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Abstract 
 

Rare earth elements (REEs) are known as strategic and critical elements and, in recent years, 

have gained great interest as key materials that play an integral role in smart technologies 

following development of sustainable energy technologies. Extraction of REEs is of great 

environmental and economic importance. Currently, multistep hydrometallurgical extraction 

of REEs requires significant processing with high-energy consumption, where the conventional 

REEs production relies on either an alkaline process that uses concentrated sodium hydroxide 

or an acidic process that uses concentrated sulfuric acid, both at high temperatures. This had 

led to the development of processes which are more economically feasible and 

environmentally friendly. 

The exploration of extracting REEs with phosphate solubilizing bacteria (PSB) has started 

recently. The use of PSM for bioleaching of REEs provides a biotechnical approach for the 

extraction of REEs from primary and secondary sources. However, understanding the 

microbial-mineral interaction and the mechanisms of phosphate mineral bio-solubilisation in 

order to develop a successful method for bioleaching of REEs still remains a major challenge. 

As REEs are typically complexed with chemical groups including phosphate (monazite and 

xenotime), this study focused on the biomining of REEs by PSM from monazite bearing 

minerals. Bacterial communities were enriched from the highest grade of known REEs deposit 

in the world, Mt. Weld, in arid Western Australia. The indigenous PSB enriched from Mt. Weld 

deposit was dominated by Actinobacteria, Proteobacteria, and Firmicutes. 

Furthermore, a series of monazite dissolution experiments have provided a detailed 

understanding of the mineral dissolution process, with the investigation of the leaching 

behaviour of individual REEs and the mechanism attributed to their mobilisation.  

Bioleaching experiments with Acidithiobacillus ferrooxidans, Enterobacter aerogenes, and 

indigenous PSB enriched from Mt. Weld mine site were conducted in P-free media: basal salt 

media (BSM), modified National Botanical Research Institute Phosphate (NBRIP) medium, and 

modified NBRIP, respectively. A systemic study of the mechanisms of bioleaching REEs from 

monazite with E. aerogenes provided the first evidence of the microbial bio-mobilization 

mechanisms involved in REE dissolution in terms of the importance of microbial colonization 

of mineral surfaces. A conceptual model describing the main phenomena affecting REE 

leaching, namely contact, non-contact, and cooperative leaching was proposed. The 

bioleaching results along with comparative genomic study of the potential mechanisms of 

phosphate metabolism during the interaction of E. aerogenes and A. ferrooxidans showed that 

A. ferrooxidans compared to E. aerogenes achieved a more efficient stress response which 

potentially increased the overall REEs dissolution from monazite. Monazite dissolution (1% 

pulp density) as a phosphate source during bioleaching with PSB was observed to decrease in 

the following order: Co-culture of E. aerogenes and A. ferrooxidans with FeSO4 and K2S4O6 > 

A. ferrooxidans with FeSO4 and K2S4O6 > A. ferrooxidans with pyrite > E. aerogenes in the 

presence of glucose >> Abiotic controls with FeSO4 and K2S4O6 >  > Abiotic controls with pyrite 

≈ Abiotic controls with glucose at 30  ̊C with the total concentration of REEs (Ce, La, Pr, Nd, 
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and Y) after 12 days of 40, 23.6, 10.6, 5.84, 2.73, 0, 0, and 0 mg L−1, respectively. Also, higher 

REEs dissolution was observed when inoculation of A. ferrooxidans in BSM sterile monazite 

started at a lower starting pH (initial pH 2.00±0.15 and final pH= 1.50 ± 0.15, respectively) 

compared to a higher starting pH (initial pH= 2.50 ± 0.15 and final pH= 2.50 ± 0.15, 

respectively) with a final concentration of REEs (Ce, La, Pr, Nd, and Y) after 12 days of 106 

mg L−1 and 23.6 mg L−1, respectively. However, in the leaching solution supplemented with 

glycine (1 g L−1) (initial pH 2.16±0.01 and final pH= 1.70 ± 0.01, respectively), the final total 

REEs concentration with A. ferrooxidans decreased (87 mg L−1). Genomic analysis of the 

potential mechanisms of glycine metabolism of A. ferrooxidans demonstrated that in the 

presence of glycine some REEs in the leachate are lost due to oxalate-REEs precipitate 

formation. 

The characterization of changes in REEs and Th fractionation during bioleaching with E. 

aerogenes and A. ferrooxidans demonstrated that bacterial dissolution was effective in 

stimulating REEs mobility as indicated by the increase of REEs in easily extractable and acid 

soluble fractions followed by the increase of Th in residual fraction. This suggested that 

bioleaching favour solubilisation of REEs over actinides, potentially decreasing environmental 

hazards associated with these minerals during chemical leaching. 

The combination of biogeochemical processes and genomic analysis of metabolic 

characteristics of specific elements provided a better understanding of various patterns that 

controlled the bioavailability and mobility of phosphate and REEs in monazite bioleaching. This 

study examined an environmentally benign processes for the extraction of REEs from various 

phosphate ores and highlighted the potential applicability of the use of members of PSB for 

the extraction of REEs. 
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Chapter 1: Introduction 

 

1.1 Background to this study 

 

Rare earths elements (REEs) are critical components to many technologies that drive the 

modern world. Though REEs are relatively abundant in the Earth’s crust, they are not evenly 

distributed around the world, and they are produced and processed mostly in China (Ganguli 

& Cook, 2018; Zepf, 2013). Considering Chinese export quota, limited economical high grade 

resources, susceptible REEs global market, insufficient recovery of REEs from wastes, growing 

demand for electric vehicles, wind turbines, and smart technologies, will likely leave 

customers no alternative but to pay more (Ganguli & Cook, 2018). 

The decrease in global supply and an ever increasing demand for REEs offer pre-eminent 

opportunities for Australia to become a major player in the REEs industry as Australian 

deposits are known as the highest grade deposit of REEs in the world (Haque et al., 2014). 

These deposits are normally richest in one of three major REE bearing minerals: bastnasite, 

monazite and xenotime, of which WA has large resources in monazite (Mt. Weld mine, 

operated by Lynas Corporation) and xenotime (Browns Range, operated by Northern 

Minerals); both of which are REE phosphate minerals. In addition, monazite is also associated 

with mineral sands and iron oxide, copper, gold, such as Olympic dam. 

Currently, the opportunities for major improvement in the mining, extraction and recovery of 

REEs are increasingly limited by three factors: (1) extraction of REEs is achieved by using harsh 

acidic and/or basic conditions at high temperature, which release a large amounts of toxic and 

radioactive waste, (2) REEs are found mixed in the ore, and thus chemical separation of each 

type leads to an inefficient recovery overall, and (3) the extraction efficiency is dependent on 

ores containing high concentrations of REEs, which limits potential sources of recovery 

(Zhuang et al., 2015). 

Beneficiation, recovery and separation of the REEs from the ore matrix is material and energy 

intensive processes. They are complex and involve various unit processes including but not 

limited to: grinding, screening, gravity concentration, low intensity magnetic separation, and 

flotation, acidic and/or alkaline roasting, under high temperatures followed by solvent 

extraction and calcination (Falconer, 2003; Fuerstenau, 2013; Jha et al., 2016; Zhang et al., 

2016). As these methods are relatively non-selective, there is excessive reagent consumption 

and waste generation, as well as co-dissolution of radionuclides. Also, as REEs-bearing ores 

may contain thorium and uranium up to 10% of the total ore matrix (Ragheb, 2011), emission 

of radioactive waste associated with REEs mining and extraction result in complicated disposal 

protocols or contamination of the final REEs concentrate (Ault et al., 2015).  

 

It has been demonstrated that the environmental life cycle impacts of REEs production during 

chemical leaching are far greater than those for other metals (Vahidi & Zhao, 2016). 

Consequently, due to environmental restrictions, sustainable mining and production are now 

encouraged.  
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The use of microorganisms to extract metals from ore matrix is called biomining. Biomining 

occurs at relatively low temperature and atmospheric pressure through the natural ability of 

certain microorganisms to catalyse reactions, leading to the solubilisation of metals from the 

minerals without relying on expensive and aggressive reagents common in hydrometallurgical 

processing (Bryan et al., 2015). Biomining has clear advantages over conventional processes 

including, simplicity of operation, lower capital/operation costs and lower impact on the 

environment. Acidithiobacillus (A.) ferrooxidans, the most studied obligate 

chemolithoautotrophic bioleaching bacterium, requires small amounts of inorganic nutrients, 

such as ferrous iron and reduced sulfur compounds for iron bio-oxidation and generation of 

sulphuric acid (Watling, 2016; Zhuang et al., 2015). Biomining is successfully used in industrial 

operations to extract several metals such as copper, nickel, zinc and cobalt with 20% of the 

world’s copper production originating from heap or dump/stockpile bioleaching (Jerez, 2017).  

This research project proposes a biomining approach for REE phosphate minerals using 

phosphate solubilising microorganisms (PSMs) to liberate REEs. Biomining of REE-phosphate 

ore has the potential to more selectively solubilise REEs over radionuclides, offering an 

additional benefit that may solve one of the largest challenges in REE processing. PSMs have 

been used to mobilize insoluble phosphate from organic and inorganic (mineral) phosphate 

resources derived over hundreds year of agronomic studies (Goldstein & Krishnaraj, 2007). 

Phosphate mineral bio-solubilisation mechanisms are not well understood, however, in 

microcosm studies inverse correlations between pH and phosphorus release are frequently 

observed (Farhat et al., 2009; Feng et al., 2011). Gluconic, acetic, citric and other organic acids 

are produced during bio-solubilisation of phosphate. Organic acids may have both acidifying 

and ligand (complexation) actions which may act individually or simultaneously to enhance 

the solubilisation of phosphorus (Banfield et al., 1999; Welch et al., 2002). Recently, evidence 

for microbial solubilisation of phosphate from REE-phosphate minerals has been reported 

(Brisson et al., 2016; Corbett et al., 2017; Hassanien et al., 2013a; Shin et al., 2015). Although 

very little research has been done on the application of PSMs on monazite, no detailed studies 

have been done on the leaching behaviour of individual REEs and the mechanism attributed 

to their mobilisation. 

 

1.2 Aim, objectives and significance of this study 

 

The overall aim of this research project was to explore the use of PSMs for extracting REEs 

from monazite ore, and elucidate possible bioleaching mechanisms and the leaching 

behaviour of individual REEs in the process. The specific objectives are: 

 To isolate and identify indigenous phosphate solubilising bacteria obtained from REEs 

ore and evaluate their potential application in bioleaching REEs from various 

phosphate ores 

 

 To investigate the role of the phosphate solubilizing bacterium, Enterobacter (E.) 

aerogenes, in REEs leaching from monazite 
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 To elucidate the mechanisms of phosphate and REEs solubilisation 

 

 To propose bioleaching of monazite by combining heterotrophic and autotrophic 

acidophilic microorganisms 

 

 To study the effects of glycine on the dissolution of REEs from various phosphate ores 

in the absence and presence of PSMs 

 

The achievement of above objectives can potentially beneficially impact the REEs industries 

through: 

 

 The introduction of an environmentally benign processes for the extraction of REEs 

from various phosphate ores 

 

 A greater understanding on the limitations, risks and potential of PSMs 

 

 Potential reduction in waste generation and in the consumption of reagents 

 

 

1.3 Thesis overview 

 

This thesis is divided into the seven chapters. The key aspects discussed in each chapter are 

described below: 

 

i. Chapter 2 is dedicated to a detailed review of literature on the major aspect of 

the thesis including but not restricted to: i) importance of biomining of REEs, ii) 

microbial processes related to the mobilisation of REEs and phosphates, iii) 

mechanisms of monazite bioleaching, iv) phosphate stabilisation-related 

genes, v) current status of bioleaching of REEs from primary and secondary 

resources, and vi) mining of REEs and sustainability. 

 

ii. Chapter 3 introduces isolated indigenous phosphate solubilising bacterial 

strains from Mt. Weld deposit and evaluates their capabilities for the 

bioleaching of REEs from three different grades of monazite bearing minerals 

present in WA. 

 

iii. Chapter 4 presents a systemic study of mechanisms of bioleaching REE from 

monazite with E. aerogenes and proposes a new conceptual model of the 

possible mechanisms of monazite bioleaching. 

 

iv. Chapter 5 explores the bioleaching of REEs from monazite by a co-culture of 

autotrophic, acidophilic A. ferrooxidans and heterotrophic E. aerogenes and 

compares the efficiency to those of individual pure cultures. 
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v. Chapter 6 describes the capabilities of glycine-bioleaching system for the 

bioleaching of REEs from three different grades of monazite bearing minerals 

obtained from WA. 

 

vi. Chapter 7 summarizes the major results found in this study and highlights 

recommendations for further work.  
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Abstract 

In an era of environmental degradation, and water, and mineral scarcity, enhancing microbial 

function in sustainable mining has become a prerequisite for the future of the green economy. 

In recent years, the extensive use of rare earth elements (REEs) in green and smart 

technologies has led to an increase in the focus on recovery and separation of REEs from ore 

matrices. However, the recovery of REEs using traditional methods is complex and energy 

intensive, leading to the requirement to develop processes which are more economically 

feasible and environmentally friendly. The use of phosphate solubilizing microorganisms for 

bioleaching of REEs provides a biotechnical approach for the recovery of REEs from primary 

and secondary sources. However, managing and understanding the microbial-mineral 

interactions in order to develop a successful method for bioleaching of REEs still remains a 

major challenge. This review focuses on the use of microbes for the bioleaching of REEs and 

highlights the importance of genomic studies in order to narrow down potential 

microorganisms for the optimal extraction of REEs. 

 

Keywords: Phosphate solubilising microorganisms; Monazite bioleaching; Rare earth 

elements; Sustainable mining 
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2.1 Introduction 
 

In view of escalating environmental degradation, water scarcity, and the depletion of high 

grade mineral deposits, the need for a new integrated approach towards sustainable mining 

has become more urgent. In addition, market demands for green and digital high-technology 

including but not limited to wind energy, electric cars, and smart phones are growing at an 

accelerated rate (Goodenough et al., 2018b). Rare earth elements (REEs) are known to critical 

for green economy, modern life and society (Jowitt et al., 2018). However, annual global 

demand of REEs has not yet exceeded the annual supply, which ranged from 120,000 t to 

140,000 t (Klinger, 2018). 

Recent advances in biomining reflect the exciting potential of developing microbial miners to 

mobilise a range of metals (Watling, 2016). The diversity and capabilities of bioleaching 

microorganisms for mineral dissolution are ample, providing adaptability of these 

microorganisms to extreme and challenging environments (Watling et al., 2010). 

This review summarises the fundamental understanding of the interactions of REEs with the 

microorganisms as well as microbial processes related to the mobilisation of REEs to provide 

insight into the potential application of microorganisms in the extraction of REEs from REEs-

bearing minerals. Subsequently, the studies on the use of phosphate solubilising bacteria in 

the bioleaching of REEs from primary and secondary resources will be reviewed, and the 

current state and future outlook will be discussed. 

2.2 Global situation of rare earth elements: Turning crisis into opportunity 
 

REEs are an essential component in most modern technologies. The current development of 

electric vehicles and wind turbines relies extensively on dysprosium and neodymium in REEs 

magnets (Deady et al., 2016). It is anticipated that further development of these technologies 

will result in a disproportionate increase in the demand for REEs (Alonso et al., 2012). On the 

one hand, there is limited recycling technologies available for REEs and less than 1% of the 

REES in end-of-life consumer products are recycled globally (Tkaczyk et al., 2018). On the other 

hand, global primary resources of REEs are limited due to geopolitical controls (i.e. limiting of 

export quotas for REEs by China in 2010), and they have been identified as critical metals (DOE, 

2011; Hoatson et al., 2011; Jaireth et al., 2014b). It has been found that REEs are relatively 

abundant in the Earth’s crust (Zepf, 2013). However, the concentrated forms suitable for 

viable extraction are less common and separation procedures for REEs are more difficult 

compared to most other exploited metals (Hoatson et al., 2011). 

REEs are typically complexed with chemical groups including oxides [Anatase: (Ti,REEs)O2], 

carbonates [Bastnäsite: (Ce,La)(CO3)F] or phosphates [Monazite: (Ce,La,Nd,Th)PO4 ; 

Xenotime: YPO4)] (Jaireth et al., 2014b). Of the 250 known REEs minerals only three major 

REEs bearing minerals (bastnäsite, monazite, and xenotime) are currently exploited 

commercially (Jordens et al., 2013). The main operating mines are Bayan Obo in China, 

Mountain Pass in the US and Mount Weld in Australia with China producing 70 - 90% of the 

global REEs supply (Binnemans et al., 2018). Since the REEs crisis in 2010 and the current 



14 
 

control by China’s of REEs supply, countries with a high dependency on REEs products have 

pursued multiple measures to transform the industry and secure their REEs supply (Klinger, 

2018). The decrease in global supply and an ever increasing demand for REEs, offer potential 

opportunities for Australia to become a major player in the REEs industry as Australian 

deposits are known as the richest deposit of REEs in the world (Haque et al., 2014).  

Currently, industrial extraction of REEs requires significant processing, and the conventional 

REEs production relies on either an alkaline process that uses concentrated sodium hydroxide 

or an acidic process that uses concentrated sulfuric acid and high temperatures. These 

generate large amounts of toxic waste containing thorium, uranium, hydrogen fluoride, and 

acidic waste water (Abreu & Morais, 2010; Hurst, 2010). Chemical leaching efficiencies of 85% 

for La, Nd and Sm have been reported (Kim et al., 2009). In Australia, until 1995 REEs were 

largely produced from mineral sands containing monazite associated with high thorium 

content (Hoatson et al., 2011). The Chinese REEs production has resulted in environmental 

pollution that was attributed to the imposition of an export quota by the Chinese government 

in 2010 (Vahidi et al., 2016). 

Indeed, the environmental life cycle impact of REE production through chemical leaching is 

significantly higher compared to other metals (Haque et al., 2014; Thompson et al., 2017a; 

Vahidi & Zhao, 2016). Therefore, alternative approaches offering environmental benefits have 

received increased attention. Regrettably, in contrast to the biomining of sulfide minerals, 

much less effort has been devoted to studying the interaction of REEs with microorganisms in 

bioleaching systems and the application of biohydrometallurgy to REE-bearing resources. To 

date, there are no available reports on the bioleaching of bastnasite and xenotime, and only 

a few studies on monazite bioleaching. Nevertheless, there is considerable incentive to 

establish green technologies for the recovery of REEs which may contribute to a more 

sustainable process (Barmettler et al., 2016a).  

2.3 Rare earth elements: Connecting chemistry to biology 
 

While the first REE in an oxide form (Y2O3) was discovered in 1794, non-radioactive REEs were 

not characterized/separated until 113 years later, as these elements are highly insoluble and 

scarce in pure form (Bünzli, 2014). In 1891, Karl Auer von Welsbach, used a mix of various 

lanthanide oxides, thorium and other metals for the first gas mantles (Bünzli, 2014). 

According to recommendations by the International Union of Pure and Applied Chemistry 

(IUPAC), REEs include 17 elements with special chemical and physical properties, namely: 

yttrium (Y) and scandium (Sc) as well as lanthanides such as lanthanum (La), cerium (Ce), 

praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), 

gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), 

ytterbium (Yb) and lutetium (Lu). The REEs are commonly divided into light (LREEs) and heavy 

(HREEs). However, there is no absolute agreement on which elements are included in each 

category, the LREEs being commonly referred to as the first sixth elements of REEs series, 

namely La, Ce, Pr, Nd, Pm and Sm and the HREEs being Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and 

Y (Ramos et al., 2016; Šmuc et al., 2012). Y is grouped with the HREEs as its ionic radius is 
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nearly identical to that of Ho (Chakhmouradian & Wall, 2012). The LREEs have lower atomic 

numbers and masses but larger ionic radius, higher solubility and alkalinity, whereas the group 

of HREEs have higher atomic numbers and masses but smaller ionic radius and lower alkalinity 

(Li et al., 2017; Ramos et al., 2016). 

REEs have very similar chemical and physical properties, and this uniqueness stems from their 

electronic configuration (mainly f orbitals), generally forming a particularly stable oxidation 

state (3+) (e.g., Ce3+ with electron configuration [Xe] 4f1), and a very small but regular decrease 

in the ionic radius, with an increase in atomic number (from La to Lu), known as “lanthanide 

contraction” (Aide & Aide, 2012). However, Ce and Eu usually present in the oxidation state 

(3+), may also occur as Ce4+ and Eu2+ under oxidizing and reducing conditions, respectively. 

The significance of the lanthanide contraction phenomena is observed in the greater stability 

of hydrolysis and complex constants with increasing atomic number (from the LREEs to 

HREEs). The higher stability behaviour of HREEs, can also be explained by Pearson's Rule 

(Pearson, 1963) which suggested that hard cations (e.g., REE3+) will preferentially bond with 

hard anions (i.e., ligands such F-, OH-, and PO4
3-), through ionic bonds, whereas soft or 

polarizable cations will bond with soft anions through covalent bonds.  

Due to similarities between Ce3+/La3+ and Ca2+ in terms of ionic radius, coordination 

environment and ligand preferences, REEs have been used as analogues for multiple 

applications (Lim & Franklin, 2006; Pagano et al., 2015; Pang et al., 2002). Although, 

displacement of Ca2+ by Ce+3 and Ga+3 ions for bone tissue engineering has long been applied 

(Deliormanlı, 2015), only a few recent studies suggest a biological role for REEs. Until recently, 

the biologists and enzymologists believed REEs to be inert because of the low solubility of 

these elements in the environment. However, in 2011 it has been discovered that Ce3+ and 

La3+ are required for the activity of the enzyme methanol dehydrogenase (MDH) in some 

bacteria to oxidize methanol for carbon and energy (Hibi et al., 2011; Pol et al., 2014; Skovran 

et al., 2011)). 

Furthermore, it has been postulated that REEs may play pivotal roles not only in 

biogeochemical processes of single carbon compounds but may also be involved in the 

metabolism of a broader range of compounds, in a wide range of microorganisms 

(Chistoserdova, 2016). Thus, recent studies on the biological roles of REEs have emerged as a 

new field which may contribute to the isolation of potential strains for biomining of REEs 

(Shiller et al., 2017; Skovran & Martinez-Gomez, 2015).  

2.4 Why do we need biomining? 
 

Due to the growth in the numbers of hybrid electric vehicles (HEVs) and full electric vehicles 

(EVs), the use of REEs by the automotive industry is forecasted to increase (Goodenough et 

al., 2018b). The production of HEVs and EVs is estimated to increase from 2.3 million units in 

2016 to over 10.1 million units in 2026, which is likely to drive an increased demand for 

neodymium-iron-boron (NdFeB) magnets (Roskill, 2017). 

Currently, the opportunities for major improvement in the mining, extraction, and recovery 

of REEs are increasingly limited by three factors: (1) the extraction of REEs is achieved by using 
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harsh acidic and/or alkaline conditions with either concentrated sulfuric acid and/or sodium 

hydroxide extraction at high temperature, which release toxic and radioactive waste, (2) REEs 

are found mixed in the ore, and thus chemical separation of each type leads to an inefficient 

overall recovery, and (3) the extraction efficiency is dependent on ores containing high 

concentrations of REEs, which limits potential sources of recovery (Zhuang et al., 2015). 

The environmental life cycle impacts of REEs production during chemical leaching are far 

greater than those for other metals currently measured with life cycle assessment tools 

(Vahidi & Zhao, 2016). Consequently, due to environmental restrictions, sustainable mining 

and production are now encouraged on environmental grounds in many countries. Biomining 

is successfully used in industrial operations, to extract several metals such as copper, nickel, 

cobalt and zinc, with 20% of the world’s copper production originating from heap or 

dump/stockpile bioleaching (Jerez, 2017). Bioleaching methods offer environmentally friendly 

alternatives to classical approaches. A variety of microbial groups have the potential to be 

applied for bioleaching of REEs from solid matrices (Barmettler et al., 2016a). In most of these 

studies, phosphate solubilising microorganisms (PSMs) were used to solubilise REEs from REEs 

containing materials (Hopfe et al., 2018). 

2.5 Phosphate solubilising microorganisms 
 

Most studies to date on the bioleaching of REEs have been carried out with PSMs. However, 

the majority of the previous research on PSMs has been conducted in agricultural systems. 

The reason may be the simplicity of using PSMs to liberate insoluble phosphate from organic 

and inorganic (mineral) phosphate resources present in soil for enhanced crop production 

derived after hundreds year of agronomic studies (Goldstein & Krishnaraj, 2007). A large 

number of studies have been conducted over the last hundred years on the isolation and 

characterization of PSMs, mainly using tricalcium phosphate (TCP) as model phosphate 

mineral. However, it has recently been reported that TCP, is unreliable as a universal selection 

factor for isolating and testing the direct contribution of biological P solubilisation (Bashan et 

al., 2013). Perhaps, this is the main reason why amongst potential isolated PSMs, a low 

number of isolates proved to be successful in the direct mobilisation of phosphate (Banik & 

Dey, 1983). These discrepancies suggest that other processes and variables of considerable 

importance, as will be discussed in the following sections, also control the rates of P 

solubilisation.  

Gram-negative bacteria have been found to be more efficient at dissolving mineral 

phosphates than Gram-positive bacteria (Sashidhar & Podile, 2010). A large range of Gram-

negative bacterial species including Klebsiella, Enterobacter, Pseudomonas, Bacillus, 

Rhizobium, Erwinia, Agrobacterium, Flavobacterium, Enterobacter, Micrococcus, Thiobacillus 

Acetobacter, Burkholderia spp., Clavibacter, Serratia and Streptomyces are capable of P 

solubilisation as well as some fungi such as Penicillium, Aspergillus, Rhizopus, and Fusarium 

(Illmer & Schinner, 1992; Rodrıǵuez & Fraga, 1999; Zhao & Lin, 2001). 

In this review, the term ´´PSMs´´ is used in recognition of the fact that microorganisms are 

capable of transforming insoluble phosphate into more soluble form which directly and/or 
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indirectly contributes to the metabolism of microorganism via increasing phosphate 

availability in the cell-mineral interface and the solution. Phosphate minerals are dissolved by 

acidification (Goldstein & Krishnaraj, 2007). Therefore, any microorganism that acidifies the 

media can potentially release some level of phosphate and hence REEs which are in a 

phosphate mineral matrix. 

2.6 Mechanisms of phosphate and REEs solubilisation 
 

It is well established that the solubilisation of phosphate from poorly soluble mineral 

phosphates is mainly related to the production of organic acids (Babu-Khan et al., 1995; 

Goldstein & Krishnaraj, 2007; Goldstein, 2007), however the precise mechanism of P 

solubilisation by different PSMs still remains poorly understood (Park et al., 2009b). The 

following sections will address a number of proposed theories to explain the mechanism of 

phosphate solubilisation. 

2.6.1 Organic acid release 

 

As heterotrophic microorganisms in bioleaching systems rely mainly on organic carbon 

sources (e.g., glucose), heterotrophic metabolism (biologic oxidation of organic compounds 

to yield ATP) lowers the pH of the leachate either by H+ extrusion (Illmer & Schinner, 1995) or 

by the secretion of organic acids such as gluconic, citric, acetic, lactic, malic, succinic, tartaric, 

2-ketogluconic, and oxalic acids (Bolan et al., 1994). The proton release from the cytoplasm to 

the outer surface occurs in exchange for a cation (Sashidhar & Podile, 2010). The addition of 

a various carbon sources has been shown to affect the type of secreted organic acids by 

Penicillium rugulosum. With sucrose, most of the glucose molecules were converted to 

gluconic acid while fructose was strongly associated with the production of citric acid through 

the tricarboxylic acid cycle (Reyes et al., 1999). While some of the organic acids are responsible 

for energy production as intermediates in the tricarboxylic (TCA) cycle (e.g., citrate, malate), 

others are primarily present in cells for cation charge balancing or for maintaining osmotic 

potential (e.g., malate, malonate, oxalate) (Jones, 1998). 

In most heterotrophic bacteria and fungi, the release of low molecular weight organic acids 

has been demonstrated to be the most common reason for phosphate solubilisation 

(Rodrıǵuez & Fraga, 1999). The heterotrophic leaching involves several mechanisms but 

organic acids play a dominant and central role in the overall process, supplying both protons 

and a REEs-complexing organic acid anions. Therefore, the ability of organic acid production 

by PSMs could be considered a phenotype, defined as “a specific characteristic of the 

microorganism” (Goldstein & Krishnaraj, 2007). Beyond organic acids, Illmer and Schinner. 

(Illmer & Schinner, 1995) also reported that the proton-excretion associated with ammonium 

ion assimilation could be another mechanism of P solubilisation without organic acid 

production.  

Although, organic acids have been suggested as the principal mechanism of P solubilisation, it 

has been demonstrated that the higher amount of free organic acids was not directly 

correlated with higher phosphate solubilisation (Banik & Dey, 1983; de Oliveira Mendes et al., 
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2014). Amongst 57 fungal strains (with a clear predominance of Penicillium and Aspergillus 

species) it has been found that phosphate solubilisation mechanisms not only differ between 

strains but are also dependent on the applied P sources where solubilisation rate increased as 

follows: TCP > AlPO4 >> FePO4  >> Rock phosphate (de Oliveira Mendes et al., 2014).  

The rate of P mobilisation during phosphate minerals bioleaching varied based on i) the 

microbial strains, ii) the concentration and types of organic acid produced, iii) and the 

physicochemical properties of the mineral which is governed by the mineral composition, 

phosphate uptake rate, and growth rate of the biomass (Brisson et al., 2016; Corbett et al., 

2017). It may be seen that any member of PSMs community either from a same or different 

family, may release different metabolites including organic acids depending on the solubility 

of the phosphate mineral and the growth media condition (Table 1). Buch et al. (Buch et al., 

2008) have described the metabolic flexibility of two Pseudomonads strains related to gluconic 

acid secretion and P solubilisation. Under P-deficient conditions, both Pseudomonas strains 

secreted only gluconic acid. However, under P-sufficient conditions the secretion of pyruvic 

and acetic acids in addition to gluconic acid by both strains indicated increased carbon flow 

through the phosphorylative pathway of glucose oxidation (Buch et al., 2008). Under normal 

metabolic conditions, three different strains of a well-known PSMs family, Enterobacter (E.) 

aerogenes have been reported to produce similar range of gluconic acid up to 1 mM (Stella & 

Halimi, 2015). However, in another recent study, the type and levels of secreted organic acids 

by the same strain (E. aerogenes ATCC 13048) on the same monazite have been found to be 

different, even though the concentration of the principle metabolite, glucose (3% w/v) was 

similar (Corbett et al., 2017; Fathollahzadeh et al., 2018a) (Table 1).  

2.6.2 Phosphatase activity 

 

Recently, it has been reported that besides organic acids, other biological and chelating factors 

play a significant role in monazite solubilisation (Corbett et al., 2018). Production of 

phosphatases by the microorganisms may have aided in releasing phosphate from the 

monazite with microbial incorporation of phosphate shifting the solution equilibrium, further 

promoting leaching of the REE matrix (Corbett et al., 2018). The authors concluded that the 

combined action of acid phosphatase activity and organic acids undoubtedly increased REEs 

solubilisation (Corbett et al., 2018). 

2.6.3 The importance of bacterial attachment 

 

Successful and efficient interaction of microbial strains and mineral surfaces are another key 

component that control mineral dissolution (Sand & Gehrke, 2006). Adhesion and then 

colonization of microbes on the mineral surfaces are a survival mechanism, and nutrients in 

aqueous environments are more accessible at surfaces (Busscher & van der Mei, 2012). 

However, the extent to which measured REEs concentration over bio-mobilization and bio-

mineralization relate to the bacterial attachment on a phosphate mineral has not been studied 

till recently. Although, a few studies have been conducted to investigate the role of 

attachment of bacteria on the dissolution of phosphate and silicate based minerals such as 
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apatite, fluorapatite, and feldspar (Feng et al., 2011; Hutchens, 2009; Hutchens et al., 2006; 

Hutchens et al., 2003), no report of the role of bacterial attachment in the monazite 

dissolution was available till recently.  

 

To improve bioleaching performance, it is essential to have a detailed understanding of the 

bioleaching mechanism. In an attempt to understand the fundamental mechanisms of 

monazite bioleaching by E. aerogenes, it has been demonstrated that the contact of bacteria 

with minerals can have a significant effect on their capacity to enhance mineral dissolution, 

even though the same types of organic acids with similar concentration were present during 

non-contact leaching (Fathollahzadeh et al., 2018a). It has been suggested by Fathollahzadeh 

et al. (Fathollahzadeh et al., 2018a) that the ability of PSMs to solubilise REEs-phosphate 

minerals is by contact mechanisms, non-contact mechanism, or a cooperative mechanism (a 

combination of both) (Fig. 1).  

In contact leaching (Fig 1.a), attached cells mobilize phosphate within a matrix of extracellular 

polymeric substances (EPS) and release REE3+ into the solution. Organic acid anions (OA) 

generated by the cells from organic substrates complex with REE3+. Protons released from 

organic acids also attack the ore surface resulting in further phosphate dissolution. 

Incorporation of phosphate into the biomass increases REE3+ solubility. In the non-contact 

mechanism (Fig 1.b) suspended cells generate REE3+ complexing organic acids and biologically 

incorporate phosphate increasing REE3+ solubility. The protons released from organic acids 

attack the ore resulting in further REE3+ and PO4
3- dissolution. In the cooperative mechanism 

(Fig 1.c) attached cells mobilise phosphate from the monazite and incorporate it into cells 

releasing REE3+ while suspended cells generate organic acids for REE3+ complexation and 

protons released from organic acids attack the ore. Alternatively, attached cells may play a 

role in organic acid generation while suspended cells take up PO4
3- from solution increasing 

REE3+ solubility. 
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Table 1 – Biological phosphate mobilisation and secreted organic acids by phosphate solubilising microorganisms from various phosphate 

resources. 

