The angular power spectrum measurement of the Galactic synchrotron emission in two fields of the TGSS survey

Samir Choudhuri,1,2* Somnath Bharadwaj,2 Sk. Saiyad Ali,3 Nirupam Roy,4 Huib. T. Intema5 and Abhik Ghosh6,7

1National Centre For Radio Astrophysics, Post Bag 3, Ganeshkhind, Pune 411 007, India
2Department of Physics & Centre for Theoretical Studies, IIT Kharagpur, Kharagpur 721 302, India
3Department of Physics, Jadavpur University, Kolkata 700032, India
4Department of Physics, Indian Institute of Science, Bangalore 560012, India
5Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA, Leiden, The Netherlands
6Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
7SKA SA, The Park, Park Road, Pinelands 7405, South Africa

Accepted 2017 April 27. Received 2017 April 26; in original form 2016 December 20

ABSTRACT

Characterizing the diffuse Galactic synchrotron emission at arcminute angular scales is needed to reliably remove foregrounds in cosmological 21-cm measurements. The study of this emission is also interesting in its own right. Here, we quantify the fluctuations of the diffuse Galactic synchrotron emission using visibility data for two of the fields observed by the TIFR GMRT Sky Survey. We have used the 2D Tapered Gridded Estimator to estimate the angular power spectrum (C_ℓ) from the visibilities. We find that the sky signal, after subtracting the point sources, is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range $240 \leq \ell \lesssim 500$. We present a power-law fit, $C_\ell = A \times (1000 \ell)^{\beta}$, to the measured C_ℓ over this ℓ range. We find that (A, β) have values $(356 \pm 109 \text{ mK}^2, 2.8 \pm 0.3)$ and $(54 \pm 26 \text{ mK}^2, 2.2 \pm 0.4)$ in the two fields. For the second field, however, there is indication of a significant residual point source contribution and for this field we interpret the measured C_ℓ as an upper limit for the diffuse Galactic synchrotron emission. While in both fields the slopes are consistent with earlier measurements, the second field appears to have an amplitude that is considerably smaller compared to similar measurements in other parts of the sky.

Key words: methods: data analysis – methods: statistical – techniques: interferometric – diffuse radiation.

1 INTRODUCTION

Observations of the redshifted 21-cm signal from the Epoch of Reionization (EoR) contain a wealth of cosmological and astrophysical information (Bharadwaj & Ali 2005; Furlanetto, Oh & Briggs 2006; Morales & Wyithe 2010; Pritchard & Loeb 2012). The Giant Metrewave Radio Telescope (GMRT; Swarup et al. 1991) is currently functioning at a frequency band that corresponds to the 21-cm signal from this epoch. Several ongoing and future experiments such as the Donald C. Backer Precision Array to Probe the Epoch of Reionization (PAPER; Parsons et al. 2010), the Low Frequency Array (LOFAR, van Haarlem et al. 2013), the Murchison Wide-field Array (MWA; Bowman et al. 2013), the Square Kilometre Array (SKA1 LOW; Koopmans et al. 2015) and the Hydrogen Epoch of Reionization Array (HERA; Neben et al. 2016) are aiming to measure the EoR 21-cm signal. The EoR 21-cm signal is overwhelmed by different foregrounds that are 4–5 orders of magnitude stronger than the expected 21-cm signal (Shaver et al. 1999; Ali, Bharadwaj & Chengalur 2008; Ghosh et al. 2011a,b). Accurately modelling and subtracting the foregrounds from the data are the main challenges for detecting the EoR 21-cm signal. The diffuse Galactic synchrotron emission (hereafter, DGSE) is expected to be the most dominant foreground at 10 arcmin angular scales after point source subtraction at 10–20 mJy level (Bernardi et al. 2009; Ghosh et al. 2012; Iacobelli et al. 2013). A precise characterization and a detailed understanding of the DGSE are needed to reliably remove foregrounds in 21-cm experiments. In this Letter, we characterize the DGSE at arcminute angular scales, which are relevant for the cosmological 21-cm studies.

