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ABSTRACT

This thesis develops and tests a two-dimensional discrete dynamic model for the
simulation of granular flows in silos and hoppers. The granular material
considered is assumed to be an assembly of viscoelastic discs and the motion of
such a particle system is shown to be governed by a set of nonlinear first order
ordinary differential equations. This system of equations is then solved
numerically using the centered finite difference scheme. Based on the model
presented, a computer program has been developed and used to analyse the flow
behaviour of granular materials during filling and emptying of a silo. The results
show that the discrete dynamic model developed is capable of modelling granular

flows in silos, particularly predicting wall pressures and analysing flow blockage.
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Chapter 1

INTRODUCTION

1.1 Background

Storage and flow of granular materials in silos are very important in many
engineering applications. Problems which commonly occur in silo operation mainly
include flow blockage, segregation, dead zones and silo collapse. These problems
occur principally because our current understanding of granular flow is still not

adequate.

Over the last few decades, a great deal of research has been carried out to
investigate the properties of granular materials and their flows through silos. Early
research has been mainly focused on experimental investigation and deriving
approximate analytical methods for engineering design. A range of approximate
methods have thus been developed, such as Janssen’s differential slice force
equilibrium method for wall pressures and Beverloo’s equation for mass discharge
rate. However, approximate methods in general cannot model the flow behaviour of

granular materials. Hence in the last two decades, many researchers focused on



simulation of granular flows and as a result a number of mathematical models have
been proposed. These models can be classified into two categories: the continuum
models and the discrete element models. In continuum models, granular materials
are assumed as continua either elastic-plastic solids or non-Newtonian fluids
depending on the flow rate of the materials. Due to the complexity of granular flow,
the flow theory of granular materials is still controversial and thus further work is

still needed to investigate the flow behaviour of such a material.

1.2 Objectives and Scope

The main objective of this project is to develop a discrete dynamic model for
simulating granular flows and to investigate the flow behaviour of materials in silos

using the developed model. The project includes the following aspects of work:

o Develop a computer based numerical method for simulating the flow behaviour

of particulate materials in silos.
e Investigate the flow patterns and velocity fields for different silo configurations.

e Investigate the effects of wall friction, material internal friction and silo

geometry on wall pressure distributions.

1.3 OQutline of the Thesis

This thesis consists of five chapters and is organised as follows:



Chapter one briefly introduces the background of research and defines the

objectives and scope of the current work.

Chapter two presents a review of work on the modelling of granular flows and
particularly flows through silos. More specifically, this chapter describes the general
features of granular materials and the flow behaviour of materials in silos. Various

methods for the study of flow behaviour are also described.

Chapter three describes the numerical algorithm developed in the present study for
simulating granular flows through silos. Various aspects of the model are described
in this chapter, including contact detection, contact force model, simulation of
particle motion and calculation of wall pressures. The complete set of governing

equations and the design of a simulation program are also presented in this chapter.

Chapter four investigates the flow behaviour and the wall pressure distributions
during filling and discharging of a silo for different silo configurations and system

parameters.

Chapter five provides a summary and conclusion of the study.



Chapter 2

PREVIOUS STUDIES ON GRANULAR FLOWS
THRQOUGH SILOS

2.1 Granular Material and its Properties

A granular material is defined as an assembly of particles regardless of their
shapes and size. Grains, sugar, cement and mineral products are all examples of
granular material. This kind of material is very varied in their characteristics and
to a certain extent their behaviour under flow conditions. Granular materials are
neither solids nor liquids but share some aspects of both. Under certain
conditions, granular materials flow like liquids and exhibit interfacial instability
but, under other conditions they endure stress and support themselves with a finite
angle of repose and behave like solids. The behaviour depends on the local stress
condition, namely the yield condition. If the stress state is such that the yield
condition is not satisfied, the material will essentially behave like a solid. On the
other hand, if the yield condition is satisfied, the material will start to flow. At
different stress states the material will behave according to different constitutive

laws.



2.1.1 Yield functions

Granular materials fail due to frictional slip between particles. At yielding, the
shear component of stress 7 varies according to the value of the normal
component of the stress o. The locus of the value (o,7) at which permanent
deformation or yielding occurs is called the yield locus and can be described by a
function, namely yield function. In the space of principal stresses (01,02,03), @
yield function is a surface. Various yield functions have been proposed to describe
the yielding characteristics of granular materials. The most widely used yield
function is the so called Mohr-Coulomb yield criterion which has the form of

T=c+ofang, (2.1)

where T and o are respectively the shear stress and normal stress, ¢ represents the
cohesion and ¢ is the angle of internal friction of the material. In the 3-D principal
stress space, the Mohr-Coulomb yield function is an irregular hexagon as shown

in figure 2.1.

Many other nonlinear models have also been developed in an attempt to describe
the yield characteristics more accurately such as the Drucker-Prager (1952) and
the Matsuoka-Nakai (1985) yield criteria. One of the most promising yield
functions is the so called Warren-Spring yield function, developed by Hill and Wu

(1993). This function takes the form of:

(ET -1-Z (2.2)

c t
In terms of principal stresses, equation (2.2) becomes

F(o,,0,)=x"%"+(A/n)x-B , 2.3)



where A = ¢ /¢ and x is defined by

_B-[B _ 41/ n) (-1 A"

, 2.4
2(/n)’(n-1) @49
in which 4 and B are given in terms of oy and oy by
o, —oy,) o,+0
A:(—f—”] L B=1-2%m (2.5)
241 2t

In the principal stress space, the Warren-Spring yield function is as shown in
figure 2.2. It is obvious that the yield function (2.2) reduces to the Mohr-

Coulomb yield function if n=1.

2.1.2 Macro-behaviour and micro-mechanics characteristics

At different stress states, the macro-behaviour of a granular material is very
different. If the stress level is below the yielding limit, the material behaves like an
elastic body. While, when the stress level exceeds the yielding limit, it behaves
usually like a viscoplastic fluid. Figure 2.3 shows the typical relationship between

stress and deformation.

To describe the macro-mechanic property of granular material mathematically, we
first need to establish a yield function distinguishing the elastic region from the
viscoplastic region and then develop proper equations, namely the constitutive
equations, to describe the stress-deformation relations for each of the regions.
Over the last few decades, a great deal of work has been carried out to develop

proper constitutive equations, such as the hyper-elastic model for the elastic



region, the plastic flow rule theory and the double shearing theory for the

viscoplastic region.

There are numerous types of granular materials, They are often formed by
processes of crushing or mining operations. The macro-mechanics property of
such a material depends on the micro-mechanics properties including particle size,
size distribution, particle shape, particle surface structure and particle deformation
characteristics. So various attempts have been made to study the influence of
micro-mechanics characteristics on macro-behaviour, Research in this area can be
classified into two types, experimental investigation and micro-mechanics based
investigation. Due to the complexity, most micro-mechanics characteristics such
as particle shape still cannot be included in macro-mechanics models. However, in
principle, the discrete dynamic model can be used to consider the influence of

micro-mechanics property on macro-behaviour.

