cuddapah LIP in India.

2. Regional geology

The Yilgarn Craton is a ca. 900×1000 km Archean crustal block
comprising six accreted terranes: the Southwest, Narryer, Youanmi,
Kalgoorlie, Kurnalpi and Burtville terranes, the latter three forming the
Eastern Goldfields Superterrane (Fig. 1). These comprise variably me-
tamorphosed granites and volcanic and sedimentary rocks with proto-
lith ages between ca. 3730 and 2620Ma (Cassidy et al., 2005, 2006 and

references therein) and are thought to represent a series of volcanic
arcs, back arc basins and microcontinents, which amalgamated between
ca. 2900 and 2700Ma (Myers, 1993; Wilde et al., 1996). Abundant
granites were emplaced between ca. 2760Ma and 2630Ma (Cassidy
et al., 2006 and references therein) and the entire craton underwent
intense metamorphism and hydrothermal activity between 2780 and
2630Ma (Myers, 1993; Nemchin et al., 1994; Nelson et al., 1995; Wilde
et al., 1996). The Southwest Terrane comprises multiply deformed ca.
3200–2800Ma high-grade metasedimentary rocks and ca.
2720–2670Ma meta-igneous rocks intruded by 2750–2620Ma granites
(Myers, 1993; Wilde et al., 1996; Nemchin and Pidgeon, 1997).

The Yilgarn Craton is bounded by three Proterozoic orogenic belts:
the ca. 2005–570Ma Capricorn Orogen in the north (Cawood and Tyler,
2004a; Sheppard et al., 2010a; Johnson et al., 2011), the ca.
1815–1140Ma Albany-Fraser Orogen in the south and east (Nelson
et al., 1995; Clark et al., 2000; Spaggiari et al., 2015), and the ca.
1090–525Ma Pinjarra Orogen in the west (Myers, 1990; Wilde, 1999;
Ksienzyk et al., 2012). Prolonged lateritic weathering has produced the
modern denuded landscape and poor exposure of basement rocks
(Anand and Paine, 2002).

Following cratonisation toward the end of the Archean, the Yilgarn
Craton collided along the Capricorn Orogen with the combined Pilbara
Craton-Glenburgh Terrane by 1950Ma to form the West Australian
Craton (WAC: Sheppard et al., 2004, 2010a, b; Johnson et al., 2011).
Four syn- to post-orogenic sedimentary basins developed along the
southern Capricorn Orogen, including the Earaheedy Basin in the east
(Pirajno et al., 2009). The Earaheedy succession was thought to be post-
1800Ma in age, but new dating (Rasmussen et al., 2012; Sheppard
et al., 2016) shows that the basin comprises three unconformity-bound
packages at ca. 1990–1950Ma, ca. 1890Ma and ca. 1890–1810Ma.

The Yilgarn Craton is intruded by a large number of dykes of

Fig. 1. Map of the Yilgarn showing major tectonic units and the Capricorn and Albany-Fraser Orogens. Inset shows the extent of the West Australian Craton (Pilbara Craton, Yilgarn
Craton and Capricorn Orogen). From Geological Survey of Western Australia 1:2.5M Interpreted Bedrock Geology 2015 and 1:10M Tectonic Units 2016.
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different orientations with the dyke density increasing towards the
southern and western craton margins (Hallberg, 1987; Tucker and
Boyd, 1987). The dykes are discernible in aeromagnetic data but dif-
ficult to sample due to deep weathering and thick regolith cover. The
oldest known dykes belong to the E-W to NE-SW trending 2408Ma
Widgiemooltha Supersuite (Sofoulis, 1965; Evans, 1968; Campbell
et al., 1970; Hallberg, 1987; Doehler and Heaman, 1998; Nemchin and
Pidgeon, 1998; Wingate, 1999, 2007; French et al., 2002). The Wid-
giemooltha dykes are up to 3.2 km wide and extend up to 700 km across
the craton, with the largest intrusions (Jimberlana and Binneringie)
showing well developed igneous layering (Campbell et al., 1970; Lewis,
1994). The dykes exhibit dual magnetic polarity (Tucker and Boyd,
1987; Boyd and Tucker, 1990) and recent geochronology and paleo-
magnetic data suggest that their emplacement may have involved
several pulses (Wingate, 2007; Pisarevsky et al., 2015). The second
craton-wide suite is the 1210Ma Marnda Moorn LIP which consists of
several sub-swarms of different orientations intruding along the craton
margins (Isles and Cooke, 1990; Evans, 1999; Wingate et al., 2000;
Pidgeon and Nemchin, 2001; Pidgeon and Cook, 2003; Wingate and
Pidgeon, 2005; Wingate, 2007; Claoué-Long and Hoatson, 2009). Out-
crops in the southeast are limited to a single occurrence, and the extent
of the dykes in the northeast is unknown due to cover rocks but one E-W
oriented dioritic dyke dated at 1215 ± 11Ma has been reported fur-
ther inland (Qiu et al., 1999). Other identified dyke swarms with lim-
ited occurrences include the SW-trending dykes of the 1075Ma War-
akurna LIP in the northern Yilgarn Craton (Wingate et al., 2004), the
WNW-trending ca. 735Ma Nindibillup dykes in the central and SE
Yilgarn Craton (Spaggiari et al., 2009, 2011; Wingate, 2017) and the
undated (likely< 1140Ma) NW-trending Beenong dykes in the SE
Yilgarn Craton (Wingate, 2007; Spaggiari et al., 2009, 2011).

3. Samples

3.1. Field sampling

Field sampling sites were targeted using satellite imagery (Landsat/
Copernicus or Astrium/CNES from Google Earth), aeromagnetic data
(20–40m cell size, Geoscience Australia magnetic grid of Australia V6
2015 base reference) and 1:250,000 geological maps from the
Geological Survey of Western Australia.

Four block samples were collected from outcrops within agricultu-
rally cleared areas where the dykes stand out as small ridges. Sample
WDS09 was collected from an outcrop ca. 18 km southwest of the town
of Pingelly, sample 16WDS01 and 16WDS02 ca. 29 km northwest of
Pingelly and sample 16WDS06 ca. 14 km southwest of the village of
Gwambygine (Fig. 2). Coordinates for sample locations are given in
Table 1. Basement rocks are only exposed at the WDS09 outcrop where
the dyke intrudes Archean migmatitic gneiss with a sharp chilled
margin. At the 16WDS01/16WDS02 and 16WDS06 sites, geological
mapping indicates that the country rocks to the dykes are mainly Ar-
chean granites. The outcrops are fresh with weathering forming a thin
crust best visible along fractures.

3.2. Sample description

All samples are dolerites with intergranular ophitic to sub-ophitic
texture, comprising ca. 50% plagioclase, 45% clinopyroxene, 1–2%
quartz, 2–3% opaque minerals (ilmenite, magnetite and minor pyrite)
and trace biotite and apatite. Sample WDS09 is relatively fresh but
samples 16WDS01/02 and 16WDS06 in the northern part of the sam-
pling area are more altered, with most clinopyroxene grains partially
altered to chlorite and green amphibole. Plagioclase is affected by
sericitisation but most grains still show twinning. Biotite is associated
with the opaque minerals, forming corona like rims. The main U- and
Th-bearing accessory minerals are baddeleyite and zirconolite, only
identifiable under SEM due to their small size, typically ≤70 μm long

and 20–30 μm across. Some crystals show thin zircon rims or alteration
to zircon along fractures but most appear pristine.

4. U-Pb geochronology and geochemistry

4.1. SHRIMP U-Pb geochronology

Polished thin sections were scanned to identify baddeleyite, zircon
and zirconolite with a Hitachi TM3030 scanning electron microscope
(SEM) equipped with energy dispersive X-ray spectrometer (EDX) at
Curtin University. For SHRIMP U-Pb dating, selected grains were drilled
directly from the thin sections using a micro drill and mounted into
epoxy disks, which were cleaned and coated with 40 nm of gold.
Baddeleyite forms unaltered subhedral to euhedral equant and tabular
grains and laths, some with thin zircon rims, and most are< 60 μm
long and up to 20–30 μm across (Fig. 3).

Baddeleyite was analysed for U, Th and Pb using the sensitive high-
resolution ion microprobe (SHRIMP II) at the John de Laeter Centre at
Curtin University in Perth, Australia, following standard operating
procedures after Compston et al. (1984). The SHRIMP analysis method
for mounts with polished thin section plugs outlined in Rasmussen and
Fletcher (2010) was modified for baddeleyite (SHRIMP operating
parameters in Table 2). During each analysis session, standard zircon
OG1 (Stern et al., 2009) was used to monitor instrumental mass frac-
tionation and BR266 zircon (Stern, 2001) was used for calibrating U
and Th concentration and as an accuracy standard. Phalaborwa bad-
deleyite (Heaman, 2009) was employed as an additional accuracy
standard. Typical spot size with primary O2

− current was 10–15 μm at
0.8–1.4 nA. Data were processed with Squid version 2.50 (Ludwig,
2009) and Isoplot version 3.76.12 (Ludwig, 2012). For common Pb
correction, 1890Ma common Pb isotopic compositions were calculated
from the Stacey and Kramers (1975) two-stage terrestrial Pb isotopic
evolution model. Analyses with> 1% common Pb (in 206Pb) or> 10%
discordance (see footnote in Table 3 for definition) are considered un-
reliable and were disregarded in age calculations. The assigned 1σ ex-
ternal Pb/U error for all analyses is 1%, except for 1.04% for 16WDS06.
All weighted mean ages are given at 95% confidence level, whereas
individual analyses are presented with 1σ error.

4.2. ID-TIMS U-Pb geochronology

A sample for ID-TIMS U-Pb geochronology was selected based on
results from the SHRIMP dating and the highest number of identified
baddeleyites in thin section. A block sample was first sawn from the
field sample to remove weathering, then crushed, powdered and pro-
cessed using a mineral-separation technique amended from Söderlund
and Johansson (2002). Baddeleyite grains were handpicked under
ethanol under a stereographic optical microscope and selected grains
were cleaned with concentrated distilled HNO3 and HCl. Due to the
small size of the grains, no chemical separation methods were required.

Samples were spiked with a University of Western Australia in-
house 205Pb-235U tracer solution, which has been calibrated against
SRM981, SRM982 (for Pb), and CRM 115 (for U), as well as an ex-
ternally-calibrated U-Pb solution (the JMM solution from the EarthTime
consortium). This tracer is regularly checked using “synthetic zircon”
solutions that yield U-Pb ages of 500Ma and 2000Ma, provided by D.
Condon (BGS). Dissolution and equilibration of spiked single crystals
was by vapour transfer of HF, using Teflon microcapsules in a Parr
pressure vessel placed in a 200 °C oven for six days. The resulting re-
sidue was re-dissolved in HCl and H3PO4 and placed on an outgassed,
zone-refined rhenium single filament with 5 µL of silicic acid gel. U–Pb
isotope analyses were carried out using a Thermo Triton T1 mass
spectrometer, in peak-jumping mode using a secondary electron mul-
tiplier. Uranium was measured as an oxide (UO2). Fractionation and
deadtime were monitored using SRM981 and SRM 982. Mass fractio-
nation was 0.02 ± 0.07%/amu. Data were reduced and plotted using
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the software packages Tripoli (from CIRDLES.org) and Isoplot 4.15
(Ludwig, 2011). All uncertainties are reported at 2σ. U decay constants
are from Jaffey et al. (1971). The weights of the baddeleyite crystals
were calculated from measurements of photomicrographs and estimates
of the third dimension. The weights are used to determine U and Pb
concentrations and do not contribute to the age calculation. An un-
certainty of± 50% may be attributed to the concentration estimate.

4.3. Geochemistry

Slabs were sawn from block samples to remove weathering. After an
initial crush, a small fraction of material was separated and chips with
fresh fracture surfaces were handpicked under the microscope and
pulverised in an agate mill for isotope analysis. Remaining material was
pulverised in a low-Cr steel mill for major and trace element analysis.

Major element analysis was undertaken at Intertek Genalysis
Laboratories in Perth, Western Australia using X-ray fluorescence (XRF)
using the Geological Survey of Western Australia (GSWA) standard BB1
(Morris, 2007) and Genalysis laboratory internal standards SARM1 and
SY-4. Trace element analysis was carried out at University of Queens-
land (UQ) on a Thermo XSeries 2 inductively coupled plasma mass
spectrometer (ICP-MS) equipped with an ESI SC-4 DX FAST auto-
sampler, following procedure for ICP-MS trace element analysis by
Eggins et al. (1997) modified by the UQ Radiogenic Isotope Laboratory
(Kamber et al., 2003). Sample solutions were diluted 4000 times and
12 ppb 6Li, 6 ppb 61Ni, Rh, In and Re, and 4.5 ppb 235U internal spikes
were added. USGS W2 was used as reference standard and crossed
checked with BIR-1, BHVO-2 or other reference materials. All major

element analyses have precision better than 5% and all trace element
analyses have relative standard deviation (RSD) < 2%.

Rb-Sr and Sm-Nd isotope analyses were carried out at the University
of Melbourne (e.g., Maas et al., 2005, 2015). Small splits (70mg) of
rock powders were spiked with 149Sm-150Nd and 85Rb-84Sr tracers,
followed by dissolution at high pressure in an oven, using Krogh-type
PTFE vessels with steel jackets. Sm, Nd and Sr were extracted using
EICHROM Sr-, TRU- and LN-resin, and Rb was extracted using cation
exchange (AG50-X8, 200–400 mesh resin). Isotopic analyses were car-
ried out on a NU Plasma multi-collector ICP-MS coupled to a CETAC
Aridus desolvation system operated in low-uptake mode. Raw data for
spiked Sr and Nd fractions were corrected for instrumental mass bias by
normalizing to 88Sr/86Sr= 8.37521 and 146Nd/145Nd=2.0719425
(equivalent to 146Nd/144Nd= 0.7219), respectively, using the ex-
ponential law as part of an on-line iterative spike-stripping/internal
normalization procedure. Sr and Nd isotope data are reported relative
to SRM987=0.710230 and La Jolla Nd= 0.511860 and have typical
in-run precisions (2sd) of± 0.000020 (Sr) and±0.000012 (Nd). Ex-
ternal precision (reproducibility, 2sd) is± 0.000040 (Sr) and±
0.000020 (Nd). External precisions for 87Rb/86Sr and 147Sm/144Nd
obtained by isotope dilution are± 0.5% and±0.2%, respectively.

5. Results

5.1. SHRIMP U-Pb geochronology

Seventeen analyses were obtained from thirteen baddeleyite grains (nine
grains from WDS09, one grain from 16WDS01 and three grains from

Fig. 2. Sampling locations. See Table 1 for detailed information.

Table 1
Sample locations.

Dyke ID Dlat/Dlon Samples Comments

WDS09 32 39.339S 116 57.132E WDS09M-N, WDS09RSA-B NW trending dolerite dyke near West Pingelly
16WDS01 32 24.738S 116 48.818E 16WDS01A-D NNW trending dolerite dyke west of Brookton, ridge
16WDS02 32 24.740S 116 48.798E 16WDS02A-D NNW trending dolerite dyke west of Brookton. Same dyke as 16WDS01
16WDS06 31 59.973S 116 39.699E 16WDS06A-D NW trending dyke near Talbot

Notes: Datum WGS84, Dlat= decimal latitude, Dlon= decimal longitude.
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16WDS06) during three SHRIMP sessions (Fig. 4; detailed U-Pb data are
given in Table 3). The analysed baddeleyites have low to moderate U con-
centrations varying from 47 to 449ppm (median=181ppm) and low Th
from 5 to 76ppm, with Th/U ratios ranging from 0.02 to 0.47. Eight analyses
were excluded based on their high common Pb (>1% 206Pb) and/or>10%
discordance. Sample WDS09 yielded a common Pb-corrected weighted mean
207Pb/206Pb date of 1858 ± 54Ma (MSWD=1.80, 4 analyses from 4
grains). If spot WDS09N5.29B-1, which is near-concordant (6% discordance)
but contains slightly higher common Pb (1.45%) is included, the weighted
mean is 1860 ± 41Ma (MSWD=1.4, n=5). Two analyses on a single
grain from 16WDS01 yield a 207Pb/206Pb weighted mean of 1881 ± 37Ma
(MSWD=0.00075) and three analyses on 2 grains from 16WDS06 give a
weighted mean of 1911 ± 42Ma. Collectively, the 9 analyses on five bad-
deleyite grains from three samples give 207Pb/206Pb dates overlapping with
each other within uncertainties; combining them yields a weighted mean of
1874 ± 25Ma (MSWD=1.3), which is interpreted as the best approx-
imation of the crystallisation age of the dykes.

5.2. ID-TIMS U-Pb geochronology

Four baddeleyite crystals were analysed from sample WDS09
(Table 4, Fig. 5). Calculated weights are on the order of 0.1 µg, with low
calculated U concentrations, all below 50 ppm. One grain has an ap-
parently very low U content (3 ppm) and a concomitant low
206Pb/204Pb ratio of 30. This results in a relatively imprecise age de-
termination and large analytical uncertainties for all data are the result
of very low radiogenic Pb concentrations. Calculated U concentrations
are unusually low for baddeleyite; this may reflect an overestimate of
the grain weights, but the low Pb abundance (both radiogenic and
common Pb) also implies a low initial U concentration. Th/U ratios
are< 0.1, a typical value for baddeleyite. One datum is discordant but
the coherence in 207Pb/206Pb age for all baddeleyite crystals supports
our interpretation of the analyses representing a single magmatic
crystallization age. The weighted-mean 207Pb/206Pb dates of the four
single-crystal analyses is 1863 ± 50Ma (2σ, MSWD=0.24, n=4),
and the concordia age of the three concordant analyses is
1888.4 ± 8.8Ma (2σ, decay-constant errors included).

5.3. Geochemistry

Due to limited age control, only three samples were available for
geochemical analyses and clearly only preliminary conclusions about
the geochemical characteristics of the dykes can be made based on
these data. Two samples from WDS09 and one sample from 16WDS02
(same dyke as 16WDS01) were analysed for major and trace elements
and for Sr and Nd isotopes. Data for the samples are presented together
with major and trace element geochemistry from the 1210Ma Marnda
Moorn LIP dykes because the latter are the only known tholeiitic dyke
swarm within the Yilgarn Craton with detailed studies available both in
geochronology and geochemistry.

5.3.1. Major and trace elements
All samples have LOI<1.0wt% and display low MgO (6.18–6.73wt%),

SiO2 (50.12–50.43wt%), relatively high iron (FeOtot=14.10–15.09wt%),

Fig. 3. SEM backscatter images showing SHRIMP badde-
leyite spots and dates. (A) WDS09-2B (B) 16WDS01-372B
(C) 16WDS06-405B (D) 16WDS06-406B.

Table 2
SHRIMP operating parameters.

Mount CS16-1 CS16-6 CS16-7

Dykes analysed WDS09, WDS09RS 16WDS01 16WDS06
Date analysed 21-Jul-16 14-Sep-16 6-Sep-16
Kohler aperture (μm) 50 50 50
Spot size (micrometres) 11 9 7
O2

− primary current (nA) 0.9 0.6 0.2
Number of scans per analysis 8 8 8
Total number of analyses 23 32 34
Number of standard analyses 13 13 14
Pb/U external precision% (1σ) 1.00 1.00 1.00
Raster time (seconds) 120 180 180
Raster aperture (μm) 90 90 80

Notes: 1) Mass resolution for all analyses ≥5000 at 1% peak height; 2) BR266, OGC,
Phalaborwa and NIST used as standards for each session; 3) Count times for each scan:
204Pb, 206Pb, 208Pb=10 s, 207Pb= 30 s.
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normal to intermediate CaO (10.71–11.28wt%) and slightly high Al2O3

(13.37–13.87wt%) (Table 5). The samples have low total alkalis
(Na2O+K2O=2.39–2.49wt%) and high Na2O/K2O ratios (6.32–6.44),
suggesting sodium enrichment. The Boonadgin samples are classified as sub-
alkaline basalts on the TAS diagram (Fig. 6A) and belong to tholeiitic series
on the AFM diagram (Fig. 6B), similar to Group 1 of theMarndaMoorn dykes
(Wang et al., 2014). The chondrite normalised rare earth element (REE)
distribution patterns are relatively flat (Fig. 6C) with slight enrichment of
light REE (LREE), as evidenced by LaN/YbN=1.48–1.57 and LaN/
SmN=1.18–1.26. The low TbN/YbN ratios (1.16–1.18) are similar to the
average N-MORB (1.0; Sun andMcDonough, 1989) and the primitive mantle-
normalised trace element patterns show strong enrichment of Cs, Rb, U and
Pb and a prominent negative Nb anomaly (Fig. 6D). With the exception of
these fluid-mobile elements and the negative Nb anomaly, the studied sam-
ples displayed a relative flat trace element distribution patterns without sig-
nificant enrichment or depletion in specific elements.

5.3.2. Nd and Sr isotopes
The same three samples were analysed for Nd and Sr isotopes

(Table 5). Ratios of 147Sm/144Nd and 143Nd/144Nd are 0.1825–0.1848
and 0.512533–0.512562, respectively. The corresponding initial
εNd1.89Ga values range from +1.3 to +1.6, suggesting a slightly de-
pleted mantle component. The 87Rb/86Sr ratio ranges from 0.39999 to
0.5464, the 87Sr/86Sr ratio from 0.714588 to 0.716562, corresponding
initial Sr isotopes of (87Sr/86Sr)i ratio varying from 0.70124 to 0.70391.
The larger range of initial Sr isotope compositions is in contrast with the
uniform initial Nd isotopes, and may reflect mobility of Rb. Therefore,
the measured Sr isotope compositions of the studied samples may not
accurately represent their primary signature.

6. Discussion

We have identified a previously unrecognized NNW-trending swarm
of mafic dykes in the Yilgarn Craton, which, based on preliminary
aeromagnetic interpretation, covers an area of ca. 33,000 km2 in the
southwestern part of the craton. However, until further sampling within
the craton allows better delineation of the extent of the dykes, their
designation as a swarm is preliminary. Emplacement of the Boonadgin
dykes was synchronous with many 1890–1880Ma LIPs worldwide,
such as the Bastar-Cuddapah dykes in India (French et al., 2008; Belica
et al., 2014), the Circum-Superior magmatism of the Superior Craton
(Heaman et al., 1986; Halls and Heaman, 2000; Ernst and Bell, 2010),
the Ghost-Mara dyke swarm of the Slave Craton (Buchan et al., 2010),Ta
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Fig. 4. Tera-Wasserburg plot of SHRIMP U-Pb baddeleyite results for samples WDS09,
16WDS01 and 16WDS06. Grey squares denote excluded data (see Section 5.1 for details).
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the Uatuma dyke swarm of the Amazonian Craton (Klein et al., 2012;
Antonio et al., 2017) and the Mashonaland sill province of the Zim-
babwe Craton (Söderlund et al., 2010), the Soutpansperg sill province
(Hanson et al., 2004) and the Black Hills dyke swarm (Olsson et al.,
2016) of the Kaapvaal Craton. In the following sections, we discuss the
emplacement of the dykes within the regional tectonic setting, coeval
magmatism elsewhere in the region, and the implications for a recently
proposed tectonic reconstruction, which raises the possibility that the
dykes may be associated with the Bastar-Cuddapah LIP in India.

6.1. Coeval magmatism in Australia

No other mafic magmatism within uncertainty of the 1888 ± 9Ma
age for the Boonadgin dyke swarm is currently known in the WAC or
elsewhere in Australia. However, felsic tuffs from a succession of
granular iron formation (GIF) in the Frere Formation in the Earaheedy
Basin have been dated at 1891 ± 8Ma and 1885 ± 18Ma, and linked
to voluminous mantle input from an oceanic mafic source during a
major global episode of mantle upwelling and crustal growth
(Rasmussen et al., 2012). Evidence of synchronous magmatism else-
where in the Capricorn Orogen is limited to a 1900Ma zircon popula-
tion peak from the Chiall Formation in the upper sequence of the Ear-
aheedy Basin (Halilovic et al., 2004).

Ameen and Wilde (2006) reported WSW-trending mafic dykes with
a zircon SHRIMP U-Pb age of 1852 ± 12Ma from the Yalgoo green-
stone belt in the Youanmi Terrane in the northwestern Yilgarn Craton
(Fig. 1), ca. 360 km NNE of Perth and ca. 350 km north of sample
16WDS06. Their emplacement suggests a further episode of litho-
spheric extension ca. 35Ma after the Boonadgin dykes. The WSW or-
ientation of the Yalgoo dykes may reflect a change in the regional stress
field, the influence of local crustal architecture, or a change in the
position of plume centre. There is limited, but suggestive, evidence of
magmatism within the Capricorn Orogen coeval with the Yalgoo dykes.
The age of the Yalgoo dykes is within uncertainty of an 1842 ± 5Ma
detrital zircon population from the Leake Spring Metamorphics, a
predominantly siliciclastic sequence within the northern Gascoyne
Province (Sheppard et al., 2010b) and a ca. 1860Ma detrital zircon
population from turbidites in the Ashburton Basin (Sircombe, 2002).

The temporally closest mafic magmatism in the North Australian
Craton (NAC) consist of the predominantly mafic volcanic rocks of the
Biscay Formation in the Halls Creek Orogen in northwestern Australia,
which yielded a U-Pb zircon age of 1880 ± 3Ma (Blake et al., 1999).
The Woodward Dolerite, which comprises sills intruding the succession,Ta

bl
e
4

ID
-T
IM

S
U
-P
b
da

ta
fo
r
ba

dd
el
ey

it
e
fr
om

dy
ke

W
D
S0

9.

Sa
m
pl
e

w
t.
(μ
g)

U
(p
pm

)
Pb

c
(p
g)

m
ol
%

Pb
*

Th
/U

2
0
6
Pb

/2
0
4
Pb

2
0
7
Pb

/2
0
6
Pb

± (%
)

2
0
7
Pb

/2
3
5
U

± (%
)

2
0
6
Pb

/2
3
8
U

± (%
)

ρ
2
0
6
Pb

/2
3
8
U

A
ge

(M
a)

± (M
a)

2
0
7
Pb

/2
0
6
Pb

A
ge

(M
a)

± (M
a)

1
0.
1

38
0.
8

58
0.
03

98
0.
11

34
0

7.
20

4.
61

80
8.
34

0.
29

53
4

1.
23

0.
94

16
68

.1
20

.5
18

54
.7

13
0.
1

2
0.
2

3
0.
4

19
0.
13

30
0.
11

47
8

7.
36

5.
21

67
10

.5
0

0.
32

96
2

6.
28

0.
72

18
36

.5
11

5.
4

18
76

.4
13

2.
6

3
0.
1

21
0.
6

56
0.
01

87
0.
11

31
1

3.
78

5.
29

72
4.
46

0.
33

96
6

1.
05

0.
71

18
85

.0
19

.7
18

50
.0

68
.4

4
0.
2

36
0.
8

59
0.
07

10
4

0.
11

71
0

7.
75

5.
50

91
9.
03

0.
34

12
0

1.
36

0.
95

18
92

.4
25

.8
19

12
.5

13
9.
1

N
ot
es
:
1)

A
ll

un
ce
rt
ai
nt
ie
s

gi
ve

n
at

2σ
;
2)

ρ=
er
ro
r

co
rr
el
at
io
n

co
effi

ci
en

t
of

ra
di
og

en
ic

2
0
7
Pb

/2
3
5
U

vs
.

2
0
6
Pb

/2
3
8
U
;
3)

Pb
c
=

To
ta
l
co

m
m
on

Pb
in
cl
ud

in
g

an
al
yt
ic
al

bl
an

k
(0
.8

±
0.
3
pg

pe
r

an
al
ys
is
);

4)
Bl
an

k
co

m
po

si
ti
on

is
:

2
0
6
Pb

/2
0
4
Pb

=
18

.5
5
±

0.
63

,
2
0
7
Pb

/2
0
4
Pb

=
15

.5
0
±

0.
55

,
2
0
8
Pb

/2
0
4
Pb

=
38

.0
7
±

1.
56

(a
ll
2σ

),
an

d
a

2
0
6
Pb

/2
0
4
Pb

–2
0
7
Pb

/2
0
4
Pb

co
rr
el
at
io
n
of

0.
9.

5)
Th

/U
ca
lc
ul
at
ed

fr
om

ra
di
og

en
ic

2
0
8
Pb

/2
0
6
Pb

an
d
ag

e
of

1.
88

G
a;

6)
Sa

m
pl
e
w
ei
gh

ts
ar
e

ca
lc
ul
at
ed

fr
om

cr
ys
ta
ld

im
en

si
on

s
an

d
ar
e
as
so
ci
at
ed

w
it
h
as

m
uc

h
as

50
%

un
ce
rt
ai
nt
y
(e
st
im

at
ed

);
7)

M
ea
su
re
d
is
ot
op

ic
ra
ti
os

co
rr
ec
te
d
fo
r
tr
ac
er

co
nt
ri
bu

ti
on

an
d
m
as
s
fr
ac
ti
on

at
io
n
(0
.0
2
±

0.
06

%
/a
m
u)
;8

)
R
at
io
s
in
vo

lv
in
g

2
0
6
Pb

ar
e
co

rr
ec
te
d

fo
r
in
it
ia
l
di
se
qu

ili
br
iu
m

in
2
3
0
Th

/2
3
8
U

us
in
g
Th

/U
=

4
in

th
e
cr
ys
ta
lli
za
ti
on

en
vi
ro
nm

en
t.

Fig. 5. Concordia plot for analysed baddeleyite ID-TIMS U-Pb results from sample
WDS09.
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has maximum and minimum ages, respectively, of ca. 1847Ma and
1808Ma (Blake et al., 1997) and its emplacement age is thus closer to
the Yalgoo dykes. However, the Halls Creek bimodal volcanism has
been associated with convergence of two cratons unrelated to the West
Australian Craton, and pre-dates amalgamation of the West Australian
Craton with other cratons (Bagas, 2004; Cawood and Korsch, 2008).

6.2. Tectonic and magmatic events in the WAC at ca. 1890Ma

The Boonadgin dyke swarm was emplaced into the western margin
of the WAC, about 60million years after the WAC was assembled along
the Capricorn Orogen during the Glenburgh Orogeny at 2005–1950Ma
(Sheppard et al., 2004, 2010a; Johnson et al., 2011). Following amal-
gamation of the WAC, the Capricorn Orogen was the site of episodic
intracontinental reworking and reactivation for more than one billion
years (Cawood and Tyler, 2004b; Sheppard et al., 2010a; Johnson et al.,
2011). At the time the Boonadgin dykes were emplaced, the WAC was

under a period of tectonic quiescence. The ca. 1891–1885Ma felsic
volcanic rocks in the Earaheedy Basin (Rasmussen et al., 2012) were
emplaced during limited rifting and suggest that at least the eastern
part of the Capricorn Orogen underwent lithospheric extension at this
time (Sheppard et al., 2016).

Emplacement of the NW-trending Boonadgin dykes indicates re-
gional SW-NE oriented lithospheric extension, which is consistent with
direction of coeval extension within the NW-trending Earaheedy basin.
In aeromagnetic images the dykes are linear, appear to have a single
magnetic polarity and extend across the southwestern craton before
being apparently truncated by the Darling Fault in the west and by the
Albany-Fraser Orogen in the south. The orientation of the dykes is
roughly parallel to the regional NW-SE tectonic grain imparted by
terrane accretion during the Archean (Middleton et al., 1993; Wilde
et al., 1996; Dentith and Featherstone, 2003) and suggests that they
intruded along existing crustal weaknesses controlled by a regional
stress field (Hou et al., 2010; Hou, 2012; Ju et al., 2013). A seismic

Table 5
Major, trace element and isotope data for samples WDS09M, WDS09N and 16WDS02A.