 

Microbial strain Final concentration of 
organic acids (mM) 

P released 
(mM) 

Organic substrate, phosphate source, final pH and leaching 
time 

Reference 

Pseudomonas aeruginosa P4 gluconic acid: 46 0.44 100 mM glucose, rock phosphate, final pH = 4.80, 96 h (Buch et al., 2008) 

Burkholderia cepacia CC-AI74 gluconic acid: 16, 2-keto 
gluconic acid: 3.8 

2.10 29 mM sucrose, tri-calcium phosphate, final pH = 3, 199 h (Lin et al., 2006) 

Burkholderia  caribensis FeGl03 gluconic acid: 31, acetic acid: 
0.02 

8.17 55 mM glucose, hydroxy apatite, final pH = 4.04, 168 h (Delvasto et al., 2009) 

Burkholderia ferrariae FeGl01 gluconic acid: 0.03,  acetic 
acid: 0.04 

5.07 55 mM glucose, hydroxy apatite, final pH = 4.82, 168 h (Delvasto et al., 2009) 

Enterobacter asburiae PSI3 acetic acid: 55 0.89 75 mM glucose, rock phosphate, final pH = 4, 60 h (Sharma et al., 2005) 

Serratia marcescens CTM 50650 acetic acid: 229 19 55 mM glucose, hydroxy apatite, final pH = NR, 48 h (Farhat et al., 2009) 

Serratia marcescens CTM 50650 Citric acid: 56 3.42 55 mM fructose, hydroxy apatite, final pH = NR, 48 h (Farhat et al., 2009) 

Enterobacter aerogenes ATCC 
13048 

gluconic acid < 0.01, formic 
acid < 0.01, citric acid: 0.03, 
malic acid: 0.10 

< 0.02 166 mM glucose, monazite, final pH = 3.8, 192 h (Corbett et al., 2017) 

Pseudomonas aeruginosa DSMZ 
50071 

gluconic acid < 0.01, formic 
acid < 0.01, citric acid: 0.03, 
malic acid: 0.16 

< 0.02 166 mM glucose, monazite, final pH = 4, 192 h (Corbett et al., 2017) 

Aspergillus niger DSMZ 821 gluconic acid: 0.27, acetic 
acid: 1.4, formic acid < 0.01, 
malic acid: 0.04 

< 0.02 166 mM glucose, monazite, final pH = 2, 192 h (Corbett et al., 2017) 

Aspergillus terreus ML3-1 itaconic acid > 20, succinic 
acid:4 

0.48 55 mM glucose, monazite, final pH = 2-2.8, 168 h (Brisson et al., 2016) 

Gluconobacter oxydans NRRL B58 gluconic acid: 233 Not reported 222 mM glucose, waste materials, final pH = 2.14, 40 h (Thompson et al., 2017a) 

Enterobacter aerogenes ATCC 
13048 

gluconic acid: 1, acetic acid: 1, 
malic acid: 11 

< 0.02 166 mM glucose, monazite, final pH = 3.4, 72 h (Fathollahzadeh et al., 2018a) 
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Fig.1 A conceptual model showing the proposed mechanisms of monazite bioleaching. In 

contact leaching attached microbial cells mobilize of phosphate (PO4
3-) within a matrix of 

extracellular polymeric substances (EPS) releasing REE cations (REE3+) into solution. Organic 

acids (OA) generated by the cells from organic substrates complex REE3+. Protons released 

from organic acids attack the ore resulting in further PO4
3- dissolution. Incorporation of PO4

3- 

into the cells increases REE3+ solubility. (b) In non-contact mechanism suspended cells 

generate REE3+ complexing organic acids and incorporate PO4
3- into cells increasing REE3+ 

solubility. The protons released from organic acids attack the ore resulting in further REE3+ 

and PO4
3- dissolution. (c) In cooperative mechanisms attached cells mobilise PO4

3- from 

monazite and incorporate it into cells releasing REE3+ while suspended cells generate organic 

acids for REE3+ complexation and protons released from organic acids attack the ore. 

Alternatively, attached cells may play a role in organic acid generation while suspended cells 

take up PO4
3- from solution increasing REE3+ solubility. Reprinted from (Fathollahzadeh et al., 

2018a) with permission from Elsevier. 
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2.6.4 Spent medium and abiotic leaching 

 

Apart from direct leaching, where bioleaching is achieved in the presence of the organism, 

efforts have been made to investigate the effects of metabolites present in spent media as 

well as abiotic leaching with synthetized organic acids (Brisson et al., 2016; Fathollahzadeh et 

al., 2018a; Hassanien et al., 2013b).  

When exploring the possible leaching mechanisms of REEs from monazite, it has been 

demonstrated that monazite spent medium leaching resulted in lower REEs leaching 

compared to biotic contact and non-contact leaching (Fathollahzadeh et al., 2018a). The 

authors suggested that as no phosphate consumption occur during spent media leaching, the 

precipitation and formation of secondary phosphate minerals increased, resulting in a 

decrease in overall REEs solubilisation. Furthermore, as microorganism are not present in the 

system, organic acids are not continually produced in the spent media. These findings 

suggested that  the lower REEs leaching in spent media and abiotic than in the inoculated 

system was related to the presence and attachment of bacteria (Fathollahzadeh et al., 2018a). 

 

It has also been demonstrated that abiotic leaching of REEs from Egyptian monazite (0.6% 

pulp density) with synthetized organic acids (chemical leaching using 74 mM citric and 14 mM 

oxalic acids) resulted in lower recovery, of 58.8% compared to 75.4% with bioleaching directly 

by Aspergillus ficuum  (Hassanien et al., 2013b). In another study, the solubilised REEs 

concentrations from monazite sand by all detected organic acids and with cell‐free spent 

medium were substantially lower than those observed for the active cultures (Aspergillus 

terreus strain ML3‐1 and a Paecilomyces spp. strain WE3‐F.), confirming applied strains 

secreted as yet unidentified metabolites into solution that are more effective than the 

identified organic acids at solubilizing phosphate and REEs from monazite (Brisson et al., 

2016). This also suggests that to some extent the synthetized organic acids may substitute 

conventional lixiviants in REEs mineral leaching, whereas in the presence of the microbes and 

biogenic organic acids, the overall leaching efficiency for REEs can be increased (Corbett et 

al., 2017; Corbett et al., 2018; Fathollahzadeh et al., 2018a). These results emphasize the 

importance of implementing contact leaching in the bioleaching of REEs from monazite. 

 

2.7 Processes related to the mobilisation of REEs 
 

As mentioned previously, PSMs can acidify the medium naturally and therefore are able to 

release phosphate and REEs present in a phosphate mineral matrix. In most heterotrophic 

bioleaching systems, proton substitution reactions rely on the production of organic acids 

(OA) as follows: 

Glucose (aq)  OA (aq) ↔ O- (aq) + H+ (aq) (1) 
 

3(OA) - (aq) + REE3+ (aq) ↔ (OA) 3 REE (aq) (2) 
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The proton activity is a key parameter affecting the dissolution of REEs-phosphate minerals. 

It has been reported that the normalized dissolution rate of La and Ce (by increasing acidity 

from 0.1 M to 1 M HNO3) increased by one and two order of magnitude, respectively (Gausse 

et al., 2018). 

A complex formation between OA anions and metal cations depends on the number and 

position of carboxylic (COOH) and hydroxy (OH) functional groups in the organic acids (Bolan 

et al., 1994). Depending on the dissociation properties and the number of these functional 

groups, organic acids can carry different negative charges, thereby allowing the complexation 

of REEs cations in solution and the displacement of anions from the bioleaching matrix 

(reaction 1 and 2). Therefore, the higher degree of protonation of the organic molecules is 

associated with i) provision of a lower pH condition which helps to maintain the stability of 

dissolved REEs3+ in solution; ii) affecting the degree of proton and ligand attack on the mineral 

surface, and iii) influencing the kinetics and strength of the complex formed with the relevant 

ligands, either in solution or at the bacterial-mineral surface interfaces. 

Overall, during the bio solubilisation process of monazite, the organic acids secreted by PSMs 

with differing numbers of donating protons governs the leaching behaviour of REEs and 

phosphate. Naturally occurring organic ligands secreted by microorganisms, such as acetate, 

gluconate, citrate, malate, formate, oxalate, and succinate, play a crucial role in the mobility 

of REEs (Goyne et al., 2010). 

From chemistry point of view, the solubility of the trivalent REEs-phosphates is very low (10–

13 M in pure water) compared to calcium phosphate minerals (Firsching & Brune, 1991). The 

equilibrium solubility products (Ksp) expression for the equilibrium reaction of monazite 

dissolution is as follow: 

REEPO4 (s) ↔ REE3+
 (aq) + PO4

3-
(aq)      (3) 

 
Ksp = [REE3+] × [PO4

3-] (4) 

Apart from the complexity of REEs-phosphate minerals, PSMs may stimulate or suppress 

mineral dissolution by the transport of solubilised inorganic phosphate for intercellular 

metabolism. As mentioned previously, according to the reaction (3), the incorporation of 

phosphate into the biomass shifts the reaction to the right and increases REE3+ solubility. Also, 

the precipitation (formation of secondary phosphate minerals), adsorption and desorption 

(formation of aqueous REE3+/PO4
3-) control the concentration of phosphate ions in the 

solution. It has been well established that the level of released P should not be relied upon as 

an indicator of ore solubilisation as microbial incorporation of inorganic phosphorus from the 

surrounding medium for immediate use in metabolic processes lowers the soluble P 

concentration (Brisson et al., 2016; Corbett et al., 2017). The diffusion of released phosphate 

into microorganisms influences phosphate concentrations in solution and promotes the 

dissolution and desorption reactions. Thus, phosphate regulation between the cell-mineral 

interface and the solution through bio-sorption, precipitation and co-precipitation may 

influence REEs dissolution rate during bioleaching. Additionally, a number of low molecular 
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weight organic acids can be rapidly degraded by microorganisms (Corbett et al., 2017). The 

retention mechanisms of citric and malic acids have demonstrated that higher Fe 

concentration under acidic conditions decreased the biodegradation of citric acid and malic 

acid (Yang et al., 2016). Therefore, the presence of Fe either originating from the mineral or 

regenerated during bio-oxidation in the bioleaching system can modulate the stability of 

organic acids by complexolysis, and hence prolong their complexing capacity with REEs 

(Fathollahzadeh et al., 2018c). Moreover, iron supplementation can be used for phosphate 

removal (Bunce et al., 2018) 

Apart from the above mentioned factors associated with REEs mobilisation, perhaps the more 

urgent challenge is a better understanding of the molecular genetics of mineral phosphate 

solubilisation mechanisms and the associated metabolic pathways to phosphate regulation in 

response to P stress to develop efficient and environmentally friendly processing pathways, 

for bioleaching of REEs-phosphate minerals. Therefore, the following section focuses on the 

phosphate (Pho) regulon, the unique mechanism responsible for the regulation of phosphate 

and phosphate solubilisation in the bacteria. 

2.8 Utilizing omics for enhanced bioleaching 
 

Inorganic phosphate is an essential nutrient for energy, nucleic acid and phospholipid 

biosynthesis in microorganisms. Microbial communities have evolved appropriate regulatory 

mechanisms to survive and adapt rapidly to changes in phosphate availability through the 

presence of a “Pho regulon”. The characterisation of the Pho regulon was first reported for 

Escherichia coli, and later for many other bacterial species (Wanner & Chang, 1987). The Pho 

regulon in Gram-negative bacteria is controlled by a two-component regulatory system 

(phoR-phoB) which involves an inner-membrane histidine kinase sensor protein (phoR) and a 

cytoplasmic transcriptional response regulator (phoB) (Santos-Beneit, 2015). The phoB gene 

encodes the soluble DNA-binding response regulator and the phoR encodes the cytoplasmic 

membrane-associated sensor kinase (White & Metcalf, 2007). The P signalling pathway 

requires seven proteins (phoB, phoR, pstS, pstC, pstA, pstB, phoU), all of which probably 

interact in a membrane-associated signalling complex (Hsieh & Wanner, 2010). Inorganic 

extracellular phosphate depletion in the medium has been highlighted to be essential for the 

activation of the pho regulon and P signalling pathway in bacteria (Hsieh & Wanner, 2010). 

Figure 2 represents a model for Pi signal transduction of the E. coli pho regulon, showing how 

it is activated in response to P levels (Hsieh & Wanner, 2010). 
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Fig.2 Biogeochemical model for sensing extracellular inorganic phosphate (Pi) and 

transduction of the signal to control gene expression in Escherichia coli (adapted from (Hsieh 

& Wanner, 2010)). The signalling processes of inhibition, activation, and deactivation are 

proposed to correspond to different states of phoR: an inhibition state (phoRI), an activation 

state (phoRA), and a deactivation state (phoRD). With excess extracellular P (> 4 µM for E. coli) 

(Figure 2.a), the pstSCAB complex pumps P across the cell membrane into the cytoplasm, 

where phoU proteins forms a complex with pstSCAB transporter system and the phoR 

histidine kinase, which prevents auto phosphorylation of the kinase caused by the interaction 

with phoU, a chaperon like phoR-phoB inhibitory protein. When external P is low (< 4 µM for 

E. coli) (Figure 2.b) and the pstSCAB complex is inactive, phoU dissociates and auto 

phosphorylation of phoR occurs. The phosphorylated phoR activates the transcription factor 

phoB, which then activates the transcription of at least 31 genes, where one of activated 

genes, phoA, encodes the phoA protein (bacterial alkaline phosphatase). This protein is 

transported across the membrane into the periplasm to degrade organic polyphosphates to 

release P which is then taken up into the cell to overcome the P stress (Blätke et al., 2012). 

When the cell’s P requirement is met, this system is switched off again and phoBP is 

dephosphorylated (Figure 2.c). Reprinted from (Hsieh & Wanner, 2010; Wanner, 1996) with 

permission from Elsevier. 
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With excess extracellular P (> 4 µM for E. coli) (Fig 2.a), the pstSCAB complex pumps P across 

the cell membrane into the cytoplasm, where phoU proteins forms a complex with pstSCAB 

transporter system and the phoR histidine kinase, which prevents auto phosphorylation of 

the kinase caused by the interaction with phoU, a chaperon like phoR-phoB inhibitory protein. 

When external P is low (< 4 µM for E. coli) (Fig 2.b) and the pstSCAB complex is inactive, phoU 

dissociates and auto phosphorylation of phoR occurs. The phosphorylated phoR activates the 

transcription factor phoB, which then activates the transcription of at least 31 genes, where 

one of activated genes, phoA, encodes the phoA protein (bacterial alkaline phosphatase). This 

protein is transported across the membrane into the periplasm to degrade organic 

polyphosphates to release P which is then taken up into the cell to overcome the P stress 

(Blätke et al., 2012). When the cell’s P requirement is met, this system is switched off again 

and phoBP is dephosphorylated (Fig 2.c) (Hsieh & Wanner, 2010; Wanner, 1996). 

A recent study has demonstrated that the distinct organization of the master regulator, 

phoBR, in Acidithiobacillus ferrooxidans compared to E. aerogenes led to more efficient stress 

response which potentially increased the overall REEs dissolution from monazite 

(Fathollahzadeh et al., 2018c). Furthermore, previous research on several PSMs as well as E. 

coli have identified a variety of different genes/operons with homology to those which play a 

role in phosphate uptake, regulation and solubilisation mechanisms of mineral phosphate, 

including pqq, phoR, phoB, pstC, pstA, pstB, pstS, phoU, phoR, pKKY, pK1M10, and gabY 

(Chhabra et al., 2013; Rodríguez et al., 2006; Tsurumaru et al., 2015). These may have pivotal 

roles in the solubilisation of phosphates and, therefore, in the recovery of REEs through 

phosphate bioleaching. 

In addition to the pho regulon, gene cloning studies have also revealed that genes directly or 

indirectly involved in organic acid synthesis as well as expression and regulation of direct 

oxidation pathways participate in phosphate mobilisation (Babu-Khan et al., 1995; Rodríguez 

et al., 2006). Amongst organic acids, gluconic acid was highlighted as the metabolic basis of 

inorganic phosphate solubilisation, through the oxidation of glucose by a periplasmic glucose 

dehydrogenase (gdh) enzyme (encoded by gcd gene) that requires pyrrolo quinoline quinone 

(PQQ) as a redox cofactor (An & Moe, 2016). The second periplasmic oxidation, catalyzed by 

gluconate dehydrogenase (gad) results in the production of 2-ketogluconic acid (pKa=2.6) 

while minimizing the respiratory chain component PQQ and bypassing the NADPH-generating 

glucose-6-phosphate dehydrogenase (G6PD) (Ebert et al., 2011). In addition to providing 

carbon for intracellular metabolism, the direct oxidation of glucose to gluconic acid produces 

a transmembrane proton motive force (PMF) that may be used for bioenergetics and/or 

membrane transport functions which results in the uptake of exogenous amino acids and 

other compounds (Goldstein, 2007). Moreover, several acid phosphatase genes (acp) from 

Gram-negative bacteria have been characterized for improving organic phosphate 

solubilisation from organic compounds in soil (Rossolini et al., 1998). It has been suggested 

that acid phosphatase generated by isolated PSMs does not act directly on inorganic P 

solubilisation. However phosphatase activity may participate in lowering the pH of the culture 

medium by the dephosphorylating action and the production of organic acids (Achal et al., 

2007; Park et al., 2011) corresponding to no significant correlation between the concentration 
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of phosphate, phosphate solubilisation and the phosphatase activity (Braz & Nahas, 2012; 

Mihalache et al., 2015). 

Extending beyond genomic studies, transcriptome profiling also provides potential in 

identifying molecular mechanisms that affect bioleaching. For example, transcriptome 

profiling of PSM strain Burkholderia multivorans at three levels of exogenous soluble 

phosphate (0, 0.5, and 20 mM) identified 446 differentially expressed genes, among which 44 

genes were continuously up-regulated when soluble phosphate concentration was increased 

and 81 genes were continuously down-regulated (Zeng et al., 2017). Furthermore, genes 

involved in glucose metabolism were continuously down-regulated, which indicated that 

metabolic channelling of glucose towards the phosphorylative pathway was negatively 

regulated by soluble phosphate, which may in turn might affect the organic acid secretion and 

subsequently the phosphate-solubilizing activity (Zeng et al., 2017).  

Altogether, a better understanding of complex interactions among PSM genotypes, 

phenotypes, environmental conditions and microbiome structure provides indispensable 

information in their metabolic properties and helps to identify novel strains and genes for 

optimum biological REEs/phosphate mobilisation. Alongside REEs/phosphate solubilisation 

tests with conventional strains, novel omics techniques are enabling the discovery of the core 

genetic elements that increasingly drive the regulation of PSMs adaptation 

strategies/physiological responses based on the growth media and the types of mineral. This 

genetic material has the potential to be transferred to other microorganisms in order to 

enable them to solubilise phosphate and REEs. Despite the great potential of applying omics 

to construct microbial communities with modified phosphate starvation–responsive genes 

for bioprocessing of REE-phosphate minerals, the exploration of opportunities in which core 

microbiomes can be integrated into “smart bioleaching” is only emerging. 

2.9 Current status of bioleaching of REEs from primary and secondary resources 
 

Microorganisms are effective in the mobilisation of elements mainly through three principles 

including acidolysis (formation of organic/inorganic acids), complexolysis (excretion of 

complexing agents), and redoxolysis (oxidation/reduction reactions) (Brandl, 2008). 

Biotechnological mineral processing approaches where microorganisms generate bio-

lixiviants have been developed as a sustainable alternative to chemical leaching of primary 

and secondary ores and waste streams (Watling, 2016). Bioleaching processes are generally 

operated at relatively low temperature and atmospheric pressure, without relying on 

expensive and aggressive reagents common in hydrometallurgical processing, or high 

temperature, energy cost and gas emissions related to pyrometallurgical processing (Bryan et 

al., 2015). There have been several studies and patents published recently addressing the 

interactions of microorganisms and REEs including both REEs mobilisation from solids and 

immobilization from liquids (Barmettler et al., 2016a). However, the role of microorganisms 

in REEs immobilisation is not included in the scope of this review as most of available and 

economical resources of REEs are present as solid matrices and the current bioleaching efforts 

are directed to releasing REEs from minerals. In the following sections, the latest studies on 

bioprocessing of REEs from primary and secondary REEs resources will be discussed. 
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2.9.1 Primary resources 

 

Prominent currently operating mines with primary REEs minerals (i.e., monazite, bastnasite, 

and xenotime) are Mount Weld in Australia, Bayan Obo in China, and recently reopened 

Mountain Pass in the US (Haque et al., 2014). The Mount Weld deposit, Laverton, in Western 

Australia has been identified as the richest and highest grade known deposit of REEs in the 

world dominated with secondary REEs phosphate (monazite) encapsulated in iron oxide 

minerals (Haque et al., 2014). 

In 2017, the laboratory bioleaching studies of Mount Weld Monazite (MWM) (500 mL shake 

flasks containing 0.5% ore (w/v) with 3% glucose and modified PVK media, initial pH = 7,  for 

14 days at 130 rpm, at either 30 or 37 °C depending on the inoculum species) demonstrated 

that a number of traditional PSMs could solubilize REEs from a lateritic monazite concentrate 

into the leachate (Corbett et al., 2017). After 8 d, Penicillum sp. released a total concentration 

of 12.32 mg L−1 of Ce, La, Nd, and Pr with little release of Th and Fe into solution (Corbett et 

al., 2017). Furthermore, bioleaching experiments conducted on non-sterile MWM with a 

known PSM (Penicillium sp.CF1) (8 d and pulp density of 0.5% w/v) resulted in greater 

mobilisation of REEs into solution (23.7 mg L−1) in comparison to experiments conducted on 

sterile monazite (Corbett et al., 2018). The authors suggested that the presence of indigenous 

microbes (Firmicutes) on the non-sterile monazite increased the bioleaching of MWM by 

PSMs at rates greater than what was recorded with either the indigenous organisms or the 

PSMs separately (Corbett et al., 2018). This syntrophic effect of indigenous and inoculated 

microorganisms was in good agreement with enhanced REEs bioleaching from monazite with 

a co-culture system (up to a final concentration of 40 mg L−1 REEs) (Fathollahzadeh et al., 

2018c). 

The two mine deposits outside of Australia (Bayan Obo in China and Mountain Pass in 

California) principally contain bastnasite where in Bayan Obo bastnasite and monazite co-

occur in ore minerals (Haque et al., 2014). Recently, bioleaching of REEs from bastnasite-

bearing rock by Gram-positive Actinobacteria has been investigated (Zhang et al., 2018). 

These authors have reported that in a nutrient-rich growth medium, the total concentration 

of bioleached REEs ranged from 56 to 342 μg L-1, whereas in an oligotrophic medium, only 

one strain (Streptomyces sp.) grew in the presence of the bastnasite (0.5% w/v), and leached 

up to 548 μg L-1 of total REEs (Zhang et al., 2018). Coincidentally, a combination of low 

solubility of bastnasite, the lack of nutrients from the mineral, the precipitation of REEs 

minerals, and the re-sorption of leached REEs to cell and residual mineral surfaces may have 

contributed to the observed low leaching efficiency (0.008–0.08%) (Zhang et al., 2018). 

Despite many known deposits available for the evaluation of the bioleaching of REEs from 

primary minerals, the other available published studies have reported REEs bioleaching 

efficiencies for monazite sand, or synthetized and poorly characterized REEs matrices (Brisson 

et al., 2016; Hassanien et al., 2013b). The use of synthetized REEs matrices for studying the 

solubilisation mechanisms of REEs/phosphate has disadvantages because of a variety of 

factors such chemical composition and surface chemistry.   
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An enrichment culture of heterotrophic REEs‐phosphate solubilizing fungi was established 

with 10 g L-1 glucose and NdPO4 (Brisson et al., 2016). A 1 mL aliquot of a spore suspension of 

the three isolated fungal strains (A. niger, A. terreus, and Paecilomyces spp.) were incubated 

for 6 days in 250 mL Erlenmeyer flasks at room temperature, 250 rpm, with 1% pulp density 

of synthetized monazite sand. Bioleaching efficiencies were tested in comparison to abiotic 

leaching (HCl, organic acid, and spent medium). Cell‐free spent medium and active cultures 

leached REEs to concentrations 1.7–3.8 and 5 times higher than those of HCl solutions of 

comparable pH (3% of leaching efficiency for the cell-free spent medium and 5% of leaching 

efficiency for active cultures), indicating that metabolites secreted by these organisms 

contribute substantially to REEs leaching. 

In another study, the feasibility of 10 species of PSMs to develop a bioleaching process of REEs 

from a monazite bearing ore was determined by halo zone formation on agar media, where 

Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus 

megaterium, and Acetobacter aceti formed halo zones, with the zone of A. aceti being the 

widest (Shin et al., 2015). Furthermore, with respect to higher Ca and phosphate solubilisation 

of Ac. aceti from TCP comparing to the other strains, this strain was used for further REEs 

bioleaching experiments. The strain released up to 5.7 mg L-1 of Ce on day 4 (0.13% of leaching 

efficiency).  

2.9.2 Secondary resources 

 

To tackle the REEs supply challenge, extraction of REEs from secondary resources and waste 

streams has been proposed (Binnemans et al., 2013b). However, up to 2011 less than 1% of 

the REES were recovered (Tkaczyk et al., 2018). In contrast to recycling of REEs from the REEs 

wastes streams and/or the low grade ores such as mineral sands, more attention has been 

devoted to red mud (bauxite residue), waste electrical and electronic equipment (WEEE) 

shredding, waste phosphors/cracking catalysts, and fluorescent powder (Hopfe et al., 2017; 

Marra et al., 2018; Qu & Lian, 2013; Reed et al., 2016). 

A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, was 

isolated from red mud and the fungal bioleaching efficiency of REEs from red mud was 

investigated under various bioleaching processes (one-step and two-step) and pulp densities 

(2, 5, and 10% w/v) (Qu & Lian, 2013). Higher production of citric and oxalic acids with the 

increased pulp density of red mud in both processes demonstrated that both acids played 

major roles in the bioleaching of REEs from red mud with leaching efficiencies varying from 

36% to 78%. 

Marra et al. (Marra et al., 2018) proposed a two-step bioleaching process for the extraction 

of REEs from WEEE dust with Acidithiobacillus. thiooxidans and P. putida. The first leaching 

step with At. thiooxidans showed yields of > 99% for Ce and Eu, and > 80% for La and Y while 

pH of the leaching solution dropped from 3.5 to 1.0 (with 1% pulp density after 8 days). In the 

second step, the cyanide producing P. putida released 48% of gold within 3 h from the residue 

of the first step (Marra et al., 2018). As sulfur was not present in the WEEE dust, the 

production of biogenic sulfuric acid from elemental sulfur was responsible for the 
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solubilisation of the REEs contained in WEEE. The leaching efficiency of Y in this study was 

higher than in a study where a mixed culture of acidophiles leached up to 70% of Y from 

fluorescent powder (with 10% pulp density after 16 days) (Beolchini et al., 2012). 

The potential of Gluconobacter oxydans in bioleaching of REEs from spent fluid catalytic 

cracking (FCC) catalyst and retorted phosphor powder (RPP) was demonstrated to be 

controlled by the production of gluconic acid. The leaching efficiency was up to 49% of the 

total REEs from the FCC material and up to 2% of total REEs from the RPP (Reed et al., 2016). 

The optimized batch process (agitation intensity, oxygen levels, glucose concentrations, and 

nutrient additions) increased leaching efficiency of REEs from FCC up to 56% (Thompson et 

al., 2017a). As a result, the authors suggested that microorganisms producing gluconic and 

other organic acids can effectively leach REEs from waste materials, and that increasing 

organic acid production will improve the overall recovery. Another readily accessible 

secondary resource of REEs, fluorescent phosphor (FP) which contains about 10% of REE-

oxides has been bioleached by Kombucha metabolites (i.e., acetic and gluconic acid) with 

leaching efficiency of up to 8% (Hopfe et al., 2017). These studies revealed that the interaction 

of the different microorganisms and the sample material contribute to the leaching behaviour 

of REEs. Bioleaching could also potentially be applied to other waste products. 

2.10 Mining of REEs and sustainability: The missing link 
 

In a world of metal scarcity, the development of new sustainable technologies for REEs 

extraction from both primary and secondary resources would be extremely beneficial. It must 

be realized that in a market where the global consumption of a resource grows by more than 

1% per annum, REEs recycling cannot replace primary mining of REE ores (Binnemans et al., 

2013b), thereby recycling, investigating new potential REEs resources, and primary mining of 

rare earths are complementary activities for securing long term REEs supply. Among the 

available processes, bioleaching can be a sustainable technique for extracting these elements 

(Ilyas et al., 2017).  

The major drawback of bioleaching compared to conventional REEs extraction is slower 

dissolution kinetics and need for a growth substrate for microbial growth. A techno-economic 

analysis showed glucose to be the single largest expense for the heterotrophic bioleaching 

process of REEs, constituting 44% of the total cost (Thompson et al., 2017a). Therefore, lower 

expenditure on carbon and energy in addition to an improved leaching efficiencies with core 

PSMs would increase the overall profit. 

2.11 Challenges and future prospects 
 

Until recently relatively little research has been conducted on the solubilisation of REEs from 

phosphate minerals with only a few papers focusing on the biomining of REEs having been 

published. In addition, knowledge of the underlying metabolic basis of phosphate 

solubilisation is limited with no information on the fate of phosphate and REEs within the 

bacteria-mineral-solution interface being available. One study has determined the 

concentration of P in the biomass of a Gram-positive PSM, Staphylococcus aureus, (grown on 



31 
 

K2HPO4) (Mechler et al., 2015), however the method does not reflect the complex 

multicomponent thermodynamics of monazite. Moreover, due to the low solubility of REEs, 

the biological functions of these elements have not been extensively studied. As a result, the 

understanding of the biochemistry of these elements is limited. The rate of biomass growth 

is controlled by nutrient availability including phosphate (Rodrıǵuez & Fraga, 1999; Rodríguez 

et al., 2006) as well as environmental stressors such as low pH and REEs toxicity which may 

suppress further REEs bio-mobilization. Further studies using different pure and mixed 

cultures are required to better understand the mechanisms of phosphate diffusion to and 

from the mineral and the effects of toxic elements in bioleaching of REEs. 

 

The mineralogy of monazite governs the dissolution and transport of REEs and phosphate due 

to its very low solubility compared to other mineral types, such as apatite and/or 

orthophosphates are more susceptible to leaching. The mobility of REEs, Th, and U is also 

controlled by their oxidation state. Nevertheless, limited information on the characteristics 

of the different oxidation states of REEs and their mobility and transition in biogeochemical 

processes is available in the literature. 

REEs-phosphate minerals are composed of inorganic P that can be utilized by PSMs for 

metabolic purposes. It has been demonstrated that, the mineral composition together with 

the speciation of elements in the phosphate minerals is one key factor influencing the 

proliferation of microbial communities in the bioleaching systems (Fathollahzadeh et al., 

2018c). Studying the effects of bioleaching on REEs mobility from monazite has demonstrated 

that during REEs mobilisation from different fractions of REEs, solubilised REEs does not 

necessary remain in the solution but shifts to the other fractions in the residue. In this context, 

the mobility of REEs and phosphate in monazite depends on microbial activity, attachment of 

bacteria on the surface, phase association of the REEs, (distribution of labile and non-labile 

REE), and which physiochemical and biological processes (Fathollahzadeh et al., 2018c) these 

phases are subjected to. 

Another aspect of the mineralogical challenge is the shift of REEs phases in the REEs-

phosphate minerals. Sequential extraction procedures (SEP) provide evidence on the 

fractionation of elements of interest for evaluating their potential mobility and bioavailability 

(Fathollahzadeh et al., 2015; Fathollahzadeh et al., 2014). A method for REEs fractionation has 

only recently been proposed (Mittermüller et al., 2016). It has been demonstrated that 

bacteria are capable of modulating the fate and speciation of metals in contaminated 

sediments (Fonti et al., 2015), however, the effects of bioleaching on REEs mobility from 

phosphate minerals have only recently been reported (Fathollahzadeh et al., 2018c). 

Future attempts to understand biofilm formation and the development of relevant industrial 

strains, and their interaction with mineral surfaces in mixed species cultures, as well as the 

development of biomarkers to analyse the microbial biodiversity within field operations are 

major challenges that need addressing to enhance our knowledge for future bioleaching 

processes development and monitoring. 
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2.12 Conclusions 
 

Bioleaching of REEs is considered a greener and environmentally friendly technology than 

conventional techniques. Although a number of endeavours have been made to investigate 

the effects of PSMs on the bioleaching of phosphates and REEs from phosphate minerals, 

there are not enough studies of the mechanisms responsible for the mobilisation of REEs. As 

REEs exist as either primary or secondary resources, it is mandatory to study the viability of 

different strains for bioleaching. Organic acids, phosphatases, bacterial attachment, 

phosphate regulation, the fractionation of REEs and mineralogy determine the fate and 

mobility of REEs and phosphate, which is crucial for the optimal extraction of REEs. 

Metagenomic, transcriptomic, proteomic and metabolic studies are needed to unveil the 

biochemical and molecular mechanisms used by PSMs during bioleaching.     
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Abstract 

Currently the known high grade easily-acquirable reserves of rare earth element (REEs) 

containing phosphate minerals are depleting. The objective of this study was to enrich 

indigenous phosphate solubilising bacterial strains from various phosphate ores and evaluate 

their potential application in the bioleaching REEs from the ores. Bacterial communities were 

enriched from the highest grade known deposit of REEs in the world, in arid Western 

Australia. The dominant taxa enriched from the monazite concentrate were Actinobacteria, 

Proteobacteria, and Firmicutes. The consortium of indigenous bacteria solubilized REEs (Ce, 

La, Nd) up to a total final concentration of 0.836 mg L-1.  

 

Keywords: Phosphate solubilising bacteria; Indigenous bacteria; Monazite bioleaching; Rare 

earth elements; Sustainable mining  
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3.1 Introduction 
 

Phosphorous (P) deficiency in agricultural soils is a major constraint to sustainable crop 

production. The availability of P to plants and soil microbiota is known to be governed by the 

forms of P, such as water-soluble, exchangeable, non-exchangeable, and minerals, the first 

two forms are easily available to biota (Werner et al., 2017). It has been demonstrated that 

in response to P deficiency, phosphate solubilizing bacteria (PSB) are able to solubilise P from 

poorly available sources (Goldstein & Krishnaraj, 2007). 

As economies around the world decarbonise, demand for more sustainable agriculture 

systems and green technologies such as electric vehicles and wind turbines, using new energy 

materials (i.e., Rare Earth Elements [REEs]) is forecast to increase (Binnemans et al., 2013a). 

Economic ore deposits are also becoming more difficult to find, partly due to the increased 

costs of exploration in remote locations or at greater depths, as well as decreasing the 

average grade of the deposits (Dunbar, 2017). Biotechnology could provide innovative 

alternatives for mitigating the constraints on current methods for metal extraction, and could 

fundamentally change the mining industry (Dunbar, 2017). 

The phosphate solubilising capacity of PSB has been demonstrated to provide an 

environmentally friendly strategy for biomining of REEs from phosphate waste materials 

(Thompson et al., 2017b). Therefore, bio-dephosphorization of iron phosphate ores by 

Burkholderia caribensis, Leptospirillum ferrooxidans, and a mixed culture of acidophilic 

bacteria have been explored (Chime, 2013; Delvasto et al., 2009; Priha et al., 2014) . A large 

range of bacterial species including Klebsiella, Enterobacter, Pseudomonas, Bacillus, 

Rhizobium, Erwinia, Agrobacterium, Flavobacterium, Enterobacter, Micrococcus, Thiobacillus,  

Acetobacter, Burkholderia spp., Clavibacter, Serratia and Streptomyces are capable of P 

solubilisation (Illmer & Schinner, 1992; Rodrıǵuez & Fraga, 1999; Zhao & Lin, 2001). It has 

been indicated that the P solubility was directly correlated with the release of organic acids 

(Park et al., 2009a). Therefore, the main mechanism of P solubilisation by heterotrophic PSB 

has been associated with production of organic acids such as gluconic, citric, oxalic, acetic, 

lactic and itaconic acids (Chen et al., 2006; Khan et al., 2014; Zeng et al., 2017). 

Two of the three primary REEs minerals (monazite [(Ce, La, Nd, Th)PO4] and xenotime [YPO4]) 

are associated with phosphate groups (Jaireth et al., 2014a). Early studies in the fields of 

biomining of REEs-phosphate minerals recognized the potential of microbial communities to 

release REEs from mineral solids (Barmettler et al., 2016b; Corbett et al., 2017). Most previous 

research has been focused on the application of exogenous and pure strains in the bioleaching 

of monazite (Brisson et al., 2016; Corbett et al., 2017). Metallomorphic and extreme 

environments provide a unique habitat for microbial life and Western Australia (WA) has 

many natural and man-made environments ideal for bioprospecting purposes (Kaksonen et 

al., 2018).  

Moreover, it has been suggested that indigenous microorganisms are more competitive in 

terms of adaptation than exogenous microorganisms (Delvasto et al., 2009; Priha et al., 2014). 
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However, the bioprospecting of indigenous microorganisms from the natural environments 

where the REEs ore is present has still been largely unexplored. 

The Mount (Mt.) Weld deposit, Laverton, in WA has been known as the richest and highest 

grade known deposit of REEs in the world dominated with secondary REEs phosphate 

(monazite) encapsulated in iron oxide minerals (Haque et al., 2014). The objective of this 

study was to evaluate the capability of indigenous PSB strains from Mt. Weld deposit in the 

bioleaching of REEs from three different grade of monazite bearing minerals present in WA 

regions. 

