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Impact Force Profile and Failure Classification of Reinforced

Concrete Bridge Columns against Vehicle Impact

Tin V. Do!, Thong M. Pham?, and Hong Hao?

Abstract

Numerical simulations are utilized in this study to define the impact force profile generated by
vehicle collisions on reinforced concrete bridge columns (RCBCs) and classify the dynamic
responses and failure of the columns under collision events. The results indicate that both the
column properties (i.e. dimension of the cross-section and concrete strength) and initial
conditions of vehicles (i.e. vehicle velocity, engine mass, and vehicle mass) play a crucial role
in determining the impact force profile from the vehicle collision. A new vehicle impact force
model is proposed for engineers to use in design of RCBCs under vehicle collisions in which
the influence of shear failure of the column on impact force is considered. Based on the shear
mechanism of RCBCs under impact events, the maximum dynamic shear capacity of a column
is defined. Furthermore, the bending moment and shear force distributions, as well as the failure
mode of RCBCs have been classified into two categories, i.e. flexural response and shear
response governed failure with respect to the peak impact force (PIF) on the column. For the
flexural response governed failure mode, flexural cracks at the intermediate sections are formed

in the positive side of the column, while the diagonal shear or punching shear failure at the
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impact area together with negative flexural-shear cracks occur in the column if the shear failure

mode dominant the column responses.

Keywords: Bridge columns; Vehicle collisions; Traffic accidents; Shear mechanism; Failure

modes; Impact response; Dynamic effects.
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1. Introduction

Vehicle collisions on reinforced concrete bridge columns (RCBCs) from accidents or terrorist
attacks occasionally occur. For better protection of bridge structures against vehicle impact a
higher demand for the load-carrying capacity of the bridge columns is required. A collision
from a heavy-duty vehicle may cause collapse of the whole bridge structure and cost human
lives, such as in Texas, 2002 [1] or in Hunan, 2009 [2]. Moreover, a terrorist attack on a bridge
column could paralyze the whole traffic system in urban vicinity areas. These accidents and
attacks require more attention and understanding for better designs of RCBCs to resist vehicle
impacts. Researchers previously tackled this problem through either experimental tests [3],
numerical simulations [4-8], or reduced modelling and analyses [9, 10] to study the structural
behaviours under impact loads. Among these approaches, the last two methods are more and
more widely utilized as compared to the former because of not only high cost and safety
concerns associated with the experimental tests but also the ability of achieving high accuracy
in predicting the dynamic responses of structures with advanced numerical and analytical

models.

Previous researches gave suggestions and recommendations for design of structures to resist
vehicle collisions [5, 6, 9, 11-16]. Current design codes and standards commonly adopt a
simplified equivalent static force (ESF) to define the impact force from vehicle collision on
structures. This approach is straightforward for engineers to estimate the collision force for
design analysis of structures. For example, based on the experimental tests on the rigid steel
column [3] and the open literature, AASHTO [11] recommended a constant value of about
2,700 kN irrespective of the vehicle loading conditions for design of RCBC to resist vehicle
impact. SA/SNZ [12] and CEN [13] suggested a simple equation to calculate the horizontal

impact force in which the initial kinetic energy of the vehicle, vehicle deformation, and column
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displacement are taken into account. CEN [14] distinguished between soft impact, in which the
impacted structure absorbs a large amount of energy, and hard impact where the impact energy
mostly dissipated by the vehicle, in estimating the equivalent impact force. The maximum
impact force on structures is determined based on the elastic behavior of both the vehicle model
and structures. However, the deficiencies of the current design guides in predicting the impact
force and structural responses are recognized by previous studies [S5, 6, 15]. A series of
numerical simulations of RCBC subjected to vehicle impacts have been conducted by
Abdelkarim and ElGawady [5] to estimate the impact force on structures from collision events.
Based on numerical simulation results, an equation to estimate the impact force from vehicle
impact on RCBCs based on the kinetic energy of the vehicle model has been proposed. Full-
scale models of medium and light truck models have also been used to investigate the impact
force and response of steel bollards [10] and concrete-filled steel tubular bollards [17] under
vehicle collisions. From these studies, some simplified models to estimate the maximum
vehicle impact force on steel structures and barriers have been proposed [10, 17]. However,
those studies mainly concentrated on predicting the peak impact force (PIF) on the structure
while the impact force profile and duration, as well as the dynamic response of the structures
and the parameters affecting the dynamic structural responses, i.e. strain rate effect, vibration
characteristics, and inertia force effect are not considered. It is worth mentioning, as will also
be demonstrated in this paper, that the peak impact force causes local damage including
punching shear or diagonal shear while the global response of the column which may induce
different failure modes at other critical sections, such as column top and intermediate sections
as systematically presented in the previous study by Do et al. [6], is more correlated to the
impact force impulse. Because the current design practice depends mainly on the equivalent
static analysis, the reliability and applicability of those proposed models and recommendations

based on PIF only are questionable. By presenting the dynamic bending moment, shear force,
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and acceleration of a RCBC during collision events, Do et al. [6] indicated that the use of the
ESF is un-conservative in estimating the impact behavior of the RCBC since the dynamic
bending moment and shear force of the column might cause damage which could not be
predicted by an equivalent static analysis. An equation to predict the PIF was then proposed in
which the mass of the truck’s engine is used instead of the total mass of the truck model. The
study also provided clear explanations of various observed failure modes of RCBCs in real
vehicle accidents. Nevertheless, the latter study was based on a particular column, the
influences of the column parameters, such as column height, cross-section dimension, axial
force ratio, and steel reinforcements on the impact force profile and the dynamic capacity of
the column were not considered in the study. Chen et al. [9] conducted extensive parametric
studies on the medium truck collisions on circular and rectangular bridge piers. By separating
the impact of the vehicle engine and cargo, the vehicle model was simplified to an equivalent
two-degree of freedom model. A coupled mass-spring-damper (CMSD) was developed and
validated against numerical results. This study also considered the effects of pier parameters
on the time histories of the impact force. However, the elastic material model was used for
concrete in the study and the design of the column was almost rigid. Thus, the column could
not yield large deformation and displacement by the first peak force caused by engine impact.
Importantly, no concrete damage and column failure were considered in the study. Therefore,

the numerical results do not necessarily reflect the actual impact behaviour of bridge piers.

