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Abstract. Following our earlier definition of the rigoroustilometric height (Tenzer et
al. 2005, J Geod, 79), we present the derivatiot ealculation of the differences
between this and the Helmert orthometric heightjctvhis embedded in the vertical
datums used in numerous countries. By way of coispa we also consider Mader and
Niethammer’s refinements to the Helmert orthomelreeght. For a profile across the
Canadian Rocky Mountains (maximum height of ~2,890 the rigorous correction to
Helmert's height reaches ~13 cm, whereas the MaddrNiethammer corrections only
reach ~3 cm. The discrepancy is due mostly toigueous correction’s consideration of
the geoid-generated gravity disturbance. We alsiatput that several of the terms
derived here are the same as those used in regypaaimetric geoid models, thus
simplifying their implementation. This will enablaose who currently use Helmert
orthometric heights to upgrade them to a more ogsrheight system based on the

Earth’s gravity field and one that is more compatiith the regional geoid model.

Keywords: Orthometric height, geoid, mean gravity, plumélin

1. Introduction

The orthometric height is defined as the metrigteralong the curved plumbline from
the geoid to the Earth’s surface. To calculat®dinometric height from spirit-levelling

data and/or geopotential numbers requires thatitbéan value of the gravity along the
plumbline between the Earth’s surface and the géeicknown. This mean value is
strictly defined in an integral sense (e.g., Hamgtaand Moritz 1967, p 166).

In the past, three main approximations have bepheapin practice to evaluate this
integral-mean value of gravity. The Helmert methad described in Heiskanen and
Moritz (1967, chap 4), applies the simplified P@ir&Prey vertical gradient of gravity,
which uses normal gravity and a Bouguer shell ofstant topographic mass-density, to
the observed gravity at Earth’s surface in ordeoltitain an approximated mean value
halfway down the plumbline. Niethammer (1932) anader (1954) refined Helmert's
model by including the effect of local variatiomsthe shape of the topography relative to
the Bouguer shell. Mader, considering only thedinchange of the gravimetric terrain

correction with respect to depth, used the simpdamof the terrain effect at the geoid



and at the Earth’s surface, whereas Niethammer theethtegral mean of terrain effects
evaluated at discrete points along the plumblinBennis and Featherston@003)
evaluated these three approximations, showingthtigaccuracy is ordered Niethammer,
Mader then Helmert, which reflects the levels giragimation used.

In addition, the mean topographical mass-dengijy2670 kgm?, used in the

Helmert, Niethammer and Mader approximations of thetual distribution of
topographical mass-density, is not sufficiently mate. (In his original manuscript,
Helmert (1890) refers to a mass-density value df02dgni®.) Attempts to refine the
Helmert orthometric height in this regard have uileld varying topographical mass-
density data (e.g., Stinkel 1986; Allister and Featftone 2001) and borehole gravimetry
(Strange 1982) to better approximate the integrdmof gravity along the plumbline.
To the best of our knowledge, no attempts have lmade to include topographical
mass-density data in the Mader and Niethammer tei(gven though Niethammer
(1930) already mentioned the necessity to use ngrgiensity information for a more
rigorous treatment).

In this paper, we show that to arrive at a morerngs orthometric height, one
must take into account not only the effect of thepe of the topography and normal
gravity, but also those additional effects comingnf the masses contained within the
geoid (herein termed the geoid-generated gravitt) accounted for by the Helmert
approach and from the mass-density variations withé topography. This is necessary
because the mean value of gravity along the pluralidetween the geoid and the Earth’s
surface depends on all these quantities (cf. Tesizal. 2005). Mean gravity along the
plumbline is thus evaluated as the sum of the mategean values of the geoid-generated
gravity and the topography-generated gravitatiatabction. For practical evaluation,
the geoid-generated gravity is further divided intwmal gravity and the geoid-generated
gravity disturbance, i.e., the gravity disturbanoethe so-called no-topography (NT)
space (Vardek at al. 2004). Likewise, the topography-generageavity is divided
among the spherical Bouguer shell, the terrain moegs residual to the Bouguer shell,
and the topographical mass-density variations.

The aim of this paper is to provide the theoretisatkground and practical

methods with which to convert Helmert orthometrieigits (as described in, e.g.,



Heiskanen and Moritz (1967, chap 4)), which aredusethe height system embedded in
the vertical datum adopted in numerous countriesthe more rigorous orthometric
heights presented in Tenzer et al. (2005). Witk ith mind, we have presented some
preliminary derivations and results for various gmments of the correction in Va&ek

et al. (2001) and in Tenzer and V&K (2004). Kingdon et al. (2005) present a numeérica

evaluation over part of Canada. This paper noweamts the complete methodology.

1.1 Notation and terminology

In the sequel, the dummy arguméntrepresents the geocentric spherical coordingtes

and of a point| p0(-x /2, x/2), A0(0,2x)| andr denotes its geocentric radius. The

radius of a point is a function of 3D location lgpiepresented by=r(Q). The symbols
r(Q) andr(Q) represent the geocentric radii of the geoid dmel Earth’s surface,
respectively, and will be abbreviated ttg and r; where there is no ambiguity. The
orthometric height of a point is also a functiorlaxfation, and is represented ¥y (Q)
The gravity at a point is a function of both thdits and the horizontal geocentric
coordinateq, being represented kgfr(Q), Q) or in a simplified form used throughout
the paper ag(r, Q). The remaining gravity-related notation used tigreout this paper is
summarised in Table 1. Where relevant, overbalish&i used to denote the integral-

mean quantities between the geoid and the Eaninface.
Table 1 near here

2. Recapitulation of the rigorous orthometric heiglt

The orthometric heighH O(Q) of a point on the Earth’s surfa¢g, Q) is defined as the
length of the curved plumbline between the geaiQ) and the Earth’s
surface, (Q) Or, (Q) +H °(Q), and is given by (e.g., Heiskanen and Moritz 198, 4-
21):