When subjected to external loads, a granular material will undergo deformation.
Once the particle-particle and particle-boundary bonds are overcome, flow
occurs. Tlus, the material first shears like a solid, then it behaves as a liquid or a
plastic material. The initial failure of the material may result in particle ‘blocks’
(i.e, a number of particles) moving relative to others. If the flow is rapid enough,
this may lead to a complete breakdown of ‘bonds’ and result in each particle
moving freely and independently of its neighbours. In rapid flows, the main
transport mechanism is particle collisional interactions, whereas in slow flows the

main mechanism is close contact between particles.
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Stress

Deformation

Figure 2.3 : Stress vs Deformation

2.2 Flow Modes and Wall Pressures in Silo Operation

As shown in figure 2.4, there are two types of flows identified in silos, namely,
mass flow and funnel flow. In mass flow, the movement of the granular material in
silos is fairly uniform whereas in funnel flow, there is a central flowing region
surrounded by a relatively stable region. The mode of flow in a silo depends on
various factors such as silo geometry, material characteristics and boundary

contact conditions.

Depending on the abrasive nature of the silo contents it may be desirable to have a
wall protecting funnel flow. However, in some other cases, for example, if a silo is
used for storing foods, then it is desirable to have mass flow. Therefore, it is
extremely important to be able to simulate the material flow pattern for different

operation conditions and system parameters.
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Figure 2.4. Flow Modes in Silos (a) mass flow (b) funnel flow

2.3 Pressure Distributions on Silo Walis

Prediction of wall pressure distributions is essential for the design of silos and
hoppers. Over the last few decades, extensive research has been carried out to
study the distribution of pressures on silo walls during filling and emptying of a

silo.

Early research is mainly experimental. However in the last two decades, many
numerical investigations based on the continbum mechanics approach have been
conducted. Figure 2.5 shows the general features of pressure distribution on silo
walls obtained by using the continuum mechanics approach (Schmidt and Wu,
1989). It can be noted that there are three different stages of pressure response to
the material discharge. In the first stage, the pressure near the outlet increases

more quickly than that in the transition area. In the second stage, pressure in the

11
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Figure 2.5 : General features of pressure distributions on silo walls

transition area is nearly constant, But, the position of the peak pressure on the
hopper wall moves slowly from the outlet to the transition point, and the pressure
near the outlet decreases. During the third stage, there is a strong increase of wall

pressure at the transition and a decrease near the outlet.

2.4 Methods for the Study of Granular Flows

The flow problems of granular materials have been modelled with a number of
methods. Early research is mainly focused on deriving empirical formulas for
engineering design and is based on the so called approximate analytical method.

With the development of computer technology and numerical methods, more and

12



more attempts have been made to study granular flows using the continuum

mechanics method and the discrete element method.

2.4.1 Approximate Analytical Methods

Various researchers have developed approximate analytical formulas for the
determination of pressures on silo walls, including those by Janssen (1895},

Walker (1966), Walker and Blanchard {1967), Jenike (1964, 1969) and others.

In 1895, Janssen derived a formula for the predictions of silo pressures based on

three major assumptions
(1) the distribution of vertical stress across any cross-section is uniform;

(2) the ratio of horizontal stress to vertical stress is constant throughout a
silo;
(3) material is homogeneous and isotropic and can be treated as a

continuum.

Walker (1966) and Walker and Blanchard (1967) assumed a flow pattern in which
all solids in a bin is in motion whenever discharge conditions exist and then
derived a formula for silo flow pressures. His work agrees reasonably well with
experimental observations. Jenike and Johanson (1969) have developed predictive
methods for both static and dynamic pressures on silo walls. Jenike’s formula
predicts that the flow pressure on the wall of a bin-hopper combination consists of

a pressure maximum at the transition of the vertical bin wall and the hopper wall

13



followed by a linear decrease to an intermediate value and another linear decrease
to zero at the apex. Jenike's formula was developed based on the assumption that
the overpressure at the transition is distributed over 0.3 D (diameter of the silo) of

the hopper wall from the transition point.

2.4.2 Continuum Mechanics Methods

In continuum mechanics models, a granular material is identified as a continuum
and the particulate nature of the flowing bulk is ignored completely. The material
micro-mechanics characteristics are taken into account indirectly via the
parameters used in the constitutive equations for the model. At present, there are

two important types of constitutive models for granufar flows, namely
(a) collisional models based on the kinetic theory of dense gases,
(b) frictional models based on plasticity theory.

The collisional model is developed for rapid flows and have been explored largely
since late 1970s. Constitutive equations based on this kind of model are capable
of predicting the features of certain simple flows such as plane shear flows.
However the results are generally only valid for simple rapid flows. The frictional
model is mainly for slow granular flow and is based on the plasticity theory.
However, it has been generally realised that under certain conditions the frictional
continuum approach may not be able to yield accurate predictions on granular
flows in silos. This is due to the assumption of uniform failure properties and the

use of quasi-static flow rules in calculations.

14



2.4.3 Discrete Elemental Methods

The discrete element method grew out of work on molecular dynamics with one
of the first applications to a macroscopic system being carried out by Cundall and
Strack {1979). The discrete element method aims to follow the motion of every
particle in the system and by applying force displacement laws, determines the
new particle positions at a time, &, later. This has become more practical with the
creation of high speed and parallel computer systems. Potentially the concept of
following individual particles within a system could more extensively describe the
overall motion and characteristics of the granular assembly. However there is a

price to pay in terms of the computational power required.

The discrete element method tracks the motion and interactions of every single
particle in its system. Contacts with neighbouring particles is determined at each
time step and by using force-displacement laws the resultant velocity of the
particle is calculated. The particle motions are determined over a very small time
interval. The determination of an appropriate time interval is important since if the
interval is not sufficiently small, the system will not tend towards equilibrium.
Because of the use of discrete particles within the system, the discrete element
method is useful in describing flow behaviour under a broad range of conditions.

The following are some typical areas of application (Rong, 1994),
® behaviour of soils, rocks and granular materials

e impact and explosive dynamics

15



e carthquake and geotechnical engineering

e pranular flow and river ice transport

The discrete element method has the advantage over experimental methods in that
the data is collected un-obtrusively and there is no need for the design of complex
testing equipment. In addition, the method is able to obtain data from all areas of
the flow and at any instant of time. The collected information may be averaged or
otherwise used as a time series to describe the overall system characteristics.
Another advantage is that the discrete element method does not require a
constitutive equation for the whole computational domain, unlike other numerical

techniques.

