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Abstract

In this paper, we consider a parameter identification problem involving a time-
delay dynamical system, in which the measured data are stochastic variable.
However, the probability distribution of this stochastic variable is not available
and the only information we have is its first moment. This problem is formulat-
ed as a distributionally robust parameter identification problem governed by a
time-delay dynamical system. Using duality theory of linear optimization in a
probability space, the distributionally robust parameter identification problem,
which is a bi-level optimization problem, is transformed into a single-level op-
timization problem with a semi-infinite constraint. By applying problem trans-
formation and smoothing techniques, the semi-infinite constraint is approximat-
ed by a smooth constraint and the convergence of the smooth approximation
method is established. Then, the gradients of the cost and constraint func-
tions with respect to time-delay and parameters are derived. On this basis,
a gradient-based optimization method for solving the transformed problem is
developed. Finally, we present an example, arising in practical fermentation
process, to illustrate the applicability of the proposed method.

Key words: Parameter identification; distributionally robust optimization;
duality theory; time-delay system; semi-infinite optimization

1. Introduction

The study of the distributionally robust programming (i.e., without dynam-
ical system constraints) can be traced back to the work for the newsboy prob-
lem reported in [1], where only the first-order and second-order moments are
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available for the uncertain parameters involved. Distributionally robust pro-
gramming problem with the first-order and second-order moments information
is transformed into a series of deterministic quadratic programming problem-
s in [2]. Distributionally robust optimization under moment uncertainty with
application to data-driven problems is investigated in [3]. By using duality the-
ory [4], a distributionally robust programming problem is transformed into a
tractable semi-definite programming problem. A general framework is proposed
for the modelling of distributionally robust programming in [5], where tractable
conditions are derived for the problem. An entropy approximation method is
developed for a class of distributionally robust programming problems in [6].
The convergence analysis is studied for distributionally robust optimization and
equilibrium problem in [7]. However, for all these studies, the distributionally
robust problems do not include dynamical systems. Recently, the work in [8] is
a study of the distributionally robust control of linear time-invariant discrete-
time systems. A distributionally robust control problem of linear discrete-time
system arising in signal processing is studied in [9]. However, for the distri-
butionally robust optimization problem involving continuous-time dynamical
system, it is still in its infancy. The main difficulties are: (i) continuous-time
dynamical system constraint cannot be expressed as a finite number of equal-
ity constraints as in the case of discrete-time system; and (ii) the inner-level
objective is expressed in the form of mathematical expectation of a non-convex
functional due to the presence of the continuous-time dynamical system.

An optimal parameter identification problem is a type of optimal control
problem in which some parameters need to be chosen subject to a given dy-
namic system. This paper is concerned with parameter identification for non-
linear time-delay systems, in which the time-delay and some other parameters
are needed to be identified. Parameter identification for time-delay systems
has attracted considerable research interest over the past years; see, for ex-
ample [10, 11]. A gradient-based optimization approach is proposed in [12, 13],
where the estimate of the unknown model parameters and time-delay is achieved
through minimizing the deviation between predicted and measured system out-
put. A parameter identification scheme for a time-delay system arising from
the study of microbial batch fermentation is developed in [14]. However, the
presence of noise in the measurement data is not taken into account in the above
parameter identification problems, i.e., the output measurements used in those
cost functions are assumed to be exact. In fact, it is impossible to measure the
output data accurately in a real system. As a result, computational methods for
parameter estimation with noisy measurements are proposed in [15, 16]. Howev-
er, in those parameter estimation problems, it is assumed that the distributions
of output measurements are exactly given.

In a real practical system, the probability distribution of the output measure-
ment data is usually not available. Only partial statistical knowledge is known.
This motivates the study of this paper. We consider a distributionally robust
parameter identification problem governed by a time-delay dynamical system,
in which the optimization objective is divided into two levels: (i) the inner-level
is to maximize the deviation between measured and predicted system outputs
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with respect to the probability distribution of the measured output; and (ii) the
outer-level is to minimize with respect to the time-delay and parameters. By
applying the duality theory, the distributionally robust parameter identification
problem is transformed into a single-level optimization problem with a semi-
infinite constraint. By problem transformation and smoothing techniques [17],
the semi-infinite constraint is approximated by a smooth constraint and the con-
vergence of the smooth approximation is established. Furthermore, a gradient-
based optimization method for solving the transformed problem is developed.
Numerical example illustrates the applicability of the proposed method.

The rest of this paper is organised as follows. The problem formulation is
described in Section 2. The transformation procedure, which includes duality
theory and smoothing technique, is given in Section 3. A gradient-based com-
putational procedure is developed in Section 4. A numerical example is given
in Section 5. Finally, Section 6 concludes the paper.

