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ABSTRACT 

The Achilles tendon, the largest and strongest tendon in the body, is among 

the most frequently injured. A common trait is the presence of tendinopathy, 

or disease of the tendon. Tendinopathy is a debilitating disease affecting 

millions of people worldwide, and is characterised by pain and reduced mobility 

and functionality. The pathology is complex and usually includes disordered 

and inadequate healing of the tendon. The aetiology of this disease is not well 

understood, and treatment remains difficult due to a lack of evidence-based 

management.  

This dissertation sought to quantify the mechanical behaviour of tendon in 

order to understand the difference between healthy and tendinopathic 

tendons. This was achieved through the development of a series of 

methodologies derived from rigorous analysis of the literature and validated 

through testing. The methodologies developed may be considered best-

practice for measurement of cross-sectional area, uniaxial mechanical testing, 

and viscoelastic testing of tendon. A comprehensive protocol for evaluating the 

elastic and viscoelastic static and dynamic behaviours was proposed and 

validated against a collagenase-induced tendinopathy model.  

Three methodologies were developed and utilised in five experiments using 

New Zealand White rabbit Achilles tendon. The following conclusions may be 

drawn from the results of this dissertation: 

1. Structured light scanning is an effective tool for measuring the 

morphology of soft tissue; 

2. Tendon demonstrates a measurable change in cross-sectional area 

with stress; 

3. Engineering stress may be used as an approximation of true stress 

when testing is performed in or near the toe region; 

4. Rabbit Achilles tendons should be tested as bone-tendon-muscle 

constructs to preserve the anatomy of the tendon; 

5. Rabbit Achilles tendon is strain rate insensitive; 

6. Strain is the limiting factor in determining failure properties; 
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7. The minimum duration of testing required to assess the viscoelastic 

properties of tendon is 100 seconds; 

8. Tendinopathy does not cause significant differences from control 

values; and, 

9. Management of the tendon should involve pain relief, coupled with 

tendon strengthening exercises. 

This dissertation represents the first study to investigate the rate of change for 

creep and relaxation in a rabbit model, to report viscoelastic properties in a 

rabbit tendinopathy model, and to provide a detailed mechanical analysis of 

tendinopathic tendons. 

The methodologies developed offer researchers standardised means of 

assessing mechanical properties of soft tissue; in particular, elucidating 

abnormal behaviours with a view to isolating and identifying contributory 

factors to the aetiology and true effect of the disease. 

Using these methodologies, it was found that tendinopathy had little influence 

on the mechanical behaviour of the tendon within the bounds and limitations 

of the study. These findings offer significant insights that may contribute to the 

development of better clinical management of tendinopathy, suggesting that 

treatment should be primarily concerned with pain management and tendon 

strengthening. 
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represents the population mean, dashed lines represent one standard deviation (SD), 

and dotted lines represent two SD. Control samples are shown as dots and 

tendinopathy samples as triangles. Samples within one SD are black, within two SD 

are blue, and outside of the ranges are red. ..........................................................224 
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CHAPTER 1. PROLOGUE 

1.1. Purpose 

This dissertation forms part of an Australian Research Council (ARC) Linkage 

project, LP110100581, titled Bioengineered Bioscaffolds for Achilles 

Tendinopathy Treatment. The aim of the project is to improve the outcomes of 

surgical treatment of Achilles tendinopathy via research based on a 

New Zealand White (NZW) rabbit (Oryctolagus cuniculus) tendinopathy 

model. In order to evaluate the efficacy of the techniques developed, the 

validity of the tendinopathy model was rigorously tested. This dissertation 

aimed to evaluate the tendinopathy model from an engineering perspective. 

1.2. Problem 

Musculoskeletal conditions are common, with 30 million cases of injury 

reported annually worldwide (Walden et al., 2016). Despite being the largest 

and strongest tendon in the body, the Achilles tendon is reported to be involved 

in the most sports-related tendon injuries (Freedman et al., 2014a). Injury is 

regularly seen in ageing athletes who participate in repetitive explosive 

activities (Flood and Harrison, 2009; Woo et al., 2000). It has been reported 

that ruptured tendons show significant degeneration compared with normal 

controls (Kannus and Józsa, 1991; Tallon et al., 2001), suggesting disease 

may precede and possibly contribute to rupture. 

1.3. Tendon 

Tendons are a soft connective tissue designed to efficiently transfer loads 

generated by muscles to the skeletal system, facilitating joint movement 

(O’Brien, 2005; Thorpe and Screen, 2016). These can be found as rounded 

cords, strap-like bands, or flattened ribbons, depending on the function. 

1.3.1. Structure 

Tendons exhibit a complex hierarchical structure arranged longitudinally to 

resist the direction of most tension (Kastelic et al., 1978). Procollagen and 

tropocollagen molecules form collagen fibrils, considered the smallest 

structural unit of tendon (Screen and Evans, 2009; Sharma and Maffulli, 

2005b; Wang, 2006). Fibres, comprised of fibrils, are bound by the endotenon, 
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a thin reticular connective tissue, and distributes various vessels and nerves 

(Sharma and Maffulli, 2005b; Wang, 2006). Fascicles, or fibre bundles, are the 

largest of the sub-units of tendon and exhibit a crimped waveform (Kastelic 

et al., 1978). The whole tendon is usually surrounded by the epitenon, another 

thin reticular connective tissue which provides the primary vascular, lymphatic 

and nerve supplies for the tendon (James et al., 2008; O’Brien, 2005). This 

structure is bound by cross-links at low levels of the hierarchy and a 

proteoglycan (PG) matrix at higher levels (James et al., 2008; 

Thorpe and Screen, 2016). This hierarchy behaves like a composite material 

with complex micromechanics that allow the muscle-tendon-bone construct to 

act efficiently. Due to their composition and structure, tendons demonstrate 

viscoelastic behaviour (Arnoczky et al., 2004; Kalson et al., 2010; Woo et al., 

2000); that is, they exhibit time and strain rate dependent properties 

(Abrahams, 1967; Couppe et al., 2009; Woo et al., 2000). 

1.3.2. Constituents 

Tendons primarily consist of water (65–70% of wet weight) and collagen type-I 

(70–80% dry weight), with different types of collagen fibres, elastin, PG, and 

glycolipids making up the remainder (Calve et al., 2004; Goh et al., 2003; 

Lavagnino et al., 2005; Rigozzi et al., 2009; Woo et al., 2007; Woo et al., 

2000). 

Collagen type-I represents approximately 95% of all collagen in the tendon, 

with the remaining 5% collagen type-III and type-V (James et al., 2008; 

Paavola et al., 2002; Wang, 2006; Woo et al., 2011). Collagen type-III is 

primarily found in aged and healing tendon, and in normal tendon is mainly 

limited to the insertion sites of highly stressed tendons and in the endo- and 

epitenons (Wang, 2006; Woo et al., 2011).  

Glycosaminoglycans (GAGs), glycoproteins (GPs), PGs make up the non-

collagenous matrix components (Calve et al., 2004; Paavola et al., 2002; 

Sharma and Maffulli, 2005b; Wang, 2006). The non-collagenous matrix plays 

an important role within the tendon, including contributing to the mechanical 

properties (Thorpe et al., 2013a), particularly the viscoelastic behaviour (Elliott 

et al., 2003; LaCroix et al., 2013a). For example, tenascin-C has been shown 



Chapter 1 Prologue 

3 

to contribute to the mechanical stability of the extra-cellular matrix through 

interactions with collagen fibrils (Wang, 2006) and is up-regulated in 

tendinopathy (Sharma and Maffulli, 2005b), suggesting a role in injury or 

healing. GAGs have also been shown to influence the structural integrity and 

to regulate the mechanics of tendon (Connizzo et al., 2013; Rigozzi et al., 

2009; Rigozzi et al., 2013; Screen, 2008; Screen et al., 2002a; Screen et al., 

2005b).  

The remaining tissue consists of tendon cells, in the form of tenocytes (mature 

cells) and tenoblasts (immature cells), which are responsible for tissue 

homeostasis. Tendons have a low cell density (<5%) and this is thought to 

contribute to their limited healing capacity (Calve et al., 2004; Woo et al., 

2011). Cells sit between the collagen fibres in short rows and their orientation 

is associated with the organisation of the fibres in the hierarchical tendon 

structure (Calve et al., 2004; Sharma and Maffulli, 2005b; Wang, 2006; Woo 

et al., 2011). These cells are responsible for developing and maintaining the 

tissue, as well as altering expressions of the extracellular matrix (ECM) 

proteins in order to adjust to changes in tendon environment, including healing 

of the tendon (Calve et al., 2004; Wang, 2006). 

1.3.3. Properties 

Tendons exhibit properties well suited to their function – transferring forces 

from muscle to bone – such as stiffness, resilience, and strength (Doral et al., 

2010). It has been observed that tendons exhibit a wide range of mechanical 

properties due to the breadth of functions performed (Abramowitch et al., 

2010; Butler et al., 1984; Woo et al., 2011). As a result, tendon properties have 

been of interest to researchers for many decades (Benedict et al., 1968; 

Blanton and Biggs, 1970; Cronkite, 1936). Knowledge of the mechanical 

properties not only contributes to understanding of the tendon function, but 

also provides inputs for simulations of the human body (Arampatzis et al., 

2005). 

The Achilles tendon is generally regarded as the strongest tendon in the body 

(Bogaerts et al., 2016; Doral et al., 2010; Freedman et al., 2014a; Peek et al., 

2016). Forces of 1–4kN have regularly been measured during jumping and 
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cycling, and peak forces of 9kN, or 12.5 times body weight, have been 

measured during running at full speed (Kongsgaard et al., 2005; Paavola et al., 

2002; Peek et al., 2016; Sharma and Maffulli, 2005b; Wang, 2006). The 

breaking stress of tendon is estimated to be 50–100MPa (Benedict et al., 

1968; Butler et al., 1978; Hashemi et al., 2005b; Kongsgaard et al., 2005; 

Maganaris and Narici, 2005; Shadwick, 1990; Woo et al., 2011). Stresses in 

excess of 70MPa have been measured in vivo (Kongsgaard et al., 2005), and 

are regularly reported between 30 and 60MPa (Couppe et al., 2009; Geremia 

et al., 2015; Hansen et al., 2006; Stenroth et al., 2016). Stress in the Achilles 

tendon in vivo has been estimated to be as high as 110MPa (Komi, 1990). 

Hence, peak stress in vivo may in some cases exceed the measured ultimate 

tensile strength (UTS) of the tendon (Sharma and Maffulli, 2005b), illustrating 

the complexity of tendon mechanics in vivo. 

1.4. Tendinopathy 

Disease of the tendon, known as tendinopathy, is characterised by pain and 

reduced mobility and functionality. The pathology is complex, including 

disordered healing causing fibre disruption and disorientation, generally with 

an absence of inflammatory cells. The aetiology and progression of the 

disease is not well known, leading experts to coin the term tendinopathy to 

describe the clinical presentation of the condition (Almekinders et al., 2003; 

Maffulli, 1998). 

Degenerated tendons exhibit decreased mechanical properties, such as 

stiffness and UTS (Hansen et al., 2013; Helland et al., 2013), and are generally 

observed to be disordered with a larger cross-sectional area (CSA), a lower 

stiffness, and a lower elastic modulus (Arya and Kulig, 2010; Helland et al., 

2013). However, tendons are known to exhibit plasticity (the adaptability of an 

organism to changes in its environment or differences between its various 

habitats) (Arampatzis et al., 2010; Bohm et al., 2014) via mechanobiological 

responses (Arnoczky et al., 2007; Wang, 2006). Mechanical loading may, 

therefore, play an important role in the degradation, and possibly treatment, of 

tendinopathic tendons. 
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1.4.1. Prevalence and incidence 

The true population prevalence and incidence rates of tendinopathy are not 

known. Most studies have been performed retrospectively and limited by 

factors such as population sample and database (Huttunen et al., 2014). The 

prevalence of tendinopathy has been estimated at 11.83 per 1000 persons per 

year, with an incidence rate of 10.52 per 1000 persons per year (Albers et al., 

2016). Achilles tendinopathy has been reported to be as prevalent as 6–9% of 

some populations (de Jonge et al., 2011), with 4% of sufferers going on to 

suffer rupture of the tendon (Yasui et al., 2017). 

1.4.2. Aetiology 

Tendinopathy is traditionally considered an overuse injury caused by repetitive 

strain of the tendon (Paavola et al., 2002; Rodenberg et al., 2013; 

Sharma and Maffulli, 2005b; Woo et al., 2000). However, this traditional view 

is unproven, and has been challenged by several authors, including Arnoczky 

et al. (2007) and Rees et al. (2009). Previous studies attempting to elucidate 

the aetiology for tendinitis found that repetitive loads caused microscopic 

failure of the collagen matrix, triggering an inflammatory response 

(Almekinders, 1998; Woo et al., 2000). However, the lack of inflammatory 

markers in many cases means tendinitis can only be confirmed with histology, 

and thus tendinopathy is the preferred term (Rees et al., 2009). A recent 

hypothesis is that microdamage may lead to isolation of segments of the 

tendon which in turn leads to underuse (Arnoczky et al., 2007). 

1.4.3. Treatment 

Due to a lack of evidence-based management, treatment has traditionally been 

conservative, with surgery considered the last resort due to the lack of 

evidence for its efficacy (Maffulli et al., 2015; Woo et al., 2000). Conservative 

management techniques primarily aim to relieve the symptoms of 

tendinopathy(Paavola et al., 2002). Counterintuitively, many conservative 

treatment options now involve applying load to the tendon via eccentric 

exercise, but this remains controversial (Peek et al., 2016; Rees et al., 2009; 

Sharma and Maffulli, 2005b). 
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The consequences of tendon injuries are pronounced, and the underlying 

causes and tissue responses must be better understood in order to develop 

improved treatment and prevention techniques.  

1.4.4. Models 

Study of tendinopathy in humans is difficult – biopsy of patients is invasive and 

clinical presentation is usually advanced, thereby limiting information of 

disease progression (Warden, 2007). Many animal models have been 

developed to investigate tendinopathy (Dirks and Warden, 2011; Lake et al., 

2008; Lui et al., 2011; Warden, 2007). These offer the advantage of being 

controlled and reproducible, allowing for regular observation and evaluation 

over time (Lake et al., 2008). There is no ‘gold standard’ model, leading 

researchers to utilise a variety of animals depending on the application 

(Warden, 2007). Understanding of the behaviour and physiology of the animal 

is essential for comparing with humans (Lui et al., 2011). Ultimately, a valid 

animal model must be repeatable and be substantially similar to humans 

clinically, histopathologically and functionally (Lui et al., 2011). Rabbits are a 

popular model as their cellular and tissue physiology approximates that of 

humans (Warden, 2007). Additionally, their larger tendons are easier to work 

with and provide larger samples compared to rodents (Lui et al., 2011).  

1.5. Structure of dissertation 

The thesis of this dissertation is that tendinopathy adversely affects the 

mechanical behaviour of tendon, via disruption of the collagen matrix, resulting 

in a decrease in strength, stiffness, and resilience. This thesis will be evaluated 

through analysis of the literature and experimental testing. 

This dissertation comprises nine (9) body chapters: 

Chapter 2 summarises the literature regarding tendons and tendinopathy. 

In order to accurately describe the mechanical properties of tendons, it is first 

necessary to accurately measure the morphology, in particular CSA which is 

used to calculate stress. Chapter 3 discusses the literature regarding CSA 

measurements, the importance of accuracy with respect to mechanical 

properties, and the development of improved measurement techniques. 
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Chapter 4 presents published work describing the use of structured light 

scanning (SLS) as a means of capturing the morphology of tendon. This 

chapter details an experiment to assess the efficacy of scanning compared to 

previously accepted methods for measuring CSA. 

Chapter 5 investigates the measurement of tendon CSA under load using the 

methodology developed in Chapter 4. Since CSA is thought to decrease with 

increasing strain, engineering stress (force divided by initial area) may 

underestimate the true stress at higher strains. 

Assessing the validity of the tendinopathy model from an engineering 

perspective requires physiologically relevant mechanical testing of the tendon. 

Chapter 6 provides a summary of the literature on mechanical testing of 

tendons, focussing primarily on the types of tests performed and experimental 

considerations. 

Chapter 7demonstrates the efficacy of the materials testing setup used for the 

remainder of the dissertation by way of load-to-failure testing of eight tendons. 

Chapter 8 investigates the duration of testing required to accurately model long 

term viscoelastic behaviour of tendon, namely stress relation and creep 

behaviour. Many experiments have measured viscoelastic behaviour; 

however, there is little consensus on the duration required to accurately 

calculate the parameters. Since long intervals over multiple in vitro tests may 

result in degradation, it is necessary to determine an optimal testing duration 

in order to best predict the true parameters. 

Chapter 9 defines a methodology for comprehensively describing the 

behaviour of tendon under physiological loads. With reference to the literature, 

the methodology proposes testing tendons in ramp, cyclic, stress relaxation 

and creep. 

Using the proposed methodology, Chapter 10 compares the viscoelastic 

properties of healthy and degraded tendon. A collagenase model was 

employed to simulate tendinopathy in NZW rabbits. Viscoelastic parameters 

were determined by curve fitting using accepted viscoelastic models and 
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statistically compared to determine the effect of tendinopathy on the 

properties. 

Chapter 11 discusses the thesis in relation to the methodologies and 

experimental findings and, most notably, evaluates the behaviour of normal 

and tendinopathic tendons from a mechanical perspective.  
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CHAPTER 2. LITERATURE REVIEW: TENDON 

This review seeks to describe the current body of knowledge around tendon. 

There is a particular focus on the Achilles tendon – the specimen-of-choice in 

this dissertation – which is supported by reference to other tendons within the 

body.  

2.1. Anatomy of the Achilles Tendon 

The Achilles tendon is located at the posterior of the lower leg and extends 

from the calf muscles to the heel of the foot, or calcaneus (Doral et al., 2010; 

Saladin, 2003). More specifically, it is the distal insertion of the triceps surae 

musculotendinous unit (Paavola et al., 2002; Woo et al., 2000). The Achilles is 

the largest and strongest tendon in the human body (Doral et al., 2010; 

Freedman et al., 2014a), with an average length of 15 centimetres (Doral 

et al., 2010; Nickisch, 2009). The anatomy of the lower limb is shown in 

Figure 2-1. 

 

 

Figure 2-1: Anatomy of the lower limb as shown from the (left) medial, (middle) posterior and 

(right) lateral views. The medial (MG) and lateral (LG) gastrocnemius, soleus (S), myotendinous 

(MTJ) and osteotendinous (OTJ) junctions, and Achilles tendon (AT) are labelled. 
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The muscle unit, commonly referred to as the calf, is the composition of the 

soleus muscle and the two heads of the gastrocnemius, with the Achilles 

tendon being the fusion of the tendons and aponeuroses from these muscles 

(Paavola et al., 2002; Saladin, 2003). The musculotendon unit is designed to 

enable plantar flexion, and limit dorsiflexion of the ankle joint (Saladin, 2003). 

The soleus muscle is primarily responsible for plantar flexion of the ankle, 

aided by the gastrocnemius, the muscle which also flexes the knee joint 

(Paavola et al., 2002). 

The soleus usually contributes more fibres (around 52%) (Nickisch, 2009) than 

the gastrocnemius (48%) (Doral et al., 2010). Fibres of the tendon internally 

rotate approximately 90 degrees in a spiral manner so that the posterior fibres 

of the soleus terminate in the medial aspect of the calcaneus (Doral et al., 

2010; Nickisch, 2009). This rotation is thought to make elongation and elastic 

recoil possible during locomotion (Nickisch, 2009), and may result in an 

increase in strength (Doral et al., 2010). In vivo measurements have also 

shown that the Achilles tendon can be subjected to uneven forces due to 

changes in the force generation of the individual muscles (Paavola et al., 

2002).  

2.1.1. Myotendinous junction 

The myotendinous, or muscle-tendon junction, allows the muscle to transfer 

forces to the tendon (Benjamin and Ralphs, 1996; O’Brien, 2005; Wang, 

2006). Collagen fibrils from the tendon insert into deep recesses formed by 

myofilaments (Sullivan and Best, 2005; Thorpe and Screen, 2016). Muscle 

fibres produce tension via intra cellular contractile proteins (for example, actin 

and myosin), and this arrangement allows tension transfer to the collagen 

fibres (Trotter, 2002). This complex structure also reduces stress exerted on 

tendon during contraction, as it allows for a smooth gradient across the tendon-

muscle boundary (Sullivan and Best, 2005; Thorpe and Screen, 2016). The 

myotendinous junction contains organs of Golgi and nerve receptors (O’Brien, 

2005). This junction is considered the weakest point of the muscle-tendon unit 

(Sharma and Maffulli, 2005b; Wang, 2006); however, muscle-failure in situ 

has not been associated with failure of the junction, but rather of the muscle 

just proximal to the junction (Trotter, 2002). 
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2.1.2. Osteotendinous junction 

The osteotendinous junction, or enthesis, connects the tendon to the bone 

(Almekinders et al., 2003; Lu and Thomopoulos, 2013; Wang, 2006). This 

interface acts effectively to transfer loads from the tendon to the mechanically 

dissimilar bone with a minimal stress gradient (Almekinders et al., 2003; 

Lu and Thomopoulos, 2013). The osteotendinous junction of the Achilles 

tendon and calcaneus creates a fulcrum, providing a mechanical advantage 

by increasing the lever arm (Doral et al., 2010). 

Two types of enthesis have been identified – fibrous, and fibrocartilaginous 

(Benjamin et al., 2006; Lu and Thomopoulos, 2013; Wang, 2006). Fibrous 

entheses typically occur over a large area (Lu and Thomopoulos, 2013), and 

may attach indirectly to the periosteum or directly to the bone in adults 

(Benjamin et al., 2006; Wang, 2006). Fibrocartilaginous entheses have a 

transitional fibrocartilage layer that helps to distribute the load and reduce the 

stress gradient between the two tissues (Wang, 2006). Achilles tendon 

insertions are an example of a fibrocartilaginous enthesis 

(Lu and Thomopoulos, 2013). Fibrocartilage is thought to be an adaptation to 

non-uniform tensile, compressive and shear forces (Almekinders et al., 2003; 

Benjamin and Ralphs, 2004). The fibrocartilaginous enthesis can be 

considered four zones: tendon, fibrocartilage, mineralised fibrocartilage, and 

bone (Benjamin et al., 2006; Lu and Thomopoulos, 2013; Nickisch, 2009). 

This structure prevents the collagen fibre from bending, fraying, shearing, and 

failing at the enthesis (Sharma and Maffulli, 2005b). Directly anterior to the 

osteotendinous junction is the retrocalcaneal bursa which allows free 

movement between the tendon and the bone and sesamoid fibrocartilage 

(Benjamin et al., 2006; Nickisch, 2009). 

Estimates indicate the enthesis may experience four times the tensile forces 

of the mid-substance and may contribute to aetiology of enthesopathy – 

insertional tendinopathy (Wang, 2006). A review by Almekinders et al. (2003) 

on the role of compression in tendinopathy found that a non-uniform stress 

distribution within the tendon leads to lower stress on the joint side, coinciding 
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with areas with higher cartilaginous tissue. This has also been attributed with 

sites of pathological change in enthesopathy.  

2.2. Physiology 

Tendons are bands of soft connective tissue that connect muscle to bone, 

transmit forces, and facilitate joint movement (O’Brien, 2005; 

Sharma and Maffulli, 2005a; Woo et al., 2000). They have been described as 

brilliant white with a fibroelastic texture, and can be found in the body as 

rounded cords, strap-like bands, or flattened ribbons depending on the 

requirements of the joint (Franchi et al., 2007b; Sharma and Maffulli, 2005b). 

Tendons have high mechanical strength, good flexibility, and an ‘optimal’ level 

of elasticity (Screen and Evans, 2009; Sharma and Maffulli, 2005b) to ensure 

that they withstand the high loads that occur during daily activities (Screen 

et al., 2002b). 

Tendons act as shock absorbers and energy storage sites, and help to 

maintain stability (O’Brien, 2005). They are composed of densely packed fibres 

that act as a relatively inextensible link to efficiently transfer the loads 

generated by the muscle to the skeletal system (Benjamin et al., 2008; Calve 

et al., 2004). Tendons may be considered to be ‘engineered’ to their function 

requirements and, as such, tendons around the body exhibit different 

structures and compositions (Abate et al., 2009; Thorpe and Screen, 2016). 

Fibres are orientated parallel to the axis of loading to resist tensile forces 

(Almekinders et al., 2003). At rest, fibres can be seen to have a wavy or crimp 

pattern under polarised light, which is thought to allow low-levels of tendon 

extension to protect the muscle and tendon from damage during high-impact 

loading (Franchi et al., 2007a; Screen et al., 2004a). The fibres of the Achilles 

tendon are known to spiral through 90 degrees between the myotendinous and 

osteotendinous junctions. This allows for the storage of energy which can be 

released for more efficient locomotion (Woo et al., 2000). 

Baratta and Solomonow (1991) demonstrated that, within the physiological 

range of forces developed via isometric contraction of the muscle, tendon 

acted as a near-rigid linkage, supporting the idea of efficient load transport 
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while suggesting that, at higher loads, the well-known nonlinear behaviour of 

the tendon may protect the muscle during loading. 

2.3. Composition 

Tendon is composed primarily of water (65–70% by mass) and collagen, the 

structural components of the extra-cellular matrix (Calve et al., 2004; 

Sharma and Maffulli, 2005b; Wang, 2006; Woo et al., 2011). Elastin is present 

in small quantities and has recently been shown to form complex structures 

with cells and collagen within the structural hierarchy of rabbit Achilles tendon 

(Pang et al., 2016). Glycosaminoglycans (GAGs), glycoproteins (GPs), and 

proteoglycans (PGs) make up the most of the remaining non-collagenous 

matrix components (Calve et al., 2004; Paavola et al., 2002; Screen et al., 

2002a; Sharma and Maffulli, 2005b; Wang, 2006). The remaining tissue 

consists of tendon cells, in the form of tenocytes (mature cells) and tenoblasts 

(immature cells), which are responsible for tissue homeostasis. 

2.3.1. Collagen 

Tendon has a high collagen content (60–80% by dry weight), with 95% being 

collagen type-I and the remaining 5% collagen type-III and type-V (Calve et al., 

2004; Sharma and Maffulli, 2005b; Wang, 2006; Woo et al., 2011). Collagen 

type-III is primarily found in aged and healing tendon, while in normal tendon 

it is mainly limited to the enthesis of highly stressed tendons and in the endo- 

and epitenons (James et al., 2008; Wang, 2006; Woo et al., 2011). Collagen 

type-III form smaller, less organised fibrils that are associated with a decrease 

in mechanical strength (Wang, 2006). In contrast, type-V collagen is 

intercalated into the core of type I collagen fibrils and regulates fibril growth 

and diameter (Wang, 2006; Woo et al., 2011). Other collagens, including 

types II, VI, IX, X, and XI, are present in trace quantities in tendons (Benjamin 

et al., 2008; Fukuta et al., 1998). These collagens are mainly found at the bone 

insertion site of fibrocartilage (Wang, 2006). 

2.3.2. Proteoglycans 

PGs are the most abundant non-collagenous matrix molecules in the tendon 

(Screen et al., 2005b). They are strongly hydrophilic and promote rapid 

diffusion of water-soluble molecules and the migration of cells (Kannus, 2000; 
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Sharma and Maffulli, 2005b). Content varies within the tendon and is 

dependent on the mechanical loading conditions, varying between 0.2–0.5% 

(dry weight) in purely tension-bearing tendon, and 3.5% (dry weight) in 

compression-bearing tendon (Wang, 2006). PGs are primarily responsible for 

the viscoelastic behaviour of tendons, but do not make any major contribution 

to their tensile strength (Benjamin et al., 2008). 

Tendons are known to contain decorin and aggrecan. Decorin, a small leucine-

rich PG, is located on the surface of the middle portions of collagen fibrils 

(Screen et al., 2002a; Wang, 2006). The interaction of decorin and collagen 

has been investigated in healthy tendon (Screen, 2008; Screen et al., 2005b) 

and decorin has been found to influence the structural integrity of tendon by 

attracting water to the collagen fibrils to create a hydrated microenvironment 

(Screen et al., 2002a). Decorin is also capable of controlling interfibril 

mechanics, in particular the facilitation of fibrillar slippage during deformation 

(Screen and Evans, 2009; Wang, 2006). Aggrecan holds water within 

fibrocartilage regions to resist compression via osmotic pressure (Wang, 

2006). 

2.3.3. Glycoproteins 

Tendons contain the glycoproteins Tenascin-C, fibronectin, thrombospondin 

and elastin (Kannus, 2000). Tenascin-C is an important component of the 

extracellular matrix (ECM) and is abundant through the tendon body and at the 

junctions (Sharma and Maffulli, 2005b; Wang, 2006). Tenascin-C is elevated 

in response to stress and in degenerative and reparative processes (Benjamin 

et al., 2008; Pajala et al., 2009; Sharma and Maffulli, 2005b) It has been 

shown to contribute to the mechanical stability of the extra-cellular matrix 

through interactions with collagen fibrils (Wang, 2006) and may play a role in 

fibre alignment and orientation (Sharma and Maffulli, 2005b).  

Fibronectin and thrombospondin are adhesive and participate in repair and 

regeneration processes (Sharma and Maffulli, 2005b). Fibronectin is located 

on the surface of collagens and is up-regulated to facilitate wound healing 

(Wang, 2006). Tendon usually contains 1–2% elastin (dry weight), which is 
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thought to contribute to the recovery of the tendon crimp pattern after 

stretching (Paavola et al., 2002; Sharma and Maffulli, 2005b; Wang, 2006). 

2.3.4. Tendon cells 

Tendon contains fibroblasts in the form of tenoblasts and tenocytes, with 

reports of endothelial cells, synovial cells and chondrocytes (Paavola et al., 

2002; Sharma and Maffulli, 2005b; Wang, 2006). Tendons have a low cell 

density (<5%) and this is thought to contribute to their limited healing capacity 

(Calve et al., 2004; Woo et al., 2011). Cells sit between the collagen fibres in 

short rows and their orientation is associated with the organisation of the fibres 

in the hierarchical tendon structure (James et al., 2008; Screen et al., 2005b; 

Thorpe and Screen, 2016). These cells are responsible for developing and 

maintaining the tissue, as well as altering expression of the ECM proteins in 

order to adjust to changes in tendon environment (Calve et al., 2004; Wang, 

2006).  

Tenoblasts are immature tendon cells with high metabolic activity (Kannus, 

2000). They are spindle-shaped and have numerous cytoplasmic organelles. 

Tenoblasts mature into tenocytes (Kannus, 2000; Sharma and Maffulli, 

2005b), elongated tendon cells with decreased metabolic activity and a low 

nucleus-to-cytoplasm ratio (Sharma and Maffulli, 2005b). Tenocytes are 

responsible for controlling matrix synthesis, metabolism, and repair in 

response to the activation of mechanotransduction pathways 

(Screen and Evans, 2009). 

2.4. Structure 

2.4.1. Hierarchy 

Much of the heterogeneous and specialised mechanical behaviour of tendon 

can be attributed to its complex hierarchical structure. This structure can be 

seen clearly in Figure 2-2, as described by Kastelic et al. (1978). 

Procollagen is a soluble molecule that is formed within the cells. Cross-links 

are then formed between the procollagen to produce tropocollagen, and then 

again to form insoluble collagen molecules (Kannus, 2000). These molecules 

are again cross-linked and aligned end-to-end in a quarter-staggered array to 

form collagen fibrils, which are the smallest structural unit of the tendon 
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(Screen, 2009; Thorpe and Screen, 2016). These fibrils have a diameter of 

10–500nm depending on the species, age and sample location of the tendon 

(Thorpe and Screen, 2016; Wang, 2006). Fibrils mainly run longitudinally 

along the axis of loading; however, it has been noted that some fibrils run 

transversely and horizontally, forming spirals and plaits which may contribute 

to maintaining fibre binding (Sharma and Maffulli, 2005b). Studies have shown 

that younger specimens have a bimodal distribution of small and large fibrils, 

indicating that fibril diameter may play a role in the function of the tissue (Wang, 

2006). It has been observed that extension and sliding of the collagen fibrils 

permits extension of the tendon (Arnoczky et al., 2002a; Connizzo et al., 2014; 

Lavagnino et al., 2006; Lavagnino et al., 2005; Screen, 2008; Screen et al., 

2004b; Thorpe et al., 2013b). It has been hypothesised that these fibrils may 

be continuous, allowing the transmission of load directly rather than through 

interfibrillar couplings (Screen, 2008); however, due to limitations in medical 

imaging, it was previously not possible to image the entire tendon at a high 

enough resolution in situ to test this hypothesis. This remains inconclusive, as 

a recent study by Svensson et al. (2017) presented evidence to support this 

 

Figure 2-2: Tendon hierarchical structure described and published by Kastelic et al. (1978). Used 

with permission from Taylor & Francis Group (http://www.tandfonline.com). 

http://www.tandfonline.com/
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hypothesis, while a second study by Wu et al. (2017) demonstrated 

discontinuity in the fibrils along the length of the tendon. 

The next level of the hierarchy is composed of fibrils that are bound by the 

endotenon (Sharma and Maffulli, 2005b; Wang, 2006). Known as fibres, these 

are the smallest mechanically testable unit and are visible using light 

microscopy (Sharma and Maffulli, 2005b). Tendon fibres are known to exhibit 

a wavy configuration at rest, in what is commonly known as the crimp pattern 

(Kastelic et al., 1978). This arrangement is best seen under a polarised 

microscope, but can also be seen using other techniques, such as 

transmission electron microscopy (TEM) and laser scanning confocal 

microscopy (LSCM) (Franchi et al., 2007a; Harvey et al., 2009; Wang, 2006). 

Tenocytes are located at the fibre level in rows along the line of the crimp 

(Screen et al., 2004a).  

The endotenon is a thin reticular connective tissue that envelopes the tendon 

fibres and also distributes many of the blood vessels, lymphatics and nerves 

within the tendon (O’Brien, 2005). Above the fibres are the fascicles of the 

tendon, or fibre bundles, which have been shown to exhibit interfascicular 

sliding as well as stretching, in order to more effectively and efficiently transmit 

load (Shepherd et al., 2014).. New work has suggested that fascicles in the 

Achilles tendon are made directly of collagen fibrils rather than fibres (Wu 

et al., 2017), potentially influencing understanding of tendon micromechanics. 

Surrounding the fascicles is the epitenon, another thin reticular sheath of 

connective tissue, that binds the tendon body (James et al., 2008; O’Brien, 

2005; Paavola et al., 2002). It sits loose on the tendon surface, and contains 

the primary vascular, lymphatic and nerve supplies for the tendon. It extends 

between the fascicles to bind with the endotenon and supply the tendon interior 

(Sharma and Maffulli, 2005b; Wang, 2006). In tendons without a true synovial 

sheath, the paratenon, or peritenon, is the outermost layer of loose areolar 

connective tissue (Kannus, 2000; O’Brien, 2005). This is designed to provide 

a sliding membrane, or elastic sleeve, that reduces friction and permits 

movement of the tendon within the surrounding tissue, such as between the 

crural fascia and the tendon (Kannus, 2000). 
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The mechanism of tendon elongation affects local strains, leading to the 

development of non-homogenous strain fields (Screen et al., 2002a; 

Screen and Evans, 2009). The crimp pattern has developed to deal with the 

non-homogenous strain fields, straightening during loading and increasing the 

stiffness of the tendon to better match the dynamic requirements (Calve et al., 

2004; Screen et al., 2002a; Screen et al., 2002b). Due to the non-homogeneity 

of the tendon, it is difficult to predict the local strain based on gross loading 

conditions (Screen and Evans, 2009). 

It has been observed that the crimp angle and length depend on tendon type 

and sample location and these affect the tendon’s mechanical properties 

(Wang, 2006). Unpublished work by Screen et al. (2002b) suggests crimp 

periodicity is similar in bovine and rat tail fascicles under histological 

examination, and thus models would behave similarly during fibre 

straightening. This may indicate that cross-animal models are more reliable 

that cross-tendon models for studying tendon. 

2.4.2. Extracellular matrix 

The properties and behaviour of tendon are attributable to its ECM, which can 

be a product of the cellular response to the tissue loading. The primary 

structure is a collagen network, with a ground substance of PGs, GAGs, GPs, 

and several other small molecules (Benjamin et al., 2008; Kannus, 2000). A 

non-collagenous matrix of PGs binds the structure together and maintains 

structural integrity throughout the tendon hierarchy (Screen et al., 2004a; 

Screen and Evans, 2009). For example, dermatan sulphate GAG chains, 

found on the PG decorin, create links with collagen in tendon (Thorpe et al., 

2013a). It has been shown that other PGs and GPs may also bridge 

connections, making it difficult to determine maintenance of structural integrity 

(Screen, 2008). Elasticity within the tendon can be attributed to the presence 

of elastin fibres, as well as elastic proteins such as tenascin-C which provide 

additional elasticity in tendons such as the Achilles (Paavola et al., 2002). 

Tenocytes attach to the matrix via surface molecules called integrins, which 

also allow the cells to sense mechanical strains through the ECM (Screen 

et al., 2004a). Through a process known as mechanotransduction, it is 
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believed that changes in the ECM are cell mediated – a biochemical response 

to mechanical stimulus designed to maintain long-term homeostasis in the 

tendon (Arnoczky et al., 2004). 

