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Abstract.  Following our earlier definition of the rigorous orthometric height (Tenzer et 

al. 2005, J Geod, 79), we present the derivation and calculation of the differences 

between this and the Helmert orthometric height, which is embedded in the vertical 

datums used in numerous countries.  By way of comparison, we also consider Mader and 

Niethammer’s refinements to the Helmert orthometric height.  For a profile across the 

Canadian Rocky Mountains (maximum height of ~2,800 m), the rigorous correction to 

Helmert’s height reaches ~13 cm, whereas the Mader and Niethammer corrections only 

reach ~3 cm.  The discrepancy is due mostly to the rigorous correction’s consideration of 

the geoid-generated gravity disturbance.  We also point out that several of the terms 

derived here are the same as those used in regional gravimetric geoid models, thus 

simplifying their implementation.  This will enable those who currently use Helmert 

orthometric heights to upgrade them to a more rigorous height system based on the 

Earth’s gravity field and one that is more compatible with the regional geoid model.   

 

Keywords: Orthometric height, geoid, mean gravity, plumbline 

 

1. Introduction  

The orthometric height is defined as the metric length along the curved plumbline from 

the geoid to the Earth’s surface.  To calculate an orthometric height from spirit-levelling 

data and/or geopotential numbers requires that the mean value of the gravity along the 

plumbline between the Earth’s surface and the geoid be known.  This mean value is 

strictly defined in an integral sense (e.g., Heiskanen and Moritz 1967, p 166).   

In the past, three main approximations have been applied in practice to evaluate this 

integral-mean value of gravity.  The Helmert method, as described in Heiskanen and 

Moritz (1967, chap 4), applies the simplified Poincaré-Prey vertical gradient of gravity, 

which uses normal gravity and a Bouguer shell of constant topographic mass-density, to 

the observed gravity at Earth’s surface in order to obtain an approximated mean value 

halfway down the plumbline.  Niethammer (1932) and Mader (1954) refined Helmert’s 

model by including the effect of local variations in the shape of the topography relative to 

the Bouguer shell.  Mader, considering only the linear change of the gravimetric terrain 

correction with respect to depth, used the simple mean of the terrain effect at the geoid 
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and at the Earth’s surface, whereas Niethammer used the integral mean of terrain effects 

evaluated at discrete points along the plumbline.  Dennis and Featherstone (2003) 

evaluated these three approximations, showing that the accuracy is ordered Niethammer, 

Mader then Helmert, which reflects the levels of approximation used.  

In addition, the mean topographical mass-density 0=2670ρ  kgm-3, used in the 

Helmert, Niethammer and Mader approximations of the actual distribution of 

topographical mass-density, is not sufficiently accurate. (In his original manuscript, 

Helmert (1890) refers to a mass-density value of 2400 kgm-3.)  Attempts to refine the 

Helmert orthometric height in this regard have included varying topographical mass-

density data (e.g., Sünkel 1986; Allister and Featherstone 2001) and borehole gravimetry 

(Strange 1982) to better approximate the integral-mean of gravity along the plumbline.  

To the best of our knowledge, no attempts have been made to include topographical 

mass-density data in the Mader and Niethammer heights (even though Niethammer 

(1930) already mentioned the necessity to use varying density information for a more 

rigorous treatment). 

In this paper, we show that to arrive at a more rigorous orthometric height, one 

must take into account not only the effect of the shape of the topography and normal 

gravity, but also those additional effects coming from the masses contained within the 

geoid (herein termed the geoid-generated gravity) not accounted for by the Helmert 

approach and from the mass-density variations within the topography.  This is necessary 

because the mean value of gravity along the plumbline between the geoid and the Earth’s 

surface depends on all these quantities (cf. Tenzer et al. 2005).  Mean gravity along the 

plumbline is thus evaluated as the sum of the integral-mean values of the geoid-generated 

gravity and the topography-generated gravitational attraction. For practical evaluation, 

the geoid-generated gravity is further divided into normal gravity and the geoid-generated 

gravity disturbance, i.e., the gravity disturbance in the so-called no-topography (NT) 

space (Vaníček at al. 2004).  Likewise, the topography-generated gravity is divided 

among the spherical Bouguer shell, the terrain roughness residual to the Bouguer shell, 

and the topographical mass-density variations.   

The aim of this paper is to provide the theoretical background and practical 

methods with which to convert Helmert orthometric heights (as described in, e.g., 
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Heiskanen and Moritz (1967, chap 4)), which are used as the height system embedded in 

the vertical datum adopted in numerous countries, to the more rigorous orthometric 

heights presented in Tenzer et al. (2005).  With this in mind, we have presented some 

preliminary derivations and results for various components of the correction in Vaníček 

et al. (2001) and in Tenzer and Vaníček (2004). Kingdon et al. (2005) present a numerical 

evaluation over part of Canada.  This paper now presents the complete methodology. 

 

1.1 Notation and terminology 

In the sequel, the dummy argument Ω represents the geocentric spherical coordinates φ 

and λ of a point [ ,2/π,2/π−∈φ  ]π2,0∈λ  and r denotes its geocentric radius.  The 

radius of a point is a function of 3D location being represented by r = r(Ω).  The symbols 

rg(Ω) and r t(Ω) represent the geocentric radii of the geoid and the Earth’s surface, 

respectively, and will be abbreviated to rg and r t where there is no ambiguity.  The 

orthometric height of a point is also a function of location, and is represented by ( )ΩOH .  

The gravity at a point is a function of both the radius and the horizontal geocentric 

coordinates Ω, being represented by g(r(Ω), Ω) or in a simplified form used throughout 

the paper as g(r, Ω).  The remaining gravity-related notation used throughout this paper is 

summarised in Table 1.  Where relevant, overbars will be used to denote the integral-

mean quantities between the geoid and the Earth’s surface.  

 

Table 1 near here 

 

2. Recapitulation of the rigorous orthometric height  

The orthometric height )(ΩOH  of a point on the Earth’s surface ),( Ωtr  is defined as the 

length of the curved plumbline between the geoid ( )Ωgr  and the Earth’s 

surface ( ) ( ) ( )O
t gr r HΩ ≅ Ω + Ω , and is given by (e.g., Heiskanen and Moritz 1967, Eq. 4-

21): 

)(

),(
)(

Ω
Ω

=Ω
g

rC
H tO  (1) 
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where ( )Ωg  is the integral-mean integral value of gravity along the plumbline between 

the geoid and the Earth’s surface: 

( ) O

1
( , )

( )
t

g

r

r
g g r dr

H
Ω = Ω

Ω ∫  (2) 

and ),( ΩtrC   is the geopotential number, which is the difference between the Earth’s 

gravity potential 0W  [= constant] at the geoid and ( ),tW r Ω  at the Earth’s surface:  

0

( , ) ( , )
t t

C r W W rΩ = − Ω . (3) 

Concerning ( )Ωg , since the actual value of gravity ( )Ω,rg  along the plumbline 

cannot be measured at all points, the integral-mean gravity ( )Ωg  has to be computed 

from the observed surface gravity( ),tg r Ω , together with some realistic and physically 

meaningful model of ( )Ω,rg  along the plumbline.  This computation can be achieved in 

practice by reducing the observed gravity according to some accepted model of the shape 

of the topography and the topographical mass-density distribution between the geoid and 

the Earth’s surface.   