_C(r, Q)

HOQ) =2
©) 9(Q)

(1)



where g(Q) is the integral-mean integral value of gravityrjadhe plumbline between

the geoid and the Earth’s surface:

9(0) = oyl o @

and C(r;,Q) is the geopotential number, which is the diffeeetween the Earth’s
gravity potentiaM\, [= constant] at the geoid aWil ( r ,Q) at the Earth’s surface:
C(r,Q)=W-W(r,Q). 3)
Concerningg(Q), since the actual value of gravig{r,Q) along the plumbline
cannot be measured at all points, the integral-ngramity Q(Q) has to be computed
from the observed surface gra\g(/rt,Q), together with some realistic and physically

meaningful model og(r,Q) along the plumbline. This computation can be exdd in

practice by reducing the observed gravity accordingome accepted model of the shape
of the topography and the topographical mass-dedsstribution between the geoid and
the Earth’s surface.

3. Decomposition of actual gravity

In order to formulate the corrections to Helmearthometric height in a way that can be
computed from the datasets currently available, (texrestrial gravity observations, a
digital elevation model and lateral density vadas interpreted from geological maps or
databases), we use the following decomposition rakity. The primary pragmatic
benefit of this approach is that these are the sdatee used to compute a geoid model,
thus making the rigorous orthometric heights mavengatible with the geoid model,
provided of course the same corrections have be@puated from the same data.

The gravity acceleration at a poig(r,Q) can be decomposed into two terms; one

comprising gravity generated by the masses insdelgy NT(r,Q), i.e., in the NT-space
(Vanicek et al. 2004), and another comprising the grawia generated by
topographyg " (r,Q):

g(r,Q)=g"T(r,Q)+g" (r,Q). (4)



Figure 1 schematically shows a cross-section oEtfeh with the decomposition in Eq.
(4), where the white internal area shows the coation that comes from all masses

within the geoid and the dark area shows the daution due to the topographic masses.
Figure 1 near here

The geoid-generated gravity can be further decosgpaso the contribution from
normal gravity and the gravity disturbance causgamly the masses inside the geoid,
the so-called NT gravity disturbance (cf. Vigek et al. 2004). Likewise, the topography-
generated gravitation can be further decomposedtive Bouguer shell contribution and
the terrain roughness term, residual to this shBEfese two terms can also be adapted to
include [lateral] topographical mass-density vaoiad from the standard value of
P,=2670 kgm* (Section 5.5), this being the way in which topodpiapmass-density data
is normally derived from geological maps.

The geoid-generated gravity is represented by tine af normal gravityy(r,Q)
and the geoid-generated gravity disturbaﬁg%T(r,Q):
gNT(rQ) = y(r.) + & (r,Q). (5)
The topography-generated gravitation is represehtedhe sum of that generated by

Bouguer shellgE(r,Q), the topographical roughness residual to the Beughell
gE (r,Q), and the lateral variations in mass-density framassumed averagg,E2670

kgm™®) within the topographyy 5p(r,Q):

9" (r,Q)=gg(r,Q)+ge(r.Q)+g”(r,Q). (6)
Inserting Egs. (5) and (6) into Eq. (4), gives anpete expression representing

the total gravity as (cf. Tenzer et al. 2005):

g(r, Q)= y(r,Q)+3g"" (r,Q)+gg (r,.Q)+gr . Q)+g” (. Q). (7)

The approximation sign reflects the fact that twidifional effects are omitted from Eq.

(6) and (7): the gravitational effects of atmosjpharasses and the radial variation of the

topographic mass-density. The former is omittecabse it is very small (cf. Tenzer et
al. 2005, Appendix B); the latter is very difficati quantify because there is not enough



reliable information on the radial distribution miass-density within the topography. As
such, we shall only consider lateral topographicssrdensity variations (cf. Martinec
1993). This is also consistent with the treatma&inthe geoid in the Stokes-Helmert
scheme (e.g., Vatgk and Martinec 1994).

Finally, the integral-mean gravity along the pIu'mbIg(Q), given by the

integral-mean ofg(r,Q) according to Eq. (2) when applied to Eq. (7), is:

Q) =N+ & (Q)+5(Q)+ IR(Q) + g7 (Q). (8)

4. Helmert's and other approximations of the orthonetric height

By way of comparison, the expression for the apipnaxed mean gravity along the
plumbline used in the Helmert orthometric heighé.(icomputed using the simplified
Poincaré-Prey reduction), is (cf. Heiskanen andit?di©067, Eq. 4-25):

_ 1(0
(@)= o(6.0) -3 o+ acp, | e (@), ©

wheredy/oh is the linear vertical gradient of normal gravigyaluated at the surfads,

is the Newtonian gravitational constant, ands the [assumed-constant] topographical
mass-density.

It is worth mentioning that, in this paper, we ¢oll the expression for Helmert’s
orthometric height (Eqg. 9) as given in Heiskaned Bforitz (1967, chap 4). This is of
most interest because this is the way in which rGibsiot all) geodesists have assumed
Helmert's definition, and using a planar approximatof the terrain. In his original
work, however, Helmert (1890) considered the geamihal effect of the complete
topographic masses, delineating that the varyingsithe within the topographic masses
and the masses below the geoid should be consideeedgorous treatment. While this
is described in Helmert's (1890) text, his matheoahtformulation is simpler, thus
explaining why the simplification in Eq. (9) hasgpeadopted in practice.

