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[1] The detection of long-term trends in geophysical time series is a key issue in climate
change studies. This detection is affected by many factors: the size of the trend to be
detected, the length of the available data sets, and the noise properties. Although the noise
autocorrelation observed in geophysical time series does not bias the trend estimate, it
affects the estimation of its uncertainty and consequently the ability to detect, or not, a
significant trend. Ignoring the noise autocorrelation level typically leads to an overdetection
of significant trends. Due to satellite lifetime, usually between 5 and 10 years, sea surface
time series do not cover the same period and are acquired by different sensors with different
characteristics. These differences lead to unknown level shifts (biases) between the data
sets, which affect the trend detection. In this work, we develop a generic framework to
detect and evaluate linear trends and level shifts in multisensor time series of satellite
chlorophyll-a concentrations, as provided by the Medium Resolution Imaging Spectrometer
instrument (MERIS) and sea-viewing wide field-of-view sensor (SeaWiFS) ocean-color
missions. We also discuss the optimization of the observation networks, in terms of needed
time overlap between successive time series to reduce the uncertainty on the detection of
long-term trends. For the incoming Sentinel 3-Ocean and Land Color Instrument (3-OLCI)
mission that should be launched at the end of 2014, we propose a global map of the number
of months of observations to enhance the trend detection performed with the joint
SeaWiFS-MERIS analysis.
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1. Introduction

[2] A variety of studies have addressed the detection of
long-term trends in autocorrelated processes. Tiao et al.
[1990] showed that the trend estimation uncertainty is
strongly affected by the variability and the autocorrelation

of the underlying noise process. Environmental data typi-
cally involve strong autocorrelation level [Frankignoul and
Hasselmann, 1977]. For instance, a positive anomaly in the
observed wind or temperature on a given day is often asso-
ciated with similar conditions the following days. This nat-
ural autocorrelation is the result of local conditions but also
of large-scale signals such as, for instance, the well-known
El-Ni~no-La-Ni~na oscillation [Philander, 1990; Torrence
and Webster, 1998]. It also implies that the day-to-day or
month-to-month observations are no more independent one
from each other, and that the ‘‘real’’ number of independent
observations available to detect a trend is significantly
lower than in uncorrelated cases [Clifford et al., 1989; Tiao
et al., 1990; Dutilleul, 1993].

[3] Since the end of the 1970s, satellite ocean-color
observations have been providing large-scale measure-
ments of the water-leaving radiance [McClain, 2009], i.e.,
the light intensity estimated at the surface of the ocean at
different wavelengths in the visible from 400 to 700 nm
and near infrared. These radiances are used as inputs of
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inversion algorithms to retrieve biogeochemical parame-
ters. Among available ocean-color variables, the most pop-
ular is the chlorophyll-a (chl-a) concentration [Maritorena
et al., 2010; O’Reilly et al., 1998; Morel et al., 2006],
which is used in this work. The limited lifetime of space-
based sensors implies that the long-term variability of such
geophysical parameter can only be evaluated using a com-
bination of time series. Among the historical ocean-color
sensors, the most widely used are the NASA sea-viewing
wide field-of-view sensor (SeaWiFS) [Hooker et al., 1992]
that operated from September 1997 to December 2010, the
European Spatial Agency (ESA) Medium Resolution Imag-
ing Spectrometer Instrument (MERIS) [Rast et al., 1999],
in activity from April 2002 to April 2012, and the NASA
Moderate Resolution Imaging Spectroradiometer, MODIS-
AQUA [Salomonson et al., 1992], launched in July 2002
which is still operational. Ocean-color data with limited
wavelength range are also available from the Coastal Zone
Color Scanner (CZCS), which operated from 1978 to 1986
[Evans and Gordon, 1994].

[4] Trend estimation using the single SeaWiFS data set
has been previously addressed using different methods.
Gregg et al. [2005] estimated trends in the chl-a over the
period 1998–2003 using a classical linear trend estimation.
Recently, Vantrepotte and M�elin [2009] used the census
X11 method (adapted from Pezzulli et al. [2005]), and Hen-
son et al. [2010] used a simple model based on a three-
component decomposition according to a seasonal signal, a
linear trend, and an autocorrelated noise, to estimate trends
over the period 1998–2007. Trend estimation from multi-
sensor data sets has been impaired until now because of
intercalibration uncertainties among available data sets. For
instance, Antoine et al. [2005] reanalyzed the CZCS and
SeaWiFS time series to study the chl-a changes between
these two missions, but they could not attribute to the
changes they observed to a long-term trend.

[5] This paper goes beyond intercalibration issues and
deals with the detectability of a linear trend or its signifi-
cance from multisensor data sets. From a methodological
point of view, we extend the statistical analysis of linear
trends in single-sensor time series in the presence of auto-
correlated noise [Tiao et al., 1990; Weatherhead et al.,
1998; Henson et al., 2010] to multisensor time series. In

particular, we address both time overlaps and time gaps
between time series. We report and discuss an application
to the MERIS and the SeaWiFS chl-a data sets, which
clearly demonstrate the gain of a multisensor analysis. We
propose here a simple oceanographic description of the
observed trends assuming that the full understanding of the
long-term trends in the chl-a should be studied in conjunc-
tion with the temperature and the sea surface level.