2. Problem formulation

Consider the following time-delay dynamical system

{

ẋ(t) = f(x(t),x(t − τ), q), t ∈ (0, T ],

x(t) = φ(t, q), t ≤ 0,
(1)

where x(t) ∈ R
n is the state vector; τ ∈ R is a time-delay; q ∈ R

r is the
unknown parameter vector; T is a given terminal time; f : Rn ×R

n ×R
r → R

n

is a given continuously differentiable function; and φ : R×Rr → Rn is a given
history function. For system (1), we assume that the output function y(t) ∈ R

p

is given by the following equation:

y(t) = g(x(t)), t ∈ [0, T ], (2)

where g : Rn → R
p is a given continuously differentiable function.

In system (1), time-delay τ and parameter vector q are unknown and need
to be estimated. Suppose that

τ ∈ T := [0, τ̂ ],

where τ̂ > 0 is a given upper bound. Furthermore, we assume that

q ∈ Q := {q : cj ≤ qj ≤ dj , j = 1, 2, . . . , r},

where cj and dj are given constants such that cj < dj . Any pair (τ, q) ∈ T ×Q
is called an admissible delay-parameter pair.

Let x(·|τ, q) denote the solution of time-delay system (1) corresponding to
each (τ, q) ∈ T ×Q. Furthermore, let y(·|τ, q) denote the corresponding output
obtained by substituting x(·|τ, q) into (2). Our goal is to estimate the unknown
pair (τ, q) ∈ T ×Q such that the deviation between the system output y(·|τ, q)
and the measured output is minimized at a set of sample times. In a real
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practical situation, the measured output, which is obtained through experiment
at a set of sample times, can not be exact since experiment data always contain
some noises. Thus, in this paper, the measured output vector z̃ is regarded as
a stochastic variable with its first-order moment given by

EP[z̃] = µ, (3)

where EP denotes the expectation under probability distribution of P; z̃ :=
((z̃1)⊤, . . . , (z̃l)⊤)⊤ = (z̃11 , . . . , z̃

1
p, . . . , z̃

l
1, . . . , z̃

l
p)

⊤ ∈ R
lp; µ := (µ1

1, . . . , µ
1
p, . . . ,

µl
1, . . . , µ

l
p)

⊤ ∈ R
lp; and z̃k is the output vector at sample time tk, k = 1, 2, . . . , l,

such that 0 ≤ t1 < · · · < tl ≤ T . Let Ω be the support set of z̃ defined by

Ω := {z̃ ∈ R
ln : akh ≤ z̃kh ≤ bkh, k = 1, 2, . . . , l, h = 1, 2, . . . , p}, (4)

where akh and bkh are given constants such that akh < bkh. Furthermore, let F be
the ambiguity set of probability measures of z̃ defined by

F := {P : P(z̃ ∈ Ω) = 1,EP[z̃] = µ}. (5)

We use the following least-squares error function to measure the deviation be-
tween the system output and measurement data:

J(τ, q, z̃) =

l
∑

k=1

‖y(tk|τ, q)− z̃k‖2, (6)

where ‖ · ‖ denotes the Euclidean norm. However, z̃ is a stochastic variable
for which its probability distribution is not known exactly. Note that we only
know that the probability distribution P of the stochastic variable z̃ is in the
ambiguity set F . Thus, we consider the worst-case scenario of J(τ, q, z̃)

max
P∈F

EP[J(τ, q, z̃)]. (7)

Then, our distributionally robust parameter identification problem can be stated
as follows.
Problem (A). Given the time-delay system (1), choose an admissible delay-
parameter pair (τ, q) ∈ T ×Q such that (7) is minimized.

3. Problem transformation

Problem (A) is a bi-level optimization problem involving a nonlinear time-
delay system. In this section, we shall transform it into a deterministic single-
level optimization problem.

3.1. Single-level optimization problem

The inner-level optimization of Problem (A) can be explicitly written as

(IA) max
P

EP[J(τ, q, z̃)]

s.t. EP[z̃] = µ,

P(z̃ ∈ Ω) = 1.
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Note that (IA) is an optimization problem with respect to a probability mea-
sure P ∈ F on support set Ω. For convenience of discussion, we only consider
discrete or absolutely continuous stochastic variable, i.e., the expectation can
be expressed by Lebesgue integral. Then, (IA) can be written as

(IA′) max
P

∫

Ω

J(τ, q, z̃)dP

s.t.

∫

Ω

z̃dP = µ,

∫

Ω

1(z̃∈Ω)dP = 1.