 

3.2 Material and methods 
 

3.2.1 Monazite ore  

Three monazite samples from WA were used for the leaching experiments. A high grade 

weathered yellowish monazite concentrate was collected from the Mt. Weld Mine (Lynas 

Corporation), referred to as MWM (Mt. Weld Monazite), a medium grade brownish monazite 

ore from the Mt. Weld Mine (Lynas Corporation) referred to as MWO, and a monazite ore 

sourced from the Busselton Mineral Sands deposit, WA (Cable Sands Pty Ltd) referred to as 

CSM. Sample preparation and composition analysis for MWM and CSM were described 

elsewhere (Corbett et al., 2017). The monazite concentrate of CSM was diluted 1:10 with Silica 

flour to obtain a safe Th/U working concentration (Corbett et al., 2017).  The mineralogical 

composition of MWM, MWO, and CSM was determined by X ray diffraction (XRD) at CSIRO 

Minerals, Waterford, Western Australia. The XRD analysis revealed that the MWM was mainly 

composed of monazite, florencite, and nontronite whereas CSM contained zircon and 

monazite. MWO sample was dominated by goethite followed by monazite, florencite, and 

nontronite. The ores were ground in a rod mill, pulverized in a ring mill and finally sieved to 

<38 μm in particle size. The elemental composition of the MWO was analysed by inductively 

coupled plasma optical emission spectrometry (ICP-OES, CSIRO Minerals, Waterford, WA). 

The MWO contained (%): 3.30 La, 4.81 Ce, 0.741 Pr, 2.27 Nd, 0.049 Y, 0.043 Th, 31.5 Fe, 2.95 

P, 0.703 Ca, 0.524 Mg, 3.84 Si, 0.426 Ti, 0.012 Zr, and <0.003 U. Before bioleaching 

experiments, the mineral samples were sterilized by gamma irradiation at 50kGy for 11 h 

(ChemCentre, Bentley, Western Australia). 

3.2.2 Isolation and enrichment of indigenous bacteria from the ore sample 

 

The isolation and enrichment of indigenous microbes were conducted from the non-sterile 

MWO on two different inorganic P sources; Ca3(PO4)2 (TCP) and CaHPO42H2O (CaP). For the 

isolation of heterotrophic PSB, MWO (2.5 g) was incubated in 50 mL of National Botanical 

Research Institute's phosphate growth medium (NBRIP) broth (Nautiyal, 1999) with either 

TCP or CaP as the phosphate source, at pH=6.85±0.25, for 7 d at 30 °C, agitated at 140 rpm. 

To detect the alteration in the microbial community with subculturing, cultures enriched on 

TCP or CaP were continuously grown on TCP or CaP as shown in table 1.  
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To investigate the bioleaching efficiency of the mixed populations from the enrichment 

cultures, the culture originally enriched on TCP and the culture originally enriched on CaP 

were combined and incubated in NBRIP broth. This is referred to as TCP:CaP. 

 

Table 1 – The order of subculturing of original cultures for studying changes in the diversity 

of microbial community. 

 Original enrichment Subculture 

TCP-TCP TCP TCP 

TCP-CaP TCP CaP 

CaP-CaP CaP CaP 

CaP-TCP CaP TCP 

 

 

Bacterial cells were also detached from one gram of MWO using 9 ml of Ringer's solution and 

shaken (140 rpm) (Merck, Darmstadt, Germany) for 24 h, cultured on NBRIP plates as a 

dilution series (10 fold), and incubated at 30 °C for 24 h. PSB isolated from Ringer’s solution 

were identified based on the formation of visible halo/zone on agar plates (NBRIP either with 

TCP or CaP as the phosphate source + 15 g L-1 agar) indicating P solubilisation of TCP or CaP 

by bacterial isolates.  

3.2.3 Diversity profiling of enrichment cultures 
 

DNA was extracted from one mL of enrichment cultures (TCP or CaP) using the FastDNA™ 

SPIN KIT (MP Biomedicals). DNA quality and concentration required for diversity profiling (10 

ng in 10 μL) was confirmed using a Nanodrop (ThermoFisher) and by PCR. 

Diversity profiling of the total genomic DNA was carried out by the Australian Genomics 

Research Facility using universal primers 341F (5′-CCTAYGGGRBGCASAG-3′) and 806R (5′-

GGACTACNNGGGTATCTAAT-3′) specific for the 16S rRNA gene of bacteria and archaea 

(Muyzer et al., 1993). Sequence analysis was conducted as described elsewhere (Khaleque et 

al., 2018). The operating Taxonomic Units (OTUs) representing less than 1% of the 

communities were excluded. Bacterial diversity was evaluated by calculating the Shannon 

diversity index (H) according to the equation (Shannon, 2001):  

𝐻 =  − Σ 𝑝𝑖 𝑙𝑛 (𝑝𝑖) 

where, pi is corresponding to OUT’s values. The flowchart of the bioprospecting is presented 

in Fig. 1. 
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Fig.1 The flowchart of bioprospecting phosphate solubilising bacteria (PSB) for monazite 

bioleaching from Mount weld ore (MWO). 

 

3.2.4 Bioleaching of phosphate minerals by enrichment cultures 

 

The ability of indigenous bacteria (cultures enriched on TCP and the mixed culture, TCP:CaP) 

to utilise MWO, MWM, and CSM as a phosphate source, was evaluated in 500 mL Erlenmeyer 

flasks. Cultures enriched on TCP and CaP were grown at 30 °C in NBRIP medium with available 

P sources either TCP or CaP  and the mixed culture with both TCP and CaP (Nautiyal, 1999), 

with shaking at 140 rpm, and harvested by centrifugation (3,600 g, 10 min). Cells were 

resuspended in sterile Tris-HCl buffer (100 mM, pH 7.2), centrifuged (3,600 g, 5 min) and 

washed twice more to remove any trace of phosphate. 

Bioleaching was carried out over 7 days at 30 °C in triplicate, at 140 rpm in an orbital shaking 

incubator (RATEK, Model No: OM11) in 200 mL of NBRIP media (pH 7.00±0.25), with 1% v/v 

bacterial inoculum (initial density 1 x 107 cells mL-1) and 1% pulp density of sterilized ore 

sample. For bioleaching with a mixed culture of these bacteria, a mixed bacterial inoculum of 

each culture (0.5% v/v TCP enrichment + 0.5% of CaP enrichment, initial density 1 x 107 cells 

mL-1) was prepared and used for the bioleaching experiment. Cell-free abiotic controls were 

carried out under the same conditions. Bioleaching was monitored by measuring the soluble 

concentration of Ce, La, Pr, Nd, Fe, P, Th, U, and Y in the leachate. 
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3.2.5 Analytical Methods 

 

Samples were taken at 0, 2, 3, 5, 7 d and pH measured using a pH meter (Ionode IJ series pH 

probe). Thereafter, samples were filtered (0.20 μm, cellulose acetate/surfactant-free, 

Sartorius) and assayed for REEs, Y, Th, U, and Fe concentrations by ICP-MS on day 2 and 7 

(Agilent Technologies 7700 series, Bureau Veritas Australia Pty Ltd, Canning Vale, Western 

Australia) and the average values were reported. Soluble phosphate concentration was 

determined by colorimetric method (Murphy & Riley, 1962). 

Organic acids were analysed at day 7 by high performance liquid chromatography (HPLC) 

(Agilent 1200, Curtin Water Quality Research Centre, Bentley, Western Australia) coupled 

with a diode array detector (DAD, Agilent). The injection volume was set as 50 μL for the 

samples. Compound separation was achieved with a C18 reverse phase column (Agilent, 5 

μm, 4.6 × 250 mm). The isocratic elution flow rate was 1.0 mL min-1. The mobile phase 

consisted of 70% methanol and 30% phosphate buffer (pH=2.0). A detection wavelength of 

220 nm was used. The identity and concentration of organic acid was determined by 

comparing the retention times and peak areas of chromatograms of the samples with 

standards. Organic acid identity was confirmed by liquid chromatography tandem-mass 

spectrometry (LC-MS/MS). The experimental setup for LC-MS/MS including some exemplary 

mass chromatograms of organic acids were described elsewhere (Busetti et al., 2014). Organic 

acids standards included gluconic, malic, formic, butyric, citric, acetic, lactic, oxalic, and 

pyruvic acids.  

 

3.3 Results and Discussion 
 

3.3.1 Bio-solubilisation of REEs from monazite by PSB 
 

Previous studies on the microbial solubilisation of REEs-phosphate minerals and release of 

REEs have focused mainly on the impact of a single species of bacteria or fungi (Keekan et al., 

2017; Shin et al., 2015). However, little is known of the indigenous microbial consortia present 

on the ores. In order to assess the bioleaching potential of native microbial consortia in the 

leaching of REEs from monazite, a series of leaching experiments was conducted. Regardless 

of the source of the enrichment cultures the same decline in pH was observed (Fig. 2). The pH 

when grown in the presence of CSM decreased to 2.6, MWO and MWM to 3.9-4.1. The pH in 

the abiotic controls did not decrease. This decrease in the pH can be attributed to the 

production of the organic acids resulting from glucose oxidation, bacterial respiration and 

nitrification (Corbett et al., 2018). Moreover, the concentrations of soluble P in the leachate 

of all samples were below than detection limit (< 2 mg L-1). This confirms that phosphate 

release into solution is not a reliable indicator of the breakdown of the phosphate matrix and 

the release of REEs. This is most likely due to the bacteria utilising any phosphate that has 

been released for their metabolic requirements (Corbett et al., 2017). This is in good 

agreement with phosphate starved environment for PSB present in this study. 
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Fig.2 Observed pH change over seven days after inoculation of monazite minerals (a) Cable 

sand monazite, (b) Mt. Weld mine ore, and (c) Mt. Weld monazite with heterotrophic 

indigenous phosphate solubilising bacteria enriched on Ca3(PO4)2 (TCP) or Ca3(PO4)2 + CaHPO4 

2H2O (Mixed). Error bars represent standard error between three replicate flasks. Error bars 

not visible are smaller than symbols.   

 

Total concentration of organic acids (α-ketoglutaric, gluconic and formic) (mM) 

ND ND ND ND 0.26 0.85 0.29 0.46 0.34 0.54 0.74 1.93 

 

Fig.3 Total concentration of Ce, La, Nd, Th, U, Pr, and Fe released into the leachate from (a) 

Cable sand monazite, (b) Mt. Weld mine ore, and (c) Mt. Weld monazite 2 and 7 days after 

inoculation with heterotrophic indigenous phosphate solubilising bacteria enriched on 

Ca3(PO4)2 (TCP) or Ca3(PO4)2 + CaHPO4 2H2O (Mixed). Data are averages ± SD of triplicate 

biological replicates. Error bars not visible are smaller than symbols. 

 

All enrichment cultures used in this study produced organic acids at varying concentrations 

(Fig. 3). Organic acids production of heterotrophic metabolism by enrichment PSB on MWO 

and MWM where glucose was provided as the carbon source were α-ketoglutaric, gluconic 

and formic acids (Fig. 3). However, no organic acids were detected in the leachate of CSM 

bioleaching flasks (Fig. 3). The total concentration of organic acids were higher in the presence 

of MWM (1.93 mM) compared to MWO (0.45 mM). The final concentration of REEs leached 

from the CSM, MWO, and MWM is shown in Fig. 3. The mixed culture of enrichment cultures 
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on MWM was the most efficient at leaching REEs with a total of 0.836 mg L−1 REE (Ce, La, and 

Nd) by day 7. When MWO and CSM was provided as a phosphate source, bacterial species 

released lower levels of total REEs: MWO (0.351 mg L-1) and CSM (< 0.1 mg L-1) (Fig. 3). 

 

Bioleaching of MWO and MWM with TCP enrichment cultures resulted in the lower release 

of REEs (up to 0.135 and 0.415 mg L-1, respectively) by day 7 compared to the mixed culture 

(Fig. 3). Enhanced organic acid production and REEs release in this study was observed by the 

mixed culture (TCP:CaP). It has been also demonstrated that synergistic action between 

strains of a mixed cultures enhanced phosphate solubilisation and organic acid production 

than either less diverse microbial consortium or species alone (Braz & Nahas, 2012; Corbett 

et al., 2018). 

 

Lower release of Ce, La, and Nd from CSM in this study may be explained with the 10:1 dilution 

with silica flour that was necessary to work within radiation safety levels or the 

heterogeneous particle size of CSM, as well as P availability for microorganisms (Corbett et 

al., 2017). However, the total concentration of contaminants such as Fe in the leachate of 

CSM was higher than REEs (up to a final total concentration of 1.78 and 1.45 mg L-1 after 

inoculation with PSB enriched on TCP and mixed, respectively). The presence of accessible 

iron on the surface CSM has been suggested to govern higher Fe concentration (Corbett et 

al., 2017).  
 

The competition between bacteria in the mixed cultures of native PSB may have affected the 

quantity and the type of secreted organic acids as well (Corbett et al., 2017). It has also been 

demonstrated that dicarboxylic (malic and oxalic) and tricarboxylic (citric) acids rather than 

monocarboxylic acids (acetic, formic, and gluconic) dissolve REEs more effectively due to 

having a high affinity and stability to trivalent metals such as REEs (Jones, 1998). No 

dicarboxylic or tricarboxylic acid were detected in this study, possibly resulting in a lower REEs 

release in this study compared to a previous research where demonstrated PSB were used in 

the bioleaching of REEs from the same matrix ore (Corbett et al., 2017). Shin et al. (Shin et al., 

2015) investigated the bioleaching of REEs from monazite-bearing ore (with 3.5% Ce ) by 

Acetobacter aceti and detected citric, malic, tartaric, and acetic acids and a total concertation 

of 5.8 mg L-1 of Ce in the leachate on day 4. In this study the Ce concentration reached 0.47 

mg L-1 by day 7 with the mixed culture. Moreover, Corbett et al. (Corbett et al., 2017) reported 

that Enterobacter aerogenes  produced gluconic, citric, formic, and malic acids with a total of 

1 mg L-1 Ce leached from MWM after 8 days.  

 

Traditional REEs extraction methods allow high levels of REE recovery from various ore 

concentrates (>90%); however, greener strategies of REE extraction and recycling are in high 

demand with a focus on bioleaching and ion exchange (Corbett et al., 2017; Park et al., 2017; 

Rozelle et al., 2016). The application of phosphate solubilising microorganisms (PSMs) to the 

recovery of REEs is an emerging trend in biomining with a number of studies demonstrating 

varying leaching efficiencies between 0.1-25% (Brisson et al., 2016; Corbett et al., 2017; 

Corbett et al., 2018; Qu & Lian, 2013; Shin et al., 2015). This study successfully demonstrated 
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the release of REEs by enrichment cultures derived from MWO. Nevertheless, levels of REEs 

(Ce, La, and Nd) leached from the CSM, MWO, MWM in this study were not comparable to 

conventional methods as the maximum recovery from MWM by PSB in the mixed culture was 

less than 0.1%. 

 

Considering the results presented in this study (Fig. 3), it is apparent the contribution of the 

enrichment cultures in the mobilisation of REEs were of minor importance. Therefore, 

inoculation with effective strains with a higher solubilisation potential is necessary. Previous 

research on the occurrence and diversity of PSB in soils indicated that although there were 

many PSB in the tested soils, only a few (5%) of the total isolates were effective in terms of 

phosphate solubilisation (Ndung’u-Magiroi et al., 2012). The reason for this difference is 

unknown, but may be due to differences in the respective thermodynamic and chemical 

composition of the materials as the solubility of the trivalent REEs-phosphates is very low (10–

13 M in pure water) compared to calcium phosphate minerals (Firsching & Brune, 1991). 

 

Further investigation is also required to investigate the interactions between PSM and 

mineral phases where potentially toxic elements present in monazite such as Th and U may 

suppress microbial activity. Therefore, to determine the performance of the efficient strains 

identified from the ores, further tests and studies in terms of their direct contribution to P 

release and REEs are required. 
 

3.3.2 Microbial community profile 
 

In this study two approaches were used to isolate and characterise PSB from MWO: direct 

isolation using Ringer solution and the enrichment of bacteria with TCP or CaP as a phosphate 

source. No microbial growth were observed from the Ringer’s solution. This is most likely due 

to the fact that the chemical composition of the solution did not provide appropriate growth 

condition for heterotrophic microorganisms. 
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Diversity profiling of the MWO enrichment cultures using the 16S rRNA genes showed that 

the microbial composition varied depending on the type of inorganic phosphate source (TCP 

and CaP) (Fig. 4). Actinobacteria was identified in all samples and Micrococcales was the most 

abundant orders in the subcultured enrichments (TCP-TCP, TCP-CaP, CaP-CaP, and CaP-TCP) 

(Fig. 4). Propionibacteriales was the most abundant order in the TCP enrichment and 

Actinobacteria the most abundant in the CaP enrichment. Actinobacteria are common rock-

dwelling bacteria present in metal rich acidic ecosystems and have a range of mechanisms to 

counteract heavy metal toxicity (Baker & Banfield, 2003; Haferburg & Kothe, 2007). Other 

orders identified were Bacillales, Rhodospirillales and Sphingomonadales and Burkholeriales 

(Fig. 4). This is consistent with bacterial communities in mine tailings dump in arid Western 

Australia reported to be dominated by Proteobacteria, Actinobacteria and Firmicutes 

(Wakelin et al., 2012).  

 

Shannon diversity index values 

0.73 0.76 1.25 0.83 0.65 1.20 

 

Fig.4 Relative abundance of bacterial orders detected in enrichment cultures from Mt. Weld 

ore when provided with Ca3 (PO4)2 (TCP) and CaHPO4 2H2O (CaP). (TCP: original culture 

enriched on TCP, TCP-TCP: original culture enriched on TCP and continued cultivation on TCP, 

TCP-CaP: original culture enriched on TCP and continued cultivation on CaP, CaP: original 

culture on CaP, CaP-CaP: original culture enriched on CaP and continued cultivation on CaP, 

CaP-TCP:  original culture enriched on CaP and continued cultivation on TCP). Numeric values 

correspond to the Shannon diversity index. 
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The proportions of microbial order changed after they were subcultured either on the original 

(TCP or CaP) or alternative P source (Fig. 4). In the original cultures enriched either on TCP or 

CaP with further cultivation on the same P source, Actinobacteria were 83-84% and 75-98% 

of the total community, respectively. The proportion of Actinobacteria dropped to 60% when 

the source of P was changed. It can be concluded that the bacterial community structure was 

related to changes in the nature of available P. The Shannon diversity index ranged from 0.65 

to 1.25, which implies the nature of inorganic phosphate source has affected the diversity 

profile of the PSB cultures enriched from MWO. The Shannon diversity index for cultures 

enriched on CaP (0.83) was higher than those enriched on TCP (0.73) which is consistent with 

higher solubility of CaP compared to TCP. A higher H where the source of P were changed 

(TCP-CaP or CaP-TCP) suggests that inclusion and substitution of inorganic phosphate sources 

with different solubility, increased the diversity of the potential PSB (Fig. 4), consequently 

REEs mobilisation in the mixed culture was enhanced (Fig. 3). 

From the bioleaching perspective, there is little known about role of Actinobacteria in the 

bioleaching of REE minerals. In a recent study, Actinobacteria strains isolated from bastnasite 

(another primary REE mineral), released a total REEs concentration of 0.342 to 0.548 mg L−1 

from bastnasite (<75 μm, 0.5 % pulp density ) in a nutrient-rich and oligotrophic medium, 

respectively (Zhang et al., 2018). 
 

Species belonging to Proteobacteria are often shown to be dominant taxa in mine tailings and 

survive in oligotrophic environments (Wakelin et al., 2012; Yu-Qing et al., 2008). Moreover, 

another study of the diversity profile of MWM enrichment cultures showed that 

Proteobacteria (Burkholderia and Sphingomonas) contributed to monazite bioleaching 

(Corbett et al., 2018). The presence of heterotrophic, acid tolerant species, Burkholderiaceae, 

common in P limited environments, explains the production of organic acid which also 

produce extracellular acid phosphatases when they require P (Corbett et al., 2018). 

Sphingomonas species are also capable of chemotaxis towards inorganic phosphate sources 

hydrolysing organophosphate substrates (Dennis et al., 2013). The presence of the mentioned 

species within the enrichment cultures may explain the phosphate solubilisation capacity of 

the consortium. However, the microbial diversity of the cultures from the bioleaching 

experiments on the various ores was not determined, but it is reasonable to assume that to 

some extent the enhanced dissolution of REEs from MWO and MWM by enriched native 

cultures occurred as result of microbial action not limited to organic acids.  
 

As previously described the presence of Actinobacteria in all samples were evident. The 

Actinobacteria are a phylum of Gram-positive bacteria. It has been also demonstrated that 

the presence of the carboxyl groups in the bacterial polysaccharide structure of Gram-positive 

bacteria (Actinobacteria and Firmicutes) induce significant REEs accumulation (Emmanuel et 

al., 2012; Emmanuel et al., 2011). This may explain the lowered concentration of REEs in the 

solution in the presence of native bacteria in this study compared to exogenous bacteria 

(Corbett et al., 2017). Examination of the microbial diversity of enrichment cultures 

established on MWM  have also shown that Firmicutes and Proteobacteria were dominated 

phyla (Corbett et al., 2018) which is consistent with diversity profiling of MWO enrichment 
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cultures in this study. Although it is evident that native consortia are capable of catalysing 

REEs mobilisation, their activities and bioleaching performance appear to be varied by 

mineralogy of the ore and how they respond to environmental stress (i.e., phosphate-nutrient 

limited environment). For example, in the presence of CSM, organic acid production and REEs 

were negligible, whereas in the presence of MWO and MWM, the enrichment cultures 

increased the organic acid production and REEs dissolution. Further examination is required 

to identify and understand the effects of environmental stress on microbial produced organic 

acids, and release of P and REEs. 

In order to confirm the significance of the metabolites produced by identified phylum in the 

dissolution of REEs from monazite, further tests are needed. It is in fact possible that what 

was observed in this study is not only due to organic acids generated by indigenous strains, 

but the combined result of unknown metabolites, synergistic interactions between 

indigenous strains, and the complexing effects of organic acids. Previous research have shown 

that the production of phosphatases have contributed to phosphate solubilisation and further 

leaching of the REE matrix (Corbett et al., 2018). The finding of this study suggested that the 

synergistic action of acid phosphatase activity and organic acids increased REEs solubilisation 

(Corbett et al., 2018). 

There is a high degree of functional and genetic diversity among the PSB. Due to their innate 

potential of producing an array of metabolites such as organic acids, siderophores, and 

enzymes, studying molecular genetic of these phosphate solubilizing strains is considered to 

play a vital role in understanding the mobilisation mechanisms of phosphate, REEs and the 

enhancement of bioleaching efficiencies. Further examination is required to identify key 

genes for phosphate solubilisation and glucose metabolism to understand the effects of 

microbial metabolites on various REEs bearing ores and to optimize bioleaching parameters 

with the purpose of a higher REEs extraction yield. Nevertheless, further bioprospecting from 

extreme environment for the characterisation of novel indigenous microorganisms could 

provide tools for the isolation and selection of highly stress-resistant biomining microbes, 

which would ultimately increase bioleaching efficiency. 

 

3.4 Conclusion 
 

The present study investigated the application of native phosphate solubilising bacteria (PSB) 

present in the Mt. Weld deposit for bioleaching REEs. The data obtained from diversity 

profiling, organic acids, and leaching experiments suggested that bioleaching of REEs-

containing phosphate minerals with Actinobacteria, Proteobacteria, and Firmicutes 

dominated cultures solubilized REEs (Ce, La, Nd) up to a final concentration of 0.836 mg L-1. 

Further research is required to optimize the bioleaching to develop an economically viable 

alternative to conventional REEs extraction processes. 
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Abstract 

The mobility of rare earth elements (REEs) in monazite depends on microbial activity, 

attachment of bacteria on the mineral surface, phase association of the REEs, and which 

physiochemical and biological processes these phases are subjected to. To better understand 

the role of the phosphate solubilizing bacterium, Enterobacter aerogenes, in REEs leaching, a 

series of monazite dissolution experiments was performed. The contact of bacteria with 

monazite was demonstrated to be advantageous for REEs bioleaching even though the same 

types of organic acids with similar concentrations were present during non-contact leaching. 

Monazite dissolution was observed to decrease in the following order: Biotic contact >> Biotic 

non-contact >> Spent media ≈ Abiotic at 30 °C. The attachment of bacteria on monazite 

surface by a co-localised atomic force microscopy (AFM) and confocal Raman microscopy 

(CRM) indicated no preferential attachment of bacteria to specific site on the monazite 

surface.  

 

Keywords: Monazite bioleaching; Rare earth elements; Phosphate solubilising bacteria; AFM  
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4.1 Introduction 
 

In the last decade, rare earth elements (REEs), have been considered as “critical and strategic 

metals”, due to China’s monopoly position and increased global demand in green 

technologies. Although REEs are relatively abundant in the Earth’s crust, they are not evenly 

distributed around the world, and they are mainly produced and processed in China (Ganguli 

& Cook, 2018; Zepf, 2013). Consequently, the prediction of exhaustible resources such as REEs 

is of profound significance, in that it not only aids governments to establish long-term 

resource plans but also contribute to maintain sustainable social and economic development 

(Wang et al., 2015). Considering the constant development of REEs industries, the 

Generalized Weng model, a widely used quantitative model in exhaustible resource forecast 

has been adopted to predict the production of the three major REEs in China (i.e., mixed rare 

earth, bastnasite and ion-absorbed rare earth) (Wang et al., 2015). The results suggested that 

countries with REEs resources should commence or continue their production to gradually 

decline dependency on China’s supply (Wang et al., 2015). 

Apart from the geopolitical challenges in REEs production, environmental issues can be a 

major concern where the extraction of REEs requires significant processing (Goodenough et 

al., 2018a). The current conventional REE production, relies on high temperatures and harsh 

chemical treatments has high energy consumption, and generates large volumes of toxic 

waste containing thorium, uranium, hydrogen fluoride, and acidic waste water(Hurst, 2010). 

Furthermore, as REEs-bearing ores may contain thorium and uranium up to 10% of the total 

ore matrix (Ragheb, 2011), emission of radioactive waste associated with  REEs mining and 

extraction resulted to complicated disposal protocols or contamination of the final REEs 

concentrate (Ault et al., 2015). It has been reported that the environmental life cycle impacts 

of REEs production during chemical leaching are far greater than those for other metals 

(Vahidi & Zhao, 2016). Consequently, due to environmental restrictions, sustainable mining 

and production are now encouraged. The use of microorganisms to recover metals from ore 

matrix is called biohydrometallurgy. Biotechnological mineral processing approaches have 

been developed as a sustainable alternative to chemical leaching of ores and waste streams. 

Biohydrometallurgy utilises microorganisms to generate bio-lixiviants which accelerate the 

dissolution of elements from their ores or other materials (Watling, 2016). Bioleaching 

processes are generally operated at relatively low temperature and atmospheric pressure, 

which reduces energy cost and gas emissions, and without relying on expensive and 

aggressive reagents (Bryan et al., 2015).  

Despite the great contribution of bioleaching to the extraction of base metals from sulfide 

minerals, very few studies have explored the application of microbes, in particular phosphate 

solubilizing microorganisms (PSMs), to monazite and other phosphate minerals hosting REEs. 

Brisson et al. (Brisson et al., 2016) demonstrated bioleaching of REEs (3-5% recovery) from 

monazite sand as the sole phosphate source by three phosphate solubilizing fungi. In another 

study, Shin et al. (Shin et al., 2015) examined the feasibility of using phosphate solubilizing 

bacteria (PSB) for the bioleaching of REEs from monazite-bearing ore with maximum leaching 

yield for cerium (up to 0.13%).  
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The previous studies of REE bioleaching have focused on efficiency (Brisson et al., 2016; 

Hassanien et al., 2013a; Shin et al., 2015) whereas very little is known of the mechanisms 

involved and benefits of REEs dissolution to the microbes. The novelty of this study is 

designing experiments to allow the bacteria to be either in contact or non-contact with the 

monazite surface. Adhesion and then colonization of the mineral surface are survival 

mechanism for bacteria and nutrients in aqueous environments are more accessible at 

surfaces (Busscher & van der Mei, 2012). Many studies on sulfide minerals demonstrate that 

microbial attachment and biofilm formation can stimulate pyrite bioleaching (Sand & Gehrke, 

2006). Corbett et al. (Corbett et al., 2017) demonstrated that Enterobacter aerogenes leached 

43% of the phosphate from tricalcium phosphate (Ca3 (PO4)2 or TCP) after 192 h, and of 12 

known PSB released the greatest amount of REE from a monazite. Therefore, in this study, 

the mechanisms of bioleaching REE from monazite were systematically investigated with E. 

aerogenes. A series of monazite dissolution experiments were performed to i) obtain initial 

knowledge on microbial bio-mobilization mechanisms involved in REE dissolution in terms of 

the importance of microbial colonization on mineral surface, and ii) evaluate the change in 

organic acids profile during bioleaching. Experimental data from monazite dissolution was 

used to develop a conceptual model to integrate the main phenomena affecting REE leaching. 

The results from this study will facilitate the development of sustainable bio-mining 

approaches REE extraction. 

4.2 Material and methods 
 

4.2.1 Monazite ore  

 

The high grade weathered yellowish monazite ore was collected from the Mount Weld Mine 

(Lynas Corporation), and is hereafter referred to as MWM (Mt. Weld Monazite). Sample 

preparation and composition analysis were described elsewhere (Corbett et al., 2017). The 

total surface are of the MWM was 24000 cm2 g-1 as determined by Brunauer–Emmett–Teller 

(BET) analysis at CSIRO Minerals, Waterford, Western Australia. The BET surface area (cm2 g-

1) was analysed by the N2 adsorption method at the temperature of liquid nitrogen (-196 °C) 

in a Micromeritics Gemini III 2375 (USA). Prior to the nitrogen adsorption measurements, 

each sample (approximately 0.6 g in weight) was degassed at 150 °C for 3 h in vacuum. The 

BET surface area was determined by using the N2 adsorption data at 5 different standard 

pressures (0.05, 0.15, 0.2, 0.25 and 0.3) at -196 °C. Any results were rejected and the samples 

re-tested if the correlation coefficient of a plot of the 'BET Function' through the 5 points was 

lower than 0.9997. Before bioleaching experiments, the mineral samples were sterilized by 

gamma irradiation at 50kGy for 11 h (ChemCentre, Bentley, Western Australia). 

4.2.2 Bioleaching experiment 

 

Enterobacter aerogenes (ATCC® 13048™) was grown to exponential phase at 30 °C in National 

Botanical Research Institute Phosphate (NBRIP) medium (Nautiyal, 1999), with shaking at 140 

rpm, and harvested by centrifugation (3600 g, 10 min). Cells were resuspended in sterile Tris-



64 
 

HCl buffer (100 mM, pH 7.2), centrifuged (3600 g, 5 min) and washed twice more to remove 

any trace of phosphate. The ability of E. aerogenes to bioleach MWM as a phosphate source, 

was evaluated in 500 mL Erlenmeyer flasks. Bioleaching was carried out over 18 days at 30 °C 

in triplicate, at 120 rpm in an orbital shaking incubator (RATEK, Model No: OM11)in 200 mL 

of modified NBRIP media (3% w/v glucose and pH 7.00±0.25), with 0.5% v/v bacterial 

inoculum (initial density 1 x 107 cells mL-1) and 1% pulp density of sterilized monazite. Cell-

free abiotic controls were carried out under the same conditions. Bioleaching was monitored 

by measuring the soluble concentration of Ce, La, Pr, Nd, Fe, P, Th, U, and Y in the leachate. 

Non-contact experiments were conducted in similar conditions to those described above. 

Snakeskin® dialysis tubing (10K MWCO, 35 mm, ThermoFisher SCIENTIFIC, catalogue number 

88245) with Snakeskin™ Dialysis Clips (ThermoFisher SCIENTIFIC, catalogue number 68011) 

were used to study the possible mechanisms for leaching REE from monazite as follows: 

1. For biotic contact leaching of monazite, dialysis bag, 200 mL media, and 1 mL of bacterial 

suspension were placed in 500 mL Erlenmeyer flasks. The monazite in this experiment was 

not sealed in the dialysis bag, so that bacteria were free to colonize monazite surfaces. 

2. For abiotic contact leaching monazite and media were placed in 500 mL Erlenmeyer flasks. 

3. For biotic non-contact leaching the monazite was sealed in the dialysis bag. This sealed 

dialysis bag, media, and 1 mL of bacterial culture were placed in Erlenmeyer flasks. 

4. For abiotic non-contact leaching monazite was sealed in dialysis bag. This sealed dialysis 

bag and media were placed in Erlenmeyer flasks. 

The pore size of the dialysis bag is sufficiently small to prevent bacterial migration through 

the bag, but large enough to allow the homogenous transfer of nutrients for bacterial growth. 

Molar dissolution rates (r) per surface area of the ore and time (mol cm-2 s-1) were calculated 

as using Equation 1: 

𝑟 =
𝑟𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐

𝑐𝑠𝑜𝑙𝑖𝑑𝑠×𝑀×𝐴 
          (1) 

where rvolumetric refers to the volumetric leaching rate (g L-1 s-1) obtained from the slope of the 

soluble element concentration versus time plot, csolids represents the initial solid 

concentration in the flasks (10 g L-1), M is molar mass of the element (140.1, 138.9, and 88.9 

g mol-1 for Ce, La, and Y, respectively), and A is the total mineral surface area (cm2 g-1) 

obtained with BET. 

4.2.3 Leaching of MWM with spent media 

 

Pregnant solutions were prepared as described in section 2.2. After 24 h incubation and pH 

decrease (pH = 3.4), the media was aseptically filtered (0.20 μm, Satorius). One gram of MWM 

was added to 50 mL of the filtered spent medium in 200 mL flask and incubated at 30 °C with 

shaking at 120 rpm for six days. Leaching was monitored by measuring the soluble 

concentration of Ce, La, Pr, Nd, Fe, P, Th, U, and Y in the leachate. 
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4.2.4 Analytical Methods 

 

Samples were taken at 0, 2, 3, 6, 9, 12, 18 d and pH measured using a pH meter (Ionode IJ 

series pH probe). Thereafter, samples were filtered (0.20 μm, Satorius) and assayed for REEs, 

Y, Th and U concentrations by ICP-MS (Agilent Technologies 7700 series, Bureau Veritas 

Australia Pty Ltd, Canning Vale, Western Australia) and the average values were reported. 

Organic acids were identified by high performance liquid chromatography (HPLC) (Agilent 

1200, Curtin Water Quality Research Centre, Bentley, Western Australia) coupled with a diode 

array detector (DAD, Agilent). Injection volume was set as 50 μL for the samples. Compound 

separation was achieved with a C18 reverse phase column (Agilent, 5 μm, 4.6 × 250 mm). The 

isocratic elution flow rate was 1.0 mL min-1. The mobile phase consisted of 70% methanol and 

30% phosphate buffer (pH=2.0). A detection wavelength of 220 nm was used. The identity 

and concentration of organic acid was determined by comparing the retention times and peak 

areas of chromatograms of the samples with standards. Organic acid identity was confirmed 

by liquid chromatography tandem-mass spectrometry (LC-MS/MS), and the experimental 

setup for LC-MS/MS including some exemplary mass chromatograms of organic acids were 

described elsewhere (Busetti et al., 2014). Organic acids standards included gluconic, malic, 

formic, butyric, citric, acetic, lactic, oxalic, and pyruvic acids. Microbial cells were counted 

using a Helber bacteria counting chamber (Thoma rule, Hawksley UK) at 400 X magnification. 

Scanning electron microscopy (SEM) of the bioleaching residue was performed on a Zeiss Evo 

40XVP SEM (John de Laeter Centre, Curtin University, Western Australia). 