The study of the DGSE is also important in its own right. The angular power spectrum (C_ℓ) of the DGSE quantifies the fluctuations in the magnetic field and in the electron density of the turbulent interstellar medium of our Galaxy (e.g. Waelkens, Schekochihin & Enßlin 2009; Lazarian & Pogosyan 2012; Iacobelli et al. 2013).

* Email: samir11@phy.iitkgp.ernet.in

© 2017 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
There are several observations towards characterizing the DGSE spanning a wide range of frequency. Haslam et al. (1982) have measured the all-sky diffuse Galactic synchrotron radiation at 408 MHz. Reich (1982) and Reich & Reich (1988) have presented the Galactic synchrotron maps at a relatively higher frequency (1420 MHz). Using the 2.3 GHz Rhodes Survey, Giardino et al. (2001) have shown that the \(C_\ell \) of the diffuse Galactic synchrotron radiation behaves like a power law \((C_\ell \propto \ell^{-\beta}) \) where the power-law index \(\beta = 2.43 \) in the \(\ell \) range \(2 \leq \ell \leq 100 \). Giardino et al. (2002) have found that the value of \(\beta \) is 2.37 for the 2.4 GHz Parkes Survey in the \(\ell \) range \(40 \leq \ell \leq 250 \). The \(C_\ell \) measured from the Wilkinson Microwave Anisotropy Probe (WMAP) data show a slightly lower value of \(\beta \) \((C_\ell \propto \ell^{2.34}) \) for \(\ell < 200 \) (Bennett et al. 2003). Bernardi et al. (2009) have analysed 150 MHz Westerbork Synthesis Radio Telescope observations to characterize the statistical properties of the diffuse Galactic emission and find that

\[
C_\ell = A \times \left(\frac{1000}{\ell} \right)^\beta \text{mK}^2,
\]

where \(A = 253 \text{ mK}^2 \) and \(\beta = 2.2 \) for \(\ell \leq 900 \). Ghosh et al. (2012) have used GMRT 150 MHz observations to characterize the foregrounds for 21-cm experiments and find that \(A = 513 \text{ mK}^2 \) and \(\beta = 2.34 \) in the \(\ell \) range \(253 \leq \ell \leq 800 \). Recently, Iacobelli et al. (2014) present the first LOFAR detection of the DGSE around 16.7 MHz, which is divided into 256 frequency channels. All the residual data to measure the

\[
\text{Data2}
\]

TGSS raw data were analysed with a fully automated pipeline \(\text{Paper I} \) and processed by Intema et al. (2016). We have applied the Tapered Gridded Estimator (TGE; Choudhuri et al. 2016a, hereafter Paper I) to the residual data to measure the \(C_\ell \) of the background sky signal after point source subtraction. The TGE suppresses the contribution from the residual point sources in the outer region of the telescope’s field of view (FoV) and also internally subtracts out the noise bias to give an unbiased estimate of \(C_\ell \) (see details in Choudhuri et al. 2014, 2016b, Paper I). The tapering is introduced by multiplying the sky with a Gaussian window function \(W(\theta) = \exp(-\theta^2/\theta_0^2) \). The value of \(\theta_0 \) should be chosen in such a way that it cuts off the sky response well before the first null of the primary beam without removing too much of the signal from the central region. Here, we have used \(\theta_0 = 95 \text{ arcmin} \), which is slightly smaller than 114 arcmin, the half width at half maxima (HWHM) of the GMRT primary beam at 150 MHz. This is implemented by dividing the \(uv \) plane into a rectangular grid and evaluating the convolved visibilities \(V_{\ell g} \) at every grid point \(g \)

\[
V_{\ell g} = \sum_i \tilde{w}(U_g - U_i) V_i,
\]

where \(\tilde{w}(U) \) is the Fourier transform of the taper window function \(W(\theta) \) and \(U_g \) refers to the baseline of different grid points. The entire data containing visibility measurements in different frequency channels that spans a 16 MHz bandwidth were collapsed to a single grid after scaling each baseline to the appropriate frequency.