Using the duality theory of linear optimization in probability spaces [18], the
dual problem of (IA′) is

(DIA) min
β∈Rln,γ∈R

γ + µ⊤β

s.t. z⊤β + γ ≥ J(τ, q, z̃), ∀z ∈ Ω, (8)

where β = (β1
1 , . . . , β

1
p, . . . , β

l
1, . . . , β

l
p)

⊤ ∈ R
lp and γ ∈ R are dual variables;

and J(τ, q, z̃) is as defined in (6).
In (DIA), the constraint (8) is a semi-infinite constraint, and

(8) ⇐⇒
l

∑

k=1

p
∑

h=1

(zkh)
2 −

l
∑

k=1

n
∑

h=1

(2yh(tk|τ, q) + βk
h)z

k
h − γ +

l
∑

k=1

p
∑

h=1

(yh(tk|τ, q))2

≤ 0, ∀zkh ∈ [akh, b
k
h], k = 1, 2, . . . , l, h = 1, 2, . . . , p

⇐⇒ max
z∈Ω

{

l
∑

k=1

p
∑

h=1

[

(zkh)
2 − (2yh(tk|τ, q) + βk

h)z
k
h + (yh(tk|τ, q))2

]}

− γ

≤ 0. (9)

Due to the separability of the variables zkh, k = 1, 2, . . . , l, h = 1, 2, . . . , p, the
semi-infinite constraint (9) can be equivalently written as

l
∑

k=1

p
∑

h=1

max
zk

h
∈[ak

h
,bk

h
]

{

(zkh)
2 − (2yh(tk|τ, q) + βk

h)z
k
h+

+ (yh(tk|τ, q))2
}

− γ ≤ 0

⇐⇒
l

∑

k=1

p
∑

h=1

max
{

(akh)
2 − (2yh(tk|τ, q) + βk

h)a
k
h + (yh(tk|τ, q))2,

(bkh)
2 − (2yh(tk|τ, q) + βk

h)b
k
h + (yh(tk|τ, q))2

}

− γ ≤ 0. (10)

It is easy to show that

max{κ, ν} =
κ+ ν

2
+

|κ− ν|
2

. (11)
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Hence,

(10) ⇐⇒1

2

l
∑

k=1

p
∑

h=1

{

(akh)
2 + (bkh)

2 − (2yh(tk|τ, q) + βk
h)(a

k
h + bkh)+

2(yh(tk|τ, q))2 + |(akh − bkh)(a
k
h + bkh − 2y(tk|τ, q)− βk

h)|
}

− γ

≤ 0. (12)

Now, we denote the constraint (12) by u(τ, q,β, γ):

u(τ, q,β, γ)

:=
1

2

l
∑

k=1

p
∑

h=1

{

w(yh(tk|τ, q), βk
h) + |v(yh(tk|τ, q), βk

h)|
}

− γ ≤ 0, (13)

where

w(yh(tk|τ, q), βk
h) :=(akh)

2 + (bkh)
2 − (2yh(tk|τ, q) + βk

h)(a
k
h + bkh)

+ 2(yh(tk|τ, q))2,
v(yh(tk|τ, q), βk

h) :=(akh − bkh)(a
k
h + bkh − 2y(tk|τ, q)− βk

h).

Furthermore, let

J̃(β, γ) := γ + µ⊤β. (14)

Then, the distributionally robust parameter identification Problem (A) can be
transformed into the following single-level optimization problem.
Problem (B). Given the time-delay system (1), choose a (τ, q,β, γ) ∈ T ×Q×
R

lp × R such that the cost function (14) is minimized subject to the constrain-
t (13).

3.2. Smoothing technique

Note that the second term in the constraint (13) is non-smooth in τ, q and
β. Any gradient-based optimization algorithm would have difficulty in solv-
ing Problem (B) directly. To overcome this difficulty, we will transform the
constraint (13) by the smoothing technique.

To begin with, we introduce a smooth function:

ψǫ(̟) =
√

̟2 + ǫ, (15)

where ǫ > 0 is an adjustable parameter. It can be easily shown that the function
ψǫ satisfies the following properties.

Lemma 1. For any ̟ ∈ R and ǫ > 0, ψǫ(̟) has the following properties:
a). lim

ǫ→0+
ψǫ(̟) = |̟|;

b). ψǫ(̟) > 0;
c). ψ′

ǫ(̟) < 1;
d). 0 < ψǫ(̟)− |̟| ≤ √

ǫ.
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Proof. The proof is similar to that given for Lemma 2 in [19].

Based on Lemma 1, the non-smooth constraint (13) can be approximated
by the following smooth constraint:

uǫ(τ, q,β, γ)

:=
1

2

l
∑

k=1

p
∑

h=1

{

w(yh(tk|τ, q), βk
h) + ψǫ(v(yh(tk|τ, q), βk

h)
}

− γ ≤ 0. (16)

Thus, Problem (B) is transformed into a smooth optimization problem as fol-
lows.
Problem (C). Given the time-delay system (1), choose a (τ, q,β, γ) ∈ T ×Q×
R

lp × R such that the cost function (14) is minimized subject to the constrain-
t (16).

Let

F := {(τ, q,β, γ) ∈ T ×Q× R
lp × R : u(τ, q,β, γ) ≤ 0},

Fǫ := {(τ, q,β, γ) ∈ T ×Q× R
lp × R : uǫ(τ, q,β, γ) ≤ 0}.