Using the numerical values @f//dh=-0.308¢ mGal/m and27Gp,=+0.111¢
mGal/m (the linear vertical gravity gradient frohetBouguer shell fop,=2670 kg/n)

in Eq. (9) gives:



g™ (Q) =g(r;,Q) +0.042H°(Q) . (10)
Therefore, Egs. (9) and (10) effectively attemptréduce surface gravity to a point
halfway down the plumbline, using the Poincaré-Pagproximation of the vertical
gravity gradient, to give an approximation of theegral-mean value along the plumbline
between the geoid and Earth’s surface. Note thatapproximation embeds a constant
topographic mass-density for the Bouguer shell @mdpletely neglects the shape of the
topography residual to the Bouguer shell. Makirsg wf the general Eq. (7) at the
Earth’s surface (i.ef, =r,), from Eqg. (9) we obtain:

9" (Q) =y, Q)+ 09" (1, Q)+ g5 (1, Q)+ 9 (1.Q)

1(0
+ g"”(n,Q)—E(a—:\/+ 4ﬂGpoj H®(Q)

(11)

It is also worthwhile relating the rigorous orthane height to the Niethammer
(1932) and Mader (1954) orthometric heights. Thisuriosity driven, since these height
systems are not in wide practical use to the biestioknowledge. Both systems attempt
to take the shape of the topography, residual ¢éoBbuguer shell, into account when
determining the integral-mean value of gravity gldhe plumbline. Both Mader and
Niethammer orthometric heights include a term ie domputation of mean gravity to
include the mean terrain effect. Niethammer pemnfora discrete evaluation of the
integral-mean terrain effect at a series of digcnebints at even intervals along the
plumbline, while Mader assumes the terrain effectdry linearly between the geoid and
the surface, and so uses a simple mean of thesvafube effect evaluated for the Earth’s
surface and the geoid.

In our terminology, and using our approach to eatduhe terrain roughness term,
Mader’s (1954) approximated mean value of gravity@ the plumbline method is:

T . T .
—M —H Or(rg:Q;00) ~ 9r(r,Q;00)
g (Q)=g (Q+= T S (12)
and according to Niethammer’s (1932) method, it is:
R+H®(Q)
=N —H T . T
9 (Q=9 (Q - g(rLQ0)+ gr(r,Q)dr . (13)

H(Q)

r=R



5. Corrections to the Helmert orthometric height

To establish the relationships between the mom@aigs mean gravity given by Eq. (8)
and Helmert’'s approximate (Poincaré-Prey) formiNeimg by Eq. (11), we subtract them,
grouping like terms. The resulting difference adled the correction to Helmert's mean

gravityeg (Q):

£(Q)=9(Q) -9 (Q)

£(Q) :[V(Q)—y(rt,Q)+%%/H O(Q)}
+ 9:(Q) - G (1, Q)+ 216, HO @) a0
+ 09" (@)~ 09" (1.9) |+| 5@~ ¢ (1.9)]

+ 0" (@-"(1.9)|

After being computedfa (Q) can be used to apply a correction to Helmert’santetric

height €, (Q2) using (cf. Heiskanen and Moritz 1967, p 169):

_-H(©@
o (Q)=— —(Q), 15
(@ =0 95, (15)

to an accuracy of <<'1 mm ig,, (Q). Sinceea(Q) is small, the actual mean gravity in

Eq. (15) can [ironically] be computed using Helrsedpproximation (Eq. 10). This will

make it considerably easier to numerically evaluatg(Q) in later sections:

~H%(Q)¢&,(Q)
£,0(Q) = e, (16)
H g(r,,Q)+0.042H" Q)
wheree¢ ,(Q2) and H°(Q) are in metres, anda(Q) and g(r,,Q) are in mGal.
5.1 Second-order correction for normal gravity
For the terms involving normal gravity, we seekmaification of
— 10
A:{y(Q)—y(rt,Q)+§a—lr:H°(Q)] (17)



The integral-mean value of normal gravity along phembline V(Q) is evaluated using

a second-order Taylor expansion for the analytd@vnward continuation of normal
gravity from the Earth’s surfacg(r,,Q) to the geoid. Using a formulation in terms of

geodetic coordinates, this is:

1 h(Q)=N(Q)+H°(Q) dy 162y
h(Q),Q)+—=- n-hA)+——=
y(h(Q),Q) 3h h:h(m[ Q)] >3

[ n- MQ)]Z} dr

n=N(Q) h=h(Q)

(18)
where h(Q) is the geodetic [ellipsoidal] height of the po{nt Q), N(Q) is the geoid
height atQ, andn is an element along the ellipsoidal plumbline (&&keli 2000).
Performing the integration, applying the integratimnits, and expressing normal gravity
in terms of the geocentric radius of the Earthidame atQQ gives:

_ 1oy o 1 azy o 2
7(Q) = y(h(Q),Q)-== HO(Q)+=—2% H°@Q) | . (19)
2 0Ny 6 0h’ h=h(@) [ ]
Inserting Eq. (19) in Eq. (17) yields:
10%y o 2
=—— HZ(Q) | . (20)
o], L @)

Assuming the spherically approximated value of sexond-order free-air gravity
gradient (Heiskanen and Moritz 1967, Eq. 2-122),(2q) reduces to:

_(Ho@Y _ (HOo@)Y
) ) @

wherea is the major semi-axis of the reference ellipsoiflaking HO(Q)= 8.8 km

(Mount Everest)r;(Q) = 6371 km and/= 9.81m&, A is about —1.87 mGal. Using Eq.
(16), this causes a maximum correction of aboutclhrbto the Helmert orthometric
height.