WDS09M WDS09N 16WDS02A WDS09M WDS09N 16WDS02A

SiO2 49.68 50.42 49.91 Sm (ppm) 2.43 3.13 2.90
TiO2 1.14 1.31 1.25 Nd (ppm) 7.93 10.37 9.54
Al2O3 13.75 13.42 13.26 143Nd/144Nd 0.512558 0.512533 0.512562
CaO 10.65 10.71 11.19 147Sm/144Nd 0.1848 0.1825 0.1837
Fe2O3(tot) 14.53 15.09 14.29 (143Nd/144Nd)i 0.510260 0.510263 0.510278
K2O 0.32 0.34 0.32 εNd(t) 1.3 1.3 1.6
MgO 6.67 6.18 6.59 Rb (ppm) 18.13 22.04 15.39
MnO 0.23 0.24 0.23 Sr (ppm) 102.10 116.80 111.40
Na2O 2.05 2.15 2.06 87Rb/86Sr 0.514200 0.546400 0.399900
P2O5 0.095 0.119 0.108 87Sr/86Sr 0.716562 0.715838 0.714588
LOI 0.69 0.03 0.54 (87Sr/86Sr)i 0.702820 0.701240 0.703910
Total 99.81 100.01 99.75
Mg# 51.22 48.36 51.33 BCR-2 JND-1
Sc 45.80 46.80 47.80 143Nd/144Nd 0.512637 0.512112
V 302.00 310.00 315.00 0.512640 0.512117
Co 55.30 56.90 57.70 0.512623 0.512102
Ni 87.60 121.00 87.70 0.512633
Ga 16.40 17.40 16.60 87Sr/86Sr 0.704987
Ge 542.00 559.00 556.00 0.705013
Rb 17.50 22.50 18.30
Sr 110.00 120.00 115.00
Y 22.60 28.40 26.70
Zr 59.00 80.50 72.40
Nb 3.11 4.07 3.67
Cs 0.56 1.02 0.19
Ba 53.90 59.40 56.80
La 4.92 6.04 5.42
Ce 11.90 15.00 13.10
Pr 1.75 2.20 2.00
Nd 8.35 10.50 9.61
Sm 2.53 3.18 2.96
Eu 0.96 1.12 1.05
Gd 3.27 4.09 3.80
Tb 0.58 0.73 0.68
Dy 3.79 4.73 4.45
Ho 0.83 1.05 0.98
Er 2.37 2.94 2.77
Tm 0.35 0.45 0.42
Yb 2.25 2.85 2.62
Lu 0.34 0.42 0.39
Hf 1.63 2.19 2.00
Ta 0.21 0.28 0.25
Pb 2.99 3.62 1.75
Th 0.83 1.05 0.91
U 0.30 0.38 0.30

Notes: 1)Major elements (XRF) are given in wt% and trace elements (ICP-MS) in ppm; 2) Mg#=100×Mg/(Mg+Fe), Fe2+/Fetotal = 0.85; 3) Crystallisation age t= 1890Ma; 4) typical
internal precision (2σ) is± 0.000015 for 87Sr/86Sr and± 0.000014 for 143Nd/144Nd; 5) Recent isotope dilution analyses for USGS basalt standard BCR-2 average 6.41 ppm Sm,
28.02 ppm Nd, 147Sm/144Nd 0.1381 ± 0.0004 and 143Nd/144Nd 0.512635 ± 0.000023 (n= 6,± 2sd); 46.5 ppm Rb, 337.6 ppm Sr, 87Rb/86Sr 0.3982 ± 0.0010, 87Sr/86Sr
0.704987 ± 0.000015 (n= 1,± 2se). These results are consistent with TIMS and MC-ICPMS reference values. εNd values are calculated relative to a modern chondritic mantle (CHUR)
with 147Sm/144Nd=0.1960 and 143Nd/144Nd=0.512632 (Bouvier et al., 2008). Age-corrected initial εNd and 87Sr/86Sr have propagated uncertainties of± 0.5 units and ≤±0.00010
(assuming an age uncertainty of± 5Ma), respectively. Decay constants are 87Rb 1.395E−11/yr and 147Sm 6.54E−12/yr.
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survey south of sample WDS09 identified a ca. 20° NE-dipping high-
velocity zone, which was interpreted to represent a mafic-ultramafic
body in the lower crust at ca. 30 km depth; this may be either a possible
conduit for mafic magma that intruded along the suture, a zone of in-
trusions, or a fault-bounded terrane of possible oceanic affinity (Dentith
et al., 2000; Dentith and Featherstone, 2003).

No direct Paleoproterozoic record along the western margin of
Yilgarn Craton has been preserved due to younger orogenic and rifting
events and it is uncertain whether it was an active plate boundary when
the Boonadgin dykes were emplaced. Along the southern margin of the
craton, the only known event coeval with emplacement of the
Boonadgin dyke swarm could be deposition of the Stirling Range
Formation in the Paleoproterozoic Barren Basin in the western Albany-
Fraser Orogen. The Barren Basin comprises structural remnants of a
much larger basin system deposited in an intra-continental rift or back-
arc setting (Clark et al., 2000; Spaggiari et al., 2011, 2014, 2015).
Formation age of the basin is unclear, but detrital zircon and monazite
dating suggests that it is younger than ca. 2016Ma and possibly formed
at ca. 1895Ma (Rasmussen and Fletcher, 2002; Rasmussen et al., 2004).
Given the uncertainty of timing of early rifting in the southwest, it is
difficult to link emplacement of the Boonadgin dykes with any tectonic
events adjacent to the southwestern part of the craton.

6.3. Source of the Boonadgin dykes

Ratios of incompatible trace elements sensitive to source composi-
tion and partial melting effects but insensitive to crystal fractionation
can be used to investigate mantle source characteristics. Zirconium can

be used to evaluate mobility of major and trace elements during al-
teration and metamorphism (e.g., Polat et al., 2002). The Nb, Ta, Hf, Th
and REE concentrations in the samples show good correlation with Zr
(not shown) suggesting that these elements represent the primary
composition of the dykes. The primitive mantle-normalised profile of
the Boonadgin dykes (Fig. 6D; Table 5) is remarkably similar to that of
the lower continental crust (LCC; Rudnick and Gao, 2003) with average
ratios of Nb/La=0.66, Th/Nb=0.26 and Ce/Pb=5.20 (0.63, 0.24
and 5.0, respectively for LCC). Ratios of La/Sm=1.89 and Sm/
Nd=0.30 are near-chondritic (1.55 and 0.33, respectively; Sun and
McDonough, 1989) and close to the Marnda Moorn Group 1 dykes (ca.
1.70 and 0.28, respectively). The ratio of Nb/Ta=14.75 is much
higher than the lower crust (8.33) but close to that of depleted mantle
(ca. 15; Salters and Stracke, 2004) and Marnda Moorn Group 1 dykes
(ca. 15; Wang et al., 2014). The ratio of Zr/Sm=24.36 is similar to the
lower crust (ca. 24) and much lower than depleted mantle (ca. 29).

The similarity of the trace element compositions of the studied
samples to the average value of lower continental crust suggests the
possibility of lower continental crust contamination. We conducted
preliminary binary mixing modelling (Depaolo, 1981) using data from
the three Boonadgin dykes samples. If the primary melt had a N-MORB-
like trace element composition and εNd1.9Ga=+8, incorporating
20–30% of mafic lower continental crust (εNd1.9Ga=−10, estimated
by Nd isotope mapping of the Yilgarn (Champion, 2013) and the
method proposed by Depaolo (1981) into the primary melt can produce
the observed Nd isotope and trace element compositions. The lack of
prominent fractionation of HREE indicates that partial melting likely
occurred within the spinel stability field (at< 70 km depth). If this is

Fig. 6. (A) Total alkali-silica (TAS) plot after Le Maitre et al., 1989. Blue dots are Marnda Moorn group 1 dykes from Wang et al. (2014). (B) AFM plot after Irvine and Baragar, 1971. (C)
Chondrite and (D) primitive mantle normalised multi-element plots for Boonadgin and Marnda Moorn group 1 dykes (Wang et al., 2014). LCC= lower continental crust after Rudnick and
Gao (2003); OIB= ocean island basalt and NMORB=mid ocean ridge basalt after Sun and McDonough (1989). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

J.C. Stark et al. Precambrian Research xxx (xxxx) xxx–xxx

9



correct, the sub-continental lithospheric mantle (SCLM) beneath the
margin of the Yilgarn Craton may have been largely removed or
thinned. This could be attributed to lithospheric extension, consistent
with basin formation along the southern margin of the craton (Section
6.2).

Another possible mechanism to produce the observed trace element
compositions and slightly depleted Nd isotope signature is via melt-rock
interaction with asthenospheric mantle. Because lower continental
crust can founder into the convecting mantle (e.g., Gao et al., 2004),
melts derived from recycled lower continental crust could interact with
the ambient peridotite to form enriched pyroxenitic lithologies
(Sobolev et al., 2005, 2007; Wang et al., 2014), imparting a lower
continental crust signature and a slightly depleted Nd isotope signature
on the resultant melts.

6.4. Was the WAC connected to other cratons at ca. 1890Ma?

The position of WAC in Paleoproterozoic reconstruction models is
highly debated partly due to the absence of robust paleomagnetic and
high precision geochronological data for dyke swarms. For example, the
WAC has been placed near India (Rogers and Santosh, 2002; Zhao et al.,
2002; Mohanty, 2012, 2015), Kaapvaal and Zimbabwe Cratons (Zhao

et al., 2002; Hou et al., 2008; Belica et al., 2014), or Siberia (Hou et al.,
2008; Belica et al., 2014) in reconstructions for various Paleoproter-
ozoic time intervals. Halls et al. (2007) used paleomagnetic data to
argue that India and Australia were at high paleolatitudes but
∼2000 km apart at ca. 2400–2350Ma. Similarly, Mohanty (2012,
2015) proposed a juxtaposition of the western margin of the WAC and
the eastern margin of the Bastar-Dharwar craton at ca. 2400–2300Ma
(the South India-Western Australia SIWA supercraton; Fig. 7) based on
paleomagnetic data, synchronous mafic magmatism and matching dyke
orientation but their relative positions by ca. 1900Ma were unknown.
Mohanty (2012, 2015) nonetheless noted that the lack of 2.0–1.8 Ga
dykes in the Yilgarn Craton implies that the breakup of SIWA must have
taken place during an earlier rifting event. Our discovery of the
1888Ma Boonadgin dykes in the Yilgarn Craton makes such an early
breakup unnecessary. With such a configuration at 1890Ma, NE-SW
extension and emplacement of the NW-oriented 1888Ma Boonadgin
dykes in the Yilgarn Craton is synchronous with E-W extension in-
itiating the Cuddapah Basin and the associated 1890Ma NW-oriented
mafic dykes and ultramafic magmatism in the Dharwar Craton (Anand,
2003; French et al., 2008), as well as the emplacement of NW-oriented
dykes in the Bastar Craton (French et al., 2008) as segments of a single
radiating dyke swarm.

Fig. 7. Possible configurations of the WAC and Dharwar, Bastar and Singhbum cratons tested with paleomagnetic data at ca. 1890Ma. Coeval paleopoles are plotted on the left-hand side
and color coded with the respective cratons. The WAC was rotated to the Indian coordinates and more detailed reconstructions are shown on the right side. Indian dykes shown in red
have been dated with U-Pb or Ar-Ar methods at 1879–1894Ma (Chatterjee and Bhattacharji, 2001; Halls et al., 2007; French et al., 2008; Belica et al., 2014). Black undated dykes in India
are modified after French et al. (2008) and Srivastava and Gautam (2015). Red star denotes possible location of a mantle plume. (A) SIWA configuration modified from ca. 2400Ma
reconstruction of Mohanty (2012); (B) Alternative configuration of Liu et al. (this issue) supported by paleomagnetic data. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Liu et al. (this issue) obtained a high quality paleomagnetic pole
from the Boonadgin dykes and used available robust paleomagnetic
data to test the SIWA connection and other possible configurations. The
new Boonadgin dyke pole falls close to the Frere Formation (Capricorn
Orogen) pole of Williams et al. (2004), which has been considered to be
1891–1885Ma in age (e.g., Antonio et al., 2017; Klein et al., 2016)
based on zircon data from tuffs within the basal Frere Formation
(Rasmussen et al., 2012). However, Williams et al. (2004) sampled the
upper part of the formation, implying that the actual magnetization age
for their Frere Formation pole is likely younger than 1885Ma. Conse-
quently, Liu et al. (this issue) suggest that the ca. 1890Ma Boonadgin
pole is coeval with the 1888–1882Ma Dharwar-Bastar pole (Belica
et al., 2014) and that the age difference between the Boonadgin and
the<1885Ma Frere Formation poles may explain the slight difference
in their positions. The Boonadgin and Dharwar-Bastar dyke poles are
about 50° apart after restoration of the two continental blocks to the
SIWA configuration (Fig. 7A), indicating that the SIWA fit is invalid at
ca. 1890Ma. In contrast, an alternative configuration juxtaposing the
northern WAC (Pilbara) and north-eastern India (Singhbhum) is not
only consistent with paleomagnetic data (Fig. 7B), but still allows the
contemporaneous mafic dykes in India and the WAC to form a radiating
dyke swarm. If this interpretation is correct, the 1888Ma Boonadgin
dykes in the Yilgarn Craton may be part of the Bastar-Cuddapah LIP
event (French et al., 2008; Belica et al., 2014).

6.5. Could the Boonadgin dyke swarm be part of the Bastar-Cuddapah LIP?

Abundant, predominantly NW-SE to NNW-ESE oriented
1890–1880Ma Bastar-Cuddapah LIP dykes intrude the Bastar and
Dharwar cratons and form a radiating dyke swarm over at least
90,000 km2 (Anand, 2003; Halls et al., 2007; French et al., 2008; Belica
et al., 2014). In the southern Bastar Craton, BD2 dykes are oriented
predominantly NW-SE to WNW-ESE (French et al., 2008). In the
Dharwar craton, baddeleyite from the Pulivendla sill in the Cuddapah
basin yielded an ID-TIMS 207Pb/206Pb age of 1885 ± 3Ma (French
et al., 2008) and paleomagnetic data suggest that dykes of this age also
have NW-SE, E-W and NE-SW orientations depending on their location
within the craton (Halls et al., 2007; Belica et al., 2014). The NW-
trending dykes appear to be sub-parallel to the regional Archean
structural grain in both the Bastar and Dharwar cratons, suggesting that
they may have intruded along pre-existing faults and fabrics
(Crookshank, 1963; Chatterjee and Bhattacharji, 2001). New SHRIMP
U-Pb dating of felsic tuffs from the lowermost succession of the Cud-
dapah Basin, the Tadpatri Formation, yielded ca. 1864Ma and ca.
1858Ma, and mafic-ultramafic sills intruding this stratigraphic level
(and higher) indicate that mafic magmatism continued until after ca.
1860Ma (Sheppard et al., 2017). Dykes of< 1900Ma age are present
in both Bastar and Dharwar Cratons but their ages are currently either
poorly constrained or unknown (Murthy, 1987; Mallikharjuna et al.,
1995; Meert et al., 2010), making any comparison highly speculative.

Extensive coeval mafic magmatism and intracontinental rifting in
the Dharwar Craton at ca. 1899–1885Ma have been linked to a mantle
plume beneath India or east of the Cuddapah Basin (Ernst and
Srivastava, 2008; Belica et al., 2014; Mishra, 2015), or to passive rifting
associated with a short lived global mantle upwelling (Anand, 2003;
French et al., 2008). Two models have been proposed for formation of
the Cuddapah Basin, one arguing for failed rifting (Chaudhuri et al.,
2002) and another for full rifting and opening of an ocean basin (Kumar
and Leelanandam, 2008; Kumar et al., 2010). Dasgupta et al. (2013)
proposed that formation of the Cuddapah Basin at ca. 1890Ma was
associated with continental rifting between India and another craton. If
this was the WAC, no evidence of equivalent basins is preserved on the
western or southern margin of the Yilgarn Craton.

In contrast to the Boonadgin dykes, the Cuddapah sills are more
enriched and contain a more significant melt component from the
Archean lithosphere, with LaN/SmN ratios between 1.4 and 2.5, LaN/

YbN ratios between 2.4 and 4.3 (1.18–1.26 and 1.48–1.57 for
Boonadgin dykes, respectively) and εNd1.89Ga values between +1 and
−10 (+1.3 to +1.6 for Boonadgin dykes) (Anand, 2003). Modelling of
the Cuddapah sills suggests that they were produced by 15–20% partial
melting of a lherzolitic mantle with a potential temperature of
∼1500 °C, similar to ambient mantle of similar age and not necessarily
indicative of a mantle plume (Anand, 2003). Current geochemical
evidence is insufficient to determine whether the Boonadgin dykes and
the Bastar-Cuddapah LIP are associated with the same mantle source.

Similar to the Yilgarn Craton where the Boonadgin and Yalgoo
dykes are interpreted to be associated with discrete episodes of litho-
spheric extension, sills intruding the unconformity-bound sedimentary
successions within the Cuddapah basin are coeval with episodes of li-
thospheric extension (Sheppard et al., 2017) In both cases, mafic
magmatism appears to span 35–40Ma (ca. 1890–1855Ma) rather than
comprising a short-lived event.

7. Conclusions

The Archean Yilgarn Craton in Western Australia is intruded by
multiple generations of Precambrian mafic dykes, identified by pre-
vious studies. Until now, evidence for mafic magmatism in the Yilgarn
Craton at ca. 1890Ma has been absent, surprising since mafic mag-
matism of this age is found on most other Precambrian cratons
worldwide. The newly named, NW-trending 1888Ma Boonadgin dyke
swarm is interpreted to extend across an area of at least 33,000 km2 in
the southwestern Yilgarn Craton. The dykes were emplaced along the
southwestern margin of the Yilgarn Craton more than 50million years
after it was amalgamated with the Pilbara Craton-Glenburgh Terrane
along the Capricorn Orogen to form the West Australian Craton.
Intrusion of the Boonadgin dyke swarm was synchronous with minor
rifting, felsic volcanism and deposition of granular iron formation in the
Earaheedy Basin at the southeastern end of the Capricorn Orogen.
Evidence for another pulse of mafic magmatism at ca. 1852Ma in the
northern Yilgarn Craton was also coeval with magmatism in the
Capricorn Orogen, suggesting that mafic magmatism spanned at least
35million years. Emplacement of the Boonadgin dyke swarm is con-
temporaneous with the Bastar-Cuddapah LIP and opening of the
Cuddapah Basin on the eastern margin of India, and the ca. 1852Ma
Yalgoo dykes in northern Yilgarn may be coeval with ca. 1860 mafic
magmatism in the Cuddapah basin. Moreover, existing studies and re-
cent paleomagnetic data suggest that the Yilgarn and Bastar-Cuddapah
cratons were adjacent to each other at c. 1890Ma, raising the possi-
bility that the Boonadgin dyke swarm may be part of a wider Bastar-
Cuddapah LIP. However, Meso- to Neoproterozoic orogenic activity and
Phanerozoic rifting along the western margin in the Yilgarn Craton
have obliterated stratigraphic successions equivalent to the Cuddapah
Basin, and poor age control of extension and initial rifting in southern
Yilgarn Craton do not provide reliable geological piercing points. In
contrast to proposed rifting of the Yilgarn Craton from India at ca.
2300Ma, new evidence presented in this paper suggests that the cratons
may still have been neighbours at 1890Ma.
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A B S T R A C T

Antarctica contains continental fragments of Australian, Indian and African affinities, and is one of the key
elements in the reconstruction of Nuna, Rodinia and Gondwana. The Bunger Hills region in East Antarctica is
widely interpreted as a remnant of the Mesoproterozoic Albany–Fraser Orogen, which formed during collision
between the West Australian and Mawson cratons and is linked with the assembly of Rodinia. Previous studies
have suggested that several generations of mafic dyke suites are present at Bunger Hills but an understanding of
their origin and tectonic context is limited by the lack of precise age constraints. New in situ SHRIMP U-Pb zircon
and baddeleyite dates of, respectively, 1134 ± 9Ma and 1131 ± 16Ma confirm an earlier Rb-Sr whole-rock
age estimate of ca. 1140Ma for emplacement of a major mafic dyke suite in the area. Existing and new geo-
chemical data suggest that the source of the dyke involved an EMORB-like source reservoir that was con-
taminated by a lower crust-like component. The new age constraint indicates that the dykes post-date the last
known phase of plutonism at Bunger Hills by ca. 20 million years and were emplaced at the end of Stage 2 of the
Albany-Fraser Orogeny. In current models, post-orogenic uplift and progressive tectonic thinning of the litho-
sphere were associated with melting and reworking of lower and middle crust that produced abundant plutonic
rocks at Bunger Hills. A major episode of mafic dyke emplacement following uplift, cooling, and plutonic activity
with increasing mantle input, suggests that the dykes mark the end of a prolonged interval of thermal weakening
of the lithosphere that may have been associated with continued mafic underplating during orogenic collapse. If
the undated olivine gabbro dykes with similar trend, geochemistry and petrology at Windmill Islands are coeval
with the ca. 1134Ma dyke at Bunger Hills, this would suggest the presence of a major dyke swarm at least
400 km in extent. In such case, the dykes could have been emplaced laterally from a much more distant mantle
source, possibly a plume, and interacted with the locally heterogeneous and variably metasomatised lithosphere.

1. Introduction

Mafic dykes are products of lithospheric extension that was suffi-
cient to allow propagation of mantle-derived magma through rigid li-
thosphere. Emplacement of mafic dykes therefore acts as a proxy for
paleostress fields and pre-existing crustal weaknesses (Ernst et al.,
1995; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 2012; Ju
et al., 2013). Mafic dykes are also important targets of paleomagnetic
analyses for continent reconstructions (e.g., Ernst and Buchan, 1997;

Buchan et al., 2001; Bleeker and Ernst, 2006; Teixeira et al., 2013) and
precisely dated dyke swarms, which represent the plumbing systems of
now eroded Large Igneous Provinces (LIPs) (Coffin and Eldholm, 1994),
can provide a unique magmatic barcode and geological piercing points
(Ernst and Buchan, 1997; Bleeker, 2004; Bleeker and Ernst, 2006; Ernst
and Bleeker, 2010; Ernst et al., 2016).

Antarctica contains key elements of the supercontinents Nuna,
Rodinia and Pangea that existed since ca. 2000Ma. Some of these
elements are fragments that share close affinities to the Australian,
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Indian and African continental blocks (Fitzsimons, 2000a, 2000b, 2003;
Boger, 2011; Harley et al., 2013). Mafic dykes are widespread in Ar-
chean cratonic blocks in East Antarctica, being readily identifiable in
the field and satellite imagery in ice-free areas. Several generations of
Precambrian mafic dykes have been identified at Vestfold Hills
(Collerson and Sheraton, 1986; Sheraton et al., 1987a,b; Black et al.,
1991; Lanyon et al., 1993; Sheraton et al., 1993), Bunger Hills
(Sheraton et al., 1990; Sheraton et al., 1993), Windmill Islands (Blight
and Oliver, 1977; Post et al., 1997; Post, 2000; Zhang et al., 2012),
Commonwealth Bay (Sheraton et al., 1989) and the Napier Complex
(Sheraton et al., 1980; Sheraton and Black, 1982; Sheraton et al.,
1987a,b; Suzuki et al., 2008). However, with the exception of the
Vestfold Hills where U-Pb geochronology has permitted precise dating
of five different dyke generations (Black et al., 1991; Lanyon et al.,
1993), only Rb–Sr and/or Sm–Nd isotope ages are available for most
dykes in Antarctica, which is problematic since these isotope systems
are often disturbed by younger tectonothermal events.

The Bunger Hills, a short coastal segment outcropping in Wilkes
Land in East Antarctica, have long been proposed to represent a frag-
ment of the Mesoproterozoic Albany-Fraser Orogen in Western
Australia (e.g., Sheraton et al., 1990, 1993; Black et al., 1992a,b;
Fitzsimons, 2000a; Duebendorfer, 2002). The Windmill Islands, ca.
400 km east of Bunger Hills, appear to preserve a similar tecto-
nothermal and magmatic history (Sheraton et al., 1993; Post et al.,
1997; Post, 2000; Morrissey et al., 2017). Data from the Bunger Hills
were first obtained during field campaigns in 1956–57 (Ravich et al.,
1968) and 1986 (Sheraton et al., 1990, 1992, 1993, 1995; Stüwe and
Wilson, 1990; Ding and James, 1991). In 2016, another field campaign
was undertaken to study the crustal evolution at Bunger Hills (Tucker
and Hand, 2016; Tucker et al., 2017) and Windmill Islands (Morrissey
et al., 2017) and has led to improved tectonic models. However, current
models and derived continent reconstructions have not incorporated
mafic dykes in this part of Antarctica due to the imprecise age con-
straints for the dykes (Blight and Oliver, 1977; Sheraton et al., 1990,

1995; Post et al., 1997; Post, 2000; Zhang et al., 2012; Morrissey et al.,
2017).

We present here the first baddeleyite and zircon U-Pb geochro-
nology obtained from one of the largest and widest dykes at Bunger
Hills sampled during the 2016 field campaign. We investigate the
nature of the mantle source using existing and new major-trace element
and isotope data, followed by a discussion on a possible tectonic setting
during dyke emplacement at Bunger Hills in the wider context of the
Albany–Fraser Orogen.

2. Regional geology

The Bunger Hills area forms a continuous low relief outcrop of about
300 km2 along the coast in Wilkes Land near Shackleton Ice Shelf, ap-
proximately 400 km west of the Windmill Islands (Fig. 1). Bunger Hills
forms one of three geologically distinct regions in the immediate vici-
nity of the Denman and Scott Glaciers; the other two areas are the
Obruchev Hills between Scott and Denman Glaciers and a group of
smaller outcrops west of Denman Glacier. The Highjump Archipelago
extends just north-northeast from Bunger Hills and comprises a ca.
93 km-long belt of small rocky islands.

2.1. Basement lithology

The outcrop at Bunger Hills comprises predominantly granulite-fa-
cies mafic and felsic orthogneiss with subordinate paragneiss and vo-
luminous charnockitic plutons intruded by several generations of mafic
dykes (Fig. 2) (Ravich et al., 1968; Sheraton et al., 1990, 1992, 1993,
1995; Sheraton and Tingey, 1994; Tucker et al., 2017). The presence of
underlying Archean basement is inferred from a ca. 2800–2700Ma
zircon population from the mafic–felsic orthogneiss (Tucker et al.,
2017), which is similar to the ca. 2640Ma tonalitic orthogneiss at
Obruchev Hills ca. 30 km to the southwest (Black et al., 1992a,b).
Zircon populations at ca. 1700–1500Ma from granodioritic orthogneiss

Fig. 1. Location of Bunger Hills, Highjump Archipelago and Obruchev Hills in East Antarctica. After Sheraton et al. (1990, 1995).
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(Sheraton et al., 1993, 1995), ca. 1900–1500Ma from the extensive
metapelite sequence and ca. 1734Ma and 1666Ma from tonalitic or-
thogneiss suggest that these lithologies form a Paleoproterozoic cover
to Archean basement (Sheraton et al., 1992, 1993; Tucker et al., 2017).

2.2. Metamorphism and deformation

At least four metamorphic events have been identified at Bunger
Hills (Stüwe and Powell, 1989; Stüwe and Wilson, 1990; Ding and
James, 1991; Sheraton et al., 1993, 1995; Tucker et al., 2017). Peak
granulite facies conditions of 850–900° C and 5–6 kbar were reached at
1183 ± 8Ma in the Highjump Archipelago (Tucker and Hand, 2016),
whereas conditions of 750–800 °C and 5–6 kbar at 1190 ± 15Ma were
reported at Bunger Hills proper (Sheraton et al., 1993). Recent data also
indicate metamorphic zircon growth peaks at ca. 1300–1270Ma and ca.
1250Ma, with minor peaks at ca. 1330Ma and 1200Ma (Tucker et al.,
2017).

Peak metamorphism at ca. 1190Ma may have been associated with
an extensional setting (Stüwe and Powell, 1989). This was followed by
compressional NNW–SSE-directed deformation under granulite facies
conditions by ca. 1170Ma (Stüwe and Powell, 1989; Sheraton et al.,
1992, 1993, 1995; Tucker et al., 2017), the final stage of deformation
during uplift and cooling involving formation of extensive shear zones.

2.3. Plutons and mafic dykes

Three major mafic to felsic intrusive units — the Algae Lake pluton
and the Paz Cove and Booth (Charnockite) Peninsula batholiths (Fig. 2)
— outcrop in the Bunger Hills area. Their compositions range from
subalkaline gabbro to quartz monzogabbro and they were likely em-
placed at deep crustal levels (ca. 20 km) as a series of small intrusions
syn- to post-peak metamorphism and deformation, between ca.
1203Ma and 1151Ma (Ravich et al., 1968; Sheraton et al., 1992, 1993,
1995; Tucker et al., 2017). Late-stage felsic dykes are uncommon and
may be genetically related to the plutonic rocks (Sheraton et al., 1992,

1995). Several generations of mafic dyke suites have been identified at
Bunger Hills (Stüwe and Powell, 1989; Sheraton et al., 1990; Stüwe and
Wilson, 1990; Sheraton et al., 1993) but mafic dykes are rare west of
Denman Glacier (Black et al., 1992a,b; Sheraton et al., 1995).

The oldest identifiable dykes are mafic granulites of unknown age
and comprise boudinaged and deformed (proto-)olivine or quartz tho-
leiites within the plutons as well as mafic layers in basement gneisses.
Most of the undeformed dykes cut both the basement and plutonic rocks
and have a maximum age limit of ca. 1203Ma, defined by the youngest
dated pluton intruded by the dykes (Sheraton et al., 1990, 1992, 1993;
Tucker et al., 2017).

The undeformed dykes comprise five compositionally distinctive
groups ranging from olivine tholeiites and slightly alkaline dolerites to
picrites–ankaramites (Sheraton et al., 1990, 1995). Group 1 tholeiitic
dykes are< 2m thick, relatively uncommon and found mainly in the
southwestern part of Bunger Hills. Rare NW to NNW trending group 2
high-Mg dolerites have varying thicknesses whereas the most common
dykes belong to groups 3 and 4, trend NW and have thicknesses up to
50m. The youngest dykes are EW-trending alkali basalt dykes, which
are generally< 1m thick. Whole-rock Rb–Sr and Sm–Nd mineral iso-
chron data suggest emplacement of Group 3 and 4 dykes at ca. 1140Ma
(the former group possibly slightly older) and alkali dykes at ca. 502Ma
(Sheraton et al., 1990, 1992, 1995). Group 1 dykes appear to be the
oldest of the undeformed dyke suites and may be coeval with the ca.
1151Ma Booth Peninsula monzodiorite. Mineral Rb–Sr analyses from
the tholeiites and dolerites also reveal partial resetting events at ca.
907Ma and 514Ma. Sheraton et al. (1990) interpreted the variation in
incompatible element ratios between and within the ca. 1140Ma dyke
groups (3 and 4) as lateral and vertical source heterogeneity in at least
six distinctive mantle source regions. Group 1 dykes probably origi-
nated from an enriched lithospheric mantle source with an OIB-like
component, whereas other dyke groups likely had at least two source
components ranging from slightly depleted (Sri= 0.7029, εNd=+6.3)
to moderately enriched (Sri= 0.7046–0.7053, εNd=+6.3) in com-
position. It was proposed that the source of group 3 and 4 dykes

Fig. 2. Geological Map of Bunger Hills and Highjump Archipelago showing sample locations and regional geology. Modified after Sheraton and Tingey (1994) and Tucker et al. (2017).
Samples in this study are from locations BHD1 and BHD4 (blue stars), the 8-digit numbers (yellow stars) denote samples of Sheraton et al. (1990). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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consisted of a depleted mantle component and Archean or Paleopro-
terozoic long-term enriched lithospheric mantle containing subducted
crustal materials.

3. Samples

3.1. Geochronology and geochemistry

3.1.1. Field sampling
Fourteen block samples were collected from two locations along the

largest dyke on the island (Figs. 2 and 3). Seven samples were collected
from each location: six samples from the mafic component for geo-
chemistry and one sample from the associated leucocratic segregation
for geochronology (Table 1).

Sample locality BHD1 is near Paz Cove where the dyke is ca. 50m
wide and intrudes the Paz Cove batholith. Chilled margins up to 10 cm
wide are visible along the contact with the charnockite. Sample locality
BHD4 is at the shore of Algae Lake, just south of the old Polish station
Dobrowolski (Fig. 3). Here the dyke is still ca. 50m wide and intrudes
migmatitic pelitic gneiss. Samples BHD1-4, BHD1-5, and BHD1-6 (Paz
Cove), and BHD4-3, BHD4-5, and BHD4-6 (Algae Lake) are gabbroic
and were collected from the center of the dyke. Samples BHD1-1,
BHD1-2, and BHD1-3 (Paz Cove), and BHD4-1 and BHD4-2 (Algae
Lake) are doleritic and were collected closer to the edges of the dyke.
Samples BHD1-7 and BHD4-7 were collected from associated leuco-
cratic segregations. The dyke has a visible strike length of> 10 km
from Algae Lake to Paz Cove and is identical to the major dyke crossing
the entire Bunger Hills in a NW–SE direction that was mapped by
Sheraton and Tingey (1994).

3.1.2. Sample descriptions
The dyke is an olivine gabbro with intergranular to sub-ophitic and

ophitic (poikilitic) texture (Fig. 4). The gabbroic samples comprise ca.
55– 60% plagioclase, 15–25% augitic clinopyroxene, 5–10% olivine, up
to 5% of orthopyroxene, 3–5% biotite, accessory opaques (ilmenite,
magnetite and hematite) and apatite. Clinopyroxene is commonly poi-
kilitic and encloses olivine and plagioclase crystals. Olivine crystals are

rimmed by a thin reaction corona where in contact with plagioclase.
Most plagioclase grains are strongly clouded by minute inclusions of
black and brown particles (likely Fe–Ti oxides) and larger, green
spherical to needle shaped grains, possibly amphiboles, and both in-
clusion types appear to grow preferentially, possibly along twin planes.
Post-magmatic alteration appears minimal but growth of the inclusions
in the plagioclase crystals may be due to emplacement and slow cooling
at depth or a later thermal event (Halls and Palmer, 1990; Halls et al.,
2007). Apatite forms acicular colourless needles. Brown biotite is as-
sociated with, and grows around, ilmenite, possibly due to late stage
reaction with magmatic fluids common in gabbros. Leucocratic segre-
gations comprise 75–80% plagioclase, 5–10% quartz and green am-
phibole, 5% brown biotite and accessory apatite, zircon and chevkinite.

No petrography was available from Sheraton et al. (1990) samples
86286091 and 86286097, which they obtained from the same dyke.

Fig. 3. Sampled dyke at Algae Lake near sampling location of BHD4, looking SSW.