Furthermore, we assume that F satisfies the following conditions:
(H1). int(F) 6= ∅, where int denotes the interior.
(H2). For the optimal solution (τ∗, q∗,β∗, γ∗) of Problem (B), there exists a
(τ̄ , q̄, β̄, γ̄) such that ι(τ̄ , q̄, β̄, γ̄)+ (1− ι)(τ∗, q∗,β∗, γ∗) ∈ int(F) holds for each
ι ∈ (0, 1].

Under assumptions (H1) and (H2), we obtain the following convergence the-
orems.

Theorem 1. For each ǫ > 0, the optimal solution of Problem (C) is feasible
for Problem (B).

Proof. For any ǫ > 0, suppose that (τ∗ǫ , q
∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) ∈ Fǫ is the optimal solution

of Problem (C). Then, uǫ(τ
∗
ǫ , q

∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) ≤ 0 holds. By Lemma 1, we can obtain

that u(τ∗ǫ , q
∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) ≤ uǫ(τ

∗
ǫ , q

∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) ≤ 0. Thus, (τ∗ǫ , q

∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) ∈ F .

Theorem 2. Suppose that (τ∗, q∗,β∗, γ∗) ∈ F is an optimal solution of Problem
(B). For ǫ > 0, let (τ∗ǫ , q

∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) ∈ Fǫ denote an optimal solution of Problem

(C). If ǫ→ 0+, then (τ∗ǫ , q
∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) → (τ∗, q∗,β∗, γ∗).

Proof. Under assumptions (H1) and (H2), since (τ∗, q∗,β∗, γ∗) ∈ F is an opti-
mal solution of Problem (B), there exists a (τ̄ , q̄, β̄, γ̄) ∈ int(F) such that for
all ι ∈ (0, 1],

(τι, qι,βι, γι) := ι(τ̄ , q̄, β̄, γ̄) + (1 − ι)(τ∗, q∗,β∗, γ∗) ∈ int(F). (17)

Furthermore, for any ε1 > 0, there exists a ι1 ∈ (0, 1] such that for all ι ∈ (0, ι1),
we have

J̃(β∗, γ∗) ≤ J̃(βι, γι) ≤ J̃(β∗, γ∗) + ε1. (18)

7



Set ι2 = ι1/2, then by (17), we have (τι2 , qι2 ,βι2 , γι2) ∈ int(F). So there exists
an ε2 > 0 such that u(τι2 , qι2 ,βι2 , γι2) < −ε2. By Lemma 1,

lim
ǫ→0+

uǫ(τι2 , qι2 ,βι2, γι2) = u(τι2 , qι2 ,βι2, γι2).

Hence, for any ε3 > 0, there exists an ǫ0 > 0 such that for each 0 < ǫ < ǫ0

uǫ(τι2 , qι2 ,βι2 , γι2) < u(τι2 , qι2 ,βι2 , γι2) + ε3.

Set ε3 = ε2, then we have uǫ(τι2 , qι2 ,βι2 , γι2) < 0. Since (τ∗ǫ , q
∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) is the

optimal solution of Problem (C), we have

J̃(β∗
ǫ , γ

∗
ǫ ) ≤ J̃(βι2 , γι2). (19)

By Theorem 1, (τ∗ǫ , q
∗
ǫ ,β

∗
ǫ , γ

∗
ǫ ) is also feasible for Problem (B), so

J̃(β∗, γ∗) ≤ J̃(β∗
ǫ , γ

∗
ǫ ). (20)

Combined with (18), (19) and (20), we have

J̃(β∗, γ∗) ≤ J̃(β∗
ǫ , γ

∗
ǫ ) ≤ J̃(β∗, γ∗) + ε1.

Consequently, letting ǫ → 0+ and noting that ε1 > 0 is arbitrary, the proof is
complete.

Theorems 1 and 2 guarantee that we can obtain the optimal solution of
Problem (B) by solving Problem (C).

4. Gradient formulae and algorithm

Problem (C) is a dynamic optimization problem. It is well known that
gradient-based optimization methods are very effective in solving the dynamic
optimization problems [20]. However, the gradient formulae of the cost func-
tion (14) and the constraint function (16) with respect to the decision variables
τ, q,β and γ are needed. In this section, we will investigate the required gradient
computation.

4.1. Gradient formulae

It is not straightforward to obtain the gradient formulae of the constraint
function uǫ(τ, q,β, γ) with respect to time-delay τ and system parameter q

because it is not an explicit function of τ and q. In what follows, we shall
propose a method for computing the gradients of uǫ(τ, q,β, γ) with respect to τ
and q.
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Define

f̃(t|τ, q) = f(x(t),x(t− τ), q),

∂f̃(t|τ, q)
∂x

=
∂f(x(t),x(t− τ), q)

∂x
,

∂f̃(t|τ, q)
∂x̃

=
∂f(x(t),x(t− τ), q)

∂x(t− τ)
,

∂f̃(t|τ, q)
∂qi

=
∂f(x(t),x(t− τ), q)

∂qi
.