[6] Besides, we investigate how the time overlap
between successive satellite missions could be optimized to
improve the detectability of long-term trends. The Global
Monitoring for Environment and Security (GMES) Sentinel
3 (S3) mission should be launched at the end of 2014. This
mission will carry the Ocean and Land Color Instrument
(OLCI), an imaging spectrometer that will deliver multi-
channel wide-swath optical measurements of ocean and
land surfaces, providing a new time series of chl-a observed
from space. We also exploit the proposed statistical meth-
odology to evaluate the duration of the S3-OLCI observa-
tion series required to improve the joint SeaWiFS-MERIS
trend detection based on the hypothesis that the OLCI-
MERIS level shift uncertainty will be of the same magni-
tude as the SeaWiFS-MERIS one.

2. Trend Estimation

[7] In Table 1 is listed the used symbols with their
description.

2.1. Statistical Modeling

2.1.1. Single-Sensor Data Set

[8] The observed geophysical time series, yt, are mod-
eled as a sum of three components: a long-term linear
trend, a seasonal pattern, and a noise process, as follows:

yt ¼ �þ !t þ St þ Nt; t ¼ 1 . . . n; ð1Þ

where n is the length of the time series, � is the intercept
term, ! is the linear trend, and St is the seasonal component
which includes annual and semiannual terms. We chose
here a similar representation of St as in Weatherhead et al.
[1998]:

St ¼
X4

i¼1

aicos
2�it

12

� �
þ bisin

2�it

12

� �
ð2Þ

[9] Here St is identical from year to year with a null sum
over a year (St does not contribute to a global trend). Nt is
the correlated noise (red noise), assumed to be a first-order
autoregressive process, AR(1) :

Nt ¼ �Nt�1 þ �t ð3Þ

where "t is a white noise, i.e., an independent random vari-
able with zero mean and variance �2. The stationary condi-
tion for Nt imposes that �1<�< 1. In the presence of
autocorrelation, the residuals are no longer independent,
and the calibration of model (1) involves a generalized least
square (GLS) estimator [Aitken, 1935; Davidson and
MacKinnon, 1993]. The latter relies on the estimation of

Table 1. List of Symbolsa

Symbol Designation Unit

yt 2-D time series mg m�3

m Intercept mg m�3

! Linear trend mg m�3 yr�1

�! Uncertainty of trend mg m�3 yr�1

St Seasonal component n.a.
Nt Autocorrelated (red) noise n.a.
�N

2 Red noise variance mg2 m�6 yr�2

"t White noise n.a.
�2 White noise variance mg2 m�6 yr�2

� Noise autocorrelation No unit
� Level shift mg m�3

j!j/�! Trend detection variable No unit
� Correlation between Y1t and Y2t No unit
N Length of the time series Months
T0 Start time of the second time series Months

aUnits are relative to the studied parameter, here the chl-a.
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the covariance matrix 	 of the residuals Nt, generally
unknown. For �¼ 0, 	 is diagonal with term value equal to
the variance of the white noise. If � ffi 0, the diagonal terms
are still equal to the variance of the red noise, and the other
terms are estimated as lagged covariance between noise
realizations:

cov Nt;Ntþhð Þ ¼ �n

1� �2 ð4Þ

[10] In practice, the estimation of the model parameters
in equation (1) may be achieved using several methods.
Among them Prais-Winsten [Prais and Winsten, 1954] and
Cochrane and Orcutt [1949] methods aim at transforming
(equation (1)) into an expression involving an uncorrelated
noise residual [Tiao et al., 1990; Weatherhead et al.,
1998]:

y�t ¼ �þ !t� þ St� þ �t ð5Þ

[11] Given equation (5), the standard ordinary least
squares (OLS) [Aitken, 1935; Russel, 1993] estimator may
be used. The trend estimation is not affected by the noise
autocorrelation but its uncertainty strongly depends on � :

�! ¼
�

1� �ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
t � tð Þ2

r ð6Þ

[12] The parameter �! can be expressed as a function of
the white noise variance, �2¼�N

2(1��2), and the trend
coefficient uncertainty, G, defined as the uncertainty on the
trend estimate normalized with respect to the white noise
variance:

�! ¼ �G n; �ð Þ ð7Þ

2.1.2. Multisensor Data Set
[13] In this work we investigate a generalization to data

sets acquired by different sensors for possibly different
time periods. While the increase of the number of observa-
tions may decrease the variance of the trend estimation
compared to the single-sensor case, the presence of
unknown level shifts between the time series may signifi-
cantly affect the uncertainty of the trend estimation. For the
sake of simplicity, we consider in the following a two-
sensor data set, but the proposed framework generalizes to
three or more sensors. Given a two-sensor data set, we
assume that the two time series share the same long-term
trend and seasonal patterns but involve an unknown level
shift and correlated noise processes:

yt ¼ �þ !t þ St þ N1t; t ¼ 1 . . . n1 ð8aÞ

yt ¼ �þ !t þ �U þ St þ N2t; t ¼ T0 . . . n2 ð8bÞ

where time t is in any case relative to the start of the first
time series, which is considered as the reference. T0 is the
starting time of the second time series, and n1 and n2 are
the length of the first and second time series, respectively.
The parameters � and ! are the intercept term and the lin-

ear trend shared by the two time series, respectively. The
parameter � is the unknown level shift of the second time
series compared to the first one, supposed here as constant
in time. U¼ 1 for t�T0 and U¼ 0 for t< T0. N1t and N2t

are the autocorrelated noises of the two time series.
[14] The estimation of the level shift between the two

time series using an intercalibration procedure [Johnson
et al., 1996] prior to the estimation of the shared linear
trend is statistically relevant if one accounts for the uncer-
tainty of the level shift in the variance of the trend estimate.
Neglecting this uncertainty resorts to a null-shift case. This
is equivalent to considering a single time series and would
greatly underestimate the variance of the trend estimate. To
fit model parameters in equation (8), we consider an itera-
tive procedure adapted from the Cochrane and Orcutt
[1949] transformation. Details on the numerical resolution
of equation (8) are given in Appendix A. Only the esti-
mates obtained after convergence that satisfy the 95%
detection threshold are considered in our analysis. This pro-
cedure leads to the estimation of the model parameters u,
!, S, � as well as the variance of these estimates, and the
variance of the uncorrelated residuals �2.

2.2. Detecting Significant Trends

[15] The detectability of a trend or its significance may
be treated from different but coincident points of views. It
generally relies on the estimation of the standard deviation
of the trend estimate (or the associated interval of confi-
dence), and less usually on the number of observations
required to detect a trend among a noise with a given var-
iance. Formally, the statistical assessment of the signifi-
cance of a trend in a time series of length n resorts to

testing either the variable j !̂j=�!̂ or the variable r̂
ffiffiffiffiffiffi
n�2
pffiffiffiffiffiffiffiffi

1�r̂2
p ,

with r being the coefficient of correlation between the time
series and the trend. Both tests are similar [Scherrer, 1984]
and both variables theoretically follow a Student’s T distri-
bution with n� 2 degrees of freedom [Haan, 1977; Legen-
dre and Legendre, 1998; Scherrer, 1984]. Under the
considered red noise model assumption, the 90% confi-
dence level is reached for j !̂j=�!̂ > 1:64 and the 95% con-
fidence level for j !̂ j=�!̂ > 1:96. In the subsequent, we
consider a 95% confidence level, such that we test for
j !̂ j=�!̂ > 1:96.

3. Application to the Two-Sensor
SeaWiFS-MERIS Data Set

3.1. Data Set

[16] Tiao et al. [1990] showed that the existence of a
moderate positive value of � in the daily measurements is
enough to make the trend estimate insensitive to changes in
the temporal sampling. Compared to the daily data, the
monthly averaged data will lower the length of the time se-
ries and the autocorrelation leading to similar trend detec-
tion. It implies that geophysical data sets, associated with
high autocorrelation levels, may be analyzed using the
monthly time series. Two data sets are used here, the global
1998–2010 SeaWiFS monthly chl-a products estimated
using the Ocean Chlorophyll 4-band algorithm (OC4)
[O’Reilly et al., 1998, 2000], and the global 2003–2011
MERIS chl-a monthly estimated using the MERIS OC4
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algorithm [Morel et al., 2007]. Data were projected onto a
regular 1� � 1� grid, and time series with more than 30%
of missing data were withdrawn from the analysis, leav-
ing 31,829 for both data sets. For each location of the
1� � 1� grid, a climatology estimated from the available
observations has been subtracted to the original time se-
ries to remove the seasonal signal, St. Neither spatial
nor temporal interpolations were performed on the data
set. The value of T0 used in equation (8), i.e., the start-
ing time of the MERIS time series, is equal to 60
months.

3.2. Single-Sensor Linear Trend Detection Using the
SeaWiFS Data Set

[17] Figure 1 shows for the period 1998–2010 the esti-
mated model parameters for the single-sensor model (equa-

tion (1)) using the SeaWiFS monthly chl-a data set, namely,
the long-term trend !̂, the noise autocorrelation �̂, and the
white noise variance �̂2. Overall, we detect significant linear
trends for 41% of the 31,829 time series (Figure 1). There
are several coherent patches with significant trends. The typi-
cal magnitude of trends in the chl-a is approximately 60.003
mg m�3 yr�1, with positive peak values of þ0.009 mg m�3

yr�1 at the eastern part of the Argentina, the south of Aus-
tralia, the Behring Sea, and specific coastal areas. Negative
peak values of �0.009 mg m�3 yr�1 are reached in the
North Atlantic and the Arabian Sea. We observe in the inter-
tropical region a majority of negative trends in the chl-a con-
centration with a mean value of �0.002 mg m�3 yr�1.