5.2 Second-order correction for the Bouguer shell
For the terms involving the spherical Bouguer slélithicknessH®(Q), we seek a

simplification of the term

10



B=| 0:(Q)~ & (1,Q)+27CGp, H(@) |. (22)

The gravitational attraction of the spherical Boeigshell at the Earth’s surface reads
(Martinec 1993, Eq. 4.16):

e oy R Ho@)  1( H°@)Y
g5 (1, Q) = 471G, H (Q,(R+HO(Q))Z[1+ - +3( - U (23)

From Wichiencharoen (1982) (cited by Martinec 19%8;. 3.14), the gravitational

potential inside the spherical Bouguer shell is:

_ ; _ 0, 2RE TP
rpsr<r Ve(,Q)=216 p,| [ R+H™(Q)]" - 3 —3 , (24)

whereR is the radius of the base of the shell (in thise¢=ry) andr is a dummy point

, the integral mea@;(Q) in

-
inside the shell. Recognising th@é(r,Q) = —W

Eqg. (22) along the radial between the geqgid R and approaching the Earth’s surface
r. » R+H°(Q) from within the Bouguer shell gives:

-1 J-rt—rg+H(Q) GVBT(r,Q) drszT(rg)_VBT(rt)

(=115 5yl ar HO(Q)

(25)

As for the normal gravity term, this is a more ngas formulation for the spherical
Bouguer shell, whereandH are along the same radial (i.e1,>(Q) =r,(Q) -1, (Q)). As
such, there is no need to worry about the deviaifdhe radial from the plumbline in this

case (cf. Tenzer et al. 2005, Appendix A). Insgrtine integration limits in Eq. (24),
then inserting the results into Eq. (25), after s@lyebraic manipulation, gives:

oy oon[ 1 2H°@)
91 (Q) = 27Gp, H (Q)(l [Rr v (Q))J. (26)

Here we acknowledge the typographical error infits¢ term of Tenzer et al. (2005, Eq.
21).
Inserting Egs. (23) and (26) in Eq. (22) gives:

4 HC Q) (2_ HO©Q) J 27)

B=—mrG
3Ry HO(Q) R+ HO(Q)

11



Using the earlier example of Mount Everest, a amstopographical mass-density of
po=2670 kg/m and Eq. (16), the second-order Bouguer term (Ef). &fects the

orthometric height by as much as -1.6 cm. Equdtldh now becomes:

£(@)=| 30" (@)~ 09" (5,9) | +| G~ G(5. )|

H°(Q)j2+4nepo(2_ HO@©)

: (28)
r(Q) 3 R+ HO(Q)]

+a*@- g"@’(q,a)}—y[

which represents the integral-mean value of graslong the plumbline expressed in
terms of corrections to Helmert's approximate mealue. These comprise: mean and
surface effects on gravity coming respectively fromasses inside the geoid, terrain
roughness, laterally variable density distributisgecond-order free-air effects, and
second-order Bouguer shell effects. All these semust be computed to apply a

rigorous correction to Helmert's orthometric height

5.3. The geoid-generated gravity disturbance
In this Subsection, we shall concentrate on tha ter

c=|3g" @-09" (1.9, (29)
which deals with the corrections to the Helmerthonietric height coming from the
geoid-generated gravity disturbance, comprising rfean value along the plumbline

5_gNT(Q) and value on the Earth’s surfadg"" (r,Q).

The integral-mean value of the geoid-generated ityralisturbance along the
plumbline between the geoid and the Earth surfacebe represented (in analogy to Eg.
2) by:

1
HO(Q)

& (@)= fa@NT(r,Q)dr
9 , (30)
1 J‘R+HO

e N (r,Q)dr

where the geocentric radius of the geoid surfaces approximated byR, the mean

radius of the Earth, which should not be confuseith whe subscriptR in the

12



topographical roughness term. Since the geoid+gest gravity disturbanc&™" (r,Q)
multiplied by r is harmonic above the geoid (since the NT spacetacts no
topographical masses above the geoid, and agaieatieg the atmosphere@ NT(Q)

can be evaluated by averaging Poisson’s equationpiward continuation (e.g., Kellogg
1929) in an integral sense. The Poisson equatiadsr
V=37 [[Kire@e)RE" TR, (31

Q'0QQ
where Q, is the solid angleQ' is the dummy element ang{Q, Q') represents the
spherical distance or geocentric angle betweercomeputation and integration points.
The required gravity disturbanaENT(R,Q referred to the geoid is a part of the sub-
integral function. The spatial form of the Poissategral kernelK[r,¢/(Q,Q"),R]is
given by (e.g., Kellogg 1929):

-R?

KIr.¢(Q,9),R1 = R—— , (32)
oI, (Q,Q),R]

where the Euclidean spatial distance is given by:
€=\/r2+r'2—2rr ‘cogy Q QY (33)

Inserting Eq. (31) into Eq. (30), the mean grawitgturbanced ""(Q) becomes
(cf. Tenzer et al. 2005, Eq. 8):

33"(0) 0oy ] 5Kl (@.9) Rl arad " (RR) @ 64

QDQ

4TH(Q)
Performing the radial integration of Poisson’s gnte kerneIK[r,w(Q,Q’),R],

multiplied by r™*, the following expression can be found for theraged Poisson’s
kernel (e.g., Varek at al. 2004, Tenzer et al. 2005):

R+HO Q)1 rR+HO@1  r?-RA
K rg(Q,Q)R)|dr=R
Jior [rw@.Q),Rdr=R[ A WQ) R]
R+HO Q)" (35)
L 2R ‘hn R-rcosy(Q,Q) +r,y(Q,Q),R]
r.p(Q.Q"),R| rsing/(Q,Q’) R

13



for ¢ # 0. Substituting Eq. (32) into Eq. (31), the meaavity disturbancely ""(Q)

along the plumbline takes the following form:

—NT 2R
Q
q (@)= 47TH (Q)Q” {K[Rw(n Q)R i (@.4(@Q.2).R]

+In| R (R-1(Q)coy(Q,Q) +r (Q).¢(Q,Q"),R]
@\ RE-cosy(Q,Q)) +[Ry(Q,Q).R

}ag NT(RQ)AQ'.  (36)