A disadvantage of the discrete element method is that it requires significant
computational power even for a very small assembly. Thousands of calculations
are required every time step in order to determine the contacts and motion of each
particle within the flow region, and there will be thousands of time steps required
to simulate even a few seconds of actual flow. The method is therefore more
suited in modelling dynamic behaviour rather than static or long term
characteristics. By the nature of repetitive calculations on each particle, this
method seems to be well suited for analysis by parallel computer systems. So far,
most models do ﬁot consider variation of individual particle shapes, although in
many types of flows such as slippage of snow and ice flows particle shape may

restrict or encourage particulate flow characteristics. Hogue and Newland (1994)

16



have investigated a range of particles shapes, such as spherical, cylindrical and

regular polygonal but were not able to combine these shapes in the simulation.

Discrete element models can be classified into two categories, namely, the soft

particle models and the hard particle models.

2.4.3.1 Soft Particle Models

In soft particle models, particles are assumed to experience collisions of finite
duration with elastic deformation. The deformation is represented as an overlap of
the particulate edges. At each time step, forces acting on each particle by particle-
particle contact, particle-wall impact and gravitation are numerically integrated to
obtain the velocity of each particle. The particle motion is governed by Newton’s
equation of motion and a force-displacement law. The key problem in the soft
particle approach is the modelling of particle-particle interaction and the particle-
wall interaction. Several contact force models have been proposed including the

elastic model and the Hertzian model.

Cundall and Strack (1979) modelled a granular material as an assembly of
particles, connected by springs and dashpots. The spring and dashpots are used to
create the desired force versus displacement characteristics. The internal forces
developed between particle pairs or between particle and wall in contact are

calculated based on the force-displacement law.

17



The normal spring stiffness is approximated with the maximum normal contact
force F, expected, and the maximum allowable overlap between particles 6,

expressed as

F,
K,="% . 2.6
5 (2.6)

Corkum and Ting (1986) suggested that the maximum overlap should be between
2 % and 5 % of the disk radius. Johnson (1985) recommended that the value of
tangential stiffness lies between 2/3K,, and K, depending on the Poisson’s ratio.
The relationship above provides a simple approximation of the contact stiffness.

Various other forms of formulas have been developed for the calculation of spring

stifthess.

Babic {1990) calculated the normal and tangential contact stiffness X, and X, from
particle stiffness &, and £, using the analogy with springs connected in series. The
contact stiffnesses for identical particles are K, = Y2k, and K, = 2k, It should be
noted that the linear contact law is not inherent in the model. A non-linear law
such as the Hertzian contact law could be employed equally well. However, the
linear contact law has been widely used in discrete element method, since it is
simple and can be easyly incorporated in computer code and allows for rapid
computation. Tsuji, Tanaka and Ishida (1992) proposed an estimation of stiffness
using Hertzian’s contact theory when the physical properties such as Young’'s
modulus and Poisson ratio of the particle are known. The normal and tangential

stiffness between two spheres are

18
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where £, and o, are the Young’s moduius and Poisson ratio of the particles
respectively, 7 is the particle radius, G, is the shear modulus and &, denotes

normal displacement. The normal and tangential stiffness between a sphere and a

wall are given by

4fr 1
3 87G,5,
K, = 3 =~ . K, = . (2.8)
-0 1-0o 2-0,
E.T EW

where £, and o, are respectively the Young modulus and the Poisson ratio of the

wall,

Various methods have been proposed to calculate the normal force acting on a

particle. The following lists some commonly used models.

(1) Hooke’s spring interaction law
F, = k(o-r) , 29)
where k& is the bulk stiffness, 7 is the particle diameter and  is the

center distance between two particles.

(2) Partially latching spring model (Walton and Braun, 1986).
In this model, different stiffhesses are used for the loading and

unloading portion of an impact, namely,

19



K5 for loading
F, = (2.10)
K,(6 -6,) forunloading ,

where & is the relative overlap after initial contact and &, is the value of

& when the unloading curve goes to zero.

(3) The Hertzian interaction force model (Langston, Tuzun and Heyes,

1995),

F, :%E\/R(a—r)% : (2.11)

where E is the elastic modulus, R is the contact radius of curvature, o
is the particle diameter, and r is the centre distance between two

particles.

(4) The Continuous normal interaction model (Langston, Tuzun and

Heyes, 1995)

F, = Z@ (2.12)

omg
s

where n is an arbitrary index, and ¢ =

The tangential force is modelled using Amonton’s law proposed by Mindlin and

Deresiewicz (1953} as

o)

F, :Mn[i—{l— 5

s

}%] , (2.13)

max
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where Smax = Copdfn , & 18 the total tangential displacement, and C; is the average

tangential compliance given by é}‘é’«j&

5

2.4.3.2 Hard Particle Models

In these kind of models (Campbell and Gong, 1986, Hopkins and Shen, 1986;
Hopkins and Louge, 1991), collisions are assumed to be instantaneous and there
is no interpenetration of particles. Particle paths following contact are calculated
based on their initial path and the resultant collision dynamics. Energy can be lost
through a coefficient of restitution. Rapid flows of granular materials can result in
high deformation rates. This causes particle-particle and particle-wall collisions
and generate random motion. This random motion generates the so called
granular temperature and is the measure of the fluctuation energy in the material
(Ahn, Brennen and Sabersky, 1992). The hard particle models are particularly

suited to systems with high granular temperature and low density.

(21* «
‘. ." c *
. t \ 2
i / an
(d] ‘Cz

Figure 2.6 Hard Particle Interaction
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When two particles collide as shown in figure 2.6, the principle of linear
momentum must be satisfied and thus

me* +maey* = me, + mac; , (2.14)
where ¢ and ¢ denote respectively quantities before and after impact.

Conservation of angular momentum about the contact point yields

mrixc* +hao*=mrx¢ +hLho , (2.15)
mra x &* + Lan* =mryx o + ha, . (2.16)
To describe inelastic collisions, a coefficient of restitution & is usuaily introduced,
with an equation that expresses the incomplete restitution of translational
velocities in the normal direction
(e1* -ex*)n=-gc; -c2}n . (2.17)
The collisional impulse, P, , on the 7th particle is given by
P; = mi{c;* - ) . (2.18)
The sliding friction between particles is described by
Pi=pPn (the SLIP case) (2.19)
where P = Py = my(¢;* - ¢)=m(c2 - ¢2*) = -P2, The NOSLIP case is given by
Cie =€ T 1 X @ - €212 X &y (2.20)
where ¢, is the relative velocity between the particles at the contact point.
To determine if the situation is SLIP or NOSLIP, one uses
P, [NOSLIP] > P, [SLIP] => P,=P,[SLIP]

P, [NOSLIP] <P, [SLIP] => P,=P,[NOSLIP]

22



2.5 Time Step

As mentioned earlier, the time step chosen in the discrete element method is
important to optimise the simulation. If the steps are too large the material flow
characteristics may not be accurately modelled. For example, particles may,
between time steps, appear to travel through the walls of the silos or possibly
bypass a particle-particle interaction. On the other hand, if the time step chosen is
too small the simulation can become very slow, requiring greater computational

power. Cundall and Strack (1979) proposed the following method to calculate the

critical time step, £

T (2.21)

where My is the lightest mass of a particle in the system, K.« is the largest spring

stiffness (normal or tangential).

