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Two-hop AF MIMO Relay System Optimization
with Own information from the Relay Node

Qiao Su and Yue Rong, Senior Member, IEEE

Abstract—In this paper, we consider precoding matrices opti-
mization for a new two-hop amplify-and-forward (AF) multiple-
input multiple-output (MIMO) relay system, where in addition
to forwarding the source signals, the relay node concurrently
transmits its own signals to the destination node. Compared
with conventional AF MIMO relay systems where the relay node
only forwards the source signals, the transceiver optimization
problem in the new system is more challenging to solve. We
prove that for all Schur-concave objective functions, the optimal
source and relay matrices jointly diagonalize the source-relay-
destination and relay-destination channels, which simplifies the
matrices optimization problem to a joint subchannel and power
allocation problem with scalar variables. It is shown that to
achieve a maximal sum mutual information (MI) of both the
source and relay links, the strongest subchannels of the second-
hop channel should be allocated for transmitting signals from
the relay node. With additional quality-of-service constraints
in terms of the lower bounds of the MI of both links, the
optimal subchannel allocation problem is NP-hard. In this case,
we propose a suboptimal channel allocation algorithm with a low
computational complexity. For a given subchannel allocation, we
develop a primal decomposition based algorithm to efficiently
solve the power allocation problem. Simulation results show that
compared with the exhaustive search based channel allocation
approach and the general nonlinear programming based power
allocation algorithm, the proposed subchannel and power allo-
cation algorithms have a much lower computational complexity
with only a small performance loss.

Index Terms—Amplify-and-forward, MIMO relay, power al-
location, precoding matrix, quality-of-service, subchannel alloca-
tion.

I. INTRODUCTION

Wireless relay communication has attracted much interest
recently from both academia and industry due to its potential
in increasing the coverage and capacity of wireless communi-
cation systems, particularly in shadowed environments [1]-[3].
Several relay protocols such as amplify-and-forward (AF) and
decode-and-forward (DF) have been developed [1]. Compared
with the DF protocol where the relay nodes first decode and
then re-encode the received signals, in an AF relay system,
the relay node simply performs a linear transformation of the
received signals. Therefore, the complexity of the AF protocol
is much lower than that of the DF protocol, particularly
when multiple-input multiple-output (MIMO) relay systems
are considered [4].
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Capacity bounds of AF MIMO relay systems have been
studied in [5]. The relay precoding matrix which maximizes
the source-destination mutual information (MI) of a two-hop
AF MIMO relay system has been investigated in [6] and [7].
In [8] and [9], the relay precoding matrix that minimizes the
mean-squared error (MSE) of the signal waveform estimation
has been proposed. In [10], a unified framework has been
established to jointly optimize the source and relay precoding
matrices of AF MIMO relay systems with a broad class of
commonly used objective functions. Joint source and relay
matrices optimization with the direct source-destination link
has been investigated in [11] and [12]. In [13] and [14],
precoding techniques for AF MIMO relay systems with a
decision feedback receiver have been studied. Taking into
account the mismatch between the true and the estimated
channel state information (CSI), robust transceiver design
algorithms for AF MIMO relay systems have been proposed
in [15]-[17]. The quality-of-service (QoS)-constrained source
and relay precoding matrices design has been studied in [18]-
[20].

It is worth noting that for the MIMO relay systems con-
sidered in [6]-[20], the relay node only forwards signals from
the source node to the destination node and does not transmit
its own signals. However, in many scenarios the relay node
needs to transmit its own signals to the destination node. For
example, in the uplink of a cellular system where the base
station (BS) is the destination node, a mobile terminal close to
the BS can serve as a relay node to assist the communication
between a user located at the edge of the cell and the BS.
Meanwhile, this mobile terminal needs to send it own message
to the BS.

Considering this important practical requirement above, in
this paper, we investigate precoding matrices optimization for
a new two-hop AF MIMO relay system, where in addition
to forwarding the source signals, the relay node concurrently
transmits its own signals to the destination node. To the best
of our knowledge, there is no other work in open literature
which studied the transceiver optimization problem for such
AF MIMO relay system. Compared with conventional AF
MIMO relay systems where the relay node only forwards the
source signals [6]-[20], the transceiver optimization problem
in the new system is more challenging to solve. Compared
with multiuser AF relay systems [21]-[23], where the signals
from different users are precoded by a same relay matrix, in
this new relay system, the source signals and relay signals are
precoded by different matrices at the relay node. Therefore,
the relay system studied in this paper is more general than a
multiuser AF relay system.
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We prove that for all Schur-concave [24] objective func-
tions, the optimal source and relay matrices jointly diagonalize
the source-relay-destination channel (for signals from the
source node) and the relay-destination channel (for signals
of the relay node). This new result generalizes the outcomes
in [6]-[10] and [21]-[23] from conventional AF MIMO relay
channels to systems where the relay node also transmits its
own signals.

By exploiting the optimal structure of the source and relay
precoding matrices, the original matrices optimization problem
is simplified to a joint subchannel and power allocation
problem with scalar variables. We prove that to achieve a
maximal sum MI of both the source and relay links, the
strongest subchannels of the second-hop channel should be
allocated for transmitting signals from the relay node. With
a given subchannel allocation, the original transceiver opti-
mization problem boils down to a power allocation problem.
We develop a primal decomposition [25] based algorithm to
efficiently solve the power allocation problem.

Note that the maximal sum MI criterion might lead to
fairness issues, as the source signals are assigned with weaker
second-hop subchannels compared with those allocated to the
relay signals. To solve this problem, we impose additional
QoS constraints in terms of the lower bounds of the MI of
both links. However, with these QoS constraints, the optimal
subchannel allocation problem becomes NP-hard. In this case,
we propose a suboptimal channel allocation algorithm with a
low computational complexity. For a given channel allocation
scheme, we derive the achievable rate region for the source
and relay signals. Based on the rate region, an efficient power
allocation algorithm is developed using the primal decompo-
sition technique. Simulation results show that compared with
the exhaustive search based channel allocation approach and
the general nonlinear programming based power allocation
algorithm, the proposed subchannel and power allocation
algorithms have a much lower computational complexity with
only a small performance loss.

The rest of this paper is organized as follows. In Section II,
the system model of a two-hop AF MIMO relay system with
own information from the relay node is presented. The pro-
posed transceiver design algorithm is developed in Section III.
In Section IV, QoS constraints are considered. Simulation
results are shown in Section V to validate the performance
of the proposed algorithms. Finally, conclusions are drawn in
Section VI.

II. SYSTEM MODEL

We consider a two-hop AF relay system, where the source
node sends information to the destination node with the aid of
a MIMO relay node. Different to conventional AF MIMO relay
systems, in addition to forwarding the source information to
the destination node, the relay node also needs to transmit
its own information to the destination node as shown in
Fig. 1. We assume that the source, relay, and destination nodes
are equipped with Ns, Nr, and Nd antennas, respectively.
Similar to [6], [8], [10], the direct link between the source
and destination nodes is not considered, as we assume that
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Fig. 1. System block diagram of an AF MIMO relay system where the relay
node transmits own information to the destination node.

the effects of path attenuation and shadowing are more severe
on the direct link compared with the link via the relay node.

Using a practical half-duplex relay node, the communication
process is completed in two time slots. At the first time slot, the
source node linearly precodes the N1×1 information-carrying
vector ss with an Ns ×N1 matrix B and transmits

xs = Bss (1)

to the relay node. We assume that E{sssHs } = IN1 , where
E{·} stands for the statistical expectation, (·)H stands for the
matrix Hermitian transpose, and In denotes the n×n identity
matrix. The received signal vector at the relay node is given
by

yr =Hxs + nr

=HBss + nr (2)

where H is the Nr ×Ns source-relay MIMO channel matrix
and nr is the Nr × 1 noise vector at the relay node.

At the second time slot, the relay node linearly precodes yr

with an Nr ×Nr matrix F1 and superimposes its own N2×1
information-carrying vector sr precoded by an Nr×N2 matrix
F2. We assume that E{srsHr } = IN2 and sr is independent of
ss. Using (2), the signal vector transmitted by the relay node
is given by

xr =F1yr + F2sr

=F1HBss + F2sr + F1nr. (3)

The signal vector received at the destination node is

yd =Gxr + nd

= [GF1HB, GF2 ]

[
ss
sr

]
+GF1nr + nd

=Ms+ n (4)

where G is the Nd ×Nr relay-destination channel matrix, nd

is the Nd × 1 noise vector at the destination node, and

M = [GF1HB, GF2 ], s = [sTs , s
T
r ]

T , n = GF1nr + nd

are the equivalent MIMO channel matrix, the total information
signal vector, and the equivalent noise vector, respectively.
Here (·)T denotes the matrix (vector) transpose.