Co-localised atomic force microscopy (AFM) and confocal Raman microscopy (CRM) 

measurements were performed on a WITec Alpha 300SAR (WITec GmbH, Ulm, Germany). The 

samples were mounted on a purpose built re-location stage, allowing returning to the same 

sample area. AFM data were acquired in intermittent contact mode in air utilizing standard 

probes with a resonant frequency of 300 kHz and a spring constant of 40 N m-1 (type NCH-VA, 

Bruker, Santa Barbara, USA).  

For the confocal Raman measurements a frequency double NdYAG laser (λ=532nm) was used 

for excitation and the Raman spectra were collected through a 100x objective with a 

numerical aperture of 0.9 (Zeiss, Germany) and fed via a 50 µm optical fibre into the 

spectrometer.  For AFM and CRM measurements, a pure monazite crystal (Lynas, Australia) 

was embedded in epoxy resin, cut and polished to obtain a suitable flat sample surface (with 

a thickness of 1 up to 2 mm and size of 1 cm3). MWM fine grains were also embedded in epoxy 

resin. Both samples were cleaned and sterilized in ethanol, nitrogen gas and an UV/ozone 

cleaner prior to exposure to E. aerogenes. The sample was exposed to 1% v/v bacterial 

inoculum (initial density 1 x 107 cells mL-1) and 18 mL of modified NBRIP with shaking at 120 

rpm in 100 mL Erlenmeyer flask for 24 h at 30 °C. 
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4.3 Results and Discussion 
 

4.3.1 Organic acid profile 

 

Glucose was the carbon source available to E. aerogenes in both the contact and non-contact 

bioleaching experiments, where the bacteria produced malic, acetic and gluconic acid (Figure. 

1). Corbet et al. (Corbett et al., 2017) have reported the release of citric and formic acids in 

addition to gluconic and malic acids, by E. aerogenes. It has been suggested that dicarboxylic 

(malic and oxalic) and tricarboxylic (citric) acids rather than monocarboxylic acids (acetic, 

formic, and gluconic) govern REE dissolution due to having a high affinity and stability to 

trivalent metals such as REEs (Jones, 1998). Previous studies with E. aerogenes and insoluble 

phosphate complexes have reported gluconic acid concentration up to 1 mM at day 4 (Stella 

& Halimi, 2015) which is in good agreement with this study. Johnston (Johnston, 1952) 

reported that the phosphate solubilisation potential of organic acids is related to the 

structural characteristics of the acid, thereby the concentration of organic acids as well as 

their structure and stability of ligands should be taken into account. Of those organic acids 

detected, only malic acid is dicarboxylic which make it a stronger acid (pKa = 3.40) comparing 

to acetic acid (pKa = 4.75), however, gluconic acid has a pKa of approximately 3.60. Citric and 

formic acids were not detected in the present study, and hence may not be attributed to REE 

dissolution by E. aerogenes when grown on NBRIP. The short half-life of organic acids (e.g., 

citrate 2-6 h) (Van Hees et al., 2003), unidentified acids with no standards solution (Brisson, 

2015), and the overlapping of the peaks of different acids in HPLC may have hindered the 

detection of some other organic acids in this study which may have been effective at 

solubilising REE from monazite. 

 

Fig.1 Organic acid concentration (mM) by Enterobacter aerogenes after 12 days of incubation in the 

presence of Mount Weld monazite (MWM) under (a) biotic contact and (b) biotic non-contact 

conditions. Error bars (SE) represent standard error between three replicate flasks. Error bars not 

visible are smaller than symbols. 
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Although, the organic acid profile of both contact and non-contact bioleaching were similar 

(Figure 1), contact bioleaching resulted in higher REE dissolution compared to non-contact 

leaching (Figure 2). Therefore, monazite dissolution may not be solely achieved by organic 

acids. 

 

4.3.2 Monazite dissolution during contact, non-contact, and spent medium bioleaching 

 

In order to assess the necessity of contact between microbial cells and mineral in the leaching 

of REE from monazite, a series of monazite dissolution experiments was conducted. During 

the contact bioleaching experiments with monazite the pH of the leachate decreased to 3.39 

± 0.08 by day 2, whereas with non-contact bioleaching it decreased to 3.47 ± 0.04 by day 2. 

The concentration of soluble Ce, La, and Nd in contact bioleaching (2.55, 0.57, and 0.36 mg L-

1 on day 18, respectively) was higher than other elements as expected due to higher content 

in the ore. On the other hand, much lower soluble Ce, La, and Nd concentration were detected 

in non-contact leachate (0.66, 0.16, and 0.12 mg L-1, respectively on day 18). After 48 h, 

soluble Ce concentrations were 2.61 times higher for contact bioleaching than for non-

contact bioleaching and reached to 3.82 times higher concentration by day 18 (Figure 2). 

When exploring the possible leaching mechanisms in the present study, monazite dissolution 

was observed to decrease in the following order: Biotic contact >> Biotic non-contact >> Spent 

media ≈ Abiotic. Exposure of MWM to spent media resulted in lower REEs leaching compared 

to biotic contact and non-contact (data not shown). On the one hand, as there is no phosphate 

consumption in spent media leaching precipitation and formation of secondary phosphate 

minerals increased, where overall REEs leaching decreased.  

 

Furthermore, as metabolic activity was not occurring, continuous organic acid production was 

minimized in spent media as well which is consistent with increased pH up to 4.50 ± 0.01 by 

day 6. At higher pH the precipitates would remain in insoluble forms. The soluble 

concentrations of elements in the spent media and abiotic controls were near or below 

detection limits (Ce, La, Pr, Nd, Th, U, and Y < 1 µg L-1; Fe < 0.5 mg L-1, and P < 2 mg L-1). As 

noted above, lower REEs leaching in spent media and abiotic suggesting that the presence 

and attachment of bacteria contributed directly to higher REEs leaching. 
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Fig.2 Leaching of MWM by Enterobacter aerogenes. Dissolved La, Ce, Pr, Nd, U, and Y under 

(a) biotic contact and (b) biotic non-contact, observed pH change under (c) contact and (d) 

non-contact conditions. Error bars represent standard error between three replicate flasks. 

Error bars not visible are smaller than symbols. The concentration of REEs and U in abiotic 

flasks remained below detection levels throughout the experiment (data not shown).  

 

In comparison to conventional monazite processing, where most of Th is leached to solution 

(Peelman et al., 2014), in the present study no Th was observed in leachate of either the 

contact or non-contact bioleaching. On the other hand, soluble Y concentration reached an 

average of 0.0563 ± 0.010 and 0.0262 ± 0.005 mg L-1, during contact and non-contact 

bioleaching, respectively, suggesting preferential release of Y over actinides considering the 

similar contents of Th and U in the MWM.  

 

Non-steady Ce, La, and Y dissolution rates during contact bioleaching of MWM with E. 

aerogenes at 30  ̊C on day 3 were 1.14×10-17, 3.93×10-18, and 5.7×10-19 mol cm2 s-1, 

respectively. By day 18 the rates slowed down to 4.37×10-18, 9.30×10-19, and 1.52×10-19 mol 

cm2 s-1, respectively. On the other hand, non-steady Ce, La, and Y dissolution rates during 

non-contact bioleaching from MWM at 30  ̊C on day 3 were 5.60×10-18, 1.73×10-18, and 

2×60×10-19 mol cm2 s-1, respectively, and by day 18 the rates slowed down to 1.07×10-18, 

2.64×10-19, and 8.14×10-20 mol cm2 s-1, respectively. This confirmed higher REE dissolution (2 

to 4 times) attributed to bacterial attachment. Moreover, when considering the equilibrium 

between monazite, the dissolved ions (Ln 3+ represents REEs) and very low solubility of 

monazite (10-13 M) (Firsching & Brune, 1991), pico-molar concentrations of REEs and 
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phosphate can produce saturation and supersaturation, according to reaction (1). Thus, 

phosphate abundance through REE precipitation and co-precipitation may influence REE 

distribution in solution, exhibiting distinctive REE dissolution rate  (Goyne et al., 2010). 
 

LnPO4 (s) ↔ Ln3+
(aq) + PO4

3-
(aq)      (1) 

 

The SEM photomicrographs (Figure 3) also demonstrated breakdown of the monazite surface 

(due to biofilm formation) with contact leaching while the mineral surface remained intact 

after non-contact leaching. Thus, the data suggested a microbially mediated REE dissolution 

on mineral surfaces through contact mechanism. 

 

The atomic force microscopy scans of the surface of the monazite crystal and MWM after 24 

h of exposure to E. aerogenes clearly show the attachment of bacteria to the crystal and 

MWM surface (Figure 4). The images show a range of clusters as well as solitary bacteria on 

the monazite surface. The confocal Raman microscopy image indicates that the surface 

chemistry of the investigated sample is composed of REEs (i.e., Ce3+) and PO4
3- and no other 

major heterogeneous mineral phases were observed. Changes in the intensity in the 

presented Raman map are due to variations in the sample topography. Comparing the Raman 

image with the distribution and arrangement of bacteria clusters seen in the AFM images for 

both monazite crystal and MWM, it appears that there is no preferential attachment to 

specific area relevant to chemical composition (either REE3+ or PO4
3-). 

 

4.3.3 A conceptual modelling for microbial-mineral interactions during monazite 

bioleaching 

 

Monazite particles are composed of inorganic P that can be used by PSB for metabolic 

purposes. Thus, mineral composition is a key factor influencing bacterial communities and 

their activities, especially in bioleaching. Bacteria can either exist in bulk solution (suspended), 

or attached to surfaces or within EPS (Donlan, 2002). Cell counting in the present study 

showed that the number of E. aerogenes cells in the leachate dropped by 48 h from 107 to 

103 cells mL-1 most likely as a result of attachment to monazite (data not shown). However, it 

has been unclear whether microbial attachment and biofilm formation is a prerequisite for 

monazite dissolution.  
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Fig.3 Scanning electron microscopy images of the MWM after 18 days of contact bioleaching 

(top) and non-contact bioleaching (bottom) with Enterobacter aerogenes. 
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Fig.4 (A) Optical microscopy image of monazite crystal and (G) grain after 24 h exposure to 

Enterobacter aerogenes with squares indicating where Confocal Raman microscopy (CRM) (B) 

and atomic force microscopy (AFM) measurements (C-F, H) were recorded. Confocal Raman 

microscopy image generated using a sum filter over the peak at 970 rel. 1/cm. (C-F, H) atomic 

force microscopy topography images showing clusters of bacteria attached to the monazite 

surfaces. 
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As previously mentioned, within bacteria-mineral interfaces, the rate of REE release during 

monazite bioleaching depends on i) the concentration of organic acid ligand in solution, ii) 

nature of the mineral surface (distribution of labile and non-labile REE), and iii) concentration 

of phosphate in solution which is governed by mineral composition, phosphate uptake rate, 

and growth rate of the biomass. The rate of biomass growth is controlled by nutrient 

availability including phosphate as well as environmental stressors such as low pH and REE 

toxicity which may inhibit REE bio-mobilization. However, the extent to which measured REE 

concentration during bio-mobilization and bio-mineralization relate to the bacterial 

attachment on monazite has not been previously studied.  

 

It has been suggested by Rawlings et al. (Rawlings et al., 1999) that the ability of 

microorganisms to oxidize sulfide minerals is possibly due to contact and non-contact 

mechanisms, or a combination of both (cooperative mechanism). However, bioleaching 

pathways for phosphate minerals (i.e., monazite) are very different than for sulfide minerals, 

where ferric iron lixiviant is regenerated by iron oxidizing microorganisms either in the bulk 

solution or in EPS (Crundwell, 2003). Here, we propose a new conceptual model of the 

possible mechanisms of monazite bioleaching including contact (Figure 5.a), non-contact 

(Figure 5.b), and cooperative (Figure 5.c) leaching as shown in Figure 5. In contact leaching 

(Figure 5.a) attached microbial cells mobilize phosphate (PO4
3-) within a matrix of EPS and 

release REE cations (REE3+) into solution. Organic acids (OA) generated by the cells from 

organic substrates complex REE3+. Protons released from organic acids attack the ore resulting 

in further PO4
3- dissolution. Incorporation of PO4

3- into the cells increases REE3+ solubility, 

according to reaction (1). In the non-contact mechanism (Figure 5.b) suspended cells generate 

REE3+ complexing organic acids and incorporate PO4
3- into cells increasing REE3+ solubility. The 

protons released from organic acids attack the ore resulting in further REE3+ and PO4
3- 

dissolution. In cooperative mechanism (Figure 5.c )attached cells mobilise PO4
3- from 

monazite and incorporate it into cells releasing REE3+ while suspended cells generate organic 

acids for REE3+ complexation and protons released from organic acids attack the ore. 

Alternatively, attached cells may play a role in organic acid generation while suspended cells 

take up PO4
3- from solution increasing REE3+ solubility. 

 

Previous studies (Brisson et al., 2016; Corbett et al., 2017) demonstrated that microbial 

solubilisation of monazite is promising, however to be competitive with conventional 

processes, the recovery rates via bioleaching need to be increased. To enable scale up of the 

approach, a solid understanding of which factors are most important for controlling REEs 

mobilisation is required. This study provided preliminary data on significance of microbial 

colonisation for nutrient acquisition by PSM, particularly phosphate via monazite dissolution. 

Overall our findings suggest that attachment of bacteria on mineral surface enhance REEs 

bioleaching. Further evaluation of potential PSMs for bioleaching REEs from monazite in large 

scale experiments will be considered. 
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Fig.5 A conceptual model showing the proposed mechanisms of monazite bioleaching. 

 

4.4 Conclusion 
 

The present study explored the possible mechanisms for bioleaching REEs from monazite. 

While a similar range and concentration of organic acids were secreted regardless of the 

ability of the bacteria to have contact with the mineral surface it was demonstrated that 

monazite dissolution was enhanced with bacterial contact by E. aerogenes with the monazite 

surface. No preferential attachment of bacteria to the monazite surface was observed by a 

co-localised AFM and CRM observed for either crystal monazite of the Mt. Weld Monazite. 

The data obtained from the organic acids profile and the contact and non-contact leaching 

experiments show promising scope for further research in the bioleaching of REEs-containing 

phosphate minerals. 
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Abstract 

The aim of this study was to develop continuous bioleaching of monazite by combining 

heterotrophic and autotrophic acidophilic microorganisms. The results showed that a co-

culture of autotrophic, acidophilic Acidithiobacillus ferrooxidans and heterotrophic 

Enterobacter aerogenes was more effective in bioleaching rare earth elements (REEs) from 

monazite than either species alone. This was likely due to a synergic interaction through the 

biogenic generation of both organic acids and sulfuric acid. In conclusion, the consortium of 

E. aerogenes and A. ferrooxidans solubilized REEs (Ce, La, Nd, Pr, and Y) up to a final 

concentration of 40 mg L-1. 

 

Keywords: bioleaching; monazite; Acidithiobacillus ferrooxidans; Enterobacter aerogenes; 

rare earth elements; co-culture 
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5.1 Introduction 
 

The shift to a low carbon future is expected to accelerate the deployment of rare earth 

elements (REEs) in the wind and solar energy sectors. Therefore, countries rich in REEs 

resources (i.e., Australia) can establish long-term benefits through sustainable REE mining. 

Besides the primary REEs bearing minerals (i.e., monazite), large rare-earth bearing ores 

hosting iron-rich minerals (Fe-oxide phosphate) including goethite and hematite (Hoatson et 

al., 2011), may contribute to global REEs supply (Faris et al., 2017). Currently, industrial 

extraction of REEs from monazite involves either a basic process that uses concentrated 

sodium hydroxide or an acidic process that uses concentrated sulfuric acid. These generate 

large amounts of hazardous waste containing thorium and uranium (Abreu & Morais, 2010). 

Biohydrometallurgy has been studied as a more environmentally sustainable alternative to 

extract REEs from phosphate minerals including monazite (Keekan et al., 2017). Previously 

reported REEs bioleaching efficiencies from monazite with both bacteria and fungi have been 

very low compared to chemical leaching (Brisson et al., 2016; Shin et al., 2015). Recently, 

bioleaching of REEs from bastnasite-bearing rock by Gram-positive bacteria, Actinobacteria 

has been investigated (Zhang et al., 2018). These authors have reported that in a nutrient-

rich growth medium, the total concentration of bioleached REEs ranged from 56 to 342 μg L-

1, whereas in an oligotrophic medium, only one strain (Streptomyces sp.) grew in the presence 

of the bastnasite (0.5% w/v), and leached up to 548 μg L-1 of total REEs (Zhang et al., 2018). 

Coincidentally, a combination of low solubility of bastnasite, a lack of nutrients from the 

mineral, the precipitation of REEs minerals, and re-sorption of leached REEs to cell and 

residual mineral surfaces may have contributed to the observed low leaching efficiency 

(0.008–0.08%) (Zhang et al., 2018). However, comparing to the conventional extraction of 

REEs, bioleaching can be considered as an “eco-friendly technology” to minimize the high cost 

and negative environmental impact. 

In phosphate-based environments ‘’phosphate solubilizing microorganisms” (PSMs) can be 

introduced to enhance the solubilisation of insoluble inorganic phosphate via acidification, 

chelation, and exchange reactions (Son et al., 2006). As a consequence, heterotrophic PSMs 

such as Enterobacter aerogenes can be used for the solubilisation of REEs from a phosphate 

mineral such as monazite via secretion of organic acids (Corbett et al., 2017). Earlier studies 

demonstrated that the recovery of REEs using heterotrophic microorganisms is possible, 

although, the bioleaching mechanisms are not yet clearly and explicitly understood (Brisson 

et al., 2016).  

It has been demonstrated that optimizing microbial community structure in co-culture 

systems are an effective way of improving microbial community function (Ma et al., 2017). 

The continuous requirement of heterotrophic bioleaching microorganisms for a carbon and 

energy source to maintain microbial activity is problematic at industrial level, however the 

addition of acidophilic autotrophic bioleaching microorganisms (e.g., Acidithiobacillus 

ferrooxidans) to these systems can potentially improve their performance. Autotrophic 

acidophiles requires small amounts of inorganic nutrients, such as ferrous iron and reduced 

sulfur compounds for bio-oxidation (Zhuang et al., 2015). In addition, the ability of acidophilic 



81 
 

bacteria to tolerate toxic heavy metal ions, enhances their capacity for the bioleaching of 

metals. A. ferrooxidans is the most studied obligate chemolithoautotrophic bioleaching 

bacterium. It gains energy from the aerobic oxidation of ferrous iron and/or reduced sulfur 

compounds to ferric iron and sulfuric acid, respectively (Watling, 2016). Although A. 

ferrooxidans has been used to leach phosphorous from different types of rock phosphates 

(Bhatti & Yawar, 2010), to the best of our knowledge, despite the commercial application of 

acidophilic bioleaching for a diverse range of elements from sulfide minerals, the acidophilic 

bioleaching of REEs-bearing minerals has not been previously studied. It has been 

demonstrated that the microbial consortia have greater bioleaching rates than pure cultures 

(Johnson, 2001), we therefore propose a two-step bioleaching system where the metabolites 

generated by E. aerogenes result in pH reduction negating the need for manual pH 

adjustment required for A. ferrooxidans. 

In this context, the aim of this work was to investigate the bioleaching of REEs from monazite 

by a co-culture of autotrophic, acidophilic A. ferrooxidans and heterotrophic E. aerogenes and 

compare the efficiency to those of individual pure cultures. 

 

5.2. Material and methods 
 

5.2.1 Phosphate and sulfide minerals  

 

The high grade weathered yellowish monazite ore was collected from the Mount Weld Mine 

(Lynas Corporation), and is hereafter referred to as MWM (Mt. Weld Monazite). The ore was 

ground by a rod mill, pulverized in a ring mill and finally sieved to <38 μm in particle size. The 

elemental composition of the MWM was analysed by inductively coupled plasma optical 

emission spectrometry (ICP-OES, CSIRO Minerals, Waterford, Western Australia). The ore 

contained (%): 10.1 La, 12.6 Ce, 2.10 Pr, 6.25 Nd, 0.165 Y, 0.162 Th, 1.23 Fe, 9.93 P, 1.75 Ca, 

0.199 Mg, 1.96 Si, 0.554 Ti, 0.031 Zr, and <0.003 U. Pyrite concentrate (p80 passing 120 μm) 

used as a source of Fe and S was obtained from Kalgoorlie Consolidated Gold Mines Pty Ltd. 

(KCGM), Australia (Bryan et al., 2015). The mineralogical composition of MWM was 

determined by X ray diffraction (XRD) at CSIRO Minerals, Waterford, Western Australia. The 

XRD Analysis of MWM revealed that samples were mainly constituted by 51 % monazite, 41 

% florencite, and 8 % nontronite. Pyrite concentrate contained 60 % pyrite, 12.5 % quartz, 9 

% albite and 7.5 % dolomite. Before bioleaching experiments, the mineral samples were 

sterilized by gamma irradiation at 50 kGy for 11 h (ChemCentre, Bentley, Western Australia). 

5.2.2 Bioleaching experiment 

 

Entrobacter aerogenes (ATCC 13048, obtained from ATCC) was grown to exponential phase 

at 30 °C in National Botanical Research Institute Phosphate (NBRIP) medium (Nautiyal, 1999), 

with shaking at 120 rpm, and harvested by centrifugation (3,600 × g, 10 min). Cells were 

resuspended in sterile Tris-HCl buffer (100 mM, pH 7.2), centrifuged (3,600 × g, 5 min) and 



82 
 

washed twice more to remove any trace of phosphate. Acidithiobacillus ferrooxidans (ATCC 

23270, obtained from DSMZ) was grown to exponential phase at 30 °C, with shaking at 120 

rpm, in the basal salt media (BSM) at pH 2.0 which is described elsewhere (Zammit et al., 

2011). Cells were resuspended in sterile Tris buffer (20 mM, pH 2.0), centrifuged (3,600 × g, 5 

min) and washed twice more to remove any trace of phosphate. 

All bioleaching experiments were conducted in 250 mL Erlenmeyer flasks containing 100 mL 

of the relevant media, in triplicate at 30 °C with shaking at 120 rpm in an orbital shaking 

incubator (RATEK, Model No: OM11) over 12 days. 

The ability of A. ferrooxidans to bioleach MWM as a phosphate source, was evaluated in BSM 

(pH 2.50±0.15), supplied with either FeSO4 (13.9 g L-1) and K2S4O6 (1.51 g L-1) (filter sterilized 

0.20 μm, Sartorius) or sterilized pyrite (1% pulp density), with 1% v/v bacterial inoculum 

(initial density 1 x 106 cells mL-1) and 1% pulp density of sterilized monazite. 

In the co-culture experiment, E. aerogenes was first cultivated in modified NBRIP media (3% 

w/v glucose and pH 7.00±0.25) with 1% v/v bacterial inoculum (initial density 1 x 107 cells mL-

1) and 1% pulp density of sterilized monazite. Three days later, when the pH dropped to < 3.5 

, a 10 mL aliquot of A. ferrooxidans (initial density 1 x 106 cells mL-1 before inoculation) in BSM 

was added to the leachate, and the combined culture supplied with FeSO4 (13.9 g L-1) and 

K2S4O6 (1.51 g L-1) (filter sterilized 0.20 μm, Sartorius).  

Cell-free abiotic controls were carried out under the same conditions. Samples were taken at 

0, 2, 3, 6, 9, 12 d and pH measured using a pH meter (Ionode IJ series pH probe). Samples 

were then filtered with disposable syringe filters (0.20 μm, Sartorius) and assayed for REEs, Y, 

Th , U, Fe, and P concentrations by inductively coupled plasma-mass spectrometry (ICP-MS) 

Agilent Technologies 7700 series, Bureau Veritas Australia Pty Ltd, Canning Vale, Western 

Australia) and the average values were reported.  

5.2.3 Comparison of the phosphate and iron regulation of E. aerogenes and A. ferrooxidans 

 

In order to investigate the potential metabolic pathways involved in inorganic phosphate 

solubilisation by both strains in the co-culture system, a genome-based comparison of 

phosphate pathways was carried out.  

The genomes of E. aerogenes (ATCC 13048 – KCTC 2190) and A. ferrooxidans (ATCC 23270) 

were downloaded from the NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/). For the purpose of this 

comparison, the genomes were annotated using the Rapid Annotation using Subsystem 

Technology (RAST) server (http://rast.nmpdr.org/) using the ClassicRAST annotation scheme 

(Overbeek et al., 2013). Comparisons were performed using the SEED and RAST servers and 

Geneious v.10.2.3 bioinformatic software (Kearse et al., 2012). 

5.2.4 Synchrotron analysis 
 

Synchrotron radiation is a powerful technique that can be used to determine elemental 

oxidation state of REEs for a wide range of environmental samples. 

ftp://ftp.ncbi.nlm.nih.gov/
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5.2.4.1 Sample Preparation 

 

Ce LIII-Edge X-ray absorption spectroscopy (XAS) data were collected on two solutions of 

monazite leachate from co-culture with ferrous sulfate and potassium tetrathionate at day 3 

and 6 after A. ferrooxidans addition, as well as the MWM residue at end of bioleaching 

experiment. The leachates were prepared with 30% glycerol, and flash frozen with liquid 

nitrogen cooled iso-pentane, into 1 mm × 3 mm × 23 mm acrylic sample cuvettes. The cuvettes 

were covered and with closed with metal free kapton adhesive tape, which served as an X-

ray transparent window. The powder sample was ground with mortar and pestle to a fine, 

homogenous powder, and then adhered as a thin film to metal free Kapton adhesive tape. 

5.2.4.2 XAS Data Collection 

 

Ce LIII-Edge XAS data were collected at beamline 7-3, at the Stanford Synchrotron Radiation 

Lightsource (SSRL). The beamline utilised a Si (220) double-crystal monochromator with 

harmonic rejection obtained by setting the 7 collimating mirror cut-off to 9 keV. The incident 

and transmitted X-ray intensities were recorded using N2-filled gas ionization chambers 

(sweeping voltage of 1.8 kV). The X-ray absorption near edge spectrum (XANES) was 

measured as the Ce LIII-Edge fluorescence excitation spectrum, with X-ray fluorescence 

collected with an array of 30 germanium detectors (Canberra) equipped with a vanadium 

filter and a Soller slit assembly. Spectra were collected with the sample temperature 

maintained at approximately 10 K, using an Oxford instruments liquid helium flow cryostat. 

Each Ce LIII-Edge was obtained from the co-addition of 10 replicate spectra. X-ray energy was 

calibrated by reference to the Kα-edge absorption of a metallic Cr foil (first inflection point 

calibrated to 5989 eV). 

5.2.4.3 Data Processing 

 

Ce LIII-Edge XAS spectra were processed using the EXAFSPAK suite of programs (George). 

Individual spectra were combined, a linear background subtracted, and the edge jump 

normalized to a value of 1 absorbance unit. Spectral comparison was performed on data 

without any smoothing filters applied, as well as on data with a 0.5 gaussian smoothing 

function applied, to reduce noise levels, which were the result of low Ce concentration 

present in the leachates. Due to the low concentration of Ce in the samples, and relatively 

larger noise levels in the raw data, data analysis was limited to visual inspection of the edge 

position and shape, and fitting of the spectra to model Ce3+ and Ce4+ compounds was not 

performed. 

5.2.5. Sequential extraction procedure (SEP) 

 

In order to evaluate the mobilization behaviour of REEs, sequential extraction of elements 

from the feed ore and bioleaching residue of pure cultures was carried out according to the 

modified the Community Bureau of Reference (CBR) five-step procedure (Mittermüller et al., 

2016) with an additional determination of the residual fraction using sodium peroxide fusion 
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(Fig. 1). The method determines five well defined fractions (speciation) in samples: easily 

soluble and ion-exchangeable fraction (F1), carbonate bound and mobilized by complexation 

fraction (F2), reducible fraction (F3), acid soluble fraction (F4), and residual fraction (R). The 

total content of the elements of interest in the mineral was determined by conducting a 

peroxide fusion analysis for the original minerals (same as the residue of modified SEP). All 

reagents used to perform the extraction were of analytical grade. Prior to the extraction, all 

tubes and glassware were soaked in diluted nitric acid (10 %v/v) for 8 h and rinsed with ultra-

pure Milli-Q™ water (Millipore, 18 MΩ/cm resistivity). All extractions were carried out in 

triplicate.  

The recovery percentage of the stepwise extraction was determined by comparing the sum 

of the five individual fractions (F1, F2, F3, F4 and R) to the total content determined by 

peroxide fusion of the original ore, according to following equation (Equation 1): 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) = [
𝐹1+𝐹2+𝐹3+𝐹4+𝑅

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡
] × 100                       (1) 

 

 

 

Fig. 1 Modified sequential extraction procedure (SEP) for REEs partitioning in Mt. Weld Monazite. 
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5.3 Results and Discussion 
 

5.3.1 Mineral characterisation 

 

The total concentration of REEs (mg kg-1 dry material) for MWM (through the peroxide fusion) 

and partitioning of REEs (with modified SEP) are presented in Table 1. The geochemical 

fraction in which REEs occur is critical for understanding their mobility, therefore within SEPs, 

the sample is progressively dissolved in extraction solution of increasing strength. 

 

Table 1 – Total content and fractionation of elements in feed Mt. Weld Monazite ore as 

determined by sequential extraction procedure. Values <0.0001% are not shown. Data are 

averages of triplicate biological replicates. 

 

Element Total content 
( mg.kg-1) 

Easily soluble 
F1 (%) 

Carbonate 
F2 (%) 

Reducible 
F3 (%) 

Acid soluble 
F4 (%) 

Residual 
R (%)  

La 99075 
 

0.37 0.69 12.0 86.9 

Ce 182250 0.00067 0.35 1.88 12.5 85.2 

Pr 20675 
 

0.58 0.64 13.7 85.0 

Nd 73000 0.00048 0.65 0.64 14.4 84.3 

Th 1838 
 

0.10 0.0 6.2 93.7 

Y 2220 
 

0.98 0.87 12.7 85.4 

 

 

Ce had the highest content of all REEs in MWM followed by La and Nd. Based on the 

comparison of the total content and the sum of all fractions (F1+F2+F3+F4+R), satisfactory 

recovery was achieved for the most of REEs in MWM feed ore, ranging between 105% and 

126%, suggesting the method to be consistent and reproducible. Recoveries greater than 

100% indicated that the stepwise procedure was more efficient in extracting REEs than 

peroxide fusion. Comparison of the SEP results with previous studies was not possible as to 

best of our knowledge, no reports of fractionation of monazite by SEP are available.  

The sequential extraction procedure revealed that Nd was the most mobile REE, with 15.7% 

of the total content in the non-residual (labile) fractions, and the residual fraction accounted 

for 84.3%. The residue contained 85.0-86.9% of other REEs and 93.7% of Th. The distribution 

behaviour of La, Ce, Pr, Nd, and Y in each labile fraction were in a similar range where the 

dominant scavenging phase in the acid soluble fraction was most likely represented by 

phosphate groups naturally present in monazite and florencite. Therefore, the SEP results 

confirm that amongst labile fractions, REEs associated with phosphate fractions can be 

released through biochemical pathways in which the cleavage of REEs-phosphate either 

directly or indirectly may be influenced by PSMs (Azospirillum brasilense, Bacillus 

megaterium, Burkholderia glatheia, Pseudomonas aeruginosa, Pseudomonas putida, 
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Aspergillus niger, Aspergillus tubigensis, and Penicillium sp) and/or other microbial species 

(Firmicutes) (Corbett et al., 2017; Corbett et al., 2018). 

5.3.2 Bio-solubilisation of REEs from monazite  

 

Bio-solubilisation of REEs from the monazite was explored with individual cultures of E. 

aerogenes and A. ferrooxidans as well as a combination of the two species.  

5.3.2.1 Phosphate solubilizing bacteria  

 

Following the inoculation of E. aerogenes into sterile media plus MWM, the total 

concentration of REEs in the leachate increased from 2.90 at day 2 to 5.84 mg L-1 at day 12 

(Fig. 2). No solubilisation of REEs, Fe or P occurred in abiotic flasks with the soluble 

concentration of all elements being below detection limits (Ce, La, Pr, Nd, Th, U, and Y < 1 µg 

L-1; Fe < 0.5 mg L-1, and P < 2 mg L-1), indicating that metabolites secreted by microbial cells 

contributed to REEs mobilization. With microbial growth, the pH of the media decreased from 

6.50±0.02 to 3.38±0.05 (Fig. 2). This decrease in the pH can be attributed to the production 

of organic acids resulting from glucose oxidation, bacterial respiration and NH4 assimilation 

(Corbett et al., 2017). E. aerogenes was reported to be efficient in solubilizing tricalcium 

phosphate [Ca3PO4,(TCP)] (Corbett et al., 2017; Prasanna et al., 2011). However, only a few 

studies have reported microbial solubilisation of natural monazite by PSMs (Corbett et al., 

2017; Shin et al., 2015). Shin et al. (Shin et al., 2015) examined bioleaching of REEs from 

monazite-bearing ore and reported a total concertation of Ce in the leachate of 5.8 mg L-1 on 

day 4 (0.13% of leaching efficiency) with Acetobacter aceti. For comparison in this study, the 

Ce concentration was 2.6 mg L-1 at day 3 (0.20% of leaching efficiency) for monazite 

bioleaching with E. aerogenes and by day 9, the Ce and La concentrations had increased to 4 

mg L-1 (0.31% of leaching efficiency) (Fig. 2). In the study by Shin et al. (Shin et al., 2015), the 

Ce concentration dropped to less than 2 mg L-1 (0.02% of leaching efficiency). Given the 

difference in experimental conditions (supplement of soluble of phosphate source in Shin et 

al. 2015) and the ore complexity, it is not surprising that the leaching behaviour of REEs was 

found to differ between studies.  
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Fig. 2 Concentrations of dissolved La, Ce, Pr, Nd, and Y (left) and pH of leachate (right) during 

the bioleaching of Mt. Weld Monazite with Enterobacter aerogenes in the presence of 

glucose. The concentration of REEs, Th, and U in abiotic flasks remained below detection level 

throughout the experiment. Data are averages ± SD of triplicate biological replicates. Error 

bars not visible are smaller than symbols. 

 

Corbett et al. (Corbett et al., 2017) reported that E. aerogenes released a total of 1.93 mg L-1 

REEs (Ce, La, Nd, and Pr) from a similar ore sample (MWM) after 8 days. In comparison, the 

maximum total REEs concentration observed in this study was 3.97 mg L-1 after 6 days (Fig. 

2). Differences in experimental conditions (media composition and growth temperature), and 

the type and concentration of secreted organic acids may have contributed to the differing 

results. In contrast, the concentration of P, Fe, Th and U solubilised from monazite were much 

lower than observed for REEs and most were lower than detection limits (< 2 mg L-1 for 

phosphate, < 0.5 mg L-1 for Fe, < 5 µg L-1 for Th, and < 0.02 mg L-1  for U), which is consistent 

with previous studies (Brisson et al., 2016; Corbett et al., 2017). As cells are present in the 

bioleaching system, incorporation and surface attachment of phosphate groups within 

microbial biomass and structures could be expected (Corbett et al., 2017). Also XRD analysis 

of the bioleached residue in this study confirmed the formation of secondary minerals such 

as cheralite [(Ce0.4Ca0.3Th0.3) (PO4) (SiO4)] and woodhouseite [CaAl3 (PO4) (SO4) OH6] which 

may explain the very low concentration of elements, especially phosphate in solution 

(Supplementary Fig. S1a). According to these considerations, the preferential release of REEs 

over Th and U favours the selective recovery of radionuclides for further downstream 

processing. 