Babic (1990) suggested another formula for the calculation of the time step,

namely

t = il , (2.22)

’ Kn[ In¢ J
1- 2
m I+In" ¢

where K, is the normal stiffness, m is the particle mass and ) is the coefficient of

restitution.
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2.6 Summary
By examining the macro-characteristics of granular materials, the behaviour of
granular flows in silos and the method of study, the following conclusions can be

made

(1) Granular materials are neither solids nor liquids but share some aspects
of both. A granular material can behave like a solid in some cases

while like a liquid in other cases depending on the stress state.

(2) The modelling of granular flows in silos is important. However the
flow behaviour of granular materials in silos is very complicated and

requires further investigation using new techniques.

(3) Various methods can be used to study the flow of granular materials.
However, approximate analytical methods cannot simulate the flow
behaviour. Continuum mechanics methods require a set of global
constitutive equations which are difficult to establish and not capable
of directly modelling the influence of the material micro-mechanics
characteristics on flow behaviour. While the discrete dynamic model
can model the influence of material micro-characteristics on macro-

behaviour, at least in principle.

24



(4) For slow flows of granular materials with high bulk density, the
appropriate discrete dynamic model is the so called soft particle

model.

Therefore the purpose of this study is to develop and test a soft particle discrete

dynamic model for simulating granular flows in silos.

25



Chapter 3

DEVELOPMENT OF A DISCRETE ELEMENT MODEL

3.1 General

The main features of the discrete element model were developed by Cundall and
Strack (1979). In the discrete element model a granular material is considered to
be made up of many discrete particles that interact as they flow from a silo. The
equations governing the motion of each individual particle are the principles of
linear momentum and angular momentum. At a particular instance of time, the
total forces acting on each particle are determined by considering the particle-
particle and the particle-wall interactions. By integrating the differential equation
for the motion of the particle, the new particle velocities and positions are

obtained and the calculation process continued at the next time step.

In this chapter, we develop a discrete element model for simulating granular flows
in silos. The model keeps track of the location and contacts of each particle and
recalculates this information at each new time step. We will describe how to

detect contacts, how to calculate contact forces and simulate particle motion. In
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addition, methods for the calculation of wall pressures and stresses will be
developed. The design of a computer program and its validation will also be given

in this chapter.

3.2 Contact Detection

In the discrete element method, it is necessary to determine interaction of each
individual particle with other particles and the system boundary such as silo walls,
so that interaction forces acting on a particle by other particles can be determined.
For the success of a discrete dynamic model, it is essential to develop an efficient
algorithm for the detection of particle-particle and particle-wall contacts. In this
section, we present a contact searching algorithm and its implementation in

computers.

3.2.1 Particle-particle contact

The search for contacts of a particle i with other particles is performed by
detecting the distance between the centre of particle / and its neighbouring

particies. Thus, particles 7 and j are in contact if

s=JG -+, -y SRR, 3.1
where R; and R; are the radii of particles i and j, and (x;, »;) and (x;, y;) are the

coordinates of their centres (see figure 3.1).
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Figure 3.1 Particle-particle contact

The process of searching for contacts between particles is the most time
consuming part of the simulation. The search strategy used in the present study is
of the detector type, that is, a contact is registered whenever an overlap between

two particles is detected.

The simplest and conventional method is to check for an overlap between all pairs
of particles. This process requires Ny(N,-1)/2 tests where N, is the total number of
particles in the system under consideration. For systems with a large number of
particles, this method is obviously unacceptable since it is too time consuming.
Therefore an efficient searching method is desired based on the idea of
neighbourhood search, such as the linked listed method proposed by Allen and
Tildesley (1988) for molecular dynamics and the grid algorithm by Hopkins
(1987). The contact detection algorithm developed in the present study is based

on the grid algorithm which is described as follows.

28



H P
I 1.414R
N T e e o SR
L/
Fd
| ~ 4
T AN N h_|/
LA N
) ./
g ""--...____
N \M"‘“‘Search area
/‘\.J
L/

Figure 3.2 Contact search area

Ix, Iy

Figure 3.3 Grid Reference

To define a neighbourhood about a particle, a rectangular grid is superimposed
onto a space occupied by particles. The size of the grid cell, G/ x G, is chosen
such that only one particle centre may occupy a cell at any given time and for this

purpose, we require GI < 1.414 R where R is the radius of the particle. Suppose
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that GI is equal to the radius of the particle, then the area that needs to be
searched for contacts of a given particle consists of 52 . 1 = 24 cells surrounding

the cell occupied by the particle as shown in figure 3.2.

The grid is superimposed onto the computation region of dimensions (Xlength,
Ylength) with the origin of the grid coordinate system started at the left bottom
corner. The location of each cell is identified by two cell indexes /x and Iy as

shown in figure 3.3. The range of /x and Iy are respectively
Ix: 1 to Ixmax, where Ixmax = int(Xlength/GI) + 1 ,

Iy 1 to Iymax , where [ymax=int(Ylength/Gl) + 1

The particle i, located at (X(i), ¥(i)) can thus be identified by the cell index
coordinate (7x, [y/) where Ix=int(X(i)/Gl) + 1, Iy=int(Y(i)/GI} + 1. This information
is then stored into a 2D array by letting PDist (Ix, [y) = i. Looping through all
particles, we will generate the 2D array PDist(/x, Iy) (/x: 1 to Jxmax, Iy: 1 to
Iymax) containing the information of distribution of all particles. For example
PDist(/x, [y)= I means that the cefl with grid coordinates (/x, /y) contains particle
I, while PDist(fx, Iy) = 0 means that the cell (Ix, /y) does not contain any
particles. With PDist, it is a simple matter to search for contact between particles.
For example, consider particle p with grid coordinate /x, Iy. The particles which
may be in contact with p are only those contained in the neighbourhood of (/x,
Iy), that is those in the cells {(, )} i=Ix-2 to Ix+2, j=Iy-2, Iy+2. The following

algorithm can thus be used to detect the particles in contact with p
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(1) Find the grid location of p,

x=int(XGYGD + 1, (3.2)
Iy=mt(F@IGD + 1, (3.3)

(2) Search over the neighbourhood of (Zx, 1))
do for i=Ix-2 to [x+2
do for j=Iy-2 to y+2

(3) Identify the particles contained in (7,/)

pi=PDist(i,f)
(4) Test contact condition

calculate distance s between particle p and p; and then
compare s with (Rp + Rp;;)

(5) If p; is in contact with p (s<Rp + Rpy), add it to the contact list of p,

namely let

numct(p): = numct(p) + 1

listct(p, numet(p)) = pjj
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3.2.2 Particle-wall contact