 

3. Decomposition of actual gravity 

In order to formulate the corrections to Helmert’s orthometric height in a way that can be 

computed from the datasets currently available (i.e., terrestrial gravity observations, a 

digital elevation model and lateral density variations interpreted from geological maps or 

databases), we use the following decomposition of gravity.  The primary pragmatic 

benefit of this approach is that these are the same data used to compute a geoid model, 

thus making the rigorous orthometric heights more compatible with the geoid model, 

provided of course the same corrections have been computed from the same data.   

The gravity acceleration at a point ( )Ω,rg  can be decomposed into two terms; one 

comprising gravity generated by the masses inside geoid ( )Ω,rgNT , i.e., in the NT-space 

(Vaníček et al. 2004), and another comprising the gravitation generated by 

topography ( )Ω,rgT : 

),(),(),( Ω+Ω=Ω rgrgrg TNT . (4) 



 6

Figure 1 schematically shows a cross-section of the Earth with the decomposition in Eq. 

(4), where the white internal area shows the contribution that comes from all masses 

within the geoid and the dark area shows the contribution due to the topographic masses.   

 

Figure 1 near here 

 

The geoid-generated gravity can be further decomposed into the contribution from 

normal gravity and the gravity disturbance caused by only the masses inside the geoid, 

the so-called NT gravity disturbance (cf. Vaníček et al. 2004).  Likewise, the topography-

generated gravitation can be further decomposed into the Bouguer shell contribution and 

the terrain roughness term, residual to this shell.  These two terms can also be adapted to 

include [lateral] topographical mass-density variations from the standard value of 

0=2670ρ  kgm-3 (Section 5.5), this being the way in which topographic mass-density data 

is normally derived from geological maps.   

The geoid-generated gravity is represented by the sum of normal gravity ( )Ωγ ,r  

and the geoid-generated gravity disturbance ( )Ωδ ,rgNT :  

),(),(),( Ω+Ω=Ω rgrrg NTNT δγ . (5) 

The topography-generated gravitation is represented by the sum of that generated by 

Bouguer shell ( )Ω,rgT
B , the topographical roughness residual to the Bouguer shell 

( )Ω,rgT
R , and the lateral variations in mass-density from the assumed average (0=2670ρ  

kgm-3) within the topography ( )Ω,rgδρ :  

( , ) ( , ) ( , ) ( , )T T T
B Rg r g r g r g rδρΩ ≈ Ω + Ω + Ω .  (6) 

Inserting Eqs. (5) and (6) into Eq. (4), gives a complete expression representing 

the total gravity as (cf. Tenzer et al. 2005):  

( , ) ( , ) ( , ) ( , ) ( , ) ( , )NT T T
B Rg r r g r g r g r g rδργ δΩ ≈ Ω + Ω + Ω + Ω + Ω . (7) 

The approximation sign reflects the fact that two additional effects are omitted from Eq. 

(6) and (7): the gravitational effects of atmospheric masses and the radial variation of the 

topographic mass-density.  The former is omitted because it is very small (cf. Tenzer et 

al. 2005, Appendix B); the latter is very difficult to quantify because there is not enough 
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reliable information on the radial distribution of mass-density within the topography.  As 

such, we shall only consider lateral topographic mass-density variations (cf. Martinec 

1993).  This is also consistent with the treatment of the geoid in the Stokes-Helmert 

scheme (e.g., Vaníček and Martinec 1994).  

Finally, the integral-mean gravity along the plumbline ( )Ωg , given by the 

integral-mean of ( )Ω,rg  according to Eq. (2) when applied to Eq. (7), is: 

)()()()()()( Ω+Ω+Ω+Ω+Ω≈Ω gT
R

T
B

NT
ggggg

δδγ . (8) 

 

4. Helmert’s and other approximations of the orthometric height 

By way of comparison, the expression for the approximated mean gravity along the 

plumbline used in the Helmert orthometric height (i.e., computed using the simplified 

Poincaré-Prey reduction), is (cf. Heiskanen and Moritz 1967, Eq. 4-25):  

0

1
( ) ( , ) 4 ( )

2
H O

tg g r G H
h

γ π ρ∂ Ω = Ω − + Ω ∂ 
, (9) 

where / hγ∂ ∂  is the linear vertical gradient of normal gravity, evaluated at the surface, G 

is the Newtonian gravitational constant, and ρ0 is the [assumed-constant] topographical 

mass-density.   

It is worth mentioning that, in this paper, we follow the expression for Helmert’s 

orthometric height (Eq. 9) as given in Heiskanen and Moritz (1967, chap 4).  This is of 

most interest because this is the way in which most (if not all) geodesists have assumed 

Helmert’s definition, and using a planar approximation of the terrain.  In his original 

work, however, Helmert (1890) considered the gravitational effect of the complete 

topographic masses, delineating that the varying density within the topographic masses 

and the masses below the geoid should be considered in a rigorous treatment.  While this 

is described in Helmert’s (1890) text, his mathematical formulation is simpler, thus 

explaining why the simplification in Eq. (9) has been adopted in practice.   

Using the numerical values of / 0.3086hγ∂ ∂ = −  mGal/m and 02 =+0.1119Gπ ρ  

mGal/m (the linear vertical gravity gradient from the Bouguer shell for 0=2670ρ  kg/m3) 

in Eq. (9) gives: 
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)(0424.0),()( Ω+Ω=Ω O
t

H Hrgg . (10) 

Therefore, Eqs. (9) and (10) effectively attempt to reduce surface gravity to a point 

halfway down the plumbline, using the Poincaré-Prey approximation of the vertical 

gravity gradient, to give an approximation of the integral-mean value along the plumbline 

between the geoid and Earth’s surface.  Note that this approximation embeds a constant 

topographic mass-density for the Bouguer shell and completely neglects the shape of the 

topography residual to the Bouguer shell.  Making use of the general Eq. (7) at the 

Earth’s surface (i.e., tr r= ), from Eq. (9) we obtain: 

0

( ) ( , ) ( , ) ( , ) ( , )

1
( , ) 4 ( )

2

H NT T T
t t B t R t

O
t

g r g r g r g r

g r G H
h

δρ

γ δ
γ π ρ

Ω = Ω + Ω + Ω + Ω
∂ + Ω − + Ω ∂ 

 (11) 

It is also worthwhile relating the rigorous orthometric height to the Niethammer 

(1932) and Mader (1954) orthometric heights.  This is curiosity driven, since these height 

systems are not in wide practical use to the best of our knowledge.  Both systems attempt 

to take the shape of the topography, residual to the Bouguer shell, into account when 

determining the integral-mean value of gravity along the plumbline.  Both Mader and 

Niethammer orthometric heights include a term in the computation of mean gravity to 

include the mean terrain effect.  Niethammer performs a discrete evaluation of the 

integral-mean terrain effect at a series of discrete points at even intervals along the 

plumbline, while Mader assumes the terrain effect to vary linearly between the geoid and 

the surface, and so uses a simple mean of the values of the effect evaluated for the Earth’s 

surface and the geoid.   