[18] Compared to previous trend estimations performed
on the SeaWiFS data set, Gregg and Casey [2004]
observed globally comparable trends on the period 1998–

Figure 1. Estimated parameters for the single-sensor model (equation (1)) using the SeaWiFS monthly
data (1998–2010). (a) Significant linear trends, !̂, with respect to a 95% confidence level, (b) noise auto-
correlation �̂, and (c) noise variance �̂2.
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2003 with the exception of the eastern part of Africa that
do not show anymore a positive trend. This difference may
be explained either by the absence of a global linear trend
for the entire 1998–2010 period or by the ignorance of
noise autocorrelation by Gregg and Casey [2004] and
Gregg et al. [2005]. Henson et al. [2010] showed a similar
global distribution of the trend estimates for this period
using the same single-sensor model (equation (1)) and the
1998–2007 SeaWiFS data set, with nevertheless less posi-
tive trends east of South Argentina. This suggests that the
data from 2008 to 2010 contributed significantly to the
detection of significant positive trends of chl-a in this area.

[19] Concerning the noise autocorrelation �̂, the mean
observed value over the globe is 0.3 (Figure 1b). Minimum
values of �0.2 are observed locally in the southern part and
specific coastal areas. Maximum �̂ values of 0.75 are
observed at 30�S in the Indian Ocean and the East Chile.
Globally, the noise autocorrelation is greater in the tropical
region with a mean value of 0.35 between 30�S and 30�N,
compared to a mean value of 0.25 for latitudes south of
60�S or north of 60�N.

[20] The estimated variance of the residuals (Figure 1c)
shows latitudinal and coastward distribution with greater
values observed at high latitudes and along the shores and
appears correlated to the mean values of the chl-a distribu-
tion [Blunden et al., 2011]. In the intertropical zone, yt var-
iance is lower than the one observed at high latitudes, and
the variability is led by nonseasonal signals leading to a
large correlation in the residuals (large values of �̂).

3.3. Single-Sensor Linear Trend Detection Using the
MERIS Data Set

[21] We also report the same analysis as above for the
2003–2011 MERIS data set (Figure 2). Although the
MERIS data set is only a 10 year time series compared to
the 13 years of data available for the SeaWiFS data set, we
detect significant linear trends for 50% of the 2003–2011
MERIS time series (41% for the SeaWiFS data, respec-
tively). The Equatorial Pacific shows a linear decrease of
�0.002 mg m�3 yr�1 surrounded by a large belt of positive
trends, with a mean value of 0.006 mg m�3 yr�1, starting
from the East Papua New Guinea and ending in the north in
the Mexico and in the south in the north of Chile leading to
a wishbone shape of positive trends in the Equatorial Pa-
cific. This region is well known to be strongly influenced
by the El Ni~no–Southern Oscillation (ENSO) signal (http://
www.srh.weather.gov/srh/jetstream/tropics/enso.htm). In
this region, the difference in terms of detection between
SeaWiFS and MERIS data set is clearly visible. A major
ENSO–Ni~no event occurred during the 1997–1998 fol-
lowed by a ENSO–Ni~na period during 1998–2000. Phyto-
plankton productivity relies on the availability of sunlight,
macronutrients (e.g., nitrogen and phosphorous), and
micronutrients (e.g., iron) and thus is sensitive to climate-
driven changes in the delivery of these resources to the
euphotic zone. Turk et al. [2011] showed that the ENSO os-
cillation strongly impact the chl-a and the primary produc-
tion in the Equatorial Pacific, and one can clearly see
Figure 1a that using the SeaWiFS 1998–2010 data set a
limited number of significant trends are detected in this
area compared to the MERIS data set over the period
2003–2011: nonstationary processes such as El-Ni~no-

La-Ni~na tend to reduce the ability to detect a trend. The
problem of estimating and removing ENSO-related varia-
tions from climate records has been addressed in many pre-
vious studies for the sea surface temperature (SST) using a
variety of methods. In this spirit, Compo and Sardeshmukh
[2010] used the ENSO pattern filter (EPF) [Alexander et
al., 2008], developed to remove the contribution of ENSO
patterns in the SST from 1871 to 2006. Satellite-derived
ocean-color time series are nevertheless shorter and show a
greater intraseasonal variability. This alters the ability of
filtering the long-term variability caused by such signals.
This type of filtering has not yet been implemented for the
chl-a time series, and its evaluation is in any case beyond
the scope of this paper, as we do not discuss of the quality
of the input data.

[22] The estimated noise autocorrelation shows a similar
geographical distribution as observed for the SeaWiFS data
set with nevertheless a large band of high autocorrelated
noise in the South Pacific. The residual variance is distrib-
uted similarly to the one estimated using SeaWiFS with
nevertheless a northward extension of the detected trends.