These data indicated that E. aerogenes is a promising organism for microbial dissolution of 

phosphate REEs with almost no Th and U mobilization. However, in order to make it 

competitive with conventional extraction, further examination of factors influencing the 

release rate of REEs in conjunction with other microorganisms is required.  
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5.3.2.2 Acidophilic bacteria 

 

The capacity of A. ferrooxidans to tolerate exceptionally high level of metals has been 

demonstrated (Dopson et al., 2014). Tsaplina et al. (Tsaplina et al., 2015) reported leaching 

yields of 15-30% for REEs with acidophilic chemolithotrophic microorganisms from a 30% pulp 

density of ash slag waste at pH 0.76. It has also been demonstrated that the addition of pyrite 

can enhance metal bioleaching from electronic wastes (Bryan et al., 2015). However, no 

studies on the solubilisation of REE phosphates by acidophilic bacteria in the presence of 

various growth substrates have been reported. It was therefore decided to adopt an 

experimental setup with A. ferrooxidans as a model microorganism to evaluate the 

bioleaching of REEs from MWM under acidic conditions.  

The presence of A. ferrooxidans and availability of ferrous iron and reduced sulfur compounds 

impacted the pH change and mobilization behaviour of REEs (Fig. 3). The pH of the media with 

both FeSO4/K2S4O6 and pyrite initially increased as bio-oxidation of Fe2+ to Fe3+ is acid 

consuming (reaction 1). 

4Fe2+ + O2 + 2H2SO4  4Fe3+ + 2SO4
2- + 2H2O   (1) 

Pyrite can be solubilised only by a combination of proton and oxidative attack, according to 

“thiosulfate pathway”, where the main product is sulfate (reactions 2 and 3) (Fonti et al., 

2016). 

4FeS2 + 15O2 + 2H2O  4Fe3+ + 8SO4
2- + 4H+     (2) 

FeS2 + 14Fe3+ + 8H2O  15Fe2+ + 2SO4
2- + 16H+ (3) 
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Fig. 3 Concentrations of dissolved La, Ce, Pr, Nd, and Y during the bioleaching of Mt. Weld 

Monazite Acidithiobacillus ferrooxidans. (a) Abiotic controls with FeSO4 and K2S4O6, (b) 

Acidithiobacillus ferrooxidans with pyrite, (c) Acidithiobacillus ferrooxidans with FeSO4 and 

K2S4O6, (d) solution pH, and (e) concentration of soluble Fe under all conditions. Abiotic 

controls with pyrite; concentration of REEs and Fe remained below detection level throughout 

the experiment. Data are averages ± SD of triplicate biological replicates. Error bars not visible 

are smaller than symbols. 

 

Subsequently, after 9 days, the pH of the media in the presence of FeSO4 and K2S4O6 had 

decreased to 2.19±0.02, whereas the pH of the media inoculated with pyrite was 2.92±0.07. 

Bacterial oxidation of K2S4O6 by A. ferrooxidans with molecular oxygen to sulphate is an acid-

producing process according to reaction 4. 

4S4O6
2- + 12Fe3+ + 11O2 +18H2O  16SO4

2- + 12Fe2+ + 36H+ (4) 

The final pH at day 12 in both conditions were in a similar range to the initial pH (2.5). As 

dolomite was present in the pyrite concentrate, a higher H+ consumption due to the buffering 

capacity of the dolomite (reaction 5) and the heterogeneous nature of the concentrate 

(presence of quartz and albite) can reasonably be assumed to be responsible for the 

differences in pH and lower REEs solubilisation in the presence of pyrite. 

Ca Mg (CO3)2 + 4H+  Ca2+ + Mg2+ + 2CO2 + 2H2O (5) 

Moreover, the initial concentration of Fe and S within FeSO4 and K2S4O6 were 50 and 5 mM, 

respectively; which was adequate for bacterial growth. 
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The total concentration of Fe in solution by day 12 in the presence of FeSO4 and K2S4O6 

gradually decreased from 50 to 21 mM whereas in solution in the presence of pyrite it 

increased slowly (from 0.10 to 0.66 mM by day 12). The formation of Fe co-precipitate, 

jarosite (reaction 6) in MWM residue after incubation with FeSO4 and K2S4O6 was confirmed 

by XRD (Supplementary Fig. S1b), whereas with pyrite, jarosite formation did not occur.                                                       

K+ + 3Fe3+ + 2SO4
2- + 6H2O  KFe3 (SO4)2 (OH) 6 + 6H+ (6) 

The presence of different substrates influenced the REEs solubilisation by A. ferrooxidans (Fig. 

3). REEs solubilisation was greatest in the presence of FeSO4 and K2S4O6 (average final total 

REEs concentration during 12 days of incubation: 23.6 mg L-1, 1% percentage recovery of Ce). 

On the other hand, the growth of A. ferrooxidans on pyrite as a source of Fe and S resulted in 

lower REEs solubilisation (average final total REEs concentration: 10.6 mg L-1) which was still 

double of that achieved with E. aerogenes.  

5.3.2.2.1 Phosphorous solubilisation 

 

In the presence of A. ferrooxidans, the combined low pH with active Fe/S oxidising bacteria 

which produce biogenic sulfuric acid, favoured the mobilization of P up to 33 mg L-1. 

Phosphorous solubilisation from REE phosphates relies on protons to proceed (Chi et al., 

2006), however, as previously mentioned (3.2.2) the pH of the inoculated media in the 

presence of pyrite did not decrease, potentially limiting phosphate release into the leachate. 

Increasing the concentration of pyrite to 30 g L-1, has been proposed to improve the fraction 

of phosphorous leached from rock phosphate (P content 12%)(Chi et al., 2006).  

5.3.2.2.2 Thorium and uranium solubilisation 

 

The tolerance of A. ferrooxidans to Th2+ and UO2
2+ has previously been demonstrated to be in 

a range of 900-1880 mg L-1, where Th was more toxic to Fe oxidation than UO2
2+ (Leduc et al., 

1997). This range is much higher than could be solubilised from the MWM based on its total 

content of Th and U, and therefore the application of A. ferrooxidans for MWM can be 

justified. As MWM also contains trace amount of radioactive elements with higher Th content 

(0.162%) relative to U (0.003%), early saturation of Th in the solution was expected. 

Nevertheless, Th concentrations in all scenarios were lower than U (0.057±0.006 vs 

0.118±0.021). The amount of Th and U solubilised by A. ferrooxidans increased gradually 

during 12 days of incubation (0.30% and 32% of leaching efficiency, respectively). However, 

Sing et al. (Singh et al., 2009b) reported 98% uranium dissolution from silicate-apatite ore in 

40 days by A. ferrooxidans under the optimum conditions (pH 1.7, temperatures 35° C). This 

is much higher than the overall solubilisation of Th and U from MWM in this study. Providing 

phosphate sources for bacterial growth could be one controlling factor in Th and U 

solubilisation as in this study bacteria obtained their phosphate from MWM which is not as 

easily accessible as common phosphate sources in 9K media (Singh et al., 2009b).  

The major controlling factors in the release of U in this study was likely to be pH (reaction 7), 

and the increased concentration of Fe3+ (reaction 8) which can oxidise tetravalent uranium to 

water-soluble hexavalent uranium. While phosphate solubilising bacteria (section 3.2.1) only 



91 
 

solubilised U in the range of 0.013±0.001 mg L-1 at day 2 up to 0.020±0.000 mg L-1, by day 12, 

[comparable to concentration of U in abiotic controls (0.023+0.002 mg L-1)], A. ferrooxidans 

at day 12 solubilised U up to 0.118±0.021 mg L-1 in the presence of FeSO4/ K2S4O6 and 

0.105±0.000 mg L-1 in the presence of pyrite.  

UO3 + 2H+  UO2
2+ + H2O (7) 

UO2 + 2Fe3+  UO2
2+ + 2Fe2+   (8) 

The generation of ferric ions through the bio-oxidation of Fe2+ by A. ferrooxidans led to 

increasing solubility of Th. In the presence of FeSO4/ K2S4O6, the Th concentration in the 

leachate increased up to 0.057±0.006 mg L-1 by day 12 compared to 0.007 mg L-1 in abiotic 

leaching. Solubilisation of Th can be attributed to the presence of an oxidising agent (Fe3+). 

The formation of secondary minerals such as cheralite in the MWM residue also may explain 

the lower concentration of soluble Th in solution. These findings are in agreement with the 

results of thermodynamic speciation of monazite where the solubility of Th was restricted in 

the presence of phosphate due to the passivation layer of REE phosphates  (Lapidus & Doyle, 

2015).  

5.3.2.3 Synergistic effect of co-culture  

 

Of the three experimental conditions (E. aerogenes on glucose, A. ferrooxidans on FeSO4/ 

K2S4O6, and A. ferrooxidans on pyrite), A. ferrooxidans supplied with FeSO4/ K2S4O6 resulted 

in the greatest solubilisation of REEs, Y, as well as Th and U. This can be explained in terms of 

mechanisms by which elements are released into the leachate (biogenic acid and ferric iron 

generation) and the minimization of co-precipitation of soluble complexes. Phosphate 

solubilizing bacterium, E. aerogenes can lower pH naturally by the production of organic acids, 

as shown in section 5.3.2.1, producing conditions suitable for growths of A. ferrooxidans. 

Therefore, in this study an attempt was made to assess the potential of microbial co-culture 

system for REEs extraction by using A. ferrooxidans and E. aerogenes.  

Glucose fermentation and the secretion of organic acids led to the natural acidification of the 

media by E. aerogenes with the first sharp decrease in pH (2.84±0.03) observed by day 2. The 

addition of A. ferrooxidans plus FeSO4/ K2S4O6 at day 3 resulted in a further pH decrease (to 

2.48±0.01). A stable pH (2.46±0.04) was reached at the end of the experiment (Fig. 4 b). Due 

to the inhibition of Fe2+ oxidation activity by A. ferrooxidans reported at pH values above 3.0 

(Meruane & Vargas, 2003), the A. ferrooxidans inoculum was added when pH was2.84±0.03 

which is close to the optimum pH of the species (2.5) (Schippers, 2007).  

MWM was more efficiently solubilised in media co-inoculated with E. aerogenes and A. 

ferrooxidans (Fig 4.a) than with individual cultures (Fig. 2 and 3). An increase in REEs 

solubilisation from MWM with the co-culture was evident from day 6 (3 days after the 

addition of A. ferrooxidans) (Fig. 4 a) with a total REEs concentration of 40 mg L-1 on day 9. 

The major increase was observed for Ce as the concentration of released Ce in co-culture was 

on average 2.4 times higher than when inoculated with A. ferrooxidans and 7.4 times higher 

than with E. aerogenes (Fig. 4 a). However, the concentrations of solubilised La, Pr, Nd, U, and 
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Y detected in the co-culture solution at day 12 were in similar range as A. ferrooxidans in the 

presence of FeSO4/ K2S4O6. This provided an opportunity to selectively extract REEs while 

minimising Th and U solubilisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Concentrations of dissolved La, Ce, Pr, Nd, and Y during the bioleaching Mt. Weld 

Monazite with a co-culture of Enterobacter aerogenes and Acidithiobacillus ferrooxidans (a) 

in the presence of FeSO4 and K2S4O6 and (b) pH of leachate. The concentration of REEs, Th, 

and U in abiotic controls remained below detection level throughout the experiment (data 

not shown). Data are averages ± SD of triplicate biological replicates. Error bars not visible are 

smaller than symbols. 

 

The concentration of P in the co-culture leachate was 3.33±0.94 mg L-1. This is higher than in 

the presence of E. aerogenes (< 2 mg L-1) and lower than released by A. ferrooxidans (33 mg 

L-1). Previous results have demonstrated the enhanced ability of an Aspergillus niger and 

Burkholderia cepaciathan co-culture (both known as PSM) to solubilize phosphates compared 

to their individual performance (Braz & Nahas, 2012). Enterobacter species have been 

characterized as one of the most efficient PSM (Corbett et al., 2017). However, in this study 

no detectable P was observed with E. aerogenes. This indicates that P solubilisation from 

MWM by E. aerogenes can be inhibited by environmental stresses such as a very low pH, 

phosphate deficiency, and toxic elements. The heterotrophic dissolution of REEs and P from 

monazite is mostly governed by acido-complexolysis of organic acids. An alternative 
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possibility is that the bacteria, in particular E. aerogenes have utilised the soluble P for cellular 

requirements. After co-inoculation with A. ferrooxidans, overall P solubilisation improved.  

A number of low molecular weight organic acids can be rapidly degraded by microorganisms 

(Corbett et al., 2017). Heterotrophic culture of E. aerogenes generated a range of organic 

acids including gluconic, malic and acetic acids (data not published). The retention 

mechanisms of citric and malic acids have been investigated in some detail, and it has been 

demonstrated that higher Fe concentration under acidic conditions decreased the 

biodegradation of citric acid and malic acid (Yang et al., 2016). The enhanced dissolution of 

REEs from monazite as a result of the excretion of organic acids by heterotrophic bacteria and 

sulphuric acid from A. ferrooxidans, occurred by complexolysis of complexing agents and 

REEs. Therefore, the higher REEs concentration in the leachate of co-culture system can also 

be explained with higher and stable release of Fe in the co-culture (60 mM) compared to A. 

ferrooxidans (21 mM) which potentially contributed to the stability of organic acids, thereby 

prolonging their complexing capacity with REEs. 

As a result, it could be summarized that the synergistic function of co-culture system can 

generate more lixiviant (i.e., acid), which promotes the bioleaching process of monazite. In 

this context, the synergistic action of E. aerogenes and A. ferrooxidans in co-culture, in 

comparison to pure culture, offers potential alternatives to conventional techniques.  

 

5.3.3 Phosphate utilization 

 

A mentioned above, different P solubilisation was seen in pure cultures of E. aerogenes and 

A. ferrooxidans as well as the co-culture. A comparative genomic study of the potential 

mechanisms of phosphate metabolism during the interaction of E. aerogenes and A. 

ferrooxidans was performed (Fig. 5). It has previously been demonstrated that polyphosphate 

kinase (ppk) is responsible for the accumulation of long polymers of inorganic phosphates 

(known as polyphosphate) and that polyphosphate can be hydrolysed to liberate inorganic P 

by the enzyme exopolyphosphatase (ppx) (Rao et al., 2009). A genomic comparison revealed 

the ppx gene was directly downstream of the complete pho regulon (phoB-phoR-ptsSCAB-

phoU) in A. ferrooxidans, as has previously been shown (Vera et al., 2003). However, the 

genome of E. aerogenes showed major differences in the organization in the pho regulon, as 

shown by the absence of the pstA gene and the lack of co-localization of the phoB-phoR 

operon with pstSCB (Fig. 5). Furthermore, ppk and ppx in E. aerogenes are located in the same 

operon, and not as part of the pho regulon, as has previously also been described for 

Escherichia coli (Kornberg et al., 1999). As previously speculated by Vera et al. (Vera et al., 

2003) the presence of ppk and ppx on the same operon suggests that the genes may be co-

transcribed and therefore indicates limited accumulation of polyphosphate. Therefore, in E. 

aerogenes it is likely that inorganic P is directly used to meet the cell’s phosphate 

requirements, resulting in less P available in the solution and the requirement for a constant 

source of P in order to avoid phosphate starvation. However, in A. ferrooxidans ppk is not 

found as part of the operon with ppx, suggesting the genes are transcribed separately, 
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allowing the accumulation of polyphosphate in this strain. A. ferrooxidans would be able to 

store P and also to liberate it depending on the cell’s phosphate requirement. As E. aerogenes 

is likely to only transiently accumulate polyphosphate, it would require uptake of any 

phosphates released by A. ferrooxidans in order to overcome phosphate starvation. This could 

then explain the reduced concentration of phosphate in the media when A. ferrooxidans and 

E. aerogenes are in co-culture, as compared to the concentration of phosphate present when 

A. ferrooxidans is used as a pure culture.   

Bacterial adaptation to phosphate and energy deficient environments represent key factors 

that can compromise the feasibility of bioleaching of REEs from MWM. However, there is 

limited understanding concerning the potential components involved in phosphate and iron 

dynamics within bacterial-mineral surfaces. Further study of the accumulation and regulation 

of the inorganic phosphate during the solubilisation process is essential in order to enhance 

the functioning of these microorganisms for the efficient leaching of REEs-phosphate 

minerals. 

 

 

 

 

 

 

 

 

Fig. 5 Genetic organization of the pho Operon in Enterobacter aerogenes and Acidithiobacillus 

ferrooxidans (phoB – phosphate regulon transcriptional regulatory protein; phoR – phosphate 

regulon sensor protein; pstS – phosphate ABC transporter, periplasmic phosphate-binding 

protein; pstC – phosphate transport system permease protein; pstA – phosphate transport 

system permease protein; pstB – phosphate transport ATP-binding protein; phoU – 

phosphate transport system regulatory protein; ppx – exopolyphosphatase; hyp – 

hypothetical protein; ppk – polyphosphate kinase). 

 

5.3.4 Oxidation state of Ce and Nd 

 

The X-ray absorption near-edge spectrum (XANES) provides valuable insight into the chemical 

form of a specific element, including oxidation state, molecular geometry, and ligand type. In 
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many cases, simple visual inspection of the position of the edge energy and the general shape 

of the edge (features such as height, width, and splitting) is sufficient to draw conclusions 

about oxidation state (Hackett et al., 2012). This holds true for Ce, and differentiating Ce3+ 

from Ce4+ based on visual inspection of the LIII-Edge is relatively easy. The published literature 

highlights that the Ce3+ edge has a distinctive white line feature at 5726 eV (López-Moreno et 

al., 2010). As would be expected, at higher oxidation state, a shift of the edge to higher energy 

occurs, and the edge of Ce4+ is shifted to ~5730 eV. Further, Ce4+ contains two stable ground 

state electronic configurations, 4f0 and 4f1, and consequently the Ce4+ LIII-Edge contains a 

distinctive “double-peak” white line feature (Shahin et al., 2005). 

The results from this study revealed that in the bioleached MWM residue and resultant 

leachate, the Ce LIII-Edge occurs at 5726 eV, and contains only a single edge feature (Fig. 6). 

Therefore, it was concluded that the major oxidation state of Ce found in the MWM and 

leachates are Ce3+. These results suggest that oxidation of REEs (Ce3+ to Ce4+) most likely did 

not occur during the bioleaching of MWM, possibly as the dissolution mechanism of Ce was 

controlled by chelation with anions from organic acids.  

 

 

 

 

 

 

 

 

 

 

Fig. 6 Ce LIII-Edge XAS spectra collected from leachate at day 3 and day 6 after Acidithiobacillus 

ferrooxidans addition, and Mt. Weld Monazite residue during co-culture experiment. Dotted 

lines show individual data points, and solid lines show resulting spectra produced from a 0.5 

Gaussian smoothing filter. A single white line feature, centred at 5726 eV was observed for 

all spectra, indicating that Ce was mainly present as Ce3+. 

 

5.3.5 Changes in the partitioning of REEs and Th during bioleaching 
 

Changes in REEs and Th fractionation due to bioleaching with E. aerogenes and A. ferrooxidans 

were evident (Table 1 and 2). The major changes were observed for the non-residual 

fractionation of La, Ce, Pr, Nd, and Y, while Th showed smaller variations, in congruence with 
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their high association to the residual fraction (i.e., over 93.7 %). Bioleaching was effective in 

stimulating REEs mobility as indicated by the increase of REEs in easily extractable and acid 

soluble fractions F1 and 4 (Table 2). The increase of REEs mobility in F1 and F4 was associated 

with a concomitant decrease of these elements in fractions F2, F3, and R (Table 2).  

 

Table 2 – Fractionation of elements in bioleached residue of Mt. Weld Monazite ore as 

determined by sequential extraction procedure after bioleaching with either Enterobacter 

aerogenes or Acidithiobacillus ferrooxidans. The results <0.0001% are not shown. Data are 

averages of triplicate biological replicates. 

  
Fraction Content of MWM (mg kg-1 and %) after bioleaching with E. aerogenes 

 Easily soluble 
F1 (%) 

Carbonate 
F2 (%) 

Reducible 
F3 (%) 

Acid soluble 
F4 (%) 

Residual 
R (%) 

La 90 (0.07) 238 (0.19) 444 (0.35) 27800 (22.0) 97433 (77.3) 

Ce 244 (0.11) 680 (0.32) 1456 (0.69) 44800 (21.1) 164667 (77.7) 

Pr 15 (0.06) 69 (0.29) 77 (0.33) 5456 (23.0) 18033 (76.2) 

Nd 59 (0.07) 286 (0.34) 280 (0.34) 19790 (23.8) 62700 (75.4) 

Th 
   

89 (4.34) 1950 (95.6) 

Y 3.7 (0.15) 9.6 (0.38) 10 (0.41) 558 (22.4) 1907 (76.6)  
Fraction Content of MWM (mg kg-1 and %) after bioleaching with A. ferrooxidans 

La 120 (0.12) 79 (0.08) 259 (0.26) 17680 (17.8) 80937 (81.7) 

Ce 247 (0.13) 223 (0.12) 829 (0.45) 35800 (19.6) 145152 (79.6) 

Pr 27 (0.13) 23 (0.11) 49 (0.24) 3813 (18.4) 16763 (81.0) 

Nd 100 (0.14) 92 (0.12) 166 (0.23) 12987 (17.8) 59655 (81.7) 

Th 
 

5.7 (0.31) 
 

48 (2.63) 1784 (97.0) 

Y 3 (0.13) 2 (0.09) 4.3 (0.19) 334 (15.0) 1877 (84.5) 

 

 

Although previous research has shown the impact of bioleaching on fractionation of metals 

in the contaminated sediments (Fonti et al., 2015), to the best of our knowledge, there has 

no previous reports on the effects of bioleaching on REEs mobility from phosphate minerals. 

The first step of sequential extraction obtains the easily soluble/exchangeable fraction (F1) of 

elements that are weakly associated with organic and inorganic sites (Beckett, 1989) which 

can be released by the action of protonation (pH change) and ion exchange of cations such as 

Ca2+, K+, and Mg2+ which have a comparable ion radius (Coordination number = 6) to the 

trivalent state of REEs (e.g., Na+: 1:02 Å, Ca2+: 1.00 Å, K+: 1.38 Å, La3+: 1.03 Å, Ce3+: 1.01 Å, Pr3+: 

0.99, Nd3+: 0.98 Å, and Y3+: 0.90) (Jia, 1991; Shannon, 1976). The results of this fraction have 

shown that without bacteria only Ce (1.4 mg kg-1) and Nd (0.4 mg kg-1) may be released 

through weak electrostatic interactions or ion-exchange reaction. However, after bioleaching 

with E. aerogenes and A. ferrooxidans, an increase of Ce, La, Nd, Pr, and Y association with 

the easily soluble/exchangeable fraction of the leach residue was observed (0.06-0.15 and 
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0.12-0.14 % of their total concentration in E. aerogenes and A. ferrooxidans, respectively). 

Higher association of REEs in the F1 for A. ferrooxidans were in good agreement with higher 

concentration of REEs in A. ferrooxidans culture as illustrated in Fig. 3. 

The second fraction (F2) extracted with citric acid (pKa = 3.13) accounts for the carbonate and 

complexation fraction from which REEs can be solubilised with low molecular weight organic 

acids. Among the REEs in bioleaching residue of E. aerogenes the highest content in F2 was 

recorded for Y followed by Nd, and Ce. As citric acid was not detected in this study (data not 

shown), smaller extractable concentration of REEs in bioleach residue can be attributed to 

the microbial generation of weaker acids such as gluconic, acetic, and malic acids and 

consequently complexation of REE with organic acids. These results agree with previous study 

by Mittermüller et al. (Mittermüller et al., 2016) that reported extraction yields of the organic 

acids for both soil and tailings material generally increasing with increasing complexation 

capacity in the order: acetic acid < malic acid < citric acid. As the nature of acids generated by 

E. aerogenes and A. ferrooxidans are different, comparison of REEs complexation with 

biogenic sulfuric and organic acids is difficult.  

The elements bound to Fe-Mn oxy/hydroxides, the reducible fraction (F3), are normally 

mobilized with reductive conditions (Zimmerman & Weindorf, 2010) by changing either the 

oxidation state of the element or the host mineral elements (i.e., iron ore manganese 

hydroxides) (Mittermüller et al., 2016). A couple of recent studies have reported that MnO2 

can oxidize Ce3+ to Ce4+ (Yu et al., 2016). Fe-Mn oxy/hydroxides can also scavenge cations such 

as REEs by recrystallization products such as hematite, lepidocrocite, goethite, and 

maghemite (Lottermoser, 1990). However, based on results described in section 3.4 changes 

to the oxidation state of Ce4+ were not detected, and hence Eh may not contribute to REEs 

mobilisation. 

 

The fourth fraction of extracted elements, the acid soluble fraction (F4), includes the REEs 

that are usually associated with barely soluble phosphates. The widely used CBR extraction 

method (Rao et al., 2010) includes REE phosphates within the residual fraction. Thus, a 

separate step was required to evaluate the extent to which REE are available in a phosphate 

form for further bioleaching by microorganisms. The bioleaching induced REEs association 

into the acid soluble fraction suggests that phosphate chemistry in solution was most likely 

the limiting step to REEs mobilisation. Due to differences in the final pH of media for E. 

aerogenes and A. ferrooxidans cultures, the phosphate metal complexes would be less 

solubilized at higher pH (E. aerogenes), resulting in higher precipitated P, whereas the soluble 

P would be more prevalent in the experiments with A. ferrooxidans due to lower pH and 

solubilisation of P-metal complexes (higher insoluble P content for E. aerogenes). At lower 

pH, these REEs phosphate complexes would solubilize, allowing for the release of higher 

soluble levels of P, but at higher pH the precipitates would remain insoluble. Therefore, 

providing acidic conditions that maintain phosphate complexes dissolved in solution 

potentially contribute to increase in overall REEs dissolution.  

Considering the sum of so-called non-residual (labile) fractions (F1+F2+F3+F4), the observed 

increase in partitioning in mobile fraction was not associated with REEs solubilisation during 
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bioleaching processes, as the total concentration of all REEs in the non-residual fractions of 

the residue for E. aerogenes (22-24%) were higher than A. ferrooxidans (15-20%), while A. 

ferrooxidans displayed higher REEs solubilisation into solution phase during bioleaching (Fig. 

2 and 3; Table 1 and 2). In addition, REEs released from the residual fraction did not remain 

in the solution phase but shifted to the other fraction of the monazite, particularly the acid 

soluble fraction, implying that bacterial metabolisms (phosphate acquisition, storage, and 

complexation) are likely to play a key role in controlling overall solubilisation processes. These 

finding suggest that an increase in REEs mobility does not necessarily govern a specific 

element solubilisation into the solution.  

Based on the results from bioleaching, SEP and XANES, it can be concluded that a combination 

of biogeochemical processes and physio-chemical characteristic of specific elements 

generated complex patterns that controlled the bioavailability and mobility of REEs in 

monazite.  

5.4 Conclusion 
 

This study provides the first direct evidence of a synergistic effect of a heterotrophic-

autotrophic co-culture on the bioleaching of REEs from monazite. The combination of A. 

ferrooxidans and E. aerogenes increased REEs bioleaching from monazite (up to a final 

concentration of 40 mg L-1 REEs including: Ce, La, Nd, Pr, and Y) as compared to the pure 

cultures of A. ferrooxidans (23.6 mg L-1) or E. aerogenes (5.84 mg L-1) owing to a synergic 

interaction through the biogenic generation of both organic acids and sulfuric acid. 
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5.7 Supplementary Files 

 

 

 

 

 

Supplementary Figure S1.  XRD patterns of secondary minerals formation of Mt. Weld 

Monazite after bioleaching with Enterobacter aerogenes: (a) cheralite/ woodhouseite; 

Acidithiobacillus ferrooxidans (b) Jarosite 
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6.1. Introduction 
 

The use of concentrated sodium hydroxide or sulfuric acid in basic and acidic 

hydrometallurgical processes for leaching of rare earth elements (REEs) bearing phosphate 

minerals containing thorium and uranium (i.e. monazite) result in the production of large 

amounts of toxic wastes that contain thorium, uranium, hydrogen fluoride, and acidic waste 

water (Abreu & Morais, 2010; Hurst, 2010). Unless treated properly, the waste streams have 

a significant damaging effect on the environment. Techno-economic and life cycle analysis of 

REEs bioleaching from waste materials have demonstrated that bioleaching offered 

significant environmental benefits in most of the impact categories compared to conventional 

hydrometallurgical processes (Thompson et al., 2017b). 

Earlier studies have demonstrated the possibility of bioleaching REEs using heterotrophic and 

acidophilic autotrophic bioleaching microorganisms (Corbett et al., 2017; Fathollahzadeh et 

al., 2018b; Fathollahzadeh et al., 2018d). It has been demonstrated that phosphate 

solubilising microorganisms (PSMs) can acidify the leaching media naturally by the use of 

microbial metabolites (i.e., organic acids and acid phosphatase) (Corbett et al., 2018; 

Fathollahzadeh et al., 2018b) and therefore are able to release the phosphate and REEs 

present in a phosphate mineral matrix. 

Considering the input chemicals utilized in the REEs extraction procedures show significant 

contributions to most impact categories in the environmental life cycle assessment studies 

(Arshi et al., 2018), there is urgent need to find lixiviants that cause less pollution and are 

more sustainable for ore processing. Recently, it has been suggested that glycine (NH2‐CH2‐

COOH) can be used as a benign biodegradable lixiviant for the extraction of precious 

elements, including gold from polymetallic ores (Eksteen & Oraby, 2015; Oraby & Eksteen, 

2014).  

Glycine is one of the simplest and cheapest amino acids (the bulk cost of glycine is 

approximately USD 1000–1800 per tonne). It is also non-flammable, environmentally safe and 

stable, enzymatically degradable and is easily metabolised in most living organisms (Oraby & 

Eksteen, 2014). Depending on the solution pH, glycine can exist in three different forms as 

either a cation (+H3NCH2COOH), a zwitterion (+H3NCH2COO−), or an anion (H2NCH2COO−) (Aksu 

& Doyle, 2001). In acidic solutions (pH < 2.35) the cationic form predominates (Aksu & Doyle, 

2001). Due to its ability to form complexes, glycine can form 1:1 and 1:2 complexes with REEs 

via the carboxylic or the amino group (Kiss et al., 1991). 

In order to dissolve insoluble materials effectively and biologically, it has been suggested that 

the leaching reagents must satisfy the following criteria: i) occur naturally within the cell or in 

its environment, ii) act under physiological pH and temperature, and iii) be a part of the cell 

metabolism, and constantly regenerated (Mandl & Neuberg, 1956). Recent studies have 

shown that the addition of microbial metabolites such as amino acids enhanced the 

bioleaching of sulfide and phosphate minerals (Li et al., 2013; Rojas-Chapana & Tributsch, 

2000). Consequently, glycine can be hypothetically considered as a potential lixiviant as it 

appears to meet the criteria listed above. 
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Although heterotrophic and acidophilic autotrophic bioleaching microorganisms have been 

used to leach REEs from monazite (Corbett et al., 2017; Corbett et al., 2018; Fathollahzadeh 

et al., 2018b; Fathollahzadeh et al., 2018d), to the best of our knowledge, the effect of amino 

acids such as glycine on the bioleaching of REEs has not been previously studied. 

In order to explore such a possibility, several experiments were performed with two strains 

of known PSMs: Enterobacter (E.) aerogenes and Acidithiobacillus (A.) ferrooxidans as model 

organisms for heterotrophs and chemolithoautotrophs, respectively. First, the performance 

of E. aerogenes for bioleaching of REEs from high grade monazite in the presence and absence 

of glycine was evaluated. Thereafter, as A. ferrooxidans has been previously demonstrated to 

leach more REEs in comparison to E. aerogenes (Fathollahzadeh et al., 2018d), the bioleaching 

of REEs from high grade monazite (MWM) and another two monazite concentrates (MWO 

and CSM) with A. ferrooxidans in the presence and absence of glycine was investigated. 

In this context, the aim of this work was to evaluate the performance of an integrated glycine-

bioleaching system for the extraction of REEs from various grades of monazite bearing 

minerals obtained from Western Australia (WA). 

 

6.2 Materials and methods 
 

6.2.1 Monazite ore  

 

Three monazite samples from WA were used for the leaching experiments (Table 1). Sample 

preparation and composition analysis of MWM and CSM has been previously reported in 

Corbett et al. (Corbett et al., 2017). The elemental composition of MWO, MWM, and CSM 

was analysed by inductively coupled plasma optical emission spectrometry (ICP-OES, CSIRO 

Mineral Resources, Waterford, WA) (Table 1). The MWO sample (<38 μm) was dominated by 

goethite followed by monazite, florencite, nontronite, muscovite, and kaolinite as determined 

by X-ray diffraction at CSIRO Mineral Resources, Waterford, Western Australia. The monazite 

concentrate of CSM was diluted 1:10 with ground silica to obtain a safe Th/U working 

concentration (Corbett et al., 2017). Before bioleaching experiments, the mineral samples 

were sterilized by gamma irradiation at 50kGy for 11 h (ChemCentre, Bentley, Western 

Australia). 

6.2.2 Bioleaching experiment 

 

Enterobacter aerogenes (ATCC 13048, obtained from ATCC) and Acidithiobacillus ferrooxidans 

(ATCC 23270, obtained from DSMZ) were grown to exponential phase in National Botanical 

Research Institute Phosphate (NBRIP) medium (Nautiyal, 1999) and in basal salt media (BSM) 

(Zammit et al., 2011), respectively, at 30 °C with shaking at 120 rpm, and harvested by 

centrifugation (3,600 × g, 10 min), as reported in detail in Fathollahzadeh et al. 

(Fathollahzadeh et al., 2018d).  
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All bioleaching experiments were conducted in 250 mL Erlenmeyer flasks containing 100 mL 

of the relevant media, in triplicate at 30 °C with shaking at 120 rpm in an orbital shaking 

incubator (RATEK, Model No: OM11) over 12 days. 

 

Table 1 – ICP-EOS analysis for elemental composition of Monazite samples used in this study 

 

 Content (%) 

Sample ID Medium grade Mt 
Weld monazite (MWO) 

High grade Mt Weld 
monazite (MWM) 

Cable Sand monazite 
(CSM) 

Lanthanum (La) 3.30 10.1 9.41 

Cerium (Ce) 4.81 12.6 14.0 

Praseodymium 
(Pr) 

0.741 2.10 0.184 

Neodymium (Nd) 2.27 6.25 5.46 

Yttrium (Y) 0.049 0.165 0.851 

Thorium (Th) 0.043 0.162 4.98 

Uranium (U) <0.003 <0.003 0.194 

Iron (Fe) 31.5 1.23 0.458 

Phosphorus (P) 2.95 9.93 9.45 

Calcium (Ca) 0.703 1.75 0.693 

Magnesium (Mg) 0.524 0.199 0.079 

Silicon (Si) 3.84 1.96 1.72 

Titanium (Ti) 0.426 0.554 0.325 

Zirconium (Zr) 0.012 0.031 1.80 

 

The ability of E. aerogenes to bioleach sterilized MWM (1% pulp density) was explored in the 

modified NBRIP media (3% w/v glucose and initial pH 7.00±0.25) with 1% v/v bacterial 

inoculum (initial density 1 × 107 cells mL-1). 

The ability of A. ferrooxidans to bioleach sterilized ore samples (MWO, MWM, CSM) as a 

phosphate source, was evaluated in BSM (initial pH 2.00±0.15), supplied with FeSO4 (13.9 g L-

1) and K2S4O6 (1.51 g L-1) (filter sterilized through 0.20 μm cellulose acetate/surfactant-free 

membrane, Sartorius), with 1% v/v bacterial inoculum (initial density 1 x 106 cells mL-1) and 

1% pulp density of sterilized monazite ore. 