In our terminology, and using our approach to evaluate the terrain roughness term, 

Mader’s (1954) approximated mean value of gravity along the plumbline method is: 

0 0( , ; ) ( , ; )
( ) ( )

2

T T
M H R g R tg r g r

g g
ρ ρΩ − Ω

Ω = Ω +  , (12) 

and according to Niethammer’s (1932) method, it is: 

( )

0
1

( ) ( ) ( , ; ) ( , )
( )

OR H
N H T T

R t RO
r R

g g g r g r dr
H

ρ
+ Ω

=

Ω = Ω − Ω + Ω
Ω ∫  . (13) 
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5. Corrections to the Helmert orthometric height  

To establish the relationships between the more rigorous mean gravity given by Eq. (8) 

and Helmert’s approximate (Poincaré-Prey) formula given by Eq. (11), we subtract them, 

grouping like terms.  The resulting difference is called the correction to Helmert’s mean 

gravity )(Ωgε : 

( ) ( ) ( )
H

g
g gε Ω = Ω − Ω  

( )

0

1
( ) ( , ) ( )

2

( ) ( , ) 2 ( )

( ) ( , ) ( ) ( , )

( ) ( , )

O
tg

T T O
B tB

NT TNT T
t R tR

t

r H
h

g g r G H

g g r g g r

g g r
δρ δρ

γε γ γ

π ρ

δ δ

∂ Ω = Ω − Ω + Ω ∂ 

 + Ω − Ω + Ω  

   + Ω − Ω + Ω − Ω      

 + Ω − Ω  

  (14) 

After being computed, )(Ωgε  can be used to apply a correction to Helmert’s orthometric 

height ( )OH
ε Ω  using (cf. Heiskanen and Moritz 1967, p 169): 

( )
( ) ( )

( )
O

O

gH

H

g
ε ε− ΩΩ = Ω

Ω
,  (15) 

to an accuracy of << 1 mm in ( )OH
ε Ω .  Since ( )

g
ε Ω  is small, the actual mean gravity in 

Eq. (15) can [ironically] be computed using Helmert’s approximation (Eq. 10).  This will 

make it considerably easier to numerically evaluate ( )OH
ε Ω  in later sections: 

( ) ( )
( )

( , ) 0.0424 ( )
O

O

g

OH
t

H

g r H

ε
ε

− Ω Ω
Ω =

Ω + Ω
,  (16) 

where ( )OH
ε Ω  and ( )OH Ω  are in metres, and ( )

g
ε Ω  and ( , )tg r Ω  are in mGal.  

 

5.1 Second-order correction for normal gravity 

For the terms involving normal gravity, we seek a simplification of  

( ) 1
( , ) ( )

2
O

tA r H
h

γγ γ ∂ = Ω − Ω + Ω ∂ 
. (17) 
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The integral-mean value of normal gravity along the plumbline ( )γ Ω  is evaluated using 

a second-order Taylor expansion for the analytical downward continuation of normal 

gravity from the Earth’s surface ( , )trγ Ω  to the geoid.  Using a formulation in terms of 

geodetic coordinates, this is: 

( )
( ) ( ) ( ) 2

2
2

( )( ) ( )

1 1
( ( ), ) [ ( )] [ ( )]

( ) 2

Oh N H

O
h hn N h h

h n h n h dn
H h h

γ γγ γ
Ω = Ω + Ω

= Ω= Ω = Ω

 ∂ ∂
 Ω ≈ Ω Ω + − Ω + − Ω

Ω ∂ ∂ 
∫

  (18) 

where h(Ω) is the geodetic [ellipsoidal] height of the point ( , )tr Ω , N(Ω) is the geoid 

height at Ω, and n is an element along the ellipsoidal plumbline (cf. Jekeli 2000).  

Performing the integration, applying the integration limits, and expressing normal gravity 

in terms of the geocentric radius of the Earth’s surface at Ω gives: 

( )
2

2

2
( ) ( )

1 1
( ( ), ) ( ) ( )

2 6
O O

h h h h

h H H
h h

γ γγ γ
= Ω = Ω

∂ ∂
 Ω ≈ Ω Ω − Ω + Ω ∂ ∂

. (19) 

Inserting Eq. (19) in Eq. (17) yields: 

2
2

2
( )

1
( )

6
O

h h

A H
h

γ

= Ω

∂
 ≈ Ω ∂

. (20) 

Assuming the spherically approximated value of the second-order free-air gravity 

gradient (Heiskanen and Moritz 1967, Eq. 2-122), Eq. (20) reduces to: 

2 2
( ) ( )

( )

O O

t

H H
A

r a
γ γ   Ω Ω= ≈   Ω   

,        (21) 

where a is the major semi-axis of the reference ellipsoid.  Taking )(ΩOH  = 8.8 km 

(Mount Everest), r t (Ω) = 6371 km and γ = 9.81ms-2, A is about –1.87 mGal.  Using Eq. 

(16), this causes a maximum correction of about 1.5 cm to the Helmert orthometric 

height.   

 

5.2 Second-order correction for the Bouguer shell 

For the terms involving the spherical Bouguer shell of thickness ( )OH Ω , we seek a 

simplification of the term  
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0( ) ( , ) 2 ( )
T T O

B tBB g g r G Hπ ρ = Ω − Ω + Ω  
. (22) 

The gravitational attraction of the spherical Bouguer shell at the Earth’s surface reads 

(Martinec 1993, Eq. 4.16): 

( )
22

0 2

( ) 1 ( )
( , ) 4 ( ) 1

3( )

O O
T O
B t

O

R H H
g r G H

R RR H
π ρ

  Ω Ω
 Ω = Ω + +    + Ω  

 .                    (23) 

From Wichiencharoen (1982) (cited by Martinec 1998, Eq. 3.14), the gravitational 

potential inside the spherical Bouguer shell is: 

3 2
2

0

2
: ( , ) 2 [ ( )]

3 3
T O

g t B

R r
r r r V r G R H

r
π ρ  

≤ ≤ Ω = + Ω − − 
 

,  (24) 

where R is the radius of the base of the shell (in this case R=rg) and r is a dummy point 

inside the shell.  Recognising that 
r

rV
rg

T
BT

B ∂
Ω∂

−=Ω
),(

),( , the integral mean ( )
T

Bg Ω  in 

Eq. (22) along the radial between the geoid rg = R and approaching the Earth’s surface 