We assume that nr and nd are independent and identically
distributed (i.i.d.) Gaussian noise vectors with zero-mean and
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unit variance entries. We also assume a perfect knowledge on
the CSI of H and G. In practice, H and G can be estimated,
for example, using the approaches in [26] and [27]. It is
worth noting that (4) presents a general model for a two-hop
AF MIMO relay system without the direct link. Conventional
AF MIMO systems [6]-[10] where the relay node does not
transmit its own information corresponds to (4) with F2 = 0.
We can also view (4) as a two-user AF MIMO relay system
[21]-[23], where sr can be viewed as signals from one user
with an ideal source-relay channel. However, different to [23],
where ss and sr are precoded by a same matrix at the relay
node, here they are precoded by different F1 and F2.

Due to its simplicity, a linear receiver is used at the
destination node to retrieve the source and relay signals. Thus,
the estimated signal vector can be written as

ŝ = WHyd (5)

where W is the Nd × N weight matrix of the receiver with
N = N1+N2. From (4) and (5), the MSE matrix of the signal
waveform estimation is given by

E=E{(ŝ− s)(ŝ− s)H}
= (WHM− IN )(WHM− IN )H +WHCW (6)

where C = E{nnH} = GF1F
H
1 GH + INd

is the covariance
matrix of n.

It can be seen that the optimal W is given by

W = (MMH +C)−1M (7)

where (·)−1 stands for the matrix inversion. By substituting
(7) back into (6), we obtain

E= (IN +MHC−1M)−1

=

(
IN +

[
BHHHFH

1 GH

FH
2 GH

]
(GF1F

H
1 GH + INd

)−1

×
[
GF1HB, GF2

])−1
. (8)

Based on (1) and (3), the transmission power consumed by
the source and relay nodes can be calculated respectively as

E{xsx
H
s }= tr(BBH) (9)

E{xrx
H
r }= tr(F1(HBBHHH + INr )F

H
1 + F2F

H
2 )(10)

where tr(·) denotes the matrix trace.

III. PROPOSED PRECODING MATRICES DESIGN

From (8)-(10), the source and relay precoding matrices
optimization problem can be written as

min
F1,F2,B

f(d(E)) (11)

s.t. tr(BBH) ≤ Ps (12)
tr(F1(HBBHHH+INr )F

H
1 +F2F

H
2 ) ≤ Pr (13)

where f(·) stands for a unified objective function which is in-
creasing with respect to each element of d(E), for a matrix A,
d(A) is a column vector containing all main diagonal elements
of A, Ps and Pr are the transmission powers available at the
source node and the relay node, respectively. We assume that
f(·) is Schur-concave [24] with respect to d(E). As shown in

[10], a large number of commonly used objective functions in
MIMO relay system design such as the arithmetic MSE and
the negative MI are Schur-concave functions of d(E).

Compared with the source and relay matrices optimization
problem for conventional two-hop MIMO relay systems [6]-
[20], the problem (11)-(13) is more challenging to solve,
because the introduction of F2 makes the objective function
(11) and the constraint (13) more complicated. Obviously, the
source and relay matrices optimization problem for conven-
tional two-hop MIMO relay systems [6]-[10] is a special case
of the problem (11)-(13) when F2 = 0.

A. Optimal Structure of Source and Relay Precoding Matrices

Let us introduce the singular value decomposition (SVD)
of H = UhΛhV

H
h and G = UgΛgV

H
g , where the diagonal

elements of Λh and Λg are sorted in a decreasing order. The
dimensions of Λh and Λg are rh×rh and rg×rg, respectively,
where rh = rank(H), rg = rank(G), and rank(·) denotes the
matrix rank. The following theorem states the optimal structure
of F1, F2, and B.

Theorem 1: We assume that rank(B) = rank(F1) = N1

and rank(F2) = N2 with N1 ≤ min(rh, rg) and N1 +N2 ≤
rg. The optimal source and relay matrices as the solution to
the problem (11)-(13) have the following structure

F1 = Vg,1Λf1U
H
h,m, F2 = Vg,2Λf2 , B = Vh,mΛb (14)

where Λf1 , Λf2 , and Λb are N1 × N1, N2 × N2, and
N1×N1 diagonal matrices, respectively, with positive diagonal
elements sorted in a decreasing order, Vg,1 and Vg,2 contain
N1 and N2 columns of Vg , respectively, and together they
contain N columns of Vg associated with the largest N
singular values of G, Uh,m and Vh,m contain N1 columns
of Uh and Vh, respectively, associated with the largest N1

singular values of H.
Proof: See Appendix A.

It can be seen from (14) that the optimal F1, F2, and B
jointly diagonalize the source-relay-destination channel such
that

M = Ug,mΠ

[
Λg,1Λf1Λh,mΛb 0

0 Λg,2Λf2

]
(15)

where Ug,m contains N columns of Ug associated with the
largest N singular values of G, Λg,1 and Λg,2 contain singular
values from Λg associated with Vg,1 and Vg,2, respectively,
and Λh,m contains the largest N1 singular values of H. Note
that different to conventional two-hop MIMO relay systems
[6]-[10], there is a permutation matrix Π in (15), as explained
in Appendix A. In fact, Π reflects that in order to optimize
(11), among the N strongest subchannels of G, which N1

subchannels should be allocated to the source signals ss (with
the remaining N2 subchannels assigned to the relay signals
sr). From Theorem 1, we have N1 ≤ min(Ns, Nr, Nd) and
N1 + N2 ≤ min(Nr, Nd). Thus, there are Ns ≥ N1, Nr ≥
N1 +N2, and Nd ≥ N1 +N2.

In general, the optimal structure of the source and relay pre-
coding matrices in [10] for Schur-convex objective functions
does not hold for the relay system studied in this paper. It
has been shown in [10] that for a conventional two-hop AF
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MIMO relay system (where the relay node does not transmit its
own signals), to optimize a Schur-convex function, the source
precoding matrix needs to be rotated by a unitary matrix such
that the MSE matrix has identical main diagonal elements.
For the relay system in this paper, as the “equivalent” source

precoding matrix Bs =

(
B 0
0 F2

)
has a block diagonal

constraint, in general it is not possible to rotate Bs by a
block diagonal unitary matrix such that the MSE matrix E
has identical main diagonal elements.

Using Theorem 1, the MSE matrix (8) can be written as

E0=

(
IN+

[
Λ2

g,1Λ
2
f1
Λ2

h,mΛ2
b(Λ

2
g,1Λ

2
f1
+IN1)

−1 0

0 Λ2
g,2Λ

2
f2

])−1

.

(16)
The constraints (12) and (13) can be rewritten as

tr(Λ2
b) ≤ Ps (17)

tr(Λ2
f1(Λ

2
h,mΛ2

b + IN1)) + tr(Λ2
f2) ≤ Pr. (18)

Using (16)-(18), the problem (11)-(13) can be written as

min
I,J ,λf1

,λf2
,λb

f


(
1 +

λ2
g,Ii

λ2
f1,i

λ2
h,iλ

2
b,i

1 + λ2
g,Ii

λ2
f1,i

)−1

N1

,

{
(1 + λ2

g,Jj
λ2
f2,j)

−1
}
N2

)
(19)

s.t.

N1∑
i=1

λ2
b,i ≤ Ps (20)

N1∑
i=1

λ2
f1,i(λ

2
h,iλ

2
b,i + 1) +

N2∑
j=1

λ2
f2,j ≤ Pr (21)

λf1,i > 0, λb,i > 0, i = 1, · · · , N1 (22)
λf2,j > 0, j = 1, · · · , N2 (23)
I = N1,J = N2, I ∩J = ∅, I ∪J ={1, · · · , N} (24)

where for variables xi, {xi}M , x1, · · · , xM , I denotes the
cardinality of set I, set I and set J contain the indices
of N1 and N2 subchannels in G that are allocated to ss
and sr, respectively, λf1 = [λf1,1, · · · , λf1,N1 ]

T , λf2 =
[λf2,1, · · · , λf2,N2 ]

T , and λb = [λb,1, · · · , λb,N1 ]
T .

It can be seen that by using the optimal structure of
F1, F2, and B, the matrices optimization problem (11)-(13)
is converted to the problem (19)-(24) with scalar variables.
However, the problem (19)-(24) is a joint subchannel and
power allocation problem, which is much harder to solve than
the pure power allocation problem in conventional MIMO
relay systems [6]-[10], as the optimal allocation of subchannels
to I and J is a combinatorial problem.