Table 1
Sampling locations. Samples were collected along strike and across the dyke.

Location Dlat Dlon Easting Northing Zone Samples Comments

BHD1 66 14 43.001 S 100 42 13.312 E 576574 2651708 47D BHD1-1 to BHD1-6 (mafic) BHD1-7 (felsic
segregation)

Near Paz Cove, cross-cuts Paz Cove batholith

BHD4 66 16 36.626 S 100 45 21.554 E 578825 2648126 47D BHD4-1 to BHD4-6 (mafic) BHD4-7 (felsic
segregation)

Shore of Algae Lake, intrudes migmatitic pelitic
gneiss

Notes Datum WGS84, Dlat= decimal latitude, Dlon= decimal longitude.

Fig. 4. Thin sections of sample BHD1-5. Note plagioclase and olivine poikilitically en-
closed in clinopyroxene, biotite associated with ilmenite and abundant minute inclusions
clouding the plagioclase. (A) Plane polarised light (B) Crossed polars.
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However, samples from BHD1 and BHD4 are petrographically similar to
samples 86286075 and 86285872 (dyke Group 4B), which Sheraton
et al. (1990, 1995) collected from a NW-trending dyke east of Paz Cove.
They comprise fine- to medium-grained intergranular to sub-ophitic
dolerite with olivine, clinopyroxene, plagioclase and minor reddish-
brown biotite associated with Fe-Ti oxides.

4. U-Pb geochronology and geochemistry

4.1. SHRIMP U-Pb geochronology

Polished thin sections were scanned for baddeleyite (ZrO2) and

zircon with a Hitachi TM3030 scanning electron microscope (SEM)
equipped with energy dispersive X-ray spectrometer (EDX) at Curtin
University, Perth, Australia. For SHRIMP U-Pb dating, selected grains
were drilled directly from the thin sections using a micro drill and then
mounted into epoxy disks, which were cleaned and coated with 40 nm
of pure gold. Standards used for the SHRIMP sessions were mounted in
one separate epoxy Disc and coated at the same time with the sample
mounts.

In the leucocratic segregation samples from BHD1 and BHD4, zircon
crystals are predominantly subhedral, prismatic to elongate ranging
between 100 μm and 2mm long, and many show thin, non-radial
fractures (Fig. 5A and C). Some crystals have sharply delineated

Fig. 5. SEM backscatter (BSE) and cathodoluminescence (CL) images showing SHRIMP spots and 207Pb/206Pb dates with 1σ error. (A) BSE and (B) CL images of zircons from BHD4-7B
(note the rotation of the CL image). (C) BSE and (D) CL images of zircons from BHD4-7A. (E) and (F) SEM images of baddeleyite from BHD1-4.
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metasomatic zones but most are free from alteration. Many crystals
appear skeletal or incomplete and some have quench-like textures, in-
dicating rapid growth, consistent with their formation in a late-stage
leucocratic segregation of the dyke. All crystals appear bright and un-
zoned under backscattered electron (BSE) microscopy and most are
weakly zoned under cathodoluminescence (CL) imaging, brighter CL
being associated with rims and fractures (Fig. 5B and D). Collectively,
these characteristics support an igneous origin for the zircon (e.g. Corfu
et al., 2003).

Baddeleyite crystals form predominantly euhedral laths between 50
and 70 μm long (Fig. 5E and F). Thin zircon rims are common but
fracture-associated alteration appears insignificant.

Zircon and baddeleyite were analysed for U, Th and Pb using the
sensitive high-resolution ion microprobe (SHRIMP II) at the John de
Laeter Centre at Curtin University, following standard operating pro-
cedures after Compston et al. (1984). The SHRIMP analysis method for
mounts with polished thin section plugs outlined in Rasmussen and
Fletcher (2010) was modified for baddeleyite (SHRIMP operating
parameters are given in Table 2). BR266 zircon (206Pb/238U age of
559Ma, U concentration of 903 ppm; Stern, 2001) was used as a pri-
mary standard for calibrating Pb/U ratio and U concentration, and OG1
zircon with a 207Pb/206Pb age of 3465Ma (Stern et al., 2009) was used
to monitor the instrumental mass fractionation (IMF) in 207Pb/206Pb.
For the baddeleyite analyses, the Phalaborwa baddeleyite (ca. 2060Ma;
Heaman, 2009) was employed as an additional standard. Typical spot
size of the primary O2

− beam was 13–20 μm with 1.3–1.5nA current.
Data were processed with Squid version 2.50 (Ludwig, 2009) and

Isoplot version 3.76.12 (Ludwig, 2012). For common Pb correction,
1134Ma common Pb isotopic compositions were calculated from the
Stacey and Kramers (1975) two-stage terrestrial Pb isotopic evolution
model. Analyses with> 1% common Pb (in 206Pb) or> 10% dis-
cordance for baddeleyite or> 5% discordance for zircon (see footnote
in Table 3 for definition of discordance) are considered unreliable and
were disregarded in age calculations. All weighted mean ages are given
at 95% confidence level and individual analyses are presented with 1σ
error.

4.2. Geochemistry

Twelve blocks (BHD1-1 to BHD1-6 and BHD4-1 to BHD4-6) were
cut from the hand specimens to remove weathered and altered parts.
After initial crushing, approximately one quarter of the chips was split
from each sample and the remaining material was pulverised in a
chrome steel mill with quartz wash between each sample. From the
quarter sample, chips with fresh fracture surfaces were picked under

the microscope, washed and pulverised manually in an agate mill for
isotope analysis.

Major elements were analysed at Intertek Genalysis Laboratories,
Perth using X-ray fluorescence (XRF) and Genalysis laboratory internal
standards SARM1 and SY-4. Trace elements were analysed with a
Perkin-Elmex Sciex ELAN 6000 inductively coupled plasma mass
spectrometer (ICP-MS) at Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences, following analytical procedures as de-
scribed in Li (1997) and Liu et al. (1996). Sample powders were dis-
solved in high-pressure Teflon bombs using HF-HNO3 mixture and an
internal standard solution with Rh was used to monitor instrumental
drift. A set of USGS standards including BHVO-2, AGV-2, GSR-3, W-2
and SARM4 were used for calibration of element concentrations. The
uncertainty for major element analyses is< 5% and most trace element
analyses have relative standard deviation (RSD)<3%.

Sr, Nd and Hf isotope analyses for six samples (three samples from
BHD1 and BHD4 each) were carried out at the Earth and Planetary
Sciences Geoanalytical Unit at Macquarie University, Sydney (e.g.,
Genske et al., 2016). Whole-rock samples and USGS reference material
BHVO-2 (∼100mg) were digested in Teflon beakers and loaded onto
Teflon columns. Hafnium was collected with the matrix after 5.4mL
and Sr after 34.9mL, followed by Nd. Neodymium was further sepa-
rated from Sm, Ba, La, Ce using a second column and Hf was separated
from the matrix using two further columns. Isotopic analyses of Sr and
Nd were obtained using a Thermo Finnigan Triton thermal ionisation
mass spectrometer (TIMS). Samples for Sr isotope analysis were loaded
onto single rhenium filaments and analysed (1380–1430 °C, 1–11 V).
Ratios were normalised to 86Sr/88Sr= 0.1194 to correct for mass
fractionation. Samples for Nd isotope analysis were loaded onto double
rhenium filaments and analysed (1200–1600 °C, 0.5–10 V). Ratios were
normalised to 146Nd/144Nd= 0.7219 to correct for mass fractionation.
Hafnium isotope analyses were obtained using a Nu Instruments multi-
collector (MC) ICP-MS Nu034 and ratios were normalised to
176Hf/177Hf= 0.7325 to correct for mass fractionation.

5. Results

5.1. SHRIMP U-Pb geochronology

Twenty-seven analyses were obtained from seven zircon crystals
(four from BHD1 and three from BHD4) in one SHRIMP session
(Fig. 6A, Table 3). The U and Th concentrations in most analyses are,
respectively, < 500 ppm (59–1551 ppm, median 385 ppm) and<850
ppm (40–4390 ppm, median 565 ppm). All Th/U ratios are> 0.5
(0.55–2.83, median 1.55). Seven analyses were excluded on the basis
of> 5% discordance (all analyses had< 0.55% common 206Pb). The
remaining twenty analyses (from seven crystals) yielded a weighted
mean 206Pb∗/238U (Pb∗ denotes radiogenic Pb) date of 1133 ± 7Ma
(MSWD=1.2) and a weighted mean 207Pb∗/206Pb∗ date of
1134 ± 9Ma (MSWD=0.87).

Twenty-three analyses were obtained from eleven baddeleyite
crystals (six grains from BHD1 and five grains from BHD4) in one
SHRIMP session (Fig. 6B, Table 3). The U and Th concentrations range
from, respectively, 56–703 ppm (median 135 ppm) and from 1 to
83 ppm (median 13 ppm). All Th/U ratios are< 0.13 (0.014–0.126,
median 0.075). Twelve analyses were excluded due to>1% common
206Pb or> 10% discordance, or both. The remaining eleven analyses
(from eight crystals) yielded a weighted mean 207Pb∗/206Pb∗ date of
1131 ± 16Ma (MSWD=0.95). Only 207Pb∗/206Pb∗ results are dis-
cussed here because 206Pb∗/238U ratios measured with an ion microp-
robe may be significantly affected by orientation effects in baddeleyite
crystals (Wingate, 1997; Wingate et al., 1998; Wingate and Compston,
2000; Schmitt et al., 2010).

The respective zircon and baddeleyite 207Pb∗/206Pb∗ weighted mean
dates of 1134 ± 9Ma and 1131 ± 16Ma are within analytical un-
certainty of each other, indicating that the leucocratic segregation from

Table 2
SHRIMP operating parameters.

Mount CS15-5 CS15-6

Samples analysed BHD1-7,
BHD4-7

BHD1-4, BHD4-1,
BHD4-5

Date analysed 25-Nov-15 20-Oct-15
Kohler aperture (μm) 70 50
Spot size (micrometres) 20 13
O2-primary current (nA) 1.3 1.5
Number of scans per analysis 6 8
Total number of analyses 27 23
Number of standard analyses 22 21
Pb/U external 1σ precision% (assigned

minimum 1%)
1.0 1.0

Raster time (seconds) 120 120
Raster aperture (μm) 90 90

Notes 1) Mass resolution for all analyses ≥5000 at 1% peak height 2) BR266, OGC,
Phalaborwa and NIST 611 used as standards 3) Count times for each scan for baddeleyite:
204Pb, 206Pb, 208Pb=10 s, 207Pb=30 s; count times for zircon: 204Pb, 208Pb= 10 s,
206Pb=20 s, 207Pb= 30 s.
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which the zircons were sampled is part of the dyke. The more precise
date of 1134 ± 9Ma for zircons extracted from the leucocratic segre-
gation (samples BHD1-7 and BHD4-7) is therefore considered to be the
best estimate of the crystallisation age of the dyke. At BHD1, the dyke
intrudes the Paz Cove charnockite, which has yielded U-Pb zircon dates
of 1170 ± 4Ma (Sheraton et al., 1992) and 1200 ± 6Ma (Tucker
et al., 2017). The pelites and orthogneisses contain zircon populations,
respectively, between 1900 and 1500Ma and between ca. 1700 and
1500Ma, and are underlain by (unexposed) basement of Archean age
(Tucker et al., 2017). These data further support the interpretation that
the analysed zircons are not xenocrysts originating from the basement.
The previously estimated emplacement age of ca. 1140Ma for most of
the group 3 and 4 dykes was based on Rb–Sr whole-rock and limited
Sm–Nd isochron analyses by Sheraton et al. (1990) and is confirmed by
our geochronology results. The most precise ages from their study were
1220 ± 80Ma for group 3A dykes, 1120 ± 40Ma for group 4D dykes
(Sm–Nd mineral isochron) and 1160 ± 160Ma for group 4E dykes. It
is notable that the group 4D age is within uncertainty of the U-Pb ages
reported here. Close agreement between the Rb-Sr (and some Sm-Nd)
ages obtained from a number of NW-trending group 3 and 4 dykes by
Sheraton et al. (1990) and the new U-Pb ages from the single NW-
trending dyke in this study suggests that most group 3 and 4 dykes, and
possibly other NW-trending dykes at Bunger Hills may be coeval and
belong to the same dyke swarm.
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Fig. 6. Tera-Wasserburg plot of SHRIMP U-Pb results for (A) zircon and (B) baddeleyite
analyses. Grey squares denote excluded data (see Section 5.1 for details).
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5.2. Geochemistry

5.2.1. Major and trace elements
The results for geochemical analyses of 12 samples, collected along

strike from the same dyke, are listed in Table 4. All samples have loss on
ignition (LOI)<1wt%, consistent with petrographic evidence for in-
significant alteration. They display a wide range in MgO (6.15–9.27wt%;
Mg#=47.37–63.66), low but near-constant SiO2 (45.52–47.32wt%)
and relatively low CaO (7.69–9.23wt%). They are also characterized by
enrichment in FeOtotal (12.03–15.94wt%) and Al2O3 (15.82–19.30wt%).
The total alkali contents (Na2O+K2O=3.52–4.06wt%) and Na2O/K2O
ratios (3.43–5.14) are high, indicating alkali and sodium enrichment. All
samples plot just outside the sub-alkaline field, in the alkaline corner of
the basaltic field on the TAS diagram (Fig. 7A) (Irvine and Baragar, 1971;
Le Maitre et al., 2002) and despite their alkaline character, display a
tholeiitic trend on the AFM diagram (Irvine and Baragar, 1971; Fig. 7B).
Modal calculations (Johannsen, 1931) indicate that all samples are hy-
persthene-normative with up to 5% olivine, 50–60% plagioclase, up to
5% orthoclase, 4–10% diopside, 5–16% hypersthene, up to 20% Fe–Ti
oxides (ilmenite and hematite),< 1% quartz and traces of apatite, spinel

and zircon. Samples from BHD4 (central part of Bunger Hills) contain
more normative olivine and no quartz.

Trace element profiles on a chondrite-normalised plot show mod-
erate enrichment of light rare earth elements (LREE) with (La/
Sm)CN=1.44–1.68 and (La/Yb)CN= 3.15–4.17 and slight fractionation
of heavy rare earth elements (HREEs) with (Sm/Yb)CN=1.98–2.31,
(Gd/Yb)CN=1.53–1.79 and (Tb/Yb)CN=1.47–1.59 (Sun and
McDonough, 1989, Fig. 6C). Most samples display a positive Eu
anomaly (Fig. 7C, Table 4). The primitive mantle-normalised patterns
show negative Nb and Ta and negative to positive Ti anomalies, ele-
vated large ion lithophile elements (LILE) and elevated Th (Fig. 7D).
Some samples also display a Zr and Hf trough. Aside from the positive
Ti anomalies of the samples, the overall trace element profile of the
samples is very similar to that of lower continental crust (Rudnick and
Gao, 2003). BHD1 samples have higher incompatible element contents
than those of BHD4 samples, and the doleritic samples (BHD1-1 to
BHD1-3) are higher in most incompatible elements.

Two samples from the same dyke were collected by Sheraton et al.
(1990), who classified sample 86286097 in the southeastern part of
Bunger Hills as part of group 4A (Mg #=47.5) and sample 86286091

Table 4
Major and trace element and isotope data for samples BHD1-1 to BHD1-6 and BHD4-1 to BHD4-6.

BHD1-1 BHD1-2A BHD1-3 BHD1-4 BHD1-5 BHD1-6 BHD4-1B BHD4-2 BHD4-3 BHD4-4 BHD4-5 BHD4-6

SiO2 45.81 45.51 45.76 46.99 47.05 46.69 45.36 45.49 46.44 46.38 47.20 45.51
TiO2 3.10 3.13 3.20 1.57 1.40 1.43 2.20 2.37 1.91 1.85 1.74 3.29
Al2O3 15.83 15.79 15.83 17.91 17.47 17.59 17.33 16.45 18.01 17.50 19.25 16.32
CaO 8.51 8.47 8.58 8.58 8.53 7.88 7.70 7.88 8.04 7.63 8.70 9.23
Fe2O3(tot) 15.63 15.60 15.95 12.36 12.35 13.15 15.21 15.26 13.37 13.95 12.00 14.59
K2O 0.90 0.89 0.89 0.76 0.67 0.78 0.65 0.70 0.67 0.69 0.66 0.63
MgO 6.13 6.16 6.16 7.92 9.28 8.90 7.59 8.20 6.96 7.65 6.42 7.08
MnO 0.21 0.21 0.22 0.16 0.17 0.17 0.18 0.19 0.15 0.18 0.15 0.19
Na2O 3.11 3.10 3.05 2.99 2.86 3.02 3.05 3.02 3.16 3.11 3.39 2.88
P2O5 0.43 0.43 0.44 0.31 0.29 0.38 0.26 0.27 0.26 0.27 0.23 0.25
LOI 0.22 0.21 −0.01 −0.06 −0.14 0.03 0.40 −0.05 0.95 0.59 0.03 0.08
Total 99.66 99.29 100.08 99.55 100.07 99.99 99.53 99.83 98.97 99.21 99.74 99.97
Mg# 47.76 47.93 47.37 59.90 63.66 61.20 53.77 55.61 54.82 56.11 55.50 53.08
Sc 27.03 26.44 26.45 16.17 16.47 11.96 14.66 17.91 14.87 13.47 13.38 29.48
V 239.40 233.20 244.30 158.60 100.80 125.60 231.60 201.10 178.10 152.80 161.00 251.60
Co 57.01 55.42 57.36 59.43 63.30 65.35 67.96 68.50 70.45 69.09 55.23 60.63
Ni 93.96 90.67 94.56 189.10 213.60 220.00 167.20 169.30 191.10 181.70 147.70 145.60
Ga 21.26 20.94 21.34 18.83 17.57 18.32 18.96 18.44 18.76 18.17 19.28 19.18
Ge 3.99 3.56 3.98 3.18 2.81 3.20 3.40 3.27 3.25 3.25 2.71 3.23
Rb 18.82 17.88 17.97 17.06 14.46 17.53 12.91 13.72 12.76 13.79 11.98 12.60
Sr 293.90 289.10 293.60 317.90 305.10 306.50 309.10 303.70 333.20 320.40 365.00 292.20
Y 39.34 34.21 39.38 26.61 22.19 27.85 20.92 20.98 21.43 21.64 19.36 25.88
Zr 203.00 199.70 196.30 155.40 123.70 139.00 73.06 117.70 117.80 78.80 76.15 102.00
Nb 12.60 10.74 12.82 8.15 6.88 8.65 7.10 6.94 7.12 7.62 6.70 9.11
Cs 0.28 0.23 0.39 0.31 0.22 0.32 0.23 0.20 0.23 0.25 0.21 0.23
Ba 318.30 314.40 320.20 265.20 242.20 262.70 239.40 245.90 239.90 252.90 243.50 236.10
La 16.29 16.61 16.10 12.14 11.72 13.72 10.06 10.97 10.00 10.69 9.34 9.98
Ce 39.00 38.29 39.32 28.40 27.89 32.34 23.30 25.34 23.49 24.72 21.64 23.93
Pr 5.51 5.13 5.47 3.90 3.53 4.43 3.20 3.32 3.24 3.40 2.98 3.40
Nd 25.63 23.31 26.10 18.09 15.64 20.33 14.89 14.91 14.99 15.54 13.74 16.15
Sm 6.41 6.25 6.43 4.37 4.15 4.88 3.51 3.94 3.60 3.73 3.28 4.15
Eu 2.23 2.20 2.25 1.61 1.51 1.70 1.38 1.50 1.42 1.46 1.38 1.60
Gd 6.64 6.65 6.72 4.52 4.36 4.92 3.67 4.09 3.73 3.82 3.32 4.43
Tb 1.16 1.03 1.19 0.79 0.67 0.85 0.64 0.64 0.64 0.65 0.59 0.76
Dy 7.09 6.23 7.21 4.70 4.03 5.04 3.75 3.81 3.83 3.96 3.46 4.70
Ho 1.46 1.28 1.49 0.98 0.82 1.04 0.78 0.79 0.79 0.81 0.71 0.96
Er 3.98 3.40 4.02 2.66 2.22 2.83 2.08 2.10 2.15 2.20 1.94 2.60
Tm 0.58 0.49 0.59 0.40 0.32 0.41 0.30 0.31 0.32 0.32 0.28 0.39
Yb 3.58 3.07 3.60 2.40 2.02 2.57 1.82 1.90 1.92 1.95 1.70 2.27
Lu 0.52 0.47 0.52 0.36 0.30 0.37 0.27 0.29 0.28 0.28 0.25 0.33
Hf 5.22 4.63 5.05 3.91 2.88 3.52 1.92 2.78 2.94 2.07 1.96 2.82
Ta 0.77 0.67 0.79 0.48 0.41 0.52 0.43 0.44 0.45 0.46 0.44 0.57
Pb 4.96 4.44 5.05 4.42 3.46 4.21 4.32 3.50 3.68 3.73 3.46 3.62
Th 2.01 2.00 1.82 1.75 1.47 1.84 1.34 1.44 1.22 1.34 1.18 1.27
U 0.35 0.36 0.37 0.39 0.27 0.34 0.24 0.25 0.24 0.24 0.23 0.22

Notes 1) Major elements (XRF) are given in wt% and trace elements (ICP-MS) in ppm 2) Mg#=100×Mg/(Mg+Fe), Fe2+/Fetotal = 0.85.
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in the northwestern part as a less evolved variant of Group 4A. The
latter has a higher Mg number of 63.33, consistent with the highest Mg
number of 63.66 of the BHD1 samples nearby. Major element data in
this study are consistent with compositions of samples 86286091 and
86286097 of Sheraton et al. (1990). Previous studies have shown that
major element compositions and trace element ratios of a single dyke
belonging to a major regional swarm (>10m in width) will be con-
sistent along strike but may be different from an adjacent dyke, sug-
gesting that each dyke represents a single magmatic pulse injected
laterally from a magmatic chamber (Halls, 1986; Buchan et al., 2007;
Ernst, 2014).

5.2.2. Nd and Sr isotopes
Six samples were analysed for Nd and Sr isotopes (Table 5). Measured

ratios of 147Sm/144Nd and 143Nd/144Nd are, respectively, 0.1451–0.1602
and 0.5124390–0.5124560. Calculated initial ratios 143Nd/144Nd at
1134Ma yielded 0.51125–0.51134, corresponding to εNd1134Ma=+1.51
to+3.32, which is lower than the inferred lower estimate of
εNdDM=+5.4 for contemporaneous depleted mantle, calculated using
the method of DePaolo (1981a,b). The 87Rb/86Sr and 87Sr/86Sr ratios are,
respectively, 0.1246–0.1771 and 0.7035–0.7071, with corresponding in-
itial ratios (87Sr/86Sr)1134Ma=0.703625–0.7043372. These values are
higher than the contemporaneous depleted mantle (ca. 0.7019; Taylor and
McLennan, 1985) and compatible with those expected in lower crust,
which is strongly depleted in Rb (Rudnick and Fountain, 1995; Rudnick
and Gao, 2003; Hacker et al., 2015) and thus has low initial 87Sr/86Sr
ratios similar to depleted mantle (Weaver and Tarney, 1980; Rollinson,
1993).

6. Discussion

6.1. Petrogenesis of the dykes

6.1.1. Fractional crystallisation
The range of Mg# (47–63) and low concentrations of compatible

elements (Cr= 80.63–210.50 ppm, Ni= 88.9–220.0 ppm and
MgO=6.15–9.27 wt%) indicate that the dyke is evolved. The strong
positive co-variation between Mg# and Ni (r2= 0.90) suggests olivine
fractionation, consistent with presence of early (poikilitic) olivine in
thin section (Fig. 4). Elevated Al2O3 (15.82–19.30 wt%) can be attrib-
uted to a hydrous source (e.g. Wang et al., 2016) or accumulation of
plagioclase. The latter is supported by low Rb/Sr ratios (0.03–0.06) and
marked positive Eu anomalies mainly in the gabbroic samples. The
degree of the Eu anomaly can be estimated using Eu/Eu∗=EuCN/
[(SmCN+GdCN)]1/2 where Eu∗ is the expected extrapolated Eu con-
centration (Taylor and McLennan, 1985). Magmas evolving along li-
quid line of descent will have Eu/Eu∗ ≤1, assuming that there was no
initial Eu/Eu∗ anomaly. All studied samples have Eu/Eu∗>1
(1.04–1.28) with doleritic samples showing the smallest anomalies. The
presence of positive Eu anomalies thus suggests that plagioclase is a
cumulate mineral in the gabbroic samples.

The lack of correlation between Mg# and CaO (r2= 0.07) and Mg#
and Sc/V (r2= 0.02) suggests that clinopyroxene fractionation may
have been insignificant during magma evolution. Similarly, the pre-
sence of a strong negative covariance between Mg# and FeOtot

(r2= 0.83) and TiO2 (r2= 0.83) indicates that fractionation of Fe-Ti
oxides was insignificant as this would have resulted in strong depletion
of these two elements.

Fig. 7. (A) Total alkali-silica (TAS) plot after LeMaitre, 1989. Blue field denotes 1.21 Ga Marnda Moorn LIP dykes from Wang et al. (2014). (B) AFM plot after Irvine and Baragar (1971).
(C) Chondrite and (D) primitive mantle normalised multi-element plots with blue shaded area denoting range of Marnda Moorn dykes (Wang et al., 2014). LCC= lower continental crust
after Rudnick and Gao (2003); OIB=ocean island basalt, NMORB=mid ocean ridge basalt and EMORB=enriched MORB after Sun and McDonough (1989).
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6.1.2. Crustal contamination
Arc-like characteristics, such as negative Nb-Ta and Zr-Hf (HFSE)

anomalies and elevated LILE contents on primitive mantle-normalised
plots, may be due to subduction-related metasomatic enrichment,
crustal contamination, or both (e.g. Saunders et al., 1992; Puffer, 2001;
Wang et al., 2016). Relative to mantle, crust has high SiO2, La/Sm, Th/
La and 87Sr/86Sri but low εNdt, MgO, Sm/Nd and Nb/La. Contamination
by (upper or middle) crustal material would produce positive correla-
tions between Mg# and εNdt, Nb/La and Sm/Nd and negative corre-
lations between Mg# and La/Sm, Th/La and 87Sr/86Sri (e.g., Wang
et al., 2012, 2014, 2016). Such predicted covariance is not observed in
the analysed samples. Despite variations in the Mg number, the εNdt
values are nearly constant and the range of 87Sr/86Sri values is rela-
tively small. In addition, ratios of La/Sm and Th/La are nearly constant
and show weak positive correlation whereas ratios of Nb/La and Sm/Nd
are nearly constant with a weak negative correlation. This implies that
crustal contamination was not a significant process during magma
evolution.

Trace element and isotope results from this study are consistent
with those of Sheraton et al. (1990), who reported 87Sr/86Sri of
0.704 ± 0.002 for Group 4A dolerites (which includes the dyke sam-
pled in this study) and εNd1140 between +2.9 and +6.3 for groups 4B,
4D and 4E, which have similar trace element profiles to group 4A. In
addition, samples 86285833 from Geomorfologov Peninsula and
86286075 from the north-eastern part of Paz Cove (Group 4D and 4B
dykes, respectively) have similar Sri (0.7044 and 0.7030, respectively)
and εNdt values (+2.9 and +3.9, respectively) as the dyke in this
study. Sheraton et al. (1990) proposed that crustal contamination was
significant only in Group 3A dykes and significant variability in trace
element abundances and isotope compositions between dyke groups 1
to 4 was attributed to source heterogeneity.

As discussed above, crustal contamination was probably insignif-
icant and the observed geochemical diversity likely reflects the source
characteristics. As shown in Fig. 6C and D, the trace element compo-
sition of the samples is very similar to the lower continental crust
(Rudnick and Gao, 2003) and the εNdt values of the samples (+1.5 to
+3.3) show slight but clear enrichment relative to the contemporary
depleted mantle at 1134Ma (+5.4; DePaolo, 1981a,b). These

characteristics suggest that the source probably involved a depleted
mantle type component that interacted with material that had a lower
εNdt, slightly higher (but NMORB-like) 87Sr/86Sri and a lower crust-like
trace element composition.

6.1.3. Nature of the mantle source
Mantle source characteristics in mafic systems can be investigated

using ratios of incompatible trace elements that are sensitive to source
composition and partial melting processes but insensitive to crystal
fractionation. Ratios of Nb/La, Nb/Ta, Th/Nb, La/Sm, La/Yb, La/Ba,
Sm/Nd and Th/U in the analysed samples are near constant despite a
wide range of Mg#, indicating that they behaved in an essentially in-
compatible manner during fractional crystallisation and likely reflect
their source composition. The average ratio of Nb/La=0.71 falls be-
tween average depleted mantle values (0.90–0.93;Sun and McDonough,
1989; Salters and Stracke, 2004) and lower crust (0.63; Rudnick and
Gao, 2003) whereas the ratio of Nb/Ta=16.23 is close to that of
NMORB or enriched MORB (EMORB) (17.65/17.66; Sun and
McDonough, 1989). The ratio of Th/Nb=0.18 is close to lower crust
(0.24; Rudnick and Gao, 2003) and much higher than NMORB/EMORB
or OIB (0.05/0.07 and 0.08, respectively; Sun and McDonough, 1989).
The average ratios of La/Sm=2.72, Sm/Nd=0.25 and Th/U=5.38
are all very close to lower crustal values (2.83, 0.25 and 6.0, respec-
tively; Rudnick and Gao, 2003). The ratio of La/Yb=5.82 is slightly
higher than the lower crust (5.33) but much higher than MORB (0.82)
and much lower than typical OIB (17.13).

The composition of the source region may also be constrained by
using ratios of incompatible trace elements with identical bulk partition
coefficients (D) (Sims and DePaolo, 1997; Willbold and Stracke, 2006;
Wang et al., 2014). In log–log plots, slopes plot near unity if the ratios
of two such elements remain constant. In the studied samples, calcu-
lated slopes are near unity for Tb/Yb (log(Tb)− log(Yb)= 1.05 ±
0.02 (1se), r2= 1.0), Lu/Yb (log(Lu)− log(Yb)= 1.01 ± 0.02 (1se),
r2= 0.99), Gd/Yb (log(Gd) - log(Yb)= 1.03 ± 0.07 (1se), r2= 0.95),
Zr/Hf (log(Zr)− log(Hf)= 0.94 ± 0.04 (1se), r2= 0.98) and Nb/Ta
(log(Nb)− log(Ta)= 0.98 ± 0.04 (1se), r2= 0.98). The unit slopes of
correlation between Tb and Yb, Gd and Yb, and Yb and Lu indicate that
the bulk partition coefficients of middle REE and HREE are identical

Table 5
Isotope data for selected samples from BHD1 and BHD4.

BHD1-3 BHD1-5 BHD1-6 BHD4-2 BHD4-4 BHD4-6

Sm (ppm) 6.428 4.145 4.879 3.935 3.734 4.148
Nd (ppm) 26.100 15.640 20.330 14.910 15.540 16.150
143Nd/144Nd 0.51245200 0.51245600 0.51242300 0.51243900 0.51242200 0.51243000
2SE 0.00000110 0.00000130 0.00000610 0.00000290 0.00000250 0.00000400
147Sm/144Nd 0.14888939 0.16021995 0.14508378 0.15954902 0.14526086 0.15527172
(143Nd/144Nd)i 0.51134466 0.51126439 0.51134396 0.51125238 0.51134165 0.51127519
εNd(1.13 Ga) 3.32 1.75 3.30 1.51 3.26 1.96
TDM(Ma) 1.64 1.97 1.61 1.99 1.62 1.87
Rb (ppm) 17.97 14.46 17.53 13.72 13.79 12.60
Sr (ppm) 293.60 305.10 306.50 303.70 320.40 292.20
87Sr/86Sr 0.70671600 0.70600000 0.70705700 0.70574500 0.70628300 0.70596200
2SE 0.00000370 0.00000250 0.00000250 0.00000250 0.00000230 0.00000360
87Rb/86Sr 0.17713193 0.13715147 0.16552773 0.13072928 0.12455414 0.12478521
(87Sr/86Sr)i 0.70384315 0.70377558 0.70437235 0.70362474 0.70426289 0.70393814
Lu (ppm) 0.523 0.304 0.372 0.289 0.284 0.326
Hf (ppm) 5.046 2.880 3.516 2.780 2.072 2.816
176Hf/177Hf 0.28275590 0.28287650 0.28286100 0.28279270 0.28296380 0.28282200
2SE 0.00000446 0.00000498 0.00000570 0.00000380 0.00000775 0.00000847
176Lu/177Hf 0.00005729 0.00000265 0.00010676 0.00000242 0.00030381 0.00000446
(176Hf/177Hf)i 0.28242882 0.28254339 0.28252712 0.28246464 0.28253126 0.28245667
εHf(1.13 Ga) 11.03 15.09 14.51 12.30 14.66 12.01

Notes 1) Crystallisation age t= 1134Ma.
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during partial melting and magma evolution (e.g. Wang et al., 2012).
Because DTb/Yb, DGd/Yb and DYb/Lu are> 1 between melt and garnet
(e.g., Irving and Frey, 1978; Weaver and Tarney, 1981; Van Westrenen
et al., 2001), this suggests that garnet is not the dominant phase in the
residual mineral assemblage (e.g., Wang et al., 2012). However, the
observed slight overall HREE depletion could be due to a phase with a

more uniform KD for HREE, such as clinopyroxene. The slope of log
(Nb) versus log (La) (0.77, r2= 0.74) indicates DNb/La< 1, which is a
typical characteristic of partial melts of peridotitic dominant source
(Wang et al., 2014). However, the near-unity slopes of log (Nb)-log(Ta)
and log (Zr)-log (Hf) indicate presence of rutile in the source (e.g., Foley
et al., 2000; Münker et al., 2004; Wang et al., 2014) because the cal-
culated bulk partition coefficients DZr/Hf and DNb/Ta for peridotitic
sources are less than one (DNb/Ta∼ 0.4; Münker et al., 2004; Salters and
Stracke, 2004; Pfänder et al., 2007; Wang et al., 2012; Zr/Hf (DZr/

Hf= 0.3–0.4; Wang et al. 2012 and references therein). These ob-
servations support a predominantly peridotitic source composition with
at least one other rutile-bearing component.