Equation (36) can be simplified as:

1

09"(Q)= 5 (Q) [[ KIR+ Ho(Q),9(Q,Q), R4 d"( RQ) @ (37)

QTQ,
where K stands for the intermediary integration kernel. cdn be shown, in the first

approximation, that this kernel equals:

K[R+H(Q).¢(Q,Q),R]= ZR(%—%j +Int - H (38)

where ¢ stands for/ (R,¢,R) and /" stands fors (R+H°(Q) ,¢4R). The derivation is

given in Appendix A.
Equation (37) is somewhat cumbersome becausgyitires that the NT gravity

disturbance be known on the geoid, which it is ndterefore, to implement it in practice

first requires the downward continuation @‘NT(rt,Q) to &JNT(rg,Q). In Eq. (36),
the geoid-generated gravity disturbanég“T(rg,Q) is obtained from the geoid-

generated gravity anomal&g“T(rg,Q) referred to the geoid in the NT-space by (cf.

Heiskanen and Moritz, 1967, Eq. 2-151e; \¢akiet al. 2004):
d'gNT(R,Q):AgNT(R,Q)+%TNT(R,Q) (39)

whereTV(R,Q) represents the geoid-generated disturbing palentthe NT space:

TNT(RQ)=T(RQ)-VT(RQ)-VAR Q) (40)

14



The disturbing potential(R,Q) can be taken from a regional geoid model, congpute
according to Bruns (1878) formula for the geoidgheil = N(Q)),, thus making the

geoid and the corresponding orthometric heightesgshore compatible.

The second term on the right-hand side of Eq (@¢Q@he gravitational potential

VT(rg,Q) of the topographical masses, arwA(rg,Q is) the potential of all

atmospheric masses. The tewhh (rg,Q) is obtained through the Newtonian integral:

(VY
Vi@ =G [[ [0 o o) YRy@.@).r] rdrdey (“41)
Q'0Q,

where ,o(r Q) represents the actual mass-density of the topbgralpmasses, usually

computed from a density distribution model. Thie&fdue to lateral density variation is
dealt with in subsection 5.5.
Finally, to complement Eq. (29), the gravity distaince at the Earth’s surface is
required. This term can be evaluated directly from:
SN (1,9) = AgNT (1, Q) + 2T (1,2) - 2V T(1.2)- 2V A1.Q) (42)
rt I’t rt

Equation (29) can then be evaluated using Eqs.aB3dX42).

5.4. The terrain-roughness-generated gravity

In this Subsection, we shall concentrate on tha ter
—T
D=/ 9r(@) - GL(1. )| 43)

which gives the correction to the Helmert orthomeetreight from the terrain roughness
residual to the Bouguer shell, assuming for the emna constant topographical mass-
density. (Lateral density variations will be cafesied in Subsection 5.5). The
gravitational field of the topographical roughnggsm is not harmonic inside the
topography. As such, it has to be calculated fesnadopted model of the shape of the
topography (i.e., a digital elevation model, DEMupled with a constant mass-density

assumption.
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We begin with the gravitational potentimT(r,Q of topographical masses

expressed in Eq. (41). Using a spherical approtxamaof the geoid, this reads (cf.
Novéak and Grafarend 2005):

r'=R+H°(Q)
vT(r,Q)zejj j o(r, QY r,Qr Q) drdQ . (44)

r'=R
The negative radial derivative of topographicalvijeional attractiong” (r,Q)
is given by:

r'=R+H°(Q)

gT(r,Q)z—ij(;iIr j o(r, QY r,Qr QY %dr '[dQ . (45)

From Eq. (43), we are looking for the mean vaijfgr,Q) between the Earth’s surface

and the geoid, which is given, by definition, aerfZer et al. 2005, Eqs. 16-18):

r=R+H(Q)

g(r,Q):HO—(Q) jR g (r,Q)dr
_ _1 r:R+H(Q)a .
1@ IR Fl (r,Q)dr : (46)
-1

HO(Q){V [R+ H7(Q),Q] -V RQ]}

Substituting for the two values of potent\'aT from Eq. (40), we get:

R+HO(Q)

gT(Q)zHOL(Q)g jR p(r, Q) RQ,1,Q 1= [R+ HO(Q),Q, r,Q ] r? dr'dQ". (47)

Let us now express the radial integral in Eq. @& sum of two integrals:

F(eydr =R o [0 R ¢ e (48)

r
J-R+HO(Q‘)

The first integral on the right-hand side of Eg8)(4lescribes the contribution of the
Bouguer shell of constant thickneH;Q(Q) (e.g., Vantek et al. 2001), which was dealt
with in Subsection 5.2. The second integral gitke contribution due to the
topographical roughness or terrain residual toBbeguer shell. The density can also be
written as a sum of two terms, one containing ardaution due to the mean densjy

and the other containing the residual dendify,Q) contribution:
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p(r,Q) = pg +30(r,Q). (49)
The roughness term is represented by the secomditeEq. (21) of Tenzer et al
(2005):
R+HO(Q')

g;(Q)=_HGO€’5) H j {z-l[R,Q, Q- R+ H(Q), Q, r',Q']} r2 dr'dQ’, (50)

Q0Q, r'=R+H° (Q)

This term is nothing else but the change in theghoess part of the topography (also
called “terrain” in some literature) of constanhdity of pp, from the geoid to the surface
of the Earth, divided by the orthometric heightlo# point of interest:

1

qR(Q,po)=Ho—(m[vR(RQ)—vR( R+ H(Q),Q)]. (51)

These two roughness parts of topographical potecdéia be evaluated through
numerical quadrature of the Newton integral (Eg. 48quation (51) provides the mean
gravity generated by the topographical roughnesgressed in terms of gravitational
potential. As pointed out in Subsection 5.3, inpoises a contribution from the average
topographical mass-density, plus a smaller cowadue to mass-density variations.