2.4.3. Vascularity and innervation 

Tendons are relatively hypovascular, most likely due to their mode of function 

(Woo et al., 2011). They have three primary blood supplies – two intrinsic 

vascular sources (myotendinous and osteotendinous junctions) and one 

extrinsic source (synovial/paratenon sheath) (Sharma and Maffulli, 2005b). 

The extrinsic system usually consists of the paratenon, or a combination of the 

synovial sheath and paratenon, depending on the presence of this sheath. 

Tendon innervation originates from cutaneous, muscular and peritendinous 

nerve trunks (Sharma and Maffulli, 2005b). Nerves form a longitudinal plexus 

and enter the tendon via the endotenon septa (O’Brien, 2005; 

Sharma and Maffulli, 2005b). Branches may also pass from the paratenon via 

the epitenon to the surface or interior of the tendon (O’Brien, 2005). Myelinated 

fibres act as mechanoreceptors to detect changes in pressure or tension, while 

unmyelinated fibres act as nociceptors to sense and transmit pain 

(Sharma and Maffulli, 2005b).  

The human Achilles tendon has a hypovascular region of 2–6cm proximal to 

the calcaneal insertion (Paavola et al., 2002; Rees et al., 2009). This was 

confirmed by angiographic injection techniques (Sharma and Maffulli, 2005b). 

Laser Doppler flowmetry has also indicated reduced blood flow near the 

insertion (Sharma and Maffulli, 2005b). Laser Doppler flowmetry of the 

Achilles tendon suggests a uniform blood supply along the tendon (Paavola 

et al., 2002; Rees et al., 2009; Sharma and Maffulli, 2005b). 

Innervation in the Achilles tendon is primarily supplied via the attaching muscle 

and small fasciculi from the cutaneous nerves, in particular the sural nerve 

(Paavola et al., 2002). The midportion of Achilles tendon is poorly innervated, 

with the majority of fibres terminating in the paratenon (Benjamin et al., 2008). 

The Achilles contains numerous receptors relating to both pain and other 

neurotransmitter actions that connect to sensory nerve endings (Benjamin 

et al., 2008; Paavola et al., 2002). 
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2.5. Injury 

Musculoskeletal conditions are common, with 30 million cases of injury 

reported annually worldwide (Walden et al., 2016). Ranked as the fourth most 

common problem managed by General Practitioners in Australia (Australian 

Institute of Health and Welfare, 2010), annual expenditure of around 

AUD$4.0 billion make it the third costliest category in the health budget 

(Australian Institute of Health and Welfare, 2017). Resulting claims for 

compensation make up 16% of the nation’s serious workers’ compensation 

cases and result in a median loss of 8.4 working weeks and average costs of 

AUD$14,600 (Safe Work Australia, 2016). 

Tendon injury and disease accounts for over 30% of all musculoskeletal 

injuries (Andarawis-Puri et al., 2015) and up to 50% of all sport-related injuries 

(Walden et al., 2016). Patient-induced and iatrogenic tendon and ligament 

injuries, in the form of traumatic and repetitive strain, can dramatically affect a 

patient’s quality of life, with the number of injuries and cost expected to rise 

with an active ageing population (Butler et al., 2008; Calve et al., 2004). 

Tendons can be injured in a variety of ways, including trauma, repetitive strain, 

general degeneration, or donor-site morbidity from tissue grafts, leading to 

various pathologies, including tendinitis (acute condition) and tendinosis 

(chronic condition), up to partial or even complete rupture of the tendon (Woo 

et al., 2011; Woo et al., 2000). Injury is regularly seen in athletes who 

participate in repetitive explosive activities, such as running and playing 

basketball, and is significant in ageing athletes who are not regularly active 

(Flood and Harrison, 2009; Woo et al., 2000). 

Despite being the largest and strongest tendon in the body, the Achilles is 

reported to be involved in the most sports-related tendon injuries (Freedman 

et al., 2014a). Approximately three quarters of Achilles tendon ruptures occur 

in middle-aged men participating in sport (Freedman et al., 2014a), and the 

incidence is increasing significantly (Lantto et al., 2015). It is thought that 

Achilles tendon rupture may be the result of gradual degeneration combined 

with a single traumatic event that results in tendon failure (Woo et al., 2000). It 

has been reported that ruptured tendons show significant degeneration 
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compared with normal controls (Kannus and Józsa, 1991; Tallon et al., 2001), 

suggesting disease may precede and possibly contribute to rupture.  

There are four main pathologies of tendon – midportion tendinopathy, rupture, 

paratendinopathy, and insertional tendinopathy (Del Buono et al., 2013) – that 

may be caused by one or many of the proposed aetiological factors 

(Sharma and Maffulli, 2005b; Woo et al., 2000), including: 

• Single traumatic event (such as an explosive push-off); 

• External force, such as a blow, during contraction; 

• Ischemia; 

• Chronic degeneration (numerous causes, including age and diabetes); 

• Shear stress between the gastrocnemius and soleus tendons; 

• Malfunction of the normal protective pathways of the musculotendinous 

unit; and 

• Use of pharmaceutical drugs, such as steroids. 

However, despite the many suggested factors, the aetiology of tendon injury 

remains unclear (Sharma and Maffulli, 2005b). 

The acceleration-deceleration mechanism has been reported as the cause of 

up to 90% of Achilles tendon ruptures, while degenerative tendinopathy is the 

most common histological finding associated with spontaneous ruptures 

(Sharma and Maffulli, 2005b). This has been reported by Arner et al. for 100% 

of cases (74 patients) and 97% of cases (891 patients) by Kannus and Jozsa, 

who also reported that 33% (of 445 patients) in the control group had 

degenerative changes (Sharma and Maffulli, 2005b). As a consequence of 

these studies, Sharma and Maffulli (2005b) proposed that tendon 

degeneration may predispose the tendon to rupture by gradually reducing the 

its tensile strength. It should be noted that this degeneration is more prevalent 

in ruptured tendon than in chronically painful overuse injuries, which are often 

associated with tendon degeneration (Sharma and Maffulli, 2005b). 

Successful treatment of tendon injuries (that is, restoring functional outcomes) 

remains a clinical challenge (Butler et al., 2008). Repaired tendon is often 

weaker than the original tendon and more susceptible to re-injury (Butler et al., 
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2008). Rotator cuff repairs have been reported to have a failure rate of up to 

40%, and can lead to alteration of normal shoulder mechanics (Butler et al., 

2008). As a result, there is strong debate as to whether ruptured tendons 

should be treated operatively or non-operatively (Woo et al., 2000). It has been 

claimed that operative treatment may produce better results with a higher risk 

of complication, while non-operative treatment avoids the risk but yields lower 

return of function (Woo et al., 2000).  

Surgical management with tendon grafts is often required, but such treatment 

is associated with complications of reduced strength, joint stiffness, and repair-

rupture, as well as donor-site morbidity (Sahoo et al., 2010). Ideally repair (for 

partial or whole reconstruction) would utilise autologous tendon, but this option 

is limited due to tissue availability (Calve et al., 2004). A tendon with similar 

mechanical and functional characteristics as the native tissue can prevent 

these complications (Sahoo et al., 2010). However, in the case of the Achilles, 

no viable autologous sources are available. Synthetic materials are viable for 

short term solutions but lack long term suitability due to irreparable 

degradation. This in turn can result in additional damage to the surrounding 

tissue (Calve et al., 2004). Thus there has been a push in recent years to find 

replacements with long term viability and property matching (Calve et al., 

2004). Tissue engineering is favoured as the most effective solution to 

persistent tendon injury as it is capable of addressing all the issues associated 

with surgical intervention (Butler et al., 2008; Woo et al., 2011). 

2.5.1. Definition 

Tendinopathy has been adopted as the general term for degenerative tendon 

disorders (Almekinders et al., 2003) for use in clinical situations to describe 

conditions associated with pain and impaired performance where pathological 

changes are likely (Almekinders et al., 2003; D'Addona et al., 2017; Rees 

et al., 2009; Sharma and Maffulli, 2005b; Wang, 2006). The terms tendinosis 

and tendinitis should only be used after histopathological confirmation (Rees 

et al., 2009). There is currently no time period to define acute and chronic 

conditions; however, arbitrary time frames have been proposed to define acute 

as less than two weeks, sub-acute as two to six weeks , and chronic as more 

than six weeks (Paavola et al., 2002). The anatomical location of the 
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tendinopathy within the tendon plays a role in determining the type of 

tendinopathy (Almekinders et al., 2003). 

2.5.2. Tendinopathy 

The aetiology, pathogenesis, and natural course of Achilles tendinopathy, 

including the pathways and cellular mechanisms, are largely unknown 

(Paavola et al., 2002). It has previously been proposed that tendinosis (chronic 

condition) is preceded by tendinitis (acute, inflammatory condition); however, 

no inflammatory cells have been found in chronic or degenerated tendons 

(Paavola et al., 2002). No pathology has been performed on the acute disorder 

to confirm the progression (Paavola et al., 2002). However, more recent 

reviews has argued for the role of inflammation in the early stages of 

tendinopathy (Battery and Maffulli, 2011; D'Addona et al., 2017).  

Tendon injuries can produce significant morbidity, with disability lasting up to 

several months despite appropriate management (Sharma and Maffulli, 

2005b). Tendinopathy is often considered an overuse injury, as it is associated 

with intrinsic and extrinsic factors that can lead to chronic disorder 

(Sharma and Maffulli, 2005b). It has been suggested that tendinopathic 

degeneration is a failure of the tissue to adapt to mechanical loading, leading 

to an imbalance between degradation and synthesis of the matrix 

(Sharma and Maffulli, 2005b). Rather than degeneration, tendinopathy may be 

considered a failed healing response (D'Addona et al., 2017). 

Most of the treatment studies have been retrospective, and only a few have 

included objective criteria to evaluate the outcome (Paavola et al., 2002; Rees 

et al., 2009).  

Tendinopathy is associated with pain, swelling, loss of mobility, and pain 

induced limitations (Paavola et al., 2002; Rees et al., 2009). Pain is a 

contentious symptom, as currently no scientifically-accepted hypothesis 

linking pain to the disease has been proposed, and evidence has shown no 

link between the disease state and level of pain (Sharma and Maffulli, 2005b) 

(Paavola et al., 2002). 
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2.5.3. Pathology 

It has been observed that ruptured tendons are often significantly more 

degenerated than tendinopathic tendons; however, the patterns of 

degeneration are similar (Arnoczky et al., 2007). The pathology of 

tendinopathy is complex, as the causes and effects of the disease are known, 

but the process by which the disease develops is currently not well understood 

(Almekinders et al., 2003). The pathological markers include (Arnoczky et al., 

2007; Sharma and Maffulli, 2005b): 

• Disordered, haphazard healing causing fibre disruption and 

disorientation; 

• Absence of inflammatory cells; 

• Poor healing response; 

• Non-inflammatory intratendinous collagen degeneration; 

• Fibre disorientation and thinning; 

• hypercellularity or hypocellularity; 

• Scattered vascular ingrowth; and 

• Increased interfibrillar GAGs. 

Histologically, intratendinous changes are visible in 90% of biopsies, and 

include (Arnoczky et al., 2007; Paavola et al., 2002; Sharma and Maffulli, 

2005b): 

• Poorly demarcated intratendinous regions with a focal loss of structure; 

including a risk of discrete palpable nodules; 

• Hypoxic degeneration associated with subcutaneous tendon rupture in 

more than 75% of ruptured tendons; 

• Hyaline degeneration; 

• Mucoid or myxoid degeneration; 

• Fibrinoid degeneration; 

• Fatty and lipoid degeneration; 

• Calcification; 

• Fibrocartilaginous or osseous metaplasia; and 

• Greater variation in cellular density across areas of degeneration.  
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The enthesis is the site of pathological changes in many common athletic 

injuries (Rees et al., 2009), while insertional tendinopathy is commonly seen 

in the supraspinatus (rotator cuff tendinopathy), common wrist extensor (lateral 

epicondylitis), patellar (Jumper’s Knee) and Achilles tendons (Almekinders 

et al., 2003) 

In Achilles tendinopathy, there is often an irregular hypervascular pattern of 

capillaries and arterioles in the peritendinous tissue, along with development 

of loose granulated tissue that leads to scar formation. The prevalence and 

clinical relevance of these changes in Achilles tendinopathy is largely unknown 

(Paavola et al., 2002). In chronic Achilles tendinopathy, histological 

examination has revealed (Paavola et al., 2002; Sharma and Maffulli, 2005b): 

• Peritendinous tissue appears thickened (macroscopic examination);  

• Fibrinous exudate; 

• Prominent and widespread proliferation of fibroblasts; 

• Formation of new connective tissue; and 

• Adhesions. 

Imaging and surgical studies on insertional tendinopathy have demonstrated 

that thicker tendons with broad insertional sites are most commonly affected, 

and that the pathology appears predominantly on the joint side of the enthesis 

(Almekinders et al., 2003).  

Tendinopathic tendons exhibit degeneration of the tendon body, inflammation 

of the sheath, and sometimes degeneration of the sheath 

(Sharma and Maffulli, 2005b). The tendon body often shows limited or no 

inflammation at the time of diagnosis (Almekinders et al., 2003), but can be 

hyper-cellular with a loss of collagen bundling, increased PG content and 

neovascularisation (Rees et al., 2009). Animal models suggest there is no 

inflammatory process except in the most acute phase of the disease, and 

therefore it is expected that inflammation may only play a role in the initiation 

and not the progression of the disease (Battery and Maffulli, 2011; D'Addona 

et al., 2017; Rees et al., 2009). This is supported by Kannus and Jozsa, who 

found no evidence of inflammation in 398 ruptured tendons 

(Sharma and Maffulli, 2005b). However, other studies have found 
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inflammatory markers (Sharma and Maffulli, 2005b) suggesting other 

mechanisms may be involved.  

During healing and remodelling of the Achilles tendon, myofibroblasts can be 

found in areas of scar formation within the peritendinous tissue, representing 

up to 20% of cells presented in chronic tendinopathy (Paavola et al., 2002). 

These myofibroblasts use stress fibres to create forces for wound contraction 

and create an abundant amount of collagen, resulting in the formation of scar 

tissue and shrinkage of the peritendinous tissue (Paavola et al., 2002). It 

appears that these cells may also play a role in the symptoms of tendinopathy, 

possibly causing contraction around the tendon, resulting in intratendinous 

tension and pressure and an increase in friction between the tendon body and 

surrounding tissue (Paavola et al., 2002). 

Apoptosis of tenocytes may also play a role in tendinopathy (Arnoczky et al., 

2007). Many patients exhibit an induction of apoptosis, and this is potentially 

linked to an up-regulation of strain-activated protein kinases (SAPK) (Arnoczky 

et al., 2007; Sharma and Maffulli, 2005b), or the release of cellular tension 

(Arnoczky et al., 2007). This potentially inhibits the rate of tendon repair 

(Arnoczky et al., 2007) and could explain the gradual degeneration seen. 

However, it is unknown whether apoptosis is a cause or a result of 

tendinopathy (Arnoczky et al., 2007). 

Degenerative changes are seen in 30% of healthy, asymptomatic individuals 

35 years or older and, therefore, the patient’s history should be factored into 

the diagnosis of tendinopathy (Paavola et al., 2002).  

Similar to tendons exposed to repetitive strain, tendinopathic tendons exhibit 

an increase in degradative enzymes and inflammatory mediators, and 

understanding their induction has been the focus of many studies (Arnoczky 

et al., 2007). For example, matrix metalloproteinase (MMP) mediated 

degradation of tendon ECM has been found in histological evaluation 

(Arnoczky et al., 2007), in agreement with the observation of upregulation of 

the MMPs in the mechanical theory of tendinopathy. 
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2.5.4. Aetiology 

The aetiology of tendinopathy is currently unknown. This is likely due to the 

interaction of intrinsic and extrinsic factors (Sharma and Maffulli, 2005b; 

Wang, 2006). Several theories have been proposed to describe the 

progression of tendinopathy (Arnoczky et al., 2007; Sharma and Maffulli, 

2005b); however, excessive and repetitive mechanical stimulation is 

considered to be the most likely trigger (Almekinders et al., 2003; Wang, 2006; 

Woo et al., 2000), causing an accumulation of micro-injuries (Shepherd et al., 

2014), especially in the presence of high risk intrinsic factors 

(Sharma and Maffulli, 2005b). This is akin to fatigue damage in engineering 

materials (Shepherd et al., 2014). One controversial, but strongly related 

theory, is that it is a lack of mechanical stimulation that results in degeneration 

(Arnoczky et al., 2007). While it is clear that degeneration is likely to be a cell-

mediated event (Arnoczky et al., 2002b), due to the lack of a reliable 

experimental model the cellular mechanism of tendinopathy remains elusive 

(Woo et al., 2000) and the clinical and scientific basis for this hypothesis is 

incomplete (Almekinders et al., 2003). 

Many studies have investigated the aetiology of tendinopathy by studying the 

histology of tendinopathic samples; however, these studies are retrospective 

and do not identify the trigger that initiated the degenerative process (Woo 

et al., 2000). An alternative method for studying tendinopathy has been to use 

a bacterial or chemical agent to degenerate the tendon. This method appears 

to represent the chronic condition with no evidence of the acute condition, and 

may offer a reliable model for studies of treatments (Woo et al., 2000) . 

Theories 

Several theories have been proposed for the aetiology of tendinopathy, with 

mechanical theory, vascular theory, and neural theory the most prevalent. 

Mechanical theory appears most fitting due to the association between 

repetitive loading and degeneration. It proposes that repetitive loading results 

in micro-failure of the ECM, and that sustained repetitive loading may lead to 

insufficient healing of the tendon, in turn leading to gradual degeneration. The 

initial degeneration can lead to non-physiological strains within the tendon, 
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which may cause additional damage and alter the cellular response, eventually 

resulting in tendinopathy (Arnoczky et al., 2007; Paavola et al., 2002; Rees 

et al., 2009; Sharma and Maffulli, 2005b; Wang, 2006). It has been suggested, 

therefore, that tendinopathy is a failure of the cell matrix to adapt to excessive 

changes in load, and that the cycle of degeneration be known as the 

‘tendinosis cycle’ (Paavola et al., 2002). This theory has been criticised due to 

the positive response of other tissues, such as muscle and bone, which 

increase in strength when exposed to excessive loading (Rees et al., 2009). 

The theory appears plausible, due to the lower cellularity of the tendon, but no 

mechanism has been implicated in altering the cell-matrix interactions 

(Arnoczky et al., 2007). One proposed mechanism, based on cellular response 

in vitro, is that over-stimulation of the tendon cells creates a degenerative 

environment which, if sustained, may lead to chronic degeneration. 

Nevertheless, these studies have generally made use of non-physiological 

strain patterns or the use of external factors, thus limiting their clinical 

relevance (Arnoczky et al., 2007).  

Vascular theory suggests that overuse causes localised ischemia due to 

relatively poor blood supply, which in turn leads to tissue degeneration (Rees 

et al., 2009). Ischemia has been shown to occur when a tendon is under 

maximal tensile load, with reperfusion releasing oxygen free radicals on 

relaxation, and is supported by an upregulation of the anti-oxidant enzyme 

Peroxiredoxin5 to protect the cells (Sharma and Maffulli, 2005b). This enzyme 

has been found to be upregulated in tendinopathy, indicating that oxidative 

stress may play a role in its progression (Sharma and Maffulli, 2005b). This 

theory is controversial in relation to a tendon such as the Achilles, as it 

suggests that the tendon is not hypovascular as is usually reported. An 

alternative theory is that the ischemia, or exercise-induced hyperthermia, may 

result in localised cell apoptosis which leads to an inhibited healing response 

(Rees et al., 2009; Sharma and Maffulli, 2005b). 

The final theory, neural theory, suggests that degenerative mediators are 

released by the neural system. This does not explain, however, why the pain 

is not present in all cases (Rees et al., 2009). 
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Training has been identified as a likely factor in the development of 

tendinopathy, through repetitive overload that results in a persistent injury 

(Almekinders et al., 2003). This has been attributed to poor technique, as well 

as athletic equipment, such as shoe wear in runners or choice of racquet in 

tennis players (Almekinders et al., 2003). 

It has been identified that, without a proper experimental design, any 

conclusions regarding the aetiology of tendinopathy are purely speculative 

(Almekinders et al., 2003). A review by Almekinders et al. (2003) of various 

studies found that: 

• There is a moderate relationship between injury rate and mileage (but 

did not distinguish between other potential factors); 

• Rest in military recruits did not prevent injury; 

• There is not a significant relationship between most intrinsic factors and 

patellar tendinopathy; 

• Flexibility is correlated with overuse injuries (but is not limited to 

tendinopathic injuries); 

• Shoe modification can reduce stress fracture rate, but not tendon 

problems; and 

• Overuse injuries, including tendon problems, are more common in older 

athletes (compared to younger athletes) but found there is no 

correlation between Achilles tendon problems and the amount of 

training or years of involvement in a sport. 

It has been argued that intrinsic factors may increase the likelihood of the 

development of tendinopathy (Rees et al., 2009). However, there is a need to 

discriminate between the effect of age resulting in intratendinous changes, and 

predisposition to tendinopathy (Rees et al., 2009). For example, tendons 

become stiffer and less capable of tolerating excessive load as age increases; 

however, moderate loading in older people should not increase prevalence of 

tendinopathy (Rees et al., 2009). It has been found that that factors such as 

alignment issues and biomechanical faults, including ankle instability, flexibility 

and muscle imbalance, play a role in two-thirds of Achilles tendon disorders in 

athletes (Almekinders et al., 2003; Sharma and Maffulli, 2005b) and, 
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therefore, patients should be examined for these factors (Paavola et al., 2002). 

For example, hyperpronation of the foot has been linked with an increase in 

the prevalence of Achilles tendinopathy (Sharma and Maffulli, 2005b), and 

thus identification may enable correction and subsequent prevention of further 

injury. 

Overuse 

Tendons such as the Achilles are subject to strains of 8–10% during 

physiological loading (Rees et al., 2009). The term ‘overuse injury’ has been 

used to describe a mode of injury through repetitive stretching that results in 

the inability of the tendon to endure further tension (Wang, 2006). This can 

lead to pathological changes in the tendon, known as tendinopathy (Rees 

et al., 2009). This is known as the mechanical theory of tendinopathy.  

While usually restricted by a pain-response in the tendon, continual overuse 

may progress from fatigue damage to complete rupture of the tendon 

(Sharma and Maffulli, 2005b), and may explain the high correlation of 

spontaneous ruptures exhibiting degenerative changes. Due to difficulties in 

identifying and studying the onset of tendon degeneration, few studies have 

been conducted in non-traumatic overuse tendon injuries (Wang, 2006). 

Studies have suggested that insulin-like growth factor-1 (IGF-1) may be 

involved in the development of tendinitis (Woo et al., 2000), as it is upregulated 

during overstimulation. This has also been shown to upregulate inflammatory 

mediators such as prostaglandin-E2 (PGE2), interleukin-1 (IL-1), and IL-6 and 

leukotriene B4 (LTB4) (Sharma and Maffulli, 2005b; Wang, 2006; Woo et al., 

2000). The presence of abundant leukotrienes in injured tissue is sufficient to 

induce tissue oedema, which is seen in tendons with tendinopathy (Wang, 

2006). Additionally PGE1 and PGE2 have been shown to result in degeneration 

of the tendon matrix (Wang, 2006). Levels of PGE2 have been shown not to 

be significantly different in healthy and symptomatic tendons; however, further 

studies may be necessary (Wang, 2006). Cells in the presence of IL-1β have 

been shown to increase production of messenger ribonucleic acid (mRNA) for 

degenerative proteins cyclooxygenase-2 (COX), MMP-1, MMP-3, and PGE2, 
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while tendons stretched in the presence of IL-1β also increased production of 

MMP-3 (Sharma and Maffulli, 2005b). 

Mechanical loading studies have varied with regard to the strain protocol used, 

and direct comparison of their results is often difficult. The amount and 

frequency of application of strain may determine the type and amount of 

cytokines released (Sharma and Maffulli, 2005b). 

A downregulation of MMP-3 mRNA, as well as an upregulation of MMP-2 and 

vascular endothelial growth factor (VEGF) has been seen in Achilles 

tendinopathy, compared to control, while decreased MMP-2 and MMP-3 and 

increased MMP-1 activity has been seen in ruptured supraspinatus tendons 

(Sharma and Maffulli, 2005b). This is challenged by a rabbit model of 

supraspinatus tears, which showed an increase in the expression of MMP-2 

and tissue inhibitor of metalloprotenaise-1 (TIMP-1) (Sharma and Maffulli, 

2005b). It has been suggested that repetitive load may cause a release of 

cytokines, which may in turn lead to an increase in MMP production resulting 

in degradation of the ECM (Sharma and Maffulli, 2005b). 

Studies into mechanotransduction pathways have demonstrated that cells 

respond to physical stress by activating SAPKs, including c-Jun N-terminal 

kinase (JNK). While the SAPKs are associated with a diversity of biological 

processes, SAPK/JNK have been implicated in the initiation of apoptosis in 

some cell lines when exposed to repetitive strains and, therefore, may be 

involved in creating localised areas of hypo-cellularity in tendinopathy tendons 

(Arnoczky et al., 2002b). 

Underuse 

An alternative hypothesis in the mechanical theory of tendinopathy states that 

it is understimulation, not overstimulation, of the tendon that leads to 

tendinopathy (Rees et al., 2009). It is suggested that micro-trauma may lead 

to localised areas of under-stimulated cells which, in turn, leads to a catabolic 

response and degeneration (Arnoczky et al., 2007; Rees et al., 2009). While 

contradicting the traditional assumption of overuse as the protagonist in 

tendinopathy, it is argued that the micro-damage of fibrils precludes 

transmission of strain to the tenocytes which results in under-stimulation, and 
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a catabolic response, further weakening the tissue (Arnoczky et al., 2007). 

This micro-damage can be the result of a single traumatic event, such as a fall, 

or from repetitive or abnormal stresses within the tendon (Arnoczky et al., 

2007). Stress shielding, or stress deprivation, has been shown to upregulate 

MMP-1, while the reintroduction of mechanical load has been shown to inhibit 

production in vitro (Arnoczky et al., 2004). This theory is supported by 

Almekinders et al. (2003). Stress shielding of the transversely-compressed 

side of the enthesis shows atrophic changes similar to those described, and 

has been seen to develop degenerative lesions within this region over time. A 

counterproposal is that weakening caused by stress shielding may enable 

overuse-associated microdamage (Almekinders et al., 2003). 

Avenues identified for future study include histopathological description of 

acute and subacute tendinopathy, accurate description of the mechanisms of 

pain, and the magnitude of tendon forces experienced during common 

activities (Arnoczky et al., 2007; Paavola et al., 2002). In addition, randomised, 

controlled trials should be explored for corticosteroids, strengthening 

modalities, growth factors, and gene therapy (Paavola et al., 2002).  

2.6. Management 

Due to the poor correlation between pain and degeneration in tendinopathic 

tendons, management becomes an important factor. Management has been 

described as “more art than science” as it lacks evidence-based support 

(Kader et al., 2005; Kader et al., 2002). Pain is often the only obvious 

symptom, therefore the need to modulate pain is the limiting factor in dealing 

with tendinopathy (Rees et al., 2009). The results of treatment in chronic 

tendinopathy are unpredictable, and so early treatment is advised (Kader 

et al., 2005; Maffulli et al., 2004). As prevention is better than cure, particularly 

in the case of repetitive loading, it is important to have appropriate coaching, 

technique, and equipment to minimise the risk of injury (Kader et al., 2002; 

Rees et al., 2009). Counterintuitively, many conservative treatment options 

involve loading the tendon in some way, though most evidence is still pre-

clinical and can be contentious (Sharma and Maffulli, 2005b). It has been 

suggested that the success of this may lie in the belief that it is underuse 

through gradual degeneration that leads to disease (Arnoczky et al., 2007), 
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and that loading may mitigate the stress deprivation. Still, the mechanisms that 

lead to the development of tendinopathy must be understood in order to 

develop effective treatment strategies (Wang, 2006). In most situations, 

conservative management is preferable, with surgical intervention limited to 

chronic conditions (Maffulli et al., 2004). 

2.6.1. Conservative management 

Conservative management techniques primarily aim to relieve the symptoms 

of tendinopathy, including the control of inflammation (Paavola et al., 2002). 

The literature describes many interventions that have not been studied in a 

controlled or prospective manner, and their effectiveness is not well evaluated, 

especially long term (Paavola et al., 2002). Unfortunately, current conservative 

treatment options are not universally effective and 24–45.5% of patients will 

require surgical intervention (Kader et al., 2002; Maffulli et al., 2004; Woo 

et al., 2000). 

Rest and mobilisation 

Rest has traditionally been the most commonly-prescribed treatment, affording 

the tendon time to heal (Kader et al., 2002). In extreme cases, controlled 

immobilisation such as splinting and taping may be used (Paavola et al., 2002; 

Wang, 2006). Early rehabilitation has been found to be one of the most 

effective treatment methods, as the mechanical stimulation can increase 

tendon regeneration and reduce scar tissue and formation of adhesions (Rees 

et al., 2009). Conversely, prolonged immobilisation has been shown to result 

in adhesion formation and a decreased range of motion, as well as atrophy of 

the tendon (Schwartz et al., 2015; Woo et al., 2000). Thus, passive 

mobilisation is preferred to complete immobilisation (Schwartz et al., 2015). 

This is in keeping with the hypothesis of underuse being the driver of 

degeneration (Arnoczky et al., 2007) and current management trends which 

encourage mechanical stimulation of the tissue via passive and active 

mobilisation, such as exercise and physical therapy (Rees et al., 2009; Wang, 

2006). 
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Training, stretching, and massage 

Training modification has been recommended to combat the risks of extrinsic 

factors, such as poor technique (Alrashidi et al., 2015; Maffulli et al., 2015; 

Magnan et al., 2014; Paavola et al., 2002; Roche and Calder, 2013). It has 

been suggested that stretching may provide assistance, as it elongates the 

muscle tendon unit and returns elasticity which, in turn, helps to restore joint 

mobility and decrease tendon strain in normal function (Kader et al., 2002; 

Paavola et al., 2002; Rees et al., 2009; Wang, 2006). However, a literature 

search by Peters et al. (2016) reported that there is little evidence to support 

training modification or stretching in the management of tendinopathy. 

Deep frictional massage has also been suggested way of providing stimulation 

(Kader et al., 2002; Maffulli et al., 2004), but has been shown to have little or 

no benefit (Rees et al., 2009; Roche and Calder, 2013). 

Exercise 

Eccentric exercise is considered the greatest advance in tendinopathy 

management in recent times (Rees et al., 2009) and is now a fundamental 

treatment for patellar tendinopathy (Schwartz et al., 2015). Exercise has been 

shown to reduce pain in short-term controlled trials, and may help to normalise 

the structure (Kader et al., 2002; Paavola et al., 2002; Rees et al., 2009). 

Eccentric bias has been shown to produce superior results to concentric bias 

(Kader et al., 2002; Paavola et al., 2002; Rees et al., 2009), which may be due 

to the larger loads being able to more effectively stimulate the tendon. 

Nevertheless, prophylactic eccentric exercises may in fact increase the risk of 

tendinopathy in asymptomatic athletes (Peters et al., 2016). 

Therapies 

Cryotherapy, following the Ice part of the Rest-Ice-Compression-Elevation 

(RICE) response to injury, seeks to reduce blood flow and swelling at the site 

of injury (Rodenberg et al., 2013), and has been regarded as the most useful 

intervention in the acute phase (Maffulli et al., 2004). It is primarily used as an 

analgesic but may also offer some therapeutic effects (Rees et al., 2009; 

Schwartz et al., 2015). 
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Controversial techniques include therapeutic ultrasound, electrotherapy, 

extracorporeal shock-wave therapy, laser phototherapy, pulsed magnetic 

fields, and radiofrequency coblation. Extracorporeal shock-wave therapy has 

shown benefits in some studies, and no benefit in others, and is recommended 

only after exhausting other options (Rees et al., 2009; Sharma and Maffulli, 

2005b). More recent reviews suggest extracorporeal shock-wave therapy is 

beneficial over a period of not less than three months, and in combination with 

eccentric exercises (Al-Abbad and Simon, 2013; Alrashidi et al., 2015; 

Roche and Calder, 2013; Sussmilch-Leitch et al., 2012). 

Laser phototherapy increased collagen production in one study, and reduced 

post-operative oedema in another, but with no improvement in pain relief, grip 

strength, or functional results compared with controls (Sharma and Maffulli, 

2005b). A more recent review suggests there are some benefits from laser 

therapy, such as a reduction in pain, but that it may be more applicable to 

inflammatory diseases (Rowe et al., 2012). A second review supported the use 

of laser therapy in addition to eccentric exercise (Sussmilch-Leitch et al., 

2012).  

Electrotherapy using electric fields, such as low-intensity galvanic current and 

direct current, has been successfully applied to tendon to promote healing 

(Ahmed et al., 2012; Paavola et al., 2002; Sharma and Maffulli, 2005b; Wang, 

2006). Pulsed magnetic fields were shown to improve fibre alignment in one 

study, but found no difference in adhesion formation in another 

(Sharma and Maffulli, 2005b; Wang, 2006). Therapeutic ultrasound has been 

proposed for the acute stages and may benefit tendon healing (Kader et al., 

2002; Maffulli et al., 2004). Again, systematic reviews of the literature have 

failed to reveal any benefits (Roche and Calder, 2013; Rowe et al., 2012). 

Radiofrequency coblation stimulated an angiogenic response in normal rabbit 

Achilles tendon. When used in humans, rapid pain relief was seen in a 

preliminary study of 20 patients with tendinopathy, with magnetic resonance 

imaging (MRI) showing complete or near complete resolution of the 

tendinopathy in 10 of the 20 patients (Sharma and Maffulli, 2008; 

Sharma and Maffulli, 2005b). 
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Injections such as platelet-rich plasma and autologous blood injection have 

been suggested, but no conclusive evidence has been presented to support 

their use (Maffulli et al., 2010). 

Pharmaceuticals 

The most controversial treatment is the use of pharmaceutical agents, in 

particular non-steroidal anti-inflammatory drugs (NSAIDs) (Paavola et al., 

2002; Wang, 2006). These have been shown to provide only symptomatic 

relief (Roche and Calder, 2013; Wang, 2006). A review of 32 studies into the 

use of NSAIDs showed only nine prospective and placebo-controlled trials, 

and of these five demonstrated analgesic effects, while healing was not 

evaluated in any of the studies (Rees et al., 2009). It is thought that NSAIDs 

could potentially interfere with the healing process, as demonstrated in some 

animal studies (Rees et al., 2009). 

Corticosteroidal injections have also been trialled, but currently there is a lack 

of good evidence for their use (Kader et al., 2002; Paavola et al., 2002; Rees 

et al., 2009). While no consensus has been reached on whether local injection 

increases the risk of tendon failure, has some short term benefits or has no 

adverse effects, a higher recurrence of injury has been seen in injected 

tendons compared to those that went untreated (Paavola et al., 2002; Rees 

et al., 2009). Peritendinous injections, such as autologous red cells and 

sclerosants, have been shown to be beneficial; however, a majority of studies 

surveyed by Paavola et al. (2002) and Rees et al. (2009) did not include 

controls, were underpowered or used generic assessment tools. Therefore, 

the effect of their use also remains unclear. Conversely, several quality studies 

have shown, using double-blind placebo control, that glycerol trinitrate applied 

topically can improve symptoms when compared to controls. This is most likely 

due to an increase in nitric oxide which enhances ECM and leads to improved 

mechanical properties in injured tendons (Rees et al., 2009). However, its use 

as a treatment option remains contentious (Peek et al., 2016). 

2.6.2. Assisted healing 

In the event that a patient is expected to outlive synthetic implants, it is 

desirable that a biological alternative be available to ensure satisfactory 
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durability. As a result, new biologically-based treatment methods to encourage 

repair and regenerate tissue are being explored (Mikos et al., 2006). One 

particular avenue is the emerging field of tissue engineering, which may offer 

a more effective treatment option for tendon disorders. However, optimisation 

of engineered constructs is required in order to achieve desirable properties, 

vascularisation, and innervation (Sharma and Maffulli, 2005b). 

Articles outlining functional tissue engineering, a roadmap, and parameters, 

intended to assist in the development of more complex and effective tissue-

engineered constructs, have been published by Butler and colleagues 

throughout the 2000s (Butler et al., 2008). This approach combines molecular 

biology, biochemistry and biomechanics (Woo et al., 2011) but, as the 

treatments have developed, so too has the involvement from fields such as 

engineering. The primary objective is to augment the healing response by 

aiding the body’s biological response (Butler et al., 2008). The three primary 

areas of focus in this respect are cell-seeding, growth factors and cytokines, 

and the use of mechanical stimulation (Butler et al., 2008). The desired 

outcome of these repairs is to replicate the behaviour of the tendon in terms of 

normal stress-strain behaviour and normal viscoelastic response, thereby 

returning tissue functionality (Butler et al., 2008; Mikos et al., 2006).  

It is expected that tissue-engineered constructs will assist in areas where 

damage is irreparable and replacement is necessary (Sharma and Maffulli, 

2005b). Many studies have met with limited success due to the complex nature 

of replicating in vivo conditions in vitro (Calve et al., 2004). Nevertheless, as 

techniques are continually optimised, tissues are being produced that are 

replicating the original tissue (Mikos et al., 2006). Calve et al. (2004) 

developed a protocol that repeatedly produced neonatal-like rat Achilles 

tendons, and was seen to be suitable for further research into each aspect of 

engineered constructs. 