The present study aims to propose an impact force profile that would be induced by a vehicle
impacting on RCBCs. The effects of column properties e.g. column height, cross-section
dimension, axial force ratio, and steel reinforcements under different loading conditions are
also considered. Furthermore, based on the shear mechanism of the RCBC under impact load,
the maximum achievable impact force from the vehicle collision acting on the column is

determined. The responses and failures of the RCBCs are then classified into two categories,
5
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i.e. flexural response and shear response, which provide a valuable guidance for engineers in

predicting the impact behaviours of the RCBCs.

2. Numerical model development and its verification

2.1. Experimental test and model description

In this study, a three dimensional (3D) finite element (FE) model of a bridge column is
developed and verified based on the experimental impact test on a quarter scaled reinforced
concrete (RC) column by Zhang et al. [18]. The schematic view, column design, and the
pendulum impact test setup are shown in Fig. 1a. To simulate the impact response of the tested
column in the numerical model, the concrete column, steel impactor, footing and the added
weight are modelled by hexahedral elements with 1 integration point while the longitudinal
and transverse reinforcements are modelled by 3-nodes beam elements with 2 x 2 Gauss
quadrature integration. In the simulation, the contact between the reinforcement bars and the
surrounding concrete is assumed as a perfectly bonded since no slippage between the
reinforcements and concrete was observed in the experiments. In addition, the LS-DYNA
contact algorithm named *Contact Automatic Surface to Surface (ASTS) is utilized to
model the impacting contact between the steel impactor and the RC column. Since no
displacements or rotation at the connection between the footing and the floor was observed
during the test [18], the column is fixed at the bottom face of the footing in the FE model. The

numerical model of the pendulum impact test on the RC column is shown in Fig. 1b.

2.2. Material models and strain rate effects

The LS-DYNA software provides several types of material models which can be used to
simulate the concrete behaviors subjected to impact and blast loads, e.g.

Mat_Winfrith Concrete (Mat_084 085), Mat_ConcreteDamage (Mat_072),

6
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Mat CSCM_Concrete (Mat_159), and Mat_Concrete_Damage Rel3 (Mat 072R3) [19]. In
this simulation, the Mat_072R3 is employed where the plasticity, shear damage, and strain rate
effects of the concrete are under consideration. Only the unconfined compressive strength of
concrete, i.e., 34 MPa in this study, is required as input for this material model while other
parameters of concrete material properties can be automatically created [19]. This model is
most commonly used to simulate concrete material behaviours under blast and impact loads,
its reliability has been intensively verified [20-23]. The compressive and tensile dynamic
increase factor (DIF) of the concrete material proposed by Hao and Hao [24] are utilized in this
study to model the dynamic increase in concrete material strength. Furthermore, the LS-DYNA
function named Mat Add Erosion is also employed to remove the damaged elements of
concrete during the impact process to avoid computation over-flow. This study uses the
maximum principal strain at failure as a criterion to delete the failed concrete elements. The
value of 0.7 is utilized as the erosion criterion for the concrete of the two columns after trials,
which yield a good prediction of the column damage. It should be noted that the erosion
algorithm is trial and error based because it has no solid physical background and violates

energy and momentum conservation.

In addition, Mat_Piecewise Linear Plasticity (Mat_24) is used to model the longitudinal and
transverse reinforcements. The Young’s modulus, mass density, and Poisson’s ratio of the steel
reinforcement are 200 GPa, 7800 kg/m3, and 0.3, respectively. The yield strength of the
transverse reinforcements is 300 MPa while that of the longitudinal reinforcement is 500 MPa.
The DIF of these reinforcements which was proposed by Malvar and Crawford [25] is used.
Besides, Mat Elastic (Mat 001) is chosen for modeling the solid steel impactor with the
Young’s modulus, mass density, and Poisson’s ratio of 200 GPa, 7800 kg/m3, and 0.3,

respectively.
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2.3. Model verification and comparisons

The numerical results are verified against the experimental results in which the impact force
time histories, lateral displacement, and column plastic strain versus failure of the column are
compared in Fig. 2. As shown in Fig. 2a, the crack patterns of the concrete column including
flexural cracks at the column mid-height and the diagonal shear crack at the column base which
were observed in the experimental test are well simulated by the FE model. Moreover, the PIF,
impact duration, and the global trend of the impact force time histories from the numerical
model also well agree with the testing data as shown in Fig. 2b. Furthermore, the simulation
shows a good prediction of the lateral displacement time histories at the column mid-height in
which the maximum and residual displacements in the experimental test were 7.5 mm and 1.5

mm, respectively, compared to 7.8 mm and 1.8 mm in the FE model, respectively (see Fig. 2¢).

2.4. Verification of full-scale bridge column under vehicle collisions

From the above comparisons, the numerical simulation has ability to simulate the impact force,
lateral displacement, and failure modes of the scaled RC column under low impact velocity of
the lab test. However, concerns about the responses of a large-scaled RC column under high
impact velocity of collision accidents still remain. Thus, in this section, a full-scale bridge
column under real vehicle accident on IH-30 near Mount Pleasant, Texas [1] is employed and
simulated to verify the accuracy of the current simulation. In this accidental collision, the
bridge column which had a circular cross-section of 762 mm was impacted by a heavy-truck-
trailer with the total mass of 30 ton. The column was designed with eight-30-mm-diameter
longitudinal bars and 10-mm-diameter transverse bars at 150 mm spacing [1]. By using the
above material model, strain rate effects, and modelling techniques, a 3D FE model of the
mentioned column is built and impacted by the heavy-truck-trailer model as presented in Fig.

3a. It should be mentioned that the vehicle model was adopted in the previous study and shared
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by Sharma et al. [4]. The truck information will be presented in Section 3. Because no impact
force and displacement of the column were reported from the collision, the failure mode of the
column in the simulation is used to compare with the real accident as presented in Fig. 3b. The
figure shows that the failure of the column i.e. diagonal shear at the base, flexural — shear failure
at the column mid-height, and flexural crack at the column top from the real vehicle collision
are well simulated in the numerical model. These verifications show the reliability and
accuracy of the current simulation techniques in predicting the impact responses of the RC

structures with different sizes under wide ranges of velocities.