( )O
tr R H→ + Ω  from within the Bouguer shell gives: 

( ) ( ) ( )( ) ,1
( )

( ) ( )
t g

g

T TT
r r HT B g B tB

B O Or r

V r V rV r
g dr

H r H

− + Ω

=

−∂ Ω−Ω = ≈
Ω ∂ Ω∫ . (25) 

As for the normal gravity term, this is a more rigorous formulation for the spherical 

Bouguer shell, where r and H are along the same radial (i.e., ( ) ( ) ( )O
t gH r rΩ = Ω − Ω ).  As 

such, there is no need to worry about the deviation of the radial from the plumbline in this 

case (cf. Tenzer et al. 2005, Appendix A).  Inserting the integration limits in Eq. (24), 

then inserting the results into Eq. (25), after some algebraic manipulation, gives: 

( )0

2 ( )
( ) 2 ( ) 1

3 ( )

O
T O
B O

H
g G H

R H
π ρ

 Ω
 Ω = Ω −
 + Ω 

. (26) 

Here we acknowledge the typographical error in the first term of Tenzer et al. (2005, Eq. 

21).   

 Inserting Eqs. (23) and (26) in Eq. (22) gives: 

2

0
4 ( ) ( )

2
3 ( ) ( )

O O

O O

H H
B G

R H R H
π ρ

 Ω Ω= − + Ω + Ω 
. (27) 
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Using the earlier example of Mount Everest, a constant topographical mass-density of 

ρ0=2670 kg/m3 and Eq. (16), the second-order Bouguer term (Eq. 27) affects the 

orthometric height by as much as -1.6 cm.  Equation (14) now becomes: 

2

0

( ) ( ) ( , ) ( ) ( , )

( ) 4 ( )
( ) ( , ) 2

( ) 3 ( )

NT TNT T
t R tRg

O O
g g

t O
t

g g r g g r

H G H
g g r

r R H

δ δ

ε δ δ

π ργ

   Ω = Ω − Ω + Ω − Ω      

   Ω Ω + Ω − Ω − + −      Ω + Ω   

, (28) 

which represents the integral-mean value of gravity along the plumbline expressed in 

terms of corrections to Helmert’s approximate mean value.  These comprise: mean and 

surface effects on gravity coming respectively from masses inside the geoid, terrain 

roughness, laterally variable density distribution, second-order free-air effects, and 

second-order Bouguer shell effects.  All these terms must be computed to apply a 

rigorous correction to Helmert’s orthometric height.  

 

5.3. The geoid-generated gravity disturbance 

In this Subsection, we shall concentrate on the term  

( ) ( , )
NT NT

tC g g rδ δ = Ω − Ω  
,  (29) 

which deals with the corrections to the Helmert orthometric height coming from the 

geoid-generated gravity disturbance, comprising the mean value along the plumbline 

( )
NT

gδ Ω  and value on the Earth’s surface ( , )NT
tg rδ Ω . 

The integral-mean value of the geoid-generated gravity disturbance along the 

plumbline between the geoid and the Earth surface can be represented (in analogy to Eq. 

2) by: 

drrg
H

drrg
H

g

OHR
Rr

NT
O

tr

gr

NT
O

NT

∫

∫

+
= Ω

Ω
≅

Ω
Ω

=Ω

),(
)(

1

),(
)(

1
)(

δ

δδ

,  (30) 

where the geocentric radius of the geoid surface gr  is approximated by R, the mean 

radius of the Earth, which should not be confused with the subscript R in the 
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topographical roughness term.  Since the geoid-generated gravity disturbance ( )Ω,NT rgδ  

multiplied by r  is harmonic above the geoid (since the NT space contains no 

topographical masses above the geoid, and again neglecting the atmosphere), ( )ΩNTgδ  

can be evaluated by averaging Poisson’s equation for upward continuation (e.g., Kellogg 

1929) in an integral sense.  The Poisson equation reads: 

Ω′Ω′Ω′Ω=Ω ∫∫
Ω∈Ω′

dRgRrK
r

R
rg NTNT ),(]),,(,[

4
1

),(

0

δψδ , (31) 

where 0Ω  is the solid angle, 'Ω  is the dummy element and ψ(Ω, Ω′) represents the 

spherical distance or geocentric angle between the computation and integration points.  

The required gravity disturbance ),( ΩRgNTδ  referred to the geoid is a part of the sub-

integral function.  The spatial form of the Poisson integral kernel ]),,(,[ RrK Ω′Ωψ is 

given by (e.g., Kellogg 1929): 

]),,(,[
]),,(,[

3

22

Rr

Rr
RRrK

Ω′Ω

−=Ω′Ω
ψ

ψ
l

, (32) 

where the Euclidean spatial distance is given by:  

2 2' 2 'cos ( , ')r r rr ψ= + − Ω Ωl ,  (33) 

 Inserting Eq. (31) into Eq. (30), the mean gravity disturbance ( )ΩNTgδ  becomes 

(cf. Tenzer et al. 2005, Eq. 8): 

( ) ( ) ( )( ) ( )1 1
, , , ,

4

O

O

R HNT NT
O r R

R
g K r R dr g R d

H r
δ ψ δ

π
+ Ω

=
′Ω ∈Ω

′ ′ ′Ω ≅ Ω Ω Ω Ω  Ω ∫∫ ∫ .     (34) 

Performing the radial integration of Poisson’s integral kernel ( ), , ,K r Rψ ′Ω Ω   , 

multiplied by 1r − , the following expression can be found for the averaged Poisson’s 

kernel (e.g., Vaníček at al. 2004, Tenzer et al. 2005):  

[ ]
[ ]

[ ]
[ ] )(

3

22
)()(

),(sin

),,(,),(cos
ln

),,(,

2

),,(,

1
)),,(,

1

Ω+

=

Ω+
=

Ω+
=

Ω′Ω
Ω′Ω+Ω′Ω−+

Ω′Ω
−=

Ω′Ω
−=Ω′Ω ∫∫

OHR

Rr

OHR
Rr

OHR
Rr

r

RrrR

Rr

R

dr
Rr

Rr

r
RdrRrK

r

ψ
ψψ

ψ

ψ
ψ

l

l

l

. (35) 
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for 0≠ψ .  Substituting Eq. (32) into Eq. (31), the mean gravity disturbance ( )ΩNTgδ  

along the plumbline takes the following form:  

[ ] [ ]

[ ]
[ ] Ω′Ω′















Ω′Ω+Ω′Ω−
Ω′ΩΩ+Ω′ΩΩ−

Ω
+






Ω′ΩΩ
−

Ω′ΩΩ
=Ω ∫∫

Ω∈Ω′

dRg
RRR

RrrR

r

R

Rr

R

RR

R

H

R
g

NTtt

t

t
O

NT

),(
),,(,)),(cos1(

),,(),(),(cos)(

)(
ln

),,(),(

2

),,(,

2

)(4

1
)(

0

δ
ψψ

ψψ

ψψπ
δ

l

l

ll

.   (36) 

 Equation (36) can be simplified as:  

( ) ( ) ( )1
[ ( ), ( , '), ] ,

4
O

NT O NT
O

R
g K R H R g R d

H
δ ψ δ

π ′Ω ∈Ω

′ ′Ω = + Ω Ω Ω Ω Ω
Ω ∫∫  (37) 

where K stands for the intermediary integration kernel.  It can be shown, in the first 

approximation, that this kernel equals: 

[ ]
l

l

ll

H
RRHRK

−+







−=Ω′ΩΩ+

*

*
ln

11
2),,(),( ψ , (38) 

where l  stands for l (R,ψ,R) and *
l  stands for l (R+H ( )O Ω ,ψ,R).  The derivation is 

given in Appendix A. 