By introducing λ2
b,i = xi, λ2

f1,i
(λ2

h,iλ
2
b,i + 1) = yi, λ2

h,i =
ai, i = 1, · · · , N1, λ2

f2,j
= zj , j = 1, · · · , N2, λ2

g,k = bk,
k = 1, · · · , N , the problem (19)-(24) can be rewritten as the
following joint subchannel and power allocation problem

min
I,J,x,y,z

f

({(
1+

aixibIiyi
1+aixi+bIiyi

)−1
}
N1

,
{
(1+bJjzj)

−1
}
N2

)
(25)

s.t.

N1∑
i=1

xi ≤ Ps (26)

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (27)

xi > 0, yi > 0, i = 1, · · · , N1 (28)
zj > 0, j = 1, · · · , N2 (29)
I = N1,J = N2, I ∩J = ∅, I ∪J ={1, · · · , N} (30)

where x = [x1, · · · , xN1 ]
T , y = [y1, · · · , yN1 ]

T , and z =
[z1, · · · , zN2 ]

T . Note that ai, i = 1, · · · , N1, and bk, k =
1, · · · , N , are sorted in decreasing orders, respectively.

The exact solution to the problem (25)-(30) depends on the
objective function f . In the following, we adopt the commonly
used maximal MI criterion with f = log2 |E0|, which is a
Schur-concave function of d(E0) [10]. Here | · | denotes the
matrix determinant. Then the problem (25)-(30) can be written
as

max
I,J,x,y,z

N1∑
i=1

log2

(
1+

aixibIiyi
1+aixi+bIiyi

)
+

N2∑
j=1

log2(1+bJjzj)(31)

s.t.

N1∑
i=1

xi ≤ Ps (32)

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (33)

xi > 0, yi > 0, i = 1, · · · , N1 (34)
zj > 0, j = 1, · · · , N2 (35)
I = N1,J = N2, I ∩J = ∅, I ∪J ={1, · · · , N}. (36)

Interestingly, we can see that the first summation in (31) is
the MI between ss and yd, while the second summation is the
MI between sr and yd. Thus, (31) is the sum MI of both the
source and relay links.

B. Optimal Subchannel Allocation

Theorem 2: The optimal subchannel allocation for the prob-
lem (31)-(36) is I = {N2+1, · · · , N} and J = {1, · · · , N2}
for any H and G.

Proof: See Appendix B.
Theorem 2 indicates that to maximize the sum MI (31), the

N2 strongest subchannels of G (i.e., b1, · · · , bN2 ) should be
allocated to sr and the N1 second strongest subchannels of
G (i.e., bN2+1, · · · , bN ) are assigned to ss. This subchannel
allocation is optimal for any realization of H and G.

Let us denote {A|B} as a subchannel allocation where
A =

{
bJj

, j = 1, · · · , N2

}
and B = {bIi

, i = 1, · · · , N1}
are assigned to sr and ss, respectively. Now we analyze the
impact of subchannel allocation on the sum MI using a simple
example of N1 = 3 and N2 = 2. In this example, there are
altogether 10 possible subchannel allocations as

1⃝ = {b1, b2|b3, b4, b5}, 2⃝ = {b1, b3|b2, b4, b5}
3⃝ = {b1, b4|b2, b3, b5}, 4⃝ = {b1, b5|b2, b3, b4}
5⃝ = {b2, b3|b1, b4, b5}, 6⃝ = {b2, b4|b1, b3, b5}
7⃝ = {b2, b5|b1, b3, b4}, 8⃝ = {b3, b4|b1, b2, b5}
9⃝ = {b3, b5|b1, b2, b4}, 10⃝ = {b4, b5|b1, b2, b3}. (37)



5

Fig. 2. Sum MI at all subchannel allocation schemes. Ns = 3, Nr = 5,
Nd = 5, N1 = 3, N2 = 2, and SNRs = SNRr = 20 dB.

The maximal values of the objective function (31) with these
10 subchannel allocations are shown in Fig. 2 for a MIMO
relay system with Ns = 3, Nr = 5, Nd = 5 and a typical
channel realization of H and G, where the numbers 1⃝ to
10⃝ correspond to the 10 allocations listed above. Here the
signal-to-noise ratio (SNR) of the first-hop channel SNRs and
the second-hop channel SNRr are both set to 20 dB. It can
be clearly seen from Fig. 2 that the subchannel allocation 1⃝
leads to the largest sum MI, which corroborates Theorem 2.

The solid lines in Fig. 2 show that the sum MI decreases
along 1⃝- 4⃝, 5⃝- 7⃝, and 8⃝-10⃝. This can be proven by the
results in Appendix B that if we swap bIi with bJj where
bIi < bJj , then the maximal value of the objective function
(31) will decrease. For instance, 3⃝ is obtained by swapping
b3 and b4 in 2⃝. Thus, the sum MI achieved by 3⃝ is smaller
than 2⃝. Using this reasoning, we can prove that the sum MI
achieved by 5⃝ is smaller than 2⃝, as the former allocation is
obtained by swapping b1 with b2 from the latter one. However,
based on Appendix B we cannot prove whether the sum MI
achieved by 5⃝ is smaller or larger compared with 4⃝, as this
also depends highly on the realization of H and G. Similarly,
although we can prove that the sum MI of 8⃝ is smaller than
6⃝, it is not sure whether the MI of 8⃝ is smaller than 7⃝.

Such uncertainties are marked by dashed lines in Fig. 2. In
this regard, 5⃝ and 8⃝ may become local peaks of the sum
MI.

The analysis above is very useful when we study the sub-
channel allocation under QoS constraints later in Section IV.

C. Power Allocation Algorithm
With a given subchannel allocation I and J , the problem

(31)-(36) becomes the following power allocation problem

max
x,y,z

N1∑
i=1

log2

(
1+

aixibIiyi
1+aixi+bIi

yi

)
+

N2∑
j=1

log2(1+bJjzj) (38)

s.t.

N1∑
i=1

xi ≤ Ps (39)

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (40)

xi > 0, yi > 0, i = 1, · · · , N1 (41)
zj > 0, j = 1, · · · , N2. (42)

Note that for the optimal subchannel allocation in Theorem 2,
we have bIi = bN2+i, i = 1, · · · , N1 and bJj = bj , j =
1, · · · , N2. The problem (38)-(42) is nonconvex due to the
first summation term in (38). In this subsection, we develop
an efficient method to solve the problem (38)-(42) based on
the primal decomposition technique [25].

By introducing
∑N1

i=1 yi ≤ Py , the problem (38)-(42) can be
decomposed into two subproblems. One subproblem focuses
on the optimization of x and y as

max
x,y

N1∑
i=1

log2

(
1 +

aixibIiyi
1 + aixi + bIiyi

)
(43)

s.t.

N1∑
i=1

xi ≤ Ps, xi > 0, i = 1, · · · , N1 (44)

N1∑
i=1

yi ≤ Py, yi > 0, i = 1, · · · , N1. (45)

And the other subproblem optimizes z as

max
z

N2∑
j=1

log2(1 + bJjzj) (46)

s.t.

N2∑
j=1

zj ≤ Pr − Py, zj > 0, j = 1, · · · , N2. (47)

Let us denote J1(Py) as the optimal value of (43), subjecting
to constraints (44) and (45) with a given Py . Similarly, we
introduce J2(Py) as the maximal value of the problem (46)-
(47) for a fixed Py . The master problem can be written as

max
Py

J(Py) s.t. 0 ≤ Py ≤ Pr (48)

where J(Py) = J1(Py) + J2(Py). In fact, J1(Py), J2(Py),
and J(Py) are the MI of the ss link, the MI of the sr link,
and the sum MI, respectively.

Theorem 3: J(Py) is a concave function of Py in [0, Pr]
with any given x satisfying (44).

Proof: See Appendix C.
Theorem 3 indicates that J(Py) is a unimodal function.

The unimodality of J(Py) is also clearly shown in Fig. 3
for a system with Ns = 3, Nr = 5, Nd = 5, N1 = 3,
N2 = 2, and SNRs = SNRr = 20 dB. Thus, the optimal
Py in the master problem (48) can be efficiently obtained
through a one dimensional search. In this paper, we employ the
golden section search method [28] to obtain the optimal Py .
For a given Py , the subproblem (43)-(45) can be solved by
using the alternating water-filling approach in [10], and the
subproblem (46)-(47) has the classical water-filling solution
[29]. Based on this analysis, the problem (38)-(42) can be
efficiently solved by following the primal decomposition based
approach in Algorithm 1, where (·)∗ denotes the optimal value,
ε is a small positive threshold close to 0, and β = (3−

√
5)/2
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y
P

yP

Fig. 3. MI versus Py . Ns = 3, Nr = 5, Nd = 5, N1 = 3, N2 = 2, and
SNRs = SNRr = 20 dB.

is known as the golden ratio. We would like to note that in
general, Theorem 2 and the primal decomposition technique
cannot be directly applied to other Schur-concave objective
functions.