3. Simulation of bridge specimens and vehicle models

The numerical model of a full-scale RC bridge is developed in this section based on the
previously validated material models, strain rate effects, contact definitions, and modeling
techniques. The RC bridge consists of one single RCBC, two hollow-section girders as
superstructures and two concrete abutments, as shown in Fig. 4. Similar bridge model was also
employed in previous studies to investigate the pier responses [15, 26] and the accuracy of this
modeling approach in simulating and predicting the dynamic response of RC columns under
impact loading has been confirmed [27]. The reference RCBC (CO0) used in this study is 1,200
mm x 1,200 mm (D x W) in cross-section and 9,600 mm in height (H) while the overall
dimensions of the hollow beam are obtained from Megally et al. [28] with the span length of
40 m. The weight of the superstructure which equals 10% of the vertical compressive capacity
of the column is transmitted to the RC column through a cap beam placed on the column top
(see Fig. 4). The coefficient of friction between the superstructure and the cap beam or the
concrete abutment is assumed to be 0.6 [6, 29]. No bearing pad or rubber is included in the
model due to its insignificant effect on the behaviors of the column under vehicle impact [15].

The column is reinforced with twenty-four 30-mm-diameter longitudinal rebars extending from

9
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the footing to the cap beam and 14-mm-diameter transverse bars at 200 mm spacing. In the
numerical simulation, the footing, RCBC, cap beam, superstructure, and abutments are
simulated by hexahedral elements with one integration point (constant stress solid elements)
while the steel reinforcements were modelled by 3 nodes-beam elements. The convergence test
is conducted to determine the optimal mesh size of the concrete and steel element based on a
balance between simulation accuracy and computational efficiency. The numerical results
converge when the mesh size of concrete is 20 mm. Since the response of the column during
the impact force phase is the primary concern in this study, the implicit simulation is terminated
at about 300 - 500 ms (a half of natural period of the column). Therefore, the system damping

is ignored in the present study.

The heavy truck trailer as mentioned previously (see Fig. 3) and a medium Ford truck model
(see Fig. 4a) are used to represent the truck impact on the RCBC in this study. The medium
truck model has been commonly used to analyze the impact behaviors of structures under
vehicle collision [4-6, 9, 15, 26, 30, 31]. The Ford truck model was modeled and validated by
FHWA/NHTSA National Crash Analysis Centre at the George Washington University. The
total mass and engine mass of the Ford truck model are 8 ton and 0.64 ton, respectively. In this
study, the vehicle model is assumed to impact at 1.5 m above the top face of the footing as
shown in Fig. 3a. Without loss of generality, three loading cases of the medium truck are firstly
considered in this study including (1) Load 1: the vehicle velocity of 100 km/h with the engine
mass of 0.64 ton, (2) Load 2: the vehicle velocity of 100 km/h with the engine mass of 2.0 ton,
and (3) Load 3: the vehicle velocity of 120 km/h with the engine mass of 2.0 ton. These loading
conditions are chosen since they cause three different failure modes of the columns consisting
of flexural cracks, local diagonal shear failure, and punching shear failure at the impact area
[6]. It should be noted that the numerical results from different vehicle velocities from 60 km/h

to 140 km/h in the previous study [6] are utilized in this study to propose the impact force
10
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profile. The total mass of the medium truck ranging from 2.7 ton to 11.8 ton is used in these
simulations as suggested by Sharma et al. [4]. The proposed impact force profile is applicable
for both the medium truck and the heavy truck. The total mass and the engine mass of the heavy
truck trailer are 12 ton and 1.5 ton, respectively. To investigate the impact force profile of the
heavy truck collision under wide ranges of vehicle mass and velocity, the total mass of the
heavy truck trailer varies from 17 ton to 37 ton while the vehicle velocity increases from 80
km/h to 110 km/h. It is worth mentioning that the light truck with the total mass smaller than
2.7 ton [4] is not considered in this study because of its less significance on the column response
[5, 15]. In this study, the contact algorithm named the penalty method via the ASTS contact
keywords is used to define the contact between the vehicle model and the RCBC. Four main
parameters need to be defined in this contact algorithm including the penalty formulation
(SOFT), the penalty scale factor (SLSFAC), and the scale factor for slave stiffness (SFS) and
master stiffness (SFM). In the simulations, the standard penalty formulation (SOFT = 0) is
employed while the default value of penalty scale factor (SLSFAC) at 0.1 is adopted. Moreover,
the default value of SFIS/SFM at 1.0/1.0 is used. The corresponding parameters in this study are

adopted from the previous study [21].

In the following sections, the RCBCs with different column heights, cross-section dimension,
transverse reinforcements, axial load ratio, and longitudinal reinforcements under three
different loading conditions are examined. These column parameters are chosen because of
their significant contribution to the column global stiffness, shear capacity, and flexural
capacity of the column which govern the impact performances, crack patterns, and damage of
the RCBC. Firstly, the column cross-section is kept constant at 1,200 mm x 1,200 mm while
five different column heights, i.e. 4,800 mm, 6,000 mm, 7,200 mm, 9,600 mm, and 12,000 mm
are considered to investigate the influences of the slenderness ratio (H/D =4, 5, 6, 8, and 10)

of the column on the impact force and failure modes of the column. Moreover, five cross-
11
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section dimensions with D x W (depth x width) = 600 mm x 600 mm, 800 mm x 800 mm, 1,200
mm x 1,200 mm, 1,500 mm x 1,500 mm, and 2,000 mm x 2,000 mm are considered while the
slenderness ratio of these columns is kept at 8. Furthermore, three different transverse
reinforcement ratios, i.e. 0.09% (d8s200), 0.26% (d14s200), and 0.53% (d14s100) are used to
examine the effects of the transverse reinforcements in controlling the response of the column.
The bending moment capacity of the column influenced by the initial axial load and the
longitudinal reinforcement ratios is also taken into consideration. The initial axial force applied
on the column is increased from 10% to 20%, 40%, and 60% of the column axial compressive
capacity while the longitudinal reinforcements vary from 0.63% (24d22) to 1.16% (24d30) and
1.70% (24d36), respectively. Table 1 summarizes the considered column configurations and

the corresponding numerical results.