3.4. Two-Sensor Linear Trend Detection Using Both
MERIS and SeaWiFS Data

[23] Using the two-sensor model (equation (8)), the joint
analysis (Figure 3) of the MERIS and SeaWiFS time series
leads to 60% of significant detections of linear trends for
the period 1998–2011 (50% and 41% for MERIS and Sea-
WiFS data alone, respectively). It resorts to much clearer
patterns at a global scale for the period 1998–2011 com-
pared to the period 1998–2010 and 2003–2011 considered
individually. In Table 2 we summarize at ocean-scale trend
estimated statistics. At global scale, the observed median
value in the significant trends is 2.83 � 10�4 mg m�3 yr�1.
This value is low and opposite to the estimated trend by
Boyce et al. [2010] for the twentieth century using this time
in situ data. Indian Ocean shows the largest median value
with a decreasing value of �1.40 � 10�3 mg m�3 yr�1,
while the Pacific and the Atlantic show similar median pos-
itive trends of 7.27 � 10�4 and 8.27 � 10�4 mg m�3 yr�1,
respectively. Regarding coastal areas, we detect positive
trends especially in the Bering Sea, the Pacific shores of the
United States, and the Patagonian Shelf (Figure 3a).
Regarding the open ocean, southern regions show as
observed in Figures 1a and 2a, a majority of positive trends
with local maximum at þ0.009 mg m�3 yr�1 in the eastern
part of South Argentina and the southeastern part of Aus-
tralia. Although we do not discuss here of the quality of the
data set, we underline nevertheless that both algorithms,
SeaWiFS OC4 and MERIS OC4, are calibrated for open
ocean waters where the observed radiance is constrained by
the water and the chl-a absorption properties. In coastal
areas and specific areas, the effect of the suspended matters
and the colored dissolved organic matters may alter the
observed radiances leading to positive biases in the esti-
mated chl-a retrieval using the OC4 algorithms and possi-
bly affecting the trend estimation in such areas. A full
discussion on the estimation of optical properties in coastal
areas is available in International Ocean-Color Coordinat-
ing Group [2000].

[24] The ‘‘wishbone’’ pattern in the Equatorial Pacific
clearly appears in Figure 3b with this time some extensions
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of the positive trends from the Florida to the Mediterranean
Sea and from Brazil to South Africa. This Atlantic exten-
sion of this structure was not visible using the SeaWiFS
(Figure 3a) data set and only partially visible using the
MERIS data set.

[25] Some coastal regions depict negative trends with a
minimum of �0.009 mg m�3 yr�1 in the equatorial area, the
North Atlantic, and the North Pacific. From the joint analysis,
the Indian gyre and more generally the Indian Ocean show a
global negative trend except for its southern area. The decline
in the global gyres in the productivity, directly linked to the
chl-a, was also observed by Polovina et al. [2008].

[26] In the Atlantic, the intertropical zone shows a low
decrease of �0.002 mg m�3 yr�1. In the South Atlantic and
below 40�S, the trend increases positively. Regarding the

North Atlantic, we detect an increase of the chl-a in the
North Atlantic Current and the Gulf Stream, and northward,
the Atlantic Western part shows a positive trend conversely
to the eastern part.

[27] The estimated shift between the two chl-a data sets
is reported Figure 3b. Its magnitude, conversely to its
uncertainty, does not affect the trend estimation. Maximum
positive shift values are observed in the North Atlantic with
local values of 0.08 mg m�3 yr�1 of positive shift for the
MERIS OC4 compared to the SeaWiFS OC4 chl-a. Con-
versely, negative maximum values are observed in the Tas-
man Sea. The large shift values observed at high latitudes
might be related to local differences in the atmospheric cor-
rections used for each sensor [International Ocean-Color
Coordinating Group, 2010].

Figure 2. Estimated parameters for the single-sensor model (equation (1)) using the MERIS data set
(2003–2011). (a) Significant linear trends, !̂, with respect to a 95% confidence level, (b) noise autocorre-
lation �̂, and (c) noise variance �̂2.
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[28] The estimated variance of the residuals (Figure 3c)
shows greater values for the high latitudes and on the
shores directly correlated to the mean values of the chl-a
distribution [Blunden et al., 2011] as observed Figures 1c
and 2c.

4. Optimization of a Time Overlap Between
Successive Missions for Long-Term Monitoring
and Impact of the Incoming ESA Sentinel
3-OLCI Mission

[29] The proposed multisensor model (equation (8)) pro-
vides the basis for investigating the extent to which the
time overlap between successive missions may be opti-

mized to reduce the uncertainty on the long-term detection
of linear trends in geophysical time series.