Scaffolds 

Scaffolds are often the first area of focus in developing a tissue-engineered 

construct, as they provide the base from which the construct may develop, and 

as such should mimic the ECM of the native tissue in both structure and 
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function, and provide an attractive environment to promote tissue regeneration 

(Sahoo et al., 2010; Woo et al., 2011). As with current synthetic devices, a 

reliance on artificial scaffolds can lead to mechanical difficulties (Calve et al., 

2004). Therefore, it is desirable to find a biocompatible and resorbable 

scaffold. To this end collagen type-I has become one of the most common, 

although many collagen scaffolds have been found to have inferior properties 

and a high level of disorganisation (Calve et al., 2004). Porcine small intestine 

submucosa, a collagen based scaffold, was found to be a viable scaffold (Woo 

et al., 2011). Advances in scaffolds, through techniques such as cross-linking, 

have improved mechanical properties but have not yet reached optimal 

properties (Calve et al., 2004). Sahoo et al. (2010) produced a biohybrid 

scaffold that demonstrated improved collagen production resulting in a 

stronger construct, and indicated that mechanical stimuli could be used to 

further enhance the quality of the constructs. It is anticipated that when used 

in conjunction with the other components of tissue-engineered constructs, 

bioscaffolds can enhance tissue regeneration (Woo et al., 2011). 

Cell therapy 

One commonly discussed issue with tendon tissue is the low cellular density 

contributing to a sub-par healing response. Thus, a new avenue of treatment 

is the use of cell therapy, whereby additional cells are cultured and integrated 

into the site for regeneration. This is also a component of engineered tissue. 

Fibroblasts and tenocytes are commonly used as they are the native cells of 

tendon; however, a recent focus has been on the use of adult stem cells, such 

as mesenchymal stem cells (MSCs) and bone marrow-derived cells (BMDCs) 

(Woo et al., 2011). Use of these adult stem cells has been shown to improve 

healing in tendon compared to natural healing (Butler et al., 2008; Rees et al., 

2009; Woo et al., 2011). 

There are several advantages to using adult stem cells over native tendon 

fibroblasts, including the ability to harvest from tissue not near the site of injury, 

an increased lifespan, faster differentiation, increased collagen production, low 

immunogenicity, and immunosuppressive properties allowing use as allogenic 

treatment. Additionally, they possess the ability to be cryo-preserved for 
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several years while retaining their ability to differentiate (Sahoo et al., 2010). 

Stem cells are capable of differentiation into one of several mesenchymal 

tissues: careful biochemical and mechanical signalling can promote formation 

of specific tissues (Sahoo et al., 2010).  

Growth factors 

Growth factors are one of the components of assistive healing, and can be 

boosted without requiring a full surgical intervention. Growth factors influence 

the process of regeneration, but finding the optimal dose and timing of the 

factors is necessary (Rees et al., 2009; Woo et al., 2011). Research has 

shown the potential for an increase in cell proliferation and migration, and ECM 

synthesis and production in vitro. (Woo et al., 2011). The primary growth 

factors associated with tendon tissue healing are platelet-derived growth 

factor-BB (PDGF-BB), epidermal growth factor (EGF), IGF-I, and transforming 

growth factor-β (TGF-β) (Kofron and Laurencin, 2005). Fibroblast growth 

factor (FGF), EGF, PDGF-BB and TGF-β1 and TGF-β2 have been well studied 

in vitro; however, in vivo results have been contradictory (Sharma and Maffulli, 

2005b; Woo et al., 2011). While the focus is often on factors that promote 

synthesis of collagen, MMPs are important regulators of ECM and their 

expression is altered during healing (Sharma and Maffulli, 2005b). Injury and 

healing also results in a release of growth factors and cytokines from platelets, 

leukocytes, macrophages and other inflammatory cells, and these chemicals 

act to induce neovascularisation as well as migration and proliferation of 

tenocytes and collagen synthesis (Sharma and Maffulli, 2005b). The response 

of growth-factors and cytokines may be site-specific, further complicating the 

translation to clinical treatment (Sharma and Maffulli, 2005b). Nevertheless, 

growth factor delivery is an important area of tissue engineering. Incorporation 

into scaffolds, gene therapy and direct delivery are currently viable methods; 

however, researchers must now focus on the controlled timing of the delivery 

of these growth factors in order to optimise the healing process (Mikos et al., 

2006). 

Gene therapy 

Gene therapy involves the transfer of foreign nucleic acids into cells to alter 

protein synthesis or induce the expression of therapeutic proteins 
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(Sharma and Maffulli, 2005b; Woo et al., 2011). This is done through 

mammalian viruses (adeno- and retro-viruses) and cationic liposomes as 

delivery vectors to deliver genes directly or indirectly (Woo et al., 2011). 

Alternatively, antisense gene therapy can be used to block the transcription of 

specific genes that may be undesirable in tissue regeneration (Woo et al., 

2011). Using these techniques, gene expression can last for up to 10 weeks, 

making it suitable for clinical applications, and has been shown to be able to 

manipulate tissue environment in animal models (Sharma and Maffulli, 

2005b). This technique has been identified as a potential solution to 

conventional drug delivery issues (Kofron and Laurencin, 2005). While several 

studies have shown improvements in healing in animal models, additional 

research is required to optimise and safely control the process 

(Sharma and Maffulli, 2005b).  

Several studies have investigated the efficacy of gene therapy on ligament and 

tendon, as well as bone and cartilage. Concern still remains regarding the 

appropriate therapeutic dosage of specific cytokines. However, the first human 

clinical trial in the treatment of rheumatoid arthritis has shown that there is 

great potential in gene therapy (Kofron and Laurencin, 2005). 

2.6.3. Prevention of adhesions 

Adhesion formation is undesirable in tendons as it can prevent smooth load 

transfer during locomotion. Attempts to reduce adhesion formation include 

mechanical barriers, pharmaceutical agents, and hyaluronate, a component of 

synovial fluid, but no method is universally effective (Legrand et al., 2017; 

Sharma and Maffulli, 2005b; Walden et al., 2016). Myofibroblasts, a line of 

cells that resembles a fibroblast but expresses α-smooth muscle actin which 

permits it to behave as a muscle fibre, have been implicated in wound healing 

as a means of closing the wound but may also been responsible for the 

formation of adhesions (Sharma and Maffulli, 2005b). Further research, such 

as investigating engineered solutions (Baymurat et al., 2015), is required to 

identify the mechanisms of adhesion formation in order to develop better 

prevention strategies (Legrand et al., 2017; Sharma and Maffulli, 2005b). 
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2.6.4. Operative management 

Surgical treatment of chronic tendinopathy is associated with poor outcomes 

(Kader et al., 2002). Nevertheless, it has been found that between 24 and 

45.5% of Achilles tendinopathy patients require surgery after exhausting 

conservative methods (Kader et al., 2002; Paavola et al., 2002; Rees et al., 

2009). Surgical treatment may include debridement, resection, muscle 

recession, or osteotomy to alter the biomechanics of the tendon (Peek et al., 

2016). Generally, the aim of surgery is to remove adhesions and degenerated 

areas and the outcomes are debatable (Kader et al., 2002; Maffulli et al., 

2010). Complications have been reported in 10% of surgical treatments, but 

with 83% success (Peek et al., 2016). A review of 23 studies by Rees et al. 

(2009) showed a favourable outcome was achieved in between 46% and 

100% of cases, and that in three studies with more than 40 patients the figures 

were approximately 80–90%.  

It has been noted in reviews that the scientific methodology behind published 

outcomes of tendinopathy after surgery is poor, and the higher rates of success 

are attributed with lower quality science (Paavola et al., 2002; Rees et al., 

2009). For example, no prospective randomised studies have been used to 

compare surgical to conservative interventions (Paavola et al., 2002). 

It is not surprising, therefore, that the relationship between surgery and healing 

is not well understood (Paavola et al., 2002). Part of the uncertainty can be 

attributed to the post-operative period of immobilisation, rest, and 

rehabilitation, which may also contribute to the rate of complication (Paavola 

et al., 2002). Unfortunately, traditional repair techniques lack sufficient initial 

strength and potential for defects that prevent early active mobilisation. 

Therefore, new techniques, such as tissue engineering , are required to 

address this issue and permit a more active and controlled post-operative 

regimen (Woo et al., 2000). 

Post-operative treatment of tendon generally consists of various phases such 

as immobilisation, non-weight bearing mobilisation, weight bearing 

mobilisation, and a gradual return to exercise (Paavola et al., 2002).  
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2.6.5. Mobilisation 

Almost two decades ago, the prevailing view was that surgical repair of 

Achilles tendon disruption should be followed by a period of immobilisation. 

This is no longer supported, with many authors supporting early mobilisation 

and rehabilitation (Akizuki et al., 2001; Calve et al., 2004; Sharma and Maffulli, 

2005b), because the introduction of mechanical stimulation promoting 

improved healing, strength and structure, while reducing stiffening, atrophy, 

and adhesions. After the inflammatory phase of healing, stretching may assist 

in fibre realignment as well as stimulate an increase in DNA content and 

protein synthesis through mechanical stimulation (Sharma and Maffulli, 

2005b). Early mobilisation and weight bearing has seen patients return 

strength and power to similar levels pre-injury (Akizuki et al., 2001).  

2.6.6. Prognosis 

The prognosis for Achilles tendinopathy is unclear since little is known about 

the natural course of tendinopathy (Paavola et al., 2002). An eight-year follow-

up study of 83 patients determined the long-term outcome for acute-to-

subchronic tendinopathy is favourable (Paavola et al., 2000). Twenty-four 

patients (29%) went on to undergo surgery; however, the vast majority of 

patients (84%) returned to full physical activity. A recent review by Scott et al. 

(2011) noted that this study was over 10 years old (now approaching 20 years) 

and “may not reflect current successes with comprehensive rehabilitation”. 

However, no recent studies have been found. 

2.7. Healing 

Tendons that have been injured, such as through trauma, usually heal 

autonomously, while degenerative tendons do not and generally require 

intervention. Healing can occur intrinsically, by proliferation of epitenon and 

endotenon tenocytes, or extrinsically, by invasion of cells from the surrounding 

sheath and synovium (Sharma and Maffulli, 2005b). Intrinsic healing generally 

results in better biomechanics and fewer complications, such as normal gliding 

mechanism, while extrinsic healing can result in increased scar tissue 

formation, which in turn can lead to adhesions (Sharma and Maffulli, 2005b). 

The low metabolic rate results in slow healing of the tendon after injury (Calve 

et al., 2004; Woo et al., 2011). Healing tendons exhibit no difference with age 
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across a variety of metrics, such as maximum stress, strain, and modulus, 

suggesting the healing process is not age dependent (Voleti et al., 2012). 

2.7.1. Phases of healing 

Tendon healing occurs in three distinct, but overlapping, phases: inflammatory, 

repair, and remodelling (Voleti et al., 2012). 

Inflammatory phase 

The initial, inflammatory phase occurs immediately after injury and lasts for a 

few days. During this period, erythrocytes, platelets, and inflammatory cells, 

such as neutrophils, enter the injured site (Sharma and Maffulli, 2005b; Voleti 

et al., 2012; Wang, 2006). Monocytes, macrophage, and neutrophils then 

begin phagocytosis of the necrotic and damaged tissue (Sharma and Maffulli, 

2005b; Voleti et al., 2012). Vasoactive and chemotactic factors are released to 

promote an increase in vascular permeability, initiate angiogenesis and recruit 

more inflammatory cells, as well as tenocytes, to assist in the stimulation of 

tenocyte proliferation (Sharma and Maffulli, 2005b; Wang, 2006). As tenocytes 

become more involved, type-III collagen synthesis begins repairing the tissue 

(Sharma and Maffulli, 2005b). 

Repair phase 

The repair phase, commonly referred to as the proliferation phase, begins 

towards the end of the inflammatory phase and lasts a few weeks (Voleti et al., 

2012). During this period tenocyte proliferation peaks, and synthesis of 

collagen, especially type-III and type-V, also peaks, indicating tissue healing 

(Sharma and Maffulli, 2005b; Woo et al., 2011). Synthesis of other ECM 

compounds, including PGs, increases and water content and GAG 

concentrations remain high (Sharma and Maffulli, 2005b; Wang, 2006). 

Remodelling phase 

The remodelling phase is the final phase and can last anywhere from six weeks 

to one year. This phase sees a decrease in cellularity and a decrease in 

collagen and GAG synthesis (Sharma and Maffulli, 2005b; Voleti et al., 2012; 

Wang, 2006). The remodelling phase can be considered in two stages – the 

consolidation stage and the maturation stage (Sharma and Maffulli, 2005b). 

The consolidation stage lasts for up to 10 weeks, during which the repaired 
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tissue changes from cellular to fibrous, tenocyte metabolism remains elevated, 

synthesis of collagen type-I increases (Sharma and Maffulli, 2005b; Wang, 

2006), and tenocytes and collagen fibres gradually begin to realign with the 

direction of loading (Sharma and Maffulli, 2005b). The maturation stage sees 

a gradual change in the fibrous tissue to scar-like tendon tissue over the course 

of a year (Sharma and Maffulli, 2005b; Wang, 2006). Tenocyte metabolism 

and vascularity fall, while cross-linking of the collagen fibres increases, 

resulting in higher stiffness and tensile strength (Wang, 2006). Total collagen 

content and hydroxylysyl pyridinoline (HP) cross-link densities remain lower 

than normal healthy tissue, which is evident in the reduction of the mechanical 

properties of the tendon (Woo et al., 2011). 

2.7.2. Biochemistry 

Nitric oxide 

Several biochemical compounds have been shown to play a role in aspects of 

tendon healing. Nitric oxide has been shown to peak during the initial healing 

phases while nitric oxide synthase (which produces nitric oxide) inhibition 

results in a reduction in cross-sectional area (CSA) and failure load 

(Bokhari and Murrell, 2012; Murrell, 2007). Production of collagen and 

angiogenesis decrease with critically low oxygen levels and increase with 

elevated lactate (Voleti et al., 2012). 

Matrix metalloproteinases 

MMPs have also been shown to be involved at different stages of healing. For 

example, MMP-9 and MMP-13 are thought to be involved in collagen 

degradation, whereas MMP-2, MMP-3 and MMP-14 are involved in 

degradation and remodelling (Voleti et al., 2012; Wang, 2006). Other 

compounds identified include Substance P and calcitonin gene-related peptide 

(Sharma and Maffulli, 2005b). Imbalances between TIMPs and MMPs are 

associated with tendinopathy (Voleti et al., 2012). 

Cytokines and growth factors 

Growth factors and cytokines also play important roles in the healing process. 

Five primary growth factors have been identified in the tissue healing process 

– IGF-I, PDGF, VEGF, basic FGF, and TGF-β. All of these growth factors have 
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been shown to upregulate and remain active during the healing process (Voleti 

et al., 2012; Wang, 2006). IL1β, IL4, IL6, and IL10 have also been implicated 

in tendon healing (Voleti et al., 2012). 

2.7.3. Healed tendon 

Complete restoration of the tendon to natural properties is never achieved, and 

can be seen in the reduction in the collagen type-I to type-III ratio (Rees et al., 

2009; Voleti et al., 2012), resulting from a large increase in type-III collagen 

during the repair phase. This leads to less HP cross-linking and a subsequent 

reduction in the mechanical strength of tendon (Rees et al., 2009). A study of 

transected sheep Achilles tendons indicated that the mechanical strength was 

only 56.7% of normal after one year (Sharma and Maffulli, 2005b). Another 

study of supraspinatus repair in rats found that stiffness and peak load were 

40% and 60% lower after injury, respectively (Voleti et al., 2012). Studies of 

tendon healing after a partial tenotomy has shown that the tendon progresses 

from developmental morphology to mature morphology in approximately 

16 weeks (Calve et al., 2004). 

Healed tendons often exhibit complications such as scarring, resulting in 

decreased strength and increased stiffness, and adhesions, which disrupt 

tendon gliding (Sharma and Maffulli, 2005b; Voleti et al., 2012). Healed tendon 

remains scar-like and never completely regains the properties pre-injury 

(Sharma and Maffulli, 2005b; Voleti et al., 2012). 

2.8. Mechanical stimulus 

A fundamental feature of living tissue is a responsiveness to mechanical 

stimulation (Arnoczky et al., 2007). Cells have the ability to sense and respond 

to load in order to maintain tissue homeostasis, a concept known as 

mechanotransduction (Ingber, 2006, 2008; Tamiwa et al., 2006). This 

mechano-responsiveness elicits several mechanisms, including changes in 

metabolism, DNA synthesis, protein upregulation, ECM development, mitosis, 

and cell differentiation (Arnoczky et al., 2002b; Butler et al., 2008; Wang, 

2006). Such changes can result in an improvement in tissue properties, such 

as an increase in CSA and tensile strength in tendon (Wang, 2006). Thus, 

mechanical forces are important in tissue development and repair (Shearn 
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et al., 2007; Wang et al., 2015). They are also an essential element in 

successful tissue engineering of tendon constructs, repair, or regeneration 

(Butler et al., 2008; Wang, 2006).  

The importance of mechanical stimulation on tendon is well established in 

literature (Screen et al., 2005b; Wang et al., 2015), and is likely mediated 

through deformation of the ECM, which then deforms the cells (Arnoczky et al., 

2002a). It has been suggested that this is a mechano-electrochemical sensory 

system, whereby deformation of the cell via the membrane and cytoskeleton 

is sensed to elicit a response (Arnoczky et al., 2007; Arnoczky et al., 2002a; 

Arnoczky et al., 2004). The concept of tensegrity was proposed by Ingber 

(1997) and suggests that cells are capable of maintaining constant tension 

between them and the ECM via a physical connection, whereby changes in 

the tension can be sensed by the nucleus (Arnoczky et al., 2002a; Arnoczky 

et al., 2004). It is known that integrins provide such a connection (Arnoczky 

et al., 2007; Baria et al., 2005); however, the exact attachment patterns of 

tenocytes within the tendon hierarchy is unknown (Arnoczky et al., 2002a). 

Deformation has also been shown to trigger stretch-activated ion channels, 

which control the influx of second-messenger molecules such as calcium. 

These molecules are known to trigger a myriad of cellular events (Arnoczky 

et al., 2002a). Research by Arnoczky et al. (2002b) demonstrated that strain 

in the tendon caused nucleus deformation and noted a resulting increase in 

cytosolic calcium levels. Both of the signalling pathways – stretch-activated ion 

channels and tensegrity – rely on membrane anchored structures such as 

integrins to provide a direct feedback mechanism from the ECM to the cell 

(Arnoczky et al., 2002a). 

Cyclic loading has been shown to play a key role in the mechanotransduction 

response of tendon, regulating tendon health (Wang et al., 2015) but playing 

a key part in the aetiology of overuse injuries (Arnoczky et al., 2004; Arnoczky 

et al., 2002b). It has been established that mechanical loading plays a role in 

tendon development (Gaut and Duprez, 2016); however, few studies have 

investigated this explicitly (Calve et al., 2004). Calve et al. (2004) hypothesised 

that mechanical stimuli would induce cell-seeded tissue engineered constructs 
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to remodel and mature, and that studies on constructs could be used to elicit 

the roles of the various components of the tendon during loading. 

Understanding the effect of these loads on ECM interactions and adaptations 

would be beneficial in understanding tendon health (Arnoczky et al., 2004). 

Early studies investigating isolated tendon cells have identified changes in 

gene expression and proliferation as a result of cyclic strain regimes (Arnoczky 

et al., 2002b; Banes et al., 1999; Gilbert et al., 1994; Petersen et al., 2004; 

Screen et al., 2005a; van Griensven et al., 2003; Waggett et al., 2006). More 

recent studies have investigated tendon cell response in three-

dimensional (3D) models (Connelly et al., 2010; Kuo and Tuan, 2010; 

Legerlotz et al., 2013a; Maeda et al., 2010; Saber et al., 2010; Wang et al., 

2015). These studies continue to improve understanding of the role of tendon 

cells in homeostasis and repair, and in the aetiology of diseases such as 

tendinopathy (Sun et al., 2015). 

While the parameters for maintaining homeostasis are not known, it has been 

suggested that changes to the mechanobiological stimulation may play a role 

in the aetiology of tendinopathy (Arnoczky et al., 2007). Abnormal loading can 

produce markers synonymous with degradation; for example, overuse and 

underuse can be catabolic (Rees et al., 2009). Stress shielding and stress 

deprivation has been shown to reduce mechanical integrity and function 

(Arnoczky et al., 2002a; Arnoczky et al., 2004; Screen et al., 2004a; Screen 

et al., 2002b), including tissue catabolism through ECM degradation by MMPs 

(Arnoczky et al., 2004). A reduction in loading with age leads to resorption of 

ECM, reduction in collagen fibre alignment and a decrease in mechanical 

integrity (Screen et al., 2005b). In contrast, exercise has been shown to 

prevent hypertrophy and increase tensile strength (Screen et al., 2002b) while 

the application of low-level cyclic load has been shown to prevent the 

degeneration of stress deprived tendon (Arnoczky et al., 2004). 

Tenocytes detect load and respond via mechanotransduction pathways to 

actively remodel ECM (Screen et al., 2002b). Studies have examined different 

pathways in a variety of cell types to determine their contributions (Screen 

et al., 2002b). For example, mechanical stimulation is thought to be important 
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in controlling fibre diameter distributions during maturation (Calve et al., 2004; 

Screen et al., 2005b), while compressive loading in tendon leads to an 

increase in fibrocartilage, collagen-II, and the PG aggregate (Screen et al., 

2005b). One sign of degradation is the change in cell morphology that has 

been correlated with gene expression associated with the degradation and 

synthesis of extracellular macromolecules (Arnoczky et al., 2004). Chemically-

induced changes to cell shape and the actin cytoskeleton have been shown to 

upregulate collagenase expression (Arnoczky et al., 2004). Change of state of 

actin assembly in cells has been linked to collagenase expression, and was 

shown to nullify the load-induced inhibition of MMP-1 mRNA expression in a 

study by Arnoczky et al. (2004), further supporting this link and the efficacy of 

the mechanosensory tensegrity theory. 

It has been hypothesised that the stimulation delivered during exercise may 

lead to improved tendon strength and stiffness. Arampatzis et al. (2007) 

demonstrated this may be true of sprinting; however, results for endurance 

runners were no different to those for non-exercisers. This may be due to the 

lower magnitude of stimulation. 

2.8.1. Mechanotransduction 

The importance of mechanical loading on tendons has been well documented; 

however, the effect of this load on tendon cells and mechanism of 

mechanotransduction is not well understood (Wang, 2006). It is known that the 

cellular response includes changes in gene expression, protein synthesis and 

cell phenotype, which can lead to changes in the overall mechanical properties 

(Wang, 2006). The mechanisms by which these microscale responses are 

triggered from the macroscale loading are not well understood. 

Many cellular components are implicated in the mechanotransduction 

pathways, including the cytoskeleton, integrins, stretching-activated ion 

channels (Wang, 2006). 

2.8.2. Micromechanics 

The mechanisms involved in mechanotransduction are unclear (Arnoczky 

et al., 2002a; Arnoczky et al., 2004; Wang, 2006), but to understand the 

pathways there is a need to understand the local strain patterns (Screen et al., 
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2002b). There is currently limited understanding of micromechanics in tendon 

and the role of the hierarchical structure in strain transfer from the gross tendon 

structure to the cells (Screen and Evans, 2009). An understanding of this strain 

transfer will not only provide knowledge of the function of the tendon, but may 

assist in the development of improved prevention and treatment options 

(Screen and Evans, 2009). Little information is known about the in situ strains 

at cellular level (Arnoczky et al., 2002a), so it is important to investigate these 

strains (Screen and Evans, 2009). However, it has been previously noted that 

due to the heterogeneity of tissue, it is impossible to predict the exact strains 

likely to be experienced by individual cells (Screen et al., 2002b). Therefore, it 

is important to understand how the magnitude of strain influences the cellular 

response.  

With the use of surface markers, studies into tendon fascicle and gross tendon 

mechanics have demonstrated that strain is not homogenous along the length, 

illustrating the limitations of using grip-grip measurements (Screen and Evans, 

2009). In vivo, strain has been measured within muscle-tendon units during 

muscle contraction using ultrasonography and MRI (Obst et al., 2014a; Obst 

et al., 2014b). 

In order to measure the true micromechanical behaviour of tendon, studies will 

need to analyse viable, intact, and untreated tissue (Screen and Evans, 2009), 

preferably in situ or in vivo. Confocal microscopy is a useful technique for 

investigating intact tissue, allowing the ECM and cells to be visualised at 

resolutions of approximately 1µm. Studies using LSCM have shown a weak 

but positive correlation between tenocyte deformation and applied load 

(Screen and Evans, 2009). Several studies using LSCM to investigate tendon 

micromechanics (Screen and Evans, 2009; Screen et al., 2005b), have 

shown: 

• Crimp-straightening occurs at low loads, followed by fibre sliding and 

extension to facilitate further tissue extension, in agreement with X-ray 

diffraction studies; 

• Collagen components are capable of independent movement within the 

matrix; 
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• Molecular and fibrillar level extension of collagen accounts for 

approximately 40% of the total tendon extension, suggesting that the 

primary extension mechanism is through sliding behaviour between 

fibrils and fibres within the tendon hierarchy; 

• In addition to axial stresses, tensile loading may include shear and 

compression stresses; and, 

• Local strains within the ECM are smaller than the applied strain. 

Many in vitro studies into the effect of mechanical overstimulation on tendon 

cells have utilised artificial substrates to allow for greater control of the 

mechanical conditions (Arnoczky et al., 2007; Arnoczky et al., 2002a; 

Arnoczky et al., 2004; Screen et al., 2002b). These studies have demonstrated 

an activation of DNA synthesis, mitosis, gene expression and cell 

differentiation (Arnoczky et al., 2002a). It has been previously discussed that 

these conditions do not replicate the normal in situ environment of tendon cells 

due to a lack of 3D ECM-cell interactions, while the strain magnitudes and 

durations used may not be physiologically relevant (Arnoczky et al., 2007; 

Screen et al., 2005b). As shown by Screen and colleagues, cell strains in situ 

have been shown to be considerably less than gross tendon strains (Arnoczky 

et al., 2007; Arnoczky et al., 2002a; Screen et al., 2005b) and it is, therefore, 

unlikely that these conditions would be reached or maintained by cells in vivo 

(Arnoczky et al., 2007). Additionally, tendons exhibit non-homogenous strain 

patterns that are impossible to replicate by uniform straining of a substrate 

(Arnoczky et al., 2007). It has also been suggested that cell signalling in high 

density cell cultures may result in different behaviour compared to the low 

density of tendon cells in vivo (Arnoczky et al., 2007). A further suggestion was 

that the gene response seen in vitro may not reflect that of in vivo conditions 

due to the lack of innervation and vascularisation, which may help to regulate 

the gene response of the tissue (Arnoczky et al., 2004). 

It has been shown, using LSCM, that chondrocytes found in articular cartilage 

deform in response to loading and that local strain results in measurable 

deformation of both the cell and nuclei (Arnoczky et al., 2002a). A similar 

relationship was found in tendon (Arnoczky et al., 2002a; Arnoczky et al., 
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2004). The role of cellular deformation in mechanotransduction pathways has 

been the subject of great interest (Arnoczky et al., 2002a).  

A nonlinear loading behaviour has been observed in tendon, where cell 

movement was variable and attributed to the heterogeneity of the tendon 

hierarchical structure, as well as the geometric shape through the Poisson 

effect (Arnoczky et al., 2002a).  

Cell nuclei have been shown to have a stiffness comparable to the ECM, while 

the stiffness of the membrane is less (Arnoczky et al., 2002a), suggesting that 

deformation of the cell may be involved in the mechanotransduction pathways. 

It has also been shown that local non-uniform deformation can occur in isolated 

fibroblasts under tensile load. The impact of the cell structure and the role of 

intracellular structures is not well understood (Arnoczky et al., 2002a).  

A study by Arnoczky et al. (2002a) suggested evidence for sequential 

straightening and loading of individual crimped collagen fibrils, which may 

produce a distinct pattern of signalling for various applications of strain. 

Abnormal loading regimes may alter this signalling pattern and lead to 

localised tendon pathology. Impact of total load deprivation on this process has 

not been examined in whole tendons ex vivo (Arnoczky et al., 2004) 

2.8.3. Exercise and mobilisation studies 

Exercise has been shown to improve the mechanical properties of tendon in 

animal studies, compared to non-exercised controls. For example, the 

peroneus brevis tendon in rabbits exercised for 40 weeks demonstrated higher 

ultimate load and absorbed energy at failure than in non-exercised rabbits, 

while 12 months of exercise improved the tendon insertion site in pigs and one 

week of exercise improved the number and size of collagen fibrils and CSA of 

the digital flexor tendons (Wang, 2006). 

Biochemically, training has been shown to increase the metabolism of collagen 

type-I in tendon and tendon-related tissue, with a tendency towards net 

synthesis of collagen. In addition, exercise was shown to increase the 

expression of IGF-I in tenocytes. IGF-I is known to stimulate collagen synthesis 

and cell proliferation, making a useful protein marker for remodelling activities. 

However, endurance training in roosters displayed a 50% reduction in 
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pyridinoline crosslinks, indicating a reduction in the maturation of the newly 

formed collagen (Wang, 2006). This knowledge could be particularly useful in 

the development of rehabilitation programs. 

Studies have shown that controlled mobilisation of the tendon after the 

inflammatory phase enhances the quality of healing when compared to 

immobilised control samples. Outcomes included an increase in ultimate 

strength, elastic stiffness, CSA, and a reduction in adhesions 

(Sharma and Maffulli, 2005a; Sharma and Maffulli, 2005b). Additionally, 

mechanical loading, in particular eccentric loading, has been shown to relieve 

symptoms of chronic tendinopathy in some patients. It is believed that the 

loading stimulates cellular response that promotes healing (Wang, 2006). 

Interpretation of animal studies must take into account the inability to compare 

trained with untrained animals and limitations in confined animals, which may 

experience reduction in connective tissue mass and tendon tensile strength, 

which may be returned to normal with physical training (Sharma and Maffulli, 

2005b). 

Many studies on the effects of mechanical stimuli have been undertaken 

in vitro, as it permits greater control over the experimental conditions. For 

example, Wang et al. (2006) used a uniaxial stretching device to study the 

response of human patellar tendon fibroblasts in serum-free conditions. It was 

found that cyclic stretching in these conditions only slightly increased 

proliferation. Other cyclic studies found an increase in PGE2, LTB4, collagen 

type-I, TGF-β1, fibronectin, and COX. Several of these increases were found 

to be magnitude and/or duration dependent. Biaxial cyclic stretching was 

shown to cause fibroblasts at the edges to orientate perpendicular to the 

direction of minimal surface deformation (Wang, 2006). Cyclic stretching of 

tendon cells was shown to activate the JNK (Arnoczky et al., 2002b). This was 

shown to be time dependent, peaking at 30 minutes and returning to base-line 

by 120 minutes. Mild cyclic stretching (1% strain) decreased expression of 

MMP-1 while higher strains (3% and 6%) completely inhibited the gene 

expression (Wang, 2006). Compared with stretched fibroblasts, relaxed 

fibroblasts had lower collagen type I mRNA expression and protein levels, and 
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an increase in the synthesis of MMP-1. Stretched fibroblasts were shown to 

produce more tenascin-C and collagen XII. It was hypothesised that tension 

exerted on the ECM by fibroblasts may maintain tissue structure and function 

(Wang, 2006). 

2.8.4. Immobilisation and stress deprivation 

Stress deprivation, through means such as immobilisation, has been shown to 

cause atrophy, leading to compositional changes, including a decrease in the 

mass of tendon, water content, and cross-linking, and mechanical changes 

such as stiffness, failure strain, and tensile strength (Sharma and Maffulli, 

2005b; Wang, 2006). While degeneration of tendon is slower than that of 

skeletal muscle, the faster recovery of muscle can subsequently leave stress 

deprived tendons vulnerable to injury.  

In vitro, changes in cell morphology, cell number, and fibre alignment were 

also found, in addition to a decrease in the elastic modulus. Conversely, cyclic 

loading was shown to improve the elastic modulus versus stress deprived 

tendon, and the application of strain in rabbit patellar tendon was shown to 

protect against degradation by bacterial collagenase (Wang, 2006). It has 

been suggested that the aetiology of tendinopathy may lie in local stress 

deprivation caused by micro-failure of the ECM. 
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CHAPTER 3. LITERATURE REVIEW: MEASUREMENT OF 

CROSS-SECTIONAL AREA 

3.1. Background 

Cross-sectional area (CSA) of tissue is often used as an indication of injury 

and degeneration, as an enlarged area may suggest swelling, inflammation, 

and general disorder of the tissue. This is true of tendinopathy, where affected 

tendons have exhibited larger CSA compared to controls (Arya and Kulig, 

2010). CSA is also an important measurement for determining the mechanical 

properties and behaviours of materials, particularly the stress, strength, and 

elastic modulus of the material. This makes CSA a significant measurement in 

the context of a mechanical study of degenerated tendons. 

Typically, CSAs are measured at a single location prior to testing, thereby 

allowing for loads to be converted to engineering stresses, the force divided 

by original area (𝜎𝐸 = 𝐹 𝐴0⁄ ), post-testing. According to Poisson’s effect, the 

transverse strain changes with axial strain, resulting in changes to CSA. In 

many situations the engineering stress gives a reasonable approximation; 

however, even at low loads a difference can be detected (Pokhai et al., 2009). 

It is therefore desirable to measure the true stress, the force divided by the 

actual area (𝜎𝐸 = 𝐹 𝐴𝑖⁄ ), to better estimate the stress experienced by soft 

tissue. This requires measurement of both instantaneous and local CSA along 

a sample, which can be used to better define the relationship between stress 

and strain (Pokhai et al., 2009), as well as to develop more accurate geometric 

models for finite element analysis (FEA) (Langelier et al., 2004). 

Many historic methods are not compatible with a materials testing system 

(MTS), which often means the condition of the sample changes between CSA 

measurement and mechanical testing, especially when cryo-grips are 

employed (Pokhai et al., 2009). Additionally, the time taken to measure CSA 

is critical to minimise the influence of the viscoelastic response of a tendon to 

a load or gravity on CSA measurement (Pokhai et al., 2009; Vergari et al., 

2010). It is, therefore, necessary to employ a technique capable of 

instantaneous and temporal measurement that is compatible with existing 

MTSs. 
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Many methods have been employed over the years to measure CSA of soft 

tissue, since inaccuracies can result in large errors when calculating the stress 

(Seitz et al., 2012). These methods can be categorised as destructive, by 

approximation, contact, and non-contact (Vergari et al., 2010). 

3.2. Destructive 

Historically, specimens were sectioned, traced and the areas measured using 

a planimeter (Cronkite, 1936); however, this is inherently destructive and 

prevents further testing of the sample. Chatzistergos et al. (2010) measured 

tendon CSA by taking sections of the tissue post-rupture. This assumes no 

plastic deformation has occurred during testing, as this may influence the final 

shape of the tissue. Recently, Iriuchishima et al. (2014) evaluated CSA of 

anterior cruciate ligaments (ACL) versus the grafts used to replace them. The 

authors revisited Cronkite’s technique and sectioned ACL at the bone 

attachments and through the midsection. With the use of modern technologies, 

namely digital photography and image processing, they were able to measure 

CSA with a higher degree of accuracy and reproducibility. The authors did not 

discuss a method for measuring CSA of the grafts in a non-destructive fashion, 

limiting the clinical value of the study. It was, however, noted that a three-

dimensional (3D) measurement system would provide a higher degree of 

anatomical accuracy due to the natural path of the ligament.  

3.3. By estimation 

‘By estimation’ techniques have ranged from estimating the shape of the 

specimens and measuring the height and width of the sample to ‘fit’ the shape, 

to the gravimetric method of calculating the area based on the length and 

volume, and even ocular micrometry (Ellis, 1969). These techniques often 

assume uniformity within the tissue and, while simple, can introduce errors 

such as those discussed by Seitz et al. (2012). 

3.4. Contact 

Area micrometry allows for irregularity in the shape of soft tissue by using 

adjustable blocks to compress the tissue into a channel with known size, from 

which the volume can be calculated (Allard et al., 1979; Butler et al., 1986; 
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Ellis, 1969); however, these measurements generally underestimate CSA 

(Pokhai et al., 2009).  

Race and Amis (1996) approached the measurement of CSA differently, 

taking a silicone rubber cast and creating poly-methyl methacrylate (PMMA) 

replicas of the tissue for analysis. This technique was developed further by 

Goodship and Birch (2005) and Schmidt and Ledoux (2010) using new 

materials and improved techniques. Images were taken of the replicas and 

then analysed in silico to measure the area. These newer techniques were 

shown to improve measurement accuracy compared to existing methods. The 

casting method offers the advantage of being able to revisit measurements as 

the cast can be preserved even after destructive testing of the tendon. This 

technique has many advantages but is time-intensive, making it incompatible 

with dynamic mechanical testing. 

3.5. Non-contact 

Shadow amplitude 

Shadow amplitude was developed in the 1960s to measure whole tissues. Of 

the aforementioned techniques, it was identified as the only non-destructive 

method able to be adapted to measure local CSAs (Ellis, 1969). It was also 

noted that there was an inherent need for refinement in the measuring of 

CSAs, due to the poor repeatability of the technique and inability to identify 

concavities. 