The contact between particle 7 and a straight wall w is shown in figure 3.4. The
wall w is defined by its coordinates at the end points. The length of the wall, /v,

and the angle &, with respect to the x-axis are respectively

L= ((e1)* + o)D) , (3.4)
g, =tan’ f—:ii . (3.5)
2 1

Let the distance between the particle centre and one of the wall end points in
directions parallel and perpendicular to the wall be respectively S and S.. Then

from figure 3.4, S; and S, can be determined by
St = (x,-x1) cos Gy + (Vp-)1) sinb , (3.6}
S. = ~(xp-x1) sin Gy + (yp31) CO8 & 3.7
The particle is in contact with the wall if

0<8:<ly, and O0<S<R

3.3 Contact Force Model

Considering the particle to particle interaction, the interaction force acting on
particle 7 by particle j can be decomposed into a normal and a shear component,
namely

F,=F,n+fs , (3.8)

ij ijx
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Figure 3.4 Particle-wall contact

where Fy, is the normal force and Fy; is the shearing force acting on the particle,

n and s are unit vectors in the normal and shear directions of the contact plane as

shown in figure 3.5.

Various models have been proposed for the calculation of #;,(f) and Fy(#), such
as those by Zheng and Hill (1996) and Langston et al (1995). In the present study,
the particle-particle interaction is modelled as a dynamic process and a
viscoelastic model as shown in figure 3.6 is used to describe this process. The
interaction forces developed between the particle pair in contact are calculated

based on their relative movement. The interaction force in normal direction n
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consists of an elastic contribution and a viscous damping contribution. The elastic

contribution can be determined by using Hertz’s contact formula

G
m(£) =~ PR C) (3.9)
, ((1 —v)21n(y / f;.(0)) - 1]}

where G and v are the shear modulus and Poisson’s ratio of the material. To
simplify the computation we can approximate the elastic force components by

Hooke’s law with an appropriately chosen stiffness, K, The viscous component is

assumed to be proportional to the relative normal velocity of the particle pair in
contact, 1.e
fal®) ==2,m8,,(1) , (3.10)

where 4, is the contact damping coefficient.

The force in the shear direction s is modelled as viscoelastic below the friction
limit and frictional at the frictional limit given by Mohr-Coulomb law,

Jio s = €+ Ml : (3.11)
where ¢ and u are cohesive strength and friction coefficient of the material. Thus

the shear force can be determined by

L et} -Amé, (1) L (3.12)

6,,(1)

1,0 = —sign5,, (0] min{K,
Similar formulae can be derived for the calculation of particle-wall interaction

forces.
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3.4 Calculation of Contact Forces
3.4.1 Particle-particle contact

Consider the contact of two discs, 7 and j, as shown in figure 3.5. For

convenience of analysis, we introduce the following notation

r, r; = position vectors of the centres of discs / and j,

r; =0y v =65
vi, vj = velocity vector of the centres of particles 7 and /,
0., , = angular velocities of particles 7 and j, taken positive in counter
clockwise direction.
n = unit vector pointing from the centre of 7 to the centre of j, that is
n = ((ry-r)/(jry-ri) = (cos a, sin @)

unit vector obtained by a counterclockwise rotation of n through

w
Il

90° i.e

§ = (-sin a, cos oy

The relative velocity at the contact point is defined as the relative velocity of point

i with respect to /, 1.e

=k —F,)+ RO, +8))s (3.13)

Vi
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Figure 3.6 The viscoelastic contact model
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The relative velocities in the normal and tangential directions are the projections

of v,, on the normal direction and tangential direction respectively and are given
by

V, = Vi m = (1 —u;ycosa + (v, ~v;)sing , (3.14)

v, =v,y-8 =~ —u,)sina +(v, - v,)cosa + R(6, +6,) . (3.15)

These relative displacement rates are then input into the contact force model to
calculate the increment of contact forces. Thus, the total contact force in the

normal and tangential directions are respectively
F,=F" +4F, (3.16)

F = L AF, . (3.17)

The force in the tangential direction is subject to the yielding condition as

described by (3.12).

The x and y components of the contact forces and the moment acting on particle 7

are then calculated as

FIN cos@ sing N
FY |=|sinae cosa [FWN] (3.18)
M 0 -R *
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3.4.2 Particle-wall contact

Consider the particle-wall contact as shown in figure 3.4. Let

¢}

position vector of the centre of disk 7, namely

ri = (xi, i)

velocity vector of the centre of disk i, namely

i = (i, v)

angular velocity of 7 taking positive in counter clockwise
direction

unit vector pointing from the centre of disk / to the point of
contact with the wall, namely

n = (sin&,, -cos G)

unit vector obtained by a counterclockwise rotation of k

through 90°, namely

s = (cos By, sin &)

Then, the relative velocity v,,, of the point of contact is defined as the relative

velocity of particle 7 with respect to the wall, namely

% =i —F, +ROs+50,n : (3.19)

The relative velocities in the normal and tangential direction are respectively the

projection of v i

S, =v

on the normal and tangential direction respectively, namely

n=(u —u,)sing, —(v,—v,)cost, +3,0, ,
W

8, =V, 5= —u)cosd, +(v, -v,)sinb, + RO, : (3.20)
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These relative velocities are then used in the contact force model to calculate the
increment of contact forces and consequently F,Y and F". Therefore the x and y

components of the contact force and the moment acting on particle / are

F, —sinf, —cos®, |-
E
F |=| cos, —sin@ " : (3.21)
¥ w w FN
M, 0 -R :
The force and moment on the wall are thus given by
(Fx)w = _FxN 3
(3.22)
(£), =5

3.5 Particle Motion

The equations governing the motion of each individual particle, 7, is the principle

of linear momentum and the principle of angular momentum, namely
mi () + Ami, (1) = B(5),  18,(0+ A6, ()= M,(1), (i=1N)
(3.23)

where M and 7 are the mass and moment of inertia of the particle, A is a damping
coefficient, Fi(f) and M(7) are the total force and moment acting on particle /, ri(?)
is the position vector of the center of disc / and 8 ,(1) denotes the rotating speed

of disc /, the superimposed dot indicates differentiation with respect to time .