Algorithm 1 Solving the Problem (38)-(42) Based on the
Primal Decomposition Approach
Input: Ps, Pr , ai, i = 1, · · · , N1, and bk, k = 1, · · · , N .
Output: x∗, y∗, z∗, P ∗

y , J1(P
∗
y ), J2(P

∗
y ), and J(P ∗

y ).
Initialize the lower bound pl and the upper bound pu of Py as
pl = 0 and pu = Pr .

1: while pu − pl > ε do
2: Define v1 = (1− β)pl + βpu and v2 = βpl + (1− β)pu.
3: Solve the problem (43)-(45) and the problem (46)-(47) for

Py = v1 to obtain J1(v1) and J2(v1). Compute J(v1) =
J1(v1) + J2(v1).

4: Repeat Step 3 for Py = v2.
5: if J(v1) < J(v2) then
6: Assign pl = v1.
7: else
8: Assign pu = v2.
9: end if

10: end while
11: Let P ∗

y = (pu+pl)/2. Calculate x∗, y∗, and J1(P
∗
y ) by solving

the problem (43)-(45).
12: Obtain z∗ and J2(P

∗
y ) by solving the problem (46)-(47). Calcu-

late J(P ∗
y ) = J1(P

∗
y ) + J2(P

∗
y ).

IV. QOS CONSTRAINTS

It can be seen from Theorem 2 that the maximal sum MI
criterion might lead to fairness issues, as the source signals ss
are assigned with weaker second-hop subchannels compared
with those allocated to the relay signals sr. To solve this
problem, we impose additional QoS constraints in terms of
the lower bounds of the MI of each link. Using the maximal
MI criterion and considering the rate constraints, the joint
subchannel and power allocation problem becomes

max
I,J,x,y,z

N1∑
i=1

log2

(
1+

aixibIiyi
1+aixi+bIiyi

)
+

N2∑
j=1

log2(1+bJjzj)(49)

s.t.

N1∑
i=1

xi ≤ Ps (50)

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (51)

N1∑
i=1

log2

(
1 +

aixibIiyi
1 + aixi + bIi

yi

)
≥ r1 (52)

N2∑
j=1

log2(1 + bJjzj) ≥ r2 (53)

xi > 0, yi > 0, i = 1, · · · , N1 (54)
zj > 0, j = 1, · · · , N2 (55)
I = N1,J = N2, I ∩J = ∅, I ∪J ={1, · · · , N} (56)

where r1 and r2 are the minimal rate requirement of trans-
mitting ss and sr, respectively. Compared with the problem
(31)-(36), the problem (49)-(56) is much more challenging to
solve due to the constraints (52) and (53). Obviously, because
of the additional constraints (52) and (53), the maximal value
of (49) may be smaller than that of (31).

A. Subchannel Allocation

Due to the inclusion of the constraints (52) and (53), the
subchannel allocation scheme proposed in Theorem 2 may
be suboptimal for the problem (49)-(56), or may even fail to
satisfy the QoS constraints (52) and (53). In fact, the optimal
subchannel allocation highly depends on the value of r1 and
r2.

As a combinatorial problem, the optimal subchannel allo-
cation for the problem (49)-(56) can be obtained through an
exhaustive search over all possible combinations of I and J
satisfying (56), and choose the best one with a maximal value
of (49). However, this method has a prohibitively high com-
putational complexity, especially when N1 and N2 are large.
To reduce the computational complexity, in this subsection,
we propose a suboptimal subchannel allocation method with
a low complexity.

It can be seen from Fig. 2 that there are locally optimal
subchannel allocations (e.g., peaks 1⃝, 5⃝, and 8⃝). Base on
the analysis in Section III-B, we can see that the sum MI of
the local peaks exhibits a decreasing trend with the increase
of the combination number (i.e., 1⃝> 5⃝> 8⃝). Inspired by
this observation, the key idea of the proposed scheme is that
instead of searching over all combinations of I and J , we
study the subchannel allocations in an increasing order of n
starting from n = 1 (see Fig. 2), and the search stops when
the first peak is found. The rationale and the details of the
proposed scheme are explained below.

Let us introduce

f
(n)
1 (x,y) =

N1∑
i=1

log2

(
1 +

aixib
(n)
Ii

yi

1 + aixi + b
(n)
Ii

yi

)

f
(n)
2 (z) =

N2∑
j=1

log2(1 + b
(n)
Jj

zj)
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Fig. 4. The impact of QoS constraints on the subchannel allocation schemes.
Ns = 3, Nr = 5, Nd = 5, N1 = 3, N2 = 2, and SNRs = SNRr = 20
dB.

as the MI for the ss and sr links, respectively, where the
superscript (n) denotes the value at the n-th subchannel
allocation. Let f (n)∗

1 and f
(n)∗
2 denote the values of f (n)

1 (x,y)

and f
(n)
2 (z), respectively, obtained from solving the problem

(38)-(42) under the n-th subchannel allocation. It can be seen
from (37) that from 1⃝ to 10⃝, the gains of subchannels in A
are in a decreasing order, while those in B are in an increasing
order. Thus, f (n)∗

2 has a similar decreasing trend with respect
to n as the sum MI in Fig. 2, while in general the value of
f
(n)∗
1 increases with respect to n.

Now we study the scenario where r1 increases with a fixed
r2 (r2 ≤ f

(n)∗
2 ). When r1 ≤ f

(n)∗
1 , constraints (52) and (53)

are not tight. Obviously, the solution of the problem (49)-
(56) is identical to that of the problem (31)-(36) in this case.
Thus, the subchannel allocation in Theorem 2 (first peak 1⃝
with r1 = r2 = 0 in Fig. 4) is optimal. When r1 > f

(n)∗
1 ,

the constraint (52) is not redundant any more. As a result,
the maximal value of (49) at the n-th combination is smaller
compared with that of (31). When r1 + r2 > f

(n)∗
1 + f

(n)∗
2 ,

the n-th subchannel allocation becomes infeasible.
According to the analysis above, the value of f (n)∗

1 increases
with respect to n in general. Therefore, the reduction of the
objective function (49) due to the constraint (52) diminishes
with increasing n. This fact is illustrated in Fig. 4 with r1 =
7.3 b/s/Hz and r2 = 0, where it can be seen that the sum
MI is only affected by subchannel allocations associated with
a smaller n, while those with a larger n are not affected by
(52). It can also be observed from Fig. 4 that the local peaks
still present a decreasing trend with respect to n. Thus, we
can take the allocation n associated with the first peak as the
best subchannel allocation.

Now we investigate the case that r2 increases with a fixed
r1 (r1 ≤ f

(n)∗
1 ). Similarly, it can be easily seen that the

reduction of the objective function (49) due to the constraint
(53) increases with n as shown in Fig. 4 (r1 = 0 and
r2 = 5.7 b/s/Hz). Thus, in this case, the subchannel allocation

J

J
r

r

J

J

r
J PJ

r r J

Fig. 5. The feasible region of r1 and r2. Ns = 3, Nr = 5, Nd = 5,
N1 = 3, N2 = 2, and SNRs = SNRr = 20 dB.

in Theorem 2 (first peak 1⃝ in Fig. 4) is optimal. Combining
the analysis in the two cases above, we propose a channel
allocation strategy which starts searching from n = 1 and
continues searching till the first peak of the sum MI is found.

We would like to note that when N1 and N2 increase,
there are more uncertainties in the sum MI versus n like that
between 4⃝ and 5⃝ in Fig. 4. Although the local peaks have
a decreasing trend with respect to n in the case of small r1,
there may be opposite trend in several local peaks when r1 is
large. In this case, the proposed subchannel allocation scheme
might be suboptimal. It will be shown in Section V that com-
pared with the exhaustive search based subchannel allocation
scheme, the proposed algorithm has only a small performance
loss, but with a much lower computational complexity.

B. Power Allocation

With a fixed subchannel allocation I and J , the problem
(49)-(56) becomes the power allocation problem below

max
x,y,z

N1∑
i=1

log2

(
1+

aixibIiyi
1+aixi+bIi

yi

)
+

N2∑
j=1

log2(1+bJjzj)(57)

s.t.