The self-correlation of the gridded and convolved visibilities (equations (10) and (13) of Paper I) can be written as,

\[
\langle |V_{\ell g}|^2 \rangle = \left(\frac{\partial B}{\partial T} \right)^2 \int d^2U \left| K(U_g - U) \right|^2 C_{2\pi U_g}
\]

\[
+ \sum_i \left| \tilde{w}(U_g - U_i) \right|^2 \langle |N_i|^2 \rangle,
\]

where \(\left(\frac{\partial B}{\partial T} \right)^2 \) is the conversion factor from brightness temperature to specific intensity, \(N_i \) is the noise contribution to the individual visibility \(V_i \) and \(K(U_g - U) \) is an effective ‘gridding kernel’ that incorporates the effects of (a) the telescope’s primary beam pattern, (b) the tapering window function and (c) the baseline sampling in the \(uv \) plane.

We have approximated the convolution in equation (3) as,

\[
\langle |V_{\ell g}|^2 \rangle = \left[\left(\frac{\partial B}{\partial T} \right)^2 \int d^2U \left| K(U_g - U) \right|^2 \right] C_{2\pi U_g}
\]

\[
+ \sum_i \left| \tilde{w}(U_g - U_i) \right|^2 \langle |N_i|^2 \rangle,
\]

under the assumption that the \(C_\ell (\ell = 2\pi |U|) \) is nearly constant across the width of \(K(U_g - U) \).

We define the TGE as

\[
\tilde{E}_g = \frac{1}{M_g^{\ell-1}} \left(|V_{\ell g}|^2 - \sum_i \left| \tilde{w}(U_g - U_i) \right|^2 V_i^2 \right),
\]

\[1\text{ http://tgss.ncra.tifr.res.in}\]
and we believe that the measured steep power law is the characteristic of the diffuse Galactic emission

\[C_\ell = \text{normalizing factor} \times \text{value from measurement} \]

This interpretation is mainly guided by the model predictions (fig. 6 of Ali et al. 2008) and is also in-

\[C_\ell^M = \text{model angular power spectrum} \]

Figure 1. Estimated angular power spectra \((C_\ell) \) with \(1 - \sigma \) analytical error bars. The left and right panels are for \textbf{Data1} and \textbf{Data2}, respectively. The upper and lowers curves are before and after point source subtraction, respectively. The vertical dotted lines in both the panels show \(\ell_{\text{max}} \) beyond which \((\ell > \ell_{\text{max}}) \) the residual \(C_\ell \) is dominated by the unsubtracted point sources.

\[C_\ell = \frac{M_\ell}{\sigma_\text{MEAN}} \times \text{value from measurement} \]

where \(M_\ell \) is the normalizing factor that we have calculated by using simulated visibilities corresponding to a unit angular power spectrum (see details in Paper I). We have \(\langle \hat{E}_\ell \rangle = C_\ell^M \), i.e. the TGE \(\hat{E}_\ell \) provides an unbiased estimate of the angular power spectrum \(C_\ell \) at the angular multipole \(\ell_\ell = 2\pi U_\ell \) corresponding to the baseline \(U_\ell \). We have used the TGE to estimate \(C_\ell \) and its variance in bins of equal logarithmic interval in \(\ell \) (equations (19) and (25) in Paper I).

\[C_\ell^M = \text{model angular power spectrum} \]

3 RESULTS AND CONCLUSIONS

The upper curves of the left- and right-hand panels of Fig. 1 show the estimated \(C_\ell \) before point source subtraction for \textbf{Data1} and \textbf{Data2}, respectively. We find that for both the data sets the measured \(C_\ell \) is in the range \(10^{-5} \to 10^{4} \text{ mK}^2 \) across the entire \(\ell \) range.

\[C_\ell = \frac{M_\ell}{\sigma_\text{MEAN}} \times \text{value from measurement} \]