4. Vehicle impact force profile model

4.1. Medium truck model (mass < 12 ton)

The impact force time histories on the RCBC CO0 from the first loading condition (Load 1) is
presented in Fig. 5. Based on the understanding from the previous studies [9, 16, 31, 32] and
the numerical results in this study, the impact force time histories from a truck impact on the
RCBC can be idealized in four stages as shown in Fig. 5. Firstly, the truck bumper collides on
the RCBC generating the first impact force plateau P; with duration 7p;. The impact force then
increases to the F; due to the collision of the vehicle engine with duration #z;. After that, the
impact force drops to P, and keeps constant due to the impact of the truck rails and vehicle
parts placed between the engine and the cargo with duration 7p,. Finally, the impact of vehicle
cargo causes the second peak, F, on the column. The impact of the cargo increases the force
from P, to F’, in the period of 7, and the impact force then decreases to zero at 165 ms. The

above impact force and duration corresponding to various vehicle impact scenarios and bridge
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configurations are determined based on the numerical simulations in this study. It should be
noted that the total impact force duration is taken as 165 ms in this study. The value is
approximated based on many simulation cases carried out in the study. It is noted, however,
the value is valid only for the medium truck model considered in the study. For other vehicle
models and other impact scenarios, the total impact duration might be different.

It is well-known that the truck engine colliding on the column occurs only after the bumper
totally deformed due to the collision. Thus, the duration of the first stage primarily depends on
the gap between the bumper and the vehicle engine. Besides, the impact duration definitely
relates to the impact interaction, impact velocity, and the relative stiffness between impactors
and structures. By presenting the force-deformation curves of the bumper during the impact
event, the previous studies [9, 17] indicated that stiffness of the bumper is marginal compared
to that of a bridge pier. Therefore the duration of this phase is normally short compared to the
total duration of a collision event (see Fig. 5). From the numerical results, it is found that the
velocity of the vehicle slightly reduces from J” when impact starts to about 0.9V when the
engine impacts on the column in which Vis the initial vehicle velocity (m/s) upon collision. To
represent the velocity during this period, the average velocity of 0.95V is assumed. The duration
of the bumper impact phase can then be obtained from the gap between the bumper and the

engine box, L), (mm), and the velocity of the truck, V' (m/s), expressed as follows:

L
Iy :ﬁ(ms) (1)

Generally, L;),is 660 mm [17], 550 mm [9], and 500 mm [30], depending on the vehicle model.
In this study, L;,, is taken as 550 mm for the medium-duty truck model collided on the RC
column. This number can be easily changed to fit a particular truck in real design.

In each simulation, P, can be determined by dividing the total impulse of the bumper’s impact

to the impact duration #p;, (see Fig. 6a) which is given in Table 1. As can be seen that P,
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significantly depends on the column width and impact velocity of the truck while the influence
of the slenderness, initial axial force ratio, and steel reinforcements is marginal and can be
negligible. P; shows a proportional increase trend with the increase of the column width, as
shown in Fig. 6b. This is because the increase in the column width increases the contact area
between the bumper and the column, resulting in a higher impact force. Besides, the
relationship between the force P; and the impact velocity which obtained from [6] is also

plotted in Fig. 6¢. Based on these numerical results, the force P; can be generalized as follows:

B =P, xk xk,(kN) )
14
k, =0.788 +0.240 3)
27.78
k, = 0559 +0.441 4
1200

where k; and k; are the dimensionless coefficients describing the effects of the dimension and

impact velocity on P, respectively (see Fig. 6b and c); W is the column width (mm);

P, =1,683(kN) is the average value obtained from the simulations corresponding to a column

width of 1,200 mm and the impact velocity of 100 km/h. The column section of 1,200 mm x
1,200 mm and velocity of 100 km/h are selected since these values are commonly used in the
real application.

The truck’s engine then impacts on the column through the vehicle bumper which has been
deformed due to the truck’s frontal impact and currently placed between the engine box and
the column. The impact force from the engine causes the deformation of the vehicle bumper
which not only dissipates an amount of the impact energy but also affects the contact stiffness
between the column and the engine box. The previous study by Pham et al. [21] has indicated
that a minor change of the contact stiffness between a structure and an impactor may cause a
significant difference in the impact force. Thus, the impulse from the engine impact is

complicated and might not be easily predicted from the theory of momentum — impulse
14
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conversion. Hence, the F; and the impact duration of the engine impact in this study is
estimated through the numerical results. The variation of the fz; under different loading
conditions are presented in Fig. 7. According to the previous results from Chen et al. [9] and
Do et al. [6], the influences of the vehicle speed on the impact duration of the engine impact is
also presented in Fig. 7. It is clear that the increase in the impact velocity (from 16.67 m/s to
38.89 m/s) shows a substantial decrease in the impact duration (from 25 ms to 5.5 ms). Fig. 7b
shows that #5; is almost unchanged even though the column width increases from 800 mm to
2,000 mm when these columns are under the same loading conditions. Moreover, by comparing
Fig. 7a and Fig. 7b, with the same impact speed (27.78 m/s — Load 2) but different engine’s
mass (0.64 ton compared to 2.0 ton), the duration of the engine impact is also similar (8.5 ms).
These results demonstrate the relative independence of the duration 7z, on the engine’s mass
and the column’s width but this duration is affected by the impact velocity. From the above
observations, #7; can be estimated from the truck velocity by the following equation (see Fig.

7¢):
tFl = T%;(WIS) (5)

F; highly depends on the cross-section dimension, impact velocity, and the engine mass while
the influence of the other parameters is insignificant, as given in Table 1. Furthermore, the
insignificant effect of structure span and concrete strength on the PIF, which is the same as F}
defined in this study, have been previously reported [32-34]. F; on the RCBC with different
column cross-sections under three conditions is also plotted in Fig. 8. It can be seen that F;

from the engine impact increases with the engine mass and vehicle velocity, but cannot be

higher than the maximum dynamic shear capacity of the column, Ptg,l,?x (Columns C5 and C6)

which will be determined and discussed in the subsequent section. This is because when the

impact force from the engine impact reaches the ff;;,?x , it induces the punching shear cracks
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on the column, resulting in a slight movement of the shear plug. This relative displacement of
the impacted area of the column affects the vehicle - column interaction and reduces the impact
force on the column. Moreover, considering the equilibrium condition of vehicle impact, F;
cannot be larger than the total column resistance because the column would fail if it reaches
the column resistance. Based on the above observations, F; on the RCBC can be updated from

the previous studies [6] by considering the failure of the concrete column as:

F(kN)=969.3,/0.5m,V> —7,345.9 < P"™ (16.7m/s <V <40m/s) (6)

where m, is the mass of the engine (ton); P, is the maximum dynamic shear capacity of the

column.