Advances 

Technological changes have led to improved non-contact devices, such as 

laser micrometres, developed by Lee and Woo (Lee and Woo, 1988; Woo 

et al., 2000), video dimension analysers (Smutz et al., 1996), and charged 

couple device (CCD) laser sensors (Moon et al., 2006a), as well as advances 

in medical imaging, including computed tomography x-ray (CT) (Durrington 

et al., 1982; Faraj et al., 2009; Januário et al., 2008), magnetic resonance 

imaging (MRI) (Doherty et al., 2006; Kainberger et al., 1997), and 

ultrasonography (Noguchi et al., 2002). 
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Laser micrometry 

When evaluating their new technique, Race and Amis (1996) pointed out that 

laser micrometry is potentially the most precise method of measuring the 

tendon; however, laser micrometry is affected by specimen geometry and 

concavities which also make it potentially the least accurate when dealing with 

complex shapes, leading researchers to develop new ways to measure CSA 

as technology improved. 

Langelier et al. (2004) developed a new computer-controlled laser micrometre 

based on the work of Lee and Woo (1988). The system utilised a 10μm laser 

and was found to be accurate and highly repeatable, but unable to identify 

concavities in the tissue. Liu et al. (2008) proposed the use of a coordinate 

measurement machine, utilising laser micrometry of 1μm to scan the tendon. 

This method was shown to be more accurate than that developed by Langelier 

et al. (2004) when scanning a standard block (0.4%, with 1.6% repeatability), 

however, the tendon measurements were only compared to the less accurate 

shape fitting technique.  

Translucency of tendon is a known issue in microscopic investigation of tissue 

and may inhibit laser-based measurement systems due to refraction of light at 

the surface. Langelier et al. (2004) discussed this issue briefly in relation to 

problems they identified in certain samples. This was later attributed to the 

density of the sample being insufficient to interrupt the laser beam (Langelier 

et al., 2004); however, this does not exclude the issue of refraction playing a 

part. Neither Langelier et al. (2004) or Liu et al. (2008) evaluated their 

techniques against reliable existing methods for tissue, thus the accuracy and 

repeatability of their experiments may be lower than reported when applied to 

hydrated soft tissue. 

Moon et al. (2006a) trialled CCD laser sensors to address some of these 

issues, finding that the new system was able to measure concavities in an 

accurate and repeatable fashion. Measurement time was less than 80 seconds 

per cross-section. It was, however, susceptible to underestimation of CSA due 

to laser penetration of the semi-transparent surface of the tissue. Therefore, 

the tendon was stained with Indian ink. The system was also limited to objects 
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with CSA larger than 20mm2. It was noted that the improvements over other 

measurement techniques were negligible for rabbit ligaments and tendon 

(Moon et al., 2006a).  

Salisbury et al. (2008) sought to develop a new method for characterising 

CSA, using a laser-slice method. The technique was effective at measuring 

the concavities in CSA profile, and did not require any surface modification. 

Measurement time was approximately four minutes per cross-section. The 

tendon was required to be rotated almost perfectly vertical in order to 

accurately measure CSA, which limits the potential use on tissues which have 

a 3D anatomical path. The accuracy was comparable to other methods, but 

was deemed cheaper and more reliable when dealing with cavities than other 

methods. 

The importance of understanding the local variations in shape and area in soft 

tissues has previously been identified in relation to the development of CSA 

measurement systems (Langelier et al., 2004; Woo et al., 1990). These papers 

discussed calculating local stresses and strains based on the local shape data. 

This information improves understanding of how the tissue changes with load 

and may be used to create more accurate FEA models. To date, almost all 

methods have required researchers to measure CSA outside of the MTS. This 

can often mean the condition of the sample can change between 

measurement of CSA and the final testing procedure (Pokhai et al., 2009). It 

is not necessarily practical to measure the tendon immediately prior to testing, 

such as when using cryo-grips (Pokhai et al., 2009). Therefore, a 

measurement system capable of integration with an MTS is desirable. The 

importance of measuring the instantaneous CSA so that true stress can be 

calculated has previously been discussed (Pokhai et al., 2009); however, this 

requires a system capable of measuring the local CSA much faster than 

previous techniques. 

Pokhai et al. (2009) developed a laser reflectance system for an MTS capable 

of capturing one scan every 20 seconds; however, it is sensitive to opacity, 

reflectivity, and orientation, as well as small specimen size and small 

concavities. These are all important considerations in the rabbit Achilles 
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tendon. It was also noted that the 20-second acquisition may be a limitation in 

studies requiring a higher strain rate. Slow strain rates can be affected by a 

viscoelastic response in the tissue, as well as creep, and depending on the 

orientation, possibly sag (Pokhai et al., 2009; Vergari et al., 2010).  

Vergari et al. (2010) developed a linear scanner to measure CSA of the 

tendon. While this new method was much faster (under 2 seconds per 

measurement) than existing techniques, and also highly accurate (less than 

2% error), it is limited in the shapes that are measurable, due to the linearity of 

the measurements. As with previous techniques, it is only able to measure one 

region at a time, meaning that whole tendon shape data are not available 

during mechanical testing. 

Heuer et al. (2008) developed a 2D laser scanner to measure the deformation 

of an intervertebral disc in three dimensions in only four seconds. This scanner 

cannot distinguish tissue morphological complexities such as the concavities 

and has a relatively limited viewing window. 

Computed tomography and magnetic resonance imaging 

Measurements of soft tissue have been performed using CT (Durrington et al., 

1982; Faraj et al., 2009; Januário et al., 2008) and MRI (Doherty et al., 2006; 

Kainberger et al., 1997). While regularly used for medical imaging and 

diagnostics, these modalities require expensive equipment and trained 

operators, making them impractical for researchers. 

Ultrasonography 

Ultrasonography provides a method of measuring CSA of tissue both in vitro 

and in vivo. It was shown to be as effective as ‘by approximation’ methods, 

while preserving the shape information of the tissue (Noguchi et al., 2002). It 

does, however, risk overestimation of CSA in vitro due to fluid absorption, as 

the tissue must be imaged in a bath of saline. A scan time of one minute was 

seen as acceptable by the researchers. Three-dimensional freehand 

ultrasound also offers a way to measure tissue to study the morphological 

response of a tendon to a tensile force, such as the Achilles tendon in vivo 

(Fan, 2010; Obst et al., 2014a; Obst et al., 2014b), but requires a well-trained 

operator and is not readily available in a research environment. To date, laser 
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and ultrasound techniques have shown the most potential for 

3D measurement of tissue in a dynamic setting. 

Structured light scanning 

Recent developments in 3D laser and structured light scanning (SLS), as well 

as advanced digital image correlation (DIC), have made these techniques 

affordable and suitable options for research. Although affordable, commercial 

laser-based systems suffer from relatively slow scan times (2 minutes per 

scan), making them no more attractive than the laser-based techniques 

previously discussed. Commercial DIC and SLS, on the other hand, offer faster 

scan times (greater than one fps) to record the 3D shape of objects. 

Hashemi et al. (2005a) utilised a commercially available 3D photographic 

scanner to scan the ACL. The scanning process was approximately 

30 minutes, from which a 3D model was generated. The accuracy was similar 

to that seen with early laser micrometres; however, it also lacked the ability to 

detect concavities. The advantage of this technique over the lase-based 

systems is that CSA can be calculated at any point along the length of the 

tissue. 

Three-dimensional structured white light (SWL) scanners have been used by 

Nebel (2001) to create photo-realistic 3D models of human bodies with an 

accuracy of one millimetre. These models were then converted to FEA 

compatible models. More recently, Ahn et al. (2014) used a 3D SWL scanner 

to evaluate the changes in the dentoalveolar protrusion in patients before and 

after orthodontic work. This involved scanning the face from three angles 

simultaneously and reconstructing the model to ensure that any change 

between angles was not a product of patient movement or positioning. Scans 

were taken in under one second and, though the accuracy for this was not 

definitively measured (the scanner specifications were quoted), changes in 

protrusion were discussed in the magnitude of one millimetre. 

Digital image correlation 

DIC has been used to investigate the deformation of biological materials under 

load (Gao and Desai, 2010; Genovese et al., 2011; Genovese et al., 2013; 

Lionello et al., 2014; Pyne et al., 2014; Spera et al., 2011; Tung et al., 2010). 
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The principle of DIC is to detect gradient differences in a greyscale image to 

find patterns which can be subsequently tracked between images. Often this 

requires application of an irregular pattern of similar sized dots to the material. 

This has led to DIC sometimes being referred to as ‘speckle imaging’. There 

are currently methods of calculation able to determine sub-pixel resolution of 

the strain-fields (Chen et al., 2005). Commercial packages are available that 

utilise stereophotogrammetry to map the strain field in 3D. The limitation of this 

system is usually in applying the speckle pattern, which must be fine and 

irregular, but with good contrast in order to visualise the gradient. The 

technique allows for use of high resolution or high-speed cameras to maximise 

the quality of data captured. However, a big advantage of DIC over other 

modalities is the ability to record local strain in addition to calculating the shape 

data. Evans et al. (2007) have previously discussed the advantages of using 

DIC in mechanical testing, as it provides more information, such as differences 

between regions of the test sample, which would otherwise be unmeasurable. 
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CHAPTER 4. STRUCTURED WHITE LIGHT SCANNING OF 

RABBIT ACHILLES TENDON 

This chapter was published in the Journal of Biomechanics. It is presented 

here with the content unchanged, but reformatted to the dissertation. 

Figure and Table numbers have been updated accordingly. 
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4.1. Abstract 

4.1.1. Background 

The cross-sectional area (CSA) of a material is used to calculate stress under 

load. The mechanical behaviour of soft tissue is of clinical interest in the 

management of injury; however, measuring CSA of soft tissue is challenging 

as samples are geometrically irregular and may deform during measurement. 

This study presents a simple method, using structured light scanning (SLS), to 

acquire a 3D model of rabbit Achilles tendon in vitro for measuring CSA of a 

tendon. 

4.1.2. Method 

The Artec Spider™ 3D scanner uses structured light and 

stereophotogrammetry technologies to acquire shape data and reconstruct a 

3D model of an object. In this study, the 3D scanner was integrated with a 

custom mechanical rig, permitting 360-degree acquisition of the morphology 

of six New Zealand White rabbit Achilles tendon. The reconstructed 3D model 

was then used to measure CSA of the tendon. SLS, together with callipers and 

micro-CT, was used to measure CSA of objects with a regular or complex 

shape, such as a drill flute and human cervical vertebra, for validating the 

accuracy and repeatability of the technique. 
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4.1.3. Results 

CSA of six tendons was measured with a coefficient of variation of less than 

2%. The mean CSA was 9.9 ± 1.0mm2, comparable with those reported by 

other researchers. Scanning of phantoms demonstrated comparable results to 

μCT. 

4.1.4. Conclusion 

The technique developed in this study offers a simple and accurate method for 

effectively measuring CSA of soft tissue such as tendons. This allows for 

localised calculation of stress along the length, assisting in the understanding 

of the function, injury mechanisms and rehabilitation of tissue. 

4.2. Introduction 

CSA (CSA) is an important parameter in studying the mechanical properties of 

a material. Inaccurate measurement of CSA can result in large errors when 

calculating the stress on an object (Seitz et al., 2012). As soft biological tissue 

samples have irregular shapes and are load-, time- and hydration-sensitive, 

careful selection of measurement technique is required to achieve a desirable 

result.  

Destructive methods have successfully been used to measure CSA of soft 

tissue (Chatzistergos et al., 2010; Cronkite, 1936; Iriuchishima et al., 2014), 

while non-destructive methods such as shape approximation and gravimetric 

or ocular approximations (Ellis, 1969) are susceptible to introducing errors 

(Seitz et al., 2012). Another non-destructive method, area micrometry, 

involves compressing the specimen into a channel of rectangular cross-

section (Allard et al., 1979; Butler et al., 1986; Ellis, 1969), but is pressure 

sensitive and underestimates CSA. Casting methods (Goodship and Birch, 

2005; Race and Amis, 1996; Schmidt and Ledoux, 2010) allow the 

measurements to be revisited; however, these are indirect and unable to be 

used in a dynamic setting. Advanced measurement techniques include optical 

tracers (Iaconis et al., 1987), video dimension analysis (Smutz et al., 1996), 

ultrasonography (Du et al., 2013; Noguchi et al., 2002), coordinate 

measurement machines (Liu et al., 2008), and laser based systems (Heuer 
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et al., 2008; Langelier et al., 2004; Lee and Woo, 1988; Moon et al., 2006a; 

Salisbury et al., 2008; Woo et al., 1990; Woo et al., 2000).  

Many techniques are not compatible with materials testing systems (MTS) so 

the condition of the sample may change between measurement and testing 

(Pokhai et al., 2009; Vergari et al., 2010). A laser reflectance system 

compatible with MTS captures a scan in under 20 seconds but can be sensitive 

to opacity, reflectivity, orientation, size, and morphology of a sample (Pokhai 

et al., 2009). A linear scanner recorded CSA of tendon with less than 2% error 

in under two seconds per measurement (Vergari et al., 2010). While a 2D laser 

scanner can measure the deformation of an intervertebral disc in 3D in four 

seconds (Heuer et al., 2008), it cannot distinguish tissue morphological 

complexities such as concavities.  

The capability of a measurement system to characterise the detailed 

morphology of soft tissue is important to the accuracy of CSA measurements 

(Langelier et al., 2004; Woo et al., 1990). An example is 3D freehand 

ultrasound (Fan, 2010; Obst et al., 2014a; Obst et al., 2014b). To date, laser 

and ultrasound techniques have shown the most potential for 3D measurement 

of soft tissue in a dynamic setting. 

Structured light scanning (SLS) uses a variation on stereophotogrammetry to 

reconstruct 3D digital models. Previously, multiple cameras or angles were 

used in order to create the stereo-image pairs necessary for 3D spatial 

recognition; however, commercially available units are now designed for 

handheld scanning. 

This study developed a simple technique using SLS technologies for 

measuring CSA of a tendon along the length. The accuracy and repeatability 

of the technique was evaluated using micro-CT (µCT), elliptical approximation 

(EA), and area micrometry (AM). 

4.3. Method 

4.3.1. Samples 

Six Achilles tendons from six New Zealand White rabbits were harvested and 

the calcaneal tuberosity potted in dental cement (Vertex Self Curing, Vertex-
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Dental B.V., The Netherlands). The rabbit was obtained from an unrelated 

study with approval from animal ethics committees at The University of 

Western Australia and Curtin University of Technology.  

The dimensions of the midsection of the tendon were measured using digital 

callipers with 0.01mm accuracy. This region was measured using a custom-

built AM with rectangular section 3mm by 4mm at a pressure of 0.1MPa. Three 

measurements were taken using each method. Tendons were recovered in 

saline for five minutes between measurements. 

4.3.2. SLS scanning of Achilles tendon 

Each tendon was scanned with a light coating of corn flour to prevent 

excessive reflection, as suggested by the manufacturer. The tendons were 

tested again without coating, after rinsing and bathing in saline. The samples 

were suspended from a custom test rig for scanning (Figure 4-1). A 

commercially available structured light scanner, the Artec Spider™ (Artec 

Group, Luxembourg), was used in this study. The Spider™ has an accuracy 

of 50 microns, resolution of 100 microns, and maximum capture rate of eight 

frames per second. The scans were processed in Artec Studio (Artec Group, 

 

Figure 4-1: A custom rig was used to acquire 3D models of rabbit Achilles tendon using an Artec 

Spider scanner. The hand held scanner was placed on a rotating base to allow faster scanning. 

Tendons were gripped by the calcaneus in a custom grip and suspended above the axis of the 

rotating base. 
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Luxembourg) to produce a 3D model (Figure 4-2C). Using the 

section measurement tool, CSA was measured along the longitudinal axis at 

intervals of 0.1mm (Figure 4-2A). 

Six different scan speeds were trialled to determine a maximum scanning 

speed. Each tendon was scanned three times with and without coating. 

Ten scans were acquired for one tendon to evaluate the repeatability of the 

technique at this speed with and without corn flour. The tendon was rinsed and 

returned to the saline bath for five minutes between scans. Corn flour was 

reapplied to the coated samples before each scan. 

 

Figure 4-2: (A) A 3D model of the rabbit Achilles tendon muscle unit gripped in the calcaneal grip. 

The tendon portion is highlighted as red. CSAs (yellow lines) were measured at regular intervals 

along the tendon between the osteotendinous junction (OTJ) and myotendinous junction (MTJ) 

using the Section tool in the Artec Studio package. (B) Cross-section of the tendon at 5 mm 

compared to an ellipse. (C) Anterior view of the tendon muscle. 
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4.3.3. Evaluation of the technique 

An ordinary two-flute drill bit (Ø3.9mm, Figure 4-4A) was selected as a 

standardised object. The cylindrical shank and complex geometry of the flute 

provided excellent shapes for evaluating the accuracy and sensitivity of SLS 

to morphological features. Nominal measurements were made using digital 

callipers. Six 3D models of the drill bit, obtained using SLS, were used to 

measure the diameter, perimeter, CSA, and circularity of the cross-section of 

the shank (Figure 4-4B), and dimensions of the minor axis, major axis, 

perimeter, and CSA of the flute (Figure 4-4C/D). The circularity (𝑐𝑓) of the drill 

shank was defined as a ratio of CSA and circumference of the shank cross-

 

Figure 4-3: Cross-sections of the tendon at 1mm intervals along the tendon length, from 3mm 

above the origin (top left) through to 11mm (bottom right). 
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section: (𝑐𝑓 =  (4𝜋 × 𝐶𝑆𝐴)/𝑐𝑖𝑟𝑐 2), where a 𝑐𝑓 value of 1.0 indicates a perfect 

circle. 

Computed Tomography (CT) is a non-destructive tool for assessing cross-

sections of objects in industrial and medical applications (Carmignato, 2012; 

De Chiffre et al., 2014; Kruth et al., 2011). The full body of the drill bit was 

scanned using micro-CT (SkyScan1176) at a resolution of 18 microns and a 

rotation step of 0.1 degrees using a 0.1mm copper filter and source voltage of 

90kV at an exposure time of 300ms. The µCT scans were processed using 

ImageJ (version 1.49e)(Schneider et al., 2012) as shown in Figure 4-4D. 

One human cervical vertebra, approved by the Curtin University Human 

Research Ethics Office, was used as a μCT biological test phantom and 

subsequently scanned using SLS. The CT images were processed in Mimics 

Innovation Suite (Materialise NV, Belgium). 

4.3.4. Statistics 

Statistical analysis was completed using MS Excel (2013), and the R statistical 

environment (R Core Team, 2014; RStudio, 2013).  

4.4. Results 

4.4.1. Tendon measurement 

The irregular 3D shape of tendon (Figure 4-2A/C) results in variation of CSA 

along the axis (Figure 4-3 and Figure 4-5). The tendon CSA noticeably 

increases toward the junctions. The fastest scan time achievable by the 

 

Figure 4-4: (A) standard 3.9mm drill bit. (B). the cross-section of the drill shank obtained from the 

SLS technique. (C) & (D). The cross-section of the drill flute obtained using SLS technique and 

micro-CT respectively. Cross-sections B, C and D have been scaled. 
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operator using the current rig was 6 seconds and results did not differ from 

scans of up to 90 seconds (unpublished results). An average minimum tendon 

area of 9.9 ± 1.0mm2 without coating, and 10.2 ± 0.9mm2 with coating was 

measured from the six samples, with intra-tendon standard deviations of less 

than 0.2mm2 (<2% coefficient of variation, or CV) (Table 4-1 and Figure 4-6). 

4.4.2. Accuracy and repeatability of SLS technique 

The mean CSA of the tendon using EA 

and AM was 9.5 ± 0.86mm2 and 

8.0 ± 0.7mm2 respectively by EA and 

AM (Table 4-1). SLS measurements 

were 6.3% different with the addition of 

corn flour, 11.8% different than EA and 

19.3% larger than AM. The coefficient 

of variation of SLS was marginally 

improved with the addition of a coating 

(1.3% vs. 1.5%), but still outperformed 

EA and AM (5.7% and 2.6% 

respectively). 

SLS measurements of the diameter, 

perimeter, circularity, and CSA of the drill shank (Figure 4-4B), averaged 

across six measurements, differed by 1.3%, 1.0%, 0.0% and 0.8% from the 

nominal values obtained with digital callipers (Table 4-1 and Table 4-2). The 

SLS technique demonstrated a similar error compared with the µCT 

measurements. 

The shape acquired using both µCT and SLS methods clearly outlines the 

geometry of the drill flute (Figure 4-4C/D). SLS measurements of the minor 

axis, major axis, perimeter, and CSA of the flute (Figure 4-4C) were 

2.6 ± 0.1mm, 3.9 ± 0.0mm, 12.4 ± 0.2mm and 7.9 ± 0.2mm2 (Table 4-2). 

These values are 11.6%, 5.1%, 4.9% and 16.0% larger than those measured 

using µCT (Figure 4-4D). 

 

Figure 4-5: CSAs of a rabbit Achilles tendon is 

irregular and increases as it transitions into the 

junctions. 
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The μCT and SLS models of the vertebra were compared via the surface 

measurement tool in Artec Studio, showing minimal distance between model 

surfaces (Figure 4-7A). The contour of SLS model accurately describes the 

bone shape on the μCT slice (Figure 4-7B). 

Variation in CSA of tendon using SLS was less than 0.2mm2 (1.3% CV) with 

corn flour and 0.2mm2 (1.5% CV) without corn flour, with a mean of 9.7mm2 

and 9.9mm2 respectively. 

Table 4-1: Comparison of the SLS (n=3), AM (n=3), and EA (n=3) area measurements (mean ± SD 

mm2) on tendon. Tendon 4 (n=10) was used for the repeatability assessment. 

Tendon SLS Coated SLS Uncoated EA AM 

1 11.1 ± 0.3 10.7 ± 0.1 9.7 ± 0.8 8.4 ± 0.4 

2 10.7 ± 0.2 11.4 ± 0.1 9.9 ± 0.3 8.7 ± 0.3 

3 9.3 ± 0.1 8.8 ± 0.1 8.3 ± 0.1 6.8 ± 0.1 

4* 9.7 ± 0.2 9.9 ± 0.1 11.1 ± 1.0 7.6 ± 0.1 

5 8.2 ± 0.1 9.3 ± 0.1 9.5 ± 0.5 7.7 ± 0.2 

6 10.4 ± 0.1 11.1 ± .3 9.4 ± 0.6 8.5 ± 0.2 

 

 

Figure 4-6: CSAs of the rabbit Achilles tendon were calculated 5 mm from the origin, in the region 

of constant CSA. The mean CSA (mean ± SD) of all scans is shown in the last column, labelled 

as X.  
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4.5. Discussion 

This study demonstrates the use of structured light scanning for reconstructing 

3D models of soft tissue samples and measurement of CSA. SLS was 

evaluated against commonly accepted tools for measuring CSA, including AM, 

shape approximation, and µCT. The results indicate that SLS possesses the 

required accuracy and repeatability for use in metrology. The scanner 

measured the dimensions of the test object with errors of less than 2%, similar 

to casting (Goodship and Birch, 2005; Race and Amis, 1996; 

Schmidt and Ledoux, 2010) and recent evolutions of laser measurement 

systems (Langelier et al., 2004; Liu et al., 2008; Moon et al., 2006a; Pokhai 

et al., 2009; Salisbury et al., 2008; Vergari et al., 2010). 

Tendon CSA was found to be 9.9 ± 1.0mm2 without corn flour, similar to that 

reported previously (Ikoma et al., 2013; Imai et al.; Nagasawa et al., 2008; 

Zhou et al., 2007). The area was relatively constant along the mid-portion (3–

8mm proximal to the origin), suggesting that the location of measurement in 

this region may not be sensitive in rabbit Achilles tendon. SLS measurements 

were shown to vary by less than 0.2mm2 with (n=10) and without (n=10) 

coating of the tendon, equating to a CV of less than 2% (Figure 4-6 and 

Table 4-2: Measurements of the drill shank. Digital callipers were used to provide a nominal 

measurement. 

Measure Callipers μCT Error (%) SLS Error (%) 

Diameter (mm) 3.85 3.84 ± 0.01 0.26 3.9 ± 0.0 1.3 

Perimeter (mm) 12.08 12.72 ± 0.02 5.30 12.2 ± 0.1 1.0 

CSA (mm2) 11.61 11.53 ± 0.01 0.69 11.7 ± 0.1 0.8 

Circularity 1.00 0.90 ± 0.00 10.0 1.0 ± 0.00 0.0 

 

Table 4-3: Measurements of the drill flute 

Measure μCT SLS Diff. (%) 

Minor Axis (mm) 2.33 ± 0.00 2.6 ± 0.1 11.6 

Major Axis (mm) 3.71 ± 0.00 3.9 ± 0.0 5.1 

Perimeter (mm) 11.82 ± 0.04 12.4 ± 0.2 4.9 

CSA (mm2) 6.81 ± 0.01 7.9 ± 0.2 16.0 

 



Chapter 4 Structured white light scanning of rabbit Achilles tendon 

73 

Table 4-1). It can be seen that coating the tissue creates a difference from the 

uncoated CSA, and should be discouraged as the benefits may not outweigh 

the potential risk of use. 

While many imaging techniques, such as MRI, CT, and ultrasound require an 

experienced operator to achieve accurate and repeatable results, the 

technique presented is operator-independent. 3D models are stored digitally, 

allowing for further analysis. Alignment can be performed in post-processing, 

thereby eliminating the need for physical alignment prior to scanning.  

CT scanning has previously been described for non-destructive assessment 

(Carmignato, 2012; De Chiffre et al., 2014; Kruth et al., 2011). As shown in 

Figure 4-4C/D and Figure 4-7, both SLS and µCT were able to acquire shape 

of a standard two-flute drill bit and a human cervical vertebra, despite the 

presence of deep concavity features. The close resemblance of the cross-

sections of both objects indicate SLS is comparable to µCT. A distance map 

of the vertebra (Figure 4-7A) shows a minimal distance between the two 

surfaces, with the histogram weighted heavily near 0mm of difference. This is 

confirmed by the fit of the SLS model contour to the μCT images (Figure 4-7B). 

CSA of the drill flute measured using SLS differed by 16% to µCT (Table 4-3 

and Table 4-2); however, CSA of the drill shank measured using SLS only 

varied by 0.8%. The larger variation in acquiring complex cross-sections is 

 

Figure 4-7: (A) Surface difference map between SLS and μCT models of a human cervical 

vertebra, measured in millimetres. (B) The contour of the SLS model overlayed on an axial μCT 

slice. 
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likely caused by the difference in image acquisition of the two techniques, 

namely that the depth of cavities prohibits capture of the structured light 

pattern. As shown in Figure 4-4B, SLS is capable of accurately reconstructing 

the shape of the drill shank with a circularity ratio of approximately 1.0 

(Table 4-2). This is more accurate than the ratio of 0.9 measured using µCT, 

indicating that reconstruction of regular 3D shapes is reliable.  

Errors as low as 2% have been documented in calliper measurements (Woo 

et al., 1990). The repeatability of estimation techniques and AMs has 

previously been shown to be low, with errors of 15–40% being presented 

(Schmidt and Ledoux, 2010). AMs have consistently underestimated CSA by 

up to 20% due to the need to apply a minimum pressure to improve the 

reliability of the technique (Allard et al., 1979; Ellis, 1969; Race and Amis, 

1996; Woo et al., 1990). While a pressure of 0.2MPa or greater would result in 

a more consistent area measurement (Allard et al., 1979), a pressure of 

0.1MPa was used in this study as the associated deformation was minimal and 

easily recoverable, while providing adequate repeatability. AM underestimated 

CSA by almost 20%, while EA differed from the uncoated SLS tendon area by 

approximately 12% when compared with SLS (Table 4-1) in agreement with 

previous studies. 

The scanning speed was slower than latest-generation laser measurement 

devices, which has improved to fractions of seconds (Langelier et al., 2004; 

Liu et al., 2008; Moon et al., 2006a; Pokhai et al., 2009; Salisbury et al., 2008; 

Vergari et al., 2010). Evaluation of various scan times found the maximum 

speed achievable, via manual operation, was a scan time of 6 seconds. 

Modification of the current rig, such as automation, may improve scan times 

using the single scanner setup; however, dynamic MTS testing would require 

multiple scanners in order to achieve the speeds by Vergari et al. (2010). 

It is evident from the repeatability testing that the scanner can reliably capture 

tendon measurements without the need to coat the tendon; however, long term 

reliability has been identified as a potential weakness of the Spider™ and 

warrants further investigation. Scanning in an environment other than air is of 

interest, but the authors have found the current technique results in poor 
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quality scans of tendon in a saline bath. A further limitation of the technique is 

the cost of the device. 

4.6. Conclusion 

SLS is an effective technique for measuring CSA of biological tissue. It offers 

fast, simple and accurate measurements of samples, with minimal preparation. 

The technique reported demonstrates a high degree of repeatability due to its 

non-contact nature, and the ability to revisit measurements post-testing is 

highly desirable. Of particular interest is the ability to measure the entire shape, 

thereby permitting calculation of the actual stresses across the sample. 

Currently, SLS is not suitable for use in dynamic testing; however, with ongoing 

developments this is a promising technique for the future. 
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CHAPTER 5. EFFECT OF STRESS ON CROSS-

SECTIONAL AREA OF ACHILLES TENDON 

5.1. Introduction 

One assumption commonly made when performing mechanical testing is that 

the cross-sectional area (CSA) remains constant and is uniform along the 

length of the specimen. As a result, most stresses reported are in the form of 

engineering, rather than true, stress. The limitation is due, in part, to the lack 

of simple three-dimensional (3D) measurement techniques capable of 

measuring CSA along the length of the specimen. Four studies have measured 

CSA in a quasi-dynamic test, finding that instantaneous CSA is proportional to 

strain (or load) in tendon (Du et al., 2013; Pokhai et al., 2009; Vergari et al., 

2011; Vergari et al., 2010). It was found that the engineering stress 

underestimated the true stress of tendon by 7.1–13.6% at failure, due to 

changes in CSA of approximately the same magnitude (Vergari et al., 2011). 

Only one technique, a 2D laser scanner, has been shown to measure CSA 

along the length of a sample during mechanical testing, although no stress 

analysis was reported (Heuer et al., 2008). 

The technique described in Chapter 4, utilising structured light scanning (SLS), 

was able to measure CSA along the entire length of a tendon from a single 

revolution and within seconds. This chapter investigates the effectiveness of 

the SLS technique in measuring the change in CSA along the length of the 

tendon at various static loads and dynamic loads. It was hypothesised that 

tendons exhibit measurable transverse deformation proportional to the tensile 

load applied. 

5.2. Method 

5.2.1. Samples 

Eight Achilles tendons from eight New Zealand White (NZW) rabbits were 

used for this experiment. The rabbits were obtained from an unrelated study 

under University of Western Australia (UWA) Animal Ethics Committee 

approval RA/3/100/1049. The tendon was immediately frozen at -20°C post-

excision and defrosted at room temperature prior to use. The calcaneal bone 
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was potted in poly-methyl methacrylate (PMMA) (Vertex Self Curing, 

Vertex-Dental B.V., The Netherlands) and the excess muscle, sheath and 

superficial digital flexor were removed. 

The muscle was secured between custom aluminium blocks with a wire-cut 

sinusoidal tooth pattern. Sandpaper was used to provide extra friction at the 

surface to prevent slippage. A line of India ink was drawn on the surface of the 

tendon at the grip edge, and served as a marker to evaluate movement at the 

interface. 

Tendons were mounted axially on an Instron 5848 MicroTester™ (Instron, MA, 

USA) and preconditioned for 120 seconds at 1Hz to 4% strain, then recovered 

in a bath of Ringer’s solution (Baxter Healthcare, NSW, Australia) for 

approximately 1200 seconds. 

5.2.2. Scanning 

A commercially available SLS scanner, the Artec Spider™ 3D scanner (Artec 

Group, Luxembourg), was used in this study, with an accuracy of 50 microns, 

a resolution of 100 microns, and a maximum capture rate of eight frames per 

second (fps). 

5.2.3. Testing 

The tendon was suspended from the potted bone in a custom test rig for 

scanning using the Artec Spider™ (Figure 5-1). This design made use of the 

portable nature of the scanner to permit 360° rotation. Tendons were 

suspended in the custom rig and sequentially loaded with a 30g (weight of grip 

unloaded), 500g, 1kg, 2kg or 5kg calibration weight. One scan was performed 

at each load in a sequential fashion, with the sequence repeated three times. 

The tendon was wrapped in saline-soaked gauze for five minutes between 

sequences.  

Quasi-static ramp testing was performed on the Instron 5848 under load 

control. Using the same sequence of loads extended to 10kg, 15kg and 20kg, 

the Instron cross-head was paused at each load for 60 seconds to allow 

scanning. Scanning was performed by hand as the configuration of the 

Instron 5848 did not allow for a suitable rig to be fixed. 
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5.2.4. Post-processing 

Scans were processed in the Artec Studio software package (Artec Group, 

Luxembourg) to reconstruct a 3D model of the tendon for each load in each 

trial. Each model was then fitted to an elliptical prism, via the in-built 

registration algorithms, to define the longitudinal axis. CSA of the tendon was 

then calculated at intervals of 0.1mm along this axis using the software’s 

sectioning tool. 

5.2.5. Statistics 

Statistical analysis was completed using MS Excel 2013, and the R statistical 

environment (Lianoglou and Antonyan, 2014; R Core Team, 2015; RStudio, 

2016; Wickham, 2009, 2011, 2015). A linear regression was fitted to the data 

to determine slope. One-way ANOVAs and Tukey's honest significant 

difference post hoc test were used to determine statistical significance of the 

means. All tests were performed assuming an alpha level of 0.05. 

5.3. Results 

A total of 120 usable static scans were obtained – eight tendons tested three 

times at five loads. No usable scans were obtained for dynamic testing during 

pilot tests and so further testing was abandoned. 

 

Figure 5-1: A custom rig designed for use with the Artec Spider, adapted from Chapter 4 

(Figure 4-1). Calibration weights were attached to a the rabbit Achilles tendon via a soft tissue 

grip. 
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The minimum CSA was extracted for each scan and averaged at each load 

(Table 5-1). There was an average standard deviation of less than 0.3mm2 

(range 0.0–0.8mm2) at each load, indicating repeatable measurements. The 

repeatability at each load was similar to that reported in Chapter 4. Minimum 

areas were plotted against the respective stresses, and a linear regression 

fitted to determine the slope of changes in area (Figure 5-2). 

The average unloaded tendon CSA was 8.1 ± 1.0mm2, smaller than the 

9.9 ± 1.0mm2 reported in Chapter 4. Only two tendons exhibited a statistically 

Table 5-1: Mean area ( ± SD) of the rabbit Achilles tendon at each load. The slope of the linear 

regression is presented. * indicates statistically significant values. 

ID 0N 5N 10N 20N 50N 
Slope 

(mm2/MPa) 

Slope 

(%/MPa) 

1 8.6 ± 0.1 8.6 ± 0.1 8.6+0.2 8.6+0.1 8.5 ± 0.2 -0.02 -0.18 

2 6.8 ± 0.0 6.6 ± 0.2 6.5+0.3 6.5+0.0 6.4 ± 0.2 -0.04 -0.63 

3 7.3 ± 0.2 7.3 ± 0.1 7.3+0.1 7.0+0.1 6.9 ± 0.2* -0.06* -0.81* 

4 9.9 ± 0.5 9.7 ± 0.7 9.7+0.7 9.6+0.5 9.2 ± 0.8 -0.11* -1.11* 

5 8.4 ± 0.4 8.4 ± 0.2 8.4+0.2 8.5+0.1 8.2 ± 0.3 -0.04 -0.46 

6 8.7 ± 0.5 8.6 ± 0.2 8.6+0.3 8.6+0.2 8.6 ± 0.1 -0.01 -0.04 

7 6.9 ± 0.3 6.4 ± 0.1 6.7+0.1 6.4+0.1* 6.4 ± 0.1* -0.07 -0.99 

8 7.9 ± 0.3 7.7 ± 0.2 7.8+0.3 7.7+0.2 7.9 ± 0.3 0.0 0.03 

 

 

Figure 5-2: Behaviour of rabbit Achilles tendon under stress, as measured by change in CSA 

(mm2) with increasing stress (MPa). Coloured lines indicate individual tendon behaviour with 

mean and standard deviations of the repeated measurements shown.  
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significant slope – tendon 3 and tendon 4 (mm2/MPa, p=0.015 and p=0.018, 

or %/MPa, p=0.015 and p=0.019, respectively). Three areas were found to be 

significantly different from the initial area – tendon 3 at 50N (p=0.018), and 

tendon 7 at 20N (p=0.042) and 50N (p=0.028). An average decrease of 

0.05mm2/MPa, or -0.52%/MPa was calculated using the linear regression. The 

 

Figure 5-3: Behaviour of rabbit Achilles tendon under stress, as measured by change in CSA 

(mm2) with increasing stress (MPa). Coloured points indicate mean individual tendon behaviour 

with a line-of-best-fit (y = –0.02 – 0.05x, p<0.001, R2 = 0.33). 

 

Figure 5-4: Behaviour of rabbit Achilles tendon under stress, as measured by normalised CSA 

(%) with increasing stress (MPa). Coloured points indicate mean individual tendon behaviour 

with a line-of-best-fit (y = 99.79 – 0.61x, p<0.001, R2 = 0.33).  
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change in CSA was plotted for each tendon (Figure 5-3). This showed a weak 

but significant relationship for all tendons (R2 = 0.18, p<0.01),  

The change in area relative to the unloaded area is shown in Figure 5-3 as 

mm2 and in Figure 5-4 as a percentage. A clear decrease in CSA with stress 

is reported in both figures. Engineering stress was shown to be nearly equal 

to true stress in Figure 5-5. 