From [12], it is known that the state vector x(·|τ, q) of time-delay system (15)
is differentiable with respect to τ and q. For brevity, we will omit τ and q in
x(·|τ, q) in the sequel. Moreover, define the state variations with respect to τ
and q as follows:

∂x(t)

∂τ
= ̺(t), t ∈ (−∞, T ], (21)

∂x(t)

∂qi
= σi(t), i = 1, 2, . . . , r, t ∈ (−∞, T ]. (22)

Then, it can be shown that

∂x(t− τ)

∂τ
=







−∂φ(t− τ, q)

∂t
, if t < τ,

̺(t− τ) − f̃(t− τ |τ, q), if t ≥ τ.
(23)

Consequently,

∂x(t− τ |τ, q)
∂τ

=(̺(t− τ) − f̃(t− τ |τ, q))χ[τ,+∞)(t)−
∂φ(t− τ, q)

∂t
χ(−∞,τ)(t), (24)

and

∂x(t− τ)

∂qi
= σi(t− τ), (25)

where, for a given interval I,

χI(t) =

{

1, if t ∈ I,

0, otherwise.
(26)
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Now, consider the following impulsive auxiliary system:







































λ̇(t) = −
(

∂f̃(t|τ, q)
∂x

)⊤

λ(t)−
(∂f̃(t+ τ |τ, q)

∂x̃

)⊤

λ(t+ τ), t ∈ [0, T ]

λ(t−k ) =
1

2

p
∑

h=1

{

∂gh(x(tk))

∂x(tk)

}⊤{

∂w(yh(tk|τ, q))
∂yh(tk)

+
∂ψǫ(v((yh(tk|τ, q))))

∂yh(tk)

}⊤

+λ(t+k ), k = 1, 2, . . . , l,

λ(t) = 0, t ≥ tl.

(27)

Theorem 3. For each (τ, q,β, γ) ∈ T ×Q×R
lp×R, the gradient of uǫ(τ, q,β, γ)

with respect to time-delay τ is given by

∂uǫ(τ, q,β, γ)

∂τ
= −

∫ T

0

λ⊤(t)
∂f̃(t|τ, q)

∂x̃

{

f̃ (t− τ |τ, q)χ[τ,+∞)(t)

− ∂φ(t− τ, q)

∂t
χ(−∞,τ)(t)

}

dt. (28)

Proof. Let ν : [0,+∞) → R
n be an arbitrary absolutely continuous function.

Now, the constraint function uǫ(τ, q,β, γ) in the constraint (16) can be expressed
as

uǫ(τ, q,β, γ) =
1

2

l
∑

k=1

p
∑

h=1

{

w(yh(tk|τ, q), βk
h) + ψǫ(v(yh(tk|τ, q), βk

h)
}

− γ

+

l
∑

k=1

∫ tk

tk−1

ν⊤(t)( f̃(t|τ, q)− ẋ(t))dt. (29)

By applying integral by parts, the last term in the right side of (29) becomes

l
∑

k=1

∫ tk

tk−1

ν⊤(t)(f̃ (t|τ, q) − ẋ(t))dt

=

l
∑

k=1

∫ tk

tk−1

ν⊤(t)f̃ (t|τ, q)dt−
l

∑

k=1

∫ tk

tk−1

ν⊤(t)dx(t)

=− ν⊤(t−l )x(tl) + ν⊤(t+0 )φ(0, q) +

l−1
∑

k=1

(ν⊤(t+k )− ν⊤(t−k ))x(tk)

+

∫ T

0

ν⊤(t)f̃ (t|τ, q)dt+
∫ T

0

ν̇⊤(t)x(t)dt. (30)
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Substituting (30) into (29) yields

uǫ(τ, q,β, γ) =
1

2

l
∑

k=1

p
∑

h=1

{

w(yh(tk|τ, q), βk
h) + ψǫ(v(yh(tk|τ, q), βk

h)
}

− γ

− ν⊤(t−l )x(tl) + ν⊤(t+0 )φ(0, q) +

l−1
∑

k=1

(ν⊤(t+k )− ν⊤(t−k ))x(tk)

+

∫ T

0

ν⊤(t)f̃ (t|τ, q)dt+
∫ T

0

ν̇⊤(t)x(t)dt. (31)

By (21) and (24), and differentiating (31) with respect to the time-delay τ , we
obtain

∂uǫ(τ, q,β, γ)

∂τ

=
1

2

l
∑

k=1

p
∑

h=1

{∂w(yh(tk|τ, q))
∂yh(tk)

+
∂ψǫ(v((yh(tk|τ, q))))

∂yh(tk)

}∂gh(x(tk))

∂x(tk)
̺(tk)

− ν⊤(t−l )̺(tl) +

l−1
∑

k=1

(ν⊤(t+k )− ν⊤(t−k ))̺(tk)

+

∫ T

0

{

ν⊤(t)
∂f̃(t|τ, q)