Moreover, bioleaching of sterilized ore samples with E. aerogenes (1% v/v, initial density 1 x 

107 cells mL-1) in modified NBRIP media (3% w/v glucose and initial pH 7.00±0.25) and A. 

ferrooxidans (1% v/v, initial density 1 x 106 cells mL-1) in BSM (initial pH 2.00±0.15) supplied 

with FeSO4 (13.9 g L-1) and K2S4O6 (1.51 g L-1) (filter sterilized through 0.20 μm cellulose 

acetate/surfactant-free membrane, Sartorius) in the presence of sterilized glycine (1 g L-1, 

Sigma) was carried out over 12 days at 30 °C in triplicate, at 120 rpm in an orbital shaking 

incubator. 
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Cell-free abiotic controls were carried out under the same conditions. Samples were taken at 

0, 2, 3, 6, 9, 12 d and pH measured using a pH meter (Ionode IJ series pH probe). Samples 

were then filtered with disposable syringe filters (0.20 μm, Sartorius) and assayed for REEs 

(La, Ce, Pr, Nd, and Y), Th , U, Fe, and P concentrations by inductively coupled plasma-mass 

spectrometry (ICP-MS) Agilent Technologies 7700 series (Bureau Veritas Australia Pty Ltd, 

Canning Vale, Western Australia) and the average values were reported.  

The effect of glycine on the growth of E. aerogenes (20% inoculum) was evaluated in 10 mL 

of modified NBRIP medium (5 g L-1 K2HPO4 instead of monazite source) and determined by 

cell growth in the absence and presence of glycine (1 g L-1, Sigma). The growth was assessed 

by taking 200 µL aliquots of the bacterial suspension and placing the samples in a 96-well 

plate for measuring optical density at 650 nm for cell growth using a microplate reader 

(EnSpire Multimode plate reader, PerkinElmer). Moreover, the effect of glycine on the activity 

of A. ferrooxidans was evaluated in 100 mL BSM (supplied with 5 g L-1 K2HPO4 instead of 

monazite source) and determined by oxidation of ferrous to ferric in the absence and 

presence of glycine (1 g L-1, Sigma). Iron oxidation was determined based on ferric and total 

dissolved iron concentrations using the modified ferric chloride assay as described by 

Khaleque et al. (Khaleque et al., 2018). 

6.2.3 Glycine metabolism of E. aerogenes and A. ferrooxidans 

 

Glycine is the simplest amino acid and can be catabolized by way of several metabolic 

pathways (Kikuchi et al., 2008). In order to investigate the potential metabolic pathways 

involved in glycine metabolism by E. aerogenes and A. ferrooxidans, a genome-based analysis 

of glycine pathways was performed. The genome of E. aerogenes (ATCC 13048 – KCTC 2190; 

NCBI accession: CP002824.1) and A. ferrooxidans (ATCC 23270; NCBI accession: CP001219.1) 

were downloaded from the NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/). 

For the purpose of this study, the genome of E. aerogenes and A. ferrooxidans was annotated 

using the Rapid Annotation Subsystem Technology (RAST) server (http://rast.nmpdr.org/) and 

the ClassicRAST annotation scheme (Overbeek et al., 2013). The Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) was used for verification of metabolic pathways (Kanehisa et al., 

2015) (http://www.genome.jp/kegg/). 

 

6.3 Results and Discussion 
 

The bio-solubilisation of REEs from the monazite samples was explored with cultures of E. 

aerogenes and A. ferrooxidans as well as a combination of each strain with glycine.  

6.3.1 Bio-solubilisation of REEs from monazite with heterotrophic PSM 

 

Following the inoculation of heterotrophic PSM into sterile media containing MWM, E. 

aerogenes solubilized REEs (La, Ce, Nd, Pr, and Y) up to a final concentration of 6 mg L-1 (Fig. 

ftp://ftp.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/
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1) consistent with the leaching results of a previous study (Fathollahzadeh et al., 2018b). The 

preferential release of REEs over Th and U corresponded to the formation of cheralite and 

woodhouseite confirmed by XRD (Fathollahzadeh et al., 2018d). Incorporation of phosphate 

into microbial biomass and formation of secondary phosphate minerals may also explain the 

lower concentration of phosphate in the leachate compared to REEs (P ≈ 2 mg L-1) consistent 

with the previous studies (Corbett et al., 2017; Fathollahzadeh et al., 2018d). With microbial 

activity, the pH of the media decreased from 6.50±0.02 to 3.36±0.05 (Fig. 1). This decrease in 

the pH can be attributed to the production of organic acids and phosphatases resulting from 

glucose oxidation (Corbett et al., 2017; Corbett et al., 2018). No solubilisation of REEs, Fe or P 

occurred in abiotic flasks with the soluble concentration of all elements being below detection 

limits (Ce, La, Pr, Nd, Th, U, and Y < 1 µg L-1; Fe < 0.5 mg L-1, and P < 2 mg L-1), indicating that 

metabolites secreted by microbial cells enhanced REEs mobilization. 

 

 

Fig. 1. The concentrations of dissolved La, Ce, Pr, Nd, and Y and pH of leachate during the 

bioleaching of Mt. Weld Monazite (MWM) in the presence of Enterobacter aerogenes (a) with 

and (b) without glycine and pH during abiotic leaching. The concentration of REEs, Th, and U 

in abiotic flasks remained below detection level throughout the experiment (data not shown). 

The pH data for both abiotic and biotic flask are averages ± standard deviations (SD) of 

triplicate replicates. Error bars not visible are smaller than symbols. 
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The final pH of the media in the presence of glycine was in similar range (3.34±0.05) to the 

flasks with no glycine (3.36±0.05) (Fig. 1). The cell yield was higher in the presence than in the 

absence of glycine (Supplementary Fig. S1). However, REEs solubilisation with E. aerogenes 

decreased in the presence of glycine (average final total REEs concentration after the 12 days 

of incubation: 4 mg L-1) (Fig. 1). These data indicated that E. aerogenes produce greater 

biomass in the presence of glycine, however, overall REEs dissolution from monazite in the 

presence of glycine was reduced. Moreover, E. aerogenes used in this study was not provided 

with soluble phosphate source during bioleaching and therefore had to acquire phosphate 

from monazite. This was confirmed by the low concentration of P in the leachate (< 2 mg L-1), 

and phosphate deficiency can also reasonably be assumed to be responsible for slowing down 

the overall microbial growth and affecting further REEs solubilisation.  

6.3.2 Bio-solubilisation of REEs from monazite with autotrophic PSM 

 

Any microorganism that acidifies the media can potentially release some level of phosphate 

and hence REEs. Although bioleaching of sulfide minerals by A. ferrooxidans has been 

extensively studied (Dopson et al., 2014; Watling et al., 2010), autotrophic bioleaching of 

REEs-bearing phosphate minerals has only been reported recently (Fathollahzadeh et al., 

2018d). The previous research (Fathollahzadeh et al., 2018d) demonstrated that A. 

ferrooxidans (initial pH= 2.50 ± 0.15) could solubilize MWM up to a final total REEs 

concentration of 23.6 mg L-1 in the presence of FeSO4 and K2S4O6. In this study, in order to 

elucidate the effect of amino acids on the bioleaching of REEs, several experiments were 

performed with A. ferrooxidans (initial 2.00 ± 0.15) with the addition of glycine to evaluate 

the effect of glycine on the bioleaching of REEs from MWM, MWO, and CSM under acidic 

conditions.  

6.3.2.1 Solution pH, iron, and sulfate concentration  

 

The changes in pH, and iron concentration during the leaching experiments are shown in 

Figure 2. Solution pH and total soluble iron concentration decreased in all biotic flasks over 

time, whereas in abiotic flasks pH and iron concentration remained relatively stable (Fig. 2). 

Total soluble sulfate concentration increased in both biotic and abiotic flasks (Fig. 2). 

However, the total soluble sulfate concentration after day 2 remained steady in abiotic flasks 

and decreased gradually in biotic flasks (Fig. 2). 

The presence of A. ferrooxidans impacted the pH change as well as the total concentration of 

soluble iron and sulfate (Fig.2). The pH of the media in the presence of FeSO4/K2S4O6 initially 

increased as bio-oxidation of Fe2+ to Fe3+ is an acid consuming (reaction 1). 

4Fe2+ + O2 + 2H2SO4  4Fe3+ + 2SO4
2- + 2H2O   (1) 

Furthermore, in the presence of glycine, the pH of the media initially increased as the reaction 

is acid consuming as follows (reaction 2): 

REE3+ + PO4
3- + NH2CH2COOH + H2SO4 + O2  C2H8NO6P + REESO4 (2) 
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Subsequently, after 12 days incubation with A. ferrooxidans, the pH of the media in the 

presence of FeSO4 and K2S4O6 decreased to 1.48, whereas the pH of the media inoculated with 

glycine was 1.70 (Fig.2). The final pH in the abiotic flasks at day 12 in both conditions were in 

similar range to the initial pH (2.20-2.34). Bacterial oxidation of K2S4O6 by A. ferrooxidans with 

molecular oxygen and ferric iron to sulphate is an acid-producing process according to 

reaction 3 and 4. This reaction also explains the enhanced sulfate concentration in biotic flasks 

(Fig.2). Initial increase of total soluble sulfate in abiotic flasks was observed which cannot be 

easily explained as no pH adjustment with sulphuric acid was carried out in this study. Also, 

in abiotic conditions the kinetics of tetrathionate oxidation to generate sulfate cannot be as 

rapid as in the biotic conditions. 

2K2S4O6 + 7O2 + 6H2O  4K+ + 8SO4
2- + 12H+ (3) 

K2S4O6 + 14Fe3+ + 10H2O  2K+ + 4SO4
2- + 14Fe2+ + 20H+ (4) 

After the incubation of A. ferrooxidans in the presence of FeSO4 and K2S4O6 with and without 
glycine, the concentration of total soluble iron and sulfate decreased as the Fe3+ precipitated 
as jarosite (reaction 5): 

K+ + 3Fe3+ + 2SO4
2- + 6H2O  KFe3 (SO4)2 (OH) 6 + 6H+ (5) 

The total concentration of Fe in the leachate by day 12 in the presence of A. ferrooxidans and 
A. ferrooxidans with glycine gradually decreased from 50 to 15.71±0.07 and 18.98±0.15 mM, 
respectively whereas in the leachate of the abiotic flasks iron concentrations remained 
relatively stable (48-53 mM). 
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Fig. 2 (a) Solution pH change, (b) concentration of total soluble Fe, and (c) concentration of 

total soluble SO4
2- during the leaching of Mt. Weld ore (MWO), Mt. Weld monazite (MWM), 

and Cable Sand monazite (CSM) with and without Acidithiobacillus ferrooxidans and/or 

glycine. Data for both abiotic and biotic flask are averages ± standard deviations (SD) of 

triplicate replicates. Error bars not visible are smaller than symbols.
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6.3.2.2 REEs leaching 

 

The overall dissolution reaction of monazite in acidic media can be written as (reaction 6): 

2REEPO4 (s) + 3H2SO4 (aq) ↔ REE2 (SO4)3 (aq) + 6H+ + 2PO4
3-

(aq) (6) 

In addition to phosphate utilisation by bacteria, the precipitation (formation of secondary 
phosphate minerals) and adsorption and desorption (formation of aqueous REE3+ and PO4

3-) 
equilibrium may control the concentration of phosphate and REEs ions in the solution 
(Fathollahzadeh et al., 2018d). 

The concentrations of P in the leachate of A. ferrooxidans on sterile MWM, MWO, and CSM 

at day 12 were 4, 2.7, and < 2 mg L-1, respectively (data not shown). However, no detectable 

concentration of P (< 2 mg L-1) was observed where glycine was present in the medium. The 

lower concentration of P in the presence of glycine can be attributed to the formation of 

glycine phosphate complex according to reaction 2. As MWM and MWO also contain trace 

amounts of radioactive elements with higher Th content (MWM: 0.162%; MWO: 0.043%) 

comparing to U (0.003%), higher concentration of Th over U in the solution was expected. The 

amount of Th and U solubilised by A. ferrooxidans increased gradually during the 12 days of 

incubation in all conditions (MWO: Th = 0.08 ± 0.00 mg L-1, U = 0.09 ± 0.00 mg L-1; MWM: Th 

= 0.18 ± 0.00 mg L-1, U = 0.06 ± 0.00 mg L-1). These results are in good agreement with previous 

studies (Corbett et al., 2017; Fathollahzadeh et al., 2018d) showing that the solubilisation of 

Th and U can be attributed to the presence of an oxidising agent (Fe3+) and acidic pH. It has 

also been demonstrated that in the presence of bacteria and phosphate released by bacteria, 

Th mobilisation is restricted. This can be attributed to the formation of secondary Th 

precipitate, resulting in preferential release of REEs over Th and U (Corbett et al., 2018; 

Fathollahzadeh et al., 2018d). 

It has been suggested that the activity and bioleaching of A. ferrooxidans is enhanced at near 
optimum pH (1.5-2.5) (Bosecker, 1997; Schippers, 2007). Since the initial and final pH of 
leachate in this study (2.00 ± 0.15 and pH= 1.50 ± 0.15, respectively) was lower than found in 
the previous study (pH= 2.50 ± 0.15 and pH= 2.50 ± 0.15, respectively) (Fathollahzadeh et al., 
2018d), higher REEs dissolution was expected in this study for MWM. The previous study 
conducted on sterile MWM in BSM (initial pH 2.50±0.15) demonstrated that average final total 
REEs concentration during 12 days of incubation with A. ferrooxidans was 23.6 mg L-1 
(Fathollahzadeh et al., 2018d), whereas in this study after inoculation with A. ferrooxidans in 
BSM sterile MWM at a lower starting pH (initial pH 2.00±0.15), average final total REEs 
concentration increased up to 106 mg L-1 (Fig. 3), 2.1 times higher than abiotic leaching with 
glycine (50 mg L-1) and 1.6 times higher than abiotic leaching without glycine (66 mg L-1). 

As shown in Fig. 3, the change of REEs leached from MWM over time was determined in the 

leaching solution supplemented with glycine. It can been seen that glycine could markedly 

diminish the bioleaching of monazite, for which the final total REEs concentration was 1.2 

times less (87 mg L-1) than the bioleaching in the absence of glycine (106 mg L-1). Ferric iron 

generation in A. ferrooxidans seemed to be delayed by the presence of glycine, however, the 

final concentrations of Fe3+ in the presence and absence of glycine was in similar range 

(4.31±0.14 mM and 5.87±0.19 mM, respectively) (Supplementary Table S1). Previous studies 
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have shown that there is an optimal concentration of glycine (0.5 g L-1) for bioleaching of 

collophanite (a phosphate mineral) by A. ferrooxidans that could facilitate bacterial growth, 

decrease the leaching pH, and ultimately resulted in the enhancement of bioleaching (Li et al., 

2013). However, the bioleaching supplemented with 1 or 2 g L-1 glycine resulted in lower 

acidity and fraction of phosphate leached (Li et al., 2013). 

 

 

 

Fig. 3 The concentrations of dissolved La, Ce, Pr, Nd, and Y during the leaching of (a) Mt. Weld 

ore (MWO), (b) Mt. Weld Monazite (MWM), and (c) Cable Sand monazite (CSM) in the abiotic 

controls in the presence of FeSO4 and K2S4O6, and in the presence of FeSO4 and K2S4O6 and 

glycine, and in the presence of Acidithiobacillus ferrooxidans with FeSO4 and K2S4O6, and A. 

ferrooxidans with FeSO4 and K2S4O6 and glycine. Data for both abiotic and biotic flasks are 

averages of triplicate replicates. 
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The leaching of REEs from MWO was more efficient in the absence of bacteria or glycine than 

with A. ferrooxidans cultures alone or with glycine (Fig. 3). An increase in REEs solubilisation 

from MWO with BSM was evident from day 2 with a total REEs concentration of 54 to 142 mg 

L-1 on day 12. The major increase was observed for Ce (Fig.3). The presence of goethite as the 

dominant mineral in MWO, did not seem to slow down the dissolution of REEs, although the 

solubilisation of undesirable elements associated with goethite may cause problems in 

downstream processing. As Mt. Weld deposit’s mineralogy has been described as a secondary 

REEs phosphate, encapsulated in iron oxide minerals (Haque et al., 2014), it is reasonable to 

assume the REEs bound to surface of Fe-Mn oxy/hydroxides, were remobilized with direct 

proton attack (Tao & Dongwei, 2014). 

The bioleaching of REEs, Th, and U from CSM by A. ferrooxidans in all the conditions tested 

was not comparable to leaching of MWO and MWM (Fig. 3). As highlighted in section 6.2.1, in 

order to work within radiation safety levels, original samples were diluted (10:1 dilution) with 

silica flour which affected the overall leaching performance (Corbett et al., 2017). 

According to the monazite dissolution reaction (reaction 6), the ability of REEs ions to remain 

in solution upon monazite solubilisation and REEs immobilisation relies on protons and the 

rate of dissolution will increase as the pH of the leaching solution decreases. Furthermore, 

glycine leaching tests showed that the presence of glycine to some extent, inhibited both 

abiotic and biotic leaching. In terms of abiotic leaching processes, the formation of glycine 

complexes such as glycine sulfate (C6H17N3O10S) and glycine phosphate (C2H8NO6P) could 

suppress overall monazite dissolution according to reaction 2. Obviously further studies on 

the characterization of glycine complex compounds can contribute to a better understanding 

of possible role of glycine in monazite dissolution mechanisms. Nevertheless, it has previously 

been shown that glycine–sulfate buffer has no stimulatory or inhibitory effect on A. 

ferrooxidans (Schnaitman et al., 1969). 

 

6.3.3 Glycine metabolism 

 

Genomic analysis of the potential mechanisms of glycine metabolism of A. ferrooxidans 

demonstrated the presence of glycine oxidase (EC 1.4.3.19) which catalyzes the following 

chemical reaction (7): 

Glycine + H2O + O2 ↔ glyoxylate + NH3 + H2O2 (7) 

The transformation of glyoxylate to oxalate has been reported in certain bacteria (Singh et al., 

2009a), therefore, it is possible that in the presence of glycine some REEs in the leachate are 

lost due to oxalate-REEs precipitate formation (Goyne et al., 2010; Lazo et al., 2017). 

A. ferrooxidans lacks genes for the SoxRS two-component regulator as well as for OxyR, which 

are regulated in response to superoxide and peroxides respectively in Gram negative bacteria 

(Valdés et al., 2008). Genomic analysis of A. ferrooxidans also showed absence of genes such 

as catalases for the breakdown of peroxides but A. ferrooxidans has previously been found to 

contain a Fur family regulator similar to PerR which may play a role in the control of its 
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inducible stress response through regulation of a AhpC family peroxidase (Valdés et al., 2008). 

However, currently A. ferrooxidans response to hydrogen peroxide has not been investigated 

therefore the direct effects of H2O2 accumulation are unknown. 

From a molecular perspective, decreased REEs bioleaching by A. ferrooxidans in the presence 

of glycine may also be attributed to changes in membrane potential (Fig. 4). 

 

 

 

 

 

 

Fig. 4.  Schematic representation of monazite dissolution with Acidithiobacillus ferrooxidans 

in the presence of glycine. (i) Active uptake of K+ for maintenance of a positive transmembrane 

potential, (ii) Exclusion of H+ as a result of K+ accumulation (electrostatic repulsion) (iii) Uptake 

of glycine through amino acid transporters and permeases, (iv) Conversion of glycine to 

glyoxylate by glycine oxidase, (v) Conversion of glyoxylate to oxalate by lactate dehydrogenase 

and subsequent export out of the cell (vi) Attack of monazite by H+, resulting in release of PO4
3-

, which is transported into the cell and forms precipitates with glycine (vii) Attack of monazite 

by H+ to release REEs, which is complexed with oxalate and forms REE-oxalate precipitate, (viii) 

Protonation of glycine due to excess protons, and (ix) Leakage of protonated glycine into the 

cell, resulting in decrease in intracellular pH. 
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The integrity of the bacterial membrane is critical in maintaining their viability and metabolic 

functions, particularly under stress conditions (Mykytczuk et al., 2007). A. ferrooxidans is able 

to survive an extremely acidic environment due to its ability to maintain a positive membrane 

potential which reduces the inward flow of protons by electrostatic repulsion (Baker-Austin & 

Dopson, 2007). In an acidic environment, glycine is protonated and exists as a cation 

(+H3NCH2COOH). While the presence of protonated glycine should be repelled by the cell due 

to its more positive internal charge, the excess protons outside in combination with 

protonated glycine may result in H+ flux that drives the protonated glycine into the cell. 

Therefore, when protonated glycine enters the cell, it adds to the proton charge, thereby 

disrupting the transmembrane potential (ÜNLÜ et al., 2002; Vanhauteghem et al., 2012; 

Vanhauteghem et al., 2013). This increased internal charge in A. ferrooxidans and acidification 

of the cytoplasm, would disrupt membrane integrity and pH homeostasis, ultimately inhibiting 

growth/oxidation by A. ferrooxidans (Baker-Austin & Dopson, 2007).  

Genomic analysis of the potential mechanisms of glycine metabolism of E. aerogenes 

demonstrated the absence of glycine dehydrogenase (glyoxylate forming) (EC 1.4.1.10), 

glycine dehydrogenase (cyanide forming) (EC 1.4.99.5), and glycine oxidase (glyoxylate 

forming) (EC 1.4.3.19). However, numerous strains of Pseudomonas aeruginosa are known to 

solubilise phosphate and REEs (Hassanien et al., 2013a; Nautiyal, 1999). In a recent study (Kao 

et al., 2017) reported that the presence of various amino acids slowed down the biofilm 

formation by Pseudomonas aeruginosa but it did not completely inhibit it. Therefore, in this 

study it may be hypothesized that the addition of amino acids to a PSM strain such as E. 

aerogenes may result in a similar response and thereby inhibit the ability of the 

microorganisms to solubilise REEs from monazite. 

6.4 Conclusions 
 

This study provides the first direct evidence on effect of glycine (1 g L-1) on the bioleaching of 

REEs by E. aerogenes and A. ferrooxidans from various grades of monazite obtained from WA. 

The combination of E. aerogenes and glycine decreased REEs bioleaching from monazite (from 

6 down to a final concentration of 4 mg L-1 REEs including: Ce, La, Nd, Pr, and Y) as compared 

to abiotic leaching. Also, the combination of A. ferrooxidans and glycine decreased REEs 

bioleaching from monazite (from 106 down to a final concentration of 87 mg L-1 REEs 

including: Ce, La, Nd, Pr, and Y) as compared to abiotic leaching. This was likely attributed to 

possible toxicity of glycine to the microorganisms at acidic pH. The maximum leaching (142 

mg L-1 on day 12) was obtained during the abiotic leaching of MWO with BSM (initial pH 

2.00±0.15) most likely due to direct attack by protons derived from sulphuric acid. 
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6.7 Supplementary Files 

 

 

Supplementary Figure S1.  Growth of Enterobacter aerogenes without and with glycine (1 g L-

1) based on optical density (OD). 

 

 

 

Supplementary Table S1 – The total soluble concentration of ferrous and ferric with 

Acidithiobacillus ferrooxidans in the presence of FeSO4 and K2S4O6, and A. ferrooxidans in the 

presence of FeSO4 and K2S4O6 and glycine. 

 
 

A. ferrooxidans A. ferrooxidans + glycine  
Total Fe (mM) Fe3+ (mM) Total Fe(mM) Fe3+(mM) 

0 41±0.79  < 1 41±0.80  < 1 

4 44±0.51  < 1 50±2.34  < 1 

12 55±1.48 1.85±0.32 55±0.76  < 1 

24 55±0.72 7.01±0.15 52±3.47  < 1 

32 44±0.18 5.87±0.19 51±0.98 4.31±0.14 
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Chapter 7: Discussion 

7.1 General overview of the research 
 

The ultimate objective of this study was to investigate the use of phosphate solubilising 

microorganisms (PSMs) in the extraction of rare earths elements (REEs) from phosphate ores, 

elucidate possible bioleaching mechanisms and the leaching behaviour of individual REEs in 

the process. In order to achieve the above-mentioned objectives the research plan was 

divided into three main phases (Fig 7.1), namely (i) bioprospecting, (ii) mechanisms, and (iii) 

leaching. 

 

 

 

Figure 7.1. Overview of PhD research components. 
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7.2 Final discussion 
 

The initial objective of the study was to assess the function and diversity of indigenous 

phosphate solubilising bacteria (PSB) enriched from Mt. Weld deposit and evaluate their 

capabilities for the bioleaching of REEs from three different grades of monazite bearing ores. 

The detailed experimental setups were described in chapter 3. When grown in National 

Botanical Research Institute's phosphate growth medium (NBRIP) broth on two different 

inorganic P sources ([Ca3 (PO4)2] referred to as TCP and [CaHPO42H2O] referred to as CaP), it 

was found out that the nature of inorganic phosphate source affected the microbial 

composition of the PSB. The analysis of the community diversity profiles revealed that 

Actinobacteria was identified in all samples and Micrococcales was the most abundant order 

in the subcultured enrichments. The Shannon diversity index for cultures enriched on CaP 

(0.83) was higher than those enriched on TCP (0.73) which is consistent with higher solubility 

of CaP compared to TCP. 

After bioprospecting of native PSB, bioleaching capabilities of the TCP enrichment cultures 

and the mixed culture (TCP:CaP) was carried out on 1% pulp density of sterilized monazite 

sample. The results of the monazite bioleaching showed that by day 7, the mixed cultures 

were able to mobilize REEs (Ce, La, and Nd) more efficiently than TCP enrichment cultures (up 

to a final concentration of 0.836 mg L-1 vs. 0.375 mg L-1). It is also consistent with higher organic 

acid production by the mixed cultures. The total concentration of organic acids was higher in 

the mixed culture (1.93 mM) compared to TCP enrichment cultures (0.54 mM). Higher 

bioleaching by the mixed cultures was possibly due to established synergism between strains 

of the mixed cultures which enhanced phosphate solubilisation and organic acid production 

when compared to either of the less diverse microbial consortia. 

The extent to which REEs solubilise from monazite depends on microbial activity, attachment 

of bacteria on the mineral surface, phase association of the REEs, and which physiochemical 

and biological processes these phases are subjected to. Enterobacter aerogenes was used as 

a model of demonstrated PSB to increase the understanding of the biological controls of the 

mineral dissolution process. The detailed experimental setups were described in chapter 4. A 

systemic study of the mechanisms of bioleaching REEs from monazite with E. aerogenes 

provided the first evidence of microbial bio-mobilization mechanisms involved in REE 

dissolution in terms of the importance of the microbial colonization of mineral surfaces. This 

was achieved by allowing the bacteria to either be in contact with the monazite surface or to 

prevent contact between the bacteria and the mineral. Contact of the bacteria with the 

monazite surface was found to result in greater leaching of REEs compared to the presence of 

the same types of organic acids with similar concentrations during non-contact leaching. 

Monazite dissolution (1% pulp density) was observed to decrease in the following order: Biotic 

contact ≫ Biotic non-contact ≫ Spent media ≈ Abiotic at 30 °C. The lower REEs leaching in 

spent media and abiotic conditions suggested that the presence and attachment of bacteria 

contributed directly to the higher REEs mobilisation. No preferential attachment of bacteria 

to the monazite surface was demonstrated by a co-localised atomic force microscopy and 

confocal Raman microscopy. Data from the monazite dissolution was used to propose a 
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conceptual model to combine the main phenomena affecting REE leaching, namely contact, 

non-contact, and cooperative leaching. On the one hand, in the contact leaching, attached 

microbial cells mobilize phosphate within a matrix of EPS and release REE cations into solution. 

Organic acids released by the cells from organic substrates complex with REE cations. Protons 

released from organic acids attack the ore resulting in further phosphate dissolution. 

Incorporation of phosphate into the cells increases REE3+ solubility according to following 

reaction (1): 

 

REEPO4 (s) ↔ REE3+
 (aq) + PO4

3-
(aq)      (1) 

 

On the other hand, in the non-contact mechanism suspended cells generate REE3+ complexing 

organic acids and incorporate phosphate into cells increasing REE3+ solubility. The protons 

released from organic acids attack the ore resulting in further REE cations and phosphate 

dissolution. 

It is likely that in addition to both contact and non-contact mechanisms, cooperative 

mechanism may also contribute to the leaching. In the cooperative mechanism, attached cells 

mobilize phosphate from monazite and incorporate it into cells releasing REE3+ while 

suspended cells generate organic acids for REE3+ complexation and protons released from 

organic acids attack the ore. Alternatively, attached cells may play a role in organic acid 

generation while suspended cells take up phosphate from solution increasing REE3+ solubility. 

These mechanisms ensure that the bacterial phosphate requirements are met, even when the 

external environment is phosphate depleted, via monazite dissolution. 

The continuous carbon and energy requirement of heterotrophic bioleaching microorganisms 

(e.g., E. aerogenes) to maintain microbial activity can be problematic at large scale bioleaching 

operations, however the addition of acidophilic autotrophic bioleaching microorganisms (e.g., 

Acidithiobacillus ferrooxidans) to these systems can potentially advance bioleaching 

performance. Bioleaching capabilities of E. aerogenes and A. ferrooxidans were explored using 

1% pulp density of sterilized monazite sample. Also, a two-step bioleaching system was 

proposed where the metabolites generated by E. aerogenes resulted in pH reduction negating 

the need for manual pH adjustment for A. ferrooxidans. The detailed experimental setups 

were described in chapter 5. Following the dissolution of monazite by E. aerogenes, the total 

concentration of REEs (Ce, La, Pr, Nd, and Y) in the leachate increased from 2.90 at day 2 to 

5.84 mg L−1 at day 12. Heterotrophic culture of E. aerogenes generated a range of organic acids 

including gluconic, malic and acetic acids. Higher REEs bioleaching with E. aerogenes 

comparing to the indigenous mixed culture described in chapter 3 can be attributed to the 

production of dicarboxylic acids (i.e., malic acid) which dissolve REEs more effectively. On the 

other hand, the presence of A. ferrooxidans either with FeSO4 and K2S4O6 or sterilized pyrite 

as a source of Fe and S enhanced REEs solubilisation compared to that achieved with E. 

aerogenes (average final total REEs concentration during 12 days of incubation: 23.6 mg L-1 

and 10.6 mg L-1, respectively). This can be explained in terms of mechanisms by which 
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elements are released into the leachate (biogenic acid and ferric iron generation) and the co-

precipitation of soluble complexes is minimized. 

Monazite was more efficiently solubilised in media co-inoculated with E. aerogenes and A. 

ferrooxidans than with individual cultures. The co-culture system demonstrated the enhanced 

REEs solubilisation with a total soluble REEs concentration of 40 mg L-1 (Ce, La, Pr, Nd, and Y) 

on day 9. The heterotrophic dissolution of REEs and P from monazite is mostly governed by 

acido-complexolysis of organic acids. An alternative possibility was that the bacteria, in 

particular E. aerogenes have utilised the soluble P for cellular requirements. After co-

inoculation with A. ferrooxidans, overall P solubilisation improved. The higher REEs 

concentration in the leachate of co-culture system also appeared to be in good agreement 

with higher and stable release of Fe in the co-culture (60 mM) compared to A. ferrooxidans 

(21 mM) which potentially contributed to the stability of organic acids, thereby prolonging 

their complexing capacity with REEs. Moreover, comparative genomic study of the potential 

mechanisms of phosphate metabolism during the interaction of E. aerogenes and A. 

ferrooxidans suggested the organization of pho operon was responsible for differences in 

monazite bioleaching. This confirmed that E. aerogenes was likely to only transiently 

accumulate polyphosphate and is required to uptake any phosphates released by A. 

ferrooxidans in order to overcome phosphate starvation. This also explained the reduced 

concentration of phosphate in the media of the co-culture system (3.33 mg L-1), as compared 

to the concentration of phosphate present when A. ferrooxidans was used as a pure culture 

(33 mg L-1).  

The X-ray absorption near-edge spectrum (XANES) studies revealed that oxidation of REEs 

(Ce3+ to Ce4+) did not occur during the bioleaching of monazite. This confirmed that the 

dissolution mechanism of Ce as a model element for REEs was controlled by chelation with 

anions from organic acids. Moreover, characterization of changes in REEs and Th fractionation 

during bioleaching with E. aerogenes and A. ferrooxidans demonstrated that bacterial 

dissolution was effective in stimulating REEs mobility as indicated by the increase of REEs in 

easily extractable and acid soluble fractions. The bioleaching induced REEs association into the 

acid soluble fraction suggests that phosphate chemistry in solution was most likely the limiting 

step to REEs mobilisation. Also, increased association of Th with residual fraction after 

bioleaching, suggested that bioleaching favour solubilisation of REEs over actinides, 

potentially decreasing environmental hazards associated with these minerals. Bacterial 

metabolism (phosphate acquisition, storage, and complexation) appear to play a key role in 

controlling overall solubilisation processes. Therefore, providing acidic conditions that 

maintain REEs-phosphate complexes dissolved in solution, potentially contribute to increase 

in overall REEs dissolution.  

Adding 1 g L-1 of glycine into the leaching solution either with E. aerogenes or A. ferrooxidans 

was found to result in lower leaching of REEs compared to absence of glycine. The detailed 

experimental setups were described in chapter 6. The combination of E. aerogenes and glycine 

decreased REEs bioleaching from monazite (1% pulp density) (from 6 down to a final 

concentration of 4 mg L-1 REEs including: Ce, La, Nd, Pr, and Y) as compared to abiotic leaching. 

Also, the combination of A. ferrooxidans and glycine decreased REEs bioleaching from 
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monazite (1% pulp density) (from 106 down to a final concentration of 87 mg L-1 REEs 

including: Ce, La, Nd, Pr, and Y) as compared to abiotic leaching. This was likely attributed to 

increased internal charge and acidification of the cytoplasm and oxalate-REEs precipitate 

formation in A. ferrooxidans. 

Overall, in this study, exploring REEs solubilisation by PSB has allowed for a deeper 

understanding of the mechanisms and highlighted the potential applicability of the use of 

members of bacteria as an alternative to current conventional processes used for REEs 

extraction that cannot selectively solubilise REEs over radionuclides. The laboratory based 

study strongly support the concept of sustainable mining for REEs extraction, especially if 

conditions for biogenic generation of organic acids and sulfuric acid for enhanced protonation 

and complexation is established. 

 

7.3 Future Considerations 

 

It has been shown that key differences exist between the members of PSMs in term of 

secreted metabolites, including organic acids and biogenic sulfuric acid. Further work is 

required to understand the underlying metabolic basis of phosphate and REEs solubilisation. 

This would also enable to highlight the fate of phosphate and REEs within the bacteria-

mineral-solution interface. Furthermore, metagenomic, transcriptomic, proteomic as well as 

metabolic studies are needed to unveil the biochemical and molecular mechanisms used by 

PSMs during phosphate and REEs solubilisation.    
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A B S T R A C T

The mobility of rare earth elements (REEs) in monazite depends on microbial activity, attachment of bacteria on
the mineral surface, phase association of the REEs, and which physiochemical and biological processes these
phases are subjected to. To better understand the role of the phosphate solubilising bacterium, Enterobacter
aerogenes, in REEs leaching, a series of monazite dissolution experiments was performed. The contact of bacteria
with monazite was demonstrated to be advantageous for REEs bioleaching even though the same types of or-
ganic acids with similar concentrations were present during non-contact leaching. Monazite dissolution was
observed to decrease in the following order: Biotic contact≫ Biotic non-contact≫ Spent media≈Abiotic at
30 °C. The attachment of bacteria on monazite surface by a co-localised atomic force microscopy (AFM) and
confocal Raman microscopy (CRM) indicated no preferential attachment of bacteria to specific site on the
monazite surface.