In the third stage, the impact force drops to P, and lasts until the vehicle cargo collides on the
column. As presented in Fig. 9a, the cargo gradually moves 1,600 mm before colliding on the
frontal parts, e.g. the vehicle cabin and the bumper, and resulting in the second peak on the
column (see Fig. 9b). It should be noted that although the distance between the cargo and the
cabin is about 480 mm, the cargo collides on the cabin after moving about 1,600 mm because
of the densification of the frontal parts of the vehicle. The cargo stops impacting on the column
at about 165 ms after shifting about 2,400 mm. As shown in Fig. 9a, those values are
independent of the vehicle velocity. A similar observation is also reported in the previous study
by Chen et al. [9] when the cargo stops colliding on the structure after moving about 2,500
mm. The displacement time history of the cargo is thus simplified as a bi-linear curve as
illustrated in Fig. 9c. In the first part, the cargo displacement increases linearly with time,
having a slope coefficient of 0.85V. The coefticient is 0.85 owing to the reduction of the vehicle
velocity due to the collision and the effect of the frame stiffness. It is assumed that when the

cargo moves about 2,400 mm, it will cause the second peak, F, on the column and the impact
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force time histories then decreases linearly to zero at 165 ms. Thus, the impact duration 7p, and
tr> can be determined as follows:

1,600 1,303 4,147.4

Ipy _W_[m —lpy = % R (ms) (7)

2,400 1,600 940

_ _ 8
=085y ossy p ) ®)

Additionally, P, is determined by dividing the total impulse of the third stage to the impact
duration 7p,. In each simulation, the impulse of the third impact is defined by integrating the
impact force time histories from the numerical simulation. As given in Table 1, The P, is almost
identical in all the simulations. Thus, the influences of the column parameters and the initial
conditions of the vehicle model on P, is neglected. In this study, the P, is taken as 1,290 kN
after averaging from all the numerical results. Eventually, the second peak, F,, from the cargo
impact can be defined based on the initial momentum — impulse conversion as adopted in the

previous studies [6, 31], as given below:

1000;741/—[})1 (l‘Pl Jr’f’i}rlf’ﬂvtﬂw2 (’ﬂwm +tF—2ﬂ
4 2 4
(kN) > 0

K= )

1
5[165 - (tPl +tP1F + tpz)]

where m is the total mass of the vehicle model (ton);

In case the diagonal shear failure or punching shear failure occurs on the RCBC resulting from
the F;, the impact force time histories will last until the impact energy fully transfers to the
column without the second peak from the cargo’s impact, as presented in Figs. 10b, c, and e.
This is because the failure of the column leads to the movement of the column together with
the vehicle model in the impacted area resulting in the considerable reduction of the column
resistance. It is worth mentioning that previous studies usually neglect vehicle-column

interaction and local damage of column in predicting the impact force of the RCBC, which

17



382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

might not lead to accurate predictions as demonstrated above, but overpredict the impact force

from cargo. The impact duration of P, can be calculated as follows:

lOOOmV—[PI (zm +tf’fj+P1th’21F+g’fﬂ

= 5 (ms) (10)

where 7py;, (ms) is the duration of the third stage when the column exhibits a shear failure due
to F).

The comparisons of the proposed impact force profile and the numerical simulation for various
loading conditions are presented in Fig. 10. Moreover, to verify the reliability of the proposed
model on predicting the impact force time histories of collision events with different vehicle
mass, the total mass of the vehicle is increased from 8 ton to 11 ton by increasing the cargo
mass from 3 ton to 6 ton while the mass of the engine is 0.64 ton. As presented in Fig. 11, the
proposed model also provides a good estimation of the impact force time histories including
the impact force peaks, duration, and impulse in the wide range of the vehicle mass. These
comparisons and verification indicate that the proposed vehicle impact force profile model for
medium truck reliably predicts the impact force of vehicle collisions on bridge piers with
various vehicle’s mass, engine mass, vehicle velocity, and structural properties. It should be
noted that the cargo, which has a higher mass than vehicle engine, impacts on the columns in
these examples do not induce a large peak force /', because the column has suffered substantial
damage due to the engine impact. If the column is very stiff and does not suffer prominent
damage due to engine impact, cargo impact would generate a large impact force F), as observed

in some previous studies that either assumed the column is rigid or linear elastic [9, 35].
4.2. Heavy truck trailer

To verify the accuracy of the proposed impact force profile on different vehicle models and

velocities, the heavy trailer model is considered in this section. The vehicle velocity of the
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heavy trailer considered in the analysis increases from 80 km/h to 110 km/h (H1 — H3) and the
total mass ranges from 17 ton to 37 ton (H4 — HS), as given in Table 2. The impact force time
histories on the RCBC from the heavy trailer is shown in Fig. 12. Similar to the medium truck
model, the impact force time histories of the heavy truck also includes four stages in which the
impact of bumper and truck rails create two plateau stages (P1 and P2) while the engine and
cargo impact cause two peak impact forces (F1 and F2) during the whole impact process. As
mentioned previously, each vehicle model has different length and characteristics leading to a
different impact duration and its amplitude. The numerical results of the heavy truck impacted
on the RCBC are given in Table 2. From the numerical simulation results and using the same
analysis methods as in the previous section, the impact duration of each impact stage from the

heavy truck can be summarized as follows:

L
t, =—2—(ms 11
Pl 0.95V( ) (1)
800
Ipy = W(WS) (12)
{1y =2.1(m=12)+5.6(ms) (13)

where L;; (ms) is taken as 940 mm for the heavy truck model collided on the RC column.