Model predictions (Ali et al. 2008) indicate that the point source contribution is expected to be considerably larger than the Galactic synchrotron emission across much of the \(\ell \) range considered here, however, the two may be comparable at the smaller \(\ell \) values of our interest. Further, the convolution in equation (3) is expected to be important at small \(\ell \) and it is necessary to also account for this. The lower curves of both the panels of Fig. 1 show the estimated \(C_\ell \) after point source subtraction. We see that removing the point sources causes a very substantial drop in the \(C_\ell \) measured at large \(\ell \). This clearly demonstrates that the \(C_\ell \) at these angular scales was dominated by the point sources prior to their subtraction. We further believe that after point source subtraction the \(C_\ell \) measured at large \(\ell \) continues to be dominated by the residual point sources that are below the threshold flux. The residual flux from imperfect subtraction of the bright sources possibly also makes a significant contribution in the measured \(C_\ell \) at large \(\ell \). This interpretation is mainly guided by the model predictions (fig. 6 of Ali et al. 2008) and is also indicated by the nearly flat \(C_\ell \), which is consistent with the Poisson fluctuations of a random point source distribution. In contrast to this, \(C_\ell \) shows a steep power-law \(\ell \) dependence at small \(\ell \) \((\leq \ell_{\text{max}}) \) with \(\ell_{\text{max}} \approx 580 \) and 440 for \textbf{Data1} and \textbf{Data2}, respectively. This steep power law is the characteristic of the diffuse Galactic emission and we believe that the measured \(C_\ell \) is possibly dominated by the DGSE at the large angular scales corresponding to \(\ell \leq \ell_{\text{max}} \). As mentioned earlier, the convolution in equation (3) is expected to be important at large angular scales and it is necessary to account for this in order to correctly interpret the results at small \(\ell \).

\[C_\ell^M = \text{model angular power spectrum} \]

We have carried out simulations in order to assess the effect of the convolution on the estimated \(C_\ell \). GMRT visibility data were simulated assuming that the sky brightness temperature fluctuations are a realization of a Gaussian random field with input model angular power spectrum \(C_\ell^M \) of the form given by equation (1). The simulations incorporate the GMRT primary beam pattern and the uv tracks corresponding to the actual observation under consideration. The reader is referred to Choudhuri et al. (2014) for more details of the simulations. Fig. 2 shows the \(C_\ell \) estimated from the \textbf{Data1} simulations for \(\beta = 3 \) and 1.5 which roughly encompasses the entire range of the power-law index we expect for the Galactic synchrotron emission. We find that the effect of the convolution is important in the range \(\ell < \ell_{\text{min}} \approx 240 \) and we have excluded this \(\ell \) range from our analysis. We are, however, able to recover the input model angular power spectrum quite accurately in the region \(\ell \geq \ell_{\text{min}} \) which we have used for our subsequent analysis. We have also carried out the same analysis for \textbf{Data2} (not shown here) where we find that \(\ell_{\text{min}} \) has a value that is almost the same as for \textbf{Data1}.

\[C_\ell^M = \text{model angular power spectrum} \]

Downloaded from https://academic.oup.com/mnrasl/article-abstract/470/1/L11/3786417 by Curtin University Library user on 13 March 2019
We have used the \(\ell \) range \(\ell_{\text{min}} \leq \ell \leq \ell_{\text{max}} \) to fit a power law of the form given in equation (1) to the \(C_\ell \) measured after point source subtraction. The data points with \(1 - \sigma \) error bars and the best-fitting power law are shown in Fig. 3. Note that we have identified one of the Data1 points as an outlier and excluded it from the fit. The best-fitting parameters \((A, \beta)\), \(N\) the number of data points used for the fit and \(\chi^2/(N-2)\) the chi-square per degree of freedom (reduced \(\chi^2\)) are listed in Table 1. The rather low values of the reduced \(\chi^2\) indicate that the errors in the measured \(C_\ell\) have possibly been somewhat overestimated. In order to validate our methodology, we have simulated the visibility data for an input model power spectrum with the best-fitting values of the parameters \((A, \beta)\) and used this to estimate \(C_\ell\). The mean \(C_\ell\) and \(1 - \sigma\) errors (shaded region) estimated from 128 realizations of simulations with the best-fitting power law as input model are shown in Fig. 3. For the relevant range we find that the simulated \(C_\ell\) is in very good agreement with the measured values thereby validating the entire fitting procedure. The horizontal lines in both the panels of Fig. 3 show the \(C_\ell\) predicted from the Poisson fluctuations of residual point sources below a threshold flux density of \(S_\ell = 50\, \text{mJy}\). The \(C_\ell\) prediction here is based on the 150 MHz source counts of Ghosh et al. (2012). We find that for \(\ell > \ell_{\text{max}}\) the measured \(C_\ell\) values are well in excess of this prediction indicating that (1) there are significant residual imaging artefacts around the bright source \((S > S_\ell)\) which were subtracted and/or (2) the actual source distribution is in excess of the predictions of the source counts. Note that the actual \(S_\ell\) values \((20.5\, \text{and} \,15.5 \, \text{mJy} \text{ for Data1 and Data2, respectively})\) are well below 50 mJy, and the corresponding \(C_\ell\) predictions will lie below the horizontal lines shown in Fig. 3.

