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Summary

From P-wave traveltime measurements in a sphesicake
sample at 40 MPa we find the symmetry axis. We
transform the ray velocities from the measurement
coordinate system to the symmetry axis coordingsées.
Assuming transverse isotropy symmetry, we estintiage
elasticity tensor using a very fast simulated alinga
algorithm followed by a quasi Newton method.

Introduction

Due to sedimentation pattern of clay minerals, ehal
formations generally show transverse isotropy (Whh
vertical axis of symmetry. The main motivation dfist
study is to understand the seismic anisotropy a th
overburden shale. Geological formations in the aegi
under study are generally experiencing a horizosttass
field. This stress field may cause azimuthal anignt by
either tilting the symmetry axis of shale formasoand/or
causing the directional planes of weakness. Toachearize
the seismic anisotropy, we have used P-wave tieest
from a spherical shale core sample from the top sénd
reservoir. Unlike others, e.g Delinger (2005) avdstrum
and Brown (1994), we find the symmetry axis finstlahen
invert for elasticity parameters to reduce the dewxipy of
the inversion. Assuming Tl symmetry, we have estta
the elasticity tensor using the Simulating Anneglin

followed by quasi Newton algorithm

Sample preparation and measur ement

To prepare a spherical sample, a core sample whed
in different directions to obtain a sphere with &n in

diameter. The spherical sample has been placecgsyre
chamber to measure the ultrasonic velocities inrgad
range of confining pressures from ambient pressuf0

MPa. Traveltimes was measured over the sphericaplea
at every 15 degrees in azimuthal and polar dirastigsing
the transducers at resonant frequency of 2 MHzufeid ).

This acquisition pattern produced 132 records afave

traveltimes.

Estimation of major symmetry axis

To find the symmetry axis of a Tl medium, we use th
invariance of ray velocityv along the azimuthal direction,
expressed by equation (1). To find the axis, wenfan
objective functiorSgiven by equation (2). This requites

Figure 1: This A schematic of measurements lonatian
the sphere

transforming the data from the measurement cocdiekna
(a, B) to the symmetry axis coordinate8 (¢ ) given by
equations (3), (4), and (5) with symmetry axis cliwates
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dB/0¢ and da/dg are given in equations (6) and (7).

av/aa and av/aﬁcan be calculated numerically using

the finite difference from measured ray velocitésng the
azimuthal and polar directions. Due to lack of dataise
the four-term finite difference, we interpolate thay
velocities along the polar angle over a sphere it
smaller grids using the linear triangularizationaafjacent
points. Transformation from measurement coordinate
system to symmetry axis coordinate system is ithistl by
Figure 2.

%z—cosﬁo sin, cosr+ cog, c¢& sin, (6)
a—azﬁtana tang + sir%ao sirﬁ0+

op 09 @
cos2 ag sinﬂo— cos coﬁoie;r;’z

Isotropy planes

Axis of symmetry

Measurement coordinate system —— Symmetry axis coordinate system

Figure 2: Measurement and symmetry axis coordinate
systems after rotatidwr,, 3,) .

The objective functionSis 2-dimensional and the direct
searching of the model space could be used to tfied
solution instead of using other minimization algjom. We

drew prior values ofa, and g from a uniform grid

(0 sa <2m, w2 <l 2) and plotted  the

objective function in Figure 3. We used the rayocéles
measured at 40 MPa pressure which is close tostittio
pressure at the depth where the sample was takem fr
Figure 3 shows two minima &, where the smaller was
considered as the true solution. The symmetry tikiss

given by =2, a, =84 (Figure 4).
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Figure 3: Model space of the objective functiSn

Figure 4: The rotation of symmetry axis with redptr
normal to bedding plane.

Ray and phase velocities and anglesin T1 medium

Phase velocityv for a quasi P-wave can be simply found
by solving the Christoffel's equations for a Tl med. We
use the same notation as given in Slawinski (2003),

v =( C -C)r+C,+ C44+\/Z)/2p , ®)
a=((c,-c)n-c-c) —4(C33C44n§ -
-(2¢,.C,, - C,C* C) i1~ A)+

C.C.(1- n§)2) , ©)
n, =cosd, (10)

where C, are the elasticity coefficientsp is the density,
I}

and & is the phase angle. Hereafter we use normalized
elasticity coefficients by density and wherever ngéer to

elasticity coefficientsC , they indeed ar€ / p.
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Because energy propagates with ray velocity, wethee
following equation to relate ray and phase velesiti