  Equation (37) is somewhat cumbersome because it requires that the NT gravity 

disturbance be known on the geoid, which it is not.  Therefore, to implement it in practice 

first requires the downward continuation of ),( Ωt
NT rgδ  to ),( Ωg

NT rgδ .  In Eq. (36), 

the geoid-generated gravity disturbance ( )NT ,gg rδ Ω  is obtained from the geoid-

generated gravity anomaly ( )NT ,gg r∆ Ω
 

referred to the geoid in the NT-space by (cf. 

Heiskanen and Moritz, 1967, Eq. 2-151e; Vaníček et al. 2004):  

),(
2

),(),( Ω+Ω∆=Ω RT
R

RgRg NTNTNTδ  (39) 

where TNT(R,Ω) represents the geoid-generated disturbing potential in the NT space: 

),(),(),(),( Ω−Ω−Ω=Ω RVRVRTRT ATNT  (40) 
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The disturbing potential T(R,Ω) can be taken from a regional geoid model, computed 

according to Bruns (1878) formula for the geoid height 0( )T N γ= Ω , thus making the 

geoid and the corresponding orthometric height system more compatible. 

 The second term on the right-hand side of Eq (40) is the gravitational potential 

),( Ωg
T rV  of the topographical masses, and ),( Ωg

A rV is the potential of all 

atmospheric masses.  The term ),( Ωg
T rV  is obtained through the Newtonian integral: 

[ ] Ω′′′′Ω′ΩΩ′′=Ω ∫∫ ∫
Ω∈Ω′

Ω′+
=′

− drdrrRrGrV
HR

Rrg
T 2)( 1

0

0

),,(,),(),( ψρ l , (41) 

where ( )', 'rρ Ω  represents the actual mass-density of the topographical masses, usually 

computed from a density distribution model.  The effect due to lateral density variation is 

dealt with in subsection 5.5.  

Finally, to complement Eq. (29), the gravity disturbance at the Earth’s surface is 

required. This term can be evaluated directly from: 

2 2 2
( , ) ( , ) ( , ) ( , ) ( , )NT NT T A

t t t t t
t t t

g r g r T r V r V r
r r r

δ Ω = ∆ Ω + Ω − Ω − Ω  . (42) 

Equation (29) can then be evaluated using Eqs. (37) and (42). 

 

5.4. The terrain-roughness-generated gravity 

In this Subsection, we shall concentrate on the term  

( ) ( , )
T T

R tRD g g r = Ω − Ω  
  (43) 

which gives the correction to the Helmert orthometric height from the terrain roughness 

residual to the Bouguer shell, assuming for the moment a constant topographical mass-

density.  (Lateral density variations will be considered in Subsection 5.5).  The 

gravitational field of the topographical roughness term is not harmonic inside the 

topography.  As such, it has to be calculated from an adopted model of the shape of the 

topography (i.e., a digital elevation model, DEM), coupled with a constant mass-density 

assumption.   
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We begin with the gravitational potential ),( ΩrVT  of topographical masses 

expressed in Eq. (41).  Using a spherical approximation of the geoid, this reads (cf. 

Novák and Grafarend 2005):  

' ( ')
1 2

' '

( , ) ( ', ') ( , , ', ') ' ' '

Or R H
T

r R

V r G r r r r dr dρ
= + Ω

−

Ω =

Ω ≈ Ω Ω Ω Ω∫∫ ∫ l . (44) 

The negative radial derivative of topographical gravitational attraction ),( ΩrgT  

is given by: 

' ( ')
1 2

' '

( , ) ( ', ') ( , , ', ') ' ' '

Or R H
T

r R

g r G r r r r dr d
r

ρ
= + Ω

−

Ω =

 ∂
 Ω ≈ − Ω Ω Ω Ω
 ∂  

∫∫ ∫ l  . (45) 

From Eq. (43), we are looking for the mean value ),( ΩrgT  between the Earth’s surface 

and the geoid, which is given, by definition, as (Tenzer et al. 2005, Eqs. 16-18): 

{ }

( )

( )

1
( , ) ( , )

( )

1
( , )

( )

1
[ ( ), ] [ , ]

( )

r R H
T T

O
r R

r R H
T

O
r R

T O T
O

g r g r dr
H

V r dr
H r

V R H V R
H

= + Ω

=
= + Ω

=

Ω = Ω
Ω

− ∂= Ω
Ω ∂

−= + Ω Ω − Ω
Ω

∫

∫ .  (46) 

Substituting for the two values of potential TV from Eq. (40), we get: 

( ')
1 1 2

' '

( ) ( ', ') [ , , ', '] [ ( ), , ', '] ' ' '
( )

OR H
T O

O
r R

G
g r R r R H r r dr d

H
ρ

+ Ω
− −

Ω =

 Ω ≈ Ω Ω Ω − + Ω Ω Ω Ω Ω ∫∫ ∫ l l . (47) 

Let us now express the radial integral in Eq. (47) as a sum of two integrals: 

( ') ( ) ( ')

( )
( ') ' ( ') ' ( ') '

O O O

O

R H R H R H

R R R H
F r dr F r dr F r dr

+ Ω + Ω + Ω

+ Ω
= +∫ ∫ ∫  (48) 

The first integral on the right-hand side of Eq. (48) describes the contribution of the 

Bouguer shell of constant thickness ( )ΩOH  (e.g., Vaníček et al. 2001), which was dealt 

with in Subsection 5.2.  The second integral gives the contribution due to the 

topographical roughness or terrain residual to the Bouguer shell.  The density can also be 

written as a sum of two terms, one containing a contribution due to the mean density ρ0 

and the other containing the residual density δρ(r,Ω) contribution:  
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),(),( 0 Ω+=Ω rr δρρρ . (49) 

The roughness term is represented by the second term in Eq. (21) of Tenzer et al 

(2005):  

{ }
0

( )
1 1 20

' ' ( )