1. Introduction

In the last decade, rare earth elements (REEs), have been considered
as “critical and strategic metals”, due to China's monopoly position and
increased global demand in green technologies. Although REEs are
relatively abundant in the Earth's crust, they are not evenly distributed
around the world, and are mainly produced and processed in China
(Ganguli and Cook, 2018; Zepf, 2013). Consequently, the prediction of
exhaustible resources such as REEs is of profound significance, in that it
not only aids governments to establish long-term resource plans but
also contributes to maintain sustainable social and economic develop-
ment (Wang et al., 2015). Considering the constant development of
REEs industries, the Generalized Weng model, a widely used quanti-
tative model in exhaustible resource forecast has been adopted to pre-
dict the production of the three major REEs in China (i.e., mixed rare
earth, bastnasite and ion-absorbed rare earth) (Wang et al., 2015). The
results suggested that countries with REEs resources should commence
or continue their production to gradually decline dependency on Chi-
na's supply (Wang et al., 2015).

Apart from the geopolitical challenges in REEs production, en-
vironmental issues can be a major concern as the extraction of REEs

from their ores requires significant processing (Goodenough et al.,
2018). The current conventional REE production, relies on high tem-
peratures and harsh chemical treatments, has high energy consumption,
and generates large volumes of toxic waste containing thorium, ur-
anium, hydrogen fluoride, and acidic waste water (Hurst, 2010). Fur-
thermore, as REEs-bearing ores may contain up to 10% thorium and
uranium (Ragheb, 2011), emission of radioactive waste associated with
REEs mining and extraction results in either contamination of the final
REEs concentrate or the requirement for complicated disposal protocols
(Ault et al., 2015). It has been reported that the environmental life cycle
impacts of REEs production during chemical leaching are far greater
than those for other metals (Vahidi and Zhao, 2016). Consequently, due
to environmental restrictions, sustainable mining and production are
now encouraged. Biotechnological mineral processing approaches have
been developed as a sustainable alternative to chemical leaching of ores
and waste streams. Biohydrometallurgy utilises microorganisms to
generate bio-lixiviants which accelerate the dissolution of elements
from their ores or other materials (Watling, 2016). Bioleaching pro-
cesses are generally operated at relatively low temperature and atmo-
spheric pressure, which reduces energy cost and gas emissions, and
without relying on expensive and aggressive reagents (Bryan et al.,
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2015).
Despite the significant contribution of bioleaching to the extraction

of base metals from sulfide minerals, very few studies have explored the
application of microbes, in particular phosphate solubilising micro-
organisms (PSMs), to monazite and other phosphate minerals hosting
REEs. Brisson et al. (2016) demonstrated the bioleaching of REEs (3–5%
recovery) from monazite sand as the sole phosphate source by three
phosphate solubilising fungi. In another study, Shin et al. (2015) ex-
amined the feasibility of using phosphate solubilising bacteria (PSB) for
the bioleaching of REEs from monazite-bearing ore with maximum
leaching yield for cerium (up to 0.13%).

The previous studies on REE bioleaching have focused on efficiency
(Brisson et al., 2016; Hassanien et al., 2013; Shin et al., 2015) whereas
little is known of the mechanisms involved and benefits of REEs dis-
solution to the microbes. Adhesion and colonization of the mineral
surface are survival mechanisms for bacteria with nutrients in aqueous
environments more accessible at surfaces (Busscher and van der Mei,
2012). Many studies on sulfide minerals demonstrate that microbial
attachment and biofilm formation can stimulate pyrite bioleaching
(Sand and Gehrke, 2006). Corbett et al. (2017) demonstrated that En-
terobacter aerogenes leached 43% of the phosphate from tricalcium
phosphate (Ca3 (PO4)2 or TCP) after 192 h, and of 12 known PSB re-
leased the greatest amount of REE from a monazite. Therefore, in this
study, the mechanisms of bioleaching REE from monazite were sys-
tematically investigated with E. aerogenes. The study was designed to
allow the bacteria to either be in contact with the monazite surface or to
prevent contact between the bacteria and the mineral enabling us to
investigate microbial bio-mobilization mechanisms involved in REE
dissolution in terms of the importance of microbial colonization of
mineral surfaces. Data from the monazite dissolution was used to de-
velop a conceptual model to integrate the main phenomena affecting
REE leaching. The results from this study will facilitate the develop-
ment of sustainable bio-mining approaches REE extraction.

2. Material and methods

2.1. Monazite ore

The high grade weathered yellowish monazite ore was collected
from the Mount Weld Mine (Lynas Corporation), and is hereafter re-
ferred to as MWM (Mt. Weld Monazite). Sample preparation and
composition analysis were described elsewhere (Corbett et al., 2017).
The total surface are of the MWMwas 24,000 cm2 g−1 as determined by
Brunauer–Emmett–Teller (BET) analysis at CSIRO Minerals, Waterford,
Western Australia. The BET surface area (cm2 g−1) was analysed by the
N2 adsorption method at the temperature of liquid nitrogen (−196 °C)
in a Micromeritics Gemini III 2375 (USA). Prior to the nitrogen ad-
sorption measurements, each sample (approximately 0.6 g in weight)
was degassed at 150 °C for 3 h in vacuum. The BET surface area was
determined by using the N2 adsorption data at 5 different standard
pressures (0.05, 0.15, 0.2, 0.25 and 0.3) at −196 °C. Any results were
rejected and the samples re-tested if the correlation coefficient of a plot
of the ‘BET Function’ through the 5 points was lower than 0.9997.
Before bioleaching experiments, the mineral samples were sterilized by
gamma irradiation at 50 kGy for 11 h (ChemCentre, Bentley, Western
Australia).

2.2. Bioleaching experiment

Enterobacter aerogenes (ATCC® 13,048™) was grown to exponential
phase at 30 °C in National Botanical Research Institute Phosphate
(NBRIP) medium (Nautiyal, 1999), with shaking at 140 rpm, and har-
vested by centrifugation (3600g, 10min). Cells were resuspended in
sterile Tris-HCl buffer (100mM, pH 7.2), centrifuged (3600 g, 5 min)
and washed twice more to remove any trace of phosphate. The ability of
E. aerogenes to bioleach MWM as a phosphate source, was evaluated in

500mL Erlenmeyer flasks. Bioleaching was carried out over 18 days at
30 °C in triplicate, at 120 rpm in an orbital shaking incubator (RATEK,
Model No: OM11)in 200mL of modified NBRIP media (3% w/v glucose
and pH 7.00 ± 0.25), with 0.5% v/v bacterial inoculum (initial density
1× 107 cells mL−1) and 1% pulp density of sterilized monazite. Cell-
free abiotic controls were carried out under the same conditions. Bio-
leaching was monitored by measuring the soluble concentration of Ce,
La, Pr, Nd, Fe, P, Th, U, and Y in the leachate.

Non-contact experiments were conducted in similar conditions to
those described above. Snakeskin® dialysis tubing (10 K MWCO,
35mm, ThermoFisher SCIENTIFIC, catalogue number 88245) with
Snakeskin™ Dialysis Clips (ThermoFisher SCIENTIFIC, catalogue
number 68011) were used to study the possible mechanisms for
leaching REE from monazite as follows:

1. For biotic contact leaching of monazite, dialysis bag, 200mL media,
and 1mL of bacterial suspension were placed in 500mL Erlenmeyer
flasks. The monazite in this experiment was not sealed in the dialysis
bag, so that bacteria were free to colonize monazite surfaces.

2. For abiotic contact leaching monazite and media were placed in
500mL Erlenmeyer flasks.

3. For biotic non-contact leaching the monazite was sealed in the
dialysis bag. This sealed dialysis bag, media, and 1mL of bacterial
culture were placed in Erlenmeyer flasks.

4. For abiotic non-contact leaching monazite was sealed in dialysis
bag. This sealed dialysis bag and media were placed in Erlenmeyer
flasks.

The pore size of the dialysis bag is sufficiently small to prevent
bacterial migration through the bag, but large enough to allow the
homogenous transfer of nutrients for bacterial growth.

Molar dissolution rates (r) per surface area of the ore and time
(mol cm−2 s−1) were calculated as using Eq. (1):

=

× ×

r r
c M A

volumetric

solids (1)

where rvolumetric refers to the volumetric leaching rate (g L−1 s−1) ob-
tained from the slope of the soluble element concentration versus time
plot, csolids represents the initial solid concentration in the flasks
(10 g L−1), M is molar mass of the element (140.1, 138.9, and
88.9 gmol−1 for Ce, La, and Y, respectively), and A is the total mineral
surface area (cm2 g−1) obtained with BET.

2.3. Leaching of MWM with spent media

Pregnant solutions were prepared as described in Section 2.2. After
24 h incubation and pH decrease (pH=3.4), the media was aseptically
filtered (0.20 μm, Satorius). One gram of MWM was added to 50mL of
the filtered spent medium in 200mL flask and incubated at 30 °C with
shaking at 120 rpm for six days. Leaching was monitored by measuring
the soluble concentration of Ce, La, Pr, Nd, Fe, P, Th, U, and Y in the
leachate.

2.4. Analytical methods

Samples were taken at 0, 2, 3, 6, 9, 12, 18 d and pH measured using
a pH meter (Ionode IJ series pH probe). Thereafter, samples were fil-
tered (0.20 μm, Satorius) and assayed for REEs, Y, Th and U con-
centrations by ICP-MS (Agilent Technologies 7700 series, Bureau
Veritas Australia Pty Ltd., Canning Vale, Western Australia) and the
average values were reported. Organic acids were identified by high
performance liquid chromatography (HPLC) (Agilent 1200, Curtin
Water Quality Research Centre, Bentley, Western Australia) coupled
with a diode array detector (DAD, Agilent). Injection volume was set as
50 μL for the samples. Compound separation was achieved with a C18
reverse phase column (Agilent, 5 μm, 4.6× 250mm). The isocratic
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elution flow rate was 1.0 mLmin−1. The mobile phase consisted of 70%
methanol and 30% phosphate buffer (pH=2.0). A detection wave-
length of 220 nm was used. The identity and concentration of organic
acid was determined by comparing the retention times and peak areas
of chromatograms of the samples with standards. Organic acid identity
was confirmed by liquid chromatography tandem-mass spectrometry
(LC-MS/MS), and the experimental setup for LC-MS/MS including some
exemplary mass chromatograms of organic acids were described else-
where (Busetti et al., 2014). Organic acids standards included gluconic,
malic, formic, butyric, citric, acetic, lactic, oxalic, and pyruvic acids.
Microbial cells were counted using a Helber bacteria counting chamber
(Thoma rule, Hawksley UK) at 400× magnification.

Scanning electron microscopy (SEM) of the bioleaching residue was
performed on a Zeiss Evo 40XVP SEM (John de Laeter Centre, Curtin
University, Western Australia).

Co-localised atomic force microscopy (AFM) and confocal Raman
microscopy (CRM) measurements were performed on a WITec Alpha
300SAR (WITec GmbH, Ulm, Germany). The samples were mounted on
a purpose built re-location stage, allowing returning to the same sample
area. AFM data were acquired in intermittent contact mode in air uti-
lizing standard probes with a resonant frequency of 300 kHz and a
spring constant of 40 Nm−1 (type NCH-VA, Bruker, Santa Barbara,
USA).

For the confocal Raman measurements a frequency double NdYAG
laser (λ=532 nm) was used for excitation and the Raman spectra were
collected through a 100× objective with a numerical aperture of 0.9
(Zeiss, Germany) and fed via a 50 μm optical fibre into the spectro-
meter. For AFM and CRM measurements, a pure monazite crystal
(Lynas, Australia) was embedded in epoxy resin, cut and polished to
obtain a suitable flat sample surface (with a thickness of 1 up to 2mm
and size of 1 cm3). MWM fine grains were also embedded in epoxy
resin. Both samples were cleaned and sterilized in ethanol, nitrogen gas
and an UV/ozone cleaner prior to exposure to E. aerogenes. The sample
was exposed to 1% v/v bacterial inoculum (initial density
1× 107 cells mL−1) and 18mL of modified NBRIP with shaking at
120 rpm in 100mL Erlenmeyer flask for 24 h at 30 °C.

3. Results and discussion

3.1. Organic acid profile

Glucose was the carbon source available to E. aerogenes in both the
contact and non-contact bioleaching experiments, where the bacteria
produced malic, acetic and gluconic acid (Fig. 1). Corbett et al. (2017)
have reported the release of citric and formic acids in addition to glu-
conic and malic acids, by E. aerogenes. It has been suggested that di-
carboxylic (malic and oxalic) and tricarboxylic (citric) acids rather than
monocarboxylic acids (acetic, formic, and gluconic) govern REE dis-
solution due to having a high affinity and stability to trivalent metals
such as REEs (Jones, 1998). Previous studies with E. aerogenes and in-
soluble phosphate complexes have reported gluconic acid concentration

up to 1mM at day 4 (Stella and Halimi, 2015) which is in good
agreement with this study. Johnston (1952) reported that the phos-
phate solubilisation potential of organic acids is related to the structural
characteristics of the acid, thereby the concentration of organic acids as
well as their structure and stability of ligands should be taken into
account. Of those organic acids detected, only malic acid is dicarboxylic
which make it a stronger acid (pKa= 3.40) comparing to acetic acid
(pKa= 4.75), however, gluconic acid has a pKa of approximately 3.60.
Citric and formic acids were not detected in the present study, and
hence may not be attributed to REE dissolution by E. aerogenes when
grown on NBRIP. The short half-life of organic acids (e.g., citrate 2–6 h)
(Van Hees et al., 2003), unidentified acids with no standards solution
(Brisson, 2015), and the overlapping of the peaks of different acids in
HPLC may have hindered the detection of some other organic acids in
this study which may have been effective at solubilising REE from
monazite.

Although, the organic acid profile of both contact and non-contact
bioleaching were similar (Fig. 1), contact bioleaching resulted in higher
REE dissolution compared to non-contact leaching (Fig. 2). Therefore,
monazite dissolution may not be solely achieved by organic acids.

3.2. Monazite dissolution during contact, non-contact, and spent medium
bioleaching

In order to assess the necessity of contact between microbial cells
and mineral in the leaching of REE from monazite, a series of monazite
dissolution experiments was conducted. During the contact bioleaching
experiments with monazite the pH of the leachate decreased to
3.39 ± 0.08 by day 2, whereas with non-contact bioleaching it de-
creased to 3.47 ± 0.04 by day 2. The concentration of soluble Ce, La,
and Nd in contact bioleaching (2.55, 0.57, and 0.36mg L−1 on day 18,
respectively) was higher than other elements as expected due to higher
content in the ore. On the other hand, much lower soluble Ce, La, and
Nd concentration were detected in non-contact leachate (0.66, 0.16,
and 0.12mg L−1, respectively on day 18). After 48 h, soluble Ce con-
centrations were 2.61 times higher for contact bioleaching than for non-
contact bioleaching and reached to 3.82 times higher concentration by
day 18 (Fig. 2). When exploring the possible leaching mechanisms in
the present study, monazite dissolution was observed to decrease in the
following order: Biotic contact≫ Biotic non-contact≫ Spent
media≈Abiotic. Exposure of MWM to spent media resulted in lower
REEs leaching compared to biotic contact and non-contact (data not
shown). On the one hand, as there is no phosphate consumption in
spent media leaching precipitation and formation of secondary phos-
phate minerals increased, where overall REEs leaching decreased.
Furthermore, as metabolic activity was not occurring, continuous or-
ganic acid production was minimized in spent media as well which is
consistent with increased pH up to 4.50 ± 0.01 by day 6. At higher pH
the precipitates would remain in insoluble forms. The soluble con-
centrations of elements in the spent media and abiotic controls were
near or below detection limits (Ce, La, Pr, Nd, Th, U, and Y < 1 μg L−1;

Fig. 1. Organic acid concentration (mM) by Enterobacter aerogenes after 12 days of incubation in the presence of Mount Weld monazite (MWM) under (a) biotic
contact and (b) biotic non-contact conditions. Error bars (SE) represent standard error between three replicate flasks. Error bars not visible are smaller than symbols.
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Fe < 0.5mg L−1, and P < 2mg L−1). As noted above, lower REEs
leaching in spent media and abiotic suggesting that the presence and
attachment of bacteria contributed directly to higher REEs leaching.

In comparison to conventional monazite processing, where most of
Th is leached to solution (Peelman et al., 2014), in the present study no
Th was observed in leachate of either the contact or non-contact bio-
leaching. On the other hand, soluble Y concentration reached an
average of 0.0563 ± 0.010 and 0.0262 ± 0.005mg L−1, during con-
tact and non-contact bioleaching, respectively, suggesting preferential
release of Y over actinides considering the similar contents of Th and U
in the MWM.

Non-steady Ce, La, and Y dissolution rates during contact bio-
leaching of MWM with E. aerogenes at 30 °C on day 3 were
1.14×10−17, 3.93×10−18, and 5.7× 10−19 mol cm2 s−1, respec-
tively. By day 18 the rates slowed down to 4.37×10−18,
9.30×10−19, and 1.52× 10−19 mol cm2 s−1, respectively. On the
other hand, non-steady Ce, La, and Y dissolution rates during non-
contact bioleaching from MWM at 30 °C on day 3 were 5.60×10−18,
1.73×10−18, and 2×60×10−19 mol cm2 s−1, respectively, and by
day 18 the rates slowed down to 1.07× 10−18, 2.64×10−19, and
8.14×10−20 mol cm2 s−1, respectively. This confirmed higher REE
dissolution (2 to 4 times) attributed to bacterial attachment. Moreover,
when considering the equilibrium between monazite, the dissolved ions
(Ln3+ represents REEs) and very low solubility of monazite (10−13 M)
(Firsching and Brune, 1991), pico-molar concentrations of REEs and
phosphate can produce saturation and supersaturation, according to
reaction (2). Thus, phosphate abundance through REE precipitation and
co-precipitation may influence REE distribution in solution, exhibiting
distinctive REE dissolution rate (Goyne et al., 2010).

LnPO4 (s)↔ Ln3+(aq)+ PO4
3−
(aq) (2)

The SEM photomicrographs (Fig. 3) also demonstrated breakdown
of the monazite surface (due to biofilm formation) with contact
leaching while the mineral surface remained intact after non-contact
leaching. Thus, the data suggested a microbially mediated REE dis-
solution on mineral surfaces through contact mechanism.

The atomic force microscopy scans of the surface of the monazite
crystal and MWM after 24 h of exposure to E. aerogenes clearly show the
attachment of bacteria to the crystal and MWM surface (Fig. 4). The
images show a range of clusters as well as solitary bacteria on the
monazite surface. The confocal Raman microscopy image indicates that
the surface chemistry of the investigated sample is composed of REEs
(i.e., Ce3+) and PO4

3− and no other major heterogeneous mineral
phases were observed. Changes in the intensity in the presented Raman
map are due to variations in the sample topography. Comparing the

Raman image with the distribution and arrangement of bacteria clusters
seen in the AFM images for both monazite crystal and MWM, it appears
that there is no preferential attachment to specific area relevant to
chemical composition (either REE3+ or PO4

3−).

Fig. 2. Leaching of MWM by Enterobacter aerogenes.
Dissolved La, Ce, Pr, Nd, U, and Y under (a) biotic contact
and (b) biotic non-contact, observed pH change under (c)
contact and (d) non-contact conditions. Error bars re-
present standard error between three replicate flasks.
Error bars not visible are smaller than symbols. The
concentration of REEs and U in abiotic flasks remained
below detection levels throughout the experiment (data
not shown).

Fig. 3. Scanning electron microscopy images of the MWM after 18 days of
contact bioleaching (top) and non-contact bioleaching (bottom) with
Enterobacter aerogenes.
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3.3. A conceptual modelling for microbial-mineral interactions during
monazite bioleaching

Monazite particles are composed of inorganic P that can be used by
PSB for metabolic purposes. Thus, mineral composition is a key factor
influencing bacterial communities and their activities, especially in
bioleaching. Bacteria can either exist in bulk solution (suspended), or

attached to surfaces or within EPS (Donlan, 2002). Cell counting in the
present study showed that the number of E. aerogenes cells in the lea-
chate dropped by 48 h from 107 to 103 cells mL−1 most likely as a result
of attachment to monazite (data not shown). However, it has been
unclear whether microbial attachment and biofilm formation is a pre-
requisite for monazite dissolution.

As previously mentioned, within bacteria-mineral interfaces, the

Fig. 4. (A) Optical microscopy image of monazite crystal and (G) grain after 24 h exposure to Enterobacter aerogenes with squares indicating where Confocal Raman
microscopy (CRM) (B) and atomic force microscopy (AFM) measurements (C–F, H) were recorded. Confocal Raman microscopy image generated using a sum filter
over the peak at 970 rel. 1/cm. (C–F, H) atomic force microscopy topography images showing clusters of bacteria attached to the monazite surfaces.
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rate of REE release during monazite bioleaching depends on i) the
concentration of organic acid ligand in solution, ii) nature of the mi-
neral surface (distribution of labile and non-labile REE), and iii) con-
centration of phosphate in solution which is governed by mineral
composition, phosphate uptake rate, and growth rate of the biomass.
The rate of biomass growth is controlled by nutrient availability in-
cluding phosphate as well as environmental stressors such as low pH
and REE toxicity which may inhibit REE bio-mobilization. However, the
extent to which measured REE concentration during bio-mobilization
and bio-mineralization relate to the bacterial attachment on monazite
has not been previously studied.

It has been suggested by Rawlings et al. (1999) that the ability of
microorganisms to oxidize sulfide minerals is possibly due to contact
and non-contact mechanisms, or a combination of both (cooperative
mechanism). However, bioleaching pathways for phosphate minerals
(i.e., monazite) are very different than for sulfide minerals, where ferric
iron lixiviant is regenerated by iron oxidizing microorganisms either in
the bulk solution or in EPS (Crundwell, 2003). Here, we propose a new
conceptual model of the possible mechanisms of monazite bioleaching
including contact (Fig. 5.a), non-contact (Fig. 5.b), and cooperative
(Fig. 5.c) leaching as shown in Fig. 5. In contact leaching (Fig. 5.a)
attached microbial cells mobilize phosphate (PO4

3−) within a matrix of
EPS and release REE cations (REE3+) into solution. Organic acids (OA)
generated by the cells from organic substrates complex REE3+. Protons
released from organic acids attack the ore resulting in further PO4

3−

dissolution. Incorporation of PO4
3− into the cells increases REE3+ so-

lubility, according to reaction (2). In the non-contact mechanism
(Fig. 5.b) suspended cells generate REE3+ complexing organic acids
and incorporate PO4

3− into cells increasing REE3+ solubility. The
protons released from organic acids attack the ore resulting in further
REE3+ and PO4

3− dissolution. In cooperative mechanism (Fig. 5.c)at-
tached cells mobilize PO4

3− from monazite and incorporate it into cells
releasing REE3+ while suspended cells generate organic acids for
REE3+ complexation and protons released from organic acids attack the
ore. Alternatively, attached cells may play a role in organic acid gen-
eration while suspended cells take up PO4

3− from solution increasing
REE3+ solubility.

Previous studies (Brisson et al., 2016; Corbett et al., 2017) de-
monstrated that microbial solubilisation of monazite is promising,
however to be competitive with conventional processes, the recovery
rates via bioleaching need to be increased. To enable scale up of the
approach, a solid understanding of which factors are most important for

controlling REEs mobilization is required. This study provided pre-
liminary data on significance of microbial colonization for nutrient
acquisition by PSM, particularly phosphate via monazite dissolution.
Overall our findings suggest that attachment of bacteria on mineral
surface enhance REEs bioleaching. Further evaluation of potential PSMs
for bioleaching REEs from monazite in large scale experiments will be
considered.

4. Conclusion

The present study explored the possible mechanisms for bioleaching
REEs from monazite. While a similar range and concentration of or-
ganic acids were secreted regardless of the ability of the bacteria to
have contact with the mineral surface it was demonstrated that mon-
azite dissolution was enhanced with bacterial contact by E. aerogenes
with the monazite surface. No preferential attachment of bacteria to the
monazite surface was observed by a co-localised AFM and CRM ob-
served for either crystal monazite of the Mt. Weld Monazite. The data
obtained from the organic acids profile and the contact and non-contact
leaching experiments show promising scope for further research in the
bioleaching of REEs-containing phosphate minerals.
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A B S T R A C T

The aim of this study was to develop continuous bioleaching of monazite by combining heterotrophic and
autotrophic acidophilic microorganisms. The results showed that a co-culture of autotrophic, acidophilic
Acidithiobacillus ferrooxidans and heterotrophic Enterobacter aerogenes was more effective in bioleaching rare
earth elements (REEs) from monazite than either species alone. This was likely due to a synergic interaction
through the biogenic generation of both organic acids and sulfuric acid. In conclusion, the consortium of E.
aerogenes and A. ferrooxidans solubilised REEs (Ce, La, Nd, Pr, and Y) up to a final concentration of 40mg L−1.

1. Introduction

The shift to a low carbon future is expected to accelerate the de-
ployment of rare earth elements (REEs) in the wind and solar energy
sectors. Therefore, countries rich in REEs resources (i.e., Australia) can
establish long-term benefits through sustainable REE mining. Besides
the primary REEs bearing minerals (i.e., monazite), large rare-earth
bearing ores hosting iron-rich minerals (Fe-oxide phosphate) including
goethite and hematite (Hoatson et al., 2011), may contribute to global
REEs supply (Faris et al., 2017). Currently, industrial extraction of REEs
from monazite involves either a basic process that uses concentrated
sodium hydroxide or an acidic process that uses concentrated sulfuric
acid. These generate large amounts of hazardous waste containing
thorium and uranium (Abreu and Morais, 2010). Biohydrometallurgy
has been studied as a more environmentally sustainable alternative to
extract REEs from phosphate minerals including monazite (Keekan
et al., 2017). Previously reported REEs bioleaching efficiencies from
monazite with both bacteria and fungi have been very low compared to
chemical leaching (Brisson et al., 2016; Shin et al., 2015). Recently,
bioleaching of REEs from bastnasite-bearing rock by Actinobacteria has
been investigated (Zhang et al., 2018). These authors have reported
that in a nutrient-rich growth medium, the total concentration of

bioleached REEs ranged from 56 to 342 μg L−1, whereas in an oligo-
trophic medium, only one strain (Streptomyces sp.) grew in the presence
of the bastnasite (0.5% w/v), and leached up to 548 μg L−1 of total
REEs (Zhang et al., 2018). Coincidentally, a combination of the low
solubility of bastnasite, a lack of nutrients from the mineral, the pre-
cipitation of REEs minerals, and re-sorption of leached REEs to cell and
residual mineral surfaces may have contributed to the observed low
leaching efficiency (0.008–0.08%) (Zhang et al., 2018). However,
compared to the conventional extraction of REEs, bioleaching can be
considered as an “eco-friendly technology” which minimizes the high
cost and negative environmental impact.

In phosphate-based environments “phosphate solubilising micro-
organisms” (PSMs) can be introduced to enhance the solubilisation of
insoluble inorganic phosphate via acidification, chelation, and ex-
change reactions (Son et al., 2006). As a consequence, heterotrophic
PSMs such as Enterobacter aerogenes can be used for the solubilisation of
REEs from a phosphate mineral such as monazite via secretion of or-
ganic acids (Corbett et al., 2017). Earlier studies demonstrated that the
recovery of REEs using heterotrophic microorganisms is possible, al-
though, the bioleaching mechanisms are not yet clearly and explicitly
understood (Brisson et al., 2016).

It has been demonstrated that optimizing microbial community
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structure in co-culture systems are an effective way of improving mi-
crobial community function (Ma et al., 2017). The continuous re-
quirement of heterotrophic bioleaching microorganisms for a carbon
and energy source to maintain microbial activity is problematic at the
industrial level, however the addition of acidophilic autotrophic bio-
leaching microorganisms (e.g. Acidithiobacillus ferrooxidans) to these
systems can potentially improve their performance. Autotrophic acid-
ophiles require small amounts of inorganic nutrients, such as ferrous
iron and reduced sulfur compounds for bio-oxidation (Zhuang et al.,
2015). In addition, the ability of acidophilic bacteria to tolerate toxic
heavy metal ions, enhances their capacity for the bioleaching of metals.
A. ferrooxidans is the most studied obligate chemolithoautotrophic
bioleaching bacterium. It gains energy from the aerobic oxidation of
ferrous iron and/or reduced sulfur compounds to ferric iron and sulfuric
acid, respectively (Watling, 2016). Although A. ferrooxidans has been
used to leach phosphorous from different types of rock phosphates
(Bhatti and Yawar, 2010), to the best of our knowledge, despite the
commercial application of acidophilic bioleaching for a diverse range of
elements from sulfide minerals, the acidophilic bioleaching of REEs-
bearing minerals has not been previously studied. It has been demon-
strated that microbial consortia have greater bioleaching rates than
pure cultures (Johnson, 2001), we therefore propose a two-step bio-
leaching system where the metabolites generated by E. aerogenes result
in pH reduction negating the need for manual pH adjustment required
for A. ferrooxidans.

In this context, the aim of this work was to investigate the bio-
leaching of REEs from monazite by a co-culture of autotrophic, acid-
ophilic A. ferrooxidans and heterotrophic E. aerogenes and compare the
efficiency to those of individual pure cultures.

2. Material and methods

2.1. Phosphate and sulfide minerals

The high grade weathered monazite ore was collected from the
Mount Weld Mine (Lynas Corporation), and is hereafter referred to as
MWM (Mt. Weld Monazite). The ore was ground by a rod mill, pul-
verized in a ring mill and finally sieved to<38 μm in particle size. The
elemental composition of the MWM was analysed by inductively cou-
pled plasma optical emission spectrometry (ICP-OES, CSIRO Minerals,
Waterford, Western Australia). The ore contained (%): 10.1 La, 12.6 Ce,
2.10 Pr, 6.25 Nd, 0.165 Y, 0.162 Th, 1.23 Fe, 9.93 P, 1.75 Ca, 0.199 Mg,
1.96 Si, 0.554 Ti, 0.031 Zr, and<0.003 U. Pyrite concentrate (p80
passing 120 μm) used as a source of Fe and S was obtained from
Kalgoorlie Consolidated Gold Mines Pty Ltd. (KCGM), Australia (Bryan
et al., 2015). The mineralogical composition of MWM was determined
by X ray diffraction (XRD) at CSIRO Minerals, Waterford, Western
Australia. The XRD analysis of MWM revealed that samples were
mainly constituted by 51% monazite, 41% florencite, and 8% non-
tronite. Pyrite concentrate contained 60% pyrite, 12.5% quartz, 9%
albite and 7.5% dolomite. Before bioleaching experiments, the mineral
samples were sterilized by gamma irradiation at 50 kGy for 11 h
(ChemCentre, Bentley, Western Australia).

2.2. Bioleaching experiment

Entrobacter aerogenes (ATCC 13048, obtained from ATCC) was
grown to exponential phase at 30 °C in National Botanical Research
Institute Phosphate (NBRIP) medium (Nautiyal, 1999), with shaking at
120 rpm, and harvested by centrifugation (3600×g, 10min). Cells
were resuspended in sterile Tris-HCl buffer (100mM, pH 7.2), cen-
trifuged (3600×g, 5 min) and washed twice more to remove any trace
of phosphate. Acidithiobacillus ferrooxidans (ATCC 23270, obtained from
DSMZ) was grown to exponential phase at 30 °C, with shaking at
120 rpm, in the basal salt media (BSM) at pH 2.0 which is described
elsewhere (Zammit et al., 2011). Cells were resuspended in sterile Tris

buffer (20mM, pH 2.0), centrifuged (3600×g, 5 min) and washed
twice more to remove any trace of phosphate.

All bioleaching experiments were conducted in 250mL Erlenmeyer
flasks containing 100mL of the relevant media, in triplicate at 30 °C
with shaking at 120 rpm in an orbital shaking incubator (RATEK, Model
No: OM11) over 12 days.

The ability of A. ferrooxidans to bioleach MWM as a phosphate
source, was evaluated in BSM (pH 2.50 ± 0.15), supplied with either
FeSO4 (13.9 g L−1) and K2S4O6 (1.51 g L−1) (filter sterilized 0.20 μm,
Satorius) or sterilized pyrite (1% pulp density), with 1% v/v bacterial
inoculum (initial density 1× 106 cells mL−1) and 1% pulp density of
sterilized monazite.

In the co-culture experiment, E. aerogenes was first cultivated in
modified NBRIP media (3% w/v glucose and pH 7.00 ± 0.25) with 1%
v/v bacterial inoculum (initial density 1×107 cells mL−1) and 1% pulp
density of sterilized monazite. Three days later, when the pH dropped
to< 3.5, a 10mL aliquot of A. ferrooxidans (initial density
1× 106 cells mL−1 before inoculation) in BSM was added to the lea-
chate, and the combined culture supplied with FeSO4 (13.9 g L−1) and
K2S4O6 (1.51 g L−1) (filter sterilized 0.20 μm, Satorius).

Cell-free abiotic controls were carried out under the same condi-
tions. Samples were taken at 0, 2, 3, 6, 9, 12 d and pH measured using a
pH meter (Ionode IJ series pH probe). Samples were then filtered with
disposable syringe filters (0.20 μm, Satorius) and assayed for REEs, Y,
Th, U, Fe, and P concentrations by inductively coupled plasma-mass
spectrometry (ICP-MS) Agilent Technologies 7700 series, Bureau
Veritas Australia Pty Ltd., Canning Vale, Western Australia) and the
average values were reported.

2.3. Comparison of the phosphate and iron regulation of E. aerogenes and
A. ferrooxidans

In order to investigate the potential metabolic pathways involved in
inorganic phosphate solubilisation by both strains in the co-culture
system, a genome-based comparison of phosphate pathways was car-
ried out. The genomes of E. aerogenes (ATCC 13048 – KCTC 2190) and
A. ferrooxidans (ATCC 23270) were downloaded from the NCBI ftp site
(ftp://ftp.ncbi.nlm.nih.gov/). For the purpose of this comparison, the
genomes were annotated using the Rapid Annotation using Subsystem
Technology (RAST) server (http://rast.nmpdr.org/) using the
ClassicRAST annotation scheme (Overbeek et al., 2013). Comparisons
were performed using the SEED and RAST servers and Geneious
v.10.2.3 bioinformatic software (Kearse et al., 2012).

2.4. Synchrotron analysis

Synchrotron radiation is a powerful technique that can be used to
determine elemental oxidation state of REEs for a wide range of en-
vironmental samples.

2.4.1. Sample preparation
Ce LIII-Edge X-ray absorption spectroscopy (XAS) data were col-

lected on two solutions of monazite leachate from the co-culture sup-
plied with FeSO4 and K2S4O6 at day 3 and 6 after A. ferrooxidans ad-
dition, as well as the MWM residue at end of bioleaching experiment.
The leachates were prepared with 30% glycerol, and flash frozen with
liquid nitrogen cooled iso-pentane, into 1mm×3mm×23mm acrylic
sample cuvettes. The cuvettes were covered and closed with metal free
Kapton adhesive tape, which served as an X-ray transparent window.
The powder sample was ground with mortar and pestle to a fine
homogenous powder, and then adhered as a thin film to metal free
Kapton adhesive tape.

2.4.2. XAS data collection
Ce LIII-Edge XAS data were collected at beamline 7-3, at the

Stanford Synchrotron Radiation Lightsource (SSRL). The beamline
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utilised a Si (220) double-crystal monochromator with harmonic re-
jection obtained by setting the 7 collimating mirror cut-off to 9 keV. The
incident and transmitted X-ray intensities were recorded using N2-filled
gas ionization chambers (sweeping voltage of 1.8 kV). The X-ray ab-
sorption near edge spectrum (XANES) was measured as the Ce LIII-Edge
fluorescence excitation spectrum, with X-ray fluorescence collected
with an array of 30 germanium detectors (Canberra) equipped with a
vanadium filter and a Soller slit assembly. Spectra were collected with
the sample temperature maintained at approximately 10 K, using an
Oxford instruments liquid helium flow cryostat. Each Ce LIII-Edge was
obtained from the co-addition of 10 replicate spectra. X-ray energy was
calibrated by reference to the Kα-edge absorption of a metallic Cr foil
(first inflection point calibrated to 5989 eV).