N1∑
i=1

xi ≤ Ps (58)

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (59)

N1∑
i=1

log2

(
1 +

aixibIiyi
1 + aixi + bIiyi

)
≥ r1 (60)

N2∑
j=1

log2(1 + bJjzj) ≥ r2 (61)

xi > 0, yi > 0, i = 1, · · · , N1 (62)
zj > 0, j = 1, · · · , N2. (63)

In this subsection, we develop a new algorithm to efficiently
solve the problem (57)-(63) by exploiting the results in Sec-
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tion III-C.
The feasible region (r1, r2) of the problem (57)-(63) is

shown in Fig. 5 under a typical realization of H and G
with Ns = 3, Nr = 5, Nd = 5, N1 = 3, N2 = 2, and
SNRs = SNRr = 20 dB. As a starting point, we solve the
problem (38)-(42) using Algorithm 1 and denote the output as
x0, y0, z0, Py,0, J1,0, J2,0, and J0. Firstly, if r1 ≤ J1,0 and
r2 ≤ J2,0, the rate constraints (60) and (61) are satisfied. This
corresponds to Region (i) in Fig. 5. In this case, the solution of
the problem (38)-(42) is the solutions to the problem (57)-(63).

Secondly, due to the additional constraints (60) and (61), the
maximal value of the objective function (57) is smaller than or
equal to that in (38). Thus, if r1+ r2 > J0, the problem (57)-
(63) is infeasible. Moreover, it can be seen from the problem
(43)-(45) that the maximal value of (43) is achieved at Py =
Pr. Thus, the maximal feasible r1 is J1(Pr). Similarly, we
can see from the problem (46)-(47) that the maximum of (46)
is attained when Py = 0. Therefore, the maximal feasible r2
is J2(0). The infeasible combinations of (r1, r2) are shown in
Region (iv) in Fig. 5.

Algorithm 2 Solving the Problem (57)-(63) Based on Algo-
rithm 1
Input: Ps, Pr , r1, r2, ai, i = 1, · · · , N1, and bk, k = 1, · · · , N .
Output: x∗, y∗, z∗, and J(P ∗

y ).
1: Run Algorithm 1 and denote the output of Algorithm 1 as x0,

y0, z0, Py,0, J1,0, J2,0, and J0.
2: Obtain J1(Pr) by solving the problem (43)-(45) with Py = Pr .
3: Calculate J2(0) by solving the problem (46)-(47) with Py = 0.
4: if r1 ≤ J1,0 and r2 ≤ J2,0 then
5: return x∗ = x0, y∗ = y0, z∗ = z0, and J(P ∗

y ) = J0.
6: else if r1 + r2 > J0, or r1 > J1(Pr), or r2 > J2(0) then
7: return Problem infeasible.
8: else if J1,0 < r1 ≤ J1(Pr) then
9: Find Py,r1 , x∗, and y∗ such that J1(Py,r1) = r1 from solving

the problem (43)-(45).
10: Solve the problem (46)-(47) with Py,r1 and obtain z∗ and

J2(Py,r1).
11: if r2 > J2(Py,r1) then
12: return Problem infeasible.
13: else
14: return x∗, y∗, z∗, and J(P ∗

y ) = J(Py,r1).
15: end if
16: else
17: Find Py,r2 and z∗ such that J2(Py,r2) = r2 from solving the

problem (46)-(47).
18: Solve the problem (43)-(45) with Py,r2 and obtain x∗, y∗,

and J1(Py,r2).
19: if r1 > J1(Py,r2) then
20: return Problem infeasible.
21: else
22: return x∗, y∗, z∗, and J(P ∗

y ) = J(Py,r2).
23: end if
24: end if

Thirdly, when J1,0 < r1 ≤ J1(Pr), J1,0 cannot satisfy the
rate constraint (60). Thus, we need to increase Py over Py,0

such that J1(Py) can be increased to satisfy (60). On the other
hand, it can be seen from Fig. 3 that J(Py) decreases with Py

for Py > P ∗
y (i.e., Py,0), which indicates that the increase of

Py relative to Py,0 should be as small as possible. Therefore,
the best Py in this case is to just meet J1(Py) = r1. We denote
such Py as Py,r1 .

This Py,r1 can be efficiently found by a bisection search
[30] over the interval of [Py,0, Pr]. For each attempt of Py , we
solve the problem (43)-(45) with this Py , and check whether
J1(Py) = r1 is met and then adjust the search region according
to the rule of bisection. After Py,r1 is found, we solve the
problem (46)-(47) to obtain J2(Py,r1). If r2 > J2(Py,r1), the
problem (57)-(63) is infeasible. Otherwise, the optimal value
of (57) is J(Py,r1). The feasible (r1, r2) in this case is shown
in Region (iii) in Fig. 5.

Lastly, for J2,0 < r2 ≤ J2(0). Similar to the analysis above,
the best Py is the solution of J2(Py) = r2. We can obtain
such Py , denoted as Py,r2 , through a bisection search over the
interval of [0, Py,0]. Then we solve the problem (43)-(45) to
obtain J1(Py,r2). If r1 < J1(Py,r2), the optimal value of (57)
is J(Py,r2). Otherwise, the problem (57)-(63) is infeasible.
Region (iv) in Fig. 5 illustrates the feasible (r1, r2) in this
case.

In summary, the problem (57)-(63) can be solved based on
which of the four regions (r1, r2) resides in. The proposed
algorithm for solving the problem (57)-(63) is outlined in
Algorithm 2. We would like to note that general nonlinear pro-
gramming tools such as fmincon in Matlab can be employed
to solve the problem (57)-(63). However, as will be shown in
the simulations that the proposed algorithm has a much lower
computational complexity than that of the fmincon tool.

V. NUMERICAL EXAMPLES

In this section, we investigate the performance of the
proposed algorithm through numerical simulations. In the
simulations, we assume that the three nodes are located on
a line where the distance between the source and destina-
tion nodes is fixed to 2L for all simulations. The source-
relay and relay-destination distances are dL and (2 − d)L,
respectively, where 0 < d < 2 is the normalized source-
relay distance. We have d = 1 if the relay node is located
in the middle of the source and destination nodes. The path
loss exponent is η = 3. The entries of the source-relay matrix
H and the relay-destination matrix G have complex Gaussian
distribution with zero mean and variances of 1/(Ns(dL)

η) and
1/(Nr((2− d)L)η), respectively. For the proposed approach,
in the case of r1 = r2 = 0, Theorem 2 is applied for the
subchannel allocation followed by Algorithm 1 for the power
allocation. With r1, r2 > 0, the subchannel allocation scheme
in Section IV-A is applied together with the power allocation
algorithm in Algorithm 2. The SNRs of the first hop and the
second hop channels are defined as SNRs = Ps/(Ns(dL)

η)
and SNRr = Pr/(Nr((2− d)L)η), respectively.

To the best of our knowledge, there is no other work in open
literature which studied the transceiver optimization problem
for the AF MIMO relay system in Fig. 1. Thus, we compare
the proposed algorithm with the following three benchmarking
approaches. In the first approach, exhaustive searching is
employed to obtain the optimal subchannel allocation I and
J , and the Matlab tool ‘fmincon’ for constrained nonlinear
programming is adopted to solve the power allocation problem
(38)-(42) (in case of r1 = r2 = 0) or the problem (57)-
(63) (for r1, r2 > 0). We denote this approach as ‘exhaus-
tive+fmincon’. In the second approach, exhaustive searching
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Fig. 6. Example 1: MI versus SNRs. Ns = 3, Nr = 5, Nd = 5, N1 = 3,
N2 = 2, d = 1, r1 = r2 = 0, and SNRr = 20 dB.

is used for the subchannel allocation, and Algorithms 1 or 2
is adopted for power allocation. For simplicity, the second
approach is denoted as ‘exhaustive+Algoi’, where i is 1 or 2.
In the third approach, a simple time-division multiple access
(TDMA) method with 3-phase time slots is applied for the
AF MIMO relay system in Fig. 1. In particular, during the
first two time slots, the source node sends information to the
destination node via the relay node, and then at the third
time slot, the relay node transmits its own information to
the destination node. Since the TDMA method completes the
communication process in three time slots, a factor of 2/3
needs to be considered when comparing the sum MI of the
TDMA system with that of the proposed system. Unless stated
otherwise, the MI results in the simulations refer to the sum
MI of both the ss and sr links. All simulation results are
averaged through 1000 Monte-Carlo runs.