[30] From equation (7), the uncertainty of the trend esti-
mation (equation (8)) can be expressed as a function of
model parameters (Appendix A):

Table 2. Statistics at Large Scale on the Estimated Significant
Trends in the Chl-a (mg m�3 yr�1) Over the Period 1998–2011

Median(!̂) Min(!̂) Max(!̂) �!̂

Global 2.83 � 10�4 1.59 � 10�1 1.0 � 10�2 3.20 � 10�3

Atlantic 8.27 � 10�4 �1.59 � 10�1 1.0 � 10�2 4.60 � 10�3

Pacific 7.27 � 10�4 �7.49 � 10�2 1.0 � 10�2 2.80 � 10�3

Indian Ocean �1.40 � 10�3 �1.14 � 10�1 9.60 � 10�3 2.00 � 10�3

Figure 3. Estimated parameters for the multisensor model (equation (8)) using the SeaWiFS and the
MERIS data set (1998–2011). (a) Significant linear trends, !̂, with respect to a 95% confidence level, (b)
level shift �̂, and (c) noise variance �̂2.
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�! ¼ �G n; �;DT; �ð Þ ð9Þ

where G is the trend uncertainty which in case of the use of
two time series is a function of n, �, DT, n the total number
of nonredundant months between two time series, and � the
observed autocorrelation (we supposed here �1¼�2¼�).
DT is the starting time of the second time series, given the
first time series is assumed to start at time t¼ 0. Depending
on parameter DT, we cover both time overlap between the
two series (DT< n1, the length of the first time series) as
well as time gaps (DT> n1). The parameter � is the corre-
lation coefficient between the two white noise processes
and �2 the weighted variance expressed as a function of the
two white noise variances (cf. Appendix B).

[31] Given two time series of 60 months, we report the
uncertainty coefficient G for the trend estimate as a func-
tion of parameters �, n, and DT (Figures 4 and 5). Parame-
ter � was set to 0.7, the mean correlation value observed
between MERIS and SeaWiFS. The uncertainty coefficient
G (and consequently �w) increases with � (Figure 4). When
an overlap is present (DT< 60 months), G decreases with
the time overlap until it reaches a minimum value that
depends on the autocorrelation value. This minimum corre-
sponds to the optimal value of the time overlap between
two time series to optimize the balance between the uncer-
tainty on the shift parameter � and the length of the two
time series. For �¼ 0.3, i.e., the mean value observed for
SeaWiFS (Figure 1b), the minimum is reached for 12
months of time overlap. When no overlap is present and the
time gap increases, the uncertainty on the trend remains
constant as the estimation of the trend resorts to analyzing
independent time series only sharing a common trend, such
that the overall uncertainty only depends on the sum of
lengths of the two series, here 120 months (Figure 4).

[32] To illustrate how to use Figure 4, we simulate the
detection of a ! value of 0.01/12 mg m�3 month�1 within
the two time series of 60 months with a � value equal to
0.6 and a � value equal to 0.03. Considering an overlap of 1
year, the detection value, j! j/�!¼ j! j/(G�)¼ (0.01/12)/
(0.03 � 0.0095)¼ 2.19, i.e., the 95% level of confidence is

reached. Conversely, for the 1 year gap situation, j!j/
�!¼ (0.01/12)/(0.05 � 0.013)¼ 1.28, i.e., this trend would
not be detected if analyzed with the same number of
monthly observations but with disjoint time series.

[33] We also depict the evolution of uncertainty G as a
function of the length of the second time series, with a
given length of the first time series set to 60 months. We
test for two different situations: a 1 year time overlap (Fig-
ure 5a) with � value set to 0.7, and a 1 year gap (Figure
5b). In both cases, uncertainty G increases with � and
decreases with the length of the second time series. For a 1
year overlap and for a moderately high value of � of 0.6, a
typical value observed in Figures 1b and 2b, G values are
0.015 and 0.0125 after a duration of 12 and 36 months for
the second time series, respectively, i.e., �w has decreased
of 16%. For a 1 year gap, for the same value of �, G values
are 0.019 and 0.018, respectively, i.e., �w has decreased of
5% in 2 years and is 26% greater at 12 months and 44% at
36 months compared to the overlap situation.

[34] The impact of new available space-based observa-
tions such as provided by the incoming S3 satellite with
onboard the OLCI sensor may also be evaluated using the

Figure 4. Effect of the time overlap or the gap time (in
months) between two time series of 60 months on the trend
uncertainty coefficient G (equation (9)).

Figure 5. Effect of the length of the second time series
on the uncertainty trend coefficient G (equation (9)) with
(a) a 1 year overlap and (b) a 1 year gap.

SAULQUIN ET AL.: LINEAR TREND DETECTION IN DATA SETS

3759



proposed model (equation (9)). This satellite should be
launched at the end of 2014, and consequently, no overlap
will be observed with the MERIS, SeaWiFS, and MODIS
time series (MODIS-AQUA, launched in 2002, mission’s
initial lifetime was planned to be about 6 years). To evalu-
ate the added value of the S3 mission regarding the long-
term trend detection, we consider here that the uncertainty
on the level shift between OLCI and MERIS OC4 derived
chl-a will be of the same magnitude than the one estimated
between MERIS OC4 and SeaWiFS OC4 (not shown).
Given this assumption, we proceed as previously to deter-
mine the variance of the trend estimate (Appendix B).