( ) [ , , ', '] [ ( ), , ', '] ' ' '
( )

O

O

R H
T O
R o

r R H

G
g R r R H r r dr d

H

ρ ′+ Ω
− −

Ω ∈Ω = + Ω

Ω = Ω Ω − + Ω Ω Ω Ω
Ω ∫∫ ∫ l l , (50) 

This term is nothing else but the change in the roughness part of the topography (also 

called “terrain” in some literature) of constant density of ρ0, from the geoid to the surface 

of the Earth, divided by the orthometric height of the point of interest: 

0

1
( , ) ( , ) ( ( ), )

( )
T T T O
R R RO

g V R V R H
H

ρ  Ω ≈ Ω − + Ω Ω Ω
. (51) 

These two roughness parts of topographical potential can be evaluated through 

numerical quadrature of the Newton integral (Eq. 44).  Equation (51) provides the mean 

gravity generated by the topographical roughness, expressed in terms of gravitational 

potential.  As pointed out in Subsection 5.3, it comprises a contribution from the average 

topographical mass-density, plus a smaller correction due to mass-density variations.  

The other term in Eq. (43), the topographical roughness term at the Earth’s 

surface, is given by the second term in Martinec (1998): 

0

' ( ) 1
2

0

' ' ( )

( , ; ', ')
( , ) ' ' '

o

o
t

r R H
T
R t

r R H r r

r r
g r G r dr d

r
ρ

′= + Ω −

Ω ∈Ω = + Ω =

∂ Ω ΩΩ ≈ − Ω
∂∫∫ ∫

l  (52) 

which can also be evaluated by quadrature methods. 

 

5.5. The lateral variation of topographical mass-density 

In this Subsection, we consider the term: 

( ) ( , )tE g g rδρ δρ = Ω − Ω   . (53) 

In most gravimetric geoid computations, the topographical mass-density is generally 

modelled by an average value of 0 2670ρ =  kgm-3.  Martinec (1998) posed the question 

on how much a variation in topographical mass-density affects geoid height computation.  

To answer this question in the context of the orthometric height, we assume only lateral 

variations of density, leaving the radial variation still to be tackled.  The developments 

below follow from those of Subsection 5.4. 
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The contribution of lateral variation of density to the correction to Helmert’s 

orthometric height is represented by third term in Eq. (21) from Tenzer et al (2005): 

Ω′′′Ω′′ΩΩ+−Ω′′ΩΩ′′
Ω

=Ω −−
Ω′+=′

=′Ω∈Ω′
∫∫∫ drdrrHRrRr

H

G
g

HRr

Rr
o

211
)(

0

]},,),([],,,[{),(
)(

)( llδρδρ

(54) 

The surface gravity generated by lateral variation of density is given by: 

Ω′′′
∂

Ω′′Ω∂Ω−=Ω
Ω=

−Ω′+=

=Ω∈Ω
∫∫∫ drdr

r

rR
Grg

trr

HRr

Rr
t

2
1)(

)(
0

],;,[
)(),(

lδρδρ , (55) 

which follows from a more complete expression provided by Martinec (1998) that takes 

into account the radial variation in density r′ : 

Ω′′′
∂

Ω′′Ω∂Ω′′−=Ω
Ω=

−Ω′+=′

=′Ω∈Ω′
∫∫∫ drdr

r

rR
rGrg

trr

HRr

Rr
t

2

)(

1)(

0

],;,[
),(),(

lδρδρ , (56) 

Equations (54) and (55) provide the terms required in Eq. (53) 

The correction to Helmert’s orthometric height due to the laterally varying 

topographical mass-density is also given by the following approximate expression 

(Vaníček et al. 1995) if one considers only the radial gradient of the gravitational 

attraction generated by the spherical Bouguer shell of the anomalous topographical 

density )(Ωδρ : 

( ) ( )2
( ) 2

( )
O

O

H
G H

g
δρ δρ

ε π
Ω

 Ω ≈ Ω  Ω
. (57) 

 

5.6 Summary 

The correction to the Helmert orthometric height to give the rigorous orthometric height 

defined by Tenzer et al. (2005) )(ΩOH
ε is given by Eq. (15).  It follows directly from the 

evaluation of the correction to Helmert’s mean gravity )(Ω
g

ε , written below in a 

simplified manner as:  

EDCBA
g

++++=Ω)(ε  (58) 

The terms A and B can be computed from Eq. (28) as: 
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



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)(

)( 0
2

ρπγ  (59) 

The terms C, D and E can be computed from Eqs. (37) and (42), (51) and (42) and (54) 

and (55), respectively.  Note that several of these terms would have already been 

computed for a regional gravimetric geoid model based on the Stokes-Helmert approach 

(Vaníček and Martinec 1994).  This simplifies the task, where the gridded quantities can 

be interpolated to the points of interest and applied as part of the corrections to the 

Helmert orthometric height.  It also makes the rigorous orthometric heights more 

compatible with the regional geoid model.  Finally, the total correction to the Helmert 

orthometric height )(ΩOH
ε is: 

)(
)(

)(
)( EDCBA

g

H O

OH
++++

Ω
Ω−=Ωε  (60) 

 

6. Numerical Tests 

Using Canadian gravity, terrain and lateral topographic density data, we have computed 

rigorous corrections to Helmert’s orthometric heights along a profile across the Canadian 

Rocky Mountains.  This profile spans the longitudes from 235°E to 239°E along the 

50°N parallel.  Figure 2 shows each one of the terms in Eq. (60) (i.e., second-order free-

air, second-order Bouguer shell, NT gravity disturbance, topographical roughness, and 

lateral density variations) computed separately to show their relative contributions to the 

correction.  These terms are superimposed on the topographic height variations (shown 

with the thicker line in Fig. 2) scaled down by 100 m, to show that there is not always a 

one-to-one correspondence of the correction terms with height.  All integral terms were 

computed over a spherical cap radius of 3 degrees, beyond which the far-zone 

contributions become negligible (< 1 mm) for this test area.   

 

Figure 2 near here 

 

 Inspecting Fig. 2, we see that the correction term from the geoid-generated gravity 

disturbance gives the largest correction values, and is generally positively correlated with 
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topography, though not perfectly.  The correction due to terrain-roughness-generated 

gravity is the second most important contribution.  However, it works against the former 

correction, and there is a less strong, negative correlation with topography.  The third 

largest term in magnitude is the correction due to lateral variation of topographical mass-

density, varying around zero and with maximum magnitude not greater than 5 cm.  The 

final two terms, due to second-order correction for normal gravity and second-order 

correction for the Bouguer shell, are both very small, not showing up in Fig. 2.  Table 2 

summarizes the statistics of these five correction terms. 