In the first simulation example, we study the performance
of Algorithm 1 when r1 = r2 = 0. We set Ns = 3, Nr =
5, Nd = 5, N1 = 3, N2 = 2, d = 1, and SNRr = 20
dB. Fig. 6 shows the system MI yielded by Algorithm 1
versus SNRs with the subchannel allocations 1⃝, 2⃝, and
3⃝ in (37). It can be seen from Fig. 6 that when SNRs

increases from 0 dB to 35 dB, the system MI by all three
subchannel allocation schemes increases. When SNRs > 35
dB, the system MI of all three allocation schemes remains
almost unchanged. Such an MI ceiling is caused by the limited
power at the relay node, which will also be observed in the
following numerical examples. We also observe from Fig. 6
that the subchannel allocation 1⃝ achieves the largest MI
among all three schemes throughout the whole SNRs range,
which corroborates Theorem 2. Interestingly, the MI gaps
among three channel allocation schemes diminish as SNRs

increases.
In the second example, we consider the QoS constraints

where r1 = r2 = 0.5 b/s/Hz and we set Ns = 3, Nr =
5, Nd = 5, N1 = 3, N2 = 2, and d = 1. Fig. 7 shows the MI
of the four algorithms versus SNRs when SNRr = 20 dB.
We can observe from Fig. 7 that the proposed algorithm,
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Fig. 7. Example 2: MI versus SNRs. Ns = 3, Nr = 5, Nd = 5, N1 = 3,
N2 = 2, d = 1, r1 = r2 = 0.5 b/s/Hz, and SNRr = 20 dB.
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Fig. 8. Example 2: MI versus SNRr . Ns = 3, Nr = 5, Nd = 5, N1 = 3,
N2 = 2, d = 1, r1 = r2 = 0.5 b/s/Hz, and SNRs = 20 dB.

the exhaustive+fmincon algorithm, and the exhaustive+Algo2
approach almost yield the same system MI at the whole range
of SNRs. In particular, when SNRs < 25 dB, the MI of the
three algorithms increases with SNRs. And the system MI
reaches a ceiling when SNRs > 25 dB. We can also see from
Fig. 7 that due to the 2/3 scaling factor, the TDMA system
has the smallest system MI over the whole SNRs range.

For this example, the system MI of the four algorithms
versus SNRr when SNRs = 20 dB is illustrated in Fig. 8.
It can be seen from Fig. 8 that the proposed algorithm,
the exhaustive+fmincon algorithm, and the exhaustive+Algo2
approach yield almost identical MI and they have a better MI
performance than the TDMA method throughout the SNRr

region. However, different to Fig. 7, the achievable MI of
the four algorithms increases at the whole range of SNRr.
Moreover, the MI gap between the TDMA method and the
other three algorithms increases with SNRr.

In the third example, we investigate the impact of r1 and
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Fig. 9. Example 3: MI versus r1 with fixed H and G. Ns = 3, Nr = 5,
Nd = 5, N1 = 3, N2 = 2, d = 1, r2 = 0.5 b/s/Hz, and SNRs = SNRr =
20 dB.

r2 on the proposed algorithm. We fix the channel matrices
H and G and set Ns = 3, Nr = 5, Nd = 5, N1 = 3,
N2 = 2, d = 1, and SNRs = SNRr = 20 dB. Fig. 9 shows
the MI comparison of the four algorithms versus r1 at r2 = 0.5
b/s/Hz. From Fig. 9, we find that for the proposed algorithm,
the exhaustive+fmincon algorithm, and the exhaustive+Algo2
approach, the achievable system sum MI does not change for
r1 ≤ 7 b/s/Hz as the rate constraint (52) is not active for
these r1. When r1 > 7 b/s/Hz, the constraint (52) becomes
active, and thus, the sum MI decreases with an increasing
r1 in order to satisfy (52). Moreover, we also observe from
Fig. 9 that the exhaustive+Algo2 approach achieves the same
MI as the exhaustive+fmincon algorithm, which indicates that
Algorithm 2 has a similar MI performance as the fmincon
algorithm. However, it will be shown later that Algorithm 2 has
a lower computational complexity than the fmincon algorithm.
This shows that Algorithm 2 is more suitable for practical AF
MIMO relay systems.

It can also be seen from Fig. 9 that the proposed algorithm
achieves the same MI as the exhaustive+fmincon algorithm
and the exhaustive+Algo2 approach when r1 ≤ 8.5 b/s/Hz,
and the former algorithm performs a little worse than the latter
two when r1 > 8.5 b/s/Hz. This is expected based on the
analysis in Section IV-A, where it is mentioned that the pro-
posed subchannel allocation scheme is suboptimal in the case
of large r1. However, it will be shown later that the proposed
subchannel allocation scheme has a much lower computational
complexity than the exhaustive search algorithm. We can also
observe from Fig. 9 that the TDMA method yields the lowest
system MI at various values of r1. Interestingly, in the TDMA
method, the rate constraint of the ss link is not active until
r1 = 7 b/s/Hz. When r1 > 7.5 b/s/Hz, the TDMA method
fails to find the solution.

For this example, the MI of the four algorithms versus r2
at r1 = 0.5 b/s/Hz is shown in Fig. 10. It can be seen from
Fig. 10 that the proposed algorithm, the exhaustive+fmincon
algorithm, and the exhaustive+Algo2 approach exhibit the
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Fig. 10. Example 3: MI versus r2 with fixed H and G. Ns = 3, Nr = 5,
Nd = 5, N1 = 3, N2 = 2, d = 1, r1 = 0.5 b/s/Hz, and SNRs = SNRr =
20 dB.

0 10 20 30 40 50
12

14

16

18

20

22

24

26

28

30

SNR
s
 (dB)

M
ut

ua
l I

nf
or

m
at

io
n 

(b
/s

/H
z)

 

 

Proposed
Exh.+Algo2
Exh.+fmincon
TDMA

Fig. 11. Example 4: MI versus SNRs. Ns = 8, Nr = 10, Nd = 10,
N1 = 5, N2 = 3, d = 1, r1 = r2 = 0.5 b/s/Hz, and SNRr = 20 dB.

same MI performance throughout the whole range of r2, which
corroborates the analysis in Section IV-A. In particular, for
r2 ≤ 12 b/s/Hz, the achievable system sum MI of these
three algorithms does not change as the rate constraint (53)
is not active for these r2. For r2 > 12 b/s/Hz, the constraint
(53) becomes active, and thus the system MI decreases with
increasing r2, in order to satisfy (53). Moreover, the system
MI of the TDMA method is lower than that of the other
three algorithms. Interestingly, different to the other three
algorithms, the MI of the TDMA method does not change
until r2 = 8 b/s/Hz and the solution cannot be found for the
TDMA method when r2 > 8.5 b/s/Hz.

In the next example, we study the MI performance of the
proposed algorithm when the AF MIMO relay system has a
larger dimension. In particular, we set Ns = 8, Nr = 10,
Nd = 10, N1 = 5, N2 = 3, d = 1, and r1 = r2 = 0.5 b/s/Hz.
Fig. 11 shows the MI of the four algorithms versus SNRs

when SNRr = 20 dB. It can be seen that the four curves in
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Fig. 12. Example 4: MI versus SNRr . Ns = 8, Nr = 10, Nd = 10,
N1 = 5, N2 = 3, d = 1, r1 = r2 = 0.5 b/s/Hz, and SNRs = 20 dB.

Fig. 11 display a similar trend to those in Fig. 7. Moreover,
by comparing Fig. 11 with Fig. 7, we can observe that when
N1 and N2 increase, the system MI of the four algorithms
increase and the MI gap between the TDMA method and the
other three algorithms widens.

The system MI achieved by the four algorithms versus
SNRr at SNRs = 20 dB is shown in Fig. 12. We can observe
from Fig. 12 that similar to Fig. 8, the system MI of the
four algorithms increases with SNRr and the TDMA method
performs worse than the other three algorithms throughout the
whole SNRr range. Figs. 11 and 12 clearly demonstrate that
the proposed algorithm works efficiently also in AF MIMO
relay systems with a larger dimension.

In the fifth simulation example, we investigate the MI
performance of the proposed algorithm at various r1 and r2.
We fix H and G and choose Ns = 8, Nr = 10, Nd = 10,
N1 = 5, N2 = 3, d = 1, and SNRs = SNRr = 20 dB. In
Fig. 13, we illustrate the MI of the four algorithms versus r1
when r2 = 0.5 b/s/Hz. It can be seen from Fig. 13 that for the
proposed algorithm, the exhaustive+fmincon algorithm, and
the exhaustive+Algo2 approach, the system sum MI remains
same till r1 = 13 b/s/Hz and after that, the system MI
decreases with increasing r1. Moreover, these three algorithms
yield the same MI when r1 ≤ 15.5 b/s/Hz. When r1 > 15.5
b/s/Hz, the system MI of the proposed algorithm is smaller
than that of the exhaustive searching-based approaches. Dif-
ferent to Fig. 9, the system sum MI achieved by the proposed
algorithm fluctuates when r1 is large. This is caused by the
local optimality of the proposed algorithm at large N1 and N2

as stated in Section IV-A. The TDMA method has a worse MI
performance than the other three algorithms with an active rate
constraint of the ss link after r1 = 11.5 b/s/Hz and fails to
find the solution after r1 = 13 b/s/Hz.