[35] We proceed as follows to derive a global map (Fig-
ure 3). For locations such that j !̂ j=�!̂ > 0:5, i.e., a 70%
significance level, we assume that the trend estimate !̂
might be relevant but was not detected as significant due to
a too low number of MERIS-SeaWiFS observations com-
pared to observed local noise level. From simulations, we
determine the required duration of the OLCI time series to
reach a 95% significance level, i.e., j !̂ j=�!̂ > 1:96. For
locations with significant SeaWiFS-MERIS linear trend
estimate with a 95% significance level, we determine from
simulations the required duration of the OLCI time series
to reduce the uncertainty �!̂ . For these numerical deriva-
tions, we also assume in equation (9) that �1

2¼�2
2, i.e.,

the white noise variance measured from OLCI will be equal
to the white noise variance estimated from the SeaWiFS-
MERIS data set (Figure 3c). The starting time of the OLCI
time series is the first January 2015 leading to a T0 value of
36 months (MERIS time series ends here in December
2011). Overall, the reported results show that a mean dura-
tion of 53 months of S3-OLCI observations will be neces-
sary to actually enhance the detection of significant linear
trends issued from the joint SeaWiFS-MERIS analysis
(Figure 6). Interestingly, results are spatially homogeneous
with local variability related to region-specific noise char-
acteristics. In the South Pacific, the west of Senegal, and
the Arabian Sea, a minimum of 40 months of S3-OLCI is
needed to enhance the detection. In these areas a trend is
nearly detected. In the south part of America, South Africa,
and the south of Australia, high estimated values of �̂ lead
to an increase of �!̂ , and a longer duration of S3-OLCI
observations (typically about 68 months) will be necessary.
In the Equatorial Pacific, the variance of the noise is low,
but the significant estimated trends are very weak increas-

ing the time of S3-OLCI observations necessary to actually
improve the detection of significant long-term trends.

5. Conclusions

[36] The two major statistical factors governing a trend
estimation and detection in a single-sensor time series are
the autocorrelation and the variance of the noise. The esti-
mated noise autocorrelation showed latitudinal distribution
with a mean value of 0.35 in equatorial zones compared to
0.25 at higher latitudes. This difference leads to an increase
of 16% of the uncertainty on the estimation of the same
trend in these two different areas. When two time series are
available, the trend detection depends also on the uncer-
tainty on the level shift between the data sets. In case of an
overlap, the shift uncertainty is diminished. The use of the
joint chl-a SeaWiFS-MERIS data set over the period 1998–
2011 led to the detection of 60% of significant trends, com-
pared to 41% for the SeaWiFS data set only and 50% for
the MERIS data set only, contributing to a better character-
ization of region-specific patterns in the detected trends.

[37] Optimizing an observation network for the long-
term monitoring implies to minimize the effect of the
unknown level shift by organizing time overlaps between
successive missions. From our analysis and for a noise
autocorrelation level greater than 0.3 as observed in aver-
age for our data set, an overlap of 12 months has been
found to be optimal to lower the uncertainty on the level
shift and to minimize the uncertainty on the trend estimate
within two time series of 60 months.

[38] In case the time series present no time overlap, the
estimation of a potential level shift and its uncertainty is
needed. This can be derived from intercalibration analyses
based on the physical characteristics of the sensor measure-
ments, as well as from intercalibration based on comparison
with consistent long-term field observations [Antoine et al.,
2008; Clark et al., 2003]. This aspect, which should be
addressed in future works, is crucial for a meaningful merg-
ing of the incoming Sentinel 3-OLCI time series with previ-
ous ocean-color missions. Savings, in terms of necessary
duration of Sentinel 3-OLCI observations and resulting costs,
is grandly constrained by this issue. In this respect, we esti-
mated the minimal region-dependent duration of the Sentinel
3-OLCI mission necessary to improve the detection of long-
term linear trends issued from the SeaWiFS-MERIS data set.

Figure 6. Estimated duration of needed Sentinel 3-OLCI month measurements to enhance the joint
SeaWiFS-MERIS detection of long-term linear trend: from simulations of model (equation (9), see text
for details).
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We estimated a mean value of 53 months for the needed Sen-
tinel 3-OLCI observations, with some region-dependent fluc-
tuations between 40 and 68 months. This simulation was
carried out using an uncertainty level on the shift between
OLCI and MERIS of the same magnitude than the one esti-
mated between SeaWiFS and MERIS. These results are
coherent with the expected lifetime of the Sentinel 3-OLCI
mission and suggest that the analysis of the global long-term
patterns should actually benefit from the joint analysis of Sea-
WiFS, MERIS, and Sentinel 3-OLCI data sets.