For both the fields \(C_\ell\) (Fig. 3) is nearly flat at large \(\ell\) \((> 500)\) and it is well modelled by a power law at smaller \(\ell\) \((240 \leq \ell \leq 500)\). For Data1, the power law rises above the flat \(C_\ell\) and the power law is likely dominated by the DGSE. However, for Data2, the power law falls below the flat \(C_\ell\) and it is likely that in addition to the DGSE there is a significant residual point sources contribution. For Data2, we interpret the best-fitting power law as an upper limit for the DGSE.
The best-fitting parameters \((A, \beta) = (356.23 \pm 109.5, 2.8 \pm 0.3)\) and \((54.6 \pm 26, 2.2 \pm 0.4)\) for \textbf{Data1} and \textbf{Data2}, respectively, are compared with measurements from other 150 MHz observations such as Bernardi et al. (2009), Ghosh et al. (2012), Iacobelli et al. (2013) in Table 1. Further, we have also used an earlier work (La Porta et al. 2008) at higher frequencies (408 and 1420 MHz) to estimate and compare the amplitude of the angular power spectrum of the DGSE expected at our observing frequency. Using the best-fitting parameters (tabulated at \(\ell = 100\)) at 408 and 1420 MHz, we extrapolate the amplitude of the \(C_\ell\) at our observing frequency at \(\ell = 1000\) for \(b \geq 10^\circ\) and \(b \geq 20^\circ\). In this extrapolation, we use a mean frequency spectral index of \(\alpha = 2.5\) (de Oliveira-Costa et al. 2008) \((C_\ell \propto \nu^{2\alpha})\). The extrapolated amplitude values are shown in Table 1. In Table 1, we note that the angular power spectra of the DGSE in the Northern hemisphere are comparatively larger than those of the Southern hemisphere. The best-fitting parameter \(A\) for \textbf{Data1}(\textbf{Data2}) agrees mostly with the extrapolated values obtained from \(b \geq +10^\circ\) \((b \leq -10^\circ)\) and \(b \geq +20^\circ\) \((b \leq -20^\circ)\) within a factor of about 2 (4). The best-fitting parameter \(\beta\) for \textbf{Data1} and \textbf{Data2} is within the range of \(1.5\)–\(3.0\) found by all the previous measurements at 150 MHz and higher frequencies.

The entire analysis here is based on the assumption that the DGSE is a Gaussian random field. This is possibly justified for the small patch of the sky under observation given that the diffuse emission is generated by a random process like MHD turbulence. The estimated \(C_\ell\) remains unaffected even if this assumption breaks down, only the error estimates will be changed. We note that the parameters \((A, \beta)\) are varying significantly from field to field across the different directions in the sky. We plan to extend this analysis for the whole sky and study the variation of the amplitude \((A)\) and power-law index \((\beta)\) of \(C_\ell\) using the full TGGS survey in future.

ACKNOWLEDGEMENTS

We thank an anonymous referee for helpful comments. S. Choudhuri would like to acknowledge the University Grant Commission, India, for providing financial support. AG would like to acknowledge Postdoctoral Fellowship from the South African Square Kilometre Array Project for financial support. We thank the staff of the GMRT that made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research.

REFERENCES

Bowman J. D. et al., 2013, PASA, 30, e031

Parsons A. R. et al., 2010, AJ, 139, 1468

Reich P., Reich W., 1988, A&AS, 74, 7

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.