The MI of the four algorithms versus r2 when r1 = 0.5
b/s/Hz is shown in Fig. 14. It can be observed from Fig. 14
that similar to Fig. 10, the proposed algorithm, the exhaus-
tive+fmincon algorithm, and the exhaustive+Algo2 approach
have the same MI performance which is better than that of
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Fig. 13. Example 5: MI versus r1 with fixed H and G. Ns = 8, Nr = 10,
Nd = 10, N1 = 5, N2 = 3, d = 1, r2 = 0.5 b/s/Hz, and SNRs =
SNRr = 20 dB.
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Fig. 14. Example 5: MI versus r2 with fixed H and G. Ns = 8, Nr = 10,
Nd = 10, N1 = 5, N2 = 3, d = 1, r1 = 0.5 b/s/Hz, and SNRs =
SNRr = 20 dB.

the TDMA method for the whole range of r2. Moreover, the
system MI of the former three methods remains unchanged
till r2 = 17 b/s/Hz and then decreases with increasing r2. The
TDMA method has the same system MI till r2 = 11 b/s/Hz
and fails to solve the problem after r2 = 12.5 b/s/Hz.

In the sixth example, we study the impact of relay positions
on the system sum MI. We set Ns = Nr = Nd = 8,
N1 = N2 = 4, r1 = 5.5 b/s/Hz, and r2 = 6.5 b/s/Hz.
Fig. 15 shows the system sum MI achieved by the four
algorithms versus d. We can see from Fig. 15 that the MI
of the four algorithms increases with d. The TDMA method
has a worse MI performance than the other three algorithms
and the MI gap widens when d increases. The reasons are
explained below. As d increases, the gain of the source-relay
channels ai, i = 1, · · · , N1 decreases, while the gain of the
relay-destination links bk, k = 1, · · · , N increases. Thus, the
MI for the signals from the relay node (MIR) increases with
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Fig. 15. Example 6: MI versus d. Ns = Nr = Nd = 8, N1 = N2 = 4,
r1 = 5.5 b/s/Hz, and r2 = 6.5 b/s/Hz.

TABLE I
THE COMPUTATION TIME VERSUS N1 , r1 = r2 = 0.5 b/s/Hz.

N1 1 2 3 4 5 6
Proposed 0.07 0.32 0.40 0.48 0.65 0.81
Exhaustive+Algo2 0.07 1.73 4.33 8.93 18.47 34.03
Exhaustive+fmincon 0.51 2.02 5.53 12.93 26.12 48.66

d. For the TDMA method, the MI for the signals from the
source node (MIS) first increases and then decreases with
an increasing d. Fig. 15 indicates that when MIS decreases
with d, the amount of reduction is smaller than the amount
of increase in MIR. For the other three algorithms, both the
MIS and MIR increase with d. This leads to an increased sum
MI gap between the proposed system and the TDMA method.
We can also observe from Fig. 15 that the proposed algorithm,
the exhaustive+fmincon algorithm, and the exhaustive+Algo2
approach exhibit the same MI performance when d ≥ 0.6
and the proposed algorithm performs a little worse than the
exhaustive searching-based approaches when d < 0.6.

Lastly, we look into the computational cost of the pro-
posed algorithm. We choose an AF MIMO relay system
with Ns = Nr = Nd = 10, N2 = 3, d = 1, and
SNRs = SNRr = 20 dB. Table I shows the computa-
tion time in seconds required by the proposed algorithm,
the exhaustive+fmincon algorithm, and the exhaustive+Algo2
approach at various N1 with r1 = r2 = 0.5 b/s/Hz. It can
be seen from Table I that the computation time required
by all three algorithms increases with N1, as the number
of optimization variables increases with N1. Moreover, we
can observe that the exhaustive+Algo2 approach needs shorter
time than the exhaustive+fmincon algorithm, which indicates
that Algorithm 2 is more computationally efficient than the
fmincon tool. Furthermore, the proposed algorithm requires
much shorter computation time compared with the other two
algorithms, particularly for large N1. This proves that the
subchannel allocation algorithm in Section IV-A is much more
efficient than the exhaustive search approach.

The computation time of the three algorithms with r1 = 8

TABLE II
THE COMPUTATION TIME VERSUS N1 , r1 = 8 b/s/Hz, AND

r2 = 10 b/s/Hz.

N1 1 2 3 4 5 6
Proposed 0.08 0.46 0.41 0.49 0.73 1.00
Exhaustive+Algo2 0.08 1.77 4.28 8.94 18.86 42.30
Exhaustive+fmincon 1.35 2.31 6.08 13.28 26.66 55.95

b/s/Hz and r2 = 10 b/s/Hz at various N1 is shown in
Table II. By comparing Table I with Table II, we find that the
computation time of all three algorithms increases in general
when r1 and r2 increase, which makes the constraints (52) and
(53) stricter. Similar to Table I, we can observe from Table II
that among the three algorithms, the proposed algorithm
requires the shortest time to run. Therefore, considering the
performance-complexity tradeoff, the proposed algorithm is
very useful in practical AF MIMO relay systems.

VI. CONCLUSIONS

We have studied the precoding matrices optimization for a
two-hop AF MIMO relay system, where the relay node concur-
rently transmits its own signals and forwards the source signals
to the destination node. We have derived the optimal structure
of the source and relay matrices for Schur-concave objective
functions, which simplifies the original optimization problem
to a joint subchannel and power allocation problem. Moreover,
QoS constraints have been considered to address the fairness
issue. A primal decomposition based algorithm has been
developed to efficiently solve the power allocation problem.
Simulation results show that compared with the exhaustive
search based channel allocation approach and the general
nonlinear programming based power allocation algorithm, the
proposed subchannel and power allocation algorithms have
a much lower computational complexity with only a small
performance loss.

APPENDIX A
PROOF OF THEOREM 1

Let us introduce the eigenvalue decomposition (EVD) of

A = HBBHHH = UaΛaU
H
a (64)

where Λa is a diagonal matrix with its diagonal elements
sorted in a decreasing order and based on the assumption of
Theorem 1, the dimension of Λa is N1 × N1. Let us also
introduce the following two SVDs

GF1(HBBHHH + INr )
1
2 = Ux1Λx1V

H
x1

(65)

GF2 = Ux2Λx2V
H
x2

(66)

where Λx1 and Λx2 are diagonal matrices with their diagonal
elements sorted in a decreasing order and based on the
assumption of Theorem 1, the dimensions of Λx1 and Λx2

are N1 ×N1 and N2 ×N2, respectively. We can obtain from
(64)-(66) that

[GF1(HBBHHH + INr )
1
2 , GF2] = UxΛxV

H
x (67)

HB = UaΛ
1
2
aV

H
a (68)
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where Va is an N1 ×N1 unitary matrix and

Ux = [Ux1 ,Ux2 ], Λx=

[
Λx1 0
0 Λx2

]
, Vx=

[
Vx1 0
0 Vx2

]
.

(69)
From (64), (65), and (68), we obtain that

GF1HB=Ux1Λx1V
H
x1
(A+ INr )

− 1
2UaΛ

1
2
aV

H
a

=Ux1
Λx1P(Λ−1

a + IN1)
− 1

2VH
a (70)

where P = VH
x1
Ua is an N1 ×N1 matrix. Based on (66) and

(70), we have

[GF1HB, GF2] = UxDVH (71)

where

D =

[
Λx1P(Λ−1

a + IN1)
− 1

2 0
0 Λx2

]
, V=

[
Va 0
0 Vx2

]
.

Using (67) and (71), the MSE matrix (8) can be written as

E= IN −VDHUH
x (INd

+UxΛ
2
xU

H
x )−1UxDVH

= IN −VDH((UH
x Ux)

−1 +Λ2
x)

−1DVH

= IN −VDH(Λ−2
x −Λ−2

x (Λ−2
x +UH

x Ux)
−1Λ−2

x )DVH

= IN −VDHΛ−2
x DVH

+VDHΛ−2
x

(
Λ−2

x1
+ IN1 UH

x1
Ux2

UH
x2
Ux1 Λ−2

x2
+ IN2

)−1

Λ−2
x DVH (72)

where the identity of

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1

is used to obtain the third equation. It can be seen from (72)
that the optimal Ux1 and Ux2 that minimize f(d(E)) satisfy

UH
x1
Ux2 = 0. (73)

Therefore, Ux in (69) is an Nd×N semi-unitary matrix with
UH

x Ux = IN . It will be shown later that while the constraint
(12) does not depend on Ux, (73) is also optimal for the
constraint (13).