It should be noted that as observed from the numerical simulations, the Egs. (2), (5), and (6) to
define P, tr;, and F, respectively, of the heavy truck are similar to these for the medium truck.
Moreover, the second plateau P, is suggested as 850 kN for the heavy truck trailer. As
previously discussed, if a column survives from the engine impact, it then suffers the impact
from the cargo. In this study, the cargo mass of the heavy truck is increased from 5 ton 25 ton
in the analyses, the peak impact force from the cargo impact, F>, is almost similar in these
simulations as expected (see Fig. 12b). Even though the columns in these simulations do not
fail by the impact of the engine, it causes local damage to concrete at the impact area. As a

result, the contact stiffness between the column and the truck model is significantly reduced
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when the cargo impacts the column. The reduction of the contact stiffness thus reduces the
peak value of the cargo impact [21] as compared to the engine impact although the mass of the
cargo is considerably larger than that of the engine. However, the impulse of the second peak
impact force is greater than the first one, which reflects the huge kinetic energy carried by the
cargo. It is worth mentioning that although the peak impact force of the cargo impact is
approximately unchanged, the impulse from the cargo impact significantly increases when the
mass and the velocity of the cargo increases, as shown in Fig. 12. From the numerical results,
the second peak impact force F is taken as 7,000 kN in this study (see Table 2). The total
impact duration, f,,,, from the heavy truck collision to the RCBC thus can be obtained in the
following equation:

t

o

it =y F oy T o+l +10, ,(ms) (14a)

IOOOmV—[Pl (rm +tpfj+P]FtP2lF+P2(t[f+tP2j+(P2 +Fz)’m}

T ] (ms) (14b)

EFz

where #75.z (ms) is the duration from the peak impact force, F, to zero point.

It is noted that the impact duration, /p,, is estimated by using Eq. (10) in both scenarios: (1)
diagonal shear or punching shear failure occurred at the vicinity of the impacted area due to
the first peak impact force F; and (2) no added mass applied to the heavy truck model. The
comparisons between the proposed impact force profile model for the heavy truck and the
numerical simulation results are presented in Fig. 13. The comparison shows that the proposed
impact force profile, the peak impact forces from the engine and the cargo impact, impact
duration of each single impact phase, and the total impact duration can be well predicted.
There is a consensus that the change of vehicle model may slightly change the duration and the
magnitude of impact force in each impact stage. Therefore, the use of two vehicle models in
the simulation does not imply that these results are applicable for only these two particular
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vehicle models. The numerical results in this study demonstrate that even the vehicle models
are different, the PIF caused by the vehicle engine and the impulse of the collision show a
consistent trend. The variations of the column properties do not have a significant influence on
the PIF either. It should be highlighted that the PIF and the impulse of the impact are the crucial
parameters determining the response of RCBC under vehicle collision [6, 31]. To design bridge
columns against vehicle collisions, the input information for estimating impact loads includes
vehicle speed, engine mass, total mass of the vehicle, the frontal design of the vehicle, and the
gap between the engine mass and cargo mass. With these parameters, the proposed equations
can be used to estimate the impact force time histories. The proposed impact force models also
fit well with RC columns of rectangular or square sections with different sizes. However, the
use of other column cross-section types, e.g. circular section and concrete-filled steel tube, may
have a slight influence on the magnitude of the impact force since the contact stiffness between
the vehicle model and column is changed. Therefore, studies on the effects of cross-section
types on the impact force are required. The accuracy of the proposed method also needs to be

carefully validated in future works.

5. Shear mechanism of RC structures

The shear mechanism of the concrete structures under impact loads has been experimentally
and numerically investigated in previous studies [33, 36-38]. In these studies, the punching
shear failure is the most common failure scenario of the concrete beams under severe impact
loading conditions. Likewise, the example rectangular RC columns impacted by a vehicle
model showed punching shear failure at the impact area when the PIF reaches 30,000kN, which
is larger than the shear capacity of the column section, caused by the engine impact [6] (see

Fig. 14a). Based on the shear failure mode of the concrete structures under impact loads, with
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the crack patterns related to punching shear failure as shown in Fig. 14b, the dynamic shear

capacity of the column, P, , can be written as

dyn >
Py =2x(DIF,xV,+DIF,xV,)+ Y ma (15)
x D

V.= f xcosax

= f,xWxD (16)

sina
where DIF, and DIF; are the dynamic increase factors of the concrete and steel material
strength in the diagonal section, respectively; V. and V; are the contribution of the concrete and
the steel reinforcement to resist the shear force, respectively; m and a are the mass and
acceleration of the shear plug, respectively; f; is the tensile strength of the concrete; o is the
inclined angle of the diagonal crack (a = 45°).

In the previous studies, the contribution of transverse reinforcements and FRP wraps to the
shear capacity of the concrete beams have been examined. Four different transverse
reinforcement ratios, e.g. 0.0%, 0.1%, 0.2 %, and 0.4% were examined under drop-weight tests
by Saatci [37]. The experimental tests showed that the increase of the shear reinforcement
reduced the crack width of the concrete beams but all the tested beams experienced shear-plug
cracks under the impact load. It is worth mentioning that although the shear strength of the
concrete and transverse reinforcements of the tested beam exceeded the impact force, the
diagonal shear cracks at two sides of the impact point, forming punching shear was observed
for the beam even with the highest transverse reinforcement ratio of 0.4%. A similar
observation was also obtained in the previous studies based on numerical simulations [21, 36]
where the punching shear failure was formed in the concrete beams under impact loads even
though the shear reinforcements were significantly increased. The use of FRP U- wraps
improved the shear resistance of concrete beams under impact load by reducing the shear crack
width and increasing the stability of the concrete beams as reported by Pham and Hao [38].

However, the punching shear cracks still occurred at the impact point when the impact force
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reaches its peak. These studies demonstrated that the use of the shear reinforcement or FRP
wraps might reduce the crack width and increase the post-impact behaviour of the concrete
structures but showed a minor contribution to resisting the punching shear failure of the
reinforced concrete beams. To examine the performance of reinforced concrete columns under
vehicle impact, the strain time histories of concrete and steel are plotted in Fig. 15 (C0-Load
2). It is clear that when damage to concrete occurs due to the tensile failure at strain of 1.75¢
at about 25.5 ms, the strain of transverse reinforcement (2.23e*#) is about 9% of its yield strain
(2.5€73). It is assumed that the concrete and the steel reinforcement are perfectly bonded. Thus,
when the column exhibits the punching shear cracks, the strain of the shear reinforcement
equals the failure strain of the concrete, £.. Hence, the total tensile force, Vj, in the shear

reinforcements can be estimated as follows:

V.=Eg& x24 xn (17)
A, sz—Dxé‘ (18)
‘ 4n

where Ej is the Young’s modulus of the steel reinforcements; 4; is the cross-section area of a
single shear rebar; n is the number of steel legs in one side of the shear-plug; O is the shear
reinforcement ratio.