Let v, =%, @=8,, wehave
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F,=v, .
b -w,
S v, () +Av, () = F, (1) , i=12,.N,
m,;
b,()+ 20,(0) = 2

(3.24)
which constitute a system of 4N first order ordinary differential equations, namely

20 _ v,

dt (3.25)

d‘;(:) +Av(t) = P[X(t),v(t)] ;

where
2t) = [1,(0,6,(t),...1, (.0, )],

P{x,v) = [:Fl(xav)’ M, (x,v) ,“.,FN(X,V), MN(X,V):|T '

m, I my I,

(3.26)

From equation (3.25), , on using the centered difference formula at time " and

approximating v" by > (v*"+ v""™), we have

v = vt + BP0 (3.27)

where the superscript n-*s refers to a quantity evaluated at the instant of time t.-

1sAt and

a=(1—i‘§5][1+i§’—]_1, ﬂ:Ar[H—-”“s—’-)_l . (3.28)
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A further application of the centered difference formula to (3.25); at time to+sAt

yields

=g+ VAL . (3.29)

3.6 Calculation of Wall Pressures

We choose an element of length / on the boundary (wall) then analyse the force

exerted by the granular material on the wall. Assuming that within / there are m

contact points ¢y, 2 ... Cn, and the contact force at ¢, is F, = (F, £y, then we

define the average contact force on / by

1 m
==Y F¢ . 3.30
p ’Z‘ ; (3.30)

The normal and tangential components are respectively

P, :%zm:(an,-) ,

i=1

P = %Z(Ft) : (3.31)

i=]

where (n; , ;) represents a unit vector along the direction of F® as shown in figure

Fe Fe FF
L N
I’ e

Figure 3.7 : Contact forces acting on the wall

3.7
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3.7 Calculation of Stresses in Granular Materials

3.7.1 Static case

Consider a volume V of granular material with boundary S. Let o; be the stress
tensor, n be the outward unit normal of S, F be boundary tractions. Then under

the static equilibrium condition, if body forces can be neglected, we have
Gg‘,;' =0 inlt , (332)1
o = F; on § , (3.32),

where we have used the index notation with repeated index representing

summation.

The average stress tensor in J' is defined as

i
o, = ;lofjdlf _ (3.33)

The integral becomes a summation for a particulate material because stresses exist

only within particles. Thus, assuming that there are N particles in V, we have
1 N
o=yl 639
=l

where J* is the volume of the p™ particle. In the same way the average stress

tension within particle p is defined as

1
O'{.rp. =F O'rjdV

P
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As
O; =0y ,:k =(oyx; )"

we have

c? =V_1“’ J.(O'ikxj),de (3.35)

4
VP
where in deriving above formulas, we have used equation (3.33).

Now from the divergence theorem, we have

o} = le (Jﬂcxj)rtkds , (3.36)

P

where n = (2, ,n,) is the unit normal direction of ;. Thus we have

of = “VIT J.(F;xj)ds , (3.37)

Sy

which becomes a sum by noting that the surface is discrete. Therefore
1N oo
ol = szi F; , (3.38)
=1

where m is the number of contact points on §, and x{is the coordinate of the

contact point ¢. Hence, the average stress in ¥, namely oy, can be determined by

substituting (3.38) into (3.34), i.e.

1 N m .
U:?ZinF} .

P=1 c=1

3.7.2 Dynamic case

For the dynamic case, the equation of motion is

b,
p_;,t_ SO0 T P8 (3'39).

which gives rise to
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dv.
O :pd_tl_pgi . (3.40)

Following the procedure used in the derivation of the average stress for the static

case, we have for the dynamic case,

of = 1 Io’.dV
|} Vp b
e

1 av,
- W‘ I(Uka;):de _'pj[g;'_gi)xjdV
V.P

r

,
ty

1 dav.
= -V—pl“. O, X dS — pj(gt’— - g,] xdV
VP

| N :
= F;{Z};ijj —pVij[Tt‘— gi]}. (3.41)
1 M M . N aviP
o, = ?{ZZF; X;—p Vﬁxj[?t— - g,]} : (3.42)

For circular particles, we have

< __ B )
x =x/ +Rn;
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Figure 3.8. Diagram showing the relation between x/and x; .

where x? is the coordinates of the centre of particle p, R is the radius of particle
i P P

p, x°is the coordinates of the contact point ¢ and n® =(#{,n;) denotes a unit

vector from p to ¢ as shown in figure 3.8. Thus, we have

i)
—_
-]
I
—

p=lc¢

{ii(x + R} )F - piw’x;{ivf - gJH . (343)

Noting that
M EvF M évF
Z(x-”i-“)—PV"xf[ 5, &) =X D E-pv? 57 &)=
=1 e=1
(3.44)
we have
ZR”ZnCF“ . (3.45)
=1
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The stress tensor may be split into two parts, o, () due to normal forces and
o,;(s) due to shear forces. Let Fi(n) and Fi(s) represent respectively the

projections of normal and shear forces on the x; axis as shown in figure 3.9,

namely

F;=F{n) + F(s) . (3.46)
Then,

Fin) = (Fom = (Fandn; , Fi(s) = Fst; = (Fet . (347

Therefore, from (3.46), we have

M

1 N (g [ A S I - N & c_Cc ¢
o) = ;ZR”Zn,- (Eenin) = ;ZRPZ(nfﬂnkn;) ,
P= = =

=1

I N N [ ¢ I 3 X (4 C g C4C
o,(s)= v E R? E n (F(s) = 7 E R? E (n F 1)) , (3.48)
p=1 p=1 =1

=1

and

o, = o (m+ o;(5)
3.8 Simulation Program Development

Based on the algorithms described in the previous sections for searching particle
contacts, computing contact forces and updating particle velocities and positions,
a computer program has been developed for analysing the flow behaviour of

particles in silos. The program basically consists of three units

e a pre-processing unit
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Figure 3.9. Diagram showing the relationship among F;, F(n) and I'(s)

e a simulation unit

® a post-processing unit

3.8.1 Pre-processing unit

The input parameters defining the problem to be studied are specified in the pre-
processing unit. The parameters required include physical properties of the

granular material under consideration, initial conditions and boundary conditions.

The initial conditions include the initial positions and velocities of all particles and
the geometry of the silo under consideration. This information can be either read

in from an input file or calculated from a supplementary subroutine.
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3.8.2 Simulation unit

The simuylation unit is the main part of the program, which is called each time to
determine the state of the particle system at a new instant of time. It consists of a
search for all existing contacts, calculation of interparticle forces at all contacts
from the force-displacement law, integration of equations of motion to obtain new
positions and velocities of all particles, application of specific boundary conditions
and updating of stress, wall pressures and velocities. This program unit is called

thousands of times as the simulation proceeds.

3.8.3 Post-processing unit

This program unit is designed to output, in both table and graphic forms, the
results of interest in the flow analysis. The flow pattern of material and the wall
pressure distributions can be shown on the screen of monitors by calling this

program unit.

3.8.4 Program structure

Figure 3.10 shows the flow chart of the program developed. The overall program
structure and the relationships of the subroutines are shown in figure 3.11. The

functions carried out by the subroutines of the program are shown in table 3.1.
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Table 3.1. Program subroutines

Subroutine Name

e —————————————————————————— e ———e e — = ————
B ———— S ———— A ——r

Function

readdat Read input data from a file
setwin Set-up a window on monitor
wallelsetup Create a rectangular grid
setup Set up initial conditions (initial position and
velocity)
neighbour Detect contacts
simulator
force Determine contact forces
fppcontact Determine particle-particle contact forces
fpwcontact Determine particle-wall contact forces
wallpres Calculate wall pressures
update Calculate new position and velocity of every
particle
output Provide output data to screen

flowpic, flowpicture

Display granular flow on screen




Set initial valuss of r* and v1»

Establish list of neighbourhood particles {q,, .4, o
for each particle p.

pe! \ NO
psN?

pep+l

calculate the contact force

calculate U,“,ln_yru-(—l

¥

l_ post procesear ]

simulation
continues?