Based on (73), (72) can be written as

E = IN −V

[
D1 0
0 D2

]
VH (74)

where

D1 = (Λ−1
a +INr )

− 1
2PH(IN1+Λ−2

x1
)−1P(Λ−1

a +INr )
− 1

2 (75)

D2 = (IN2 +Λ−2
x2

)−1. (76)

Similar to the Appendix in [10], it can be proven from (74)
and (75) that to optimize (11) for a Schur-concave f(·), there
are P = IN1 (i.e., Vx1 = Ua) and V = IN (i.e., Va = IN1

and Vx2 = IN2). As will be shown later, such Vx1 , Vx2 , and
Va do not affect the constraints (12) and (13).

It can be shown that (68) is valid if and only if (U⊥
h )

HUa =
0, where U⊥

h denotes the left singular vectors of H associated
with the zero singular values, and we find that among the
possible solutions of B, the optimal B which minimizes
tr(BBH) is given by

B = VhΛ
−1
h UH

h UaΛ
1
2
aV

H
a . (77)

From (77), we have

tr(BBH) = tr(Λ
1
2
aU

H
a UhΛ

−2
h UH

h UaΛ
1
2
a ). (78)

Note that (78) does not depend on Ux, Vx, and Va. Based
on [24, 9.H.1.h], the optimal Ua that minimizes (78) is Ua =
Uh,m. Thus, from (77) and Va = IN1 , the optimal B is B =

Vh,mΛ−1
h,mΛ

1
2
a . Therefore, we prove the optimal structure of

B in (14) with Λb = Λ−1
h,mΛ

1
2
a .

Similarly, we obtain that (65) and (66) hold if and only if
(U⊥

g )
HUx = 0, where U⊥

g denotes the left singular vectors
of G associated with the zero singular values, and among
the possible solutions of F1, the optimal F1 minimizing
tr(F1(HBBHHH + INr )F

H
1 ) is

F1 = VgΛ
−1
g UH

g Ux1Λx1V
H
x1
Ua(Λa + IN1)

− 1
2UH

a . (79)

From (66), the optimal F2 minimizing tr(F2F
H
2 ) is given by

F2 = VgΛ
−1
g UH

g Ux2Λx2V
H
x2
. (80)

Based on (79) and (80), the power consumption at the relay
node is given by

tr(F1(HBBHHH + INr )F
H
1 + F2F

H
2 )

= tr(Λ−1
g UH

g UxΛ
2
xU

H
x UgΛ

−1
g ). (81)

Note that (81) does not depend on Vx and Va. Based on [24,
9.H.1.h], the optimal Ux that minimizes (81) is

Ux = Ug,mΠ (82)

where Π is an N × N permutation matrix such that the
diagonal elements of ΠΛxΠ

T are sorted in a decreasing order.
Therefore, from (69) and (82), we have

Uxi = Ug,mΠi, i = 1, 2 (83)

where Π1 and Π2 contain the first N1 and the last N2 columns
of Π, respectively. Obviously, Ux1 and Ux2 in (83) satisfy
(73).

From (79), (83), and Vx1 = Ua = Uh,m, we have

F1 = Vg,1Λ
−1
g,1Λx1(Λa + IN1)

− 1
2UH

h,m

where Vg,1 = Vg,mΠ1 and Vg,m contains N columns of
Vg associated with the largest N singular values of G. Thus,
the optimal structure of F1 in (14) is proven with Λf1 =
Λ−1

g,1Λx1(Λa+IN1)
− 1

2 . Similarly, from (80), (83), and Vx2 =
IN2 , we have

F2 = Vg,2Λ
−1
g,2Λx2

where Vg,2 = Vg,mΠ2. Therefore, we prove the optimal
structure of F2 in (14) with Λf2 = Λ−1

g,2Λx2 .

APPENDIX B
PROOF OF THEOREM 2

Let us introduce ξi = aixi

1+aixi+bIi
yi

, i = 1, · · · , N1.
Obviously, for any xi > 0 and yi > 0, there is 0 < ξi < 1. For
any x satisfying (32) and (34), and any I and J satisfying
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(36), the problem (31)-(36) reduces to a problem of optimizing
y and z given by

max
y,z

N1∑
i=1

log2(1 + ξibIi
yi) +

N2∑
j=1

log2(1 + bJj
zj) (84)

s.t.

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (85)

yi > 0, i = 1, · · · , N1, zj > 0, j = 1, · · · , N2.(86)

The problem (84)-(86) has the well-known water-filling solu-
tion given by

yi = µ− 1

ξibIi

, i = 1, · · · , N1 (87)

zj = µ− 1

bJj

, j = 1, · · · , N2 (88)

where µ satisfies the following equation

N1∑
i=1

(
µ− 1

ξibIi

)
+

N2∑
j=1

(
µ− 1

bJj

)
= Pr. (89)

From (87) and (88), the maximum of (84) can be written as

M1 =

N1∑
i=1

log2(ξibIiµ) +

N2∑
j=1

log2(bJjµ). (90)

By solving (89), we obtain

µ =
1

N

Pr +

N1∑
i=1

1

ξibIi

+

N2∑
j=1

1

bJj

 . (91)

Now we show that if we swap bIi with bJj where bIi < bJj

then the maximal value of the objective function (84) will
decrease. Without loss of generality, we assume that bI1 < bJ1

and bI1 is swapped with bJ1 . After the swapping operation,
the problem (84)-(86) becomes

max
y,z

N2∑
i=2

log2(1 + ξibIiyi) + log2(1 + ξ1bJ1y1)

+

N2∑
j=2

log2(1 + bJjzj) + log2(1 + bI1z1) (92)

s.t.

N1∑
i=1

yi +

N2∑
j=1

zj ≤ Pr (93)

yi > 0, i = 1, · · · , N1, zj > 0, j = 1, · · · , N2.(94)

The solution to the problem (92)-(94) is given by

y1 = ν − 1

ξ1bJ1

, z1 = ν − 1

bI1

(95)

yi = ν − 1

ξibIi

, i = 2, · · · , N1 (96)

zj = ν − 1

bJj

, j = 2, · · · , N2 (97)

where ν satisfy the following equation

ν − 1

ξ1bJ1

+

N1∑
i=2

(
ν − 1

ξibIi

)

+ν − 1

bI1

+

N2∑
j=2

(
ν − 1

bJj

)
= Pr. (98)

From (98), we obtain

ν =
1

N

Pr +
1

ξ1bJ1

+

N1∑
i=2

1

ξibIi

+
1

bI1

+

N2∑
j=2

1

bJj

 . (99)

By substituting (95)-(97) back into (92), the maximum of (92)
can be written as

M2 =

N1∑
i=2

log2(ξibIiν) +

N2∑
j=2

log2(bJjν)

+log2(ξ1bJ1ν) + log2(bI1ν). (100)

Based on (91) and (99), we have

µ− ν =
1

N

(
1

ξ1bI1

+
1

bJ1

− 1

ξ1bJ1

− 1

bI1

)
=

1

N

(
1

ξ1
− 1

)(
1

bI1

− 1

bJ1

)
> 0. (101)

From (90), (100), and (101), we can see that

M1 −M2 = N log2

(µ
ν

)
> 0. (102)

Through (102), we can conclude that for the problem (31)-
(36), the maximum of (31) is achieved when the N2 largest
bi, i = 1, · · · , N2 are allocated to sr, i.e., J = {1, · · · , N2}
and I = {N2 + 1, · · · , N}, because any swap between such
bIi with such bJj decreases the maximum of (31).

APPENDIX C
PROOF OF THEOREM 3

With a given x satisfying (44), the problem (43)-(45)
becomes

max
y

N1∑
i=1

log2

(
1 +

aixibIiyi
1 + aixi + bIiyi

)
(103)

s.t.

N1∑
i=1

yi ≤ Py, yi > 0, i = 1, · · · , N1. (104)

Let us define g(yi) = log2(1 +
aixibIi

yi

1+aixi+bIi
yi
). The second-

order derivative of g(yi) can be calculated as

∇2g(yi) =
−aixib

2
Ii
(2 + aixi + 2bIiyi)

ln2 (1 + aixi + bIiyi)
2
(1 + bIiyi)

2 . (105)

It can be seen that ∇2g(yi) ≤ 0. Thus the problem (103)-
(104) is a convex problem. According to [30, 5.6.1], J1(Py)
is a convex function of Py with any given x satisfying (44).

Since the problem (46)-(47) is a convex problem. Based on
[30, 5.6.1], J2(Py) is a convex function of −Py . Since the
negative sign of a variable does not change the convexity of
a function, we find that J2(Py) is a convex function of Py .
Therefore, J(Py) = J1(Py) + J2(Py) is a convex function of
Py with any given x satisfying (44).
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