∂x
+ ν̇⊤(t)

}

̺(t)dt

+

∫ T

0

ν⊤(t)
∂f̃(t|τ, q)

∂x̃
̺(t− τ)χ[τ,+∞)(t)dt

−
∫ T

0

ν⊤(t)
∂f̃(t|τ, q)

∂x̃

{

f̃(t− τ |τ, q)χ[τ,+∞)(t)−
∂φ(t− τ, q)

∂t
χ(−∞,τ)(t)

}

dt

=

l−1
∑

k=1

{1

2

p
∑

h=1

{∂w(yh(tk|τ, q))
∂yh(tk)

+
∂ψǫ(v((yh(tk|τ, q))))

∂yh(tk)

}∂gh(x(tk))

∂x(tk)

+ ν⊤(t+k )− ν⊤(t−k )
}

̺(tk)

+
{1

2

p
∑

h=1

{∂w(yh(tl|τ, q))
∂yh(tl)

+
∂ψǫ(v((yh(tl|τ, q))))

∂yh(tl)

}∂gh(x(tl))

∂x(tl)
− ν⊤(t−l )

}

̺(tl)

+

∫ T

0

{

ν⊤(t)
∂f̃(t|τ, q)

∂x
+ ν̇⊤(t)

}

̺(t)dt

+

∫ T−τ

0

ν⊤(t+ τ)
∂f̃ (t+ τ |τ, q)

∂x̃
̺(t)χ[0,+∞)(t)dt

−
∫ T

0

ν⊤(t)
∂f̃(t|τ, q)

∂x̃

{

f̃(t− τ |τ, q)χ[τ,+∞)(t)−
∂φ(t− τ, q)

∂t
χ(−∞,τ)(t)

}

dt.

(32)

Since ν : [0,+∞) → R
n is an arbitrary absolutely continuous function, we

11



choose ν(·) = λ(·), where λ(·) satisfies impulsive auxiliary system (27). Then,
we obtain (28) and the proof is complete.

Theorem 4. For each (τ, q,β, γ) ∈ T ×Q×R
lp×R, the gradients of constraint

function uǫ(τ, q,β, γ) with respect to parameter qi, i = 1, 2, . . . , r, are given by

∂uǫ(τ, q,β, γ)

∂qi

=ν⊤(t+0 )
∂φ(0, q)

∂qi
+

∫ 0

−τ

ν⊤(t+ τ)
∂f̃ (t+ τ |τ, q)

∂x̃

∂φ(0, q)

∂qi
dt

+

∫ T

0

ν⊤(t)
∂f̃ (t|τ, q)

∂qi
dt. (33)

Proof. Let ν(·) be as defined in Theorem 3. From (31), we obtain

uǫ(τ, q,β, γ) =
1

2

l
∑

k=1

p
∑

h=1

{

w(yh(tk|τ, q), βk
h) + ψǫ(v(yh(tk|τ, q), βk

h)
}

− γ

− ν⊤(t−l )x(tl) + ν⊤(t+0 )φ(0, q) +

l−1
∑

k=1

(ν⊤(t+k )− ν⊤(t−k ))x(tk)

+

∫ T

0

ν⊤(t)f̃ (t|τ, q)dt+
∫ T

0

ν̇⊤(t)x(t)dt. (34)

By (22) and (25), it follows from differentiating (34) with respect to the system
parameter qi that

∂uǫ(τ, q,β, γ)

∂qi

=
1

2

l
∑

k=1

p
∑

h=1

{∂w(yh(tk|τ, q))
∂yh(tk)

+
∂ψǫ(v((yh(tk|τ, q))))

∂yh(tk)

}∂gh(x(tk))

∂x(tk)
σi(tk)

− ν⊤(t−l )σi(tl) + ν⊤(t+0 )σi(0) +
l−1
∑

k=1

(ν⊤(t+k )− ν⊤(t−k ))σi(tk)

+

∫ T

0

{

ν⊤(t)
∂f̃ (t|τ, q)

∂x
+ ν̇⊤(t)

}

σi(t)dt+

∫ T

0

ν⊤(t)
∂f̃ (t|τ, q)

∂x̃
σi(t− τ)dt

+

∫ T

0

ν⊤(t)
∂f̃(t|τ, q)

∂qi
dt

12



=
l−1
∑

k=1

{1

2

p
∑

h=1

{∂w(yh(tk|τ, q))
∂yh(tk)

+
∂ψǫ(v((yh(tk|τ, q))))

∂yh(tk)

}∂gh(x(tk))

∂x(tk)

+ ν⊤(t+k )− ν⊤(t−k )
}

σi(tk) + ν⊤(t+0 )
∂φ(0, q)

∂qi

+
{1

2

p
∑

h=1

{∂w(yh(tl|τ, q))
∂yh(tl)

+
∂ψǫ(v((yh(tl|τ, q))))

∂yh(tl)

}∂gh(x(tl))

∂x(tl)
− ν⊤(t−l )

}

σi(tl)

+

∫ T

0

{

ν⊤(t)
∂f̃(t|τ, q)

∂x
+ ν̇⊤(t)

}

σi(t)dt+

∫ T−τ

0

ν⊤(t+ τ)
∂f̃ (t+ τ |τ, q)

∂x̃
σi(t)dt

+

∫ 0

−τ

ν⊤(t+ τ)
∂f̃(t+ τ |τ, q)

∂x̃

∂φ(0, q)

∂qi
dt+

∫ T

0

ν⊤(t)
∂f̃(t|τ, q)

∂qi
dt.