(prass key Esc to pauss, C to cnntinua)

Figure 3.10 Program flow chart
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3.9 Summary

An efficient discrete dynamic model has been developed and implemented for the
simulation of granular flows in silos. The calculation of pressures on silo walls,
velocity and stress fields in granular materials has been mathematically formulated.
The developed model thus provides a means for investigating the flow behaviour

of granular materials in silos.
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Chapter 4

FLOW BEHAVIOUR AND WALL PRESSURES DURING
STORAGE AND DISCHARGE

4.1 General

The difficulty in arriving at meaningful data from experiments with granular
materials is to attempt not to influence or corrupt the data gathered. It is difficult
to produce nonintrusive testing equipments to measure parameters such as
velocity and granular temperature. It is therefore useful to produce computer
simulation data and to compare these against experimental data. The use of
computer simulation can assist in at least three ways. Firstly, the models can
suggest assumptions for the theoretical models and to support, or deny, existing
models. A second objective is to produce models of the mechanics of particle to
particle and particle to wall interactions. Another objective is to examine
additional forces or structures within the granular material, for example the
microstructural activity (Campbell and Brennen, 1985). In this chapter, the
method developed and presented in chapter 3 will be used to study the flow of

granular materials in silos. Emphasis is given to the investigation of flow patterns,
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wall pressure distributions and the influence of various system parameters on the
flow behaviour. In the following section, we study in detail the flow pattern and
pressure distribution for a typical silo-granular material system in detail. In section
4.3, we investigate the influence of wall friction, silo geometry and particle size

on silo wall pressures and flow patterns.

4.2 Simulation of Filling and Discharge process

4.2.1 Simulation set-up

The geometry of the silo under consideration is shown in figure 4.1. To simulate
the actual silo filling process, the model granules are introduced into the top of the
silo gradually and are allowed to fall under gravity into the silo. During the filling
stage, the outlet of the silo is closed. Thus, due to frictional and damping forces,
the assembly eventually comes to rest at the base of the silo. Once the silo is fully
filled with particles and a near steady-state condition has been achieved, the outlet
of the silo is opened and the particles are allowed to flow out of the silo under
gravity. If the level of material in the silo is to be maintained constant, a new
particle is filled into the silo from its top once a particle completely flows out of

the silo.
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4.2.2 Simulation Input

Input values for a number of parameters are required for the simulation, Table 4.1

lists the values used in the current simulation.

-
l

6m
ot
2m
4'E-—l.S m
—_—
"l |“‘ 1m

Figure 4.1 : Silo geometry

Table 4.1. Simulation input values

Friction coefficients:
particle-particle 0.6
particle-wall 0.4
Particle radius 0.04 m
Contact damping coefficient An= A, =5
Global damping coefficient A=0
Elastic constants K,=1000 kN/m, K,=800kN/m
Time interval 0.00003 sec
Material density 2000 kg/m’

55



4.2.3 Flow patterns and wall pressure distributions

Figure 4.2 shows the flow patterns of the” granular material in the silo and the
distribution of pressure on silo walls at different instants of time, with /=0

representing the start of discharge of materials from the outlet.

Mass flow can be seen to occur in the entire silo. It is possible to identify three
flow zones, these being the pipe zone, the pipe feed zone and the plug flow zone.
In the region of transition from the silo to the hopper, the particle moving
direction changes sharply from vertical to a direction parallel to the hopper

inclined wall, resulting in high pressure at this point as shown in figure 4.2.

t =2 sec t =4 sec t=6 sec t =8 sec

Figure 4.2. Flow patterns and pressures for conical bottomed silo
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Tt can also be noted that there is a large increase in wall pressure in the transition
zone from vertical flow to the conical hopper region. The wall pressure reaches
the maximum at the transition point and decreases towards the outlet. This result

is generally in agreement with existing experiment results.

4.3 Numerical Investigations

4.3.1 Effect of wall friction

To investigate the effect of wall friction on the flow of granular materials, a series
of test simulations were run. The methodology was to maintain other parameters
of the simulation the same while varying the wall friction coefficient (uw). The
trials were conducted using the parameter values shown in table 4.1, except the

values of |, was changed from 0 to 0.6.

Figure 4.3 shows the wall pressure distribution for different value of p.. It can be
noted that as the wall friction coefficient increases, the normal pressure on the

walls of the silo decreases, at each point down the silo.

4.3.2 Effect of internal friction

To investigate the effects of internal friction, the angle of internal friction was
varied from O to 31 degrees. Figure 4.4 shows the distributions of pressures on

silo walls under both static and discharging conditions. For ¢=0 and u=0, the
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normal pressure is reasonably close to the hydrostatic pressure as would be

expected. On discharge, the wall pressure on the region adjacent to the outlet is

Halght ()

Figure 4.3. Wall pressure distributions for different value of ..

Height (m) Height (m)
g
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Figure 4.4, Distribution of normal pressure on silo wall at

(a) static state and (b) silo emptying state.
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slightly lower than that in the static case. This decrease of pressure can be

attributed to the dilation of the particle zone in the outlet region during flow.

For ¢=31 degrees and u»=0.5, the filling normal pressure is significantly lower
than the hydrostatic pressure, which agrees with existing silo pressure theories.
During the process of discharge, a high pressure zone on the transition between
hopper and vertical bin wall is detected, which agrees with other numerical results

such as those derived using the finite element method.

4.3.3 Effect of silo geometry

Various silo geometries were tested to ascertain their effects on flow
characteristics. The silo geometries are shown in figure 4.5. The heights referred
to in the following discussion are based on distance measured from the bottom or

the lowest point of the silo.

Figure 4.6 shows the flow patterns of material through a conical bottomed silo, a
flat bottomed silo and a sloping bottomed silo. It can be noted that in the conical
bottomed silo there is a developing flow pattern down the centre axis of the silo,
where greater movement is apparent. Although this has characteristics of a funnel
flow pattern, overall there appears to be a mass flow of the material. Along the
sides of the silo and down the hopper section sides, movement of particles are

clearly visible. In the case of the flat bottomed silo, there is a similar axial flow
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Figure 4.5 Silo geometries

pattern. There are clear stagnant zones in either side of the exit orifice and the size
of this region was found to depend on a number of input parameters, including
friction coefficients and particle size. In the sloping bottomed silo the main flow is

along an axial line to the right of centre, away from the discharge side.