The studied samples have elevated Th/Yb ratios similar to lower
continental crust (LCC), Nb/Yb ratios close to both LCC and EMORB
(Fig. 8A) and, apart from elevated Th and enrichment in LILEs (Cs, Rb,
K, Pb and Sr), the overall trace element distribution profiles of the
samples share similarities with EMORB of Sun and McDonough (1989;
Fig. 8B). All samples lie near a binary mixing line between EMORB and
LCC rather than assimilation and fractional crystallisation trajectories
(AFC; DePaolo, 1981a,b; Fig. 8C). Binary mixing of EMORB with a
depleted mantle-like εNdt (+5.4) and 87Sr/86Sri (0.7030) and 20–30%
of LCC-like component (εNdt=−3.5, same as sample 86285815 of
Charnockite Peninsula pluton) would require the latter to have
87Sr/86Sri ≤0.705 (sample 86285815 has 87Sr/86Sri= 0.708) to pro-
duce a reasonable mixing line between the two end member compo-
nents (not shown in Fig. 8C). The above evidence is consistent with the
interpretation of Sheraton et al. (1990) who on the basis of isotope data
proposed that the source of group 3 and 4 dykes involved a depleted
mantle component, which was probably mixed with a lithospheric
component enriched in subducted crustal material and/or long-term
enriched late Archean or Paleoproterozoic mantle. However, Sheraton
et al. (1990) also argued that significant differences in incompatible
element ratios between the various dyke groups (presumed to be of
similar age) preclude simple two-component mixing, requiring a more
complex source and suggesting that the source region of the dykes was
both laterally and vertically heterogeneous.

6.1.4. Relationship between plutonic rocks and mafic dykes at Bunger Hills
Emplacement of the plutons at Bunger Hills pre-dates the un-

metamorphosed mafic dykes by 20myr (and possibly less), although
syn-plutonic dykes have also been reported (Sheraton et al., 1990,
1992, 1995). Compositions of the plutons range from subalkaline
gabbro to quartz monzogabbro with tholeiitic affinity, and have pri-
mitive mantle-like HFSE ratios and LREE and LILE enrichment
(Sheraton et al., 1992). The parental magmas of the gabbroic rocks had
a high 87Sr/86Sri (0.7091–0.7147) and low εNdt (−9.4) composition
that likely originated from a common heterogeneous, long-term LILE-
and LREE-enriched, Nb-poor mantle source. Compared to the Nb/La
ratios of the older plutonic rocks at Bunger Hills, the Nb/La ratio (0.81,
sample 86286051) of the youngest known pluton, the 1151 ± 4Ma
Booth Peninsula batholith, is much higher and comparable to the
average Nb/La ratio (0.71) of the dyke in this study. In addition, the
higher εNd (−3.5) and lower 87Sr/86Sri (0.7082, sample 86285815) of
the Booth Peninsula batholith suggest a larger contribution from asth-
enospheric mantle than is the case for the older plutons (Nb/
La=0.19–0.25, Paz Cove sample 86286082; εNd=−9.4 and
87Sr/86Sri= 0.71435, Algae Lake sample 86265962, Sheraton et al.,
1992). Moreover, probable syn-plutonic mafic granulite dykes with
high Nb contents have been reported in the Booth Peninsula batholith
(Sheraton et al., 1995).

Sheraton et al. (1992) suggested that Group 1 mafic dykes and the
Charnockite Peninsula pluton could be coeval and originate from long-
term (strongly) enriched lithospheric mantle with an OIB-like Nb-en-
riched component, whereas mafic dyke groups 3 and 4 tapped varying
proportions of depleted asthenospheric mantle and only moderately
enriched lithospheric mantle. Group 3 dykes have higher 87Sr/86Sri

Fig. 8. Incompatible trace element plots for samples from this study and from Marnda
Moorn LIP dykes (Wang et al., 2014). NMORB, EMORB and OIB data are from McDo-
nough, 1989 and lower crust (LCC) from Rudnick and Gao (2003). MCC denotes middle
continental crust and UCC upper continent crust. (A) Nb/Yb vs Th/Yb after Pearce (2008)
(B) NMORB-normalised incompatible trace element profile of samples from BHD1 and
BHD4 (C) Th/Nb vs La/Sm plot showing assimilation- fractional crystallisation (AFC;
after DePaolo, 1981a,b) and binary mixing between EMORB of Sun and McDonough
(1989) and lower crust of Rudnick and Gao (2003). Numbers denote r values. Bulk
partition coefficients DTh=0.01, DNb= 0.02, DLa= 0.11 and DSm=0.19 after Rollinson
(1993) assuming for 5% olivine, 35% clinopyroxene, 4% orthopyroxene, 55% plagioclase
and 1% magnetite.
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(0.7043) than most Group 4 dykes, which results in an older apparent
whole-rock Rb-Sr isochron age (1220 ± 80Ma; Sheraton et al.,1990).
If correct, this would suggest a time-progressive increase in contribu-
tion from less enriched, more depleted mantle material in the dykes,
which in turn is consistent with a similar trend observed in the plutonic
rocks.

6.2. Tectonic setting of Bunger Hills at ca. 1130Ma

6.2.1. Bunger Hills as part of the Albany-Fraser Orogen
The Mesoproterozoic Albany-Fraser Orogen records two major tec-

tonothermal events. The first stage at ca. 1340–1260Ma was associated
with the initial collision between the Western Australian and Mawson
Cratons and the second at ca. 1214–1140Ma with intracratonic re-
activation and extension (Clark et al., 2000), both stages involving NW-
directed compression in a transpressional setting (Myers, 1993; Nelson
et al., 1995; Bodorkos and Clark, 2004). The Bunger Hills have widely
been interpreted as a rifted fragment of the Albany–Fraser Orogen on
the basis of similarities in lithology, structural style, kinematics, timing
and degree of metamorphism (Black et al., 1992a,b; Sheraton et al.,
1993, 1995; Nelson et al., 1995; Clark et al., 2000; Duebendorfer, 2002;
Fitzsimons, 2003; Boger, 2011; Tucker et al., 2017) and more recently
geophysical evidence (Aitken et al., 2014, 2016). The Windmill Islands,
ca. 400 km east along strike of Bunger Hills, have also been proposed as
an along-strike extension of the Albany–Fraser Orogen through similar
arguments (Paul et al., 1995; Post et al., 1997; Zhang et al., 2012;
Morrissey et al., 2017). In the recent reconstruction of Aitken et al.
(2014, 2016), at ca. 1150Ma the Bunger Hills are directly aligned with
the southwestern Albany-Fraser Orogen (Fig. 9).

Tucker et al. (2017) proposed a revised model for the tectonic
evolution of the Bunger Hills during the Paleo- and Mesoproterozoic,

suggesting that they evolved as part of the Biranup and/or Nornalup
zones of the Albany–Fraser Orogen. At ca. 1815–1650Ma, Bunger Hills
(then part of the southern margin of the Yilgarn Craton) was part of a
back-arc (Biranup Zone) above a north-dipping subduction zone along
the southern margin of the Yilgarn Craton (Kirkland et al., 2011;
Spaggiari et al., 2015; Aitken et al., 2016). The period between ca. 1710
and 1650Ma in the Albany-Fraser Orogen coincides with widespread
magmatism, formation of a series of sedimentary basins and high-
temperature metamorphism associated with the Biranup Orogeny
(Kirkland et al., 2011; Spaggiari et al., 2011). Consistent with this
scenario, isotope evidence suggests that recycling of an Archean base-
ment source beneath the Bunger Hills was diluted by significant for-
mation of new crust at ca. 1700Ma (Tucker et al., 2017).

The ca. 1700Ma volcaniclastic sequence at Bunger Hills described
by Tucker et al. (2017) formed as part of the Biranup Zone during ex-
tension and voluminous magmatism in a back-arc setting, likely iso-
lating the area as a basement high. The extensive metapelite sequence
was deposited between ca. 1700 and 1500Ma during uplift and erosion,
possibly in a passive margin setting some distance away from the Yil-
garn Craton margin (Tucker et al., 2017). After a relative period of
quiescence, intense deformation and metamorphism at ca.
1330–1150Ma followed during the two-stage Albany–Fraser Orogeny
and collision of the Western Australian and Mawson cratons with peak
metamorphic conditions at ca. 1200–1150Ma associated with empla-
cement of voluminous isotopically evolved charnockites produced
mainly by crustal reworking and varying contributions from depleted
mantle. The revised model is in agreement with the interpreted location
of Bunger Hills in the model of Aitken et al. (2014, 2016) and consistent
with evidence for back-arc setting at Windmill Islands at ca. 1410Ma
(Morrissey et al., 2017).

Fig. 9. Approximate reconstructed configuration of the Yilgarn Craton, Bunger Hills and Windmill Islands at ca. 1150Ma. Modified after Tucker et al. (2017), Tucker and Hand (2016),
Aitken et al. (2014, 2016), Boger (2011), Spaggiari et al. (2009) and 1:2,500,000 interpreted bedrock geology of Western Australia (Geological Survey of Western Australia, 2015).
Piercing points of between the Darling–Conger and Rodona–Totten Faults are from Aitken et al. (2014, 2016).
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6.2.2. Mesoproterozoic mafic magmatism within the Albany–Fraser Orogen
The interpreted location of Bunger Hills as part of the south-western

Albany–Fraser Orogen (now Nornalup Zone) at ca. 1134Ma suggests
that dykes of this age could also be present further east within the
orogen. Moreover, probable syn-plutonic mafic granulite dykes re-
ported from the ca. 1151Ma Booth Peninsula batholith at Bunger Hills
(Sheraton et al., 1995) implies that dykes of this age may also be pre-
sent elsewhere within the Albany–Fraser Orogen. Mafic dykes at
Windmill Islands are undated, the only available age constraint being
from a late aplite dyke dated at 1138 ± 9Ma with zircon U-Pb (Post,
2000). Post et al. (1997, 2000) proposed that the up to 50m-wide
unmetamorphosed WNW–NW-trending olivine gabbro dykes at Wind-
mill Islands were emplaced after peak metamorphism between ca.
1160Ma and 1138Ma, postdating the Ardery charnockite and the
aplite dykes. Similarly to the studied dyke at Bunger Hills, the olivine
gabbro dykes at Windmill Islands post-date syn- to late-tectonic char-
nockites and appear to have similar chemical and mineralogical char-
acteristics (Sheraton et al., 1995). The consistencies in trend, geo-
chemistry and petrology between dyke groups 3 and 4 at Bunger Hills,
the olivine gabbro dykes at Windmill Islands and the dyke in this study
suggest that these dykes could be part of the same NW trending swarm
with a>400 km lateral extent.

Mafic dykes of similar age are not known within the Albany–Fraser
Orogen or elsewhere in the Yilgarn Craton. The youngest identified
Gnowangerup dykes of the Marnda Moorn LIP are 1203 ± 15Ma
(Evans, 1999) and the oldest known Warakurna LIP dykes in north-
western Yilgarn are 1075 ± 10Ma (Wingate, 2003). However, un-
dated NE-trending dykes in the Tropicana region (Spaggiari et al.,
2011) and NW-trending Beenong dykes in the south-east Yilgarn Craton
are visible in aeromagnetic imagery and cross-cut all structures in the
orogen (Wingate, 2007; Spaggiari et al., 2009, 2011). Field evidence
indicates that the NE-trending undeformed amphibolitic dykes formed
after deformation had ceased but before cooling, suggesting that they
are younger than ca. 1140Ma and may have formed late in stage II of
the Albany–Fraser Orogeny (Spaggiari et al., 2011). Whilst these dykes
may belong to the Warakurna LIP, or another as yet unidentified event,
it is equally possible that they could be part of the same magmatic event
that produced the 1134Ma mafic dykes at Bunger Hills and possibly the
olivine gabbro dykes at Windmill Islands. If so, the Bunger Hills and the
Windmill Islands must have cooled much more rapidly after peak me-
tamorphism because the dykes there are unmetamorphosed. Many
dykes within the Albany–Fraser Orogen that have trends similar to the
Gnowangerup and Fraser dykes of the Marnda Moorn LIP have been
ascribed as belonging to the Marnda Moorn suite. However, as de-
monstrated by evidence from other mafic dyke studies in the Yilgarn
and elsewhere, it cannot always be assumed that similarly oriented
dykes in a region are part of the same magmatic event (Hanson et al.,
2004; Wingate, 2007; French and Heaman, 2010; Stark et al., 2017).

If the Bunger Hills and Windmill Islands areas were juxtaposed with
the Albany-Fraser Orogen at the time, the NW trend of the ca. 1134Ma
dykes in both areas (assuming they are coeval) probably also reflects
the regional tectonic setting of the Albany-Fraser Orogen. The struc-
tural style and kinematics between the Albany-Fraser Orogen and the
Bunger Hills area have been correlated (Duebendorfer, 2002) and peak
metamorphism at Bunger Hills area corresponds closely with stage 2 of
the Albany Fraser Orogeny (Sheraton et al., 1993; Clark et al., 2000;
Tucker and Hand, 2016; Tucker et al., 2017). The NW-trending Bunger
Hills dykes were emplaced during the final phase of stage 2, which
within the Albany-Fraser Orogen has been interpreted as an episode of
intracratonic reactivation, metamorphism and significant extension in a
NNW to NW oriented transpressional setting (Bodorkos and Clark,
2004; Kirkland et al., 2011). Moreover, the ca. 1214–1203Ma Marnda
Moorn dykes emplaced early during stage 2, have a similar WN to NNW
orientation in the southwestern part of the Albany-Fraser Orogen
(Wingate and Pidgeon, 2005; Wingate et al., 2005; Wingate, 2007,
2017) .

6.2.3. Tectonic setting during emplacement of the 1134Ma mafic dykes at
Bunger Hills

As discussed in Section 6.1.4, clues to the tectonic evolution leading
to mafic dyke emplacement at Bunger Hills may come from the plutonic
rocks in the area. Mesoproterozoic charnockites in East Antarctica have
been attributed to continental collision, their formation resulting from
high temperature decompression melting of dehydrated but fertile
granulites in the lower crust during post-collisional exhumation and
decompression (Young et al., 1997; Zhao et al., 1997; Mikhalsky et al.,
2006). The presence of abundant, largely unmetamorphosed late-tec-
tonic charnockites and clockwise P–T paths at Bunger Hills and Wind-
mill Islands is consistent with this scenario. The ca. 1203–1151Ma
Bunger Hills charnockites are synchronous with the ca. 1200–1140Ma
Esperance Supersuite of the Albany–Fraser Orogen, the ca.
1205–1163Ma Ardery charnockite, and the youngest known Marnda
Moorn LIP dykes (the Gnowangerup suite) dated at 1203 ± 15Ma
(Evans, 1999; Post, 2000; Zhang et al., 2012; Morrissey et al., 2017).
Coeval emplacement of orogen-wide plutonic rocks and the Marnda
Moorn LIP dykes (Wang et al., 2014) suggests that extensive melting of
lower crust and the lithospheric mantle was synchronous with empla-
cement of vast amounts of mafic magma along the southern, western
and eastern margins of the Yilgarn Craton. Emplacement of the Marnda
Moorn dykes required lithospheric extension along the entire length of
the orogen (Wingate et al., 2000) and probably caused the elevated
regional thermal gradient that produced metamorphic monazite growth
at ca. 1205Ma (Dawson et al., 2003). Onset of rapid uplift and cooling
between 1169Ma and 1159Ma in the western Albany–Fraser Orogen
(Scibiorski et al., 2015) coincides with ca. 1170Ma plutonic magma-
tism at Bunger Hills, followed by an increase in (depleted and/or less
enriched) mantle input in the Ardery charnockite at Windmill Islands
by ca. 1163Ma (Morrissey et al., 2017) and in the Booth Peninsula
batholith by ca. 1151Ma (Sheraton et al., 1992).

The source of the ca. 1203–1170Ma Bunger Hills plutons probably
involved a heterogeneous, highly enriched mantle region with con-
tributions from the lower crust and metasomatised SCLM (Sheraton
et al., 1992; Zhang et al., 2012; Morrissey et al., 2017; Tucker et al.,
2017) similar to the Esperance Supersuite granites, which were derived
mainly by crustal recycling (Kirkland et al., 2011; Smithies et al., 2015;
Tucker et al., 2017). In contrast, the Booth Peninsula batholith and the
Ardery charnockite at Windmill Islands had a distinctively less enriched
source (Sheraton et al., 1992; Morrissey et al., 2017). The apparent age-
progressive increase of asthenospheric mantle input in the Bunger Hills
and Windmill Islands charnockites is consistent with mafic under-
plating associated with orogenic collapse or rapid uplift interpreted as
syn-tectonic active transpression (Scibiorski et al., 2015). This uplift
appears to have affected both the Bunger Hills and Windmill Islands
regions and may have been long-lived, with first plutonic activity
commencing by ca. 1203Ma and continuing at least until ca. 1151Ma.
Following cooling, at the latest by 1134Ma, the crust was brittle en-
ough to allow emplacement of the mafic dykes.

Geochemical evidence is consistent with a depleted or slightly en-
riched mantle source which interacted with a component of the sub-
continental lithospheric mantle (SCLM) and/or lower crust that was
metasomatically enriched and hybridized by an earlier subduction
event or events during the Paleoproterozoic, and possibly in the
Neoarchean (Sheraton et al., 1990, 1995). At Bunger Hills, formation of
orthogneisses and the mantle extraction ages of the studied dyke all fall
within the ca. 1815–1650Ma interval, which is coeval with basin for-
mation in a back-arc setting along the southern margin of the Yilgarn
Craton during active subduction. During Paleoproterozoic arc activity,
the mantle wedge would have been hybridized by addition of slab-de-
rived fluids and/or melts and later incorporated into the continental
lithospheric mantle during the Biranup and Albany-Fraser orogenies.
The metasomatised and highly heterogeneous (at least in part, long-
term enriched) sub-arc mantle was later tapped by parent magmas to
the various plutons and dykes during active tectonic uplift and cooling
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associated with the final stages of the Albany–Fraser Orogeny. The
emplacement of the 1134Ma mafic dyke suite could thus mark the final
phase of a prolonged episode of post-orogenic uplift which was asso-
ciated with continued mafic underplating, decompression melting of
the SCLM and lower crust that produced the plutonic rocks and, lastly, a
thinned and thermally weakened lithosphere that permitted (astheno-
spheric) mantle material to dominate and intrude to at least middle
crustal levels.

An alternative mechanism for the formation of the dykes could in-
volve a mantle source much further away. If the NW-trending Windmill
Island dykes are coeval with the NW-trending dykes at Bunger Hills, the
extent of such a dyke swarm of at least 400 km could suggest a possible
plume-like mantle source, similar to the giant ca. 1270Ma Mackenzie
(e.g. Ernst and Baragar, 1992; Baragar et al., 1996; Hou et al., 2010)
and the ca. 2500–2540Ma Matachewan dyke swarms (e.g. Ernst and
Bleeker, 2010; Ciborowski et al., 2015). Moreover, dyke widths more
than 10m are characteristic of regional dyke swarms that acted as
plumbing systems for LIPs (e.g. Ernst and Bell, 1992; Ernst, 2014). In
this scenario, the dykes could have been emplaced laterally from a
distant source, interacting with the locally heterogeneous and variably
metasomatised continental lithosphere. If this is the case, dykes of ca.
1134Ma age could also be present within the Albany-Fraser Orogen.

7. Conclusions

New U-Pb geochronology for the largest NW-trending olivine
gabbro dyke at Bunger Hills yields a 1134 ± 9Ma age, which is in-
terpreted as the crystallisation age of the dyke. The new age constraint
indicates that, according to current tectonic models, the dykes were
emplaced in a late- to post-orogenic extensional setting that followed
the collision of the West Australian and Mawson cratons during the
final stage of the Mesoproterozoic Albany-Fraser Orogeny. Post-oro-
genic uplift and thinning of the lithosphere was associated with at least
50 million years of episodic crustal melting and reworking that pro-
duced the abundant plutonic rocks at Bunger Hills. Geochemical evi-
dence suggests that the source of the dyke contained at least two dis-
tinctive components: a significant proportion of material with depleted
mantle-like 143Nd/144Ndi composition and a minor lower crust-like,
metasomatically enriched lithospheric contaminant. A progressive in-
crease in mantle-derived material in the plutonic rocks suggests that
lithospheric extension was accompanied by mafic underplating. Uplift,
extension and continued thermal weakening of the lithosphere by
1134Ma culminated in the emplacement of several generations of mafic
dykes within a relatively short period of time, which appear to carry
variable imprints of the reworked lower crust underlying Bunger Hills.
The undated WNW-NW trending olivine gabbro dykes at Windmill
Islands also appear to post-date syn- to late-tectonic charnockites there
and similarities in trend, geochemistry and petrology with the dykes at
Bunger Hills suggest that these dykes could all be part of the same NW
trending swarm at least 400 km in extent. This suggests an alternative
mechanism of dyke formation involving a distant mantle source, po-
tentially a plume, with the laterally propagating magma interacting
locally with the heterogeneous lithosphere.
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A R T I C L E I N F O

Keywords:
Yilgarn Craton
Zimbabwe Craton
Mafic dykes
Geochronology
U-Pb baddeleyite
Yandinilling dyke swarm

A B S T R A C T

The Archean Yilgarn Craton in Western Australia hosts at least five generations of Proterozoic mafic dykes, the
oldest previously identified dykes belonging to the ca. 2408–2401Ma Widgiemooltha Supersuite. We report here
the first known Archean mafic dyke dated at 2615 ± 6Ma by the ID-TIMS U-Pb method on baddeleyite and at
2610 ± 25Ma using in situ SHRIMP U-Pb dating of baddeleyite. Aeromagnetic data suggest that the dyke is part
of a series of NE-trending intrusions that potentially extend hundreds of kilometres in the southwestern part of
the craton, here named the Yandinilling dyke swarm. Mafic magmatism at 2615Ma was possibly related to
delamination of the lower crust during the final stages of assembly and cratonisation, and was coeval with the
formation of late-stage gold deposit at Boddington. Paleogeographic reconstructions suggest that the Yilgarn and
Zimbabwe cratons may have been neighbours from ca. 2690Ma to 2401Ma and if the Zimbabwe and Kaapvaal
cratons amalgamated at 2660–2610Ma, the 2615Ma mafic magmatism in the southwestern Yilgarn Craton may
be associated with the same tectonic event that produced the ca. 2607–2604Ma Stockford dykes in the Central
Zone of the Limpopo Belt. Paleomagnetic evidence and a similar tectonothermal evolution, including coeval low-
pressure high-temperature metamorphism, voluminous magmatism, and emplacement of mafic dykes, support a
configuration where the northern part of the Zimbabwe Craton was adjacent to the western margin of the Yilgarn
Craton during the Neoarchean. Worldwide, reliably dated mafic dykes of this age have so far been reported from
the Yilgarn Craton, the Limpopo Belt and the São Francisco Craton.

1. Introduction

Mafic dyke swarms are important markers for supercontinent re-
constructions and mantle plumes (e.g., Ernst and Buchan, 1997; Buchan
et al., 2001; Bleeker and Ernst, 2006; Ernst and Srivastava, 2008; Ernst
et al., 2010, 2013) and act as indicators of local tectonic setting, in-
cluding paleostress fields and pre-existing crustal weaknesses (Ernst
et al., 1995; Hoek and Seitz, 1995; Halls and Zhang, 1998; Hou, 2012;
Ju et al., 2013). Throughout the geological evolution of the Earth, mafic
dykes have been associated with processes causing intracratonic ex-
tension of the crust, such as subduction (back-arc extension), post-
orogenic collapse, plumes and rifting during supercontinent breakup.
However, mafic dykes may also be linked with early cratonisation
history soon after amalgamation and stabilization of crustal blocks. A

recent example is reported from the North China Craton, where em-
placement of ca. 2516–2504Ma dykes signifies the presence of a deep
subcontinental lithosphere and constrains the time of final cratonisa-
tion during the Neoarchean (Li et al., 2010).

The Archean Yilgarn Craton of Western Australia hosts at least five
generations of Proterozoic mafic dykes, including the 2408–2401Ma
Widgiemooltha Supersuite (Sofoulis, 1965; Evans, 1968; Hallberg,
1987; Doehler and Heaman, 1998; Nemchin and Pidgeon, 1998;
Wingate, 1999; French et al., 2002; Pisarevsky et al., 2015), the
1888Ma Boonadgin dykes (Stark et al., 2017), the 1210Ma Marnda
Moorn Large Igneous Province (LIP; Wingate et al., 1998, 2000;
Wingate, 2007), and limited occurrences of the 1075Ma Warakurna LIP
dykes (Wingate et al., 2002, 2004) and the 735Ma Nindibillup dykes
(Spaggiari et al., 2009, 2011; Wingate, 2017). The Widgiemooltha
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Supersuite has been linked with a mantle plume and rifting of an Ar-
chean supercraton (Heaman, 1997; Halls et al., 2007; Mohanty, 2015),
the Boonadgin dykes with post-orogenic far-field extension or a mantle
plume (Stark et al., 2017) and the Marnda Moorn and Warakurna LIPs
also with mantle plumes (Wingate et al., 2004; Wang et al., 2014). We
present here in situ SHRIMP and ID-TIMS U-Pb results for the first
known Archean mafic dyke within the Yilgarn Craton, emplaced during
the final stages of cratonisation and marking one of the earliest tecto-
nothermal events affecting the stabilized craton. We discuss the tectonic
setting, timing of emplacement and the possible association of the mafic
dykes with post-orogenic processes during final stages of cratonisation.
We also consider evidence from paleogeographic reconstructions and
coeval tectonothermal events that may link the evolution of the Yilgarn
and Zimbabwe cratons during the Neoarchean.

2. Regional geology

2.1. The Yilgarn Craton

The Archean Yilgarn Craton of Western Australia is a ca.
900×1000 km granite-greenstone crustal block, which is divided into
the South West, Narryer, Youanmi, Kalgoorlie, Kurnalpi and Burtville
terranes, the latter three forming the Eastern Goldfields Superterrane
(Fig. 1) (Cassidy et al., 2006). The craton is bounded by three Proter-
ozoic orogenic belts: the ca. 2005–570Ma Capricorn Orogen in the
north (Cawood and Tyler, 2004; Sheppard et al., 2010; Johnson et al.,
2011), the ca. 1815–1140Ma Albany-Fraser Orogen in the south and
east (Nelson et al., 1995; Clark et al., 2000; Spaggiari et al., 2015), and
the ca. 1600–525Ma Pinjarra Orogen in the west (Myers, 1990; Wilde,

1999; Ksienzyk et al., 2012). Most of the terranes formed between ca.
3050 and 2550Ma and whereas the South West and Narryer Terranes in
the west comprise high-grade supracrustal rocks, granitic gneisses and
granites, the Youanmi and Eastern Goldfields Terranes in the east are
dominated by greenstone belts separated by granites and granitic
gneisses (Fig. 2) (e.g., Gee et al., 1981; Pidgeon and Wilde, 1990;
Myers, 1993; Wilde et al., 1996; Nelson, 1997; Cassidy et al., 2002;
Barley et al., 2003). Recent Sm-Nd isotopic mapping suggests the pre-
sence of an older western proto-craton comprising the Narryer, South
West and Youanmi Terranes and a younger (more juvenile) eastern
part, which comprises the Eastern Goldfields Superterrane (e.g.
Champion and Cassidy, 2007; Mole et al., 2015; Witt et al., 2018).

Amalgamation of the Yilgarn Craton involved repeated collisions
during a Neoarchean orogeny between ca. 2730 and 2625Ma (Myers,
1993, 1995; Barley et al., 2003; Blewett and Hitchman, 2006; Korsch
et al., 2011; Zibra et al., 2017a; Witt et al., 2018) with development of a
stable cratonic lithosphere by ca. 2660Ma (Zibra et al., 2017b). The
Youanmi Terrane is considered to be the isotopically oldest nucleus of
the Yilgarn Craton onto which other terranes accreted (Cassidy et al.,
2002, 2006; Champion and Cassidy, 2008; Champion, 2013), with
collisions between the Youanmi and Narryer terranes sometime be-
tween ca. 2780 and 2630Ma (Myers, 1993, 1995; Nutman et al., 1993;
Cassidy et al., 2002), the Youanmi and Kalgoorlie Terranes between ca.
2678 and 2658Ma (Standing, 2008; Czarnota et al., 2010) and the
Youanmi and the South West Terranes between ca. 2652 and 2625Ma
(Wilde and Pidgeon, 1987; Nemchin et al., 1994; Qiu et al., 1997a; Qiu
and Groves, 1999; McFarlane, 2010). Cratonisation was accompanied
by widespread granitic magmatism between ca. 2690Ma and 2625Ma
(Compston et al., 1986; Wilde and Pidgeon, 1986; Champion and

Fig. 1. Map of the Yilgarn Craton showing major tectonic units. Inset shows the extent of the West Australian Craton (Pilbara Craton, Yilgarn Craton and Capricorn
Orogen). From Geological Survey of Western Australia 1:2.5 M Interpreted Bedrock Geology 2015 and 1:10M Tectonic Units 2016. Dashed lines are terrane
boundaries within the southwestern Yilgarn Craton after Wilde et al. (1996): BaT=Balingup Terrane, BoT=Boddington Terrane and LGT=Lake Grace Terrane.
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Sheraton, 1997; Nemchin and Pidgeon, 1997; Qiu et al., 1997a,b;
Smithies and Champion, 1999; Cassidy et al., 2002; Mole et al., 2012).
Extensive gold mineralisation was associated with the late stages of
cratonisation (Kent et al., 1996; McNaughton and Groves, 1996; Yeats
et al., 1996; Allibone et al., 1998; Witt and Vanderhor, 1998; Qiu and
Groves, 1999; Blewett et al., 2010).

2.2. The South West Terrane

Following the model of Wilde et al. (1996), the South West Terrane
is divided (from west to east) into the Balingup, Boddington and Lake
Grace sub-terranes (Figs. 1 and 2) based on U-Pb geochronology, deep
crustal seismic data and re-evaluation of regional geology. It should be
noted that Mole et al. (2012) proposed that the eastern part of the South
West terrane could be part of the Youanmi Terrane crust on the basis of
zircon U-Pb geochronology and spatial occurrence of granite pulses.

The Balingup Terrane comprises ca. 3070–2830Ma amphibolite
facies supracrustal rocks of the Balingup and Chittering metamorphic

belts (Fig. 2), interpreted as sedimentation at an evolving continental
margin (Wilde, 1980, 1990; Gee et al., 1981; Fletcher et al., 1985).
Granitoids emplaced in the central and northern part of the terrane
include the ca. 2677–2626Ma Darling Range batholith (Wilde and Low,
1978; Nieuwland and Compston, 1981; Nemchin and Pidgeon, 1997)
and the ca. 2612Ma Logue Brook Granite, although the latter may re-
present a recrystallisation age (Compston et al., 1986; Nemchin and
Pidgeon, 1997).

The Boddington Terrane is separated from the Balingup Terrane by
a ca. 2 km-wide shear zone and consists predominantly of granitoids of
the Darling Range batholith, which enclose the greenschist facies
Saddleback and Morangup greenstone belts and parts of the Jimperding
metamorphic belt (Fig. 2) (Wilde and Low, 1978; Wilde, 1980, 1990;
Wilde et al., 1996). The ca. 3177–3100Ma amphibolite facies Jim-
perding metamorphic belt consists of supracrustal rocks (Gee et al.,
1981; Wilde, 1990) whereas the ca. 2714–2660Ma Saddleback green-
stone belt (Wilde, 1976; Wilde and Pidgeon, 1986; Pidgeon and Wilde,
1990; Allibone et al., 1998) within the Boddington domain has been

Fig. 2. Map of the Yilgarn Craton showing terrane and sub-terrane boundaries and greenstone belt and granite distributions. Modified after Witt et al. (2018). South
West Terrane sub-terranes are from Wilde et al. (1996) and the boundary with the Youanmi Terrane is after Cassidy et al. (2006).
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interpreted as a remnant oceanic island or continental margin arc
(Wilde et al., 1996; Korsch et al., 2011) and hosts the ca. 2675–2611Ma
Boddington Cu-Au deposit (e.g. Roth et al., 1990, 1991; Allibone et al.,
1998). The greenschist facies Morangup greenstone belt in the northern
part of the terrane is considered to be coeval with the Saddleback belt
and comprises rocks with similar arc-type geochemical signatures
(Wilde, 1990; Wilde and Pidgeon, 1990).