From Eq. (16) and Eq. (17), the V can be determined by the following equation:

E“'g‘;xé'xWxijf,:%xgxI/c (19)

t c

—

s

Normally, the shear reinforcement ratio, J , in the previous studies ranged from 0.5% to 1%.
Therefore, from Eq. (19) at the peak impact force, the contribution of the shear reinforcement
to the total shear capacity of the column is minor compared to the concrete (2.5-5%). This is
why the increase of the shear reinforcement from the previous studies showed a minor effect

on the shear capacity in preventing the occurrence of the punching shear cracks in concrete
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structures. It should be highlighted that after the occurrence of punching shear cracks in
concrete structures, the contribution of the shear reinforcement is then crucial in controlling
the stability of the structures (see Fig. 15b). In brief, the shear reinforcements significantly
improve the shear resistance of RC structures but do not help to prevent cracks in concrete
from occurring. In dynamic response, once cracks occur, they allow relative movement
between the shear plug and the vicinity parts. This slight relative movement has little effect on
the shear resistance of the structures under static loads, however, it significantly reduces the
inertia resistance since the vehicle and the shear plug can move together. This is the reason
why once shear cracks happen in the columns under impact, the peak impact force cannot
increase further. The dynamic shear capacity of the RCBC, neglecting the contribution of the

shear reinforcements, can be estimated by the following equation:

Ppx =2xDIF, x f;x DxW +ax p,x(D+H,)x DxW (20)

dvn
where H;is the height of the impact area, as given in Fig. 14b.

It should be mentioned that each concrete and steel element in the shear-plug area has a
different DIF and different acceleration. It is very complicated and difficult to determine these
values by solving the dynamic equilibrium equation. Adhikary et al. [39] proposed an empirical
equation to predict DIF of the maximum capacity of a RC deep beam under impact load based
on the shear span ratio, loading rate, longitudinal and shear reinforcement ratio. However, the
contribution of the inertia force was neglected in that study due to the loading rate was under
2 (m/s). In this study, the effect of the DIF and inertia force in the shear plug area is simplified

by using a dimensionless coefficient, k7, as follows:

axpcx(D+H,)

Pd';jx:2><(DIFC+ ]xftxDxW:kaftxDxW (21)

t

From the numerical results, the punching shear failure occurs on the column C5 and C6 when

the PIFs reach 8,036 kN and 14,593 kN, respectively. Moreover, when the PIF is 30,000 kN,
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the punching shear failure also happen at the impact area on the reference column (CO) [6].
From Eq. 21, the value of k7 in these three cases are 6.56, 6.7, and 6.12, respectively. Based on
these results, in this study, k7 is suggested as 6.5. Hence, the dynamic shear capacity of the
RCBC, which is also the largest peak impact force that could be generated from a vehicle

impact, is:

Py =6.5><1f—6><D><W (22)

dyn

where £ is the compressive strength of concrete.

The maximum dynamic shear capacity of the column is defined based on the contribution of
concrete, reinforcements, and inertia in two sides of the shear plug, as shown in Figure 14b.
However, the diagonal shear crack on the two sides will not happen at the same time because
of the boundary condition effects. The lower side of the shear plug is close to the footing and
it is affected by the boundary condition while the top side of the shear plug does not connect
to the boundary. For a RC column under vehicle collision, to form a punching shear failure on
the column, a diagonal shear crack firstly occurs at the column base due to the influence of the
boundary condition and then another diagonal shear crack occurs on the other side of the impact
point on the column, as illustrated in Fig. 14a. This phenomenon is observed consistently in
the numerical simulations and can be physically explained based on the effect of the inertial
resistance and the boundary effect. Therefore, when the PIF from collision events is larger than
the dynamic shear capacity of the column, it will cause a diagonal shear failure. Because the

shear resistance along the column is identical, the dynamic shear capacity of one side of the

shear plug is 0.5F,7" . Based on the proposed equation, it can be concluded that when the PIF

from a collision event is higher than O.SR;SX , the diagonal shear failure at the impact area will

occur in the RC column at the column base. If the PIF is equal to Pdryn,fx , punching shear failure

occurs. The comparison of the proposed equation with the numerical and experimental results
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are given in Table 3. Moreover, the numerical results also illustrate the significant contribution
of the column properties, i.e. column dimension and concrete strength in determining the
impact force profile from vehicle collisions. When the PIF on the column is larger than a half
of the maximum dynamic shear capacity of the column, which depends on the column cross-
section dimension and the tensile strength of concrete, either diagonal shear or punching shear
failure occurs in the column, the second PIF from the cargo impact will not happen, leading to

the change of the impact force profile.

6. Column responses and failure classification

Fig. 16 shows the maximum bending moment and shear force in the RCBCs with different
cross-section dimensions and column heights generated by vehicle impact. It should be noted
that those curves are plotted by connecting the maximum value of the bending moment and
shear force at multiple sections along the column. Those values at different sections occur at a
different time instant, but all occur during the impact of the vehicle engine. The variation of
the bending moment and shear force was presented and explained in the previous study [6].
The envelop curves are considered in this study while the time difference between the
occurrence of these maximum values is not considered because the maximum values are the
primary concerns in column design rather than the time instant when they occur. As can be
seen from the figure, the bending moment and shear force diagram of the column can be divided
into two separate groups, i.e. flexural response in which the negative bending moment occurs
at the base and the column top while the positive bending moment happens at the impact point
and the intermediate section, e.g. Fig. 16a - Load 1 (V' = 100 km/h, m, = 0.64 ton) and shear
response where the bending moment at the intermediate section occurs in the negative side of
the column, e.g. Fig. 16a - Load 2 (V= 100 km/h, m, = 2.0 ton) and Load 3 (V= 120 km/h, m,