[39] In the future, the methodology will be applied to
other ocean-color variables such as the vertical attenuation
of the light [Morel et al., 2007; Saulquin et al., 2012]. Its
application to in situ data might also be considered, for
instance, for validation purposes. Given the noise parame-
ters of the considered remotely sensed data, we were able
to detect relatively weak trends, typically between 60.01
and 60.1 mg m�3 decade�1. In situ measurements gener-
ally involve greater variance levels caused by support
effects, i.e., the local variability in the chl-a, caused by
fine-scale structures such as filaments which are averaged
using the 1� � 1� satellite data [Saulquin et al., 2011].
Such local variability in the in situ data, especially at the
shore, alters the trend detection. The design of specific in
situ setting (e.g., sensor networks) might require to reduce
these variances to detect linear trend levels similar to those
issued from remotely sensed data. Regarding methodologi-
cal aspects, refined models of level shift between time se-
ries (magnitude-dependent models) and the effect of
outliers in the estimation of the autoregressive parameters
[Sarnaglia, 2010] should also be evaluated. The influence
of low-frequency climatic signal such as ENSO on the
ocean-color data set should also be considered with care. In
this respect, the development of specific filtering proce-
dures to remove such contributions could be investigated.

Appendix A

[40] This appendix details the estimation procedure for
shared linear trends in two time series involving autocorrelated
noise processes. Formally, we consider the following model:

yt ¼ �þ !t þ �U þ St þ N1t;þN2t ðA1Þ

[41] To correct for the autocorrelation term (equation (8))
the following transformation is applied to resort to uncorre-
lated variables.

A1. Transformation

[42] For periods where only one time series is present, the
standard Cochrane and Orcutt transformation is applied:

y�t ¼ yt � �yt�1

[43] When only the first time series is present, equation
(8a) turns into

y�1t ¼ � 1� �1ð Þ þ !�2 þ !ð1� �1Þt þ �1t;

t ¼ 1 . . . n1 and �1t � N 0; �1
2

� �
[44] When only the second time series is present, equa-

tion (8b) turns into

y�2t ¼ � 1� �2ð Þ þ !�2 þ ! 1� �2ð Þt þ � 1� �2ð Þt þ �2t;

t ¼ T0 . . . n2 and �2t � N 0; �2
2

� �

[45] When both time series are present, we suppose that
the white noises are correlated together, and the following
transformation is applied:

y�t ¼ y1t � �1y2t�1

y�t ¼ � 1� �1ð Þ þ !�1 þ !�2 þ ! 1� �1ð Þt þ �3t;

t ¼ T0; . . . ; n1

[46] With �3 ¼ �1 � ��2

�2
3 ¼ E �3 � E �3ð Þð Þ2 ¼ E �1 � � �2ð Þ2 ¼ � 2

1 þ � 2 � � 2
2

and
� ¼ �12

�1 �2

A2. Model Parameter Estimation

[47] The transformed equation can be expressed using
the matrix form:

Y � ¼ X �Aþ �

where X� is either a T � 3 matrix (�, �, !) or a T �11 ma-
trix when considering a seasonal signal S(t). A is a vector
containing the parameters to be estimated and " is the resid-
ual white noise. Hence, the GLS estimator resorts to OLS
estimator of A:

Â ¼ X �0	�1X
� ��1

X �0	�1Y �

with 	 being the covariance matrix of the residuals " (the
variance of the residuals is time series dependent). The pa-
rameter 	 is diagonal with values equal to �̂1

2, �̂2
2, �̂3

2

(depending how you order the data). X�0 stands for the
transpose of X�. In practice, the equation must be solved
using an iterative process. First, the values of �̂1, �̂2, �̂1,
�̂2, �̂3, and � must be evaluated from the data. Then Â is
estimated. The values of �̂1, �̂2, �̂1, �̂2, �̂3, and �̂ are then
revaluated. The iterative procedure is iterated until conver-
gence. The estimated covariance matrix of Â is obtained
using

COV Â
� �
¼ X �0	�1X
� ��1

Appendix B

[48] This appendix details the computation of the
uncertainty on the model parameter estimate Â. If the
uncertainty �0 of the level shift is estimated from external
sources (independent cross calibration of sensors, theoreti-
cal model, etc.), the covariance matrix of the estimate Â is
given by

COV Â
� �
¼ X �0	�1X �0 þ �2	2

� ��1
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with

	2 ¼
0 0 0
0 0 0

0 0
1

�0

2
64

3
75

where �2 is the weighted average of the noise variance of
the two time series:

�2 ¼

XT1

t¼1
t � tmedianð Þ2�2

1 þ
XT

t¼T0
t � tmedianð Þ2�2

2XT1

t¼1
t � tmedianð Þ2 þ

XT

t¼T0
t � tmedianð Þ2

with tmedian ¼ median t1; t2ð Þ and �2
1 and �2

2 being the white
noise variances of the two time series.
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