5.4. Discussion 

This experiment shows a small but significant change in CSA with increasing 

stress, of approximately -0.05mm2/MPa, or -0.61%/MPa, similar to results 

found previously (Table 5-2). Using samples from larger animals, namely 

porcine (Du et al., 2013), bovine (Pokhai et al., 2009), and equine tendons 

(Vergari et al., 2010), previous studies have also demonstrated a decrease in 

area with increasing stress or strain. Pokhai et al. (2009) reported a large 

change in area, with an estimated change of 13.5% at a strain of 2.5% (Vergari 

et al., 2011), equivalent to a rate of approximately 5.4%/%. However, from the 

 

Figure 5-5: Behaviour of rabbit Achilles tendon as described by engineering stress (MPa) versus 

true stress. (MPa) Coloured points indicate mean individual tendon behaviour with a one-to-one 

ratio (grey) and line-of-best-fit (black, y = 0.05 + 0.95x, p<0.001, R2 > 0.99).  
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values reported by Du et al. (2013), it is estimated that a change in area of 

only -0.51%/MPa, or -0.19mm2/MPa, was present in their study. Vergari et al. 

(2010) demonstrated slopes of approximately -0.08%/MPa, equating to a 

change of approximately -0.09mm2/MPa, determined over a range of greater 

than 100MPa. A follow up study by Vergari et al. (2011) reported a change 

of -0.96%/%, or approximately -1.08mm2/%. 

Reports of the effect of strain and load on CSA vary greatly in the literature. 

This is, in part, due to the variation in units reported, with no fewer than four 

units of measure used to describe the changes in CSA (Table 5-2). Tendon 

properties are known to be related to the specific function 

(Evans and Barbenel, 1975; Shepherd et al., 2014; Thorpe et al., 2012b). 

Additionally, reports in the literature have been from different animal species. 

Nevertheless, the values reported in this study are similar to those reported 

previously. 

In the current study, the measured change in area within the tendon showed 

only a weak relationship with stress (Figure 5-3). The loads used in this study 

will have generated strains within the toe region of the stress-strain behaviour 

of rabbit Achilles tendon (West et al., 2004). These results indicate that the 

tendon exhibits some transverse strain in the toe region, with the relationship 

showing a change in CSA of approximately 5%. It is known that the uncrimping 

of the fibrils allows the tendon to extend easily under load, as seen by the low 

stiffness in the toe region. It is possible that this same mechanism results in 

only small changes in the tendon CSA as the tendon undergoes axial strain 

with little transverse strain. Larger changes in CSA may be evident once the 

Table 5-2: Previously reported relationships between CSA (mm2 and %) and stress (MPa) and 

strain (%). 

Study mm2/MPa %/MPa %/% mm2/% 

Pokhai et al. (2009)   -5.4  

Du et al. (2013) -0.19 -0.51   

Vergari et al. (2010) -0.09 -0.08   

Vergari et al. (2011)   0.96 1.08 

This Study -0.05 -0.61   
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tendon enters the linear region, as the fibrils exhibit sliding and extension, 

leading to ‘thinning’ of the tendon body. 

These findings may have important implications for interpreting the results of 

mechanical tests. If testing of tendons remains within or near the toe region, 

engineering stress may be a sufficiently accurate approximation of true stress. 

Figure 5-5 shows a relationship where engineering stress is approximately 

95% of true stress up to a stress of 8MPa. This relationship between 

engineering stress and true stress is similar to that reported by Vergari et al. 

(2011). In Figure 5-5., comparing engineering stress to true stress, 

engineering stress was approximately 90% of true stress at failure but showed 

no practical difference at strains below 4%. While engineering stress still 

underestimates the true stress, a common issue highlighted in Chapter 3, the 

ability to approximate true stress would greatly simplify testing protocols as 

CSAs would not need to be recorded during testing. However, further 

investigation, using a suitable MTS, is necessary to confirm this finding. 

There are several limitations in this study. A major limitation of the commercial 

system is that the focal length and cables of the scanner require a reasonably 

large space for the scanner to pass in order to achieve maximum, and 

accurate, coverage. This inhibited the ability of the commercial scanner to be 

used with the Instron 5848 MicroTester™, thus loading was only able to be 

applied using calibration weights. Since the frame of this testing system is 

common to many MTSs, a custom implementation of the SLS technique may 

be necessary to be more readily interfaced with existing systems. The inability 

to scan during dynamic loading limited testing to quasi-static and static 

protocols and potentially introduced transient viscoelastic behaviours. The 

commercial system is only able to capture objects in air, preventing longer 

temporal studies and risking dehydration. Finally, the high cost of some 

commercial systems may prevent easy implementation of this technology. 

Nevertheless, the advantages of SLS were demonstrated through the ability to 

scan and measure tendon shape with ease and accuracy. As well as 

demonstrating a significant improvement in the measurement of engineering 

stress, the application of SLS during mechanical testing would permit the 
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calculation of true stress in a dynamic system and provide shape information 

for use in computer modelling. 

5.5. Conclusion 

The SLS technique for measuring CSA has been applied to rabbit Achilles 

tendon under a static loading environment. This study demonstrates that there 

is indeed a decrease in CSA proportional to the applied load up to 50N, 

equivalent to 8MPa. A subtle but significant decrease in CSA was seen with 

increasing stress. This is the first reported relationship between CSA and 

stress in rabbit tendon. The magnitude of this relationship suggests that, within 

the toe region, engineering stress may provide a sufficiently accurate 

estimation of the true stress of tendon.  
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CHAPTER 6. LITERATURE REVIEW: MECHANICAL 

PROPERTIES OF TENDON 

6.1. Introduction 

The structure and function of tendons has been of interest to researchers for 

many decades (Benedict et al., 1968; Blanton and Biggs, 1970; Cronkite, 

1936; Maganaris and Narici, 2005; Rigby et al., 1959). Tendons exhibit 

properties – stiffness, resilience, and strength – well suited to transferring force 

from muscle to bone (Doral et al., 2010), and are highly sensitive to their 

mechanical environment (Arampatzis et al., 2010). It has been observed that 

tendons exhibit a wide range of structures and mechanical properties due to 

the breadth of functions they perform (Abramowitch et al., 2010; Benjamin 

et al., 2008; Birch et al., 2013; Butler et al., 1984; Evans and Barbenel, 1975; 

Jung et al., 2009; Kjær et al., 2009; Screen et al., 2013; Shadwick, 1990; 

Shepherd et al., 2014; Thorpe et al., 2012b; Woo et al., 2011)., as well as other 

factors such as age (Birch et al., 1999; Connizzo et al., 2013; Dressler et al., 

2006; Galeski et al., 1977; LaCroix et al., 2013a; Liu et al., 2009; Nakagawa 

et al., 1996; Shadwick, 1990; Thorpe et al., 2012a; Thorpe et al., 2013b; Wren 

et al., 2001a).  

The mechanical properties of tissue develop to resist the loads encountered 

in vivo. Several factors affect the mechanical properties of tendon (Wang, 

2006), including: 

• Magnitude of loading experience during physiological activity; 

• Level of muscle contraction; 

• Tendon size; 

• Variety of loading patterns experienced;  

• Rate and frequency of mechanical loading; and 

• Relative operating distance 

Each of these contributes to the overall properties of the tendon. For example, 

the Achilles tendon is subject to the highest forces has developed to be the 

largest tendon in the body in terms of cross-section. Flexor tendons of the other 

hand are subject to smaller forces and have a smaller cross-section. 
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Tendons have also displayed location-specific properties, showing 

heterogeneity of the tissue that provides a gradual transition between the 

properties of the muscle and bone (Abramowitch et al., 2010; Butler et al., 

1992; Butler et al., 1986; Pearson and Hussain, 2014). Stress in the Achilles 

tendon may be non-uniform due to differences in the forces generated by the 

different muscles of the triceps surae (Arndt et al., 1998). The strain within the 

tendon may also differ, as seen in the difference in strain between the tendon 

and aponeurosis as a result of the non-uniform loading by the triceps surae 

(Benjamin et al., 2008). 

Healthy tendons may be considered overdesigned compared to the attached 

muscle and bone (Almekinders et al., 2003), tissues which have a greater 

capacity for spontaneous healing. Despite being the largest tendon in the 

body, the Achilles tendon is also one of the most frequently injured (Wren et al., 

2001b). It has been suggested that the high incidence of injury is related to the 

loading during physical activity (Wren et al., 2001b). It has been noted that the 

Achilles tendon may operate repetitively at or near failure (Freedman et al., 

2014b; Maganaris and Paul, 2002; Wren et al., 2001b).  

Tendon strain has been described as the best predictor for tendon damage 

accumulation (Wren et al., 2003), while elastic modulus has been strongly 

correlated with ultimate stress (LaCroix et al., 2013b). Since elastic modulus 

represents the ability of a material to resist load (with changing displacement), 

it can be inferred that increasing the modulus would increase the factor of 

safety under physiological loads (Arampatzis et al., 2007), as the ultimate 

strain of the tendons does not change significantly (Abrahams, 1967; 

Nakagawa et al., 1996). 

Understanding the interplay of the structure, function and mechanical 

properties may help to identify factors contributing to injury and disease, 

potentially resulting in improved treatment and repair techniques. Despite the 

behaviour of the tendon being well-studied, the basic science behind treatment 

remains weak or inconclusive (Freedman et al., 2014b). Both time-

independent and time-dependent properties are necessary to better 

understand the natural behaviour of the tendon and underlying factors that 
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may lead to injury. However, methodologies in the literature are inconsistent, 

leading to varying results, and few studies have performed multiple testing 

modes, despite studies demonstrating that they must be assessed together to 

properly characterise tendon (Foure et al., 2012). Providing more complete 

data sets will not only contribute to our understanding of the tendon function, 

but also provides inputs for simulations of the functions of the human body 

(Arampatzis et al., 2005). 

While much of the focus of this chapter will be on the Achilles tendon, other 

tendons have been included for comparison.  

6.2. In vivo properties 

Mechanical behaviour, including stresses and strains, may be estimated from 

joint mechanics using measures such as maximum voluntary contractions 

(MVCs) or electromyography (EMG) signals, or measured by fibre optics, 

ultrasound, or implantable force transducers (IFT). 

The human Achilles tendon, the largest tendon in the body, experiences forces 

of 550N during walking, 1000–4000N during jumping and cycling, and peak 

forces of 9000N, equivalent to stresses of 110MPa, have been measured 

during sprinting (Akizuki et al., 2001; Komi, 1990; Komi et al., 1992; Paavola 

et al., 2002; Sharma and Maffulli, 2005b; Wang, 2006). Oliveira et al. (2016) 

underlined that true stress is underestimated by engineering stress (as 

discussed in Chapter 3), suggesting in vivo stresses may in fact be higher. It 

has been said that most tendons experience peak stresses below 30MPa 

during physiological activities, while the human Achilles tendon is estimated to 

experience stresses closer to 70MPa (Wren et al., 2001b), or nearly 70% of its 

ultimate force during explosive activities (Freedman et al., 2016). 

It is thought that tendon usually elongates 3–4% during physiological loading 

(Benjamin et al., 2008), below the onset of micro-failure. However, tendon 

strains of 4.9–8.3% (Arampatzis et al., 2007; Arampatzis et al., 2010; Farris 

et al., 2013; Kongsgaard et al., 2011; Lichtwark and Wilson, 2005; 

Maganaris and Paul, 2002; Obst et al., 2014b) and up to 21% (Oliveira et al., 

2016) have been reported using the techniques described above, 

corresponding to forces of 875–4420N and stresses of up to 72MPa 
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(Arampatzis et al., 2007; Arampatzis et al., 2010; Kongsgaard et al., 2005; 

Maganaris and Paul, 2002; Oliveira et al., 2016). Strain has been shown to be 

heterogenous, due to differences in the structure and muscle contributions 

(Arndt et al., 1998; Farris et al., 2013).  

Using fibre optic techniques, peak loads were measured at 1320N (19MPa) 

during walking, increasing to 1490N (22MPa) for fast walking, with an absolute 

peak of 2400N in one subject (Finni et al., 1998). Arndt et al. (1998) measured 

peak forces in the Achilles tendon of up to approximately 3000N for maximum 

isometric plantar-flexion contractions. However, forces measured using the 

fibre optic techniques have been shown to be affected by skin movement and 

may be overestimated (Erdemir et al., 2003). 

Several studies have looked at the in vivo forces in tendons using IFTs, 

including the flexor tendons, patellar tendon and Achilles tendon (Butler et al., 

2008; Meyer et al., 2004; Wang, 2006; West et al., 2004). IFTs can give us 

insight into the patterns and magnitudes of in vivo loading conditions, including 

their contributions to biomechanical function (Glos et al., 1993). EMG and 

other methods of muscle activation have limitations, since they are statistically 

indeterminate problems, and thus a direct measurement, such as IFT, is 

preferable (Glos et al., 1993). However, IFTs have higher risks and longer 

experiment times compared to indirect measurements (Erdemir et al., 2003). 

Komi et al. (1992) reported peak stresses in human Achilles tendon of 59MPa 

and 111MPa for walking and running (Wren et al., 2001b). Using IFT in rabbits, 

forces on the Achilles tendons were measured as approximately 1.4MPa 

during rest, increasing to approximately 4.9MPa and 6.7MPa during level and 

inclined hopping, respectively (Juncosa et al., 2003; West et al., 2004). Strains 

in this study were approximately 4% at peak load, and the peak stress and 

strain were 20% and 25% of ultimate values measured at the conclusion of the 

experiment, in agreement with much of the literature (West et al., 2004). 

Analysis of the literature revealed that tendons are responsive to loading 

(Bohm et al., 2015; Obst et al., 2013). This is supported by studies that 

demonstrated a correlation between activity demands and maximum forces 

generated in vivo (Arampatzis et al., 2007; Kongsgaard et al., 2005), while 
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high strain exercises were shown to increase the stiffness of tendon 

(Arampatzis et al., 2010). Similarly, tendon properties were correlated to 

muscle strength in cyclists (Morrison et al., 2015). Several other factors may 

influence in vivo measurements. Loading rate has been found to influence 

measured properties such as peak force and stiffness, particularly as it is 

difficult to control (Pearson et al., 2007). Cross-linking of the collagen has also 

been seen to influence the properties, and has been suggested as a 

mechanism for age-related differences (Couppe et al., 2009), while the fibrillar 

properties likely govern sub-failure responses (Svensson et al., 2012), It has 

been noted that removal of the tendon from the body likely has an adverse 

effect on testing outcomes (Svensson et al., 2012). 

6.3. Types of mechanical testing 

Typically, testing of materials consists of one of four methods: tensile, cyclic, 

relaxation, and creep. Tensile testing, also known as ramp or traction testing, 

is the most common method and involves applying a constant strain rate or 

stress rate, often until rupture. Tensile testing is used to describe the time-

independent isochronal behaviour of the sample. Cyclic testing is the repetitive 

loading and unloading, usually as a sine or triangle waveform. Relaxation, or 

stress relaxation, applies a constant strain to the sample and the change in 

stress is recorded over time. Conversely, creep applies a constant stress and 

measures the change in length over time. Relaxation and creep may indicate 

the static time-dependent properties of the sample, while cyclic testing may 

indicate the dynamic time-dependent properties. 

It is, therefore, of value to define the behaviour of the tendon across a variety 

of conditions to elucidate the effect of diseases such as tendinopathy and, 

specifically, the mechanism by which it affects the tendon. Experiments should 

seek to extract the most information from each specimen, and help to 

discriminate between constitutive models (Duenwald et al., 2009b). For 

example, a tensile test and relaxation test are able to demonstrate tissue 

nonlinearity and viscoelasticity, but may result in a false linear elastic model 

(Duenwald et al., 2009b). Models have shown the dependence of soft tissues 

on strain and stress levels (Duenwald et al., 2009b; Provenzano et al., 2001; 

Sverdlik and Lanir, 2002), but creep predictions from relaxation are poor 
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(Lakes and Vanderby, 1999). Therefore, it is necessary to strategically test in 

multiple modes (Duenwald et al., 2009b). 

6.3.1. Tensile 

Tensile, or ramp, testing is the application of a constantly stress or strain rate 

over time, thereby creating a ‘ramp’ profile with a constant gradient equivalent 

to the rate of stress or strain. Mechanical properties that are measured during 

tensile testing of a sample can either be extrinsic (structural) or intrinsic 

(material) (Woo et al., 2000), and are usually a function of load, displacement, 

and/or time.  

The results of tensile testing are typically presented in the form of the 

isochronal stress-strain plot, which can be used to determine the mechanical 

properties of a material independent of time. There are three identifiable 

regions of interest within the isochronal stress-strain profile – the toe, linear 

and plastic region – culminating in complete failure. In biological tissues, the 

plastic region is often split into the microscopic failure and macroscopic failure 

zones (Screen et al., 2004a).  

The toe region has been identified in studies of the mechanical properties of 

tendon and has been estimated to extend up to 4–5%, corresponding to 

complete straightening of the crimp, and alignment and recruitment of all the 

fibre bundles in the direction of loading (Arnoczky et al., 2002a; Arnoczky 

et al., 2004; Connizzo et al., 2013; Lake et al., 2009, 2010; Miller et al., 2012a; 

Miller et al., 2012c; Screen, 2008; Screen et al., 2004a; Screen et al., 2002b; 

Sharma and Maffulli, 2005b; Wang, 2006). It has been suggested the toe 

region may consist of two micromechanical phenomena – crimp straightening 

and fibre elongation (Arnoczky et al., 2004; Screen et al., 2002a). It is 

generally agreed that the low apparent stiffness in this region allows the tendon 

to absorb energy (Paavola et al., 2002; Screen et al., 2002a). It has been 

suggested that this region remains nonlinear over larger strains due to the 

presence of a range of crimp angles, which affects the rate of crimp 

straightening and fibre recruitment (Screen et al., 2002b). This may be an 

advantageous in dealing with the wide range of loading conditions 

encountered (Screen et al., 2004a). For example, rat-tail tendon has been 
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shown to have a toe region of 1–2%, while human Achilles tendon has a region 

of 4–5% (Screen et al., 2004a). The most likely reason for this difference is in 

the physiological loading behaviours of both tendons. The Achilles tendon is 

subject to high impact loads and benefits from the shock absorbing nature of 

the toe region, while rat-tail tendon does not encounter such extreme loading. 

It is believed that the majority of physiological strain levels are within the toe 

region, allowing the tendon to return seamlessly to initial length when unloaded 

(Screen et al., 2002b; Sharma and Maffulli, 2005b). It has been shown that, as 

tendons dry out, the stiffness increases and the toe region becomes shorter 

(Calve et al., 2004). It has also been noted that removing decorin, or increasing 

tissue hydration, results in greater fibril slippage and thus a lower stiffness 

(Screen, 2008; Screen et al., 2002a). It is thought the properties of the toe 

region may be as important as those of the linear and failure regions 

(Chandrashekar et al., 2012). 

The linear region of the tendon is thought to be a result of the extension and 

sliding of collagen components at the fibre and fibril level (Screen, 2008; 

Screen et al., 2004a; Screen et al., 2002a; Sharma and Maffulli, 2005b). The 

slope of the linear region is often associated with the elastic modulus of the 

tendon (Wang, 2006). 

The plastic region begins as microscopic failure at the fibril and fibre structural 

levels (Arnoczky et al., 2002a; Wang, 2006). It has been estimated to occur 

anywhere between 2–5% strain (Almekinders et al., 2003; Provenzano et al., 

2002b). Failure has been described as fibre pull-out (Screen, 2008). 

Values in the literature show a great deal of variation in human tendon 

properties. Maximum stresses of 52–100MPa and strains of 5–20% have been 

reported (Benedict et al., 1968; Benjamin et al., 2008; Butler et al., 1978; 

Butler et al., 1984; Butler et al., 1986; Devkota and Weinhold, 2003; Screen, 

2008; Wang, 2006; Woo et al., 2011; Wren et al., 2001b). Failure forces of up 

to 7300N have been documented (Wren et al., 2001a). It should be noted that 

the peak stresses reported in vivo often appear to exceed the tensile strength 

of the tendon (Sharma and Maffulli, 2005b), illustrating the complexity of 

measuring tendon properties. Few studies have utilised identical testing 
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setups, which suggests that testing methodology may have a profound 

influence on the measured properties. It has been suggested that tendinopathy 

may result in failure of the tendon at as low as one-quarter of ultimate tensile 

load (Korvick et al., 1996; Malaviya et al., 1998), in agreement with clinical 

observations of tendinopathy in ruptured tendons (Kannus and Józsa, 1991; 

Tallon et al., 2001). 

6.3.2. Cyclic/dynamic 

Cyclic testing is used to measure the dynamic properties applicable to daily 

activities such as walking and is, therefore, important for assessing tendon 

mechanics (Nagasawa et al., 2008). Komi et al. (1992) demonstrated that, due 

to muscle tone, physiological loading patterns are best-approximated by a 

tension-tension square wave (Schechtman and Bader, 1997). However, 

physiological loading is typically approximated by a series of sinusoidal or 

triangular waveforms. 

Biological materials, such as tendon, possess time-dependent properties 

which are clearly exhibited in the formation of a hysteresis loop during cyclic 

testing, representative of the energy lost (Woo et al., 2000). Hysteresis is 

measured as the energy absorbed during loading minus the energy released 

during unloading, or ∆ℎ =  𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡. An efficient material will return close to 

100% of energy absorbed. The ability for tissues to 'lose' energy during loading 

is believed to be one of the many self-defence mechanisms employed to 

protect the tissue from damage caused by overloading.  

Mechanical hysteresis in tendons has historically been measured in vitro 

(Ciarletta et al., 2008). Hysteresis in tendon has been found to be in the range 

of 5–10%, most of which is dissipated as heat (Screen, 2008). Advances in 

measurement techniques are now permitting measurements in vivo. 

Hysteresis measurements of 18–26% have been measured using ultrasound 

techniques (Lichtwark and Wilson, 2005; Maganaris and Paul, 2002). 

Peltonen et al. (2013) demonstrated hysteresis values of less than 10% and 

suggested that higher values may be an artefact of the methodologies used to 

estimate the stress-strain profile of tendon in vivo, with in vitro properties 

closer to the physiological values. 
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The loss tangent, tan δ, represents how efficiently the material loses energy to 

molecular rearrangements and internal friction (Nagasawa et al., 2008) and is 

a function of dynamic modulus and the storage modulus. The dynamic 

modulus in tendon has been shown to be largely composed of the storage 

modulus, with a relatively small loss modulus (Schechtman and Bader, 1997, 

2002). This suggests low energy loss during physiological loading 

(Schechtman and Bader, 2002). In Achilles tendon, the dynamic modulus 

appears to reflect binding between collagen molecules and the dynamic 

properties of tendon recover more quickly than static properties following injury 

(Nagasawa et al., 2008). Frequency has been shown not to affect the dynamic 

parameters in tendon (Nagasawa et al., 2008; Schechtman and Bader, 1994; 

Schechtman and Bader, 2002).  

6.3.3. Viscoelastic 

One of the most interesting properties of tendon is its viscoelasticity, as the 

importance of this property is not as well understood in tendon as for other 

tissue, such as articular cartilage. Viscoelasticity contributes to the unique 

mechanical behaviour of tendon (Wang, 2006), allowing tendons to act as 

mechanical buffers to protect muscle fibres while maintaining energy transfer 

efficiency (Ciarletta et al., 2008). Viscoelasticity is evident in physiological 

activities: stretching induces relaxation, isometric contractions induce creep, 

and cyclic loading, for example running, produces hysteresis (Oza et al., 

2006b). 

Many different materials, including plastics, rubbers, and biological tissues, are 

characterised as viscoelastic, the result of microstructural rearrangement 

processes under load (Carniel et al., 2013). In tendon, this process is thought 

to be a complex interaction between ECM and ground substance (Woo et al., 

2000). Altering proteoglycan (PG) content, such as removing decorin, and 

hydration of the tissue have been shown to influence viscoelasticity via the 

internal friction (Screen, 2008). The nonlinearity of tendon behaviour has been 

attributed to the wavy collagen fibres that are progressively loaded at low load 

until all fibres are engaged (Sverdlik and Lanir, 2002). Reduction in cross-link 

density has been shown to cause biomechanical weakening of soft tissue 

(Couppe et al., 2009; Nagasawa et al., 2008) and is associated with age-
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related changes such as stiffening and a reduced plasticity (Ciarletta et al., 

2008).  

Viscoelasticity is defined by stress relaxation, creep, hysteresis, and strain rate 

sensitivity (Sharma and Maffulli, 2005b; Wang, 2006; Woo et al., 2000). Strain 

rate sensitivity means that tendons become stiffer at higher strain rates, most 

likely due to higher friction forces and resistive pressure caused by the faster 

deformation, enabling them to more efficiently transfer large loads (Wang, 

2006). Conversely, at lower strain rates, tendons are more deformable but also 

less efficient (Wang, 2006). 

Stress relaxation testing involves keeping the sample at a constant length and 

measuring the change in stress over time, while creep testing involves 

applying a constant stress and measuring the change in length over time (Woo 

et al., 2000). Stress relaxation is attributed to the rearrangement of the 

microstructure allowing for a redistribution of stress, while creep is attributed 

to crimp straightening and fibre recruitment (Schechtman and Bader, 2002; 

Shepherd et al., 2014). The shape of these responses over time has been 

described by a power law (Duenwald et al., 2009b; Provenzano et al., 2001). 

It has been previously shown that creep and relaxation are dependent on the 

strain rate and strain magnitude (Carniel et al., 2013). 

The initial ramp used to apply the stress or strain for testing should be as close 

to a step as possible (Sverdlik and Lanir, 2002). This is impossible to achieve 

in experimental testing so corrections are necessary (Sorvari et al., 2006). Use 

of slower ramp times have been proposed to avoid overshoot and vibration 

(Abramowitch and Woo, 2004; Gimbel et al., 2005), but risks inducing 

relaxation or creep during loading. Historically, this issue has been corrected 

by removing a portion of data at the start of the test that is affected by the 

overshoot (Duenwald et al., 2009b). Newer techniques include mathematical 

adjustments for curve fitting of the data (Abramowitch and Woo, 2004; Gimbel 

et al., 2005). 

An example of the importance of defining the viscoelastic behaviour of soft 

tissue lies in surgical interventions for orthopaedics. Tendon and ligaments are 

often considered interchangeable from a surgical standpoint; however, they 
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have been shown to have different viscoelastic behaviours (Duenwald et al., 

2010). For example, relaxation of ligament has been shown to decrease with 

increasing strain, while the opposite is true of tendon (Duenwald et al., 2010; 

Hingorani et al.; Provenzano et al.). Preconditioning and pre-tensioning of graft 

tissue for ligament reconstructions have been investigated to reduce the risk 

of laxity due to relaxation (Ejerhed et al., 2001; Lockwood et al., 2016). 

Understanding the distinction between tissues, and within tissues, may lead to 

improved clinical outcomes for patients by helping to restore physiological 

functionality. 

6.3.4. Fatigue 

Fatigue properties offer an indication of the potential for overuse damage, as 

proposed in the aetiology of tendinopathy. Testing of human Achilles tendon 

specimens demonstrated faster times to failure when cycled, suggesting that 

repetitive loading may indeed contribute to tendon injuries (Wren et al., 2003). 

Studies have demonstrated that this micro-damage caused by normal daily 

locomotion may be overcome by a healing rate of as little as 1% over 20 hours 

(Schechtman and Bader, 1997). High-stress tendons, such as Achilles tendon, 

have been shown to exhibit a lower safety factor but higher fatigue resistance 

when compared to positional tendons (Shepherd et al., 2014). It has been 

hypothesised that, following the recruitment of fibres, failure of the fibres 

occurs at a strain limit and that a failure of the majority of these fibres leads to 

gross tendon failure (Schechtman and Bader, 2002).  

6.4. Conclusion 

Tendons exhibit complex mechanical behaviours well suited to their functional 

role in the body. However, this behaviour is not well understood in either 

healthy or diseased tendon. This has contributed to difficulty in understanding 

the aetiology of disease and in developing effective clinical management. 

Knowledge of tendon mechanical properties improves our understanding of 

injury and how it may be prevented (Hansen et al., 2017). By understanding 

the normal behaviours of tendon, irregularities may become evident and be 

correlated to one of the many factors that contribute to mechanical damage, 

potentially leading to improved treatment and repair techniques. 
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The in vivo and in vitro tendon behaviour reported in literature is varied. One 

of the of the reasons for this variation is a lack of consensus of standardised 

testing protocols. Furthermore, few studies have provided complete data sets 

by testing in multiple modes. It is, therefore, difficult to compare within and 

between studies to elucidate differences in behaviour. Standardised protocols 

and complete data sets are necessary to ensure that tendon behaviour is 

adequately described and comparable. These will be explored in detail in later 

chapters. 
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CHAPTER 7. TENSILE TESTING OF ACHILLES TENDON 

7.1. Introduction 

The properties of tendon are known to be difficult to measure accurately for 

several reasons, which include their high water content (70% of which can be 

expelled during deformation), the need to maintain hydration, temperature 

sensitivity, and their low transverse stiffness (Screen et al., 2004a). This 

combination makes for a tissue that is difficult to grip and measure during 

testing. While the properties are well documented (Arnoczky et al., 2002a; 

Screen et al., 2004a), each application is different and there is little 

standardisation of testing procedures. 

When measuring mechanical properties, several test variables require 

consideration as they may affect the behaviour of the tissue. These include: 

• Storage; 

• Hydration; 

• Temperature; 

• Geometry and orientation; 

• Gripping; 

• Strain and strain rate; 

• Preconditioning; 

• Time; and 

• Recovery. 

The subjects of geometry (Chapters 3–5), and time dependence (Chapter 8) 

are explored elsewhere. 

This chapter describes and validates a testing protocol, derived from the 

literature, that represents a best practice approach to uniaxial tensile testing in 

tendon. It is intended that this will standardise testing in future studies to allow 

more reliable comparisons of results between studies, as well as achieving 

consistent testing between laboratories. 

7.2. Analysis of literature 

7.2.1. Storage and treatment 

The effects of storage and treatment on the mechanical properties of soft 

tissue have been studied for many decades. While there have been 



Mechanical Behaviour of Tendinopathic Tendon: An Engineering Perspective 

100 

investigations into the effects of freezing, storage time, and freeze-thaw cycles, 

the results remain inconclusive. Early studies recommended testing within 

30 minutes of death for the results to be considered valid (Matthews and Ellis, 

1968; Woo et al., 1986). However, storage of tissue is necessary as it is not 

always practical to test specimens immediately, such as with human cadavers 

(Matthews and Ellis, 1968; Woo et al., 1986), or during complex and time-

consuming testing (Moon et al., 2006b). 

A study by Cronkite (1936) found no difference between embalmed and 

untreated samples (24–48 hours after death). Matthews and Ellis (1968) found 

a decrease in apparent elastic modulus associated with freezing, but no other 

notable findings. Woo et al. (1986) found that with proper and careful storage 

the cyclic and tensile properties of New Zealand White (NZW) rabbit medial 

collateral ligaments were not affected after being frozen for three months. A 

follow-up study by Moon et al (2006b), investigating the effects of multiple 

freeze-thaw cycles and with a more robust viscoelastic analysis, found no 

significant difference in ultimate stress, strain, modulus, or quasi-linear 

viscoelastic (QLV) parameters after refreezing. They suggested that fresh 

samples should still be considered for sensitive viscoelastic tests. Clavert et al. 

(2001) found no difference in relaxation behaviour of biceps brachii tendon 

after freezing, but did note a decrease in tensile strength and elastic modulus. 

Giannini et al. (2008) found that deep-freezing (to -80 C) patellar tendon 

samples resulted in a decrease in ultimate load and strain. 

Recent testing has focused on the effect of repetitive freeze-thaw cycles on 

the biomechanical properties of soft tissue. Chen et al. (2011b) reported 

significant changes in the ultimate load of rabbit Achilles tendon after three and 

ten deep-freeze-thaw cycles. Jung et al. (2011) found no significant difference 

in creep, stiffness, and ultimate tensile load in bone-patellar tendon-bone 

(BPTB) samples following one, four, and eight freeze-thaw cycles. Huang et al. 

(2011) found that five or more deep-freeze-thaw cycles negatively affected the 

ultimate load and stiffness of flexor tendons, while three cycles or less showed 

no difference to fresh samples. Ren et al. (2012), noted a similar result, with a 

significant decrease in ultimate load and stiffness following four deep-freeze-

thaw cycles of flexor tendons. 
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Current practice is to discard grafts, as a precaution, after undergoing freeze-

thaw cycles (Huang et al., 2011), so understanding the effect on properties 

may aid in better management of grafts. The use of gamma irradiation on soft 

tissue was found to be detrimental to the stiffness and ultimate load and 

elongation of flexor tendons, and it was recommended that irradiation not be 

performed on allograft samples (Ren et al., 2012). 

It can be seen from the reports above that deep-freeze-thaw cycles negatively 

affect the biomechanical properties of soft tissue, while standard domestic 

freezers (-20 C) appear to have no effect. Thus, careful attention should be 

given to the freezing procedures (Chen et al., 2011b; Clavert et al., 2001; 

Duenwald et al., 2009a; Giannini et al., 2008; Jung et al., 2011; Kamiński 

et al., 2009; Matthews and Ellis, 1968; Moon et al., 2006b; Smith et al., 1996; 

Woo et al., 1986). Altering the procedures for storage of grafts in order to 

preserve the mechanical properties through the various freeze-thaw cycles 

should be considered. 

7.2.2. Hydration and temperature 

The high water content of tendon means hydration is an important factor during 

testing, especially during viscoelastic testing. Tissue hydration has been 

reported to affect the flexibility (Elden, 1964) and strain rate sensitivity 

(Ciarletta et al., 2008; Haut and Haut, 1997) of tendon. Similarly, temperature 

has been shown to affect the behaviour of soft tissue (Cohen et al., 1976; 

Hooley and Cohen, 1979; Hooley et al., 1980; Huang et al., 2009; Woo et al., 

1987), with a noticeable change in behaviour near body temperature (Cohen 

et al., 1976). Interestingly, Rigby et al. (1959) reported that variations in the 

temperature between 0 C and 37 C had no effect on the mechanical properties 

of rat tail tendon, but above 37 C there were changes that may be of 

importance. Still, many mechanical studies of soft tissue have been performed 

at room temperature (Benedict et al., 1968; Bonner et al., 2015; Chen et al., 

2011a; Dressler et al., 2006; Duenwald et al., 2009a; Duenwald et al., 2010; 

Fink et al., 1999; Haraldsson et al., 2005; Jimenez et al., 1989; LaCroix et al., 

2013a; Liu et al., 2009; Nakagawa et al., 1996; Sverdlik and Lanir, 2002; 

Szczesny et al., 2012; Tohyama et al., 1992; Wren et al., 2001b).  
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Masouros et al. (2009) reviewed testing conditions for joints and suggested 

that the ideal testing environment would be a bath of interstitial fluid at 37 C. A 

similar recommendation had previously been made by Funk et al. (1999). 

Several studies have attempted to match this environment by heating 

physiological solutions to body temperature (Abramowitch and Woo, 2004; 

Awad et al., 1999; Butler et al., 1986; Fujie et al., 2000; Johnson et al., 1994; 

Majima et al., 1996; Nekouzadeh et al., 2007; Ohno et al., 1993; Shepherd 

et al., 2014; Takai et al., 1991; Thornton et al., 2001; Tohyama et al., 1992; 

Woo et al., 1986; Yamamoto et al., 1999, 2000). Alternative methods include 

a bath of solution, such as phosphate buffered (PBS) and Ringer’s solutions 

(Abramowitch et al., 2010; Hingorani et al., 2004; Screen et al., 2004b), and 

humidity chambers (Chaudhury et al., 2012; Gautieri et al., 2013; Helmer 

et al., 2004; Myers et al., 1991; Pioletti and Rakotomanana, 2000a, 2000b; 

Pioletti et al., 1998; Race and Amis, 1996; Thornton et al., 2007). However, a 

great many experiments have maintained tissue hydration by a regular spray 

or mist of solution (Abdel-Wahab et al., 2011; Bonner et al., 2015; 

Cheng and Gan, 2008; Cheung and Zhang, 2006; Ciarletta et al., 2008; 

Ciarletta et al., 2006; Hashemi et al., 2005b; Ikoma et al., 2013; Legerlotz 

et al., 2010; Lockwood et al., 2016; Machiraju et al., 2006; Miller et al., 2012a; 

Miller et al., 2012b; Moon et al., 2006a; Rigozzi et al., 2009; 

Schmidt and Ledoux, 2010; Screen, 2008; Screen et al., 2006; Screen et al., 

2005c; Screen et al., 2013; Su et al., 2008; Thorpe et al., 2013b; 

Troyer and Puttlitz, 2012). 

7.2.3. Orientation 

Specimen orientation of samples with heterogenous microstructures, such as 

composite materials, is known to influence the results in a typical tensile test. 

Several studies have shown the transverse properties of tendon to be inferior 

to the longitudinal properties (Lake et al., 2010; Lynch et al., 2003; Yamamoto 

et al., 2000). Therefore, in ex vivo/in vitro testing the longitudinal axis of tendon 

should be aligned with the anatomical direction of load. In a typical tensile ramp 

test, or a traction test, one or two universal joints may be used to allow the 

sample to align as load is applied. While it is preferable to clamp the sample 
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rigidly along the direction of load, this method allows for small deviations to be 

corrected.  