2.4.3. Data processing
Ce LIII-Edge XAS spectra were processed using the EXAFSPAK suite

of programs (George). Individual spectra were combined, a linear
background subtracted, and the edge jump normalized to a value of 1
absorbance unit. Spectral comparison was performed on data without
any smoothing filters applied, as well as on data with a 0.5 Gaussian
smoothing function applied, to reduce noise levels, which were the
result of low Ce concentration present in the leachates. Due to the low
concentration of Ce in the samples, and relatively larger noise levels in
the raw data, data analysis was limited to visual inspection of the edge
position and shape, and fitting of the spectra to model Ce3+ and Ce4+

compounds was not performed.

2.5. Sequential extraction procedure (SEP)

In order to evaluate the mobilization behaviour of REEs, sequential
extraction of elements from the feed ore and bioleaching residue of pure
cultures was carried out according to the modified Community Bureau
of Reference (CBR) five-step procedure (Mittermüller et al., 2016) with
an additional determination of the residual fraction using sodium per-
oxide fusion (Fig. 1). The method determines five well defined fractions
(speciation) in samples: easily soluble and ion-exchangeable fraction
(F1), carbonate bound and mobilized by complexation fraction (F2),
reducible fraction (F3), acid soluble fraction (F4), and residual fraction
(R). The total content of the elements of interest in the mineral was
determined by conducting a peroxide fusion analysis for the original
minerals (same as the residue of modified SEP). All reagents used to
perform the extraction were of analytical grade. Prior to the extraction,
all tubes and glassware were soaked in diluted nitric acid (10%v/v) for

8 h and rinsed with ultra-pure Milli-Q™ water (Millipore, 18MΩ/cm
resistivity). All extractions were carried out in triplicate.

The recovery percentage of the stepwise extraction was determined
by comparing the sum of the five individual fractions (F1, F2, F3, F4
and R) to the total content determined by peroxide fusion of the ori-
ginal ore, according to following equation (Eq. (1)):

= ⎡

⎣

+ + + +
⎤

⎦

×Recovery F F F F R
Tota content

(%) 1 2 3 4
l

100
(1)

3. Results and discussion

3.1. Mineral characterisation

The total concentration of REEs (mg kg−1 dry material) for MWM
(determined by peroxide fusion) and partitioning of REEs (determined
by modified SEP) are presented in Table 1. The geochemical fraction in
which REEs occur is critical for understanding their mobility, therefore
within SEPs, the sample is progressively dissolved in extraction solution
of increasing strength.

Ce had the highest content of all REEs in MWM followed by La and
Nd. Based on the comparison of the total content and the sum of all
fractions (F1+F2+ F3+F4+R), satisfactory recovery was achieved
for the REEs in the MWM feed ore, ranging between 105% and 126%,
suggesting the method to be consistent and reproducible.
Recoveries> 100% indicated that the stepwise procedure was more
efficient in extracting REEs than peroxide fusion. Comparison of the
SEP results with previous studies was not possible, as to best of our

Fig. 1. Modified sequential extraction procedure (SEP) for REEs partitioning in Mt. Weld Monazite.

Table 1
Total content and fractionation of elements in feed Mt. Weld Monazite ore as
determined by sequential extraction procedure. Values < 0.0001% are not
shown. Data are averages of triplicate biological replicates.

Element Total content
(mg·kg−1)

Easily
soluble
F1 (%)

Carbonate
F2 (%)

Reducible
F3 (%)

Acid
soluble
F4 (%)

Residual
R (%)

La 99,075 0.37 0.69 12.0 86.9
Ce 182,250 0.00067 0.35 1.88 12.5 85.2
Pr 20,675 0.58 0.64 13.7 85.0
Nd 73,000 0.00048 0.65 0.64 14.4 84.3
Th 1838 0.10 0.0 6.2 93.7
Y 2220 0.98 0.87 12.7 85.4
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knowledge, no reports of fractionation of monazite by SEP are avail-
able.

The sequential extraction procedure revealed that Nd was the most
mobile REE, with 15.7% of the total content in the non-residual (labile)
fractions, and 84.3% of the residual fraction. The residue contained
85.0–86.9% of other REEs and 93.7% of the Th. The distribution be-
haviour of La, Ce, Pr, Nd, and Y in each labile fraction were in a similar
range where the dominant scavenging phase in the acid soluble fraction
was most likely represented by phosphate groups naturally present in
monazite and florencite. Therefore, the SEP results confirm that
amongst labile fractions, REEs associated with phosphate fractions can
be released through biochemical pathways in which the cleavage of
REEs-phosphate either directly or indirectly may be influenced by PSMs
(Azospirillum brasilense, Bacillus megaterium, Burkholderia glatheia,
Pseudomonas aeruginosa, Pseudomonas putida, Aspergillus niger,
Aspergillus tubigensis, and Penicillium sp.) and/or other microbial species
(Firmicutes) (Corbett et al., 2017; Corbett et al., 2018).

3.2. Bio-solubilisation of REEs from monazite

Bio-solubilisation of REEs from the monazite was investigated with
individual cultures of E. aerogenes and A. ferrooxidans as well as a
combination of the two species.

3.2.1. Phosphate solubilising bacteria
Following the inoculation of E. aerogenes into sterile media plus

MWM, the total concentration of REEs in the leachate increased from
2.90 at day 2 to 5.84mg L−1 at day 12 (Fig. 2). No solubilisation of
REEs, Fe or P occurred in abiotic flasks with the soluble concentration
of all elements being below detection limits (Ce, La, Pr, Nd, Th, U, and
Y < 1 μg L−1; Fe < 0.5 mg L−1, and P < 2mg L−1), indicating that
metabolites secreted by microbial cells contributed to REEs mobiliza-
tion. With microbial growth, the pH of the media decreased from
6.50 ± 0.02 to 3.38 ± 0.05 (Fig. 2). This decrease in the pH can be
attributed to the production of organic acids resulting from glucose
oxidation, bacterial respiration and NH4 assimilation (Corbett et al.,
2017). E. aerogenes was reported to be efficient in solubilising tri-
calcium phosphate [Ca3PO4,(TCP)] (Corbett et al., 2017; Prasanna
et al., 2011). However, only a few studies have reported microbial so-
lubilisation of natural monazite by PSMs (Corbett et al., 2017; Shin
et al., 2015). Shin et al. (2015) examined bioleaching of REEs from
monazite-bearing ore with Acetobacter aceti and reported a total con-
centration of Ce in the leachate of 5.8mg L−1 on day 4 (0.13% of
leaching efficiency). In this study, the Ce concentration was 2.6mg L−1

at day 3 (0.20% of leaching efficiency) for monazite bioleaching with E.
aerogenes and by day 9, the Ce and La concentrations had increased to
4mg L−1 (0.31% of leaching efficiency) (Fig. 2). In the study by Shin
et al. (2015), the Ce concentration dropped to<2mg L−1 (0.02% of
leaching efficiency). Given the difference in experimental conditions

(supplement of soluble of phosphate source in Shin et al. (2015)) and
the ore complexity, it is not surprising that the leaching behaviour of
REEs was found to differ between studies.

Corbett et al. (2017) reported that E. aerogenes released a total of
1.93mg L−1 REEs (Ce, La, Nd, and Pr) from a similar ore sample
(MWM) after 8 days. In comparison, the maximum total REEs con-
centration observed in this study was 3.97mg L−1 after 6 days (Fig. 2).
Differences in experimental conditions (media composition and growth
temperature), and the type and concentration of secreted organic acids
may have contributed to the differing results. In contrast, the con-
centration of P, Fe, Th and U solubilised from monazite were much
lower than observed for REEs and most were lower than detection
limits (< 2mg L−1 for phosphate,< 0.5mg L−1 for Fe,< 5 μg L−1 for
Th, and< 0.02mg L−1 for U), which is consistent with previous studies
(Brisson et al., 2016; Corbett et al., 2017). As cells are present in the
bioleaching system, incorporation and surface attachment of phosphate
groups within microbial biomass and structures could be expected
(Corbett et al., 2017). Also XRD analysis of the bioleached residue in
this study confirmed the formation of secondary minerals such as
cheralite [(Ce0.4Ca0.3Th0.3) (PO4) (SiO4)] and woodhouseite [CaAl3
(PO4) (SO4) OH6] which may explain the very low concentration of
elements, especially phosphate in solution (Supplementary Fig. S1a).
According to these considerations, the preferential release of REEs over
Th and U favours the selective recovery of radionuclides for further
downstream processing.

These data indicated that E. aerogenes is a promising organism for
microbial dissolution of phosphate REEs with almost no Th and U
mobilization. However, in order to make it competitive with conven-
tional extraction, further examination of factors influencing the release
rate of REEs in conjunction with other microorganisms is required.

3.2.2. Acidophilic bacteria
The capacity of A. ferrooxidans to tolerate exceptionally high level of

metals has been demonstrated (Dopson et al., 2014). Tsaplina et al.
(2015) reported leaching yields of 15–30% for REEs with acidophilic
chemolithotrophic microorganisms from a 30% pulp density of ash slag
waste at pH 0.76. It has also been demonstrated that the addition pyrite
can enhance metal bioleaching from electronic wastes (Bryan et al.,
2015). However, no studies on the solubilisation of REE phosphates by
acidophilic bacteria in the presence of various growth substrates have
been reported. It was therefore decided to adopt an experimental setup
with A. ferrooxidans as a model microorganism to evaluate the bio-
leaching of REEs from MWM under acidic conditions.

The presence of A. ferrooxidans and availability of ferrous iron and
reduced sulfur compounds impacted the pH change and mobilization
behaviour of REEs (Fig. 3). The pH of the media with both FeSO4/
K2S4O6 and pyrite initially increased as bio-oxidation of Fe2+ to Fe3+ is
acid consuming (reaction (1)).

Fig. 2. Concentrations of dissolved La, Ce, Pr, Nd, and Y (left) and pH of leachate (right) during the bioleaching of Mt. Weld Monazite with Enterobacter aerogenes in
the presence of glucose. The concentration of REEs, Th, and U in abiotic flasks remained below detection level throughout the experiment. Data are averages ± SD of
triplicate biological replicates. Error bars not visible are smaller than symbols.
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Pyrite can be solubilised only by a combination of proton and oxi-
dative attack, according to “thiosulfate pathway”, where the main
product is sulfate (reactions (2) and (3)) (Fonti et al., 2016).
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+ − +4FeS 15O 2H O 4Fe 8SO 4H2 2 2

3
4

2 (2)

+ + → + +
+ + − +FeS 14Fe 8H O 15Fe 2SO 16H2

3
2

2
4
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Subsequently, after 9 days, the pH of the media in the presence of
FeSO4 and K2S4O6 had decreased to 2.19 ± 0.02, whereas the pH of
the media inoculated with pyrite was 2.92 ± 0.07. Bacterial oxidation
of K2S4O6 by A. ferrooxidans with molecular oxygen to sulfate is an acid-
producing process according to reaction (4).

+ + + → + +
− + − + +S O 12Fe 11O 18H O 16SO 12Fe 36H4 6

2 3
2 2 4

2 2 (4)

The final pH at day 12 in both conditions was in a similar range to
the initial pH (Section 2.5). As dolomite was present in the pyrite
concentrate, a higher H+ consumption due to the buffering capacity of
the dolomite (reaction (5)) and the heterogeneous nature of the con-
centrate (presence of quartz and albite) can reasonably be assumed to
be responsible for the differences in pH and lower REEs solubilisation in
the presence of pyrite.

+ → + + +
+ + +Ca Mg (CO ) 4H Ca Mg 2CO 2H O3 2

2 2
2 2 (5)

Moreover, the initial concentration of Fe and S within FeSO4 and
K2S4O6 were 50 and 5mM, respectively; which was adequate for bac-
terial growth.

The total concentration of Fe in solution by day 12 in the presence
of FeSO4 and K2S4O6 gradually decreased from 50 to 21mM whereas in
the presence of pyrite it increased slowly (from 0.10 to 0.66mM by day
12). The formation of Fe co-precipitate, jarosite (reaction (6)) in MWM
residue after incubation with FeSO4 and K2S4O6 was confirmed by XRD
(Supplementary Fig. S1b), whereas with pyrite, jarosite formation did
not occur.

+ + + → +
+ + − +K 3Fe 2SO 6H O KFe (SO ) (OH) 6H3

4
2

2 3 4 2 6 (6)

The presence of different substrates influenced the REEs solubili-
sation by A. ferrooxidans (Fig. 3). REEs solubilisation was greatest in the
presence of FeSO4 and K2S4O6 (average final total REEs concentration

during 12 days of incubation: 23.6 mg L−1, 1% percentage recovery of
Ce). On the other hand, the growth of A. ferrooxidans on pyrite as a
source of Fe and S resulted in lower REEs solubilisation (average final
total REEs concentration: 10.6 mg L−1) which was still double of that
achieved with E. aerogenes.

3.2.2.1. Phosphorous solubilisation. In the presence of A. ferrooxidans,
the combined low pH with active Fe/S oxidising bacteria which
produce biogenic sulfuric acid, favoured the mobilization of P up to
33mg L−1. Phosphorous solubilisation from REE phosphates relies on
protons to proceed (Chi et al., 2006), however, as previously mentioned
(Section 3.2.2) the pH of the inoculated media in the presence of pyrite
did not decrease, potentially limiting phosphate release into the
leachate. Increasing the concentration of pyrite to 30 g L−1, has been
proposed to improve the fraction of phosphorous leached from rock
phosphate (P content 12%) (Chi et al., 2006).

3.2.2.2. Thorium and uranium solubilisation. The tolerance of A.
ferrooxidans to Th2+ and UO2

2+ has previously been demonstrated to
be in a range of 900–1880mg L−1, where Th was more toxic to Fe
oxidation than UO2

2+ (Leduc et al., 1997). This range is much higher
than could be solubilised from the MWM based on its total content of Th
and U, and therefore the application of A. ferrooxidans for MWM can be
justified. As MWM also contains trace amount of radioactive elements
with a higher Th content (0.162%) relative to U (0.003%), early
saturation of Th in the solution was expected. Nevertheless, Th
concentrations in all scenarios were lower than U (0.057 ± 0.006 vs
0.118 ± 0.021). The amount of Th and U solubilised by A. ferrooxidans
increased gradually during 12 days of incubation (0.30% and 32% of
leaching efficiency, respectively). However, (Singh et al., 2009)
reported 98% uranium dissolution from silicate-apatite ore in 40 days
by A. ferrooxidans under the optimum conditions (pH 1.7, temperatures
35 °C). This is much higher than the overall solubilisation of Th and U
from MWM in this study. Providing a phosphate source for bacterial
growth could be one controlling factor in Th and U solubilisation as in
this study bacteria obtained their phosphate from MWM which is not as
easily accessible as common phosphate sources in 9 K media (Singh
et al., 2009).

Fig. 3. Concentrations of dissolved La, Ce, Pr, Nd, and Y during the bioleaching of Mt. Weld Monazite with Acidithiobacillus ferrooxidans. (a) Abiotic controls with
FeSO4 and K2S4O6, (b) Acidithiobacillus ferrooxidans with pyrite, (c) Acidithiobacillus ferrooxidans with FeSO4 and K2S4O6, (d) solution pH, and (e) concentration of
soluble Fe under all conditions. Abiotic controls with pyrite; concentration of REEs and Fe remained below detection level throughout the experiment. Data are
averages ± SD of triplicate biological replicates. Error bars not visible are smaller than symbols.

H. Fathollahzadeh et al. Bioresource Technology Reports 3 (2018) 109–118

113



The major controlling factors in the release of U in this study was
likely to be pH (reaction (7)), and the increased concentration of Fe3+

(reaction (8)) which can oxidize tetravalent uranium to water-soluble
hexavalent uranium. While phosphate solubilising bacteria (Section
3.2.1) only solubilised U in the range of 0.013 ± 0.001mg L−1 at day
2 to 0.020 ± 0.000mg L−1, by day 12, [comparable to concentration
of U in abiotic controls (0.023+0.002mg L−1)], A. ferrooxidans at day
12 solubilised U up to 0.118 ± 0.021mg L−1 in the presence of FeSO4/
K2S4O6 and 0.105 ± 0.000mg L−1 in the presence of pyrite.

+ → +
+ +UO 2H UO H O3 2

2
2 (7)

+ → +
+ + +UO 2Fe UO 2Fe2

3
2

2 2 (8)

The generation of ferric ions through the bio-oxidation of Fe2+ by
A. ferrooxidans led to increasing solubility of Th. In the presence of
FeSO4/K2S4O6, the Th concentration in the leachate increased to
0.057 ± 0.006mg L−1 by day 12 compared to 0.007mg L−1 in abiotic
controls. Solubilisation of Th can be attributed to the presence of an
oxidising agent (Fe3+). The formation of secondary minerals such as
cheralite in the MWM residue also may explain the lower concentration
of soluble Th in solution. These findings are in agreement with the
results of thermodynamic speciation of monazite where the solubility of
Th was restricted in the presence of phosphate due to the passivation
layer of REE phosphates (Lapidus and Doyle, 2015).

3.2.3. Synergistic effect of co-culture
Of the three experimental conditions (E. aerogenes on glucose, A.

ferrooxidans on FeSO4/K2S4O6, and A. ferrooxidans on pyrite), A. fer-
rooxidans supplied with FeSO4/K2S4O6 resulted in the greatest solubi-
lisation of REEs, Y, as well as Th and U. This can be explained in terms
of mechanisms by which elements are released into the leachate (bio-
genic acid and ferric iron generation) and the minimization of co-pre-
cipitation of soluble complexes. Phosphate solubilising bacterium, E.
aerogenes can lower pH naturally by the production of organic acids, as
shown in Section 3.2.1 producing conditions suitable for the growth of
A. ferrooxidans. Therefore, in this study an attempt was made to assess
the potential of microbial co-culture system for REEs extraction by
using A. ferrooxidans and E. aerogenes.

Glucose fermentation and the secretion of organic acids led to the
natural acidification of the media by E. aerogenes with the first sharp
decrease in pH (2.84 ± 0.03) observed by day 2. The addition of A.
ferrooxidans plus FeSO4/K2S4O6 at day 3 resulted in a further pH de-
crease (to 2.48 ± 0.01). A stable pH (2.46 ± 0.04) was reached at the
end of the experiment (Fig. 4b). Due to the inhibition of Fe2+ oxidation
activity by A. ferrooxidans reported at pH values above 3.0 (Meruane
and Vargas, 2003), the A. ferrooxidans inoculum was added when pH
was 2.84 ± 0.03 which is close to the optimum pH of the species
(Section 2.5) (Schippers, 2007).

MWM was more efficiently solubilised in media co-inoculated with
E. aerogenes and A. ferrooxidans (Fig. 4a) than with individual cultures
(Figs. 2 and 3). An increase in REEs solubilisation from MWM with the
co-culture was evident from day 6 (3 days after the addition of A. fer-
rooxidans) (Fig. 4a) with a total REEs concentration of 40mg L−1 on
day 9. The major increase was observed for Ce as the concentration of
released Ce in co-culture was on average 2.4 times higher than when
inoculated with A. ferrooxidans and 7.4 times higher than with E.
aerogenes (Fig. 4a). However, the concentrations of solubilised La, Pr,
Nd, U, and Y detected in the co-culture solution at day 12 were in si-
milar range as A. ferrooxidans in the presence of FeSO4/K2S4O6. This
provided an opportunity to selectively extract REEs while minimising
Th and U solubilisation.

The concentration of P in the co-culture leachate was
3.33 ± 0.94mg L−1. This is higher than in the presence of E. aerogenes
(< 2mg L−1) and lower than released by A. ferrooxidans (33mg L−1).
Previous results have demonstrated the enhanced ability of an
Aspergillus niger and Burkholderia cepaciathan co-culture (both known as

PSM) to solubilise phosphates compared to their individual perfor-
mance (Braz and Nahas, 2012). Enterobacter species have been char-
acterized as one of the most efficient PSM (Corbett et al., 2017).
However, in this study no detectable P was observed with E. aerogenes.
This indicates that P solubilisation from MWM by E. aerogenes can be
inhibited by environmental stresses such as a very low pH, phosphate
deficiency, and toxic elements. The heterotrophic dissolution of REEs
and P from monazite is mostly governed by acido-complexolysis of
organic acids. An alternative possibility is that the bacteria, in parti-
cular E. aerogenes have utilised the soluble P for cellular requirements.
After co-inoculation with A. ferrooxidans, overall P solubilisation im-
proved.

A number of low molecular weight organic acids can be rapidly
degraded by microorganisms (Corbett et al., 2017). Heterotrophic cul-
tures of E. aerogenes generated a range of organic acids including glu-
conic, malic and acetic acids (data not published). The retention me-
chanisms of citric and malic acids have been investigated in some
detail, and it has been demonstrated that higher Fe concentration under
acidic conditions decreased the biodegradation of citric acid and malic
acid (Yang et al., 2016). The enhanced dissolution of REEs from mon-
azite as a result of the excretion of organic acids by heterotrophic
bacteria and sulfuric acid from A. ferrooxidans, occurred by complex-
olysis of complexing agents generated by the bacteria and REEs.
Therefore, the higher REEs concentration in the leachate of the co-
culture system can also be explained by the higher concentration of
total Fe in co-culture (60mM) compared to A. ferrooxidans (21mM)
which potentially contributed to the stability of organic acids, thereby
prolonging their complexing capacity with REEs.

As a result, it could be summarized that the synergistic function of
co-culture system can generate more lixiviant (i.e., acid), which

Fig. 4. Concentrations of dissolved La, Ce, Pr, Nd, and Y during the bioleaching
Mt. Weld Monazite with a co-culture of Enterobacter aerogenes and
Acidithiobacillus ferrooxidans (a) in presence of FeSO4 and K2S4O6 and (b) pH of
leachate. The concentration of REEs, Th, and U in abiotic controls remained
below detection level throughout the experiment (data not shown). Data are
averages ± SD of triplicate biological replicates. Error bars not visible are
smaller than symbols.
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promotes the bioleaching process of monazite. In this context, the sy-
nergistic action of E. aerogenes and A. ferrooxidans in co-culture, in
comparison to pure culture, offers potential alternatives to conventional
techniques.

3.3. Phosphate utilization

As mentioned above, different P solubilisation was seen in pure
cultures of E. aerogenes and A. ferrooxidans as well as the co-culture. A
comparative genomic study of the potential mechanisms of phosphate
metabolism during the interaction of E. aerogenes and A. ferrooxidans
was performed (Fig. 5). It has previously been demonstrated that
polyphosphate kinase (ppk) is responsible for the accumulation of long
polymers of inorganic phosphates (known as polyphosphate) and that
polyphosphate can be hydrolysed to liberate inorganic P by the enzyme
exopolyphosphatase (ppx) (Rao et al., 2009). A genomic comparison
revealed the ppx gene was directly downstream of the complete pho
regulon (phoB-phoR-ptsSCAB-phoU) in A. ferrooxidans, as has previously
been shown (Vera et al., 2003). However, the genome of E. aerogenes
showed major differences in the organization in the pho regulon, as
shown by the absence of the pstA gene and the lack of co-localization of
the phoB-phoR operon with pstSCB (Fig. 5). Furthermore, ppk and ppx in
E. aerogenes are located in the same operon, and not as part of the pho
regulon, as has previously also been described for Escherichia coli
(Kornberg et al., 1999). As previously speculated by Vera et al. (Vera
et al., 2003) the presence of ppk and ppx on the same operon suggests
that the genes may be co-transcribed and therefore indicates limited
accumulation of polyphosphate. Therefore, in E. aerogenes it is likely
that inorganic P is directly used to meet the cell's phosphate require-
ments, resulting in less P available in the solution and the requirement
for a constant source of P in order to avoid phosphate starvation.
However, in A. ferrooxidans ppk is not found as part of the operon with
ppx, suggesting the genes are transcribed separately, allowing the ac-
cumulation of polyphosphate in this strain. A. ferrooxidans would be
able to store P and also to liberate it depending on the cell's phosphate
requirement. As E. aerogenes is likely to only transiently accumulate
polyphosphate, it would require uptake of any phosphates released by
A. ferrooxidans in order to overcome phosphate starvation. This could
then explain the reduced concentration of phosphate in the media when
A. ferrooxidans and E. aerogenes are in co-culture, as compared to the
concentration of phosphate present when A. ferrooxidans is used as a
pure culture.

Bacterial adaptation to phosphate and energy deficient environ-
ments represent key factors that can compromise the feasibility of
bioleaching of REEs from MWM. However, there is limited

understanding concerning the potential components involved in phos-
phate and iron dynamics within bacterial-mineral surfaces. Further
study of the accumulation and regulation of the inorganic phosphate
during the solubilisation process is essential in order to enhance the
functioning of these microorganisms for the efficient leaching of REEs-
phosphate minerals.

3.4. Oxidation state of Ce and Nd

The X-ray absorption near-edge spectrum (XANES) provides valu-
able insight into the chemical form of a specific element, including
oxidation state, molecular geometry, and ligand type. In many cases,
simple visual inspection of the position of the edge energy and the
general shape of the edge (features such as height, width, and splitting)
is sufficient to draw conclusions about oxidation state (Hackett et al.,
2012). This holds true for Ce, and differentiating Ce3+ from Ce4+ based
on visual inspection of the LIII-Edge is relatively easy. The published
literature highlights that the Ce3+ edge has a distinctive white line
feature at 5726 eV (López-Moreno et al., 2010). As would be expected,
at higher oxidation state, a shift of the edge to higher energy occurs,
and the edge of Ce4+ is shifted to ~5730 eV. Further, Ce4+ contains
two stable ground state electronic configurations, 4f0 and 4f1, and
consequently the Ce4+ LIII-Edge contains a distinctive “double-peak”
white line feature (Shahin et al., 2005).

The results from this study revealed that in the bioleached MWM
residue and resultant leachate, the Ce LIII-Edge occurs at 5726 eV, and
contains only a single edge feature (Fig. 6). Therefore, it was concluded
that the major oxidation state of Ce found in the MWM and leachates
are Ce3+. These results suggest that oxidation of REEs (Ce3+ to Ce4+)
most likely did not occur during the bioleaching of MWM, possibly as
the dissolution mechanism of Ce was controlled by chelation with an-
ions from organic acids.

3.5. Changes in the partitioning of REEs and Th during bioleaching

Changes in REEs and Th fractionation due to bioleaching with E.
aerogenes and A. ferrooxidans were evident (Tables 1 and 2). The major
changes were observed for the non-residual fractionation of La, Ce, Pr,
Nd, and Y, while Th showed smaller variations, in congruence with
their high association to the residual fraction (i.e., over 93.7%). Bio-
leaching was effective in stimulating REEs mobility as indicated by the
increase of REEs in easily extractable and acid soluble fractions F1 and
4 (Table 2). The increase of REEs mobility in F1 and F4 was associated
with a concomitant decrease of these elements in fractions F2, F3, and R
(Table 2).

Fig. 5. Genetic organization of the pho Operon in Enterobacter aerogenes and Acidithiobacillus ferrooxidans (phoB – phosphate regulon transcriptional regulatory
protein; phoR – phosphate regulon sensor protein; pstS – phosphate ABC transporter, periplasmic phosphate-binding protein; pstC – phosphate transport system
permease protein; pstA – phosphate transport system permease protein; pstB – phosphate transport ATP-binding protein; phoU – phosphate transport system reg-
ulatory protein; ppx – exopolyphosphatase; hyp – hypothetical protein; ppk – polyphosphate kinase).
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Although previous research has shown the impact of bioleaching on
fractionation of metals in the contaminated sediments (Fonti et al.,
2015), to the best of our knowledge, there has no previous reports on
the effects of bioleaching on REEs mobility from phosphate minerals.

The first step of sequential extraction obtains the easily soluble/
exchangeable fraction (F1) of elements that are weakly associated with
organic and inorganic sites (Beckett, 1989) which can be released by
the action of protonation (pH change) and ion exchange of cations such
as Ca2+, K+, and Mg2+ which have a comparable ion radius (Co-
ordination number= 6) to the trivalent state of REEs (e.g., Na+:
1:02 Å, Ca2+: 1.00 Å, K+: 1.38 Å, La3+: 1.03 Å, Ce3+: 1.01 Å, Pr3+:
0.99, Nd3+: 0.98 Å, and Y3+: 0.90) (Jia, 1991; Shannon, 1976). The
results of this fraction have shown that without bacteria only Ce
(1.4 mg kg−1) and Nd (0.4mg kg−1) may be released through weak
electrostatic interactions or ion-exchange reaction. However, after
bioleaching with E. aerogenes and A. ferrooxidans, an increase of Ce, La,

Nd, Pr, and Y association with the easily soluble/exchangeable fraction
of the leach residue was observed (0.06–0.15 and 0.12–0.14% of their
total concentration in E. aerogenes and A. ferrooxidans, respectively).
Higher association of REEs in the F1 fraction for A. ferrooxidans were in
good agreement with higher concentration of REEs in A. ferrooxidans
culture as illustrated in Fig. 3.

The second fraction (F2) extracted with citric acid (pKa= 3.13)
accounts for the carbonate and complexation fraction from which REEs
can be solubilised with low molecular weight organic acids. Amongst
the REEs in bioleaching residue of E. aerogenes the highest content in F2
was recorded for Y followed by Nd, and Ce. As citric acid was not de-
tected in this study (data not shown), the smaller extractable con-
centration of REEs in the bioleach residue can be attributed to the
microbial generation of weaker acids such as gluconic, acetic, and malic
acids and consequently the complexation of REE with organic acids.
These results agree with a previous study by (Mittermüller et al., 2016)
that reported extraction yields of the organic acids for both soil and
tailings material generally increasing with increasing complexation
capacity in the order: acetic acid < malic acid < citric acid. As the
nature of acids generated by E. aerogenes and A. ferrooxidans are dif-
ferent, comparison of REEs complexation with biogenic sulfuric and
organic acids is difficult.

The elements bound to Fe-Mn oxy/hydroxides, the reducible frac-
tion (F3), are normally mobilized with reductive conditions
(Zimmerman and Weindorf, 2010) by changing either the oxidation
state of the element or the host mineral elements (i.e., iron ore man-
ganese hydroxides) (Mittermüller et al., 2016). A couple of recent
studies have reported that MnO2 can oxidize Ce3+ to Ce4+ (Yu et al.,
2016). Fe-Mn oxy/hydroxides can also scavenge cations such as REEs
by recrystallization products such as hematite, lepidocrocite, goethite,
and maghemite (Lottermoser, 1990). However, based on results de-
scribed in Section 3.4 changes to the oxidation state of Ce4+ were not
detected, and hence Eh may not contribute to REEs mobilization.

The fourth fraction of extracted elements, the acid soluble fraction
(F4), includes the REEs that are usually associated with barely soluble
phosphates. The widely used CBR extraction method (Rao et al., 2010)
includes REE phosphates within the residual fraction. Thus, a separate
step was required to evaluate the extent to which REE are available in a
phosphate form for further bioleaching by microorganisms. The bio-
leaching induced REEs association into the acid soluble fraction sug-
gests that phosphate chemistry in solution was most likely the limiting
step to REEs mobilization. Due to differences in the final pH of the
media for E. aerogenes and A. ferrooxidans cultures, the phosphate metal
complexes would be less solubilised at higher pH (E. aerogenes), re-
sulting in higher precipitated P, whereas the soluble P would be more
prevalent in the experiments with A. ferrooxidans due to lower pH and
solubilisation of P-metal complexes (higher insoluble P content for E.
aerogenes). At lower pH, these REEs phosphate complexes would solu-
bilise, allowing for the release of higher soluble levels of P, but at higher
pH the precipitates would remain insoluble. Therefore, providing acidic
conditions that maintain phosphate complexes dissolved in solution
potentially contribute to increase in overall REEs dissolution.

Considering the sum of the non-residual (labile) fractions
(F1+F2+ F3+F4), the observed increase in partitioning in mobile
fraction was not associated with REEs solubilisation during bioleaching
processes, as the total concentration of all REEs in the non-residual
fractions of the residue for E. aerogenes (22–24%) were higher than A.
ferrooxidans (15–20%), while A. ferrooxidans displayed higher REEs
solubilisation into solution phase during bioleaching (Figs. 2 and 3;
Tables 1 and 2). In addition, REEs released from the residual fraction
did not remain in the solution phase but shifted to the other fraction of
the monazite, particularly the acid soluble fraction, implying that
bacterial metabolism (phosphate acquisition, storage, and complexa-
tion) is likely to play a key role in controlling overall solubilisation
processes. These finding suggest that an increase in REEs mobility does
not necessarily govern a specific element solubilisation into the

Fig. 6. Ce LIII-Edge XAS spectra collected from leachate solution at day 3 and
day 6 after Acidithiobacillus ferrooxidans addition, and Mt. Weld Monazite re-
sidue during co-culture experiment. Dotted lines show individual data points,
and solid lines show resulting spectra produced from a 0.5 Gaussian smoothing
filter. A single white line feature, centred at 5726 eV was observed for all
spectra, indicating that Ce was mainly present as Ce3+.

Table 2
Fractionation of elements in bioleached residue of Mt. Weld Monazite ore as
determined by sequential extraction procedure after bioleaching with either
Enterobacter aerogenes or Acidithiobacillus ferrooxidans. The results < 0.0001%
are not shown. Data are averages of triplicate biological replicates.

Easily
soluble
F1 (%)

Carbonate
F2 (%)

Reducible
F3 (%)

Acid
soluble
F4 (%)

Residual
R (%)

Fraction content of MWM (mg kg−1 and %) after bioleaching with E. aerogenes
La 90 (0.07) 238 (0.19) 444 (0.35) 27,800

(22.0)
97,433 (77.3)

Ce 244 (0.11) 680 (0.32) 1456 (0.69) 44,800
(21.1)

164,667
(77.7)

Pr 15 (0.06) 69 (0.29) 77 (0.33) 5456 (23.0) 18,033 (76.2)
Nd 59 (0.07) 286 (0.34) 280 (0.34) 19,790

(23.8)
62,700 (75.4)

Th 89 (4.34) 1950 (95.6)
Y 3.7 (0.15) 9.6 (0.38) 10 (0.41) 558 (22.4) 1907 (76.6)

Fraction content of MWM (mg kg−1 and %) after bioleaching with A. ferrooxidans
La 120 (0.12) 79 (0.08) 259 (0.26) 17,680

(17.8)
80,937 (81.7)

Ce 247 (0.13) 223 (0.12) 829 (0.45) 35,800
(19.6)

145,152
(79.6)

Pr 27 (0.13) 23 (0.11) 49 (0.24) 3813 (18.4) 16,763 (81.0)
Nd 100 (0.14) 92 (0.12) 166 (0.23) 12,987

(17.8)
59,655 (81.7)

Th 5.7 (0.31) 48 (2.63) 1784 (97.0)
Y 3 (0.13) 2 (0.09) 4.3 (0.19) 334 (15.0) 1877 (84.5)
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solution.
Based on the results from bioleaching, SEP and XANES, it can be

concluded that a combination of biogeochemical processes and physio-
chemical characteristic of specific elements generated complex patterns
that controlled the bioavailability and mobility of REEs in monazite.

4. Conclusion

This study provides the first direct evidence of a synergistic effect of
a heterotrophic-autotrophic co-culture on the bioleaching of REEs from
monazite. The combination of A. ferrooxidans and E. aerogenes increased
REEs bioleaching from monazite (up to a final concentration of
40mg L−1 REEs including: Ce, La, Nd, Pr, and Y) as compared to the
pure cultures of A. ferrooxidans (23.6 mg L−1) or E. aerogenes
(5.84 mg L−1) owing to a synergic interaction through the biogenic
generation of both organic acids and sulfuric acid.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biteb.2018.07.003.
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