The other term in Eq. (43), the topographical rowegs term at the Earth’s

surface, is given by the second term in Martin€9g):

F=R+H(Q) -1 A
o0 (r,Q;r', Q"

(r,Q)=-G

Go=Ga, || | 2

QTIQ r'=R+H°(Q) r=r,

r2dr'dQ’ (52)
which can also be evaluated by quadrature methods.

5.5. The lateral variation of topographical massidigy

In this Subsection, we consider the term:

E=[3%(@-¢*(1.9)] . (53)

In most gravimetric geoid computations, the toppgreal mass-density is generally
modelled by an average value gf = 2670 kgm®. Martinec (1998) posed the question
on how much a variation in topographical mass-dggfects geoid height computation.
To answer this question in the context of the artéic height, we assume only lateral

variations of density, leaving the radial variatistill to be tackled. The developments

below follow from those of Subsection 5.4.
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The contribution of lateral variation of density toe correction to Helmert's

orthometric height is represented by third terrkin (21) from Tenzer et al (2005):

3 r'=R+H (Q")
9% (@ ] [, (RO QT- R+ H(Q), Q1 QT 2dr'deY
H (Q)QDQO r'=R
(54)
The surface gravity generated by lateral variatibdensity is given by:
r=R+H(Q") 5 -1 A
9% (r,Q) = -G [Joo@ | or RO, Q] r2dr'dQ’, (55)
or r=r(Q)
Q0Q, r=R

which follows from a more complete expression pded by Martinec (1998) that takes

into account the radial variation in dengity

r'=R+H (Q') 1 .
9% (1,,Q) = -G ” jd,o(r',Q')af (RO, Q] r'2dr'dQ’, (56)
0 r'=rR

Equations (54) and (55) provide the terms requimdglg. (53)

The correction to Helmert’s orthometric height dige the laterally varying
topographical mass-density is also given by thdofohg approximate expression
(Vanicek et al. 1995) if one considers only the radishdgent of the gravitational
attraction generated by the spherical Bouguer sbielthe anomalous topographical

densitydo(Q) :

2 5,0((2)

Y (Q)=2mG| H°(Q .
e @=2me[ K (@)~

(57)

5.6 Summary

The correction to the Helmert orthometric heighgiee the rigorous orthometric height

defined by Tenzer et al. (ZOOSLO (Q)is given by Eq. (15). It follows directly from the

evaluation of the correction to Helmert's mean 'gpa\ea(Q), written below in a

simplified manner as:

£§(Q):A+B+C+D+E (58)

The termsA andB can be computed from Eq. (28) as:
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HO@ Y | 460 HO
A+B=- + 0l 2- (59)
V( [ (Q) J 3 ( R+HOJ

The termsC, D andE can be computed from Egs. (37) and (42), (51) 42l &nd (54)

and (55), respectively. Note that several of thesens would have already been
computed for a regional gravimetric geoid modelelasn the Stokes-Helmert approach
(Vanicek and Martinec 1994). This simplifies the taskeve the gridded quantities can
be interpolated to the points of interest and &gpks part of the corrections to the
Helmert orthometric height. It also makes the mgs orthometric heights more

compatible with the regional geoid model. Finallye total correction to the Helmert

orthometric heightsl_|o (Q i¥:

(0]
gHO(Q):%Q()m(A+B+c+D+E) (60)

6. Numerical Tests

Using Canadian gravity, terrain and lateral toppbra density data, we have computed
rigorous corrections to Helmert's orthometric heggalong a profile across the Canadian
Rocky Mountains. This profile spans the longitudiesn 235°E to 239°E along the
50°N parallel. Figure 2 shows each one of the $¢emEq. (60) (i.e., second-order free-
air, second-order Bouguer shell, NT gravity distumbe, topographical roughness, and
lateral density variations) computed separatelghtow their relative contributions to the
correction. These terms are superimposed on tegtaphic height variations (shown
with the thicker line in Fig. 2) scaled down by 180 to show that there is not always a
one-to-one correspondence of the correction teritisheight. All integral terms were
computed over a spherical cap radius of 3 degrbegpnd which the far-zone
contributions become negligible (< 1 mm) for tlesttarea.

Figure 2 near here

Inspecting Fig. 2, we see that the correction team the geoid-generated gravity

disturbance gives the largest correction values,isugenerally positively correlated with
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topography, though not perfectly. The correctiare do terrain-roughness-generated
gravity is the second most important contributidtiowever, it works against the former
correction, and there is a less strong, negativeeladion with topography. The third

largest term in magnitude is the correction dukateral variation of topographical mass-
density, varying around zero and with maximum migla not greater than 5 cm. The
final two terms, due to second-order correction iormal gravity and second-order
correction for the Bouguer shell, are both verylgmat showing up in Fig. 2. Table 2

summarizes the statistics of these five corredeoms.

Table 2 near here

Figure 3 shows a comparison among the correctionslelmert orthometric
heights using the method described in this pagemgd rigorous), and the Mader and
Niethammer approaches, for the same profile asgnZ The Mader and Niethammer
corrections were computed from Eqgs. (12) and (18hgi the same topographical
corrections used to evaluate the rigorous correstio From Fig. 3, the Mader and
Niethammer corrections are very similar to one begtwhereas the rigorous correction
is larger, which is attributed to the two additibtexms not accounted for in Mader nor
Niethammer’s approaches: geoid-generated gravgtudiance and lateral variation of
topographical mass-density. The larger contributtmmes mostly from the geoid-
generated gravity disturbance (cf. Fig. 2). TaBlesummarizes the statistics of the

corrections along this profile.