The transition to the Lake Grace Terrane is marked by a change in
structural style and increasing metamorphic grade (Wilde and Low,
1978; Wilde et al., 1996) across a major crustal discontinuity marked by
the South West Seismic Zone (Fig. 2) (Doyle, 1971; Dentith et al., 2000;
Dentith and Featherstone, 2003). The terrane comprises deformed
granitoids, felsic gneisses, several greenstone belt remnants and the
eastern apart of the Jimperding metamorphic belt, all metamorphosed
under low-pressure granulite facies conditions (Gee et al., 1981; Wilde,
1990; Wilde et al., 1996). Estimates of timing of peak metamorphism
range between ca. 2649 and 2625Ma (Wilde and Pidgeon, 1987;
Nemchin et al., 1994; Qiu et al., 1997b; McFarlane, 2010) and lower
amphibolite facies conditions may have been reached at ca. 2645Ma
(McFarlane, 2010). Griffin's Find, a small gold deposit ca. 175 km ESE
of Boddington (Fig. 1), records peak metamorphic conditions with
temperatures of 820–870 °C and at least 5.5 kbar (Tomkins and Grundy,
2009). Charnockites emplaced at ca. 2627Ma have been interpreted as
emplaced during syn-peak metamorphism (Wilde and Pidgeon, 1987;
Wilde et al., 1996), although younger ca. 2587Ma granitoids are also
present (Wilde and Pidgeon, 1987).

2.3. Mafic dykes

The Yilgarn Craton hosts numerous dyke suites of different or-
ientations and dyke density that increase towards the southern and
western craton margins (Hallberg, 1987; Tucker and Boyd, 1987). The
dykes are clearly discernible in aeromagnetic data but deep weathering
and thick regolith cover make sampling difficult. The largest dykes
belong to the E-W to NE-SW trending 2418–2408Ma Widgiemooltha
Supersuite (Sofoulis, 1965; Evans, 1968; Campbell et al., 1970;
Hallberg, 1987; Doehler and Heaman, 1998; Nemchin and Pidgeon,
1998; Wingate, 1999, 2007; French et al., 2002), which includes the
2401 ± 1Ma Eraynia dykes in the eastern part of the craton
(Pisarevsky et al., 2015). The Widgiemooltha dykes are up to 3.2 km
wide and extend up to 700 km across the craton, with the largest in-
trusions (Jimberlana and Binneringie) showing well-developed igneous
layering (Campbell et al., 1970; Lewis, 1994). The most extensive dyke
swarm in the craton is the 1210Ma Marnda Moorn LIP which consists
of several sub-swarms of different orientations intruding along the
craton margins (Isles and Cooke, 1990; Evans, 1999; Wingate et al.,
2000; Pidgeon and Nemchin, 2001; Pidgeon and Cook, 2003; Wingate
and Pidgeon, 2005; Wingate, 2007; Claoué-Long et al., 2009). Outcrops
in the southeast are limited to a single occurrence, and the extent of the
dykes in the northeast is unknown due to cover rocks, although one E-W
oriented dioritic dyke dated at 1215 ± 11Ma has been reported fur-
ther inland (Qiu et al., 1999). Recently, a NW-trending 1888Ma dyke
swarm of unknown extent has been identified in the southwestern
Yilgarn Craton and may be part of the Bastar-Cuddapah LIP of India
(Stark et al., 2017; Shellnutt et al., 2018). Other known dyke swarms
with limited occurrences include the SW-trending dykes of the 1075Ma
Warakurna LIP in the northern Yilgarn Craton (Wingate et al., 2004),
the WNW-trending ca. 735Ma Nindibillup dykes in the central and SE
Yilgarn Craton (Spaggiari et al., 2009, 2011; Wingate, 2017), the NNE-
trending ca. 750Ma Northampton dykes in the far west (Embleton and
Schmidt, 1985) and the undated (likely< 1140Ma) NW-trending
Beenong dykes in the southeastern Yilgarn Craton (Wingate, 2007;
Spaggiari et al., 2009, 2011).

3. Samples

3.1. Field sampling

The field sampling area was selected using satellite imagery
(Landsat/Copernicus or Astrium/CNES from Google Earth) and 1:250
000 geological maps from the Geological Survey of Western Australia
(GSWA). The Corrigin map sheet (GSWA Corrigin 1:250,000 geological
map, SI 50-3, 1985) shows several NE-trending mapped dykes in the
area and the aeromagnetic data roughly coincides with some of these.
Sample 16WDS13 (32 06.588 S, 117 09.072 E) was collected from a
small ridge within an agriculturally cleared area adjacent to the main
road (Fig. 3), ca. 21 km east of the town of Beverley and is interpreted
to be representative the NE-trending dykes in the area. Basement rocks
are not exposed at the outcrop but geological mapping indicates that
the dyke intrudes Archean metagranite at this location. The outcrop at
the sample location is fresh and shows minor surficial weathering.

3.2. Sample description

Petrography indicates that the dyke is a fresh dolerite with inter-
granular ophitic to sub-ophitic texture, comprising ca. 45–50% plagi-
oclase, 35–40% pyroxene, up to 5% ilmenite and magnetite, 1–2%
sulfides (mainly pyrite and chalcopyrite) and< 1% chlorite, quartz and
apatite (Fig. 4). Plagioclase is slightly affected by sericitisation and
most pyroxene grains have been altered to a variable degree. The main
U- and Th-bearing accessory mineral is baddeleyite, only identifiable
using an SEM due to small crystal size (typically ≤70 μm long and
20–30 μm wide). Rare zirconolite crystals are also present and form

Fig. 3. Field photos of the dyke at the sample location (sample 16WDS13) (A)
looking NE and (B) looking north. The dyke forms a wide NE-trending ridge,
which extends along strike as a series of similar discontinuous ridges.

J.C. Stark et al. Precambrian Research 317 (2018) 1–13

4



euhedral to subhedral prisms and laths up to 60 μm long and 10 μm
wide.

4. U-Pb geochronology

4.1. SHRIMP U-Pb geochronology

Polished thin sections were scanned to identify baddeleyite, zircon
and zirconolite with a Hitachi TM3030 scanning electron microscope
(SEM) equipped with energy dispersive X-ray spectrometer (EDX) at
Curtin University. For SHRIMP (Sensitive High Resolution Ion
Microprobe) U-Pb dating, selected grains were drilled directly from the
thin sections using a micro drill and mounted into epoxy disks, which
were cleaned and coated with 40 nm of gold. Baddeleyite in thin sec-
tions forms subhedral to euhedral equant, prismatic and tabular grains
and laths, some with thin zircon rims, and most are< 70 μm long and
up to 30 μm across. Only one crystal with suitable dimensions for
SHRIMP dating was identified, closely associated with quartz (Fig. 5).

Baddeleyite was analysed for U, Th and Pb using the SHRIMP II at
the John de Laeter Centre at Curtin University in Perth, Australia, fol-
lowing standard operating procedures after Williams (1998). The
SHRIMP analysis method for mounts with polished thin section plugs,
as outlined in Rasmussen and Fletcher (2010), was modified for bad-
deleyite. Mass resolution for all analyses was ≥5000. During the ses-
sion, 19 baddeleyite and 13 standard analyses were undertaken, with
standard zircon OG1 (Stern et al., 2009) employed for monitoring of

instrumental mass fractionation and BR266 zircon (Stern, 2001) for
calibration of U and Th concentration and as an accuracy standard.
Phalaborwa baddeleyite (Heaman, 2009) and NIST were analysed as
additional standards. Spot size was ca. 11 μm with primary O2

− current
at 0.5 nA and count times 10 s for 204Pb, 206Pb, 208Pb and 30 s for 207Pb.
Data were processed with Squid version 2.50 (Ludwig, 2009) and Iso-
plot version 3.76.12 (Ludwig, 2012). For common Pb correction,
common Pb isotopic composition was calculated from the Stacey and
Kramers (1975) two-stage terrestrial Pb isotopic evolution model. The
assigned 1σ external Pb/U error is 1% and analysis is given with 1σ
error.

4.2. ID-TIMS U-Pb geochronology

One block was sawn from the field bulk rock sample 16WDS13E to
remove weathering and approximately 40 baddeleyite grains were se-
parated using the technique of Söderlund and Johansson (2002). The
best-quality baddeleyite grains were split into three fractions of 5–6
grains each and thereafter transferred into Teflon© capsules. The grains
were carefully washed in several steps using ultrapure 3M HNO3. A
small amount of a 205Pb-233-236U tracer solution and 10 drops of con-
centrated HF and HNO3 (in proportion 10:1) were added to the Teflon©
capsules. The capsules were inserted into steel jackets and placed in an
oven at 200 °C for 3 days. After being dried down on a hotplate, 1 drop
of 0.25M H3PO4 was added to each capsule along with 10 drops of
6.2 M ultra-pure HCl. The capsules were dried again on a hotplate at
100 °C. Each sample was re-dissolved in 2 μl of silica gel and then
loaded on an out-gassed, single Re filament.

The intensities of U and Pb isotopes were measured on a Finnigan
Triton thermal ionization multi-collector mass spectrometer at the
Swedish Museum of Natural History in Stockholm. The mass spectro-
meter is equipped with Faraday cups and an ETP Secondary Electron
Multiplier. Lead was analysed at filament temperatures of
1210–1240 °C, while the intensities of 233U, 236U and 238U were re-
corded subsequently at filament temperatures exceeding 1320 °C. The
initial Pb composition was taken from Stacey and Kramers (1975), and
the 238U and 235U decay constants are from Jaffey et al. (1971). Pro-
cedural blank level was 0.6 pg for Pb and 0.06 pg for U.

Fig. 4. Plane (A) and crossed polar (B) photomicrographs of sample
16WDS13E.

Fig. 5. SEM backscatter image showing SHRIMP spot on baddeleyite crystal
16WDS13E-409B.
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5. Results

5.1. SHRIMP U-Pb geochronology

As part of preliminary reconnaissance SHRIMP dating of several
dykes sampled in the area, one analysis (Table 1) was obtained from
one baddeleyite grain during the SHRIMP session (Fig. 5). The analysed
baddeleyite crystal had U and Th concentrations of 59.7 ppm and
1.4 ppm, respectively, and yielded a common Pb-corrected 207Pb/206Pb
date of 2607 ± 25Ma (1σ), which is interpreted as indicative of the
crystallisation age of the dyke. Based on this preliminary result, TIMS
U-Pb analysis was carried out on baddeleyite from the same sample. It
should be noted that despite only having one analysis available, the
decision to proceed with TIMS dating was based on the initial identi-
fication of a potentially new dyke age from SHRIMP dating.

5.2. ID-TIMS U-Pb geochronology

U-Pb data for the samples is presented in Table 2 and the calculated
isotopic ages are shown in the concordia diagram in Fig. 6. One fraction
of five grains and two fractions of six grains yielded slightly discordant
common Pb-corrected 207Pb/206Pb dates of 2615.7 ± 2.9Ma,
2616.7 ± 3.1Ma and 2611.3 ± 3.3Ma, respectively, giving a
weighted mean 207Pb/206Pb date of 2615 ± 6Ma (MSWD=2.8).
Forced regression through 0Ma yields an upper intercept date of
2615 ± 3Ma. However, despite higher uncertainty, the weighted
mean 207Pb/206Pb date is preferred due to slight discordance of the
analyses. Thus, the 207Pb/206Pb age is interpreted as the best, though
conservative, emplacement age of the mafic dyke.

6. Discussion

We have identified the oldest known mafic dyke within the Yilgarn
Craton, here informally named as the Yandinilling dyke. The extent of
dykes of this age within the craton is currently unknown but aero-
magnetic data (Geological Survey of Western Australia magnetic
anomaly grids with 20–40m cell size, Geoscience Australia magnetic
grid of Australia V6 2015 base reference) show that linear NE-trending
features interpreted as dykes extend at least 150 km northeast from
Boddington and across the Boddington and Lake Grace terrane
boundary. The dyke dated in this study lies on one of these features,
suggesting it is part of a much longer intrusion that may belong to a
major dyke swarm. The temporally closest known mafic magmatic
event within the Yilgarn Craton produced the ca. 2410Ma
Widgiemooltha Supersuite (Sofoulis, 1965; Evans, 1968; Campbell
et al., 1970; Hallberg, 1987; Doehler and Heaman, 1998; Nemchin and
Pidgeon, 1998; Wingate, 1999, 2007; French et al., 2002). The E- to
ENE-trending Widgiemooltha dykes traverse nearly the entire width of
the craton approximately orthogonally to the regional structural grain,
similar to the ca. 2480–2450Ma Matachewan and Hearst dykes in
North America (Heaman, 1997). Worldwide, mafic dykes of similar age
to the Yandinilling dyke are found in the São Francisco Craton in Brazil,
dated at 2624 ± 7Ma (Oliveira et al., 2013), and in the high-grade
Limpopo Belt between the Zimbabwe and Kaapvaal cratons in of
southern Africa, where deformed dykes have been dated at
2559 ± 4Ma, 2607 ± 5Ma and 2604 ± 6Ma (Xie et al., 2017).
Evidence for a possible connection between the Yilgarn and Zimbabwe
cratons is discussed in the following sections.

6.1. Assembly of the South West Terrane

Amalgamation of the South West Terrane is considered to have in-
volved subduction in the west and continental collision in the east. The
ca. 2715–2675Ma Saddleback greenstone belt has been interpreted as
an island or continental arc (Wilde, 1990; Wilde et al., 1996; Korsch
et al., 2011). Subduction of the Balingup Terrane beneath theTa
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Boddington Terrane between ca. 2714Ma and 2969Ma (Korsch et al.,
2011) and collision between ca. 2696 and 2675Ma is constrained by
calc-alkaline magmatism and granitic intrusions within the Saddleback
Group (Allibone et al., 1998; Cassidy et al., 1998; Wilde and Pidgeon,
2006). Following their amalgamation, the Lake Grace Terrane was
subducted under the newly formed Balingup-Boddington Terrane pro-
ducing the pyroclastic and intrusive rocks of the upper Saddleback
Group at ca. 2675–2650Ma (Wilde and Pidgeon, 1986; Allibone et al.,
1998; Zhao et al., 2006). Collision and final formation of the South
West Terrane along a suture now marked by the South West Seismic
Zone (Doyle, 1971; Middleton et al., 1993; Wilde et al., 1996; Dentith
et al., 2000) is uncertain but probably took place sometime between ca.
2649 and 2625Ma, constrained by low-pressure amphibolite to gran-
ulite facies metamorphism at ca. 2649–2640Ma (Nemchin et al., 1994;
McFarlane, 2010), emplacement of charnockites at ca. 2627Ma (Wilde
and Pidgeon, 1987; Wilde et al., 1996) and monazite and zircon growth
at ca. 2625Ma (McFarlane, 2010) in the eastern Lake Grace Terrane.

6.2. Mechanism and timing of 2615Ma mafic magmatism: post-orogenic
lithospheric delamination beneath the Yilgarn Craton?

The nature of widespread granitic magmatism during the amalga-
mation of the Yilgarn Craton provides evidence for significant changes
in tectonic setting during the Neoarchean. The ca. 2690–2650Ma high-
Ca granites (Champion and Sheraton, 1997) were associated with
orogenic thickening of the crust and partial melting of an isotopically
young, deep source of basaltic composition, whereas the ca.
2650–2625Ma low-Ca granites were emplaced craton-wide and in-
volved partial melting of a shallow, isotopically older tonalitic source

(Champion and Sheraton, 1997; Qiu and Groves, 1999; Cassidy et al.,
2002; Mole et al., 2012). Smithies and Champion (1999) proposed that
emplacement of the low-Ca granites and syenites in the Eastern Gold-
fields (Fig. 1) at ca. 2650–2630Ma was a result of delamination or
convective thinning of dense eclogitic lower crust ca. 10–15m.y. after a
major partial melting event. Cassidy et al. (2002) argued that the
craton-wide extent of low-Ca magmatism at ca. 2650–2630Ma in-
dicates that the entire craton was undergoing extension or post-oro-
genic attenuation at this time, possibly associated with the end of a
major compressional event in the Eastern Goldfields, as originally
proposed by Smithies and Champion (1999). Geophysical investigations
of the deep crustal architecture beneath the Eastern Goldfields Super-
terrane (Fig. 2) are also consistent with delamination of the lower li-
thosphere (Nelson, 1992), including ca. 40 km thick crust underlain by
a flat, east-dipping Moho and a high-velocity layer at 100–200 km
(Blewett et al., 2010). Delamination of the lower lithosphere can occur
through thermal, compositional or phase changes, which render it
gravitationally unstable (denser than the underlying material) and
viscous enough to allow flow (Schott and Schmeling, 1998; Elkins
Tanton and Hager, 2000; Elkins-Tanton, 2005). Smithies and Champion
(1999) advocate a model where the delamination (or convective thin-
ning) was a direct result of partial melting and eclogitic restite forma-
tion in the lower crust due to orogenic thickening. The timing of the
proposed delamination ca. 10–15m.y. after the partial melting event,
the consequent A-type syenitic and widespread low-Ca granitic mag-
matism and high-temperature metamorphism fit well with this sce-
nario. An alternative mechanism could be the arrival of a mantle plume,
which would cause the thickened lithospheric root to become less vis-
cous and thermally unstable. Other workers have proposed that a
mantle plume event at ca. 2700Ma was responsible for komatiitic and
felsic magmatism and a diachronous regional metamorphic peak at ca.
2690–2630Ma (Campbell and Hill, 1988; Upton et al., 1997) but this
model is not favoured by Smithies and Champion (1999) because it
would be difficult to explain the timing and duration of the felsic al-
kaline and low-Ca granitic magmatism and the craton-wide E-W
shortening at ca. 2690–2650Ma.

In the western Yilgarn Craton, low-pressure granulite facies meta-
morphism at ca. 2649–2625Ma, emplacement of charnockites at ca.
2652–2627Ma within the Lake Grace Terrane (Wilde and Pidgeon,
1987; Nemchin et al., 1994; McFarlane, 2010) and the emplacement of
the Darling Range batholith at ca. 2648–2626Ma within the Bod-
dington and Balingup Terranes (Nemchin and Pidgeon, 1997) are also
consistent with the delamination model. Granites of ca. 2612Ma age
near the western margin of the South West Terrane have isotopic
compositions of εNd(2612)=−2.9 and εNd(2612)= 0, respectively,
suggesting that their source involved significant mixing of younger
mantle-derived crust with older crust (Compston et al., 1986) or that
the granitic magmas could have originated from partial melting of re-
cently crystallised mafic rocks in the lower crust (e.g. Smithies et al.,
2015). Qiu and Groves (1999) suggested that the geochemical char-
acteristics of the ca. 2640–2630Ma granites, the presence of igneous

Table 2
ID-TIMS U-Pb data for baddeleyite from dyke sample 16WDS13E.

Analysis no.
(number of grains)

U/Th Pbc/Pbtot1 206Pb/204Pb 207Pb/235U ±2 s
% err

206Pb/238U ±2s
% err

207Pb/235U ±2 s 206Pb/238Pb ±2 s 207Pb/206Pb ± 2 s Concordance

Raw2 [Corr]3 [Age, Ma]

Bd-1 (5 grains) 6.3 0.045 1280.3 12.0130 0.55 0.49498 0.54 2605.4 5.2 2592.2 11.4 2615.7 2.9 0.991
Bd-2 (6 grains) 6.0 0.039 1555.0 11.8670 0.65 0.48887 0.64 2594.0 6.1 2565.8 13.5 2616.1 3.1 0.981
Bd-3 (6 grains) 7.5 0.056 1062.7 12.005 0.74 0.49599 0.73 2604.8 6.9 2596.6 15.6 2611.3 3.3 0.994

Initial common Pb corrected with isotopic compositions from the model of Stacey and Kramers (1975) at the age of the sample.
1 Pbc= common Pb; Pbtot= total Pb (radiogenic+ blank+ initial).
2 Measured ratio, corrected for fractionation and spike.
3 Isotopic ratios corrected for fractionation (0.1% per amu for Pb), spike contribution, blank (0.6 pg Pb and 0.06 pg U), and initial common Pb.

Fig. 6. Concordia plot for analysed baddeleyite ID-TIMS U-Pb results from
sample 16WDS13E.
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charnockites, and coeval widespread intrusion of other granitoids in the
southern Lake Grace and Youanmi terranes collectively suggest massive
melting of lower crust at high temperatures at ca. 2640–2630Ma. They
attributed the sudden significant increase in geothermal gradient
over< 10m.y. and the lower partial melting pressures of the younger
granites (indicating thinner crust) to lithospheric delamination during a
late orogenic stage and suggested that the lack of known significant
mafic intrusions of this age probably indicated partial, instead of
complete, removal of the lower crust.

Collectively, these data and the newly discovered mafic magmatism
in the South West Terrane are consistent with the presence of hot
mantle material impinging on a thinned crust beneath most of the
Yilgarn Craton, if not the entire Yilgarn Craton, between ca. 2652Ma
and 2615Ma. Several lines of evidence suggest possible thermal effects
that were associated with intrusion of the 2615Ma mafic dykes, similar
to the effects the Marnda Moorn LIP dykes in the middle Proterozoic
Albany-Fraser Orogen (Dawson et al., 2003). Nemchin and Pidgeon
(1997) reported extensive recrystallisation of zircon rims at
2628–2616Ma and growth of titanite at ca. 2615Ma within the Darling
Range batholith. The 2615 ± 3Ma titanite and the 2616 ± 21Ma

zircon recrystallisation ages are within uncertainty of the 2615 ± 6Ma
mafic dyke age reported here and strongly suggest that they are related.
Moreover, zircons from a ca. 2612Ma granite ca. 130 km southwest of
the 2615Ma dyke, yield dates of 2612 ± 5Ma and 2613 ± 5Ma,
which could represent either the timing of recrystallisation or the em-
placement (Nemchin and Pidgeon, 1997). Other coeval magmatism
includes a felsic intrusive at ca. 2611Ma within the Saddleback
greenstone belt (Allibone et al., 1998) and a monzogranite dyke and a
granodiorite at 2610 ± 6Ma and 2610 ± 8Ma, respectively, in the
southern Boddington Terrane (Sircombe, 2007). The NE-SW trend of
the Yandinilling dyke suggests NW-SE oriented regional extension,
which is consistent with the inferred NE-SW oriented contraction and
strike-slip movement in the eastern part of the craton, constrained by
syn-kinematic emplacement of low-Ca granites at 2637 ± 7Ma
(Dunphy et al., 2003).

6.3. Timing of mafic magmatism and gold mineralisation

Craton-wide (> 400,000 km2) gold mineralisation at ca.
2640–2630Ma was associated with a major tectonothermal event

Fig. 7. Paleogeographic reconstructions of the Yilgarn and Zimbabwe cratons. (A) Superia configuration after Söderlund et al. (2010) and Pisarevsky et al. (2015) at
ca. 2500–2400Ma. Only the Yilgarn and Zimbabwe cratons are shown. (B) Reconstruction of Smirnov et al. (2013) at ca. 2410Ma, (C) Relative orientations of the
Yilgarn and Zimbabwe cratons rotated from (A) to an approximate alignment of the 2615Ma Yandinilling swarm with the 2575Ma Great Dyke. and (D) re-
construction of Smirnov et al. (2013) at ca. 2690Ma. Yilgarn Craton: green=Widgiemooltha/Eraynia dykes, BD=Binneringie Dyke and JD= Jimberlana Dyke
(both part of the Widgiemooltha swarm), blue=Yandinilling swarm, green star= possible mantle plume location. Zimbabwe Craton: GD (orange)= the Great Dyke,
SPD (green)= the Sebanga Poort Dyke, SD= Sebanga dykes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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(Groves, 1993; Kent et al., 1996; Yeats and McNaughton, 1997; Qiu and
Groves, 1999 and references therein) involving a deep crustal fluid
source (McNaughton and Groves, 1996; Qiu and Groves, 1999), which
Qiu and Groves (1999) argued was driven by lithospheric delamination.
The mafic magmatism dated at 2615 ± 6Ma in the South West Ter-
rane thus post-dates the main mineralisation event but may have been
synchronous with formation of late-stage gold deposits. Gold miner-
alisation at Boddington may also have been synchronous with the ca.
2611Ma felsic intrusives and movement along brittle shear zones
(Allibone et al., 1998).

6.4. The Neoarchean tectonic and paleogeographic setting of the Yilgarn
Craton: links to the Zimbabwe Craton

Using coeval mafic dyke swarms as a magmatic barcode (Bleeker
and Ernst, 2006) between the Zimbabwe and Yilgarn cratons,
Söderlund et al. (2010) proposed that both could have been part of the
ca. 2510–2100Ma Superia supercraton (Bleeker and Ernst, 2006; Ernst
and Bleeker, 2010). Paleomagnetic data from the E- to ENE-trending ca.
2408Ma Widgiemooltha and ca. 2401Ma Erayinia dykes (Sofoulis,
1965; Evans, 1968; Campbell et al., 1970; Hallberg, 1987; Doehler and
Heaman, 1998; Nemchin and Pidgeon, 1998; Wingate, 1999, 2007;
French et al., 2002; Pisarevsky et al., 2015) and the NNW-trending ca.
2408Ma Sebanga dyke swarm (Wilson et al., 1987; Mushayandebvu
et al., 1995; Söderlund et al., 2010) permit a possible configuration
where the western Yilgarn Craton is attached to the northern Zimbabwe
Craton and the Sebanga dyke swarm could be a continuation of the
Widgiemooltha/Erayinia dyke swarm (Fig. 7A) (Pisarevsky et al.,
2015). The Yandinilling dyke swarm is older than the 2575Ma Great
Dyke (Oberthür et al., 2002) and the Umvimeela satellite dyke
(Söderlund et al., 2010), which are currently the oldest known mafic
dykes with robust geochronology in the Zimbabwe Craton. However,
the Sebanga dyke swarm includes two dyke generations at ca. 2512Ma
and 2470Ma, both considered to be part of the same swarm (Söderlund
et al., 2010). This suggests that if the Yilgarn and the Zimbabwe cratons
were neighbours, yet to be identified mafic magmatism of these ages
could be present in the Yilgarn Craton. If the configuration of Söderlund
et al. (2010) and Pisarevsky et al. (2015) at ca. 2400Ma is accepted and
the Yandinilling dyke and the Umvimeela/Great Dyke are considered as
part of the same swarm (despite their up to 40m.y. age difference), the
barcode between the two cratons does not match unless one of the
cratons rotated significantly between ca. 2575Ma and 2512Ma (or
their respective regional stress fields were very different) (Fig. 7C). If
the Yilgarn and Zimbabwe cratons were adjacent to each other between
2615Ma and 2408Ma, continuous but episodic mafic magmatism on
these cratons lasting for more than 200m.y. suggests that at least some
of the dyke swarms could be associated with processes other than a
mantle plume, or that several plumes were involved.

In contrast to the reconstructions of Söderlund et al. (2010),
Smirnov et al. (2013) proposed that at ca. 2410Ma, the eastern margin
of the Yilgarn Craton was adjacent to the southern margin of the
Zimbabwe Craton, forming the Zimgarn supercraton and aligning the
Sebanga swarm approximately parallel to the Widgiemooltha dykes
(Fig. 7B). Whilst noting that the paleomagnetic data used for such a
reconstruction were limited, these authors preferred the position of the
Zimbabwe Craton north of the Yilgarn Craton because the juvenile
eastern margin of the Yilgarn Craton was a better match with the
progressive west to east cratonisation of the Zimbabwe Craton, and
because offsets on major terrane-bounding shear zones in the eastern
Yilgarn Craton could be restored to a feasible proto-Zimgarn config-
uration at ca. 2690Ma (Fig. 7D). In the ca. 2690Ma configuration,
Smirnov et al. (2013) aligned the southeastern margin of the Yilgarn
Craton directly with the southwestern margin of the Zimbabwe Craton.
Pisarevsky et al. (2015) noted that if the Zimgarn model of Smirnov
et al. (2013) at ca. 2400Ma is accepted, then paleomagnetic constraints
imply that the Zimbabwe and Yilgarn cratons were not part of Superia.

This does not preclude the Smirnov et al. (2013) configuration, but
there is currently no evidence of mafic dykes or sills older than 2401Ma
in the eastern Yilgarn Craton.

Xie et al. (2017) recently obtained 2607 ± 5Ma and 2604 ± 6Ma
SHRIMP U-Pb zircon ages for tholeiitic Stockford dykes within the
Central Zone of the Limpopo Belt, which separates the Archean Kaap-
vaal and Zimbabwe cratons in South Africa. The Stockford dykes were
deformed and metamorphosed under granulite facies conditions at ca.
2014–2005Ma (Xie et al., 2017) and intrude the Paleoarchean Sand
River Gneiss, which records high-grade metamorphic events at ca.
2640Ma and ca. 2025Ma (Zeh et al., 2007, 2010; Gerdes and Zeh,
2009). The timing of the amalgamation of the Central Zone to the
Zimbabwe Craton is uncertain, but is thought to have occurred during
the collision and amalgamation between the Kaapvaal and Zimbabwe
cratons at ca. 2660–2610Ma (Burke et al., 1986; Kramers et al., 2011;
Xie et al., 2017; Brandt et al., 2018) or at ca. 2020Ma (e.g. Holzer et al.,
1998; Söderlund et al., 2010). If the Zimbabwe and Kaapvaal Cratons
amalgamated at this time, the 2615Ma mafic magmatism in the
southwestern Yilgarn Craton may be associated with the same tectonic
event that produced the ca. 2607–2604Ma Stockford dykes in the
Central Zone of the Limpopo Belt. The South West Terrane and the
Central Zone share a similar tectonothermal evolution in an orogenic
setting that involved contemporaneous low-pressure granulite facies
metamorphism associated with voluminous felsic magmatism, closely
followed by mafic magmatism. Voluminous magmatism in the Central
Zone at ca. 2650–2610Ma includes the 2612 ± 7Ma Bulai pluton and
the 2613 ± 7Ma Zanzibar gneiss (Zeh et al., 2007; Millonig et al.,
2008), which are coeval with the ca. 2612–2611Ma Logue Brook
Granite (Compston et al., 1986; Nemchin and Pidgeon, 1997) and ca.
2611–2610 felsic magmatism elsewhere within the South West Terrane
(Allibone et al., 1998; Sircombe, 2007). Moreover, a low-pressure high-
grade tectonothermal event at ca. 2650–2644Ma in the Central Zone of
the Zimbabwe Craton (Holzer et al., 1998; Zeh et al., 2007, 2010;
Millonig et al., 2008), possibly linked to magmatic underplating (e.g.
Holzer et al., 1998), is coeval with the ca. 2650Ma low-pressure
granulite facies metamorphism in the Lake Grace Terrane and the
timing of proposed lithospheric delamination beneath the Yilgarn
Craton (Section 6.2). Furthermore, Brandt et al. (2018) propose that the
UHT metamorphic event in the Central Zone at ca. 2660–2610 was
likely due to lithospheric delamination and Kröner et al. (1999),
Kamber and Biino (1995) and Berger et al. (1995) favoured a litho-
spheric delamination (or mantle plume) model for the
ca.2700–2600Ma high-grade event in the Northern Marginal Zone.
Similar to the Yandinilling swarm reported here, Xie et al. (2017) ar-
gued that the Stockford dykes may have formed in a post-collisional
extensional environment during orogenic collapse, which they consider
to represent the Neoarchean amalgamation of the Zimbabwe and
Kaapvaal cratons. Alternatively, an upwelling mantle plume could ex-
plain the wide extent of magmatic underplating and low-pressure high-
temperature metamorphism followed by the emplacement of mafic
dykes. Such an event would be expected to show up as mafic magma-
tism in other nearby crustal blocks but reliably dated mafic dykes of ca.
2620–2600Ma age are currently not known from other cratons. If the
Zimbabwe and Kaapvaal cratons amalgamated at ca. 2660–2610Ma,
the Smirnov et al. (2013) reconstruction at ca. 2410Ma (Fig. 7B) would
not be feasible and would require adjustment to accommodate the
consolidated Zimbabwe-Kaapvaal Craton. This also raises the possibi-
lity that ca. 2615Ma mafic magmatism coeval with the Yandinilling
dyke may be present in the Kaapvaal Craton (Fig. 7C).

7. Conclusions

We have identified the oldest known mafic dyke in the Yilgarn
Craton of Western Australia, dated at 2615 ± 6Ma by ID-TIMS on
baddeleyite and at 2610 ± 25Ma utilizing in situ SHRIMP U-Pb dating
of baddeleyite. Aeromagnetic data suggest that the dyke is part of a
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series of NE-trending intrusions, here named the Yandinilling dyke
swarm, that extend hundreds of kilometers within the southwestern
part of the craton. The 2615Ma mafic magmatism postdates the ca.
2650–2630Ma craton-wide emplacement of low-Ca granites that have
been linked with post-orogenic collapse and delamination of the lower
crust beneath the Yilgarn Craton. The Yandinilling swarm also post-
dates the ca. 2640–2630Ma craton-wide gold mineralisation event, but
may be coeval with some late-stage gold mineralisation at Kambalda
and Boddington. Paleogeographic reconstructions suggest that the
Yilgarn and Zimbabwe cratons may have been neighbours between ca.
2690Ma and 2401Ma. If the Zimbabwe and Kaapvaal Cratons amal-
gamated at ca. 2660–2610Ma, the 2615Ma mafic magmatism in the
southwestern Yilgarn Craton may be associated with the same tectonic
event that produced the ca. 2607–2604Ma Stockford dykes in the
Central Zone of the Limpopo Belt. Paleomagnetic evidence, coeval
granitic magmatism, high-grade metamorphism, and emplacement of
mafic dykes support a configuration where the northern part of the
Zimbabwe Craton may have been adjacent to the western margin of the
Yilgarn Craton during the Neoarchean. Worldwide, reliably dated mafic
dykes of this age have so far been reported from the Yilgarn Craton, the
Limpopo Belt and the São Francisco Craton.