Shim et al. (2015), presenting to the Orthopaedic Research Society, indicated 

that the twist in the Achilles tendon may improve efficiency and strength. The 

twist was likened to that of reinforcing bars in composite materials. Therefore, 

it is important not only to align samples with the direction of load, but also to 

consider the original anatomical positioning to improve the accuracy of the 

biomechanical measurements during testing. Similar results have previously 

been presented by Kim et al. (2014), who found that the strength of the medial 

patellofemoral ligament was highest when oriented in an anatomical position. 

Therefore, efforts should be made to accurately replicate in vivo orientations 

and loading conditions. 

7.2.4. Length 

The exchange by Anssari-Benam and colleagues with Horgan (Anssari-

Benam et al., 2012b, 2013; Horgan, 2013) highlights one of the lesser-

considered difficulties with the gripping and testing of soft tissue. It was shown 

that specimen length affects the mechanical behaviour of tissues with short 

gauge lengths, as the act of gripping creates an irregular strain field around 

the gripped area. This follows the Saint-Venant’s principle, which states that 

this strain field decays away from the point of gripping. Anssari-Benam et al. 

(2012b) described that, past the characteristic decay length, tissues behave 

consistently and, therefore, if the specimens of choice do not meet the 

minimum length, the data should be ‘calibrated’ against an appropriate 

constitutive model. In response to Horgan (2013), Anssari-Benam et al. (2013) 

stated: “one of the primary aims of our letter was to improve awareness of end-

effects within the biomechanical community, as end-effects in many biological 

tissues can be substantial, but are often poorly understood or, at worst, 

ignored.” 

Studies on Achilles tendon grafts, leather, and carbon fibres, noted that 

ultimate load decreased with increasing gauge length (DeFrate et al., 2004; 

Naito et al., 2011; Thanikaivelan et al., 2006). No comment was made on the 

effect of gripping, but this could be due to a ‘positive’ influence of Saint-
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Venant’s principle at shorter gauge lengths. An investigation by Jimenez et al. 

(1989) demonstrated the influence of Saint-Venant’s principle by showing that 

grip proximity significantly affected the local strains in tendons. 

Nirmalanandhan et al. (2007) subsequently found that increasing the length of 

tissue engineered constructs to minimise the Saint-Venant’s effect also 

increased the material properties, such as stiffness and fibre alignment. 

Legerlotz et al. (2010) found, similarly, that grip-to-grip length played a 

significant role in measured properties of rat and bovine tendon fascicles and 

attributed these to the end-effects.  

In many cases, the choice of tissue is dictated by factors such as location, size, 

or pathology. It is for the following reasons that the NZW rabbit Achilles tendon 

was selected as the tissue of choice for the ARC Linkage Project: 

• It is easily accessible for both treatment and excision 

• It is a large in a small animal, making it easier to work with 

• Achilles tendon pathologies are common and relevant 

The length of tendon, therefore, is not considered as a factor, except in the 

context of gauge length for calculating strain. Legerlotz et al. (2010) noted that 

it is not always possible to control sample lengths, but they should be 

considered when comparing samples due to the influence of end-effects. With 

this in mind, Lynch et al. (2003) discussed the importance of grip selection to 

minimise these end-effects when testing soft tissue. Gripping, therefore, may 

be one of the most important factors to consider when designing experiments. 

7.2.5. Gripping 

Gripping of soft tissue has been historically difficult, due to the slippery and 

delicate but strong structures. Inadequate gripping will likely result in slippage, 

leading to measurement errors (Masouros et al., 2009). Typically, soft tissue 

is clamped, or compressed, between rigid grips to create high friction forces, 

but this can lead to end-effects (Shi et al., 2012; Wieloch et al., 2004), as 

discussed in subsection 7.2.4. As a result, some of the following attempts have 

been made to find suitable means of holding tissue. Flat surfaced grips with 

serrated or sinusoidal faces have been common (Cheung and Zhang, 2006; 

Rincón et al., 2001). Self-tightening wedge action grips have been used to 
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maintain compression (Butler et al., 1984; Kahn et al., 2010). Sandpaper, and 

other additives, have been a common addition to grips to improve the friction 

on the sample, thereby reducing the necessary clamping force (Kahn et al., 

2010; Masouros et al., 2009; Pardes et al., 2016; Schechtman and Bader, 

1997; Sverdlik and Lanir, 2002). A significant drawback is the risk of plastic 

deformation of the samples, meaning repeat tests may not be possible 

(Cheung and Zhang, 2006). 

The use of bony attachments has been identified as a solution since bone is 

easier to fix (Riemersa and Schamhardt, 1982). Potting, using a resin or poly-

methyl methacrylate (PMMA), has been used extensively to secure the bony 

portion of structures, such as bone-ligament-bone and bone-tendon 

complexes (Amis and Scammell, 1993; Butler et al., 1984; Butler et al., 1986; 

Duenwald et al., 2009a; Duenwald et al., 2010; Fryhofer et al., 2016; Kahn 

et al., 2010; Nagasawa et al., 2008; Pardes et al., 2016; Wren et al., 2001b). 

Of most importance, and often overlooked, is the anatomy of the rabbit Achilles 

tendon. The fusion of the gastrocnemius and soleus tendon bodies occurs 

much closer to the calcaneus than in humans. A study by Doherty et al. (2006) 

comparing human and rabbit Achilles tendon noted that the human Achilles 

fused 200mm proximal to the calcaneus out of 260mm full length of the triceps 

surae, while the rabbit tendon fused at only 5.2mm above the calcaneus out of 

70mm of triceps surae. By removing the tendon from the calcaneus, test 

results will not truly represent the properties of the Achilles tendon. 

Cryo-grips, or freezing grips, are increasingly being used to grip soft tissue for 

testing, as they eliminate the need to compress the tissue, potentially 

minimising the Saint-Venant’s effect. Riemersa and Schamhardt (1982) 

developed what is considered the original cryo-grip, and many variations have 

been developed since (Chatzistergos et al., 2010; Duenwald et al., 2009a; 

Duenwald et al., 2010; Lepetit et al., 2004; Morelli et al., 2002; 

Riemersa and Schamhardt, 1982; Rincón et al., 2001; Sharkey et al., 1995; 

Shi et al., 2012; Wieloch et al., 2004), including thermoelectrically cooled 

(TEC) grips (Kiss et al., 2009; Warden, 2007). These grips have been shown 

to resist large loads without slippage and are now considered the gold standard 

for mechanical testing of tendons (Shi et al., 2012). 
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7.2.6. Strain and strain rate 

Grip-to-grip strain has been shown to overestimate strain compared to local 

measurements (Butler et al., 1984; Sverdlik and Lanir, 2002). Chapters 3–5 

sought to describe the importance of understanding these local strains. One of 

the reasons for utilising grip-to-grip is the simplicity of the measurement. While 

it may not be the most accurate method, as it assumes no slippage and uniform 

strain, but it is easily implemented. Extensive work by Screen et al. (Anssari-

Benam et al., 2012a; Cheng and Screen, 2007; Gupta et al., 2010; Screen, 

2008; Screen et al., 2004a; Screen and Evans, 2009; Screen et al., 2002b; 

Screen et al., 2013; Thorpe et al., 2012a), Arnoczky et al. (Arnoczky et al., 

2002a; Arnoczky et al., 2004; Arnoczky et al., 2002b; 

Lavagnino and Arnoczky, 2005; Lavagnino et al., 2006; Lavagnino et al., 

2005; Lavagnino et al., 2008; Lavagnino et al., 2014) and others (Bogaerts 

et al., 2016; Duenwald et al., 2011; Han et al., 2013; Jimenez et al., 1989; 

Khodabakhshi, 2011; Khodabakhshi et al., 2013; Kuo et al., 1999; Lersch 

et al., 2012; Miller et al., 2012a; Miller et al., 2012b; Miller et al., 2012c; Obst 

et al., 2014b; Okotie et al., 2012; Rigozzi et al., 2009), has sought to measure 

local strains within the tendon. These are primarily strains of the 

microstructure, but significant strides have been made in relating the macro- 

and micro-strains (Fang and Lake, 2015, 2016; Gupta et al., 2010; Han et al., 

2013; Kahn et al., 2013; Stella et al., 2008; Upton et al., 2008). A significant 

advantage of capturing local strain data is the ability to inform finite element 

models (FEM) (Ahmadzadeh et al., 2015; Fornells et al., 2007; 

Guilak and Mow, 2000; Handsfield et al., 2017; Hansen et al., 2017; 

Lavagnino et al., 2008; Peña et al., 2007; Screen and Evans, 2009; Shim 

et al., 2015; Shim et al., 2014; Wilkes et al., 2009). As a result, technologies 

such as video strain transducers (Lam et al., 1992; van Bavel et al., 1996; Woo 

et al., 1992) and digital image correlation (DIC) (Chen et al., 2005; Evans 

et al., 2007; Gao and Desai, 2010; Genovese et al., 2011; Genovese et al., 

2013; Okotie et al., 2012; Spera et al., 2011) have been employed to more 

accurately measure the surface strain of the tendon. These techniques have 

limitations in that they assume the surface of the tendon is representative of 

the internal structures, which may not be the case in hierarchically-structured 
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tissue such as tendon. However, they provide a platform for linking the 

microstrain and local strains. 

Mechanical behaviour of soft tissue is viscoelastic and is, therefore, dependent 

on strain rate (Pioletti et al., 1998). It has been suggested that strain rate 

dependence may only exist in the toe region (Masouros et al., 2009; Pioletti 

et al., 1999). Strain rates of 0.1–14,000%.s-1 have been reported in many 

tissues, with a common finding of increased stiffness and modulus, but not 

necessarily an increase in failure properties (Bonner et al., 2015; Clemmer 

et al., 2010; Crisco et al., 2002; Lewis and Shaw, 1997; Lynch et al., 2003; 

Mattucci et al., 2013; Pioletti et al., 1999; Robinson et al., 2004; Theis et al., 

2012; Thornton et al., 2007; Wren et al., 2001a). Studies into the effects of 

collagenase demonstrated no change in failure load using high strain rates but 

a reduced failure load when testing at low strain rates (Chen et al., 2004; Hsu 

et al., 2004a; Hsu et al., 2004b; Lake et al., 2008; Stone et al., 1999). It has 

been suggested that the influence of strain rate has been overstated 

(Masouros et al., 2009). In many cases though, strain rate selection can be 

narrowed down to machine capabilities and data acquisition rate (Duenwald 

et al., 2009b).  

7.2.7. Preconditioning 

The importance of preconditioning was discussed by Fung as far back as 1981 

(Shoemaker et al., 1986), and has since been identified as an essential part of 

testing protocols for soft tissue (Lanir, 2010). Preconditioning is the cycling of 

a sample multiple times until a steady-state is reached, at which point the 

tissue will behave in a repeatable fashion when tested. Preconditioning is only 

partially reversible and requires time for recovery (Abrahams, 1967; Duenwald 

et al., 2010; Lanir, 2010; Rigby et al., 1959; Sverdlik and Lanir, 2002). It was 

highlighted as a component of the time-dependent characteristic of tissue, as 

its role is to develop a long term, or even irreversible, recovery component 

when compared to the elastic response (Sverdlik and Lanir, 2002). 

Preconditioning effectively shifts the stress-strain curve to the right due to an 

increase in the ‘stress free’ tendon length (Sverdlik and Lanir, 2002) and has 

been shown to realign the collagen fibres along the direction of loading via 

progressive fibre recruitment (Miller et al., 2012c; Quinn and Winkelstein, 
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2011; Teramoto and Luo, 2008). This may in part be due to the uncrimping 

and alignment of the collagen matrix without recovery. Ciarletta et al. (2008) 

and Ratchada (2013) have suggested preconditioning represents the 

stabilisation of links between the collagen and proteoglycan (PG) matrices. 

Despite its importance, relatively few studies in literature have explicitly 

investigated preconditioning, with many investigating this phenomena to 

achieve better tissue graft fixation (Bergomi et al., 2009; Cheng et al., 2009; 

Ejerhed et al., 2001; Jaglowski et al., 2016; Jisa et al., 2016; Liu and Yeung, 

2006; Liu and Yeung, 2008; Lockwood et al., 2016; Miller et al., 2012c; 

Quinn and Winkelstein, 2011; Schatzmann et al., 1998; Sverdlik and Lanir, 

2002; Teramoto and Luo, 2008).  

Pradas and Calleja (1990) discussed the importance of preconditioning on the 

nonlinear behaviour of hand flexor tendons during creep experiments. They 

found that preconditioning removed the irrecoverable portion of the tendon 

extension, thus permitting full recovery between creep tests on the same 

tendon. Most studies assume a steady response after 10–20 cycles; however, 

it has been reported that effects can continue after 1000 cycles (Rigby et al., 

1959; Sverdlik and Lanir, 2002), and up to 2000 (Bergomi et al., 2009). One 

thousand cycles was recommended for longer testing durations (Bergomi 

et al., 2009). Cheng et al. (2009) recommended that preconditioning strain 

should be the highest strain used in the study, and that it should be reported 

for comparison purposes. Similar recommendations were made by Jaglowski 

et al. (2016) and Lockwood et al. (2016), who found that high-load 

preconditioning reduced subsequent extensions. Nevertheless, some studies 

have reported no effect of preconditioning (Ejerhed et al., 2001; Jisa et al., 

2016). 

Preconditioning is not always appropriate. To avoid interference with 

measurements, Kahn et al. (2010) preferred to simply preload the rabbit 

Achilles tendon so as not to influence the loading history.  

7.2.8. Time dependence 

Of great interest is the duration of testing required to accurately describe the 

behaviour of soft tissue over a long period. Many different time periods have 
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been used to test tendon behaviour in both static and dynamic creep and 

relaxation tests. However, many of these appear to have been selected 

arbitrarily. Ideally, tissue would be measured for several hours in order to 

determine whether an equilibrium is achieved. However, this is impractical in 

most applications, and a compromise must be achieved. To the author’s 

knowledge, only one previous study, by Manley Jr et al. (2003), has 

investigated time explicitly. The effect of time on mechanical testing will be 

investigated in Chapter 8. 

7.2.9. Recovery 

Viscoelastic tissues require a period of recovery between testing to prevent 

influence of previous loading histories on subsequent tests. Failure to allow for 

adequate recovery may result in measurement errors when compared to 

untested or fully-recovered samples (Duenwald et al., 2009a). Few studies 

have investigated recovery, but it has been shown that recovery requires more 

time than the duration of loading (Legerlotz et al., 2013b), with 

recommendations of at least one order of magnitude longer than the test 

length; that is, 1000s for a 100s test (Duenwald et al., 2009a). It was noted that 

recovery was incomplete after seven hours following a 50-minute cyclic test of 

cat spine, but fully recovered in wrist ligaments and intervertebral discs after 

24 hours following creep tests (Duenwald et al., 2009a; O’Connell et al., 2011). 

While this likely has little influence on tensile tests, it may significantly influence 

the behaviour of viscoelastic testing. 

7.3. Methodology 

7.3.1. Samples 

Sixteen NZW rabbit Achilles tendon were obtained from an unrelated study 

under University of Western Australia (UWA) Animal Ethics Committee 

approval RA/3/100/1049. The triceps surae, tendon and calcaneus were 

excised as a single unit, and the aponeurosis removed from around the tendon. 

Tendons were wrapped in saline-soaked gauze and stored at -20°C in 

accordance with the recommendations in subsection 7.2.1. On the day of 

testing, tendons were thawed at room temperature in a bath of Ringer’s 

solution to maintain hydration. The calcaneal tuberosity was potted in poly-
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methyl methacrylate (PMMA) (Vertex Self Curing, Vertex-Dental B.V., 

The Netherlands) inside of a 25mm section of OD20mm PVC pipe. Cross-

sectional area (CSA) was measured using an Artec Spider™ structured light 

scanner (Artec Group, Luxembourg) as described in Chapter 4. 

7.3.2. Test setup 

Mechanical testing was performed on an Instron 5566 uniaxial materials 

testing system (Instron, MA, USA). The myotendinous junction was secured 

within TEC grips (Bose Enduratec, MN, USA) by freezing between the gripping 

faces using the Peltier thermoelectric effect. The calcaneus was secured 

perpendicular to the tendon axis, in an anatomical position. The setup 

(Figure 7-1) was similar to that described by Warden (2007). A line of India ink 

was applied at the interface of the TEC grip to assess slippage. Once the 

musculotendon junction was secured, a preload of 1N was applied and the 

grip-to-grip length measured using digital callipers (accuracy 0.01mm). 

Tendons were kept moist by spraying with saline. 

7.3.3. Mechanical testing 

Tendons were preconditioned for 20 cycles, from 0% to 4% strain at 1%.s-1. 

Eight tendons were stretched to failure at 10%.min-1 and the remaining eight 

 

Figure 7-1: The rabbit Achilles tendon tensile test setup on the Instron 5566. The calcaneus was 

potted in poly-methyl methacrylate (PMMA) and secured perpendicular to the tendon axis in an 

anatomical position. The myotendinous junction was frozen within the thermoelectrically cooled 

(TEC) grips. 
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tendons stretched at 1000%.min-1. Tendons that failed by avulsion were 

retested at the same strain rate, without the calcanues, and secured with a 

second grip. 

7.3.4. Measurements 

Load and displacement were recorded at 60Hz. Stress and strain were 

calculated from CSA and gauge length. Maximum values of load, stress, 

displacement, and strain were calculated. Stiffness, and elastic modulus, were 

calculated using a custom implementation of the Instron BlueHill 2 automatic 

slope algorithm. This algorithm, described in detail in the Instron BlueHill 

Calculation Reference manual (version 1.1), divides the data into six equal 

regions between zero and the maximum load, calculates the slope of each 

region using least-squares linear fit, and finally returns the highest slope value 

from the pair of regions with the ‘highest slope sum’. 

7.3.5. Statistics 

Data were analysed using Microsoft Excel (2016) and in the 

R Statistical Environment (Lianoglou and Antonyan, 2014; R Core Team, 

2015; RStudio, 2016; Wickham, 2009, 2011, 2015). Results are presented as 

mean and standard deviation. 

7.4. Results and discussion 

7.4.1. Samples 

In all, 16 tendons were tested at both 10%.min-1 (~2.2mm.min-1), herein 

referred to as Slow, and 1000%.min-1 (~220mm.min-1), herein referred to as 

Fast. The mean gauge length of the tendons was 21.87 ± 3.54mm 

(mean ± SD). The mean minimum CSA was 8.25 ± 1.08mm2. CSA 

measurement was smaller than that measured in Chapter 4 (9.9 ± 1.0mm2) but 

similar to others reported in literature (Ikoma et al., 2013). CSA is likely lower 

due to the young age of the rabbits. 

7.4.2. Failure properties 

All samples in the 10%.min-1 group failed by avulsion and were subsequently 

retested as tendon-only samples for comparison. These are herein referred to 

as Slow-T. Five out of eight, or 62.5%, of the Fast tendons failed in the tendon 

midsubstance. Subsequently, no Fast tendons were repeated as there would 
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be insufficient statistical power in the Fast-T group. Raw data is presented in 

Figure 7-2. 

It was noted by Noyes et al. (1974) that bone-ligament-bone constructs tested 

at slow strain rates tend to fail by avulsion more than in the midsubstance, 

while high strain rates fail in the midsubstance more than by avulsion. 

Lewis and Shaw (1997) showed similar behaviour in human Achilles tendon 

constructs, with avulsions only occurring in the slow strain group. The results 

of this study confirm these findings in bone-tendon constructs, with slow strain 

rates failing by avulsion in 100% of cases, compared with 37.5% of samples 

at the faster strain rate. The proportion of avulsion fractures in the Slow group 

was higher than some previous studies that reported avulsion fractures (Kiss 

et al., 2009; Rincón et al., 2001; Wren et al., 2001a), while similar to others 

(Lewis and Shaw, 1997; Wieloch et al., 2004). Avulsion rates in the Fast group 

were similar to the aforementioned studies. This suggests that tendons should 

be tested at faster strain rates to ensure that results reflect the failure 

mechanics of the tendon, as opposed to the failure mechanics of the construct. 

This study utilised a simple means of assessing slippage at the musculotendon 

junction, as previous used by Butler et al. (1984). Slippage was not evident via 

observation of the India ink mark and load-displacement curve. 

Avulsion fractures in this study represented a clean break of the calcaneus 

near the boundary of the tuberosity. This occurred within the PMMA in most 

cases, suggesting that the failure was related to the tensile strength of the 

Table 7-1: Mean ( ± SD) tensile test results for rabbit Achilles tendon for the Fast, Slow, and Slow 

Tendon-only (Slow-T) groups. Displacement (mm) and strain (%) values correspond to the 

maximum force (N) and maximum stress (MPa) values, respectively. + denotes significantly 

different from Slow. # denotes significantly different from Slow-T. 

Tensile Test Slow Slow-T* Fast 

Max. Force (N) 306.7 ± 69.6 249.0 ± 53.1 378.9 ± 105.4# 

Max. Stress (MPa) 38.9 ± 11.8 31.0 ± 5.9 44.5 ± 9.3# 

Displacement (mm) 6.5 ± 1.9 4.2 ± 1.1+ 6.1 ± 1.3# 

Strain (%) 28.1 ± 7.7 28.4 ± 6.1 28.8 ± 7.0 

Stiffness (N/mm) 64.3 ± 9.8 99.4 ± 30.7+ 97.4 ± 14.3+ 

Elastic Modulus (MPa) 203.0 ± 54.0 194.2 ± 53.3 249.6 ± 50.9 
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bone and was not caused by bending at the junction of the PMMA and bone. 

Midsubstance failures appeared to have been caused by fibres within the 

tendon body failing at their weakest point and as they reached their limits, 

resulting in a slower failure of the tendon and fraying of the tendon ends. Most 

failures occurred at or near the point of fusion. Tendon-only testing saw the 

tendon fail at the lower grip, near the point of minimal CSA, which is most likely 

due to the effect of clamping the tendon. 

Testing has generally shown that the muscle-tendon-bone unit fails at the 

junctions (Benedict et al., 1968). It has been noted that, with adequate 

gripping, soft tissue samples that fail at or near the grips have similar results 

 

Figure 7-2: Tensile test results for rabbit Achilles tendon for the Fast, Slow, and Slow Tendon-

only (Slow-T) groups. (top) Force (N) versus Displacement (mm), and (bottom) Stress (MPa) 

versus Strain (%). Raw values (solid), slopes (dotted) and peak values (red) are indicated. 
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to those that fail midportion (Masouros et al., 2009). Avulsion fractures are 

known to be the most common mode of failure in young adults (Wren et al., 

2001a). While the exact ages of the rabbits used in this study were not known, 

the estimated age at sacrifice was 18–20 weeks. This is younger than reported 

skeletal maturity of six months (26 weeks) (Cacchioli et al., 2012; Canavese 

et al., 2010; Francesca et al., 2015) and may explain the higher incidence of 

avulsion fractures at low strain rates compared with other studies. The 

absence of failures at the musculotendon junction can be viewed as a success, 

since this has previously been identified as the weak link of the muscle-tendon-

bone unit (Sharma and Maffulli, 2005b; Wang, 2006), and the most difficult to 

grip (Masouros et al., 2009). However, testing of tendon-only specimens 

highlighted the issues with gripping of soft tissue, as the tendon failed at the 

grip in a way that suggested influence by the grip. 

Mean results for the tensile testing are presented in Table 7-1 and Figure 7-3. 

Slow-T demonstrated significantly lower values of force and stress at failure 

compared with Fast, but no difference with Slow. Slow-T also demonstrated 

significantly lower displacement at failure compared with both Slow and Fast. 

Stiffness was significantly higher in both Slow-T and Fast compared with Slow, 

but not different between Slow-T and Fast. No difference was detected 

between groups in strain or modulus measurements. 

Reports of the mechanical properties of NZW rabbit Achilles tendon in the 

literature are varied. The values reported in 19 studies have been summarised 

in Table 7-1, along with the results of this study. The full reported values are 

tabulated in Table 7-3. All values reported in this study are within the ranges 

seen in the literature, and at or near the mean and median values, suggesting 

the testing protocols are representative of best practice. 

Strain rate was shown to affect the mode of failure and the stiffness of the 

construct, but did not significantly affect any other measure of testing. 

Removing the bone was shown to affect the failure force and stress, compared 

with the Fast group, but did not appear to alter the behaviour of the tendon 

relative to the Slow group. When the anatomy of the tendon is considered, 

namely the distance of fusion proximal to the calcaneus, it may be preferable 

to test with the bone intact. A significant limitation of this study was that 
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tendons were reused for the Slow-T group and may have been damaged 

during previous testing. 

The young age of the rabbits may explain the average properties in this study. 

Nakagawa et al. (1996) demonstrated an increase in tendon properties with 

age, with young adults considered 8–10 months compared with less than six 

months in this study. Force, strength, and modulus increased, but little 

difference was seen in maximum strain. Failure strain was seen to be 

consistent between strain rates and gripping techniques, lending support to 

the idea that strain is the limiting factor in failure of the tendon. However, strain 

 

Figure 7-3: Mean ( ± SD) tensile test results for rabbit Achilles tendon for the Fast, Slow, and Slow 

Tendon-only (Slow-T) groups. Displacement (mm) and strain (%) values correspond to the 

maximum force (N) and maximum stress (MPa) values, respectively. Significance (p<0.05) is 

between groups is indicated. 
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was higher in this study compared to the literature. Since younger bone is more 

elastic, it is possible that this contributed to the relatively high displacement 

and strain seen in this study. Hugate et al. (2004) reported a grip-to-grip strain 

of 50% but noted that the midsubstance strain was much lower at only 19%, 

lending plausibility to the idea that the bone contributed to the overall strain. 

This will have influenced the values of stiffness and modulus. 

There are several possible reasons for the difference in failure load. As 

discussed in subsection 7.2.4, end- effects will lead to higher loads at shorter 

grip-to-grip lengths. To the best of the author’s knowledge, the gauge length 

of rabbit Achilles tendon has not been reported sufficiently in the literature to 

compare. Of the 19 reports of rabbit tendon properties (Table 7-3), there were 

only three reports of failure loads greater than the mean value – Nakagawa 

et al. (1996), with both young and old rabbits, and Wang et al. (2015). 

Nakagawa et al. (1996) noted that the length of tendon was 50mm upon 

excision, and clamped both ends of the tendon within wedge-action grips, likely 

minimising end-effects. Although the tendon CSA was larger than in this study 

(13.2/15.3mm2 vs. 8.1mm2), the maximum stresses of ~67MPa was still much 

greater than the 39MPa in this study. It is entirely possible that similar stresses 

may have been achieved in this study if the samples had not failed by avulsion. 

Wang et al. (2015) made use of liquid nitrogen to freeze the tissue within the 

grips. Additionally, the entire bone-tendon junction was frozen within the grip. 



 

 

 

 

Table 7-2: Summary of 18 papers with 19 relevant reports of tensile test results of healthy rabbit Achilles tendon. Results from this study 

are presented for comparison. 

N = 19 Reports Mean Median Range (Min – Max) Slow Slow-T* Fast 

Strain rate (mm/min) 19 216.6 60.0  1.0 – 600.0 ~2.2 ~2.2 ~220 

CSA (mm2) 9 11.7 13.2  4.3 – 16.8 8.1 ± 0.8 8.1 ± 0.8 8.5 ± 1.3 

Force (N) 18 415.8 342.8  189.0 – 1010.4 306.7 ± 69.6 249.0 ± 53.1 378.9 ± 105.4 

Stress (MPa) 15 37.5 33.4  8.4 – 85.3 38.9 ± 11.8 31.0 ± 5.9 44.5 ± 9.3 

Displacement (mm) 3 5.5 5.5 5.0 – 6.0 6.5 ± 1.9 4.2 ± 1.1 6.1 ± 1.3 

Strain (%) 10 22.4 16.2 10.7 – 50.0 28.1 ± 7.7 28.4 ± 6.1 28.8 ± 7.0 

Stiffness (N/mm) 10 117.4 97.0  36.5 – 224.7 64.3 ± 9.8 99.4 ± 30.7 97.4 ± 14.3 

Modulus (MPa) 15 180.2 68.3  1.62 – 618.0 203.0 ± 54.0 194.2 ± 53.3 249.6 ± 50.9 
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Since the liquid nitrogen technique did not permit exact freezing – the grips 

required submersion in the liquid nitrogen which may cool the tendon 

midsubstance – it is possible the tendon was tested below room temperature 

and behaved as a stiffer construct. The maximum stresses in this study match 

well with those previously reported, being almost equal to the mean (37.5MPa 

vs. 38.9MPa in this study). This highlights the importance of presenting 

material properties (stress, strain, and modulus), rather than construct 

properties (load, displacement, and stiffness) which are difficult to compare. 

7.4.3. Hydration and temperature 

The method of hydration in many cases is influenced by measurement and 

testing requirements. In the case of optical measurement systems, 

environmental chambers and baths may not be possible, due to the need for 

clear line-of-sight. Additionally, grip selection may influence the choice of 

hydration method. In this case, the choice of TEC grips prohibited the use of a 

bath, since grips would cool the bath. This, in turn, would negative influence 

the temperature of the testing environment. Additionally, the bath would likely 

reduce the effectiveness of the grips by inhibiting freezing and increasing 

slipperiness at the interface. Similarly, the use of TEC grips discouraged the 

use of an environmental chamber, since the constant warming of the chamber 

would also reduce the effectiveness of the grips. As a result, it was deemed 

more practical to perform testing at room temperature and to maintain 

hydration via regular pipetting of Ringer’s solution onto the tendon, below the 

TEC grip. The means of hydration likely had limited impact on the results of 

this experiment since the testing time was negligible. Despite evidence of 

temperature not significantly affecting behaviour up to 37 C (Rigby et al., 

1959), testing at room temperature may be considered a limitation of this study. 

7.4.4. Length, grip selection, and orientation 

During pilot testing, many grips were developed, based on those described in 

the literature (subsection 7.2.5), and trialled. Specifically, wedge action, flat 

plates with sinusoidal teeth, sandpaper, cyanoacrylate, and various liquid 

nitrogen cooled fixations were trialled. The most successful for tensile tests to 

failure were the liquid nitrogen based devices; however, these were impractical 

as they required time in a liquid nitrogen bath to freeze and were, therefore, 
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unsuitable for extended testing. In line with recommendations from the 

literature (Kiss et al., 2009), TEC grips were identified as the most suitable 

means of fixing the musculotendinous junction for an extensive period of time.  

Pilot testing of tendon with and without bone found more reliable and 

repeatable results during testing with the bone. Since the length of tendon with 

bony attachment was only 20–30mm, gripping both ends of the rabbit Achilles 

tendon using clamps resulted in a very short grip-to-grip length and an 

increased influence of Saint-Venant’s end-effects. Additionally, the proximity 

of the freezing grips resulted in a lower temperature of the midsubstance. It 

was found that the tendon still failed at the grips, usually by shredding and 

fraying of the tendon fibres at the point of first ‘impingement’ of the clamps. 

Methods of bony fixation were trialled, including keyhole slots with and without 

cementation. PMMA cement was found to be necessary to prevent the bone 

pulling through at high loads and to avoid impinging on the tendon, since the 

insertion extended across much of the calcaneal tuberosity surface. 

The bone-tendon-muscle complex was secured as close to anatomical 

position as possible. The orientation of muscles to the bone was noted and 

replicated. By fixing in bone cement, the calcaneus was able to be oriented 

90 degrees to the tendon, thereby maintaining anatomical orientation as 

recommended in subsection 7.2.3. Coincidentally, the mechanical setup was 

found to be almost identical to one reported by Warden (2007).  

7.4.5. Preconditioning, strain rate, and strain measurements 

Tendons in this study were cycled for 20 cycles between 0% and 4% strain in 

line with other studies. A lower strain magnitude was required for 

preconditioning, contrary to recommendations by Cheng et al. (2009), since 

these tendons were to be tested to failure. Four percent was selected as it is 

regarded as the end of the linear region in the typical stress-strain profile. In 

this case, the number of cycles was selected for convenience and based on 

similar studies. For example, Nakagawa et al. (1996) used 10 preconditioning 

cycles while Wang et al. (2015) reported only five cycles. Based on the 

extension/strain observed, it is possible that 20 cycles were insufficient to 
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achieve adequate preconditioning and, therefore, the number of cycles should 

be considered carefully before viscoelastic testing.  

Subsection 7.2.6 highlighted the effect of strain rate on stiffness and modulus, 

with an increase in both properties with increasing strain rate. Based on 

findings by Noyes et al. (1974) in bone-ligament-bone constructs, Yasuda 

et al. (2000) identified that use of higher strain rates in bone-tendon constructs 

results in less avulsion fractures. Conversely, it has been said that influence 

on strain rate is overstated and may not affect failure properties. The strain 

rate in this study can be viewed as a limitation but highlights the importance of 

strain rate and the need to report values in the methodology to allow for 

comparison between studies. 

Despite the importance of measuring local strains (subsection 7.2.6), no 

reliable method for optical strain measurement was developed. The higher 

strains recorded during this study are likely explained by the use of grip-to-grip 

measurements in place of optical measurements. Attempts were made to 

utilise DIC, via the Correlated Solutions VIC-3D measurement system, using 

speckling techniques previously described in literature (Evans et al., 2007; 

Genovese et al., 2011; Genovese et al., 2013; Lionello et al., 2014; Pyne et al., 

2014; Spera et al., 2011). This system had successfully been implemented in 

synthetic bone models within the Royal Perth Hospital laboratory (Giesinger 

et al., 2014; Walcher et al., 2016). Despite best efforts, a quality and 

reproducible speckle pattern, as described by Crammond et al. (2013), was 

not achieved in pilot testing and the technique was subsequently abandoned. 

One significant problem that was unresolved was the running of dyes and 

marks due to the water content and hydration techniques. Use of this as a 

technique is desirable and worthy of future investigation. 

7.5. Conclusion 

The literature and results of this study support the use of the methodology as 

an example of best practice. Achilles tendons should be tested as a bone-

tendon-muscle construct so as to test the Achilles tendon body, rather than the 

three tendons of the gastrocnemius and soleus, as well as to provide a more 

suitable means of securing the tendon. Strain rates should be high enough to 
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ensure failure of the tendon body, rather than the bone. Faster strain rates also 

reduce the fluctuations in the hydration of the tendon during testing. This study 

did not adequately deal with the effect of temperature on uniaxial properties; 

however, methods of maintaining tendon temperature are fundamentally at 

odds with grips that employ freezing, and thus room temperature was used as 

a compromise. Tendon properties showed little difference between strain 

rates, with the exception of failure mechanism and stiffness, indicating that the 

strain rate may not be as important a factor in tendon mechanics as once 

thought. Finally, strain appears to be the limiting factor for failure of the tendon, 

with tendons failing at almost the same strain, regardless of technique.  

This chapter reports the methodology and tensile test results of young NZW 

rabbit Achilles tendon. More importantly, this chapter examines the many 

factors affecting the testing of tendon in detail and discusses the current best 

practice according to literature. The results presented are in agreement with 

similar studies on rabbit Achilles tendon. This chapter, therefore, presents a 

best practice methodology for tensile testing of tendon and other soft tissue. 

 



 

 

Table 7-3: Summary of papers reporting tensile testing of rabbit Achilles tendon. 

Paper 
Strain rate 

(mm/min) 

CSA 

(mm2) 

Force 

(N) 

Stiffness 

(N/mm) 

Stress  

(MPa) 

Strain 

(%) 

Modulus 

(MPa) 

AHMED, A. F., et al. 2012 50  301.2 125   54.8 

BUSCHMANN, J., et al. 2011 1  292  34  8.7 

CHEN, J., et al. 2011 60  352.2 50.1    

CHEN, L., et al. 2011 20 6.9 208.6 58.1 30.8 37.6 145.6 

HUGATE, R., et al. 2004 60 16.8 407  85.3 50 474 

JUNCOSA-MELVIN, N., et al. 2006 30%/s  390 93 33 16 180 

MEIER BURGISSER, G., et al. 2016 1 15 340  23  80 

MEIMANDI-PARIZI, A., et al. 2013 600  227.04 62.21 22.48 11.28 1.62 

MEIMANDI-PARIZI, A., et al. 2013 600 10.31 359.12 215.2 34.8 10.66 3.28 

NAGASAWA, K., et al. 2008 20 ~8   ~35  ~100 

NAKAGAWA, Y., et al. 1996* 20 13.2 919.6  67.3 16.3 618 

NAKAGAWA, Y., et al. 1996 20 15.3 1010.4  66.7 16.3 530.5 

ORYAN, A., et al. 2015 600  345.54 208.27 33.53 10.69 3.13 

REDDY, G. K., et al. 1999 250 ~22 222.4  10.1 38.8 56.6 

REDDY, G. K., et al. 2002* 250  306  8.4  29.6 

WANG, T., et al. 2015 120  896.1 224.7    

WEST, J. R., et al. 2004 510  402.6  33.3 16  

YASUDA, T., et al. 2000 500  316 101    

YOUNG, R. G., et al. 1998* 20%/s 4.3 189 36.5 41.6  337.5 



 

 

CHAPTER 8. DURATION OF VISCOELASTIC TESTING 

8.1. Introduction 

To understand the time-dependent viscoelastic behaviours of tissues it is 

necessary to observe the tissue under stress or strain for a duration of time, 

since it is known that tissues exhibit fast and slow transient behaviours. While 

many experiments have been performed to examine these behaviours in 

various tissues, the duration of testing required to accurately model the time-

dependant behaviour of tissues is unclear (Manley Jr et al., 2003). Ideally, 

tissues would be observed for several hours in order to determine whether an 

equilibrium is achieved, or whether fatigue occurs. However, this is impractical 

in most applications since the tissues are no longer in vivo and risk dehydration 

and damage and, therefore, a compromise must be reached. 