Figure 3 and Table 3 near here

7. Summary and Conclusions

We have derived expressions to transform Helmarithometric height into a more

rigorous one (cf. Tenzer et al. 2005), taking iatgount effects coming from the second-
order correction for normal gravity, second-orderrection for the Bouguer shell, the
geoid-generated gravity disturbance, the terraughoess-generated gravity and the

lateral variation of topographical mass-densityhed3e individual corrections have been
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evaluated numerically along a profile across thead&an Rocky Mountains, and plotted
against the topographical height variation.

This comparison shows that the geoid-generatedtgrdisturbance, the terrain-
roughness-generated gravity and the lateral vanaif topographical mass-density are,
respectively, the most important contributors tadgarobtaining a more rigorous
orthometric height. It also shows that the gemdagated gravity disturbance and the
terrain-roughness-generated gravity work approxétgadgainst each other, though not
completely as each is not perfectly correlated whih topography. The second-order
correction for normal gravity and the second-orcemrection for the Bouguer shell are
negligibly small for this test, but become largar¥ery high elevations.

Comparisons with other refinements of Helmert ambtric heights, namely
Mader and Niethammer’s, have also been perform&the Mader and Niethammer
orthometric heights are very similar to one anqthert the respective corrections are
smaller than the rigorous corrections. They diffem the rigorous approach due to
inclusion of the terms pertaining to the geoid-gaterl gravity anomaly and lateral
variation of topographical mass-density.

Finally, it is important to point out that seveddlthe correction terms used here
are the same as would have been computed for anagiravimetric geoid model based
on the Stokes-Helmert approach. As such, theydatively easy to apply to existing
Helmert orthometric heights. Moreover, this makiée resulting heights more

compatible with the gravimetric geoid model.
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Appendix A: Derivation of Eq. (38)

We wish to simplify the expression for the averggPoisson’s kernel (Eq. 35), which
reads:

2R L 2R

((R+H°(Q).¢,R ((Ry, R

|R-(R+ H°(Q))cosy + ¢ (Rt I—P(Q)w,Rj_ln| R Rog+! (R , B’
(R+ H°(Q))siny | Rsiny

K(R+H°(Q),¢,R) = -

(A1)

+In

For integration within a very small radiys of, say 3 arc-degrees, we can assume:

0,05, H°(Q) << R, (A2)
where we have denotedR,¢,R) by ¢ and ¢ (R+H®,(Q),R) by ¢*. This is permitted
because of the rapid decay of the Poisson kerriblspiherical distance, as supported by

our empirical evidence (cf. Section 6). Now, wa oawrite Eq. (Al) as:

_ o .41 1),  |1-(@+H°Q)R)cog+( *IR
KR+ H(@Q).9, R)_ZF{e f*]+|n|(1+HO(Q)/R)(1—cog_//+£/Rj' (A3)

The last term in Eq. (A3) should be:

In‘ 1-(1+H°(@Q)/R)cogy + ¢ IR _ (Ad)

‘(1+%j(1— cogy+ 1 /R)‘
However, due to the precision required, the appnakion in Eq. (A3) is enough since:
o) (o
Realizing that:
(= 2Rsin%, (A6)

we can express cgan Eq.(A4) as:

: oY
cogy = 1- ZSlﬁ%: }%[Ej . (A7)
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Substituting this result into Eq.(A3), gives:

K(R+ HO(Q),y, R) =2 F{f

1

j+|n
/0

1

1—(1+ HO(Q)/R)[l—

1

; 2
(j +/0/R
2\ R

(1+ HO(Q)/R){l{l—

After a few algebraic operations, we get:

K(R+ HO(Q),y, R) = 2F{£

1

j+|n
(0

1

1

1—(1+ HO(Q)/R){l—

1

1

|

(f
2(R

1

2
j +/0/R
R

i

(1+ HO(Q)/R){:L

1

z(Rf”’R}

(A8)

- AQ)

O
:ZR(% j+|n%@)

This is the final simplified form, valid for a snhahdius ¢ of integration, which can now
be studied.

It should be noted that the first term in Eq. (A9)the leading term, while the
second is a corrective term. The leading term eayes very rapidly since it holds most
of its power in the nearest vicinity of the compiaa point. For instance, the cumulative
sum of this term across a profile gains ~99% poweyr a0.1°. The magnitude of the
corrective (logarithmic) term comprises <1% of thagnitude of the leading term. One
may see that the first terms on the right-hand eidéqgs. (A3) and (A7) are exactly the
same. Thus, the difference between the exact esipre and the first approximation

stems only from the much smaller logarithmic teAs.such, our subsequent numerical

investigations study the relationship between the ermt
_ O * * _140
In 1 (1:' OH(Q()Q)/R)COM R and its approximatiom %‘
1+——|(1-cogy+/ R
‘( R+ HO(Q)j( v R

The variables in both terms are the orthometrigiteH ©(Q) and the angular

distancey. The behaviour of these terms within the inte@&001° (10 m)g<3° will
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be numerically investigated. In these tests, ttirometric height takes the following
constant value$ °(Q)= 200 m,H°(Q)= 1km, H°(Q)= 3 km, H°(Q) = 5km. In
other words, the topography of the test area ismsd to be a plateau with a constant

height H®(Q).