Choose ν(·) = λ(·), where λ(·) satisfies impulsive auxiliary system (27). Then,
the proof is complete.

Note that the gradients of uǫ(τ, q,β, γ) and J̃(β, γ) with respect to β and γ
are easy to obtain.

4.2. Algorithm for solving Problem (C)

Based on Theorems 3 and 4 and the gradients of uǫ(τ, q,β, γ) and J̃(β, γ)
with respect to β and γ, we propose the following Algorithm A for computing
the gradients of uǫ(τ, q,β, γ) and J̃(β, γ) with respect to τ and qi, i = 1, 2, . . . , r,
β and γ.
Algorithm A
Step 1. Solve the time-delay system (1) forward in time to obtain the state
x(·|τ, q) and the output y(·|τ, q).
Step 2. Solve the impulsive auxiliary system (27) backward in time to obtain
λ(·|τ, q).
Step 3. Compute the gradients

∂uǫ(τ, q,β, γ)
∂τ

and
∂uǫ(τ, q,β, γ)

∂qi
, i = 1, 2, . . . , r.

Step 4. Compute the gradients of uǫ(τ, q,β, γ) and J̃(β, γ) with respect to β

and γ.
We now develop a solution algorithm incorporating Algorithm A to solve

Problem (C) as follows.
Algorithm B
Step 1. Set initial smoothing parameter ǫ0(ǫ0 > 0), parameter for checking the
convergence criterion ε0(ε0 > 0), decreasing coefficient δ(0 < δ < 1), initial pair
(τ0ǫ0 , q

0
ǫ0
,β0

ǫ0
, γ0ǫ0) ∈ T ×Q× R

lp × R and the iteration number s = 0.

Step 2. Compute the cost J̃(βs
ǫs
, γsǫs) and compute the gradients of J̃(βs

ǫs
, γsǫs)

and uǫs(τ
s
ǫs
, qs

ǫs
,βs

ǫs
, γsǫs) with respect to τsǫs , q

s
ǫs
,βs

ǫs
and γsǫs using Algorithm A.

Step 3. Solve Problem (C) using gradient-based optimization (e.g., sequential
quadratic programming [21]) to obtain a new pair (τs+1

ǫs+1
, qs+1

ǫs+1
,βs+1

ǫs+1
, γs+1

ǫs+1
). If

|J̃(βs+1
ǫs+1

, γs+1
ǫs+1

) − J̃(βs
ǫs
, γsǫs)| ≤ ε0, then stop and (τs+1

ǫs+1
, qs+1

ǫs+1
,βs+1

ǫs+1
, γs+1

ǫs+1
) is

an approximate optimal solution of Problem (B). Otherwise, go to Step 4.
Step 4. Set s = s+ 1, ǫs+1 = δǫs, then go to Step 2.
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Remark 1. Theorems 1 and 2 guarantee the convergence of the proposed Algo-
rithm B.

5. Numerical example

In this section, we consider a batch fermentation process of converting glyc-
erol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae [14, 22]. In batch
fermentation, a quantity of glycerol and biomass is put in the reactor and stirred
uniformly. During the fermentation process, the concentration of glycerol de-
creases gradually and tends to zero finally. Although the uptake of nutrient by
cells is an essential instantaneous process, cells have to undergo growth process
before they produce products. Thus, a time-delay should be taken into account
in modelling of the batch process.

Based on previous work [14, 22], the batch process can be described by the
following delay-differential equations:













ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)













=













q1(x(t))x1(t− τ)
−q2(x(t))x1(t− τ)
q3(x(t))x1(t− τ)
q4(x(t))x1(t− τ)
q5(x(t))x1(t− τ)













, t ∈ (0, T ], (35)

where x1(t), x2(t), x3(t), x4(t) and x5(t) are the concentrations of biomass, glyc-
erol, 1,3-PD, acetate and ethanol in the reactor at time t, respectively; x(t) =
(x1(t), x2(t), x3(t), x4(t), x5(t))

⊤; τ is an unknown time-delay; and T = 6.0h
is the terminal time of batch culture. Furthermore, the functions q1(x(t)),
q2(x(t)), q3(x(t)), q4(x(t)) and q5(x(t)) are given as follows:

q1(x(t)) =
µmx2(t)

k1 + x2(t)

5
∏

ℓ=2

(

1− xℓ(t)

x∗ℓ

)