This chapter seeks to establish a recommended time for future viscoelastic 

testing by surveying the literature, investigating the effect of loading step, and 

establishing an appropriate curve fitting technique for defining the viscoelastic 

response.  

8.1.1. Analysis of literature 

A literature survey was performed to identify current best practice and inform 

subsequent relaxation and creep testing. Search terms including ‘stress 

 

Figure 8-1: Summary of the tissue types undergoing time-dependent viscoelastic testing (n=81).  
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relaxation’, ‘creep’, and ‘viscoelastic testing’, along with various commonly 

tested tissue types, were entered in the Curtin University of Technology (CUT) 

Library’s OneSearch tool. Eighty-one (81) papers were found to be suitable 

and further analysed for details regarding testing duration. The complete list of 

papers can be found in Appendix A – Analysis of literature. 

While it is known that many more papers exist, this survey sought only to 

establish what is considered best practice in the duration of testing. Tissues 

tested included bone (Abdel-Wahab et al., 2011; Iyo et al., 2004; Quaglini 

et al., 2009), tendon (Abramowitch et al., 2010; Duenwald et al., 2009a; 

Duenwald et al., 2010; Manley Jr et al., 2003; Sverdlik and Lanir, 2002), 

ligament (Abramowitch and Woo, 2004; Hingorani et al., 2004; 

Pioletti and Rakotomanana, 2000b; Thornton et al., 1997), and various other 

soft tissues, such as skin (Lanir, 1976; Liu and Yeung, 2008; O’Connell et al., 

2011; Pierlot et al., 2015; Reihsner and Menzel, 1998; van der Veen et al., 

2013; Yang et al., 2006). A breakdown of the tissue types can be seen in 

Figure 8-1; of the 81 papers, 37 used tendon samples, with a further 17 testing 

ligament. 

Almost all (78) of the 81 papers contained relevant information on testing 

duration. Many different time periods have been used to test tendon behaviour 

in both creep and relaxation tests, as well as cyclically, and have ranged from 

 

Figure 8-2: Summary of the frequency of viscoelastic testing durations (s) reported in literature 

(n=81). 
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minutes (Deligianni et al., 1994; Duenwald et al., 2008; Duenwald et al., 2010; 

Hingorani et al., 2004; Jensen et al., 2004), to hours (Abdel-Wahab et al., 

2011; Abramowitch and Woo, 2004; Abramowitch et al., 2010; Iyo et al., 2004; 

O’Connell et al., 2011; Sasaki and Enyo, 1995; van der Veen et al., 2013). A 

frequency analysis of the papers identified two durations that occur more 

commonly – 100 seconds and 600 seconds (Figure 8-2). 

Analysis of the literature demonstrated little validation for the times provided. 

In many cases, times appear to have been arbitrarily selected and justified 

post-testing. A post hoc analysis by Abramowitch et al. (2010) found that 90% 

of all relaxation occurred in the first 10 minutes, thereby justifying testing 

durations of 600 seconds. Reese and Weiss (2013) found the force at 

300 seconds was within 95% of the equilibrium force, justifying their choice of 

duration. While this explains the high frequency at this time point, van der Veen 

et al. (2013) recommend a duration five times that required to reach 

equilibrium. Manley Jr et al. (2003) investigated testing duration in depth by 

testing ligaments in both creep and relaxation for 1000 seconds, and then 

tested the predictive power for additional relaxation tests of 10,000 seconds. 

Using a power law of 𝐴𝑡𝐵, and a Random Coefficient statistical method to 

assess the accuracy of curve fitting each logarithmic decade of time, it was 

found that 100 seconds was enough to predict the tendon behaviour with only 

1% less accuracy than 1000 seconds, and that the overall error was less than 

the inter-specimen error. Manley Jr et al. (2003) suggested that it is more 

efficient to test a greater number of samples for shorter durations. This may 

explain the higher frequency of short duration testing reported in literature. 

8.1.2. Instantaneous step function 

Viscoelastic models often assume an instantaneous step function as the input 

for stress or strain since it greatly simplifies the formulation of constitutive 

models. Experimentally, an instantaneous step is impossible to achieve and 

so the model will not accurately predict the initial portion of the test. While fast 

strain rates reduce the error in assuming an instantaneous step, they may lead 

to additional sources of error such as overshoot. Slower strain rates avoid 

overshoot but are affected by short-term viscoelastic responses (Yang et al., 

2006). Therefore, it is important to consider the treatment of the initial ramp 
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portion of the viscoelastic test. The conservative method is to measure 

relaxation from 10 times the ramp time, given as 𝑡 = 10𝑡𝑟; however, this has 

the potential to disregard a large portion of short tests, thereby affecting any 

curve fitting (Duenwald et al., 2009b). Duenwald et al. (2009b) demonstrated 

that starting the data from 𝑡 = 2.5𝑡𝑟 resulted in errors similar to 𝑡 = 10𝑡𝑟. This 

approach was used in subsequent experiments (Duenwald et al., 2010). Other 

approaches include introducing corrections in the modelling that account for 

viscoelastic behaviours during the ramp phase (Abramowitch and Woo, 2004; 

Sorvari et al., 2006). 

8.1.3. Use of power law 

Manley Jr et al. (2003) made use of a power law, via log-log transformations, 

to ‘define’ the creep and relaxation behaviour with an accurate representation. 

A seminal paper by Clauset et al. (2009) describes the appropriate use of 

power laws in statistics. While testing the use of power laws to describe the 

data was outside the scope of this experiment, several important points were 

identified: 

• Log-log plots are crude methods for fitting power laws; 

• Least-squares is not an appropriate method of fitting a power law. 

Maximum likelihood estimation (MLE) is preferable; and, 

• Coefficient of determination (R2) should not be used as the measure of 

goodness-of-fit when using a log-log plot. 

The curve fitting techniques used by Manley Jr et al. (2003) were expanded to 

include MLE and nonlinear fitting equivalents of the three linear techniques. 

8.2. Methods 

8.2.1. Samples 

Six Achilles tendons from six New Zealand White (NZW) rabbit were harvested 

and the calcaneal tuberosity potted in poly-methyl methacrylate (PMMA) 

(Vertex Self Curing, Vertex-Dental B.V., The Netherlands). The rabbits were 

obtained from an unrelated study with approval from animal ethics committees 

at the University of Western Australia (UWA) and Curtin University of 

Technology (CUT). Tendons were stored in a domestic freezer at -

20 degrees Celsius, as recommended in subsection 7.2.1, until the day of 
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testing when the tendons were defrosted in a bath of Ringer’s solution (Baxter 

Healthcare, NSW, Australia) and allowed to reach equilibrium at room 

temperature. 

8.2.2. Measurements 

Cross-sectional area (CSA) of each tendon was measured using the technique 

described in Chapter 4. This technique utilises three-dimensional (3D) optical 

scanning to create a digital reconstruction of the tendon, from which CSA can 

be calculated. 

8.2.3. Test setup 

An Instron 5566 uniaxial materials testing system (Instron, MA, USA) with 

100N load cell was used in this experiment. Tendons were loaded axially, with 

the bone end secured in a custom grip and the muscle end held in a 

thermoelectrically cooled (TEC) soft-tissue grip (Bose Enduratec, MN, USA). 

This grip freezes the tissue between the clamping faces, thereby reducing the 

chance of slippage. All samples were preloaded to 1N before testing, and the 

gauge length measured as the grip-to-grip length using digital callipers with an 

accuracy of 0.01 mm. The target levels were set to 4% and 6MPa for relaxation 

and creep, respectively, at a rate of 8% s-1. The target levels were selected 

based on the results published by West et al. (2004). 

Tendons were preconditioned for 120 cycles between 0 and 4% strain at a rate 

of 1Hz. As discussed in subsection 7.2.9, recovery is an important 

consideration when testing the viscoelastic behaviour of tissue, especially 

performing multiple tests on a single sample. A recovery period, one order of 

magnitude longer than the test length, is recommended (Duenwald et al., 

2009b). Tendons were, therefore, recovered for 1200 seconds (20 minutes) in 

a bath of Ringer’s solution at room temperature.  

All six tendons were tested in creep and stress relaxation for a duration of 

one hour (3600s), with the order alternated between tendons. Temperature 

was maintained at room temperature (23°C) and hydrated by spraying Ringer’s 

solution at intervals of approximately two minutes. Measurements of time, 

displacement, and load were recorded at approximately 60Hz. Between tests, 
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tendons were wrapped in saline-soaked gauze and left to recover overnight in 

a sealed container. 

8.2.4. Curve fitting 

Results were analysed using linear methods as described in Manley Jr et al. 

(2003). Previous studies determined that results can be adequately fitted with 

a power law (Lakes and Vanderby, 1999; Provenzano et al., 2002c). 

 

The power law was further simplified to a linear relationship of:  

 

RStudio (2016) and R statistical environment (R Core Team, 2015) were used 

for curve fitting and statistical analysis. Results are presented as mean and 

standard deviation (mean ± SD). 

Results were initially fitted with a linear model (LM) using the default least-

squares method, lm, in the R Statistical Environment. Data were centred by 

subtracting the mean of log t and log y. This model was fitted to subsets of the 

data between 10 seconds and 3600 seconds. As suggested in Duenwald et al. 

(2009b), a multiple of the rise time was subtracted from the beginning of the 

data to remove any effects of overshoot. To confirm the findings of Duenwald 

et al. (2009b), multipliers of 1, 2.5, and 10 were compared. Coefficient of 

determination (R2) was used to assess the goodness of the fit. The response 

for each sample was predicted from the fit for each subset of time, excluding 

the initial rise time, and the R2 values recalculated against the whole data set. 

The parameters were pooled and the mean and standard deviation were 

calculated as a representative fit for each subset of time. 

As suggested by Manley Jr et al. (2003), a linear mixed effects regression 

(LMER) – may produce a better representative model since it considers all the 

samples simultaneously when calculating the fitting parameters. The function 

lmer, of the LME4 package (Bates et al., 2015), in the R statistical environment 

𝑦 =  𝐴 𝑡𝐵 

Equation 8-1: Power Law 

𝑙𝑜𝑔 𝑦 = 𝐴 + 𝐵 𝑡 

Equation 8-2: Linearised Power Law 
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(R Core Team, 2015) was used. Since the intercept was set to zero by centring 

the data, only the slope was considered to have an associated random effect. 

The code for fitting the log-linear mixed linear is described in Equation 8-3. The 

bobyqa optimisation algorithm was used. 

 

It has been suggested that linear regressions are inappropriate for fitting log-

log plots and power laws in general (Clauset et al., 2009). Therefore, an MLE 

function, mle2 in R-package bbmle (Bolker and R Development Core Team, 

2017), was used to estimate parameters. Since it was stated that that log-log 

plots are a crude method for fitting power laws (Clauset et al., 2009), direct 

fitting of Equation 8-1 was performed on the untransformed data using 

nonlinear least-squares (NLS) regression nls in R-package minpack.lm 

(Elzhov et al., 2016), mle2, and nonlinear mixed effect regression (NLMER) 

using the nlmer function (Equation 8-4) of the LME4 package (Bates et al., 

2015). 

  

8.2.5. Statistical analysis 

The estimated rate of change (rate of creep/relaxation) was compared across 

all time periods and multipliers. Manley Jr et al. (2003) compared the 

correlation-of-variation (CV) as a measure of accuracy of fit, and this 

comparison was replicated. CV was compared across time and multiples of tr. 

The mean rate of change at each duration was also compared to the rate of 

change at 3600s. Difference between the groups was evaluated using a 

Welch’s t-test, while equivalence was assessed using a two one-sided test 

(TOST). Cohen’s d was estimated from the standard deviations of the two 

groups. Statistical significance was assessed as p < 0.05. 

𝑓𝑖𝑡 ← 𝑙𝑚𝑒𝑟(log 𝑦 ~ 𝑡 +  (𝑡 − 1) 𝑖𝑑)⁄  

Equation 8-3: R-code for lmer fitting. Note that t-1/id specifies that there is a random effect on the 

slope caused by group id, but there is no random effect for the intercept. 

𝑓𝑖𝑡 ← 𝑛𝑙𝑚𝑒𝑟(𝑦 ~ 𝑝𝑜𝑤𝑒𝑟. 𝑓(𝑡, 𝐴, 𝐵) ~ 𝐵 𝑖𝑑)⁄  

Equation 8-4: A simplified excerpt of R-code for nlmer fitting. power.f is the input form of the 

power law, Equation 8-1. Note that B/id specifies that there is a random effect on parameter B 

caused by group id. 
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Means were also compared against the 95% confidence interval (CI) 

calculated at 3600s. Means were considered acceptable when they existed 

between the upper and lower bounds. 

8.3. Results 

8.3.1. Raw data 

 

Samples were held at values of 4% strain and 6MPa for stress relaxation and 

creep respectively. Figure 8-3 demonstrates the time-dependent viscoelastic 

response of the tendons in creep and relaxation. The rise time for all stress 

relaxation tests was 0.4 seconds, and ranged from 0.37–0.74 seconds 

(0.53 ± 0.14) for the creep tests. Overshoot was evident in all tests as expected 

(Figure 8-4). 

 

Figure 8-3: Creep (%) and Relaxation (MPa) responses of each rabbit Achilles tendon (n=6) at 4% 
strain and 6MPa stress. 
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Data were well fitted by a power law (𝑦 = 𝐴𝑡𝛽). Data also underwent log-log 

transformation in order to fit the power law via linear fitting techniques 

(Figure 8-5). The coefficients of determination (R2) for the standard regression 

models in both creep and relaxation demonstrate strong linear relationships 

when transformed, with a mean R2 for all iterations of 0.996 ± 0.008 (range 

0.939–1.000). 

 

Figure 8-5: Viscoelastic response of rabbit Achilles tendon shown as a log-log relationship of 
creep (%) and relaxation (MPa) over time (s). 

 

Figure 8-4: Creep (%) and relaxation (MPa) over time (s) showing overshoot following the initial 

ramp (negative time). The start of the hold period is indicated by a vertical dashed line (grey). 
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Figure 8-6: Examples of the predicted behaviour resulting from curve fitting of 100 seconds with 

a multiplier of 2.5tr. Note that the data for the LMER and NLMER fits have been centred. 
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8.3.2. Effect of fitting technique 

The mean and standard deviation for rate of change (β) was calculated for 

creep and relaxation via one of the six fitting methods. The rate of change for 

each fit over the full test duration is presented in Appendix B – Rates of 

change (β). Examples of each technique are presented in Figure 8-6. 

Rate of change values were generally similar for LM, LM-MLE, LMER, NLS, 

and MLE curve fits at each duration and multiplier (Figure 8-7). Rate of change 

values for NLMER were similar in creep but noticeably lower in relaxation 

(Figure 8-7). This is an artefact of the technique used to centralise the 

nonlinear curves for NLMER fitting. 

The standard deviations of the standard regressions and MLEs differ slightly 

in calculation compared with the mixed regression models, as they include 

within-specimen sampling errors resulting from fitting the curves individually. 

By calculating the rate of change for the group in one operation, mixed 

regression models ignore this additional variation and so the standard 

deviation reflects only the variation in the estimate of the true rate of change. 

In this experiment, no difference was observed, suggesting the within-

specimen sampling error was much lower than the between-specimen 

 

Figure 8-7: Rate of change (β) values of the power law for each curve fitting technique at various 

durations and multipliers.  
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variation. The standard deviation of the NLMER fit was higher than other 

techniques indicating greater variation in the estimated rate of change. 

Interestingly, some linear fittings with a high coefficient of determination (R2) 

gave a visually poor fit. This was due to the density of points from the long tail 

of the curves that became condensed when log-transformed as shown in 

Appendix C – Example of coefficient of determination. It is evident from the 

consistency in the estimated rate of change that this did not influence the 

predictive ability of the curve fitting techniques. 

8.3.3. Effect of multipliers 

The effect of multipliers on the parameters estimated by each fitting technique 

is presented in Appendix B – Rates of change (β). The multiplier showed a 

negligible effect on the quality of the curve fit, likely due to the filtering 

technique used to remove extraneous data prior to analysis. 

8.3.4. Correlation-of-variation 

CV was calculated as 𝐶𝑉 = 100 × 𝑠𝑑
𝜇⁄ , where µ is the mean, and sd is the 

standard deviation. This was used as a proxy for goodness-of-fit of the 

parameters and is considered a measure of the relative precision. A decrease 

in CV represents an increase in accuracy of the estimated parameters (Manley 

Jr et al., 2003). 

CV was shown to increase with time for most fitting techniques (Figure 8-8). 

NLMER was the only technique to show an improvement in CV with increasing 

duration. However, NLMER demonstrated a high CV (30–74%), indicating a 

poor estimate of the rate of change. LM, NLS, and MLE, produced similar CV 

values, with LMER and LM-MLE producing slightly higher values. These 

values, approximately 8–32%, are similar to those reported by Manley Jr et al. 

(2003). Increases in CV with increasing duration were also observed in that 

study. CV demonstrated little change between multipliers (Figure 8-8). 
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8.3.5. Statistical analysis 

Data were assessed using a Welch’s t-test for difference and TOST for 

equivalence. Results from Welch’s t-test demonstrated that the null 

hypothesis, that is that there is no difference, could not be discarded. Results 

from the TOST demonstrated no significance, indicating that it could not be 

concluded that the rates of change were equivalent. Post hoc assessment 

determined this was due to low sample numbers. 

Means at all durations fell within the upper and lower bounds of the confidence 

interval (Appendix D – Interval test).  

8.3.6. Effect of testing order 

Testing order was found to significantly affect the rate of change in both creep 

and relaxation (Figure 8-9). Differences were detected at 3600s in creep, and 

in durations up to 600s in relaxation. 

8.4. Discussion 

The first goal of this chapter was to investigate the time required for testing 

tendon. Many studies have investigated the viscoelastic behaviour of soft and 

hard tissues; however, only one study was found that investigated the 

necessary time required to adequately estimate the parameters of a 

viscoelastic test in tendon or ligament (Manley Jr et al., 2003). It was found 

 

Figure 8-8: Correlation-of-variation (CV, %) of the curve fitting techniques for creep and 
relaxation for various durations (s) and multipliers. 
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that tests of only 100s were enough to comfortably predict the behaviour of 

longer tests up to 10,000s in rat medial collateral ligament. Several factors 

indicated that a similar study was needed in tendon. For example, rate of 

relaxation has been shown to be faster than creep in ligament (Thornton et al., 

1997), while the rate of relaxation has been shown to increase with increasing 

strain in tendon, but to decrease with increasing strain in ligament (Duenwald 

et al., 2010). Therefore, results determined for ligament may not be 

transferable to tendon in some situations. 

The second goal was to assess the effect of the initial portion, defined as a 

multiple of rise time, on the estimated parameters. In an ideal time-dependent 

behaviour test the stress or strain would be applied instantaneously. Physical 

limitations, such as machine travel speed, prevent a true step-load from being 

achieved. A crude technique is to simply ignore a portion of the initial data so 

as to avoid any transient effects caused by overshoot or short-term viscoelastic 

behaviour (Duenwald et al., 2009b). More advanced techniques have been 

developed to account for these in curve fitting (Abramowitch and Woo, 2004; 

Duenwald et al., 2009b; Sorvari et al., 2006; Yang et al., 2006). 

The third goal of the study was to investigate the use of three curve fitting 

techniques – least-squares, MLE, and mixed effects modelling – on the linear 

log-log transformed data and directly to the nonlinear data. It has been 

recommended that when fitting a power law, either directly to the data or via 

log-log transformation, a MLE should be used rather than least-squares 

(Clauset et al., 2009). Additionally, log-log plots can be considered a crude 

method for fitting, since many similar relationships will present as a near linear 

line when transformed (Clauset et al., 2009). Manley Jr et al. (2003) stated: 

“…there appears to be no statistical advantage to test fewer specimens for 

longer periods of time when the goal is to describe the behaviour of a group of 

specimens”. This is particularly pertinent when the end goal is to assess the 

behavioural changes in tendinopathic tendons that may not be able to be 

tested with the rigour of a healthy tendon. 



 

 

 

Figure 8-9: Effect of viscoelastic testing order on rate of change (β) for the curve fitting techniques with various durations (s) and multipliers. 
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8.4.1. Duration 

Small variations in the data (Figure 8-3) were observed, particularly late in the 

test, possibly due to slippage, irregular hydration, or fatigue failure. Previous 

experiments have demonstrated that prolonged strains (even within the 

reproducible region) are deleterious to the tendon if the time exceeds 

60 minutes; that is, the time at which the second decay begins in the relaxation 

phenomenon (Rigby et al., 1959). This highlights the importance of duration in 

viscoelastic testing, as many of these effects can be mitigated by minimising 

testing time.  

Equivalence testing and interval testing were used to evaluate the rate of 

change between time points. Equivalence testing, with Welch’s t-test to check 

for differences, was inconclusive with respect to determining where the curve 

fitting predicts the results of the full test. In this study, this is likely because of 

the low samples numbers, since more samples were not available. Post hoc 

analysis indicated that a minimum of 1000 samples was necessary to 

determine equivalent, due to the small effect size estimated by Cohen’s d 

(approximately 0.1). Using an interval test, several creep fitting techniques at 

10 seconds estimated rates of change outside of the 95% CI, indicating that 

10 seconds was insufficient to produce a reliable estimate of the mean. All 

durations above 10s produced rates of change deemed acceptable estimates 

of the mean at 3600s. It can also be observed in the nonlinear curve fitting that 

the data for 3600s were well fitted in all instances for durations above 

10 seconds. Therefore, the 95% CI provides a reasonable test for the accuracy 

of the estimated rate of change even at low sample numbers. 

8.4.2. Multipliers 

All tests demonstrated a degree of overshoot in the data caused by a fast strain 

rate during the ramp phase. Many methods have been proposed to address 

this: the simplest is to ignore a portion of the initial data so as to begin ‘data 

collection’ once the test is stable. Duenwald et al. (2009b) calculated that only 

the first 2.5 tr seconds need be ignored, where tr is the rise time, rather than 

the conventional 10 tr. Despite these recommendations, removal of the initial 

portion of the data was not found to be necessary to achieve a quality fit. That 

is, the multiple of tr did not influence the outcomes of curve fitting above 
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10 seconds. This is likely due to the process of filtering the data performed 

prior to the analysis. This filtering technique involved removing data points 

based on the difference between the input step and the actual value as 

measured on the MTS. This technique appeared to remove the majority of 

noise caused by overshoot and may be more effective than simply removing 

the initial portion of the data, as it maximises the data available and may 

account for differing lengths of overshoot. 

8.4.3. Fitting technique 

The results suggest that nonlinear fitting of the data offers no significant 

advantage when estimating the parameters of the viscoelastic tests and may, 

in fact, be disadvantageous. Anecdotally, the processing time required for 

each technique was negligible (less than four seconds), again with the 

exception of NLMER (less than 10 minutes). With the exception of NLMER, 

each of the fitting techniques produced substantially similar results at each 

duration (Appendix B – Rates of change (β)). 

Visually, the linear fitting techniques produce interesting results due to the log-

log transformation of the data. Since the tail of the viscoelastic tests becomes 

condensed when transformed, the fit is disproportionately weighted toward a 

small segment of the x-axis. The fit appears poor, for example in the graph at 

the top of Appendix C – Example of coefficient of determination; however, the 

fit has an R2 value of 0.974. Comparatively, the equivalent nonlinear fit, shown 

at the bottom of Appendix C – Example of coefficient of determination, appears 

to be visually suitable with an estimated R2 of 0.968. The rate of change values 

are similar, suggesting the linear fits are suitable for estimating the parameters. 

Both LMER and NLMER required the data for each test to be centred for fitting. 

Not centring the data resulted in a failure of the algorithm to converge. This 

centring appeared to introduce a new source of error in the fitting of relaxation 

curves. Although LMER also required centring, this was easily achieved by 

adjusting the x- and y-intercept of the log-log transforms to pass through zero 

and did not introduce any new sources of error. 

For the mixed effects models, as well as producing reliable mean parameter 

estimates compared with individual fittings (Appendix B – Rates of 
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change (β)), LMER offers a significant speed and implementation advantage 

over NLMER. Of more significant interest is the high CV in the parameters 

estimated via NLMER (Figure 8-8) compared with other techniques. Manley Jr 

et al. (2003) reported a tendency for the CV to decrease with increasing test 

duration, although there were some increases noted. The LMER results above 

do not support this finding, instead showing an increase in variation with time 

(Figure 8-8). Evaluated against the CV values for all fitting techniques, the 

implementation of NLMER in this study appears to be unreliable for parameter 

estimation of the data. This may be resolved through an appropriate method 

of centring the data. 

The choice of fitting technique does not appear to influence the estimated 

parameters, with the notable exception of NLMER (Appendix B – Rates of 

change (β)). Indeed, the standard deviation differs negligibly. Of interest is the 

general agreement between the rate of change values calculated from 

linearised data, and those calculated from directly fitting the data. This 

supports the use of power law to describe the viscoelastic behaviour of the 

tendon, as suggested by Provenzano et al. (2001). This is counter to the 

concerns raised by Clauset et al. (2009) regarding the use of power laws. 

Since the implementation of linear fitting is less complex than nonlinear 

equivalents, especially with respect to the mixed effects models, this finding is 

encouraging. Nevertheless, despite the agreement in the results above, care 

should be taken when fitting long-tail data for the reasons outlined by Clauset 

et al. (2009).  

The tendency for the CV to increase with duration was not surprising, as the 

variation in the measured rate of change for each sample may indeed increase, 

leading to an increase in the standard deviation measured within the set of 

samples. While the measure of CV may be appropriate as a measure of 

precision at a particular time point, it does not provide a true indication of the 

precision of the estimated rate of change between time points as it does not 

compare against the ‘true’ population value, in this case measured at 3600s. 

In this respect, interval and equivalence testing may be more meaningful in 

evaluating the estimate of the parameters between tests. 
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8.4.4. Testing order 

Testing order was found to affect the rate of change in both creep and 

relaxation. In particular, creep-first samples exhibited a higher rate of change 

in both modes relative to the relaxation-first samples. Creep was expected to 

have deleterious effect on the rate of relaxation, which was assumed by the 

author to be a decrease in the rate. However, the results indicate that this is 

not the case. This may be a product of the structural mechanisms involved in 

the creep and relaxation phenomena, due to the low sample numbers in each 

group (n=3), possible mechanical damage caused by the creep testing, or 

insufficient recovery between tests. While the exact mechanism for this 

difference is unclear and warrants further investigation, it does highlight the 

importance of considering the order of testing, and subsequent recovery time, 

on the outcomes of the study. 

8.5. Conclusion 

The three goals of this study were to evaluate the time required to test tendon 

in order to estimate long term viscoelastic behaviour; to, evaluate different 

fitting techniques on log-log transformed and raw data; and, to determine if 

removing the portion of the data immediately post-loading affects parameter 

estimation. With the exception of NLMER modelling, curve fitting and the initial 

portion of data did not influence the results. It was demonstrated that a 

minimum test duration of 100 seconds is recommended to achieve an 

acceptable estimate of the rate of change in viscoelastic testing. This is in 

agreement with the literature (Manley Jr et al., 2003). It was also demonstrated 

that order of testing significantly affected the rate of change measurements 

and should be considered in future protocols. 
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8.6. Appendix A – Analysis of literature 

Table 8-1: Summary of literature (n=81) involving viscoelastic testing of biological tissues. 

* indicates cyclic testing. Cyc is an abbreviation of cycles.  

Journal Article Animal Tissue Type Time 

Abdel-Wahab et al. 

(2011)  

Cow Bone 
Creep 

Relaxation 
3600s 

Abramowitch and Woo 

(2004)  

Goat Ligament Relaxation 60 mins 

Abramowitch et al. 

(2004)  

Goat Ligament 
Relaxation 

Creep* 

60 mins 

10 cyc 

Abramowitch et al. 

(2010)  

Human Tendon Relaxation 
60s 

30s* 

Anssari-Benam et al. 

(2011)  

Pig Aortic Valve 
Creep 

Relaxation 
300s 

Atkinson et al. (1999)  Human Tendon Relaxation 180s 

Bowman et al. (1994)  Cow Bone Creep Failure 

Cheng et al. (2009)  Rat Spinal cord Relaxation 15 min 

Ciarletta et al. (2006)  Pig Tendon 
Creep 

Relaxation 
300s 

Cohen et al. (1976)  Human Tendon Creep 60s 

Davis and De Vita 

(2012)  

Rat Tendon fascicles Relaxation 10 mins 

Deligianni et al. (1994)  Human Bone Relaxation 100s 

Duenwald et al. (2008)  Pig Tendon Relaxation 100s 

Duenwald et al. (2009a)  Pig Tendon Relaxation 100s 

Duenwald et al. (2010)  Pig 
Tendon 

Ligament 
Relaxation 100s 

Duenwald-Kuehl et al. 

(2012a)  

Pig Tendon Relaxation 
100s 

10 cyc 

Funk et al. (1999)  Human Ligament Relaxation 1000s 

Galeski et al. (1977)  Rats Tendons Relaxation 12,000s 

Gautieri et al. (2013)  NA Collagen Fibril 
Creep 

Relaxation 
120s 

Giles et al. (2007)  Pigs 
Myocardium 

Skin 
Creep* 50 cyc 

Gimbel et al. (2005)  Rat Tendon Relaxation 10 mins 

Guilak et al. (1994)  

 Cartilage 
Creep 

Relaxation 

1000s 

1200s 

Gupta et al. (2010)  Rats Tendon fascicles Relaxation 
60s 

300s 

Hawkins et al. (2009)  Human Tendon Creep* 7 mins 
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Henninger et al. (2010)  

Pig 

Cow 

Ligament 

Cartilage 
Relaxation 1400s 

Hingorani et al. (2004)  Rabbit Ligament 
Creep 

Relaxation 
100s 

Hooley and Cohen 

(1979)  

Human Tendon Creep 60s 

Hooley et al. (1980)  Human Tendon Creep 60s 

Huang et al. (2009)  Human Tendon Relaxation 30 mins 

Iyo et al. (2004)  Cow Bone Relaxation 100,000s 

Jensen et al. (2004)  Rat Ligament Creep 100s 

Johnson et al. (1996)  

Human 

Dogs 

Tendon 

Ligament 
Relaxation 10–15 cyc 

Johnson et al. (1994)  Human Tendon Relaxation 15 mins 

Kahn et al. (2010)  Rabbit Tendon Relaxation 1 hr 

Lanir (1976)  Rabbit Skin Relaxation 10 min 

Legerlotz et al. (2013b)  Cow Tendon fascicles Relaxation 30 min 

Liu and Yeung (2006)  Pig Skin Relaxation 1200s 

Liu and Yeung (2008)  Pig Skin Relaxation 1200s 

Machiraju et al. (2006)  Human Tendon Relaxation 700s 

Mäkelä and Korhonen 

(2016)  

Rabbit Cartilage Relaxation 15 mins 

Manley Jr et al. (2003)  Rat Ligament 
Creep 

Relaxation 

1000s 

10,000s 

Michel et al. (1994)  Cow Bone Creep Failure 

Moon et al. (2006b)  Rabbit Ligament Relaxation 25 min 

Myers et al. (1991)  Human Cervical Spines Relaxation 150s 

Komatsu et al. (2007)  Rabbit Ligament Relaxation 300s 

Nekouzadeh et al. 

(2007)  

N/A 
Reconstituted 

Collagen 
Relaxation 2000s 

O’Connell et al. (2011)  Human Intervertebral Disc Creep 4 hours 

Pailler-Mattei et al. 

(2014)  

Human Reconstructed Skin Relaxation 200s 

Pavan et al. (2014)  Human Aponeurosis Relaxation 240s 

Pierlot et al. (2015)  Cow Valves Creep 30 min 

Pioletti and Rakotoman

ana (2000b)  

Human Ligament Relaxation 1800s 

Pradas and Calleja 

(1990)  

Human Tendon Creep 1000s 

Provenzano et al. 

(2001)  

Rat Ligament 
Creep 

Relaxation 

100s 

1200s 

Quaglini et al. (2009)  Cow Bone Relaxation 600s 
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Reese and Weiss 

(2013)  

Rat Tendon fascicles Relaxation 300s 

Reihsner and Menzel 

(1998)  

Human Skin Relaxation 
100–300 

mins 

Rigby et al. (1959)  Rat Tendon Relaxation 24hrs 

Sarver et al. (2003)  Sheep Tendon Relaxation 600s 

Sasaki and Enyo (1995)  Cow Bone Relaxation 100,000s 

Schatzmann et al. 

(1998)  

Human Tendon* Creep* 200 cyc 

Screen (2008)  Rat Tendon fascicle Relaxation 60s 

Screen et al. (2011)  Rat Tendon fascicles Relaxation 60s 

Screen et al. (2013)  Pig Tendon fascicles Relaxation 10 min 

Shen et al. (2011)  

Sea 

Cucumber 
Collagen Fibril 

Creep 

Relaxation 
300s 

Shepherd et al. (2014)  Cow Tendon Fascicle 
Creep* 

Relaxation* 

5 min 

15 min 

30 min 

Shetye et al. (2014)  Pig Spinal cord Relaxation 100s 

Smutz et al. (1995)  Human Tendon Creep 30 min 

Svensson et al. (2010)  Human Tendon Fascicle Relaxation 5 min 

Sverdlik and Lanir 

(2002)  

Sheep Tendon Relaxation 10 mins 

Thornton et al. (1997)  Rabbit Ligament 
Creep 

Relaxation 
20 min 

Toms et al. (2002)  Human Ligament Relaxation 50 min 

Troyer et al. (2012a)  Human Ligament Relaxation 100s 

Troyer and Puttlitz 

(2012)  

Human Ligament Relaxation 600s 

Troyer et al. (2012b)  Sheep Tendon Relaxation 100s 

van der Veen et al. 