Figures 4.7 shows the pressure variations of a conical bottomed silo during
discharge of the silo. It can be noted that the pressure on vertical bin wall is fairly
constant, except a slight increase on the area near the bin-hopper transition. There
is a large increase in pressure at the transition zone and a decrease of pressure
near the outlet. The pressure on the cone section is significantly higher than that
on the vertical wall. The transition point from vertical wall to hopper wall is
marked by a horzontal line as shown in the figure. The predicted pressure

distribution is consistent with existing experimental findings.
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Figure 4.6. Flow patterns in conical, flat and sloping bottomed silos.

Figure 4.8 shows the pressure profile for a flat bottomed silo. When the outlet is
opened, granular material starts to flow out of the outlet. The pressure on the wail
near the bottom decreases, which may be attributed to the loosening of material in
the region near the outlet. It can also be noted that, there also exists a region on

the wall where the pressure on flow conditions is higher than that on static

conditions.
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Figure 4.7. Pressure distribution on the wall of a conical silo .
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Figure 4.8. Pressure distribution on the wall of a flat bottomed silo.

Figure 4.9 shows the pressure distribution on the wall (left hand side) of the
sloping bottomed silo as shown in figure 4.5. The static pressure profile is similar
to that of the pressure on other type of silos. When the outlet is opened, the

pressure on the outlet is reduced from the static pressure to zero and the granular
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Figure 4.9. Pressure distribution on the wall of a sloping bottomed silo.

material starts to flow out of the outlet. There is a pressure decrease in the side
wall area near the outlet. It can also be noted that there exists a region where the
pressure on flow conditions is larger that on static conditions. The numerical
results produced suggest that pressure exerted by granular material on the hopper

wall is higher than the pressure on the vertical wall of a flat bottomed silo.

64



However, the pressure on the bottom of the flat bottom silo is expected to be very

high.

Figure 4.10, provides a comparison of pressures on various silos at various
heights during discharge. From the table in this figure, it can be seen that the
conical bottomed silo has the largest pressure on the wall compared to other
geometries at the point prior to discharge, in the transition zone from vertical to

hopper, as shown.

height

___________ LSS SO N S A ]48m
2 2 2 36m

3 3 3 24m

Conical Silo Flat Bottom Silo Sloping Silo
(Left Hand Side)
Location | Pressure (kPa) Pressure (kPa) Pressure (kPa)
1 20 25 36
2 32 45 54
3 45 62 60
4 135 S8 46

Fig. 4.10. Silo pressure at t = 6 seconds.
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4.3.4 Effect of particle size

Various particle sizes were tested to determine its effect on the flow of granules in
the silo. Granular particles with three different radius (0.02 m, 0.04 m and 0.06 m)

are chosen for the numerical investigation.

Figure 4.11 shows the variation of wall pressures for three sized particles. As the
particle size increases, from 0.02m to 0.06m, the pressure indicated at a particular
silo height is observed to increase. The increasing particle size gives an indication
of higher pressure further up the silo body. This is an artefact of the size being
chosen, a position between an accurate meaningful result and speed of calculation
must be selected. In the current study the most optimum size was found to be

0.04m.
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Figure 4.11. Wall pressure for varying particle size at discharge condition.

4.3.5 Summary

The discrete dynamic model developed has been used to study the flow of
granular materials through silos. The flow patterns and pressure distributions
obtained are in agreement with existing experimental observations. The numerical

investigation results in a number of findings.
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Firstly, it indicates that silo geometry is of importance and careful selection can
minimise the pressure exerted on silo walls during discharging. The conical
bottomed silo has the highest pressure readings in most cases. In particular, there

is a large pressure increase in the transition area from the vertical silo wall to the

conical discharge cone.

Secondly, the results indicate that wall friction has significant effects on wall

pressures. The higher the wall friction the lower the normal wall pressure.

The results also indicate that the particle size chosen in the discrete element
method is important. Use of large size particles results in quicker processing times
but gives less valuable information. The processing time is faster because of the
less number of particles, and hence the less number of contact calculations
required. In addition, the pressure determined for the wall at a given point is less
accurate, since it is based on less particles impacting with the wall. The result of
one or two particles may cause a sudden change in the reading of pressure,
resulting in a more irregular and less natural indication of pressure. These sudden
variations in calculated pressures may be seen from the figures presented. For this
study, the optimum size was found to be 0.04m, this gave reasonable computing

times while providing meamngful output.
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Chapter 5

CONCLUSIONS

A two-dimensional discrete dynamic model and computer program has been
developed for modelling the filling and emptying processes of silos. The program
has been shown to be capable of describing many features of granular flow, such
as the independence of silo discharging rate on the material head. The model can
be used to analyse the material flow pattern and to calculate the wall pressure and

flow rate.

The model and program developed have been tested and it has been shown that
the model is able to simulate granular flows in silos and produces data that is
consistent with existing experimental and theoretical information. The results
indicate that the silo discharge rate is independent of the material head. The flow
patterns and velocity fields are in agreement with existing resuits. Therefore the

discrete dynamic model can be used to study granular flows in silos.

A numerical investigation has been carried out to study the effect of several

parameters on wall pressures and flow patterns. The investigation shows that
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(1) A number of flow zones may be identified in the silos, including the plug

flow zone, pipe feed zone, pipe zone and a dead zone.

(2) The area of transition from silo to hopper is marked by a change in

direction of the flowing particles and a large increase in pressure.

(3) Flow begins with a movement of material down the silo, and a formation of

various flow zones when the outlet is opened.

(4) Clear deadzones are observable in all silo geometries, although it is most

pronounced in the flat bottom silo design only.

The results demonstrate that the difference between granular flow and fluid flow
could be attributed to the existence of the internal friction in granules. In addition
it has been shown that stresses on walls vary considerably over the duration of
loading and discharging from a silos. These variations can be critical to the safe

and efficient design of silos.

The present study indicates that the discrete element method has a number of

advantages over the experimental method, namely

e Situations that are difficult or impossible to measure or determine in difficult

flow scenarios may be modelled by the use of the discrete element method.

e Data from all points of a flow, at any instance of time during a flow are readily
available for use in determining the characteristics of the entire assembly or of

sites within an assembly.
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The present study also indicates that, compared with the continuum approach, the
discrete element model has the advantage that it does not require the development
of a global constitutive law and that it can describe many local features of granular
flow, such as the formation of voids and the velocity discontinuity planes which
can hardly be described by continuum approaches. However, due to the large
amount of computation required, the discrete element model at present cannot be
used to model the granular flow in silos using the actual size and actual shape of
granules in many practical problems. Accordingly, numerical results must be
justified before using them for silo design purposes. This highly computational
requirement is one of the major disadvantages of the discrete element method.
Although, as computer hardware improves this is likely to become of less concern
where critical and accurate predictions of flow patterns or flow characteristics are

required.

There are a number of potential areas for further research including

e Development of numerical algorithms using parallel processing to increase the

speed of the program.

e Development of programs which can deal with granular material of various

particle shapes.
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