, (36)

qℓ(x(t)) = mℓ + q1(x(t))Yℓ, ℓ = 2, 3, 4, 5. (37)

In (36), x∗ℓ , ℓ = 2, 3, 4, 5, are the critical concentrations for cells growth, where
x∗2 = 2039 mmolL−1, x∗3 = 939.5 mmolL−1, x∗4 = 1026 mmolL−1 and x∗5 =
360.9 mmolL−1. In the batch fermentation, at sample time tk, there are some
measured data denoted by z̃k, k = 1, 2, . . . , 7. Due to measurement errors, in
this paper, we assume that the measured data z̃k are stochastic, whose expecta-
tions are the experimental data zk given in [14]. Let z̃ = ((z̃1)⊤, . . . , (z̃7)⊤)⊤ =
(z̃11 , . . . , z̃

1
5 , . . . , z̃

7
1 , . . . , z̃

7
5)

⊤ ∈ R
35. The lower and upper bounds of z̃k are de-

fined by akh = zkh− δ0zkh and bkh = zkh+ δ0z
k
h, respectively, where δ0 > 0 is a given

parameter. The support set and the ambiguity set are as defined in (4) and (5)
with µ being the experimental data in [14].

Then the distributionally robust identification model of the batch culture is:
given the system (35), choose (τ, q) ∈ T ×Q such that

max
P∈F

EP[J(τ, q, z̃)] =

l
∑

k=1

‖x(tk|τ, q)− z̃k‖2 (38)
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Table 1: The lower and upper bounds of kinetic parameters and optimal kinetic parameters.

µm k1 m2 m3 m4 m5 Y2 Y3 Y4 Y5
c [23] 0.1 0.01 0.01 -10 -10 -10 0.001 1 1 1
d [23] 1 100 10 10 10 10 10000 100 100 100
q∗ 0.95 77.54 9.30 2.00 -2.93 1.02 123.46 94.17 34.85 11.95

is minimized, where q := (µm, k1,m2,m3,m4,m5, Y2, Y3, Y4, Y5)
⊤, T := [0, 1],

Q :=
10
∏

ℓ=1

[cℓ, dℓ] (cℓ and dℓ are listed in Table 1) and x(·|τ, q) is the solution

of the system (35) for (τ, q) ∈ T × Q. In particular, the history function
is obtained by applying cubic spline interpolation [24] experimental data be-
fore point zero. Furthermore, in Algorithm B, the initial smoothing parame-
ter ǫ0, parameter for checking the convergence criterion ε0, decreasing coeffi-
cient δ, the parameter δ0 and initial pair (τ0ǫ0 , q

0
ǫ0
) are 10−3, 10−6, 0.5, 0.05,

(0.05, 1, 74.58, 9.68, 2.08,−2.44, 1.05, 0, 95.06, 33.07, 11.6), respectively. More-
over, the initial dual vector (β0

ǫ0
, γ0ǫ0) was generated randomly.

We wrote a Matlab 7.10.0 (The Mathworks Inc.) program to implement
Algorithms A and B in Section 4, where the intrinsic delay-differential equations
(DDEs) solver DDE23 which solved DDEs with explicit Runge-Kutta triples [25]
is used to solve state and auxiliary state systems (1) and (27). By running our
program, we obtain that τ∗ = 0.278h, and q∗ is also listed in Table 1. Under the
obtained optimal time-delay τ∗ and parameters q∗, the concentration changes
in biomass, glycerol, 1,3-PD, acetate and ethanol with respect to fermentation
time are shown in Figure 1. From Figure 1, we can see that the simulation
results reasonably fit the experimental data with the worst-case probability
distribution. For comparison, we also plot the concentration changes in biomass,
glycerol, 1,3-PD, acetate and ethanol with respect to fermentation time using the
obtained optimal time-delay and parameters [14] in Figure 2. Note that, unlike
parameter identification problem in [14], the distributions of experimental data
in our parameter identification problem are assumed to be with only first-order
moment information.

6. Conclusions

This paper studies the distributionally robust parameter identification of a
time-delay system with stochastic measurements. This problem arises in the
modelling of batch culture of 1,3-PD. We first proposed the distributionally
robust identification model involving a time-delay system. Then by problem
transformation and smooth techniques, we constructed a gradient-based com-
putational method to solve the distributionally robust parameter identification
problem. Finally, we verified the effectiveness of the proposed approach via an
example of 1,3-PD batch production. Note that, in this paper, only one time-
delay is involved in the system dynamics. However, the results in this paper can
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Figure 1: Concentration changes of biomass, glycerol, 1,3-PD, acetate and ethanol with respect
to fermentation time in this paper.

be easily extended to system with multiple time-delays. In addition, we assume
that we only know the expectation information of the output measurement. If
the information of higher moments is known, then Monte Carlo sampling [26]
method may be an interesting tool to deal with such problems. We will study
this situation in our future research work.
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