Acknowledgments

This work was funded by the Australian Research Council (ARC)
Centre of Excellence for Core to Crust Fluid Systems Grant
(CE110001017) and the ARC Laureate Fellowship (FL150100133) to Z.-
X.L. JCS acknowledges support from a Curtin University Postgraduate
Scholarship. We thank Gregory Shellnutt and Timothy Kusky for helpful
and constructive reviews that greatly improved the manuscript. We also
thank Cristina Talavera and Hao Gao for their generous support with
SHRIMP analyses and Stephen Sheppard is thanked for helpful discus-
sion and feedback on a previous version of the manuscript. Baddeleyite
analyses were carried out on the Sensitive High Resolution Ion Micro
Probe mass spectrometer (SHRIMP II) at the John de Laeter Centre,
Curtin University, with the financial support of the Australian Research
Council and Auscope NCRI. BSE imaging was undertaken at the
Australian Microscopy and Microanalysis Research Facility at the
Centre for Microscopy, Characterisation and Analysis (CMCA) at the
University of Western Australia. This is a contribution to IGCP project
648.

References

Allibone, A.H., Windh, J., Etheridge, M.A., Burton, D., Anderson, G., Edwards, P.W.,
Miller, A., Graves, C., Fanning, C.M., Wysoczanski, R., 1998. Timing relationships
and structural controls on the location of Au-Cu mineralization at the Boddington
gold mine, Western Australia. Econ. Geol. 93, 245–270.

Barley, M.E., Brown, S.J.A., Cas, R.A.F., Cassidy, K.F., Champion, D.C., Gardoll, S.J.,
Krapež, B., 2003. An integrated geological and metallogenic framework for the
eastern Yilgarn Craton: developing geodynamic models of highly mineralised
Archaean granite–greenstone terranes. AMIRA Project P624.

Berger, M., Kramers, J.D., Nägler, T., 1995. Geochemistry and geochronology of char-
noenderbites in the northern marginal zone of the Limpopo Belt, Southern Africa, and
genetic models. Schweizerische Mineral. Petrogr. Mitteilungen 75, 17–42.

Bleeker, W., Ernst, R., 2006. Short-lived mantle generated magmatic events and their
dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In:
Hanski, E.J., Mertanen, S., Rämö, O.T., Vuollo, J. (Eds.), Dyke Swarms—time Markers
of Crustal Evolution: Selected Papers of the Fifth International Dyke Conference in
Finland, Rovaniemi, Finland, 31 July–3 Aug 2005 & Fourth International Dyke
Conference, Kwazulu-Natal, South Africa 26–29 June 2001. CRC Press, London, pp.
3–26.

Blewett, R.S., Hitchman, A.P., 2006. 3D Geological Models of the Eastern Yilgarn Craton:
Final Report pmd* CRC Y2 Project September 2001–December 2004. Geoscience
Australia Record 2006/05.

Blewett, R.S., Henson, P.A., Roy, I.G., Champion, D.C., Cassidy, K.F., 2010. Scale-in-
tegrated architecture of a world-class gold mineral system: The Archaean eastern
Yilgarn Craton, Western Australia. Precambrian Res. 183, 230–250 10.1016/j.pre-
camres.2010.06.004.

Brandt, S., Klemd, R., Li, Q., Kröner, A., Brandl, G., Fischer, A., Bobek, P., Zhou, T., 2018.
Pressure-temperature evolution during two granulite-facies metamorphic events
(2.62 and 2.02 Ga) in rocks from the Central Zone of the Limpopo Belt, South Africa

(in press). Precambrian Res. https://doi.org/10.1016/j.precamres.2018.03.002.
Buchan, K.L., Ernst, R.E., Hamilton, M.A., Mertanen, S., Pesonen, L.J., Elming, S.-Å.,

2001. Rodinia: the evidence from integrated palaeomagnetism and U-Pb geochro-
nology. Precambrian Res. 110, 9–32.

Burke, K., Kidd, W.S.F., Kusky, T.M., 1986. Archean foreland basin tectonics in the
Witwatersrand, South Africa. Tectonics 5, 439–456.

Campbell, I.H., Hill, R.I., 1988. A two-stage model for the formation of the granite-
greenstone terrains of the Kalgoorlie-Norseman area, Western Australia. Earth Planet.
Sci. Lett. 90, 11–25.

Campbell, I.H., McCall, G.J.H., Tyrwhitt, D.S., 1970. The Jimberlana Norite, Western
Australia–a smaller analogue of the Great Dyke of Rhodesia. Geol. Mag. 107, 1–12.

Cassidy, K.F., Champion, D.C., Wyborn, L.A.I., 1998. A Geochemical Study of Granitoids
of the Boddington Gold Mine: Final Report to SRK (Australasia) Ltd. Australian
Geological Survey Organisation.

Cassidy, K.F., Champion, D.C., McNaughton, N.J., Fletcher, I.R., Whitaker, A.J.,
Bastrakova, I.V, Budd, A.R., 2002. Characterisation and metallogenic significance of
Archaean granitoids of the Yilgarn Craton, Western Australia, Minerals and Energy
Research Institute of Western Australia (MERIWA) Report P482.

Cassidy, K.F., Champion, D.C., Krapez, B., Barley, M.E., Brown, S.J.A., Blewett, R.S.,
Groenewald, Pb., Tyler, I.M., 2006. A revised geological framework for the Yilgarn
Craton, Western Australia. In: Geological Survey of Western Australia Record 8/2006.
Geological Survey of Western Australia.

Cawood, P.A., Tyler, I.M., 2004. Assembling and reactivating the Proterozoic Capricorn
Orogen: lithotectonic elements, orogenies, and significance. Precambrian Res. 128,
201–218. https://doi.org/10.1016/j.precamres.2003.09.001.

Champion, D.C., 2013. Neodymium depleted mantle model age map of Australia: ex-
planatory notes and user guide. Geosci. Aust. Rec. 2013 (44), 209. https://doi.org/
10.11636/Record.2013.044.

Champion, D.C., Cassidy, K.F., 2007. An overview of the Yilgarn Craton and its crustal
evolution. Geosci. Aust. Rec. 8–13.

Champion, D.C., Cassidy, K.F., 2008. Geodynamics: Using geochemistry and isotopic
signatures of granites to aid mineral systems studies: An example from the Yilgarn
craton. Geosci. Aust. Rec. 9, 7–16.

Champion, D.C., Sheraton, J.W., 1997. Geochemistry and Nd isotope systematics of
Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications
for crustal growth processes. Precambrian Res. 83, 109–132.

Claoué-Long, J.C., Hoatson, D.M., Australia, G., 2009. Guide to using the Map of
Australian Proterozoic Large Igneous Provinces. Geoscience Australia.

Clark, D.J., Hensen, B.J., Kinny, P.D., 2000. Geochronological constraints for a two-stage
history of the Albany – Fraser Orogen, Western Australia. Precambrian Res. 102,
155–183.

Compston, W., Williams, I.S., McCulloch, M.T., 1986. Contrasting zircon U-Pb and model
Sm-Nd ages for the Archaean Logue Brook Granite. Aust. J. Earth Sci. 33, 193–200.
https://doi.org/10.1080/08120098608729359.

Czarnota, K., Champion, D.C., Goscombe, B., Blewett, R.S., Cassidy, K.F., Henson, P.A.,
Groenewald, P.B., 2010. Geodynamics of the eastern Yilgarn Craton. Precambrian
Res. 183, 175–202. https://doi.org/10.1016/j.precamres.2010.08.004.

Dawson, G.C., Krapež, B., Fletcher, I.R., McNaughton, N.J., Rasmussen, B., 2003. 1.2 Ga
thermal metamorphism in the Albany-Fraser Orogen of Western Australia: con-
sequence of collision or regional heating by dyke swarms? J. Geol. Soc. Lond. 160,
29–37. https://doi.org/10.1144/0166-764901-119.

Dentith, M.C., Featherstone, W.E., 2003. Controls on intra-plate seismicity in south-
western Australia. Tectonophysics 376, 167–184. https://doi.org/10.1016/j.tecto.
2003.10.002.

Dentith, M.C., Dent, V.F., Drummond, B.J., 2000. Deep crustal structure in the south-
western Yilgarn Craton, Western Australia. Tectonophysics 325, 227–255.

Doehler, J.S., Heaman, L.M., 1998. 2.41 Ga U–Pb Baddeleyite ages for two gabbroic dykes
from the Widgiemooltha swarm, Western Australia: a Yilgarn–Lewisian connection.
In: Geological Society of America 1998 Annual Meeting, Abstracts with Programs.
Geological Society of America, pp. 291–292.

Doyle, H.A., 1971. Seismicity and structure in Australia. Bull. R. Soc. New Zeal. 9,
149–152.

Dunphy, J.M., Fletcher, I.R., Cassidy, K.F., Champion, D.C., 2003. Compilation of SHRIMP
U-Pb geochronological data, Yilgarn Craton, Western Australia, 2001–2002. Geosci.
Aust. Rec. 15, 139.

Elkins Tanton, L.T., Hager, B.H., 2000. Melt intrusion as a trigger for lithospheric foun-
dering and the eruption of the Siberian flood basalts. Geophys. Res. Lett. 27,
3937–3940.

Elkins-Tanton, L.T., 2005. Continental magmatism caused by lithospheric delamination.
Geol. Soc. Am. Spec. Pap. 80301, 449–461. https://doi.org/10.1130/2005.2388(27).

Embleton, B.J.J., Schmidt, P.W., 1985. Age and significance of magnetizations in dolerite
dykes from the Northampton Block, Western Australia. Aust. J. Earth Sci. 32,
279–286.

Ernst, R.E., Buchan, K.L., 1997. Giant radiating dyke swarms: their use in identifying pre-
Mesozoic large igneous provinces and mantle plumes, in: Large Igneous Provinces:
Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union
Monograph 100, pp. 297–333.

Ernst, R., Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and
mantle plumes: significance for breakup events within Canada and adjacent regions
from 2.5 Ga to the Present. Can. J. Earth Sci. 47, 695–739. https://doi.org/10.1139/
e10-025.

Ernst, R.E., Head, J.W., Parfitt, E., Grosfils, E., Wilson, L., 1995. Giant radiating dyke
swarms on Earth and Venus. Earth-Sci. Rev. 39, 1–58.

Ernst, R.E., Srivastava, R.K., 2008. India’s place in the Proterozoic world: constraints from
the Large Igneous Province (LIP) record. Indian dykes. In: Srivastava, R.K., Sivaji,
Ch., Chalapathi Rao, N.V. (Eds.), Geochemistry, Geophys. Geochronology. Narosa

J.C. Stark et al. Precambrian Research 317 (2018) 1–13

10

http://refhub.elsevier.com/S0301-9268(18)30155-4/h0005
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0005
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0005
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0005
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0015
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0015
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0015
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0020
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0030
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0030
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0030
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0030
https://doi.org/10.1016/j.precamres.2018.03.002
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0040
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0040
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0040
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0045
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0045
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0050
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0050
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0050
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0055
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0055
https://doi.org/10.1016/j.precamres.2003.09.001
https://doi.org/10.11636/Record.2013.044
https://doi.org/10.11636/Record.2013.044
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0085
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0085
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0090
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0090
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0090
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0095
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0095
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0095
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0105
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0105
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0105
https://doi.org/10.1080/08120098608729359
https://doi.org/10.1016/j.precamres.2010.08.004
https://doi.org/10.1144/0166-764901-119
https://doi.org/10.1016/j.tecto.2003.10.002
https://doi.org/10.1016/j.tecto.2003.10.002
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0130
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0130
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0140
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0140
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0145
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0145
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0145
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0150
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0150
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0150
https://doi.org/10.1130/2005.2388(27)
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0160
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0160
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0160
https://doi.org/10.1139/e10-025
https://doi.org/10.1139/e10-025
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0175
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0175
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0180
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0180
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0180


Publ. House Pvt. Ltd, New Delhi, India, pp. 41–56.
Ernst, R.E., Bleeker, W., Söderlund, U., Kerr, A.C., 2013. Large Igneous Provinces and

supercontinents: toward completing the plate tectonic revolution. Lithos 174, 1–14.
Ernst, R., Srivastava, R., Bleeker, W., Hamilton, M., 2010. Precambrian Large Igneous

Provinces (LIPs) and their dyke swarms: New insights from high-precision geochro-
nology integrated with paleomagnetism and geochemistry. Precambrian Res. 183,
vii–xi.

Evans, M.E., 1968. Magnetization of dikes: a study of the paleomagnetism of the
Widgiemooltha dike suite, Western Australia. J. Geophys. Res. 73, 3261–3270.

Evans, T., 1999. Extent and nature of the 1.2 Ga Wheatbelt dyke swarm, Yilgarn Craton,
Western Australia (B.Sc. thesis). Univ. West. Aust, Perth.

Fletcher, I.R., Wilde, S.A., Rosman, K.J., 1985. Sm-Nd model ages across the margins of
the Archaean Yilgarn block, Western Australia — III. The western margin. Aust. J.
Earth Sci. 32, 73–82. https://doi.org/10.1080/08120098508729314.

French, J.E., Heaman, L.M., Chacko, T., 2002. Feasibility of chemical U-Th-total Pb
baddeleyite dating by electron microprobe. Chem. Geol. 188, 85–104. https://doi.
org/10.1016/S0009-2541(02)00074-8.

Gee, R.D., Baxter, J.L., Wilde, S.A., Williams, I.R., 1981. Crustal development in the
Archaean Yilgarn Block, Western Australia. Spec. Publ. Geol. Soc. Aust 7, 43–56.

Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration – new insights from
combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the in-
terpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem.
Geol. 261, 230–243. https://doi.org/10.1016/j.chemgeo.2008.03.005.

Groves, D.I., 1993. The crustal continuum model for late-Archaean lode-gold deposits of
the Yilgarn Block, Western Australia. Miner. Depos. 28, 366–374.

Hallberg, J.A., 1987. Postcratonization mafic and ultramafic dykes of the Yilgarn Block.
Aust. J. Earth Sci. 34, 135–149. https://doi.org/10.1080/08120098708729398.

Halls, H.C., Kumar, A., Srinivasan, R., Hamilton, M.A., 2007. Paleomagnetism and U-Pb
geochronology of easterly trending dykes in the Dharwar craton, India: feldspar
clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian
Res. 155, 47–68. https://doi.org/10.1016/j.precamres.2007.01.007.

Halls, H.C., Zhang, B., 1998. Uplift structure of the southern Kapuskasing zone from
2.45 Ga dike swarm displacement. Geology 26, 67–70. https://doi.org/10.1130/
0091-7613(1998) 026<0067:USOTSK>2.3.CO;2.

Heaman, L.M., 1997. Global mafic magmatism at 2.45 Ga: Remnants of an ancient large
igneous province? Geology 25, 299–302.

Heaman, L.M., 2009. The application of U-Pb geochronology to mafic, ultramafic and
alkaline rocks: an evaluation of three mineral standards. Chem. Geol. 261, 43–52.
https://doi.org/10.1016/j.chemgeo.2008.10.021.

Hoek, J.D., Seitz, H.-M., 1995. Continental mafic dyke swarms as tectonic indicators: an
example from the Vestfold Hills, Antarctica. Precambrian Res. 75, 121–139.

Holzer, L., Frei, R., Barton, J.M., Kramers, J.D., 1998. Unraveling the record of successive
high grade events in the Central Zone of the Limpopo Belt using Pb single phase
dating of metamorphic minerals. Precambrian Res. 87, 87–115. https://doi.org/10.
1016/S0301-9268(97)00058-2.

Hou, G., 2012. Mechanism for three types of mafic dyke swarms. Geosci. Front. 3,
217–223. https://doi.org/10.1016/j.gsf.2011.10.003.

Isles, D.J., Cooke, A.C., 1990. Spatial associations between post-cratonisation dykes and
gold deposits in the Yilgarn Block, Western Australia. In: Parker, A.J., Rickwood, P.C.,
Tucker, D.H. (Eds.), Mafic dykes and emplacement mechanisms. Balkema,
Rotterdam, pp. 147–162.

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C.T., Essling, A.M., 1971. Precision
measurement of half-lives and specific activities of U 235 and U 238. Phys. Rev. C 4,
1889.

Johnson, S.P., Sheppard, S., Rasmussen, B., Wingate, M.T.D., Kirkland, C.L., Muhling,
J.R., Fletcher, I.R., Belousova, E.A., 2011. Two collisions, two sutures: punctuated
pre-1950Ma assembly of the West Australian Craton during the Ophthalmian and
Glenburgh Orogenies. Precambrian Res. 189, 239–262. https://doi.org/10.1016/j.
precamres.2011.07.011.

Ju, W., Hou, G., Hari, K.R., 2013. Mechanics of mafic dyke swarms in the Deccan Large
Igneous Province: palaeostress field modelling. J. Geodyn. 66, 79–91. https://doi.
org/10.1016/j.jog.2013.02.002.

Kamber, B.S., Biino, G.G., 1995. The evolution of high T-low P granulites in the Northern
Marginal Zone sensu stricto, Limpopo Belt, Zimbabwe-the case for petrography.
Schweizerische Mineral. Petrogr. Mitteilungen 75, 427–454.

Kent, A.J.R., Cassidy, K.F., Fanning, M.C., 1996. Archean gold mineralisation synchro-
nous with the final stages of cratonization, Yilgarn Craton, Western Australia.
Geology 96, 879–882. https://doi.org/10.1130/0091-7613(1996) 024<0879.

Korsch, R.J., Kositcin, N., Champion, D.C., 2011. Australian island arcs through time:
Geodynamic implications for the Archean and Proterozoic. Gondwana Res. 19,
716–734. https://doi.org/10.1016/j.gr.2010.11.018.

Kramers, J.D., McCourt, S., Roering, C., Smit, C.A., Van Reenen, D.D., 2011. Tectonic
models proposed for the Limpopo Complex: mutual compatibilities and constraints.
Geol. Soc. Am. Mem. 207, 311–324.

Kröner, A., Jaeckel, P., Brandl, G., Nemchin, A.A., Pidgeon, R.T., 1999. Single zircon ages
for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and
geodynamic significance. Precambrian Res. 93, 299–337. https://doi.org/10.1016/
S0301-9268(98)00102-8.

Ksienzyk, A.K., Jacobs, J., Boger, S.D., Kosler, J., Sircombe, K.N., Whitehouse, M.J., 2012.
U-Pb ages of metamorphic monazite and detrital zircon from the Northampton
Complex: evidence of two orogenic cycles in Western Australia. Precambrian Res.
198–199, 37–50. https://doi.org/10.1016/j.precamres.2011.12.011.

Lewis, J.D., 1994. Mafic dykes in the Williams-Wandering area, Western Australia. Geol.
Surv. West. Aust. Rep. 37, 37–52.

Li, T., Zhai, M., Peng, P., Chen, L., Guo, J., 2010. Ca. 2.5 billion year old coeval ultra-
mafic-mafic and syenitic dykes in Eastern Hebei: Implications for cratonization of the

North China Craton. Precambrian Res. 180, 143–155. https://doi.org/10.1016/j.
precamres.2010.04.001.

Ludwig, K., 2009. Squid 2.50, A User’s Manual (No. 2.50.11.02.03 Rev. 03 Feb 2011).
Berkeley, California, USA.

Ludwig, K., 2012. User’s manual for Isoplot version 3.75–4.15: a geochronological toolkit
for Microsoft. Berkeley Geochronological Cent. Spec. Publ.

McFarlane, C.R.M., 2010. Geodynamic constraints on mineralization and metamorphism
at the Griffin’s Find gold deposit, Western Australia, from calibrated Tt trajectories.
GeoCanada 2010, Calgary May 10–14. Canadian Society of Petroleum Geoscientists,
Calgary.

McNaughton, N.J., Groves, D.I., 1996. A review of Pb-isotope constraints on the genesis of
lode-gold deposits in the Yilgarn Craton, Western Australia. J. R. Soc. West. Aust. 79,
123–129.

Middleton, M.F., Wilde, S.A., Evans, B.A., Long, A., Dentith, M., 1993. A preliminary
interpretation of deep seismic reflection and other geophysical data from the Darling
Fault Zone, Western Australia. Explor. Geophys. 24, 711–718.

Millonig, L., Zeh, A., Gerdes, A., Klemd, R., 2008. Neoarchaean high-grade meta-
morphism in the Central Zone of the Limpopo Belt (South Africa): combined petro-
logical and geochronological evidence from the Bulai pluton. Lithos 103, 333–351.
https://doi.org/10.1016/j.lithos.2007.10.001.

Mohanty, S., 2015. Precambrian continent assembly and dispersal events of South Indian
and East Antarctic Shields. Int. Geol. Rev. 57, 1992–2027. https://doi.org/10.1080/
00206814.2015.1048751.

Mole, D.R., Fiorentini, M.L., Thebaud, N., McCuaig, T.C., Cassidy, K.F., Kirkland, C.L.,
Wingate, M.T.D., Romano, S.S., Doublier, M.P., Belousova, E.A., 2012. Spatio-tem-
poral constraints on lithospheric development in the southwest–central Yilgarn
Craton, Western Australia. Aust. J. Earth Sci. 59, 625–656. https://doi.org/10.1080/
08120099.2012.691213.

Mole, D.R., Fiorentini, M.L., Cassidy, K.F., Kirkland, C.L., Thebaud, N., McCuaig, T.C.,
Doublier, M.P., Duuring, P., Romano, S.S., Maas, R., Belousova, E.A., Barnes, S.J.,
Miller, J., 2015. Crustal evolution, intra-cratonic architecture and the metallogeny of
an Archaean craton. Geol. Soc. London Spec. Publ. 393, 23–80. https://doi.org/10.
1144/SP393.8.

Mushayandebvu, M.F., Jones, D.L., Briden, J.C., Baer, G., Heimann, A., 1995.
Palaeomagnetic and geochronological results from Proterozoic mafic intrusions in
southern Zimbabwe. In: Physics and Chemistry of Dykes. Balkema Rotterdam, pp.
293–303.

Myers, J.S., 1993. Precambrian tectonic history of the West Australian Craton and ad-
jacent orogens. Annu. Rev. Earth Planet. Sci. 21, 453–485.

Myers, J.S., 1995. The generation and assembly of an Archaean supercontinent: evidence
from the Yilgarn craton, Western Australia. Geol. Soc. London Spec. Publ. 95,
143–154.

Myers, J.S., 1990. Pinjarra orogen. In: Geology and Mineral Resources of Western
Australia. State Printing Division, pp. 264–274.

Nelson, K.D., 1992. Are crustal thickness variations in old mountain belts like the
Appalachians a consequence of lithospheric delamination? Geology 20, 498–502.

Nelson, D.R., 1997. Evolution of the Archaean granite-greenstone terranes of the Eastern
Goldfields, Western Australia: SHRIMP U-Pb zircon constraints. Precambrian Res. 83,
57–81. https://doi.org/10.1016/S0301-9268(97)00005-3.

Nelson, D.R., Myers, J.S., Nutman, A.P., 1995. Chronology and evolution of the Middle
Proterozoic Albany-Fraser Orogen. Western Australia. Aust. J. Earth Sci. 42,
481–495. https://doi.org/10.1080/08120099508728218.

Nemchin, A.A., Pidgeon, R.T., 1997. Evolution of the Darling Range batholith, Yilgarn
Craton, Western Australia: a SHRIMP zircon study. J. Petrol. 38, 625–649.

Nemchin, A.A., Pidgeon, R.T., 1998. Precise conventional and SHRIMP baddeleyite U-Pb
age for the Binneringie Dyke, near Narrogin, Western Australia. Aust. J. Earth Sci. 45,
673–675.

Nemchin, A.A., Pidgeon, R.T., Wilde, S.A., 1994. Timing of Late Archaean granulite facies
metamorphism in the southwestern Yilgarn Craton of Western Australia: evidence
from U-Pb ages of zircons fro mafic granulites. Precambrian Res. 68, 307–321.

Nieuwland, D.A., Compston, W., 1981. Crustal evolution in the Yilgarn block near Perth,
Western Australia. In: Archean Geology, Second International Symposium (Perth
1980): Geological Society of Australia, Special Publication. pp. 159–171.

Nutman, A.P., Bennett, V.C., Kinny, P.D., Price, R., 1993. Large-scale crustal structure of
the Northwestern Yilgarn Craton, western Australia: Evidence from Nd isotopic data
and zircon geochronology. Tectonics 12, 971–981. https://doi.org/10.1029/
93TC00377.

Oberthür, T., Davis, D.W., Blenkinsop, T.G., Höhndorf, A., 2002. Precise U-Pb mineral
ages, Rb–Sr and Sm–Nd systematics for the Great Dyke, Zimbabwe—constraints on
late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Res.
113, 293–305.

Oliveira, E.P., Silveira, E.M., Söderlund, U., Ernst, R.E., 2013. U-Pb ages and geochem-
istry of mafic dyke swarms from the Uauá Block, São Francisco Craton, Brazil: LIPs
remnants relevant for Late Archaean break-up of a supercraton. Lithos 174, 308–322.
https://doi.org/10.1016/j.lithos.2012.05.025.

Pidgeon, R.T., Cook, T.J.F., 2003. 1214 ± 5Ma dyke from the Darling Range, south-
western Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 50, 769–773.

Pidgeon, R.T., Nemchin, A.A., 2001. 1.2 Ga Mafic dyke near York, southwestern Yilgarn
Craton, Western Australia. Aust. J. Earth Sci. 48, 751–755. https://doi.org/10.1046/
j.1440-0952.2001.485895.x.

Pidgeon, R.T., Wilde, S.A., 1990. The distribution of 3.0 Ga and 2.7 Ga volcanic episodes
in the Yilgarn Craton of Western Australia. Precambrian Res. 48, 309–325.

Pisarevsky, S.A., De Waele, B., Jones, S., Söderlund, U., Ernst, R.E., 2015.
Paleomagnetism and U-Pb age of the 2.4 Ga Erayinia mafic dykes in the south-wes-
tern Yilgarn, Western Australia: paleogeographic and geodynamic implications.
Precambrian Res. 259, 222–231. https://doi.org/10.1016/j.precamres.2014.05.023.

J.C. Stark et al. Precambrian Research 317 (2018) 1–13

11

http://refhub.elsevier.com/S0301-9268(18)30155-4/h0180
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0185
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0185
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0190
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0190
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0190
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0190
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0195
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0195
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0200
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0200
https://doi.org/10.1080/08120098508729314
https://doi.org/10.1016/S0009-2541(02)00074-8
https://doi.org/10.1016/S0009-2541(02)00074-8
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0215
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0215
https://doi.org/10.1016/j.chemgeo.2008.03.005
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0225
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0225
https://doi.org/10.1080/08120098708729398
https://doi.org/10.1016/j.precamres.2007.01.007
https://doi.org/10.1130/0091-7613(1998) 026<0067:USOTSK>2.3.CO;2
https://doi.org/10.1130/0091-7613(1998) 026<0067:USOTSK>2.3.CO;2
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0245
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0245
https://doi.org/10.1016/j.chemgeo.2008.10.021
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0255
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0255
https://doi.org/10.1016/S0301-9268(97)00058-2
https://doi.org/10.1016/S0301-9268(97)00058-2
https://doi.org/10.1016/j.gsf.2011.10.003
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0270
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0270
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0270
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0270
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0275
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0275
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0275
https://doi.org/10.1016/j.precamres.2011.07.011
https://doi.org/10.1016/j.precamres.2011.07.011
https://doi.org/10.1016/j.jog.2013.02.002
https://doi.org/10.1016/j.jog.2013.02.002
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0290
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0290
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0290
https://doi.org/10.1130/0091-7613(1996) 024<0879
https://doi.org/10.1016/j.gr.2010.11.018
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0305
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0305
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0305
https://doi.org/10.1016/S0301-9268(98)00102-8
https://doi.org/10.1016/S0301-9268(98)00102-8
https://doi.org/10.1016/j.precamres.2011.12.011
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0320
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0320
https://doi.org/10.1016/j.precamres.2010.04.001
https://doi.org/10.1016/j.precamres.2010.04.001
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0335
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0335
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0340
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0340
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0340
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0340
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0345
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0345
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0345
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0350
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0350
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0350
https://doi.org/10.1016/j.lithos.2007.10.001
https://doi.org/10.1080/00206814.2015.1048751
https://doi.org/10.1080/00206814.2015.1048751
https://doi.org/10.1080/08120099.2012.691213
https://doi.org/10.1080/08120099.2012.691213
https://doi.org/10.1144/SP393.8
https://doi.org/10.1144/SP393.8
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0380
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0380
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0385
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0385
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0385
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0395
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0395
https://doi.org/10.1016/S0301-9268(97)00005-3
https://doi.org/10.1080/08120099508728218
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0410
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0410
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0415
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0415
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0415
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0420
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0420
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0420
https://doi.org/10.1029/93TC00377
https://doi.org/10.1029/93TC00377
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0435
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0435
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0435
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0435
https://doi.org/10.1016/j.lithos.2012.05.025
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0445
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0445
https://doi.org/10.1046/j.1440-0952.2001.485895.x
https://doi.org/10.1046/j.1440-0952.2001.485895.x
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0455
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0455
https://doi.org/10.1016/j.precamres.2014.05.023


Qiu, Y., Groves, D.I., 1999. Late Archean collision and delamination in the Southwest
Yilgarn Craton; the driving force for Archean orogenic lode gold mineralization?
Econ. Geol. 94, 115–122.

Qiu, Y., McNaughton, N.J., Groves, D., Dalstra, H.J., 1997b. Shrimp U-Pb in zircon and
lead-isotope constraints on the timing and source of an Archaean granulite-hosted
lode-gold deposit at Griffin’s Find, Yilgarn craton, Western Australia. Chron. Rech.
Min. 91–104.

Qiu, Y., Groves, D.I., McNaughton, N.J., 1997a. Deep-seated granitoids: implications for
Late Archaean subduction-collision-lithospheric delamination and gold mineraliza-
tion in the Yilgarn Craton. Aust. Geol. Surv. Organ. Rec. 41, 65–69.

Qiu, Y., McNaughton, N.J., Groves, D.I., Dunphy, J.M., 1999. First record of 1.2 Ga quartz
dioritic magmatism in the Archaean Yilgarn Craton, Western Australia, and its sig-
nificance. Aust. J. Earth Sci. 46, 421–428. https://doi.org/10.1046/j.1440-0952.
1999.00715.x.

Rasmussen, B., Fletcher, I.R., 2010. Dating sedimentary rocks using in situ U-Pb geo-
chronology of syneruptive zircon in ash-fall tuff & lt 1 mm thick. Geology 38,
299–302. https://doi.org/10.1130/G30567.1.

Roth, E., Bennett, J.M., Symons, P.M., 1990. Boddington and Black Flag: anomalous
Archaean gold deposits. Geol. Dep. Univ. Extension. Univ. West. Aust. Publ. 20,
189–194.

Roth, E., Groves, D., Anderson, G., Daley, L., Staley, R., 1991. Primary mineralization at
the Boddington gold mine, Western Australia: An Archean porphyry Cu-Au-Mo de-
posit, in: Brazil Gold. pp. 481–488.

Schott, B., Schmeling, H., 1998. Delamination and detachment of a lithospheric root.
Tectonophysics 296, 225–247.

Shellnutt, J.G., Hari, K.R., Liao, A.C.-Y., Denyszyn, S.W., Vishwakarma, N., 2018. A
1.88 Ga giant radiating mafic dyke swarm across Southern India and Western
Australia. Precambrian Res. 308, 58–74.

Sheppard, S., Bodorkos, S., Johnson, S.P., Wingate, M.T.D., Kirkland, C.L., 2010. The
Paleoproterozoic Capricorn Orogeny: intracontinental reworking not con-
tinent–continent collision, Geological Survey of Western Australia Report 108.
Geological Survey of Western Australia.

Sircombe, K.N., 2007. Compilation of SHRIMP U-Pb geochronological data, Yilgarn
Craton, Western Australia, 2004–2006. Geoscience Australia.

Smirnov, A.V., Evans, D.A.D., Ernst, R.E., Söderlund, U., Li, Z.-X., 2013. Trading partners:
tectonic ancestry of southern Africa and western Australia, in Archean supercratons
Vaalbara and Zimgarn. Precambrian Res. 224, 11–22.

Smithies, R.H., Champion, D.C., 1999. Late Archaean felsic alkaline igneous rocks in the
Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal de-
lamination? J. Geol. Soc. London. 156, 561–576.