 

Table 2 near here 

 

 Figure 3 shows a comparison among the corrections to Helmert orthometric 

heights using the method described in this paper (termed rigorous), and the Mader and 

Niethammer approaches, for the same profile as in Fig. 2.  The Mader and Niethammer 

corrections were computed from Eqs. (12) and (13) using the same topographical 

corrections used to evaluate the rigorous corrections.  From Fig. 3, the Mader and 

Niethammer corrections are very similar to one another, whereas the rigorous correction 

is larger, which is attributed to the two additional terms not accounted for in Mader nor 

Niethammer’s approaches: geoid-generated gravity disturbance and lateral variation of 

topographical mass-density.  The larger contribution comes mostly from the geoid-

generated gravity disturbance (cf. Fig. 2).  Table 3 summarizes the statistics of the 

corrections along this profile. 

 

Figure 3 and Table 3 near here 

 

7. Summary and Conclusions 

We have derived expressions to transform Helmert’s orthometric height into a more 

rigorous one (cf. Tenzer et al. 2005), taking into account effects coming from the second-

order correction for normal gravity, second-order correction for the Bouguer shell, the 

geoid-generated gravity disturbance, the terrain-roughness-generated gravity and the 

lateral variation of topographical mass-density.  These individual corrections have been 
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evaluated numerically along a profile across the Canadian Rocky Mountains, and plotted 

against the topographical height variation.  

 This comparison shows that the geoid-generated gravity disturbance, the terrain-

roughness-generated gravity and the lateral variation of topographical mass-density are, 

respectively, the most important contributors towards obtaining a more rigorous 

orthometric height.  It also shows that the geoid-generated gravity disturbance and the 

terrain-roughness-generated gravity work approximately against each other, though not 

completely as each is not perfectly correlated with the topography.  The second-order 

correction for normal gravity and the second-order correction for the Bouguer shell are 

negligibly small for this test, but become larger for very high elevations.  

Comparisons with other refinements of Helmert orthometric heights, namely 

Mader and Niethammer’s, have also been performed.  The Mader and Niethammer 

orthometric heights are very similar to one another, but the respective corrections are 

smaller than the rigorous corrections.  They differ from the rigorous approach due to 

inclusion of the terms pertaining to the geoid-generated gravity anomaly and lateral 

variation of topographical mass-density.   

Finally, it is important to point out that several of the correction terms used here 

are the same as would have been computed for a regional gravimetric geoid model based 

on the Stokes-Helmert approach.  As such, they are relatively easy to apply to existing 

Helmert orthometric heights.  Moreover, this makes the resulting heights more 

compatible with the gravimetric geoid model.  
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Appendix A: Derivation of Eq. (38) 

 

We wish to simplify the expression for the averaging Poisson’s kernel (Eq. 35), which 

reads: 

2 2
( ( ), , )

( ( ), , ) ( , , )

( ( ))cos ( ( ), , ) cos ( , , )
ln ln

( ( ))sin sin

O
O

O O

O

R R
K R H R

R H R R R

R R H R H R R R R R

R H R

ψ
ψ ψ

ψ ψ ψ ψ
ψ ψ

+ Ω = − + +
+ Ω

− + Ω + + Ω − ++ −
+ Ω

l l

l l
 .  (A1) 

For integration within a very small radius ψ0 of, say 3 arc-degrees, we can assume: 

, *, ( )OH RΩ <<l l ,         (A2) 

where we have denoted l (R,ψ,R) by l  and l (R+HO,(Ω),ψ,R) by l *.  This is permitted 

because of the rapid decay of the Poisson kernel with spherical distance, as supported by 

our empirical evidence (cf. Section 6).  Now, we can rewrite Eq. (A1) as: 

1 1 1 (1 ( ) / )cos * /
( ( ), , ) 2 ln

* (1 ( ) / )(1 cos / )

O
O

O

H R R
K R H R R

H R R

ψψ
ψ

− + Ω + + Ω = − +  + Ω − + 

l

l l l
.   (A3) 

The last term in Eq. (A3) should be:   

( )

*1 (1 ( ) / )cos /
ln

( )
1 1 cos /

( )

O

O

O

H R R

H
R

R H

ψ

ψ

− + Ω +
 Ω+ − + + Ω 

l

l

.      (A4) 

However, due to the precision required, the approximation in Eq. (A3) is enough since:   

( ) ( )
1 1

( )

O O

O

H H

R H R

   Ω Ω+ ≈ +   + Ω   
       (A5) 

Realizing that:  

2 sin
2

R
ψ=l ,          (A6) 

we can express cosψ in Eq.(A4) as:  

2
2 1

2cos 1 2sin 1
2 R

ψψ  = − = −  
 

l .        (A7) 
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Substituting this result into Eq.(A3), gives: 

( )
( )

( )

2

2

1
1 1 ( ) / 1 /
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( ), , 2

1
1 ( ) / 1 1 /
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     + Ω = − + ∗       + Ω − − +   
     

l
l

l l
l

l

   (A8) 

After a few algebraic operations, we get: 

( )
( )

( )
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2

1
1 1 ( ) / 1 /

21 1
( ), , 2

1
1 ( ) / /
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K R H R R

H R R
R
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  − + Ω − + ∗  
     + Ω = − + ∗      + Ω +  
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1 1 ( )

2 ln
OH

R
∗− Ω ≈ − + ∗ 

l

l l l
.                                         (A9) 

This is the final simplified form, valid for a small radius ψ0 of integration, which can now 

be studied. 

It should be noted that the first term in Eq. (A9) is the leading term, while the 

second is a corrective term.  The leading term converges very rapidly since it holds most 

of its power in the nearest vicinity of the computation point.  For instance, the cumulative 

sum of this term across a profile gains ~99% power at ψ =0.1°.  The magnitude of the 

corrective (logarithmic) term comprises <1% of the magnitude of the leading term.  One 

may see that the first terms on the right-hand side of Eqs. (A3) and (A7) are exactly the 

same.  Thus, the difference between the exact expression and the first approximation 

stems only from the much smaller logarithmic term. As such, our subsequent numerical 

investigations study the relationship between the term 

( )

*1 (1 ( ) / )cos /
ln

( )
1 1 cos /

( )

O

O

O

H R R

H
R

R H

ψ

ψ

− + Ω +
 Ω+ − + + Ω 

l

l

 and its approximation 
* ( )

ln
OH− Ωl

l
. 

The variables in both terms are the orthometric height ( )OH Ω  and the angular 

distance ψ.  The behaviour of these terms within the interval 0.0001º (10 m)<ψ≤3° will 
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be numerically investigated.  In these tests, the orthometric height takes the following 

constant values ( )OH Ω = 200 m, ( )OH Ω = 1km, ( )OH Ω = 3 km, ( )OH Ω  = 5km.  In 

other words, the topography of the test area is assumed to be a plateau with a constant 

height ( )OH Ω .  