V=V +(av/ae), (11)
where av/ 06 can be expressed as a function of directional

cosinen,,
av/06 = —\J1- 1’ dy/an,, 12)

6v/ on is the derivative of phase velocity (8) with respec

to directional cosinen, . To expressn, as a function of ray
angle and ray velocity, we follow the same approgigken

in Ursin and Hokstad (2003),
dinv dinvY
® , (13)
da da
where a is the ray angled In V/ da can be simply found

numerically using a four-term finite difference ogi®r.
Noise in measurements may cause instability in micale
differentiation. Hence, we fit a high order polynaito the
measured ray velocities and constrain it by
av/oa| =0, ov/oa

measured ray velocities in symmetry axis coordinate

n = (cosa + siny

=0. Figure 5 shows

a=180

system in azimutt5 . Figure 6 shows the numerically and
analytically (polynomial fitting) calculated phaaagles as
a function of ray angle. The imposed constrain Itesn
more stable phase angles.
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Figure 5: Measured and polynomial fitted ray vetiesi
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Figure 6: Numeric and analytically computed phasgies
Inver se modeling and results
A quadratic objective function, without imposingecific

model space structure given by Tarantola (2005), foa
used to minimize the residual error as:

YY) e (v-ve). as

i=1 j=1

f=

N |-

where i and j correspond to azimuth and polar angles
respectively. N and M are number of interpolated ray
velocities V in symmetry axis coordinate over the entire

azimuth and polar angle< _is the covariance matrix of

the data. We assume there is no correlation betwsen
data, hence, the off-diagonal elements of covaeanatrix
are zero. The diagonal elements or the variancekl dme
the errors in picking the traveltimes or here, erio
measuring the ray velocities.

To minimize the objective function (14), we implemed
two different inversion algorithms. A very fast silated
annealing (VFSA) algorithm (Stofa and Sen, 1995% wa
used initially to get a solution close to globalnimium
from a prior model randomly drawn from a wide range

uniform distribution for three elasticity coefficits C_,

C,,and C_. Without the shear wave velocities it is not

possible to uniquely estimatg_ and C . Hence, we kept

C,, constant during the minimization. A prior value fGr,

was estimated from the converted shear waves frf8R
survey. Following the VFSA we implemented a quasi
Newton algorithm with BFGS method (Press et alQ20
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Nocedal and Wright, 1999) with a prior model settha
solution which was found from VFSA, to reach the@x
solution quickly. Using an iterative scheme we updhe
prior model vectorm according to:

m,=m-a GO G e (15)

where, C is the covariance matrix for model parameters,

eis the residual vector and it is the differencewsen
measured and computed ray velocitiesis the step length
and could be computed either by inexact line searitbria
such as Wolfe conditions (Nocedal and Wright, 1968)
exact methods such as Brent algorithm (Press,e2G02).

Of is the derivative of the objective function withspect

to model parameters (16) andis transpose operator. In
practice, we assume that the data, as well as model
parameters are independent, hence, the correlagittveen

two different elements is zero. So, the covariamegrices

of model C, and dataC_ are diagonal and contain the

variances. Since we assume th@tis proportional to

identity matrix, we look at the product of gradient f and

data residual vectoe = V, - Vsyn.

of S}

—=0je=-2.> —e, (16)
anl =1 j=1 am(

where the indices , j vary over the number of azimuth
and polar angles, ankl over model parameters.

Following are the normalized elasticity tensor etets and
Thomsen anisotropy parameters for the sample MR&:

C =13.43GPa, C,=6.68GPa, C, =9.48GPa,

0=0.20, and £ =0.21, where C,, = 2.25GPa

Figure 7 shows the measured ray velocities in the
symmetry axis coordinate system and Figure 8 shbes
residuals in the same coordinate system. As caseka
from these figures, Tl symmetry may not be a good
approximation, hence a lower symmetry class, sugh a
tetragonal or orthorhombic, may need to be consitler
However, this would require shear wave traveltinass
well.

Conclusions

We have estimated the elasticity tensor for a spaleshale
sample using the measured ultrasonic P-wave timastin
different azimuth and polar angles. Because ofzZootal
stress field, shale formation may not be approx@uaby
transverse isotropy symmetry well and lower symiestr
may need to be considered. We have used a global
optimization approach using Simulated Annealingolihis
followed by local optimization method using the sgua
Newton algorithm.
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Figure 7: Measured ray velocities in symmetry axis

coordinate system.
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Figure 8: Residual ray velocities
coordinate system coordinate

in symmetry axis
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