= 2.0 ton). As shown in Fig. 16a, under Load 1, similar maximum bending moment curves are
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achieved in the Columns C0, C4, and C6-8 where the flexural response is observed in these
columns with no diagonal shear or punching shear failure. When the RCBCs are impacted by
Load 2, the diagonal shear crack forms in the Columns CO and C4 while the punching shear
occurs in the column C6 (see Table 3) resulting in a significant change in the maximum bending
moment curve. These three columns thus suffer shear failure with the maximum bending
moment at the intermediate section shifting from the positive side to the negative side of the
column. The bending moment shape of the columns C7 and C8 in Load 2 is almost unchanged
compared to that under the first loading condition and no shear crack occurs at the column base
after the PIF. The PIF increases to about 26,000 kN under Load 3, the Column C7 suffers a
diagonal shear crack at the base which leads to the change of the bending moment curve from
the flexural response to shear response (see Fig. 16a — Load 3). Besides, the bending moment
shape of the Columns CO0, C4, and C6 is similar to that under the previous loading condition
but the intermediate section suffering flexural damage moves downward towards the impact
point while the bending moment shape of the Column C8 is similar to that under the first two
loading conditions. The maximum shear force of those columns under the three loading
conditions are also plotted in Fig. 16b. It is very clear from the figure that when the column is
under flexural response, the shear force at the base reaches the maximum value on the negative
side while the shear force at the top occurs on the positive side (see Fig. 16b - Load 1).
However, when the shear cracks occur at the column base, the maximum shear force at the
column top moves to the negative side (Column CO0, C4, and C6 in Load 2-3; C7 in Load 3).
The change of the bending moment and shear force when a shear crack occurs in the column
at the base can be explained by the formation of a shear plastic hinge at the impact area, as
shown in Fig. 17. When impact does not induce shear failure in the vicinity of the collision
point, with the large inertia resistance from superstructures and the short duration of the engine

impact, the column responses to the impact force follow a column with fixed boundary
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conditions at the two ends (see Fig. 17a) even though the rigidity of the two ends is different,
implying the large mass on top of the column provides a large inertial resistance, making the
top of the column similar to having a fixed boundary condition during the impact of the engine.
However, when impact induces shear cracks in the column, i.e. diagonal shear and punching
shear which form a shear plastic hinge at the impact point, the column reacts to the impact
force as a fixed-fixed column with the hinge at the impact point, the bending moment and shear
force distribution of the column change (see Fig. 17b). Moreover, it is worth mentioning that
although the PIF applied on the above columns is similar when these columns are under the
same loading condition, the column with larger cross-section shows a larger maximum bending
moment and shear force at critical sections (see Fig. 16 — Load 2-3). This is because according
to the dynamic equilibrium equation when two columns with different cross-sections are
impacted with a similar impact force, the column with larger cross-section will provide a higher
elastic resistance because of the larger column stiffness, which leads to larger bending moment

and shear force in the column.

The crack patterns and failure of those columns impacted by the three impact loading
conditions are also presented in Fig. 18. As can be seen that when punching shear failure (C6)
happens in the RCBC, negative flexural cracks occur in the vicinity of the impact point (1 —2
m) in both Load 2 and Load 3. A similar observation was reported in the previous study by
Zhao et al. [33] in which the maximum bending in the negative side was formed at 1.5 m away
from the impact point when the beam experienced the punching shear failure. For the Columns
CO0 and C4, the flexural response is observed when these columns are under the impact of Load
1. When a diagonal shear failure forms at the impact area, a flexural — shear crack happens in
the negative side of the column in both Load 2 and Load 3 (see Figs. 18b and 18c). Furthermore,

after yielding the diagonal shear crack at the base (see Fig. 18c), Column C7 exhibits another
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flexural — shear crack near the column top. No shear failure and flexural — shear crack in the

negative side of the column is observed in the Column C8 in all of the loading conditions.

From the above observations and discussions, the column responses and failures are classified

into two categories: flexural response and shear response as summarized in Fig. 19. The column
shows a flexural response when the PIF from the vehicle impact is smaller than 0.5F,," and

no diagonal shear crack forms in the column. Under this condition, the intermediate section

and flexural cracks occur on the positive side of the column. When the PIF is higher than
O.SPJ;fX , adiagonal shear crack appears at the column base leading to the formation of flexural

cracks on the negative side of the column. The increase of PIF in this range will lead to the

downward trend of the intermediate section with flexural cracks. When the PIF reaches the
maximum dynamic shear capacity of the column, Pa';,],fx , the punching shear failure occurs in

the column with the intermediate section of flexural cracks being formed closer to the impact

point and at 1.5 — 2 m above the impact point.

7. Conclusions

This study numerically investigates the impact behaviour of RCBCs under vehicle collision. A
series of FE models of full-scale bridge columns under collision of a medium truck and a large
trailer are built and simulated. The effects of column parameters on the impact force time
histories and the column response under three different conditions have been examined. The

findings of this study can be summarized as follows:

1. An analytical model is proposed to predict the vehicle impact loading profile on
rectangular RC columns corresponding to four continuous stages, i.e. bumper impact,

engine impact, truck rail impact, and cargo impact. The results indicate that the vehicle
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impact force time histories depend on both the column parameters and initial conditions
of the vehicle model. A good agreement between the proposed model and numerical
simulations has been achieved.

Owing to the damage of the column to vehicle engine impact, the cargo impacts of all the
considered numerical cases do not generate a peak impact force larger than that from
engine impact, but could generate a larger impulse depending on the impact conditions
and cargo mass. The results imply that in most common cases of bridge columns, the peak
impact force is associated with the vehicle engine impact while the maximum impulse
could be associated with either engine impact or cargo impact. Assuming a rigid column
or neglecting column damage in numerical simulations likely overestimate the impact
force, especially the cargo impact force.

The maximum dynamic shear capacity of the column has been defined in which the
column cross-section dimension and concrete strength provide the most contribution to the
shear capacity before cracking while the contribution of the steel reinforcement is

significant only after concrete cracking.

. Based on the maximum dynamic shear capacity of the column and the PIF from the

collision, the column failure mode can be classified into two separate groups, i.e. flexural

failure (PIF < O.SP(;;‘;X) and shear failure (P]F > O.SP;’?") . In the design, the dynamic
resistant capacity of column needs to be provided to resist the column global damage, i.e.

flexural cracks at the base, impact area, intermediate section, and column top, as well as

the local failures, i.e. diagonal shear failure and punching shear failure.
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Fig. 16. Maximum bending moment and shear force of the RCBC under vehicle impact
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Fig. 17. Simple response of the column under PIF
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Fig. 18. Crack patterns and failure modes of the RCBC under vehicle impacts
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Flexural cracks occur in the
positive side of the column. The
intermediate section also forms
in the positive side
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Fig. 19. Column response and failure classification under different PIF