Smithies, R.H., Howard, H.M., Kirkland, C.L., Korhonen, F.J., Medlin, C.C., Maier, W.D.,
de Gromard, R.Q., Wingate, M.T.D., Quentin De Gromard, R., Wingate, M.T.D., 2015.
Piggy-back supervolcanoes-long-lived, voluminous, juvenile rhyolite volcanism in
mesoproterozoic central Australia. J. Petrol. 56, egv015. https://doi.org/10.1093/
petrology/egv015.

Söderlund, U., Hofmann, A., Klausen, M.B., Olsson, J.R., Ernst, R.E., Persson, P.O., 2010.
Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U-Pb
dating of regional dolerite dyke swarms and sill complexes. Precambrian Res. 183,
388–398. https://doi.org/10.1016/j.precamres.2009.11.001.

Söderlund, U., Johansson, L., 2002. A simple way to extract baddeleyite (ZrO2). Geochem.
Geophys. Geosyst. 3. https://doi.org/10.1029/2001GC000212.

Sofoulis, J., 1965. Explanatory Notes on the Widgiemooltha 1: 250,000 Geological Sheet
Western Australia. Geological Survey of Western Australia.

Spaggiari, C. V, Bodorkos, S., Barquero-Molina, M., Tyler, I.M., Wingate, M.T.D., 2009.
Interpreted bedrock geology of the South Yilgarn and of the South Yilgarn and
Central Albany-Fraser Orogen, Western Australia, Geological Survey of Western
Australia Record 2009/10.

Spaggiari, C. V, Kirkland, C.L., Pawley, M.J., Smithies, R.H., Wingate, M.T.D., Doyle, M.
G., Blenkinsop, T.G., Clark, C., Oorschot, C.W., Fox, L.J., 2011. The geology of the
east Albany-Fraser Orogen—a field guide, Geological Survey of Western Australia
Record 2011/23.

Spaggiari, C.V., Kirkland, C.L., Smithies, H.R., Wingate, M.T.D., Belousova, E.A., 2015.
Transformation of an Archean craton margin during Proterozoic basin formation and
magmatism: the Albany-Fraser Orogen, Western Australia. Precambrian Res. 266,
440–466. https://doi.org/10.1016/j.precamres.2015.05.036.

Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a
two-stage model. Earth Planet. Sci. Lett. 26, 207–221.

Standing, J.G., 2008. Terrane amalgamation in the Eastern Goldfields Superterrane,
Yilgarn Craton: evidence from tectonostratigraphic studies of the Laverton
Greenstone Belt. Precambrian Res. 161, 114–134.

Stark, J.C., Wang, X.-C., Denyszyn, S.W., Li, Z.-X., Rasmussen, B., Zi, J.-W., Sheppard, S.,
Liu, Y., 2017. Newly identified 1.89 Ga mafic dyke swarm in the Archean Yilgarn
Craton, Western Australia suggests a connection with India (in press). Precambrian
Res. https://doi.org/10.1016/j.precamres.2017.12.036.

Stern, R.A., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., 2009. Measurement of
SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand.
Geoanal. Res. 33, 145–168. https://doi.org/10.1111/j.1751-908X.2009.00023.x.

Stern, R.A., 2001. A new isotopic and trace-element standard for the ion microprobe:
preliminary thermal ionization mass spectrometry (TIMS) U-Pb and electron-mi-
croprobe data, Geological Survey of Canada Current Research 2001-F.

Tomkins, A.G., Grundy, C., 2009. Upper temperature limits of orogenic gold deposit
formation: constraints from the granulite-hosted Griffin’s Find Deposit, Yilgarn
Craton. Econ. Geol. 104, 669–685.

Tucker, D.H., Boyd, D.M., 1987. Dykes of Australia detected by airborne magnetic sur-
veys. In: Fahrig, W.F., Halls, H.C. (Eds.), Mafic Dyke Swarms. Geological Association
of Canada, pp. 163–172.

Upton, P., Hobbs, B., Ord, A., Zhang, Y., Drummond, B., Archibald, N., 1997. Thermal and
deformation modelling of the Yilgarn deep seismic transect. Geodyn. Ore Dep. Conf.
Abst. 22–25.

Wang, X.-C., Li, Z.-X., Li, J., Pisarevsky, S.A., Wingate, M.T.D., 2014. Genesis of the
1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction.
Precambrian Res. 241, 85–103. https://doi.org/10.1016/j.precamres.2013.11.008.

Wilde, S.A., 1976. The Saddleback Group–a newly discovered Archaean greenstone belt
in the southwestern Yilgarn Block. West. Aust. Geol. Surv. Annu. Rep. 92–95.

Wilde, S.A., 1999. Evolution of the Western Margin of Australia during the Rodinian and
Gondwanan Supercontinent Cycles. Gondwana Res. 2, 481–499. https://doi.org/10.
1016/S1342-937X(05)70287-2.

Wilde, S.A., Pidgeon, R.T., 1987. U-Pb. Geochronology, Geothermometry and Petrology
of the Main Areas of Gold Mineralization in the Wheat Belt Region of Western
Australia Project 30 Final Report. Western Australian Mining and Petroleum Research
Institute.

Wilde, S.A., Pidgeon, R.T., 1990. The Morangup Greenstone Belt: a further discovery of
Late Archaean volcanic rocks in the southwest Yilgarn Craton, Western Australia.
International Archaean Symposium, 3rd Perth 1990. Abstr. Geoconferences 205–206.

Wilde, S.A., Low, G.H., 1978. Perth, Western Australia, 1:250,000 geological series ex-
planatory notes. West. Aust. Geol Surv.

Wilde, S.A., Pidgeon, R.T., 1986. Geology and geochronology of the Saddleback green-
stone belt in the Archaean Yilgarn Block, southwestern Australia. Aust. J. Earth Sci.
33, 491–501.

Wilde, S.A., Middleton, M.F., Evans, B.J., 1996. Terrane accretion in the southwestern
Yilgarn Craton: evidence from a deep seismic crustal profile. Precambrian Res. 78,
179–196.

Wilde, S.A., Pidgeon, R.T., 2006. Nature and timing of Late Archaean arc magmatism
along the western margin of the Yilgarn Craton. Geochim. Cosmochim. Acta 70,
A701.

Wilde, S.A., 1980. The Jimperding Metamorphic Belt in the Toodyay area and the
Balingup Metamorphic Belt and associated granitic rocks in the southwestern Yilgarn
Craton. Excursion Guide, In: 2nd International Archaean Symposium, Geological
Society of Western Australia.

Wilde, S.A., 1990. Geology and crustal evolution of the southwestern Yilgarn Craton. In:
Third International Archaean Symposium, Perth. pp. 89–122.

Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 7, 1–35.
Wilson, J.F., Jones, D.L., Kramers, J.D., 1987. Mafic dyke swarms in Zimbabwe. In:

Fahrig, W.F., Halls, H.C. (Eds.), Mafic Dyke Swarms. Geological Association of
Canada, pp. 433–444.

Wingate, M.T.D., 1999. Ion microprobe baddeleyite and zircon ages for Late Archaean
mafic dykes of the Pilbara Craton, Western Australia. Aust. J. Earth Sci. 46, 493–500.
https://doi.org/10.1046/j.1440-0952.1999.00726.x.

Wingate, M.T.D., Pidgeon, R.T., 2005. The Marnda Moorn LIP, a late Mesoproterozoic
large igneous province in the Yilgarn craton, Western Australia. July 2005 LIP of the
month [WWW Document]. (unpub). Large Igneous Prov. Comm. Int. Assoc. Volcanol.
Chem. Earth’s Inter. URL http://www.largeigneousprovinces.org/05jul.

Wingate, M.T.D., Campbell, I.H., Compston, W., Gibson, G.M., 1998. Ion microprobe U-Pb
ages for Neoproterozoic basaltic magmatism in south-central Australia and implica-
tions for the breakup of Rodinia. Precambrian Res. 87, 135–159. https://doi.org/10.
1016/S0301-9268(97)00072-7.

Wingate, M.T.D., Campbell, I.H., Harris, L.B., 2000. SHRIMP baddeleyite age for the
Fraser dyke swarm, southeast Yilgarn Craton, Western Australia. Aust. J. Earth Sci.
47, 309–313.

Wingate, M.T.D., Pisarevsky, S.A., Evans, D.A.D., 2002. Rodinia connections between
Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nov. 14, 121–128.

Wingate, M.T.D., Pirajno, F., Morris, P.A., 2004. Warakurna large igneous province: a
new Mesoproterozoic large igneous province in west-central Australia. Geology 32,
105–108.

Wingate, M.T.D., 2007. Proterozoic mafic dykes in the Yilgarn Craton. In: Proceedings of
Geoconferences (WA) Inc. Kalgoorlie 2007 Conference, Kalgoorlie, Western
Australia. pp. 80–84.

Wingate, M.T.D., 2017. Mafic dyke swarms and large igneous provinces in Western
Australia get a digital makeover. In: Geological Survey of Western Australia Record
2017/2. pp. 4–8.

Witt, W.K., Vanderhor, F., 1998. Diversity within a unified model for Archaean gold
mineralization in the Yilgarn Craton of Western Australia: an overview of the late-
orogenic, structurally-controlled gold deposits. Ore Geol. Rev. 13, 29–64. https://doi.
org/10.1016/S0169-1368(97)00013-9.

Witt, W.K., Cassidy, K.F., Lu, Y.-J., Hagemann, S.G., 2018. The tectonic setting and
evolution of the 2.7 Ga Kalgoorlie–Kurnalpi Rift, a world-class Archean gold pro-
vince. Miner. Depos. https://doi.org/10.1007/s00126-017-0778-9.

Xie, H., Kröner, A., Brandl, G., Wan, Y., 2017. Two orogenic events separated by 2.6 Ga
mafic dykes in the Central Zone, Limpopo Belt, southern Africa. Precambrian Res.
289, 129–141. https://doi.org/10.1016/j.precamres.2016.11.009.

Yeats, C.J., McNaughton, N.J., 1997. Significance of SHRIMP II U-Pb geochronology on
lode-gold deposits of the Yilgarn craton. Aust. Geol. Surv. Organ. Rec. 41, 125–130.

Yeats, C.J., McNaughton, N.J., Groves, D.I., 1996. SHRIMP U-Pb geochronological con-
straints on Archean volcanic-hosted massive sulfide and lode gold mineralization at
Mount Gibson, Yilgarn Craton, Western Australia. Econ. Geol. 91, 1354–1371.

Zeh, A., Gerdes, A., Klemd, R., Barton, J.M., 2007. Archaean to proterozoic crustal evo-
lution in the central zone of the Limpopo Belt (South Africa-Botswana): constraints
from combined U-Pb and Lu-Hf isotope analyses of zircon. J. Petrol. https://doi.org/
10.1093/petrology/egm032.

Zeh, A., Gerdes, A., Barton Jr, J., Klemd, R., 2010. U-Th–Pb and Lu–Hf systematics of
zircon from TTG’s, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt
(South Africa): constraints for the formation, recycling and metamorphism of

J.C. Stark et al. Precambrian Research 317 (2018) 1–13

12

http://refhub.elsevier.com/S0301-9268(18)30155-4/h0465
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0465
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0465
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0470
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0470
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0470
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0470
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0475
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0475
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0475
https://doi.org/10.1046/j.1440-0952.1999.00715.x
https://doi.org/10.1046/j.1440-0952.1999.00715.x
https://doi.org/10.1130/G30567.1
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0490
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0490
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0490
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0500
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0500
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0505
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0505
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0505
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0520
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0520
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0520
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0525
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0525
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0525
https://doi.org/10.1093/petrology/egv015
https://doi.org/10.1093/petrology/egv015
https://doi.org/10.1016/j.precamres.2009.11.001
https://doi.org/10.1029/2001GC000212
https://doi.org/10.1016/j.precamres.2015.05.036
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0565
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0565
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0570
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0570
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0570
https://doi.org/10.1016/j.precamres.2017.12.036
https://doi.org/10.1111/j.1751-908X.2009.00023.x
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0590
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0590
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0590
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0595
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0595
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0595
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0600
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0600
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0600
https://doi.org/10.1016/j.precamres.2013.11.008
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0610
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0610
https://doi.org/10.1016/S1342-937X(05)70287-2
https://doi.org/10.1016/S1342-937X(05)70287-2
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0630
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0630
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0635
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0635
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0635
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0640
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0640
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0640
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0645
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0645
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0645
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0660
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0665
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0665
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0665
https://doi.org/10.1046/j.1440-0952.1999.00726.x
https://doi.org/10.1016/S0301-9268(97)00072-7
https://doi.org/10.1016/S0301-9268(97)00072-7
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0685
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0685
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0685
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0690
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0690
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0695
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0695
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0695
https://doi.org/10.1016/S0169-1368(97)00013-9
https://doi.org/10.1016/S0169-1368(97)00013-9
https://doi.org/10.1007/s00126-017-0778-9
https://doi.org/10.1016/j.precamres.2016.11.009
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0725
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0725
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0730
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0730
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0730
https://doi.org/10.1093/petrology/egm032
https://doi.org/10.1093/petrology/egm032
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0740
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0740
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0740


Palaeoarchaean crust. Precambrian Res. 179, 50–68.
Zhao, G., Sun, M., Wilde, S.A., Li, S., Zhang, J., 2006. Some key issues in reconstructions

of Proterozoic supercontinents. J. Asian Earth Sci. 28, 3–19.
Zibra, I., Clos, F., Weinberg, R.F., Peternell, M., 2017a. The ∼2730 Ma onset of the

Neoarchean Yilgarn Orogeny. Tectonics 36, 1787–1813. https://doi.org/10.1002/
2017TC004562.

Zibra, I., Korhonen, F.J., Peternell, M., Weinberg, R.F., Romano, S.S., Braga, R., De Paoli,
M.C., Roberts, M., 2017b. On thrusting, regional unconformities and exhumation of
high-grade greenstones in Neoarchean orogens. The case of the Waroonga Shear
Zone, Yilgarn Craton. Tectonophysics 712–713, 362–395. https://doi.org/10.1016/j.
tecto.2017.05.017.

J.C. Stark et al. Precambrian Research 317 (2018) 1–13

13

http://refhub.elsevier.com/S0301-9268(18)30155-4/h0740
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0745
http://refhub.elsevier.com/S0301-9268(18)30155-4/h0745
https://doi.org/10.1002/2017TC004562
https://doi.org/10.1002/2017TC004562
https://doi.org/10.1016/j.tecto.2017.05.017
https://doi.org/10.1016/j.tecto.2017.05.017


J.C. Stark        APPENDIX A  

    369 

 

Statement of Authorship 
 

Title of Paper 
1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton 
marks Nuna to Rodinia transition in the West Australian 
Craton 
 

 
Publication Status 

Published  Accepted for publication 

Submitted for Publication Publication Style 

 
 

Publication Details 

         Stark, J.C., Wang, X.-C., Li, Z.-X., Denyszyn, S.W., 

Rasmussen, B., Zi, J.-W., Sheppard, S., 2018. 1.39 Ga mafic 

dyke swarm in southwestern Yilgarn Craton marks Nuna to 

Rodinia transition in the West Australian Craton. Precambrian 

Res. 316, 291–304. 

Author Contributions 
By signing the Statement of Authorship, each author certifies that their stated 

contribution to the publication is accurate and that permission is granted for the 

publication to be included in the candidate’s thesis. 
 

Name of Principal Author 
(Candidate) 

Jutta Camilla Stark 

Contribution to the Paper Jutta Camilla Stark collected and prepared most of the 
samples and undertook SHRIMP dating, some baddeleyite 
separation for ID-TIMS dating, most of the interpretation 
and drafted most of the manuscript  

Overall percentage (%) 60 

Signature 
 

 

Date   01/06/2018 

 

Name of Co-Author  Xuan-Ce Wang 

Contribution to the Paper Xuan-Ce Wang is a supervisor of the candidate and 
assisted with the interpretation of the geochemical data 
and drafting of the manuscript  

Overall percentage (%) 10 

Signature 
 Date 01/06/2018 

 



J.C. Stark        APPENDIX A  

    370 

Name of Co-Author   Steven Denyszyn  

Contribution to the Paper Steve Denyszyn undertook baddeleyite separation and ID-
TIMS dating 

Overall percentage (%) 5 

Signature 

 

Date 01/06/2018 

 

Name of Co-Author   Zheng-Xiang Li 

Contribution to the Paper Zheng-Xiang Li is the principal supervisor of the 
candidate and assisted with the concept and drafting of the 
manuscript and interpretation of the results 

Overall percentage (%)  5 

Signature  

 

Date 01/06/2018 

 

Name of Co-Author   Birger Rasmussen 

Contribution to the Paper Birger Rasmussen assisted with interpretation of the 
SHRIMP results and drafting of the manuscript 

Overall percentage (%)  5 

Signature 

 

Date 01/06/2018 

 

Name of Co-Author   Jian-Wei Zi 

Contribution to the Paper Jian-Wei Zi assisted with SHRIMP sample preparation, 
analysis and data processing 

Overall percentage (%)  5 

Signature 

 

Date 01/06/2018 

 

 



J.C. Stark        APPENDIX A  

    371 

 

 

 
 

 
Title: 1.39 Ga mafic dyke swarm in

southwestern Yilgarn Craton

marks Nuna to Rodinia

transition in the West Australian

Craton

Author: J. Camilla Stark,Xuan-Ce

Wang,Zheng-Xiang Li,Steven W.

Denyszyn,Birger

Rasmussen,Jian-Wei Zi

Publication: Precambrian Research

Publisher: Elsevier

Date: October 2018

© 2018 Elsevier B.V. All rights reserved.

LOGINLOGIN

If you're a copyright.com

user, you can login to

RightsLink using your

copyright.com credentials.

Already a RightsLink user or

want to learn more?

 

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or

dissertation, provided it is not published commercially.  Permission is not required, but please ensure

that you reference the journal as the original source.  For more information on this and on your other

retained rights, please visit: https://www.elsevier.com/about/our-

business/policies/copyright#Author-rights

    

 
Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 

Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

 



Contents lists available at ScienceDirect

Precambrian Research

journal homepage: www.elsevier.com/locate/precamres

1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to
Rodinia transition in the West Australian Craton

J. Camilla Starka,b,c,⁎, Xuan-Ce Wangb,c, Zheng-Xiang Lia,b,c, Steven W. Denyszynd,
Birger Rasmussend, Jian-Wei Zib,e

a Earth Dynamics Group, ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), Curtin University, GPO Box U1987, Perth, WA 6845, Australia
b The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
c School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
d School of Earth Sciences, University of Western Australia, Perth WA 6009, Australia
e State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

A R T I C L E I N F O

Keywords:
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Mafic dykes
Geochronology
U-Pb baddeleyite
Large Igneous Province
Biberkine dykes

A B S T R A C T

The Archean Yilgarn Craton in Western Australia hosts at least five generations of mafic dykes ranging from
Archean to Neoproterozoic in age, including the craton-wide ca. 2408Ma Widgiemooltha and the 1210Ma
Marnda Moorn Large Igneous Provinces (LIP), the 1888Ma Boonadgin dykes in the southwest and the 1075Ma
Warakurna LIP in the northern part of the craton. We report here a newly identified NNW-trending mafic dyke
swarm, here named the Biberkine dyke swarm, in the southwestern Yilgarn Craton dated at 1390 ± 3Ma by ID-
TIMS U-Pb geochronology of baddeleyite. The regional extent of the dyke swarm is uncertain but aeromagnetic
data suggest that the dykes are part of a linear swarm several hundred kilometers long, truncated by the
Mesoproterozoic Albany-Fraser Orogen to the south. Geochemical data indicate that the dykes have tholeiitic
compositions with a significant contribution from metasomatically enriched subcontinental lithospheric mantle
and/or lower continental crust. Paleogeographic reconstructions suggest that a prolonged tectonic quiescence in
the Yilgarn Craton from ca. 1600Ma was interrupted by renewed subduction along the southern and south-
eastern margin at ca. 1400Ma, reflecting a transition from Nuna to Rodinia configuration. The 1390Ma
Biberkine dykes may be a direct consequence of this transition and mark the change from a passive to active
tectonic setting, which culminated in the Albany-Fraser Orogeny at ca. 1330Ma. The Biberkine dykes are coeval
with a number of other mafic dyke swarms worldwide and provide an important target for paleomagnetic
studies.

1. Introduction

Mafic dyke swarms act as important markers for supercontinent
reconstructions (e.g. Ernst and Buchan, 1997; Buchan et al., 2001;
Bleeker and Ernst, 2006; Ernst and Srivastava, 2008; Ernst et al., 2010,
2013) and as indicators of paleostress fields and pre-existing crustal
weaknesses (Ernst et al., 1995; Hoek and Seitz, 1995; Halls and Zhang,
1998; Hou, 2012; Ju et al., 2013). They appear to be intimately con-
nected with deep-Earth dynamics and supercontinent cycles (e.g.
Condie, 2004; Prokoph et al., 2004; Bleeker and Ernst, 2006; Ernst
et al., 2008; Li and Zhong, 2009; Goldberg, 2010) and their presence
acts as a tectonic fingerprint of intracratonic crustal extension asso-
ciated with processes such as subduction (back-arc extension), mantle
plumes and rifting during supercontinent breakup.

The Archean Yilgarn Craton in Western Australia shared a large part
of its tectonic evolution with Antarctica during the Mesoproterozoic
and is thus an important component in reconstructions for the Nuna
and Rodinia supercontinents (Dalziel, 1991; Meert, 2002; Rogers and
Santosh, 2002; Wingate et al., 2002; Li et al., 2008; Nance et al., 2014;
Pisarevsky et al., 2014; Meert and Santosh, 2017). The transition from
Nuna to Rodinia likely occurred after ca. 1400Ma (Li et al., 2008; Evans
and Mitchell, 2011; Pisarevsky et al., 2014; Aitken et al., 2016), after an
interval of apparent tectonic quiescence in the Yilgarn Craton since ca.
1600Ma. Here we report the discovery of a Mesoproterozoic (1390Ma)
NNW-trending mafic dyke swarm in the southwestern Yilgarn Craton,
identified by U-Pb geochronology using a combination of in situ
SHRIMP and ID-TIMS methodologies. We also present results from a
preliminary geochemical analysis and discuss the tectonic setting
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during emplacement of the dykes and implications for regional tectonic
models.

2. Regional geology

The Yilgarn Craton is a ca. 900×1000 km Archean crustal block
comprising six accreted terranes: the Southwest, Narryer, Youanmi,
Kalgoorlie, Kurnalpi and Burtville terranes, the latter three forming the
Eastern Goldfields Superterrane (Fig. 1). These comprise variably me-
tamorphosed granites and volcanic and sedimentary rocks with proto-
lith ages between ca. 3730 and 2620Ma (Cassidy et al., 2005, 2006 and
references therein) and are thought to represent a series of volcanic arcs
and back- arc basins, which amalgamated during a Neoarchean orogeny
between ca. 2730 and 2625Ma (Myers, 1993, 1995; Wilde et al., 1996;
Barley et al., 2003; Blewett and Hitchman, 2006; Korsch et al., 2011;
Witt et al., 2018). Abundant granites were emplaced between ca.
2760Ma and 2630Ma (Cassidy et al., 2006 and references therein) and
the entire craton underwent intense metamorphism and hydrothermal
activity between 2780 and 2630Ma (Myers, 1993; Nemchin et al.,
1994; Nelson et al., 1995; Wilde et al., 1996). The Southwest Terrane
comprises multiply deformed ca. 3200–2800Ma high-grade metasedi-
mentary rocks and ca. 2720─2670Ma meta-igneous rocks intruded by
2750─2620Ma granites (Myers, 1993; Wilde et al., 1996; Nemchin and
Pidgeon, 1997).

The Yilgarn Craton is bounded by three Proterozoic orogenic belts:
the ca. 2005─570Ma Capricorn Orogen in the north (Cawood and
Tyler, 2004; Sheppard et al., 2010a; Johnson et al., 2011), the ca.
1815─1140Ma Albany-Fraser Orogen in the south and east (Nelson
et al., 1995; Clark et al., 2000; Spaggiari et al., 2015), and the ca.
1090–525Ma Pinjarra Orogen in the west (Myers, 1990; Wilde, 1999;
Ksienzyk et al., 2012). Following cratonisation toward the end of the
Archean, the Yilgarn Craton collided along the Capricorn Orogen with

the combined Pilbara Craton-Glenburgh Terrane by 1950Ma to form
the West Australian Craton (WAC) (Sheppard et al., 2004, 2010;
Johnson et al., 2011). Prolonged lateritic weathering has produced the
modern denuded landscape and poor exposure of basement rocks
(Anand and Paine, 2002).

The Yilgarn Craton hosts a large number of mafic dykes of different
orientations with the dyke density increasing towards the southern and
western craton margins (Hallberg, 1987; Tucker and Boyd, 1987). The
dykes are discernible in aeromagnetic data but outcrops are difficult to
identify and sample due to deep weathering and thick regolith cover.
The oldest known mafic dyke in the Yilgarn Craton is the NE-trending
ca. 2620Ma Yandinilling dyke, which has been dated from one outcrop
120 km east of Perth but is probably part of a large dyke swarm that
extends at least across the South West Terrane (Stark et al., 2018). The
oldest mafic dykes with craton-wide extent belong to the E- to NE-
trending 2418–2408Ma Widgiemooltha dyke swarm (Sofoulis, 1965;
Evans, 1968; Campbell et al., 1970; Hallberg, 1987; Doehler and
Heaman, 1998; Nemchin and Pidgeon, 1998; Wingate, 1999, 2007;
French et al., 2002; Pisarevsky et al., 2015). The Widgiemooltha dykes
are up to 3.2 km wide and extend up to 700 km across the craton, with
the largest intrusions (Jimberlana and Binneringie) showing well-de-
veloped igneous layering (Campbell et al., 1970; Lewis, 1994). The
dykes exhibit dual magnetic polarity (Tucker and Boyd, 1987; Boyd and
Tucker, 1990) and recent geochronology and paleomagnetic data sug-
gest that their emplacement may have involved several pulses
(Wingate, 2007; Smirnov et al., 2013; Pisarevsky et al., 2015). The
second craton-wide suite is the 1210Ma Marnda Moorn LIP, which
consists of several sub-swarms of different orientations intruding along
the craton margins (Isles and Cooke, 1990; Evans, 1999; Wingate et al.,
2000; Pidgeon and Nemchin, 2001; Pidgeon and Cook, 2003;
Rasmussen and Fletcher, 2004; Wingate and Pidgeon, 2005; Wingate,
2007; Claoué-Long and Hoatson, 2009). Outcrops in the southeast are

Fig. 1. Map of the Yilgarn Craton showing major tectonic units and the Capricorn and Albany-Fraser orogens. Inset shows the extent of the West Australian Craton
(Pilbara Craton, Yilgarn Craton and Capricorn Orogen). From Geological Survey of Western Australia 1:2.5M Interpreted Bedrock Geology 2015 and 1:10M Tectonic
Units 2016.
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limited to a single occurrence, and the extent of the dykes in the
northeast is unknown due to cover rocks but one E-trending dioritic
dyke dated at 1215 ± 11Ma has been reported further inland (Qiu
et al., 1999). Other identified dyke swarms include the NW-trending ca.
1888Ma Boonadgin dyke swarm in the southwest (Stark et al., in
press), the SW-trending dykes of the 1075Ma Warakurna LIP in the
northern Yilgarn Craton (Wingate et al., 2004), the WNW-trending ca.
735Ma Nindibillup dykes in the central and southeast Yilgarn Craton
(Spaggiari et al., 2009, 2011; Wingate, 2017) and the undated
(likely < 1140Ma) NW-trending Beenong dykes in the southeast Yil-
garn Craton (Wingate, 2007; Spaggiari et al., 2009, 2011).

3. Samples

3.1. Field sampling

Field sampling sites were targeted using satellite imagery (Landsat/
Copernicus or Astrium/CNES from Google Earth), aeromagnetic data
(20–40m cell size, Geoscience Australia magnetic grid of Australia V6
2015 base reference) and 1:250 000 geological maps from the
Geological Survey of Western Australia.

Three block samples were collected from outcrops SW to WSW of
the town of Pingelly from outcrops within agriculturally cleared areas
near accessible roads (Fig. 2, Table 1). Basement rocks are not exposed
at any of the sampling sites but geological mapping indicates that the
country rocks to the dykes are Archean granites (Baxter et al., 1980).
Dykes form gentle ridges often associated with large trees, where
farming is difficult due to concentrations of large boulders of dolerite
(Fig. 3). Due to the lack of exposed contacts, the widths of the dykes are
unknown, however at WDS10 the dyke is probably> 60m wide, based
on the extents of partially exposed rock. All outcrops appear relatively
fresh and weathering forms a light red-brown crust of varying thickness
that is best visible along fractures (Fig. 3).

3.2. Sample description

All samples are dolerites with intergranular ophitic to sub-ophitic
texture, comprising 45–50% plagioclase, 25–35% pyroxene, up to 10%
quartz and 10–15% opaque minerals (magnetite and ilmenite) and trace
apatite. The samples are relatively fresh apart from uralitic alteration of
pyroxene and variable but relatively minor sericitisation of plagioclase
(Fig. 4). Most clinopyroxene grains have been affected by alteration,
ranging in intensity from the growth of brown amphibole near grain
boundaries to pervasive alteration of the entire grain into a mixture of

brown and green amphibole. Plagioclase preserves original twinning
and some zoned grains exhibit weak alteration along fractures. Abun-
dant opaque minerals appear as subhedral to euhedral grains in the
groundmass but also as extremely fine-grained masses within altered
pyroxene and along grain boundaries.

4. U-Pb geochronology and geochemistry methodologies

4.1. SHRIMP U-Pb geochronology

Polished thin sections were scanned to identify baddeleyite, zircon
and zirconolite with a Hitachi TM3030 scanning electron microscope
(SEM) equipped with energy dispersive X-ray spectrometer (EDX) at
Curtin University. For SHRIMP U-Pb dating, selected grains were drilled
directly from the thin sections using a micro drill and mounted into
epoxy disks, which were cleaned and coated with 40 nm of gold.
Baddeleyite forms mostly unaltered, subhedral to euhedral equant and
tabular grains, some with thin zircon rims. Most baddeleyite grains are
up to 100 μm long and up to 30 μm across (Fig. 5).

Baddeleyite was analysed for U, Th and Pb using the sensitive high-
resolution ion microprobe (SHRIMP II) at the John de Laeter Centre at
Curtin University in Perth, Australia, following standard operating
procedures after Williams (1998). The SHRIMP analysis method for
mounts with polished thin section plugs outlined in Rasmussen and
Fletcher (2010) was modified for baddeleyite (SHRIMP operating
parameters in Table 2). During each analytical session, standard zircon
OG1 (Stern et al., 2009) was used to monitor instrumental mass frac-
tionation and BR266 zircon (Stern, 2001) was used for calibrating U
and Th concentration and as an accuracy standard. Phalaborwa bad-
deleyite (Heaman, 2009) was employed as an additional accuracy
standard. Typical spot size with primary O2

– current was 10–15 μm at

Fig. 2. Sample localities. See Table 1 for detailed information.

Table 1
Sample locations Notes Datum WGS84, Dlat=DDM latitude, Dlon=DDM
longitude.

Dyke ID Dlat / Dlon Samples Comments

WDS10 32 34.842 S
116 55.046 E

WDS10C NNW trending dyke on the east side
of York-Williams Road

WDS14 32 35.232 S
116 46.656 E

WDS14B NNW trending dyke, intersection of
Potts Road and North Wandering
Road

15WDS16 32 40.065 S
116 48.723 E

15WDS16B2 NNW trending dolerite dyke off
Wandering-Pingelly Road
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0.1–0.2nA. Data were processed with Squid version 2.50 (Ludwig,
2009) and Isoplot version 3.76.12 (Ludwig, 2012). For common Pb
correction, 1390Ma common Pb isotopic compositions were calculated
from the Stacey and Kramers (1975) two-stage terrestrial Pb isotopic
evolution model. Analyses with>1% common Pb (in 206Pb) or> 10%
discordance (see footnote in Table 3 for definition) are considered un-
reliable and were disregarded in age calculations. The assigned 1σ ex-
ternal Pb/U error for all analyses is 1%. All weighted mean ages are
given at 95% confidence level, except 15WDS16 where 2σ internal
error is used. All individual analyses are presented with 1σ error.

4.2. ID-TIMS U-Pb geochronology

A sample for ID-TIMS U-Pb geochronology was selected based on
results from the SHRIMP dating and the highest number of identified
baddeleyite crystals in thin section. A block sample was first sawn from
the field sample to remove weathering, then crushed, powdered and
processed using a mineral-separation technique modified after
Söderlund and Johansson (2002). Baddeleyite grains were hand picked
under ethanol under a stereographic optical microscope and selected
grains were cleaned with concentrated distilled HNO3 and HCl. Due to
the small size of the separated fractions, no chemical separation
methods were required.

Fig. 3. (A) 15WDS16 sample location, looking SSE. (B) Satellite image showing
the location of sample 15WDS16. Note the faint but visible NNW trending trace
of the dyke, associated with clusters of trees.