The logarithmic term is always negative, since the argument 
( )OH∗− Ωl

l
 takes 

values between 0 and 1, i.e. 0<  
( )OH∗− Ωl

l
< 1.  Figure (A1) shows the behaviour of 

the logarithmic term and the discrepancies between the exact expression (Eq. A3) and its 

approximation (Eq. A7) across the integration area.  The lower batch of curves in Fig 

(A1) indicates the magnitude of the logarithmic term for each case, whereas the upper 

batch denotes the corresponding discrepancies.  The test cases in Fig. (A1) are denoted as 

follows: (a) ( )OH Ω = 200 m dotted line; (b) ( )OH Ω =1000 m dashed line; (c) 

( )OH Ω =2000 m solid thin line; (d) ( )OH Ω = 5000 m solid bold line.  Also note the 

negative logarithmic scale. 

 

Figure A1 near here 

 

From Fig. (A1), most of the power in the logarithmic term is also in the nearest 

vicinity of the computation point and it decreases with increasing ψ.  Note that at the 

computation point the discrepancies are almost zero. The magnitude of the relative 

discrepancies increases linearly with the distance (recall that a logarithmic scale is used 

in Fig. A1).  Note however, that in any tested case and for ψ< 1º the discrepancies are at 

least of two orders of magnitude less than the logarithmic term itself.  At ψ = 3°, the error 

of the approximation 
* ( )

ln
OH− Ωl

l
 consists of ~ 3% only from the exact expression.  

Also recall that the logarithmic term is <1% of the whole Poisson kernel.  From the above 

results, it is obvious that the expression: 
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1 1 * ( )
[ ( ), ( , '), ] 2 ln

*

O
O H

K R H R Rψ − Ω + Ω Ω Ω = − + 
 

l

l l l
 is sufficient as the first 

approximation of the complicated integration term.  

Let us next have a look at the first term in Eq. (A3).  Realizing that: 

2 2

0
lim ( )OH
ψ →

∗ = + Ωl l , it can be written as: 

1
2 2

22 2

1 1 1 1 2 ( )
2 2 1 1
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R H
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l l l l ll

  (A11) 

For ( )OH Ω < l , (the case of ( )OH Ω > l can be treated in a similar way) this can be 

represented by a convergent binomial series: 

1
22 12

2
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1 1 1 1 ( ) 1 1 ( )
2 2 1 2 1
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Carrying out the required algebraic operations, we arrive at:  

21
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1 1 2 ( )
2
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∞
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∑l l l l
.       (A13) 

The series in Eq. (A10) is alternating, and thus a convergent series even for H and l  

going simultaneously to zero, thus: 

21 1
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0 0 0
1 1( ) 0 ( ) 0( ) 0

1 1 1 ( ) 1
lim 2 2 lim 2 lim
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k kH HH
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∞ ∞
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= =Ω → Ω →Ω →

 − −   Ω − = =     
      

∑ ∑l l ll l l l l
(A14) 

As the summation is a real number, the whole expression grows above all limits and we 

get:  

0

1 1
lim 2 ( , ')

*H
R δ

→

 − = Ω Ω 
 l l

,        (A15) 

where δ is the Kronecker symbol for the function that grows beyond all limits when 

Ω=Ω’ and equals to 0 for all other values of Ω.  We can thus see that: 
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as one would expect.   

We note that the averaging Poisson kernel also has a singularity for the case when 

H is not equal to zero.  For ( ) 0OH Ω > , we get the following equation:  
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 (A17) 

which also grows above all limits.  Thus, the averaging Poisson kernel has a removable 

singularity of a linear type (1/0) at the point of interest Ω, whether the height is equal to 0 

or not.  The second, logarithmic term is always negative: it equals 0 for l  going to 0, and 

it also goes to 0 for growing l . Note that the argument 0 < 
( )OH∗− Ωl

l
 < 1. 
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Table 1. Gravity-related notation used throughout this paper. 

( )Ω,rg  Gravity at an arbitrary point 

( )Ω,rgNT  Gravity generated by masses contained within the geoid, i.e., with the 
topography removed and in the NT-space 

( )Ω,rgT  Gravitation generated by masses contained within the topography only, 
i.e., those between the geoid and Earth’s surface 

( )Ω,rgδρ  Effect on gravitation due to lateral mass-density variations inside the 
topography with respect to the reference value of 0=2670ρ  kgm-3 

( )Ωγ ,r  Normal gravity generated by the geocentric reference ellipsoid 

( )Ωδ ,rgNT  Gravity disturbances generated by masses contained within the geoid 

( )Ω,rgT
B  Gravitation generated by a spherical Bouguer shell 

( )Ω,rgT
R  Gravitation generated by the terrain roughness, i.e., topographical 

undulations relative to the spherical Bouguer shell 

)(Ωgε  Correction to Helmert’s approximation of integral-mean gravity along 
the plumbline 

( )OH
ε Ω  Correction to Helmert’s orthometric height to convert it to the rigorous 

orthometric height (Tenzer et al. 2005) 
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Figure 1.  The conceptual decomposition model of actual gravity into the geoid-

generated component (internal white area) and the topography-generated component 

(dark area); the topography is exaggerated for the sake of clarity. 
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Figure 2. Profiles of the five components of the correction to Helmert’s orthometric height (cm), 

as well as the Helmert orthometric height (m) along a profile at 50°N. Continuous thick line 

represents the topographic height; continuous thin line corresponds to )(Ωg
OH

δε  [geoid-

generated gravity disturbance]; dashed line corresponds to )(ΩT
OH

ε  [terrain-roughness-

generated gravity]; dotted line corresponds to )(Ωδρε OH
 [lateral variation of topographical mass-

density]. 
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Table 2. Descriptive statistics of corrections to Helmert’s orthometric height from the 

profile shown in Fig. 2.  Values in cm, rounded to the nearest mm.  

 

 correction 
due to 
gravity 

disturbance 

correction 
due to 
terrain-

roughness 

correction 
due to lateral 
variation of 

density 

correction 
for 2nd-

order normal 
gravity 

correction 
for 2nd-

order 
Bouguer 

shell 

Mean 6.0 -1.4 0.2 -0.0 -0.0 

STD 3.3 2.5 1.1 0.0 0.0 

Minimum  0.0 -11.5 -1.9 0.0 0.0 

Maximum  15.4 2.5 5.2 -0.1 -0.0 
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Figure 3. Comparison among the rigorous, Mader and Niethammer corrections (cm) to Helmert 

orthometric heights along the same profile as in Fig. 2. Continuous thicker line represents the 

topographic profile; continuous thin line represents the rigorous correction; dashed line represents 

Niethammer correction; dotted line represents Mader correction. 
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Table 3. Descriptive statistics of the total corrections to Helmert’s orthometric height from the 

profile shown in Fig. 3. Values in cm, rounded to the nearest mm. 

 Mader Niethammer Rigorous 

Mean -1.4 -1.7 4.4 

Standard Deviation 2.5 3.1 3.1 

Minimum Value -11.5 -15.2 -4.9 

Maximum Value 2.5 2.9 13.0 
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