(FHC(Q)

The logarithmic term is always negative, sinceal'@Jmem{ takes

(0]
values between 0 and 1, i.e. KEH; (©)

the logarithmic term and the discrepancies betwkerexact expression (Eqg. A3) and its

< 1. Figure (Al) shows the behaviour of

approximation (Eg. A7) across the integration arddne lower batch of curves in Fig
(A1) indicates the magnitude of the logarithmiarigior each case, whereas the upper

batch denotes the corresponding discrepancies.téBheases in Fig. (Al) are denoted as
follows: (a) H°(Q) = 200 m dotted line; (b)H°(Q) =1000 m dashed line; (c)

H®(Q)=2000 m solid thin line; (dH°(Q)= 5000 m solid bold line. Also note the

negative logarithmic scale.
Figure Al near here

From Fig. (A1), most of the power in the logaritienbérm is also in the nearest
vicinity of the computation point and it decreasé@th increasingy. Note that at the
computation point the discrepancies are almost.zZ&he magnitude of the relative
discrepancies increases linearly with the distgneeall that a logarithmic scale is used
in Fig. A1). Note however, that in any tested case fory< 1° the discrepancies are at

least of two orders of magnitude less than therldgaic term itself. Aty = 3°, the error

| =HY(Q) . .
of the approximationn — consists of ~ 3% only from the exact expression.

Also recall that the logarithmic term is <1% of tlvbole Poisson kernel. From the above

results, it is obvious that the expression:
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* (0]
K[R+ HO(Q),g[/(Q,Q'),R]=2F{%—€i*j+ln%@ is sufficient as the first

approximation of the complicated integration term.
Let us next have a look at the first term in EQ.3YA Realizing that

IimOED= 2 +HO(Q)?, it can be written as:
7/

1
_R HO @7 ) 2
LA All

For H°(Q)< ¢, (the case oH°(Q)> ¢ can be treated in a similar way) this can be

represented by a convergent binomial series:

2R[£ (1) 2{%-5(&“29?}; :2R{z1—£{1+2[‘kﬂ['”79)]%]} (AL2)

Carrying out the required algebraic operationsawie at:

(-2

The series in Eqg. (Al10) is alternating, and thusoavergent series even fer and/

going simultaneously to zero, thus:

. 1 1 H° Q) .

lim 2R(z g*j lim —Z( j( } =2R lim —Z( j(A14)
HO(Q)-0 O(Q) 0 k=l HO(Q).0 k=L

As the summation is a real number, the whole espaggrows above all limits and we

get:
im 2R 2 -1 | = 50,0 (A15)
H 0 g E* - 1 ’

where 0 is the Kronecker symbol for the function that gsolaeyond all limits when

Q=Q’ and equals to O for all other valuesbf We can thus see that:
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lim 3g"(Q)= lim = OR
HO(Q) -0 HO@)-047T H™ (Q)

=0g"" (RQ)

|| KR+ HY(Q, %@ Q), R d"( RY) @'=

Q0

(Al16)
as one would expect.
We note that the averaging Poisson kernel als@lsasgularity for the case when

H is not equal to zero. Fot°(Q)>0, we get the following equation:

(A17)
which also grows above all limits. Thus, the agerg Poisson kernel has a removable
singularity of a linear type (1/0) at the pointinferestQ, whether the height is equal to 0

or not. The second, logarithmic term is alwaysatieg: it equals 0 for going to 0, and

< 7/

it also goes to O for growing. Note that the argument O J

g0
(O-H (Q)‘q_
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Table 1 Gravity-related notation used throughout thisgrap

(r,Q) Gravity at an arbitrary point
gNT(r Q) Gravity generated by masses contained within tégee., with the
’ topography removed and in the NT-space
gT (r Q) Gravitation generated by masses contained witl@ridpography only,
’ I.e., those between the geoid and Earth’s surface
gap(r Q) Effect on gravitation due to lateral mass-densgyations inside the
' topography with respect to the reference valupef2670 kgm®
y(r,Q) Normal gravity generated by the geocentric refezegilipsoid
6gNT(r Q) Gravity disturbances generated by masses contaiitleith the geoid
QE (r,Q) Gravitation generated by a spherical Bouguer shell
T( Q) Gravitation generated by the terrain roughness topographical
gr1\l, : ; )
undulations relative to the spherical Bouguer shell
£-(Q) Correction to Helmert's approximation of integraéam gravity along
g the plumbline
£.,0(Q) Correction to Helmert’s orthometric height to cortveto the rigorous

orthometric height (Tenzer et al. 2005)
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Figure 1. The conceptual decomposition model of actualityranto the geoid-
generated component (internal white area) andojhegraphy-generated component

(dark area); the topography is exaggerated fosale of clarity.
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Figure 2. Profiles of the five components of the correctioHelmert’s orthometric height (cm),

as well as the Helmert orthometric height (m) alargrofile at 50°N. Continuous thick line

represents the topographic height; continuouslihéncorresponds ta‘dgo (Q) [geoid-
H
generated gravity disturbance]; dashed line cooedp tog" o (Q) [terrain-roughness-
H

generated gravity]; dotted line correspondss?@o (Q) [lateral variation of topographical mass-
H

density].
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Table 2. Descriptive statistics of corrections to Helmedithometric height from the

profile shown in Fig. 2. Values in cm, roundedtie nearest mm.

correction correction correction correction correction
due to due to due to latera|l for 2nd- for 2nd-
gravity terrain- variation of | order normal order
disturbance| roughness density gravity Bouguer
shell
Mean 6.0 -1.4 0.2 -0.0 -0.0
STD 33 25 1.1 0.0 0.0
Minimum 0.0 -11.5 -1.9 0.0 0.0
Maximum 15.4 25 5.2 -0.1 -0.0
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Figure 3. Comparison among the rigorous, Mader and Niethanworeections (cm) to Helmert
orthometric heights along the same profile as @ Bi Continuous thicker line represents the
topographic profile; continuous thin line repressttie rigorous correction; dashed line represents

Niethammer correction; dotted line represents Maderection.
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Table 3.Descriptive statistics of the total correctiongHeimert’s orthometric height from the

profile shown in Fig. 3. Values in cm, roundedhe hearest mm.

Mader Niethammer Rigorous
Mean -1.4 -1.7 4.4
Standard Deviation 2.5 3.1 3.1
Minimum Value -11.5 -15.2 -4.9
Maximum Value 2.5 2.9 13.0
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