Fig. 4. Photomicrograph of sample WDS10C. (A) Plane polarised light (PPL)
image showing subophitic growth of plagioclase within clinopyroxene in the
lower right quadrant and the growth of brown and green amphibole near and
within intercumulus grain boundaries. (B) Cross-polarized light (XPL) image
showing twinning in the poikilitic clinopyroxene in the lower right quadrant.
Plg= plagioclase, Cpx= clinopyroxene, Amp= amphibole, Se= sericite,
Ilm= ilmenite. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Back-scattered electron (BSE) images showing SHRIMP analytical spots
and corresponding Pb/Pb dates for baddeleyite. (A) WDS14 spots
WDS14B1.109B-1 (lower) and WDS14B1.109B-2 (upper) (B) WDS10 spots
WDS10C4.177B-1 (lower), WDS10C4.177B-2 (middle) and WDS10C4.177B-3
(upper). Note the excluded spots shown with more precise 206Pb/238U dates
despite known crystal orientation effects in baddeleyite (discussed in section
5.1).
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Samples were spiked with a University of Western Australia in-
house 205Pb-235U tracer solution, which has been calibrated against
SRM981, SRM982 (for Pb), and CRM 115 (for U), as well as an ex-
ternally-calibrated U-Pb solution (the JMM solution from the EarthTime
consortium). This tracer is regularly checked using “synthetic zircon”
solutions that yield U-Pb ages of 500Ma and 2000Ma, provided by D.
Condon (British Geological Survey). Dissolution and equilibration of
spiked single crystals was by vapour transfer of HF, using Teflon mi-
crocapsules in a Parr pressure vessel placed in a 200 °C oven for six
days. The resulting residue was re-dissolved in HCl and H3PO4 and
placed on an outgassed, zone-refined rhenium single filament with 5 µL
of silicic acid gel. U–Pb isotope analyses were carried out using a
Thermo Triton T1 mass spectrometer, in peak-jumping mode using a
secondary electron multiplier. Uranium was measured as an oxide
(UO2). Fractionation and deadtime were monitored using SRM981 and
SRM 982. Mass fractionation was 0.02 ± 0.06%/amu. Data were re-
duced and plotted using the software packages Tripoli (from
CIRDLES.org) and Isoplot 4.15 (Ludwig, 2011). All uncertainties are
reported at 2σ. U decay constants are from Jaffey et al. (1971). The
weights of the baddeleyite crystals were calculated from measurements
of photomicrographs and estimates of the third dimension. The weights
are used to determine U and Pb concentrations and do not contribute to
the age calculation. An uncertainty of± 50% may be attributed to the
concentration estimate.

4.3. Geochemistry

Slabs were sawn from block samples to remove weathering. After an
initial crush, a small fraction of material was separated and chips with
fresh fracture surfaces were hand picked under the microscope and
pulverised in an agate mill for isotope analysis. Remaining material was
pulverised in a low-Cr steel mill for major and trace element analysis.

Major element analysis was undertaken at Intertek Genalysis
Laboratories in Perth, Western Australia using X-ray fluorescence (XRF)
using the Geological Survey of Western Australia (GSWA) standard BB1
(Morris, 2007) and Genalysis laboratory internal standards SARM1 and
SY-4. Trace element analysis was carried out at University of Queens-
land (UQ) on a Thermo XSeries 2 inductively coupled plasma mass
spectrometer (ICP-MS) equipped with an ESI SC-4 DX FAST auto-
sampler, following procedure for ICP-MS trace element analysis by
Eggins et al. (1997) modified by the UQ Radiogenic Isotope Laboratory
(Kamber et al., 2003). Sample solutions were diluted 4,000 times, and
12 ppb 6Li, 6 ppb 61Ni, Rh, In and Re, and 4.5 ppb 235U internal spikes
were added. USGS W2 was used as reference standard and crossed
checked with BIR-1, BHVO-2 or other reference materials. All major
element analyses have precision better than 5% and all trace element
analyses have relative standard deviation (RSD)<2%.

Rb-Sr and Sm-Nd isotope analyses were carried out at the University

of Melbourne (e.g. Maas et al., 2005, 2015). Small splits (70mg) of rock
powders were spiked with 149Sm-150Nd and 85Rb-84Sr tracers, followed
by dissolution at high pressure in an oven, using Krogh-type PTFE
vessels with steel jackets. Sm, Nd and Sr were extracted using EI-
CHROM Sr-, TRU- and LN-resin, and Rb was extracted using cation
exchange (AG50-X8, 200–400 mesh resin). Isotopic analyses were car-
ried out on a NU Plasma multi-collector ICP-MS coupled to a CETAC
Aridus desolvation system operated in low-uptake mode. Raw data for
spiked Sr and Nd fractions were corrected for instrumental mass bias by
normalizing to 88Sr/86Sr= 8.37521 and 146Nd/145Nd=2.0719425
(equivalent to 146Nd/144Nd= 0.7219), respectively, using the ex-
ponential law as part of an on-line iterative spike-stripping/internal
normalization procedure. Sr and Nd isotope data are reported relative
to SRM987=0.710230 and La Jolla Nd= 0.511860 and have typical
in-run precisions (2sd) of ± 0.000020 (Sr) and ± 0.000012 (Nd).
External precision (reproducibility, 2sd) is ± 0.000040 (Sr) and ±
0.000020 (Nd). External precisions for 87Rb/86Sr and 147Sm/144Nd
obtained by isotope dilution are ± 0.5% and ± 0.2%, respectively.

5. Results

5.1. SHRIMP U-Pb geochronology

Twenty-three analyses were obtained from 13 baddeleyite crystals
(4 grains from WDS10, 5 grains from WDS14 and 4 grains from
15WDS16) during two SHRIMP sessions (Fig. 6; detailed U-Pb data are
given in Table 3). The analysed baddeleyite crystals have low to mod-
erate U concentrations varying from 40 to 330 ppm
(median= 163 ppm) and low Th concentrations ranging from 1 to
89 ppm, with Th/U ratios ranging from 0.23 to 0.28. Fourteen analyses
were excluded based on their high common Pb (> 1.58% 206Pb) and/
or> 18% discordance. The small size and narrow shape of the badde-
leyite crystals made it difficult to place the ion beam without over-
lapping onto adjacent minerals (e.g. Fig. 5B). Crystal orientation de-
pendent Pb/U fractionation effects in baddeleyite during secondary ion
mass spectrometry (SIMS) can lead to biased 206Pb/238U ages but this is
not necessarily the case for all crystals (e.g. Wingate and Compston,
2000; Schmitt et al., 2010), and in some instances, the 204Pb-corrected
206Pb/238U dates were more precise than the 204Pb-corrected
207Pb/206Pb dates (Table 3). Four analyses from three grains from
sample WDS10 yielded a common Pb-corrected 207Pb/206Pb weighted
mean of 1442 ± 250Ma (MSWD=3.3), four analyses from two grains
from 15WDS16 gave a common Pb-corrected 207Pb/206Pb weighted
mean of 1470 ± 58Ma (MSWD=2.11, 2σ internal error) and one
analysis from one grain from WDS14 gave 1433 ± 74Ma. Despite the
low precision of the individual analyses, we consider the age difference
between the dykes insignificant relative to the analytical uncertainty.
Combining all valid analyses from WDS10, WDS14 and 15WDS16
yields a 207Pb/206Pb weighted mean age of 1458 ± 76Ma
(MSWD=2.09; n=9, six grains).

5.2. ID-TIMS U-Pb geochronology

Four baddeleyite crystals were analyzed from sample WDS10
(Table 4, Fig. 7). Calculated weights are on the order of 0.1 µg, with low
calculated U concentrations between 21 ppm and 80 ppm. Calculated U
concentrations are unusually low for baddeleyite and this may reflect
an overestimate of the grain weights, but the low Pb abundance (both
radiogenic and common Pb) also implies a low initial U concentration.
Th/U ratios are< 0.1, a typical value for baddeleyite. Coherence in age
of all measured baddeleyite crystals supports our interpretation of the
analyses representing a single magmatic crystallization age. The
weighted mean 207Pb/206Pb age of the four concordant single-crystal
analyses is 1389 ± 14Ma (2σ, n= 4, MSWD=0.57) and the weighted
mean 206Pb/238U age of these analyses is 1389.9 ± 3.0Ma (2σ, n= 4,
MSWD=1.4). This precise 1390 ± 3Ma age is within the uncertainty

Table 2
SHRIMP operating parameters Notes 1) Mass resolution for all analyses≥ 5000
at 1% peak height 2) BR266, OGC, Phalaborwa and NIST used as standards for
each session 3) Count times for each scan: 204Pb, 206Pb, 208Pb=10 s,
207Pb= 30 s.

Mount CS16-2 CS16-4

Dykes analysed WDS10, WDS14 15WDS16
Date analysed 21-Jul-16 19-Aug-16
Kohler aperture (μm) 30 30
Spot size (micrometres) 8 10
O2– primary current (nA) 0.1–0.2 0.2
Number of scans per analysis 8 8
Total number of analyses in session 41 42
Number of standard analyses in session 24 26
Pb/U external precision % (1σ) 1.00 1.00
Raster time (seconds) 120 120
Raster aperture (μm) 80 80
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of our baddeleyite SHRIMP U-Pb 207Pb/206Pb date of 1458 ± 76Ma,
and is therefore considered as the best estimate of the crystallisation
age of the sampled dykes.

5.3. Geochemistry

Due to limited age control, only four samples from three dykes were
available for geochemical analyses. Consequently, only preliminary
conclusions about the geochemical characteristics of the dykes can be
made. Two samples from WDS10, one sample from WDS14 and one
sample from 15WDS16 were analysed for major and trace elements and
for Sr and Nd isotopes. Data for the samples are presented together with
major and trace element geochemistry from the 1210Ma Marnda
Moorn and the 1888Ma Boonadgin dykes.

5.3.1. Major and trace elements
Three samples have LOI < 1.0 wt% and one (15WDS16A) has LOI

of 1.63%. All samples display low MgO (5.99–6.90 wt%), moderate
SiO2 (49.02–50.84 wt%), FeOtot (12.92–14.55 wt%) and CaO
(9.55–10.48 wt%), and moderate to high Al2O3 (13.31–14.29 wt%)
(Table 5). All samples have moderate total alkalis
(Na2O+K2O=2.79–3.08 wt%) and Na2O/K2O ratios (2.54–3.81). The
sampled dykes are classified as sub-alkaline basalts on the TAS diagram
(Fig. 8A, Irvine and Baragar, 1971; Le Maitre et al., 1989) and belong to
the tholeiitic series on the AFM diagram (Fig. 8B, Irvine and Baragar,
1971), similar to Group 1 of the ca. 1210Ma Marnda Moorn LIP (Wang
et al., 2014) and the ca. 1888Ma Boonadgin dykes (Stark et al., in
press). The chondrite-normalised rare earth element patterns (Fig. 8C)
shows moderate enrichment of light REE (LREE) with LaN/YbN=4.50
to 4.80 and LaN/SmN=2.40 to 2.51, whereas the heavy REE (HREE)
profiles are flat, with low TbN/YbN ratios (1.32 to 1.37) slightly higher
than the average values of N-MORB and E-MORB (1.0; Sun and
McDonough, 1989). The primitive mantle-normalised trace element
patterns show depletion of high field strength elements (HFSE) with
prominent negative Nb-Ta and slightly negative Zr-Hf and Ti anomalies
(Fig. 8D) and enrichment in Cs, Rb and Ba (large ion lithophile elements
LILEs, not shown).

5.3.2. Nd and Sr isotopes
All four samples were analysed for Nd and Sr isotopes (Table 5).

Ratios of 147Sm/144Nd and 143Nd/144Nd are 0.1355–0.1380 and
0.511845–0.511877, respectively. The corresponding initial

Fig. 6. Tera-Wasserburg plot of SHRIMP U-Pb baddeleyite results for samples
WDS10, WDS14 and 15WDS16. Grey squares denote excluded data (see section
5.1 and Table 3 for details).
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εNd1389Mavalues range from −4.4 to −4.5, which are much lower than
the inferred lower estimate of εNdDM=+4.8 for the contemporaneous
depleted mantle (calculated using the method of DePaolo, 1981), sug-
gesting involvement of an enriched reservoir (crustal component or
enriched subcontinent lithospheric mantle). The 87Rb/86Sr ratio ranges
from 0.2398 to 0.8046 and the 87Sr/86Sr ratio from 0.710143 to
0.726251, the corresponding initial ratios (87Sr/86Sr)1390 Ma varying
from 0.70497 to 0.71050. The latter are significantly higher than
0.7017 estimated for contemporaneous mantle (calculated using
87Rb/86Sr= 0.046 and 87Sr/86Sr= 0.7026 for modern depleted
mantle; Taylor and McLennan, 1985) and also suggest involvement of
an enriched reservoir or an effect of alteration of the Rb-Sr isotope
system. In contrast with the uniform initial Nd isotopes, the wide range
of initial Sr isotope compositions and positive correlation between LOI
and the initial 87Sr/86Sr ratios (not shown) suggest mobility of Rb
during alteration, leading to disturbance of the Rb-Sr isotope system.
Consequently, Sr isotope data are excluded from the following discus-
sion.

6. Discussion

We have identified a previously unknown Mesoproterozoic NNW-
trending mafic dyke swarm in the southwestern Yilgarn Craton, here
named the Biberkine dykes. Aeromagnetic data suggest that the dyke
swarm extends several hundred kilometers across the South West
Terrane, truncated by the Albany-Fraser Orogen in the south and the
Darling Fault in the west (Fig. 1). However, until further sampling
within the craton allows a better delineation of the extent of the dykes,
their designation as a swarm is preliminary.

The Biberkine dykes are coeval with several mafic magmatic events
worldwide (Ernst et al., 2008), such as the ca. 1386–1380Ma Hart
River dykes (Abbott, 1997) and the ca. 1379Ma Salmon River Arch sills
(Doughty and Chamberlain, 1996) in North America, the ca. 1384Ma
Chieress dykes in Siberia (Okrugin et al., 1990; Ernst et al., 2000), the
ca. 1380Ma dykes at Vestfold Hills in East Antarctica (Lanyon et al.,
1993), the ca. 1382Ma Zig Zag Dal Formation in Greenland (Upton
et al., 2005), the giant Lake Victoria dyke swarm in east Africa (Mäkitie
et al., 2014) and the ca. 1385Ma Mashak igneous event (Ronkin et al.,
2005; Ernst et al., 2006). No other mafic magmatism within uncertainty
of the 1390 ± 3Ma age for the Biberkine dykes is currently known in
the WAC or elsewhere in Australia and the temporally closest magmatic
events within the WAC are the ca. 1360Ma Gifford Creek carbonatite in
the Edmund Basin of the Capricorn Orogen (Zi et al., 2017) and the ca.

1465Ma mafic sills of the Narimbunna dolerite (Wingate, 2002; Morris
and Pirajno, 2005; Sheppard et al., 2010b).

6.1. Nature of the mantle source of the Biberkine dykes

Zirconium can be used to evaluate mobility of major and trace
elements during alteration and metamorphism (e.g. Polat et al., 2002;
Wang et al., 2008, 2014). The Nb, Ta, Hf, Th and REE concentrations in
the samples display good correlation with Zr (not shown) indicating
that these elements have been unaffected by post-magmatic processes
and reflect the primary composition of the magma. The Biberkine dykes
display arc-like geochemical characteristics, including depletion of
HFSE, unradiogenic initial Nd isotopes and enrichment of LILE and
radiogenic Sr isotopes, which may have been imparted either by crustal
contamination or inherited from heterogeneous metasomatically en-
riched source region, or both (Hawkesworth et al., 1990; Hawkesworth,
1993; Puffer, 2001; Zhao et al., 2013; Wang et al., 2016). Crustal
contamination during magma ascent would produce synchronous
changes between major and trace elements and radiogenic isotope
compositions (Brandon et al., 1993; Hawkesworth et al., 1995; Wang
et al., 2008, 2014). Relative to rocks sourced from asthenospheric
mantle, crustal material is characterised by high La/Sm and Th/La and
low Sm/Nd, Nb/La and εNd, and crustal contamination during magma
ascent would therefore produce negative and positive correlations, re-
spectively, with Mg# (e.g. Wang et al., 2008, 2014). No such correla-
tions are evident in the data or in the Sm/Nd and Nb/La ratios. The
nearly constant initial εNd(t) values, near uniform SiO2 contents
(49.02–50.84 wt%) and incompatible trace element ratios (Sm/
Nd=0.23 and La/Sm=3.9–3.7) with a large range of Mg# values
(49–55) do not support significant crustal contamination in the gen-
eration of these dykes. This is supported further by primitive man-
tle–like trace element ratios of Nb/Ta (16.3–16.5), Zr/Hf (39.1–40.0)
and Zr/Sm (26.2–28.9) of the dykes (primitive mantle: Nb/Ta=17.39,
Zr/Hf= 36.25 and Zr/Sm=25.23; Sun and McDonough, 1989), which
are also similar to typical asthenospheric mantle-derived melts, such as
MORB (Sun and McDonough, 1989). Although significant crustal con-
tamination appears unlikely, the dykes display arc-like trace element
signatures such as depletion of HFSE and enrichment of LILE. These
characteristics may be attributed to Earth deep volatile cycling (e.g.
Wang et al., 2016) or partial melting of SCLM enriched by previous
subduction processes or recycled components (Wang et al., 2008,
2014). On the basis of the above evidence and the unradiogenic initial
Nd isotopes, we prefer an interpretation where the predominant source
of the dykes is an enriched SCLM. Geochemical analysis of a much
larger number of samples across the dyke swarm is required to further
constrain the nature of the source of the Biberkine dykes.

The flat HREE profiles of the 1390Ma Biberkine, 1888Ma
Boonadgin and 1210Ma Marnda Moorn dykes indicate that partial
melting likely occurred within the spinel stability field (at< 75 km
depth), suggesting that the SCLM at least beneath and near the margin
of the Yilgarn Craton may have been largely removed or thinned
sometime before 1888Ma. Smithies and Champion (1999) argued for a
craton-wide delamination of the lower crust at ca. 2650Ma during the
final stages of cratonisation and seismic data from eastern Yilgarn
Craton supports presence of a delaminated lower crustal layer that
foundered in the upper mantle (Blewett et al., 2010). Moreover, evi-
dence for a mafic–ultramafic layer in the lower crust beneath the
southwestern Yilgarn Craton may be related to underplating during
crustal extension (Dentith et al., 2000). The Biberkine and Boonadgin
dykes, although separated by ca. 500m.y. in age, were emplaced
through the same SCLM because they were sampled in areas where they
outcrop close to each other (Fig. 2). Whereas the Boonadgin dykes have
similar primitive mantle-normalised profiles and LCC-like trace element
ratios, they have significantly higher εNd(t) values of +1.3 to +1.6
(Stark et al., in press) than the Biberkine dykes, suggesting that their
source involved a higher proportion of depleted mantle with less

Fig. 7. Concordia plot for analysed baddeleyite ID-TIMS U-Pb results from
sample WDS10.
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contribution from the enriched component. The enriched LREE, LILE
and isotopic compositions of both the Biberkine and the Boonadgin
dykes could have been produced either via mixing of lower crust and
depleted asthenospheric mantle, or through interaction between asth-
enospheric mantle and metasomatically enriched regions within the
SCLM (and possibly the lower crust) that formed during earlier sub-
duction events.

6.2. Tectonic setting of the WAC at 1390Ma

The interval between ca. 1600–1350Ma is considered a period of
relative tectonic quiescence in the West Australian Craton, char-
acterised by the formation of extensive basins in a passive margin set-
ting along the southern and southeastern margins of the craton
(Spaggiari et al., 2015). Aitken et al. (2016) argued that reorganization
of Nuna to Rodinia occurred between ca. 1500Ma and 1300Ma and
involved relative motion and rotation between the South Australian/

Mawson cratons and the West and North Australian cratons. They
suggested that this adjustment was responsible for the renewed sub-
duction along the southern and southeastern margins of the craton. If
this model is correct, and the subduction was west dipping, the Bi-
berkine dykes may be a direct consequence of the plate movement
during this transition. Alternatively, regional dyke swarms may be as-
sociated with laterally injected magma propagating from a distal plume
(Baragar et al., 1996; Ernst and Buchan, 1997, 2001). If this were the
case, the trace element profiles of the Biberkine dykes could reflect
compositional variation in the SCLM and the lower crust at a much
greater distance.

Paleogeographic reconstructions at ca. 1400Ma suggest that the
southern and southeastern margins of the West Australian Craton were
in a back-arc setting, converging with the northwestern margin of the
Mawson Craton (Fig. 9) (Boger, 2011; Kirkland et al., 2011; Spaggiari
et al., 2011, 2014, 2015; Aitken et al., 2014, 2016). This NW-SE
movement led to Albany-Fraser Orogeny stage 1 at ca. 1345Ma with

Table 5
Major, trace element and isotope data for the samples Notes 1) Major elements (XRF) are given in wt % and trace elements (ICP-MS) in ppm 2) Mg#=100×Mg/
(Mg+ Fe), Fe2+/Fetotal = 0.85 3) Crystallisation age t= 1390Ma 4) typical internal precision (2σ) is ± 0.000015 for 87Sr/86Sr and ± 0.000014 for 143Nd/144Nd
5) Recent isotope dilution analyses for USGS basalt standard BCR-2 average 6.41 ppm Sm, 28.02 ppm Nd, 147Sm/144Nd 0.1381 ± 0.0004 and 143Nd/144Nd
0.512635 ± 0.000023 (n= 6,±2sd); 46.5 ppm Rb, 337.6 ppm Sr, 87Rb/86Sr 0.3982 ± 0.0010, 87Sr/86Sr 0.704987 ± 0.000015 (n=1,±2se). These results are
consistent with TIMS and MC-ICPMS reference values. εNd values are calculated relative to a modern chondritic mantle (CHUR) with 147Sm/144Nd=0.1960 and
143Nd/144Nd=0.512632 (Bouvier et al., 2008). Age-corrected initial εNd and 87Sr/86Sr have propagated uncertainties of± 0.5 units and ≤±0.00010 (assuming an
age uncertainty of± 5Ma), respectively. Decay constants are 87Rb 1.395E-11/yr and 147Sm 6.54E-12/yr.

WDS10D WDS10E WDS14B 15WDS16A ID-TIMS WDS10D WDS10E WDS14B 15WDS16A

SiO2 50.61 50.63 50.84 49.02 Sm (ppm) 4.29 4.33 3.62 3.51
TiO2 1.63 1.64 1.38 1.51 Nd (ppm) 18.86 19.07 16.12 15.34
Al2O3 13.65 13.65 14.29 13.31 143Nd/144Nd 0.511868 0.511864 0.511845 0.511877
CaO 10.1 9.9 10.48 9.55 147Sm/144Nd 0.1375 0.1372 0.1355 0.138
Fe2O3(tot) 14.36 14.47 12.92 14.55 (143Nd/144Nd)i 0.510612 0.510611 0.510607 0.510616
K2O 0.68 0.85 0.58 0.73 εNd(t) −4.5 −4.5 −4.6 −4.4
MgO 5.99 6.01 6.79 6.9 Rb (ppm) 27.55 35.78 19.02 49.05
MnO 0.21 0.22 0.21 0.24 Sr (ppm) 189.8 189.8 229.5 176.7
Na2O 2.16 2.16 2.21 2.35 87Rb/86Sr 0.4201 0.4201 0.2398 0.8046
P2O5 0.185 0.186 0.152 0.161 87Sr/86Sr 0.713193 0.713193 0.710143 0.726251
LOI 0.46 0.39 0.3 1.63 (87Sr/86Sr)i 0.70496648 0.70497 0.70545 0.7105
Total 100.04 100.11 100.15 99.96
Mg# 49.30 49.19 55.06 52.50
Sc 41.2 41.2 40.4 41
V 337 335 296 306 ID-TIMS BCR-2 JND-1
Co 50.5 50.9 48.6 50.4 143Nd/144Nd 0.512637 0.512112
Ni 55 57.2 69.4 65.8 0.512640 0.512117
Ga 18.2 18.5 17.5 17.2 0.512623 0.512102
Ge 533 529 529 522 0.512633
Rb 27.9 37.2 19.8 43.1 87Sr/86Sr 0.704987
Sr 193 203 236 188 0.705013
Y 28 28.5 22.7 23.4
Zr 127 131 103 97.1
Nb 10.7 11.1 9.27 9.37
Cs 1.83 1.7 1.38 1.83
Ba 212 227 209 165
La 16.9 17.5 14.4 13.8
Ce 36.5 37.7 31.1 29.7
Pr 4.64 4.78 3.94 3.81
Nd 19.1 19.6 16.2 15.9
Sm 4.4 4.52 3.7 3.71
Eu 1.43 1.48 1.28 1.3
Gd 4.71 4.8 3.89 4.01
Tb 0.782 0.8 0.641 0.661
Dy 4.83 4.89 3.95 4.12
Ho 1.03 1.04 0.829 0.866
Er 2.85 2.91 2.3 2.38
Tm 0.426 0.431 0.342 0.354
Yb 2.69 2.72 2.15 2.2
Lu 0.398 0.401 0.319 0.325
Hf 3.25 3.34 2.63 2.43
Ta 0.658 0.682 0.565 0.567
Pb 4.61 3.34 3.44 3.69
Th 2.24 2.32 1.81 1.68
U 0.461 0.484 0.377 0.365
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continent–continent collision inferred at ca. 1310–1290Ma (Clark
et al., 2000; Bodorkos and Clark, 2004a, 2004b; Aitken et al., 2016),
although some workers suggest that this represents a west-directed soft
collision at ca. 1310Ma involving accretion of the oceanic Loongana
arc (Madura Province; Figs. 9 and 10) to the southeastern margin of the
West Australian Craton (Spaggiari et al., 2015). Aitken et al. (2016)
argue that after predominantly east-dipping subduction and clockwise
rotation of the Mawson Craton until ca. 1400Ma, a switch in polarity to
west-dipping subduction beneath the West Australian Craton ended in
hard collision at ca. 1290Ma. Further evidence for a change in tectonic
setting from passive to a convergent margin is recorded in the Arid
Basin in eastern Albany-Fraser Orogen (Figs. 9 and 10), where detritus
previously sourced predominantly from the Yilgarn Craton became
dominated by input from the approaching Loongana arc at ca. 1425Ma
(Spaggiari et al., 2014, 2015).

It is difficult to link the 1390Ma mafic magmatism in the south-
western Yilgarn Craton directly with known contemporaneous tectonic
or magmatic events within the West Australian Craton because there is
limited evidence for tectonic activity between ca. 1400Ma and
1345Ma (Aitken et al., 2016). However, a small ca. 1388Ma detrital
zircon population in the Fraser Complex in southeastern Albany-Fraser
Orogen suggests coeval active magmatism (Clark et al., 1999; Spaggiari
et al., 2009). Furthermore, ca. 1390–1370Ma inherited and detrital
zircon populations have been identified at the Windmill Islands and
zircon rim growth at ca. 1397–1368Ma at Bunger Hills in East Ant-
arctica, both of which have been interpreted as part of the Albany-
Fraser Orogen during the Mesoproterozoic (Figs. 9 and 10) (Zhang
et al., 2012; Morrissey et al., 2017; Tucker et al., 2017). At ca. 1410Ma,
the Arid Basin (ca. 1600–1305Ma, Figs. 9 and 10) likely formed in a
passive margin setting with east-dipping subduction of the Yilgarn
Craton crust beneath the Loongana oceanic arc (Spaggiari et al., 2011,
2014, 2015) or as a back-arc basin with west-dipping subduction of the
approaching Loongana arc from the east beneath the Yilgarn Craton

Fig. 8. (A) Total alkali-silica (TAS) plot after LeMaitre (1989) with alkaline-sub-alkaline boundary after Irvine and Baragar (1971). Orange dots denote ca. 1888Ma
Boonadgin dykes from Stark et al. (in press) and blue field the ca. 1210Ma Marnda Moorn group 1 dykes from Wang et al. (2014). (B) AFM plot after Irvine and
Baragar (1971). (C) Chondrite and (D) primitive mantle normalised multi- element plots for Biberkine, Boonadgin and Marnda Moorn group 1 dykes. LCC= lower
continental crust after Rudnick and Gao (2003); OIB= ocean island basalt, NMORB=mid ocean ridge basalt and EMORB= enriched MORB after Sun and
McDonough (1989). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. . Simplified paleogeographic reconstruction of the Yilgarn and Mawson
cratons at ca. 1400Ma. Modified after Aitken et al. (2016), only the Yilgarn
Craton and Capricorn Orogen of the WAC and the northern part of the Mawson
Craton are shown. Note stars denoting the inferred original locations of Bunger
Hills and Windmill Islands (based on interpretations of Tucker et al., 2017;
Morrissey et al., 2017, respectively). See Fig. 10 for details.
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(Morrissey et al., 2017). The ca. 1415–1400Ma magmatism in the
Madura Province (Figs. 9 and 10) has also been interpreted as evidence
for subduction (Kirkland et al., 2013; Spaggiari et al., 2014; Aitken
et al., 2016). Collectively, this evidence suggests the presence of an
active subduction zone and NW-directed convergence along the
southeastern (and possibly southern) margin of the Yilgarn Craton at
ca. 1410–1310Ma. If the Biberkine dykes are associated with subduc-
tion (back-arc extension), this implies presence of a west dipping sub-
duction zone as suggested by Morrissey et al. (2017) and Aitken et al.
(2016). Alternatively, if the dykes intruded through lateral propagation
of magma from a distal source, their emplacement could be due to in-
tracontinental rifting and lithospheric extension associated with a
mantle plume.

The Capricorn Orogen north of the Yilgarn Craton (Fig. 1) formed
during assembly of the West Australian Craton during the Glenburgh
Orogeny at 2005–1950Ma and was subjected to repeated episodic in-
tracontinental reworking and reactivation over the following billion
years (Cawood and Tyler, 2004; Sheppard et al., 2004, 2010a; Johnson
et al., 2011). Hydrothermal monazite in the Abra polymetallic deposit
in the Edmund Basin (Fig. 1) records a tectonothermal event at
1375 ± 14Ma, possibly a regional-scale episode of intracontinental
reworking (Zi et al., 2015). The ca. 1360Ma Gifford Creek carbonatite
complex, also in the Edmund Basin, occurs within a major crustal su-
ture, and may have formed in response to reactivation of this suture
during far field stresses associated with plate reorganization (Zi et al.,
2017). The ca. 1888Ma Boonadgin dyke swarm in the southwestern
Yilgarn Craton has also been linked with possible far-field tectonic
stresses and lithospheric extension in the eastern Capricorn Orogen
(Stark et al., in press), where coeval felsic volcanic rocks were emplaced
during limited rifting at ca. 1891–1885Ma (Rasmussen et al., 2012;
Sheppard et al., 2016). Emplacement of the NNW-trending Biberkine
dykes indicates regional SSW-NNE oriented lithospheric extension,
which is consistent with interpreted NW-trending convergence and
subduction along the southeastern craton margin. The orientation of
the dykes is roughly parallel to the regional NW-SE tectonic grain im-
parted by terrane accretion during the Archean (Middleton et al., 1993;

Wilde et al., 1996; Dentith and Featherstone, 2003) and suggests that,
like the NW-trending 1888 Ma Boonadgin dyke swarm (Stark et al., in
press), they intruded along existing crustal weaknesses controlled by a
regional stress field (Hou et al., 2010; Hou, 2012; Ju et al., 2013). This
may be supported by the presence of a high-velocity zone at ca. 30 km
depth south of sample 15WDS16, interpreted as a mafic–ultramafic
body in the lower crust that could represent a conduit for mafic magma
that intruded along the suture (Dentith et al., 2000; Dentith and
Featherstone, 2003).

7. Conclusions

Newly discovered NNW-trending ca. 1390Ma mafic dykes, here
named the Biberkine dykes, have been identified in the southwestern
Yilgarn Craton in Western Australia using in situ SHRIMP and ID-TIMS
U-Pb methods. The extent of the dyke swarm is unknown but in aero-
magnetic data they appear to extend several hundred kilometres across
the South West Terrane. The Biberkine dykes are coeval with a number
of other mafic dyke swarms worldwide and thus provide an important
target for paleomagnetic studies. Preliminary geochemical analysis in-
dicates that the dykes have tholeiitic compositions with a significant
contribution from metasomatically enriched subcontinental lithosphere
and/or lower crust. Current models for the Yilgarn Craton infer a tec-
tonically quiescent period between ca. 1600Ma and 1345Ma but in-
direct evidence from the Albany-Fraser Orogen and from Windmill
Islands and Bunger Hills in East Antarctica support renewed subduction
along the southeastern and possibly southern margin of the craton by
ca. 1410Ma. Paleogeographic reconstructions suggest that this was a
result of relative motion and rotation between the West Australian,
South Australian and Mawson cratons and represents transition from
Nuna to Rodinia configuration for the three cratons. The 1390Ma
Biberkine dykes are likely a direct consequence of this transition and
mark the change from passive to active tectonic setting, which culmi-
nated in the Albany-Fraser Orogeny at ca. 1330Ma.

Fig. 10. Possible configuration of the
Yilgarn and Mawson cratons during the
Mesoproterozoic showing common tectonic
elements between the Yilgarn Craton,
Bunger Hills and Windmill Islands. Modified
after Aitken et al. (2016), Tucker et al.
(2017) and Tucker and Hand (2016) and
interpreted bedrock geology of Western
Australia (Geological Survey of Western
Australia, 2015). Piercing points of between
the Darling–Conger and Rodona–Totten
Faults are from Aitken et al. (2014, 2016).
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