(2013)  

Human Intervertebral Disc Creep 24 hours 

Woo et al. (1986)  Rabbit Tendon Relaxation* 10 cyc 

Wren et al. (2003)  Human Tendon Creep Failure 

Yamamoto et al. (1999)  Rabbit Tendon fascicle Relaxation 600s 

Yang et al. (2012)  Bovine Collagen Fibril Relaxation 5–10min 

Yang et al. (2006)  Pig Oesophagus Relaxation 300s 

Yoo et al. (2009)  Cow Muscle Relaxation 1500s 
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8.7. Appendix B – Rates of change (β) 

 

 

Table 8-2: Rate of creep (β) for LM fitting technique 

 Multiplier 

Mode Duration 1x 2.5x 10x 

Creep 10 0.039 ± 0.003 0.040 ± 0.003 0.042 ± 0.003 

Creep 100 0.043 ± 0.004 0.043 ± 0.004 0.043 ± 0.004 

Creep 300 0.043 ± 0.005 0.043 ± 0.005 0.043 ± 0.005 

Creep 600 0.043 ± 0.005 0.043 ± 0.005 0.043 ± 0.006 

Creep 1000 0.043 ± 0.006 0.043 ± 0.006 0.043 ± 0.006 

Creep 1800 0.044 ± 0.007 0.044 ± 0.007 0.044 ± 0.007 

Creep 3600 0.048 ± 0.010 0.048 ± 0.010 0.049 ± 0.010 

Relaxation 10 -0.103 ± 0.012 -0.106 ± 0.013 -0.111 ± 0.015 

Relaxation 100 -0.114 ± 0.018 -0.115 ± 0.019 -0.116 ± 0.020 

Relaxation 300 -0.115 ± 0.024 -0.115 ± 0.024 -0.116 ± 0.025 

Relaxation 600 -0.114 ± 0.025 -0.114 ± 0.025 -0.114 ± 0.026 

Relaxation 1000 -0.111 ± 0.025 -0.111 ± 0.025 -0.111 ± 0.025 

Relaxation 1800 -0.108 ± 0.025 -0.108 ± 0.025 -0.108 ± 0.025 

Relaxation 3600 -0.113 ± 0.033 -0.114 ± 0.033 -0.114 ± 0.034 

 

Table 8-3: Rate of creep (β) for LM-MLE fitting technique 

 Multiplier 

Mode Duration 1x 2.5x 10x 

Creep 10  0.042 ± 0.013  0.045 ± 0.014  0.054 ± 0.018 

Creep 100  0.043 ± 0.014  0.044 ± 0.014  0.047 ± 0.014 

Creep 300  0.044 ± 0.012  0.044 ± 0.013  0.044 ± 0.014 

Creep 600  0.042 ± 0.014  0.042 ± 0.015  0.042 ± 0.016 

Creep 1000  0.044 ± 0.011  0.044 ± 0.011  0.045 ± 0.010 

Creep 1800  0.047 ± 0.007  0.047 ± 0.007  0.048 ± 0.006 

Creep 3600  0.048 ± 0.010  0.048 ± 0.010  0.049 ± 0.010 

Relaxation 10 -0.102 ± 0.016 -0.100 ± 0.019 -0.112 ± 0.019 

Relaxation 100 -0.111 ± 0.021 -0.110 ± 0.023 -0.113 ± 0.025 

Relaxation 300 -0.113 ± 0.026 -0.114 ± 0.026 -0.115 ± 0.028 

Relaxation 600 -0.117 ± 0.027 -0.117 ± 0.027 -0.118 ± 0.028 

Relaxation 1000 -0.112 ± 0.026 -0.112 ± 0.026 -0.113 ± 0.027 

Relaxation 1800 -0.109 ± 0.026 -0.109 ± 0.026 -0.109 ± 0.026 

Relaxation 3600 -0.113 ± 0.033 -0.114 ± 0.033 -0.114 ± 0.034 
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Table 8-4: Rate of creep (β) for LMER fitting technique 

 Multiplier 

Mode Duration 1x 2.5x 10x 

Creep 10 0.039±0.005 0.041±0.005 0.043±0.006 

Creep 100 0.043±0.006 0.043±0.006 0.044±0.007 

Creep 300 0.043±0.007 0.043±0.007 0.043±0.007 

Creep 600 0.043±0.008 0.043±0.008 0.043±0.008 

Creep 1000 0.043±0.008 0.043±0.008 0.043±0.009 

Creep 1800 0.044±0.008 0.044±0.008 0.044±0.009 

Creep 3600 0.048±0.010 0.048±0.010 0.049±0.010 

Relaxation 10 -0.103±0.023 -0.106±0.023 -0.111±0.024 

Relaxation 100 -0.114±0.027 -0.115±0.027 -0.116±0.027 

Relaxation 300 -0.115±0.028 -0.115±0.028 -0.116±0.029 

Relaxation 600 -0.114±0.029 -0.114±0.029 -0.114±0.030 

Relaxation 1000 -0.111±0.030 -0.111±0.030 -0.111±0.030 

Relaxation 1800 -0.108±0.030 -0.108±0.030 -0.108±0.030 

Relaxation 3600 -0.113±0.033 -0.114±0.033 -0.114±0.034 

 

Table 8-5: Rate of creep (β) for NLS fitting technique 

 Multiplier 

Mode Duration 1x 2.5x 10x 

Creep 10  0.039 ± 0.003  0.040 ± 0.003  0.042 ± 0.003 

Creep 100  0.043 ± 0.004  0.043 ± 0.004  0.043 ± 0.004 

Creep 300  0.043 ± 0.005  0.043 ± 0.005  0.043 ± 0.005 

Creep 600  0.043 ± 0.005  0.043 ± 0.005  0.043 ± 0.006 

Creep 1000  0.043 ± 0.006  0.043 ± 0.006  0.043 ± 0.006 

Creep 1800  0.044 ± 0.007  0.044 ± 0.007  0.044 ± 0.007 

Creep 3600  0.049 ± 0.011  0.049 ± 0.011  0.049 ± 0.011 

Relaxation 10 -0.102 ± 0.012 -0.105 ± 0.013 -0.110 ± 0.015 

Relaxation 100 -0.113 ± 0.017 -0.114 ± 0.018 -0.116 ± 0.020 

Relaxation 300 -0.114 ± 0.022 -0.115 ± 0.023 -0.116 ± 0.024 

Relaxation 600 -0.114 ± 0.023 -0.114 ± 0.024 -0.114 ± 0.025 

Relaxation 1000 -0.111 ± 0.024 -0.112 ± 0.024 -0.112 ± 0.025 

Relaxation 1800 -0.109 ± 0.024 -0.109 ± 0.025 -0.109 ± 0.025 

Relaxation 3600 -0.112 ± 0.029 -0.112 ± 0.029 -0.112 ± 0.030 
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Table 8-6: Rate of creep (β) for MLE fitting technique 

 Multiplier 

Mode Duration 1x 2.5x 10x 

Creep 10 0.039±0.003 0.040±0.003 0.042±0.003 

Creep 100 0.043±0.004 0.043±0.004 0.043±0.004 

Creep 300 0.043±0.005 0.043±0.005 0.043±0.005 

Creep 600 0.043±0.005 0.043±0.005 0.043±0.006 

Creep 1000 0.043±0.006 0.043±0.006 0.043±0.006 

Creep 1800 0.044±0.007 0.044±0.007 0.044±0.007 

Creep 3600 0.049±0.011 0.049±0.011 0.049±0.011 

Relaxation 10 -0.102±0.012 -0.105±0.013 -0.110±0.015 

Relaxation 100 -0.113±0.017 -0.114±0.018 -0.116±0.020 

Relaxation 300 -0.114±0.022 -0.115±0.023 -0.116±0.024 

Relaxation 600 -0.114±0.023 -0.114±0.024 -0.114±0.025 

Relaxation 1000 -0.111±0.024 -0.112±0.024 -0.112±0.025 

Relaxation 1800 -0.109±0.024 -0.109±0.025 -0.110±0.025 

Relaxation 3600 -0.112±0.029 -0.112±0.029 -0.112±0.030 

 

Table 8-7: Rate of creep (β) for NLMER fitting technique 

 Multiplier 

Mode Duration 1x 2.5x 10x 

Creep 10 0.041±0.028 0.043±0.028 0.053±0.026 

Creep 100 0.042±0.019 0.042±0.019 0.043±0.019 

Creep 300 0.042±0.017 0.042±0.017 0.042±0.017 

Creep 600 0.042±0.016 0.042±0.016 0.042±0.016 

Creep 1000 0.042±0.016 0.042±0.016 0.042±0.016 

Creep 1800 0.043±0.015 0.043±0.015 0.043±0.015 

Creep 3600 0.048±0.015 0.048±0.015 0.048±0.015 

Relaxation 10 -0.107±0.080 -0.115±0.082 -0.124±0.078 

Relaxation 100 -0.123±0.068 -0.126±0.068 -0.130±0.068 

Relaxation 300 -0.128±0.068 -0.129±0.068 -0.131±0.068 

Relaxation 600 -0.129±0.070 -0.130±0.070 -0.131±0.070 

Relaxation 1000 -0.129±0.071 -0.130±0.071 -0.130±0.071 

Relaxation 1800 -0.129±0.073 -0.129±0.073 -0.129±0.073 

Relaxation 3600 -0.133±0.078 -0.133±0.078 -0.134±0.077 
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8.8. Appendix C – Example of coefficient of determination 

 

 

 

Figure 8-10: Example of a 'poor' curve fit with high R2 using linear least-squares R2 = 0.974 (top) 
and equivalent fit using nonlinear least-squares with an estimate R2 = 0.968 (bottom). Both fits 
were performed on the full data set using 2.5tr 
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8.9. Appendix D – Interval test 

 

 

Figure 8-11: Interval test of duration (s) and fitting technique using a 95% confidence interval (CI). 

Values outside of the CI are coloured red. 
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CHAPTER 9. METHODOLOGY FOR DEFINING 

VISCOELASTIC BEHAVIOUR OF TENDINOPATHY 

9.1. Introduction 

From an engineering perspective, the mechanical behaviour of tendinopathy 

may offer suggestions as to the aetiology of underlying disease, particularly 

with respect to biomechanics and function. The mechanical behaviour also 

allows animal models to be validated against clinical behaviour. Furthermore, 

the outcomes provide inputs that can be used in computational modelling to 

provide more realistic descriptions of biomechanical behaviour. 

This chapter seeks to develop a robust methodology for describing the 

viscoelastic behaviour of soft tissue that may be used to inform computational 

models, as well as to determine differences between tendon models. 

9.1.1. Tendinopathy 

Tendinopathy has historically been considered an overuse injury (Paavola 

et al., 2002; Sharma and Maffulli, 2005b) but may be an underuse injury 

related to the injury mechanism (Arnoczky et al., 2007; Rees et al., 2009). As 

discussed earlier, tendinopathy may be caused by trauma or repetitive strain 

of the tendon (Woo et al., 2000). Accounting for 48% of reported occupational 

illness and 30–50% of all sporting injuries (Renstrom, 1991), tendon injuries 

result in significant economic and social cost. It is, therefore, imperative to 

understand the underlying causes and tissue responses to inform 

development of better treatment and prevention techniques. 

Tendinopathy can be regarded as degeneration with insufficient healing, with 

little to no inflammation (Lui et al., 2011; Warden, 2007). Tendons may exhibit 

signs of disorganisation and microtears, as well as increases in a variety of 

biochemical markers (Lake et al., 2008). The overall result is a reduction in 

strength and elasticity of the tendon (Lake et al., 2008; Warden, 2007), which 

is rarely recovered (Marcos et al., 2014). Arya and Kulig (2010) hypothesised 

that spontaneous rupture is the result of chronic degeneration of the tendon 

caused by disruption of the collagen structure, accompanied by an increase in 

collagen-III that may alter the mechanical and material properties of tendon. 
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Tendinopathy may cause failure at loads much lower than ultimate tensile load 

(Korvick et al., 1996; Malaviya et al., 1998). 

Tendinopathy has been comprehensively studied and several detailed 

reviews, which explore the clinical approaches as well as latest research, 

provide greater discussion, including Sharma and Maffulli (2008), Longo et al. 

(2009), Patterson-Kane et al. (2012), and Sayegh et al. (2015). 

9.1.2. Animal models 

Study of tendinopathy in humans is difficult – biopsy of patients is invasive and 

clinical presentations of tendinopathy are usually advanced, thereby limiting 

information of disease progression (Warden, 2007). Animal models allow for 

investigation of initial disease progression in a controlled manner (Archambault 

et al., 2007) and many have been developed to investigate tendinopathy 

(Dirks and Warden, 2011; Lake et al., 2008; Lui et al., 2011; Warden, 2007). 

Animal models offer the advantage of being controlled and reproducible, 

allowing for regular observation and evaluation over time (Lake et al., 2008). 

There is no ‘gold standard’ model, leading researchers to utilise a variety of 

models, depending on the application (Warden, 2007). To be considered a 

valid animal model it must be repeatable and be substantially similar to 

humans clinically, histopathologically and functionally (Lui et al., 2011).  

While racing animals such as horses and dogs develop tendinopathy, it may 

be more reliably induced in rabbits and rodents (Lui et al., 2011). While rats 

and mice offer several advantages, including genetic homology and genetically 

engineered models (Warden, 2007), the similarity in cells and tissue 

physiology between rabbits and humans make rabbits a popular choice 

(Warden, 2007). Additionally, the rabbit’s larger tendons are easier to work 

with and provide larger samples compared to rodents (Lui et al., 2011). 

However, it is important to understand the model in the context of behaviour 

and physiology so it can be related to humans (Lui et al., 2011). 

9.1.3. Methods of induction 

Methods of inducing tendinopathy have ranged from mechanical overloading 

to chemical injection (Lake et al., 2008; Lui et al., 2011; Warden, 2007) with 

advantages and disadvantages for each method having been identified 
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(Dirks and Warden, 2011). For example, mechanical overloading has been 

shown to successfully induce tendinopathy in the rat supraspinatus tendon, 

demonstrated by inferior mechanical properties, including maximum stress 

and elastic modulus (Soslowsky et al., 2002; Soslowsky et al., 2000). Similar 

overuse studies in other tendons, such as the Achilles (Glazebrook et al., 

2008; Huang et al., 2004), have demonstrated variable success (Warden, 

2007). Backman et al. (1990) used repetitive loading of the rabbit Achilles 

tendon to induce tendinopathic changes, but this was not able to be replicated 

in a later study by Archambault et al. (2001). Alternative methods, such as 

artificial stimulation, have failed to induce tendinopathy in the Achilles tendon 

(Lui et al., 2011). 

Chemical induction offers an attractive alternative as it may be more consistent 

(Dirks and Warden, 2011; Lui et al., 2011); however, individual chemical 

compounds do not appear to sufficiently develop the same pathology seen 

clinically (Warden, 2007), and may produce a state akin to acute injury (Lui 

et al., 2011). Inspired by chemical markers found in mechanical overuse 

studies, repeated exposure to prostaglandins has shown degenerative 

changes similar to tendinopathy (Khan et al., 2005; Sullo et al., 2001). 

Collagenase has been used to replicate the clinically observed disruption of 

collagen fibres (Dirks and Warden, 2011). It has been used widely across 

many animal models (Lui et al., 2011) and appears to exhibit dose-dependent 

responses (Lake et al., 2008). Models include rats, rabbits, and horses (Chen 

et al., 2011a; Chen et al., 2004; Dowling et al., 2002a; Hsu et al., 2004a; Hsu 

et al., 2004b; Kamineni et al., 2015; Lui et al., 2009; Marcos et al., 2014; 

Marcos et al., 2012; Nabeshima et al., 1996; Perucca Orfei et al., 2016; Stone 

et al., 1999; Yoo et al., 2012).  

9.1.4. Responses to collagenase 

In response to collagenase, rabbit patellar tendon was seen to increase in 

stiffness and did not regain ultimate tensile strength (UTS) compared with 

controls (Hsu et al., 2004b; Stone et al., 1999). Similar results were seen in rat 

Achilles tendinopathy (Chen et al., 2004). Interestingly, studies in rabbit 

patellar tendon and rat Achilles tendon injected with collagenase exhibited no 

change in failure testing using high strain rates but demonstrated a reduced 
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failure load when tested at a low strain rate (Chen et al., 2004; Hsu et al., 

2004a; Hsu et al., 2004b; Lake et al., 2008; Stone et al., 1999), perhaps 

indicating a viscoelastic interaction between the disrupted fibre matrix and 

ground substance. Studies in horses showed an increase in cross-sectional 

area (CSA) resulting in a lower failure stress, coupled with a higher failure 

strain, leading to a low stiffness (Dowling et al., 2002a, 2002b; Lake et al., 

2008). 

The healing response in collagenase models is contentious, since it is argued 

the repair is not consistent with the defective healing response seen in 

degenerative tendinopathy (Lui et al., 2011). Yoo et al. (2012) used a 

collagenase-induced tendinopathy model to assess extracorporeal shockwave 

therapy (EWST) on rat Achilles tendons using histology and atomic force 

microscopy. The model was said to resemble Achilles tendinitis. Lui et al. 

(2009) histologically examined rat patellar tendinopathy for 32 weeks post-

induction, describing the model as viable for calcific tendinopathy and noting 

that healing did not begin until week 32. It was found that, after eight weeks of 

healing, collagenase-induced tendinopathy demonstrated a defective healing 

response, suggesting that the acute injury phase had increased the 

susceptibility for damage which had led to degeneration. Chen et al. (2011a) 

also described tendinopathic changes at eight weeks post-induction using 

histological scores. With the exception of these studies, most studies have not 

investigated degeneration past eight weeks (Lui et al., 2011). Stone et al. 

(1999) found no change in CSA at 16 weeks, but a significant decrease in 

ultimate load, when using a cytokine and cell-activating factor injection. This 

injection was questionable compared with use of collagenase (Lui et al., 2011). 

Collagenase models, when continued to eight weeks, appear to demonstrate 

a progressive deterioration comparable to tendinopathy (Chen et al., 2011a; 

Stone et al., 1999).  

Critics have argued that collagenase develops an inflammatory reaction more 

similar to tendinitis than tendinopathy (Lake et al., 2008; Lui et al., 2011; 

Warden, 2007). This implies an acute pathology rather than the typical 

degenerative changes seen which, in turn, may affect the applicability of the 

results derived from the model. However, as described above, there is 
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evidence to suggest that, given sufficient time, collagenase-induced 

tendinopathy may progress to a degenerative condition (Chen et al., 2011a; 

Lui et al., 2009; Stone et al., 1999). Thus, collagenase may still be a useful 

model since it is controllable and produces many of the clinical traits. 

9.1.5. Choosing the model 

Many studies have investigated the pathological changes derived from these 

models, including histological observations, imaging and microscopy 

techniques, biochemical markers, and mechanical properties (Warden, 2007). 

Study of the behavioural changes caused by the tendinopathy model are also 

important in validating the animal model (Lui et al., 2011). However, given 

there is no perfect animal model the choice of model should be based on its 

appropriateness for the experiment (Lui et al., 2011). 

Care should be taken when using the contralateral side as a control, since it is 

usually compromised in patients with unilateral Achilles tendinopathy and 

through intervention (Andersson et al., 2011; Docking et al., 2015). 

Fu et al. (2010) presented a pathway for tendon degeneration, but cited a 

piecewise approach to tendinopathy research that made it difficult to elucidate 

the underlying pathogenesis. Andarawis-Puri et al. (2015), reporting on the 

outcomes of a recent conference, identified the need for basic science to help 

develop a more complete model. One area of limitation is the understanding 

of the mechanical characteristics of tendinopathic tendons (Marcos et al., 

2014). Of particular interest are viscoelastic behaviours and stress-strain 

behaviours (Warden, 2007), since they aid in implicating different components 

of the structure for different mechanical purposes. Dynamic, as well as static, 

properties are important because of the requirements of daily movement (Imai 

et al., 2015). Despite this, Imai et al. (2015) identified no previous studies of 

dynamic viscoelastic testing of tendinopathy, citing only static creep and stress 

relaxation testing. 

As discussed in Chapter 2, Literature review, tendon mechanics are known to 

be complex. Since fibrils are discontinuous and overall tissue strain is larger 

than the fibril strain, it is implied that the non-collagenous matrix must permit 

transfer of forces, and thus is an important factor in mechanical behaviour 
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(Rigozzi et al., 2009). Conversely, changes to the mechanical behaviour of 

tendons may imply a disruption to the underlying structure and this can be 

used to inform treatment. For example, decorin is involved in the transfer of 

force between collagen fibrils (Rigozzi et al., 2009). The capacity for sliding 

between tendon fascicles was seen to decrease with ageing in injury-prone 

equine tendons, possibly leading to age-related tendinopathy (Thorpe et al., 

2013b). The increase in stiffness associated with tendinopathy, which can 

have a significant influence on force transmission, muscle power, and energy 

absorption and release during locomotion (Arya and Kulig, 2010), may be 

related to scarring caused by ineffective healing processes. Overuse has been 

shown to increase glycosaminoglycans (GAGs) in the tendon mid-portion (Bell 

et al., 2013). A change in proteoglycan (PG) levels has been shown to affect 

relaxation rate, hysteresis, and strain rate sensitivity, an effect also seen with 

fluctuations in water content (LaCroix et al., 2013a). 

9.1.6. Models in literature 

There have been many examples of induced tendinopathy in literature, 

particularly for assessing the efficacy of treatments. These include platelet-rich 

plasma treatment (Yan et al., 2017), extracorporeal shockwave therapy (Hsu 

et al., 2004a; Yoo et al., 2012), hyperbaric oxygen therapy (Hsu et al., 2004b), 

autologous tenocyte therapy (Chen et al., 2011a), low-level laser therapy 

(Marcos et al., 2014; Marcos et al., 2012), augmented soft tissue mobilisation 

(Imai et al., 2015), and exercise (Bell et al., 2013). 

Despite the opportunity to describe many aspects of mechanical behaviour of 

tendon, especially tendinopathic tendon, to elucidate the mechanisms for 

injury and degeneration, most studies involving tendinopathy models only 

tested the tendons in traction to failure. 

Nabeshima et al. (1996) found that the application of strain during collagenase 

diffusion protected the tendon from degeneration, with stiffness and maximum 

force measurements similar to the control values. No strain, and delayed 

application of strain, resulted in significantly inferior properties. This was 

supported by later studies on collagen fibrils, which found strain preferentially 
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protected the fibrils in the presence of collagenase (Bhole et al., 2009; Flynn 

et al., 2010). 

An overuse-induced rat supraspinatus tendinopathy model showed an 

increase in CSA and reduction in maximum stress and modulus compared to 

controls (Soslowsky et al., 2000). The addition of extrinsic factors produced a 

more intense result than that of overuse alone (Carpenter et al., 1998; 

Soslowsky et al., 2002). CSA was also seen to increase in a collagenase-

induced rabbit patellar tendinopathy model, while there were negligible 

changes in the maximum load or stiffness (Stone et al., 1999). 

Recombinant growth hormone was found to have no effect on mechanical 

properties of healthy equine superficial digital flexor tendon (Dowling et al., 

2002b). However, when used to treat collagenase-induced tendinopathy, 

recombinant growth hormone was shown to result in inferior mechanical 

properties (lower load and stiffness, and higher CSA) compared with sham-

treatment (Dowling et al., 2002a). This was also seen when comparing the 

untreated and healthy superficial digital flexor tendon. 

Hsu et al. treated collagenase-induced rabbit patellar tendinopathy shockwave 

therapy (2004a) and hyperbaric oxygen therapy (2004b). Using shockwave 

therapy, ultimate tensile load was seen to increase in tendons over 16 weeks 

of treatment compared with sham-treatment. Using hyperbaric oxygen 

therapy, UTS returned to 93% of control, while the sham-treatment only 

recovered to 70% (raw numbers were not presented). Structural changes in 

the tendon were correlated with the ultimate tensile load (Hsu et al., 2004a). 

Extracorporeal shockwave therapy was also assessed on rats with 

collagenase-induced Achilles tendinopathy, with failure load and stiffness seen 

to decrease following collagenase injection (Chen et al., 2004).  

Chen et al. (2011a) used a collagenase-induced rabbit Achilles tendinopathy 

model to test the efficacy of autologous tenocyte therapy. Treated tendons 

exhibited improvement in the ultimate tensile force compared with untreated 

tendons, and exceeded that of normal tendons by eight weeks. 

Dry-needling-induced rat Achilles tendinopathy showed significantly larger 

CSA, and a significantly reduced UTS and modulus, with and without 



Mechanical Behaviour of Tendinopathic Tendon: An Engineering Perspective 

158 

additional overuse-activity (Kim et al., 2015). An overuse-induced rat Achilles 

tendinopathy model showed a reduction in maximum force and ‘rigidity’ (𝑅 =

 𝐹 𝜀⁄ , where F is force and ε is strain) (Jafari et al., 2015). 

Marcos et al. (2014; 2012), investigating low-level laser therapy to treat 

collagenase-induced rat Achilles tendinopathy, proposed a more complex 

loading-pattern, rather than monotonic loading, to better represent the dynamic 

responses seen in vivo. A series of load-unload cycles with increasing strain 

was performed. The tangential, secant, and unloading stiffness were recorded, 

as well as maximum force and elongation before and after induction, and with 

and without treatment (Marcos et al., 2014; Marcos et al., 2012). Collagenase 

was found to reduce the elongation, force and stiffness of the tendons, while 

treatment returned them to approximately normal values, but this was only 

investigated seven days post-induction (Marcos et al., 2014). 

In vivo investigations on human subjects showed a weakening of the 

mechanical characteristics in Achilles tendinopathy patients, including peak 

force and stiffness (Arya and Kulig, 2010). CSA was larger in the tendinopathy 

group (56mm2 vs. 93mm2) which resulted in a notable decrease in the modulus 

compared with the stiffness. This was highlighted as a risk of using the elastic 

modulus when comparing controls with tendinopathic tendons, since a larger 

CSA may result in lower intrinsic properties even if the extrinsic properties are 

higher than those of the controls. 

9.1.7. Models including viscoelastic testing 

Chapter 6 described the need to extract the most data from each specimen, 

including the use of ramp, stress relaxation, and creep testing to inform 

constitutive models (Duenwald et al., 2009b). Despite authors highlighting this 

and the limited understanding of tendon mechanics, few studies have 

performed other than tensile testing. 

Matthews and Ellis (1968) performed a series of cyclic tests on cat tendon to 

establish the effects of freezing, finding that freezing did not negatively 

influence the results but should be considered as a variable. Galeski et al. 

(1977) compared the mechanical changes associated with alloxan diabetes 

and ageing, finding a decrease in the relaxation rate amongst other changes. 
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Huang et al. (2004) utilised an overuse-induction of rat Achilles tendinopathy 

to measure mechanical properties such as maximum load, elastic modulus, 

and percentage relaxation after 300s. Individual results were not discussed; 

however, the authors concluded that the changes previously observed in 

supraspinatus tendons (Soslowsky et al., 2000) were not replicated in the 

Achilles tendon, as the biomechanical assay and morphological assessment 

did not detect any difference between groups. Imai et al. (2015) investigated 

the use of augmented soft tissue mobilisation in the Achilles tendon of 

New Zealand White (NZW) rabbits using collagenase injections to induce 

tendinopathy. Both tendons were induced, with one being treated by 

augmented soft tissue mobilisation and the other acting as a control. The 

tendons were cycled to a strain of 1% and frequencies ranging from 0.1–10 

Hz. It was concluded that treatment resulted in a more favourable dynamic 

biomechanical behaviour; however, as there was no uninduced tendon for 

comparison, it is difficult to determine the true efficacy of the treatment, or the 

appropriateness of the collagenase model. Tucker et al. (2016) investigated a 

surgical repair model using an established supraspinatus tendinopathy model 

in rats (Soslowsky et al., 1996; Soslowsky et al., 2000). In this model, it was 

seen that acute changes overshadow chronic injury, with no significant 

differences in CSA, modulus, maximum stress, stiffness, or maximum load, 

and only a small increase in percentage relaxation in the overuse group. 

Outside of tendinopathy research, studies investigating the deleterious effects 

of stress shielding in the rabbit patellar tendon have shown increases in CSA 

with corresponding decreases in tensile strength and elastic modulus in a 

rabbit patellar tendon model (Fujie et al., 2000; Majima et al., 1996; Ohno 

et al., 1993; Tohyama et al., 1992). Investigations of the transverse properties 

showed a reduction in the strength and modulus (Yamamoto et al., 2000). A 

simple stress relaxation test (1200s at 14% strain) found a decrease in 

percentage relaxation due to stress shielding. It was suggested that changes 

to the ground substance and the mechanical interactions with the extracellular 

matrix (ECM) may be responsible for the change in relaxation behaviour 

following degenerative changes. After induced tearing of the supraspinatus 

tendon in a rat model, intact, uninjured rotator cuff tendons were found to have 



Mechanical Behaviour of Tendinopathic Tendon: An Engineering Perspective 

160 

reduced modulus, while percentage relaxation was relatively stable (Perry 

et al., 2009). Liu et al. (2009), using mouse tail tendon, noted differences in 

strain rate and stress relaxation response with ageing. 

Neviaser et al. (2012), highlighting the need to identify some of the 

mechanisms of overuse-induced degeneration, performed cyclic fatigue 

loading in vivo to investigate the damage mechanisms. An increase in stiffness 

at low- to medium-level fatigue loads, and a decrease in stiffness at high-level 

fatigue loading, were seen. Conversely, hysteresis decreased with low- to 

medium-level loading, and increased with high-level loading. 

Soft tissues have shown a dependence on strain and stress levels during 

stress relaxation and creep testing (Duenwald et al., 2009b; Provenzano et al., 

2001; Sverdlik and Lanir, 2002). Results suggest mechanical testing should 

explore the nonlinearity of the tissue responses to elucidate differences 

between healthy and unhealthy tendon that may indicate underlying changes 

caused by the degenerative mechanisms. 

LaCroix et al. (2013a) utilised different magnitudes of stress relaxation, 

coupled with load-to-failure, to assess the effect of exercise on aged rat tail 

tendons. The study demonstrated a significant increase in ultimate stress and 

modulus, and significant decreases in relaxation rate and percent relaxation 

with maturity, as well as decreases in viscoelastic parameters with ageing.  

Freedman et al. (2016) utilised a complex methodology of stress relaxation, 

low frequency sweeps, and load controlled fatigue testing to test the Achilles 

tendon following surgical treatment of rupture. This protocol was subsequently 

used in several studies investigating the effects of ageing, hormones, and sex 

(Fryhofer et al., 2016; Pardes et al., 2017; Pardes et al., 2016). This protocol 

provided results with respect to percentage relaxation, dynamic modulus, and 

fatigue life. 

As far as could be ascertained, these are the only studies which used more 

rigorous testing protocols to investigate changes in the viscoelastic behaviour 

of tendon. No studies have evaluated the viscoelastic behaviour of 

tendinopathic tendons in this way. 
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Studies on soft and hard tissues have utilised increasingly complex 

viscoelastic testing to attempt to extract maximum information from each 

sample. Rigby et al. (1959) made use of tensile testing, stress relaxation, and 

temperature creep to describe the mechanical behaviour of rat tail tendon. 

Dynamic viscoelasticity, or frequency response to cyclic loading, has been 

performed in human digital flexor tendons (Schwerdt et al., 1980), sheep 

plantaris tendon (Ker, 1981), and rabbit Achilles tendon (Nagasawa et al., 

2008). To fully describe a constitutive model of the tendons, 

Pradas and Calleja (1990) tested human hand flexor tendons using multiple 

creep tests, including multistep creep testing. Strain rate sensitivity was tested 

by performing multiple tensile tests on anterior cruciate ligament (ACL) (Pioletti 

et al., 1999). Pioletti and Rakotomanana (2000b) went on to test stress 

relaxation behaviour of human cruciate ligaments and patellar tendons at 

multiple strain levels to validate the assumption of variable separation in 

integral models of soft tissue. Sverdlik and Lanir (2002) performed a complex 

series of preconditioning, recovery, and stress relaxation tests to evaluate the 

time-dependent properties of sheep digital extensor tendons. The protocol 

involved five sets of tests at multiple strain levels over approximately 

16,000 seconds (4 hours). Yang et al. (2006) made use of a multi-step stress 

relaxation test to evaluate the nonlinearity of the viscoelastic response of 

oesophageal tissue, while Nekouzadeh et al. (2007) developed an adaptive 

quasilinear viscoelastic (QLV) model for predicting viscoelastic behaviour. 

The usefulness of traditional models such as Fung’s QLV has been limited by 

tendons having demonstrated magnitude (strain and stress) and rate 

dependent viscoelasticity. More complex models have been developed that 

overcome the shortfalls, but in turn require diverse data to inform the model. 

For example, Schapery’s nonlinear viscoelastic model, which can account for 

magnitude dependency, requires at least two relaxation or creep steps.  

The considerable work in this area undertaken by the Department of 

Biomedical Engineering at the University of Wisconsin has directly influenced 

this dissertation. Lakes and Vanderby (1999), inspired by Thornton et al. 

(1997) demonstrating that relaxation occurs more rapidly than creep in 

ligament samples, proposed a mathematical framework to interrelate creep 
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and relaxation in soft tissue, which was further developed by Oza et al. (2006a; 

2003; 2006b). Evidence for nonlinearity of ligament was provided by 

Provenzano et al. (2001) and Hingorani et al. (2004), who described stress 

and strain level dependence on rate of creep and stress relaxation. Rate of 

recovery was also shown to be faster than rate of creep in ligaments (Jensen 

et al., 2004) and slower than relaxation in tendon (Duenwald et al., 2008). A 

nonlinear viscoelastic model was developed to describe this behaviour 

(Provenzano et al., 2002c). Damage and healing mechanics were also 

evaluated to varying degrees (Duenwald-Kuehl et al., 2012b; Provenzano 

et al., 2005; Provenzano et al., 2002a; Provenzano et al., 2002b). 

Provenzano and Vanderby (2006) demonstrated that collagen fibres are 

continuous or functionally continuous, disagreeing with work by Screen and 

colleagues who had found evidence of sliding as a component of stretching 

(Cheng and Screen, 2007; Gupta et al., 2010; Screen, 2008, 2009; Screen 

et al., 2006; Screen et al., 2011).Testing time for viscoelastic testing was 

determined by Manley Jr et al. (2003). Behaviour was further investigated in 

tendon and ligament, with rate of relaxation increasing with strain in tendons 

and decreasing with strain in ligaments (Duenwald et al., 2009a; Duenwald 

et al., 2009b, 2010). Many recommendations for testing suggested within 

these studies have formed the basis of aspects of this dissertation. LaCroix 

et al. (2013a) presented one of the few studies investigating changes in the 

viscoelastic behaviour of soft tissue as a result of factors such as age or 

damage. This formed the basis of the protocol used in this study to evaluate 

the behaviour of tendinopathy using viscoelastic testing. 

In defining the nonlinear viscoelastic behaviours of soft tissue, the group at the 

University of Wisconsin utilised many methodologies to explore different 

responses. Many studies used one or more single-step relaxation or creep 

tests, separated by recovery (Hingorani et al., 2004; LaCroix et al., 2013a; 

Provenzano et al., 2001). Duenwald et al. (2009a; 2010) tested tendon and 

ligament using relaxation and recovery sequences at multiple relaxation and 

recovery strain levels, and investigated the ability to predict the curves using 

traditional models such as QLV, Schapery’s nonlinear viscoelastic, and 

nonlinear superposition models. While performing only single magnitude 
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stress relaxation and creep tests, Manley Jr et al. (2003) found that testing 

duration could be sufficiently short so as to permit multiple tests without 

deleterious effects on soft tissue. This was echoed in the results of Chapter 8 

in this dissertation. 

Most notably, Duenwald et al. (2009b) identified that more comprehensive 

testing protocols are required to determine the best model, and that a two-step 

relaxation method was one example of “determining more robust viscoelastic 

behaviour”.  

9.2. Method 

As discussed in Chapter 6, there are four tests regularly performed on 

materials to characterise their behaviour – ramp, stress relaxation, creep, 

cyclic/dynamic. It is clear from the literature that multiple-step viscoelastic 

assessment is required to identify nonlinear behaviours. When characterising 

soft tissue, preconditioning and strain rate sensitivity are also considerations 

(Chapter 7). Dynamic behaviour is representative of daily activities, such as 

walking, which often involve repetitive behaviour. To the author’s knowledge, 

there is currently no published protocol that has tested the same soft tissue 

samples in each of these modes to provide a comprehensive picture of tissue 

behaviour. Therefore, a testing protocol was proposed that assesses the 

isochronal, static, and dynamic behaviours of tendons.  

The methodology was performed in three stages – preconditioning, stress 

relaxation, and creep – with time for recovery between each test. Based on the 

results of West et al. (2004), peak strain was set at 4%. Strains greater than 

5% have been demonstrated to cause damage to tendons (Provenzano et al., 

2002b), which is undesirable in a test with multiple stages. A peak stress of 

4MPa was used, rather than 6.7MPa reported by West et al. (2004), to reduce 

the risk of tendon damage via fatigue. The methodology also considered the 

requirement for future use of the tendons within the Australian Research 

Council (ARC) Linkage Project and so micro- or macro-failure levels were 

avoided. 
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9.2.1. Preconditioning stage 

Samples were preloaded to 5N and the strain zeroed. Tendons were 

preconditioned for 100 cycles from 0% to 4% strain at 1Hz. This is in 

accordance with the recommendation by Cheng et al. (2009) that 

preconditioning strain should be the highest strain used in the study. While 

recommendations of 1000 cycles have been made for longer tests (Bergomi 

et al., 2009), a duration of 100 cycles was chosen so as to not adversely 

influence the loading history (Kahn et al., 2010). 

Samples were removed and rewrapped in saline-soaked gauze, and allowed 

to recover in an air-tight container for at least one order of magnitude longer 

than testing (Duenwald et al., 2009a), in this case 1000 seconds. 

9.2.2. Stress relaxation stage 

Stress relaxation testing comprised a dynamic component, followed by two 

strain rate sensitivity components, and four relaxation steps. The dynamic 

component involved 100 cycles at 1Hz from 0–2% strain. The magnitude was 

selected as a compromise – a magnitude low enough so as not to continue 

preconditioning and to minimise any effects on the ramp phases, but large 

enough to record data. Preliminary testing showed a peak stress of 

approximately 4MPa during cycling. Typically, dynamic modulus is measured 

using small excursions around a non-zero starting magnitude; however, to 

maximise the available measurements, such as hysteresis, the protocol 

returns to zero to complete the cycle. 

The last cycle of the dynamic component was used as the first of three load-

unload curves to establish strain rate sensitivity in an isochronal stress-strain 

response. The three load-unload cycles, from 0–2%, were performed at 4% s1, 

0.1% s1, and 1% s1. This magnitude should remain within the toe and linear 

regions without influencing later phases of the testing (Arnoczky et al., 2002a; 

Screen, 2008; Screen et al., 2004a; Screen et al., 2002b; Sharma and Maffulli, 

2005b; Wang et al., 2006) 

Samples were then ramped at 10% s-1 to 1% and held for 100 seconds. The 

time selected was based on the results of Chapter 8. This was repeated to 

strain magnitudes of 4% in 1% increments. Strain was increased at each step 
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to continually test the effects of relaxation rather than recovery (Duenwald 

et al., 2009a; Duenwald et al., 2010). The sample was unloaded at 1%.s-1. 

Total testing time for the set was 554 seconds and is summarised in 

Figure 9-1. 

 

Samples were removed and rewrapped in saline-soaked gauze, and allowed 

to recover for 100 minutes in an air-tight container. 

9.2.3. Creep stage 

Creep testing followed the same rationale as stress relaxation, with minor 

variations. The dynamic component involved 100 cycles at 1Hz from 0–2MPa 

stress. 

The last cycle of the dynamic component was used as the first of three load-

unload curves for the isochronal stress-strain response. The three load-unload 

cycles were performed at 4% s-1, 0.1% s-1, and 1% s-1. The first of the load-

unload cycles were from 0–2MPa while the two dedicated load-unload cycles 

were to 2% strain. Data were limited to the range 0–2% to allow direct 

comparison of the isochronal responses between stages. 

 

Figure 9-1: Example of loading protocol (not to scale). The protocol starts with a dynamic 

component (red), followed by two load-unload curves (green), four incremental steps of stress 

relaxation or creep (blue) and completed with an unload curve (purple).  
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Samples were then ramped at 10%.s-1 to 1MPa and held for 100 seconds. This 

was repeated to stress magnitudes of 4MPa in 1MPa increments. As with 

relaxation, stress was incrementally increased to continually measure creep, 

rather than any recovery or similar phenomena. The sample was unloaded 

at 1%.s-1. A summary of the protocol is presented in Figure 9-1. 

Total testing time varied as a result of the mix of displacement control and load 

targets. 

9.2.4. Load-to-failure 

It is proposed that, if tendons are no longer required, a load-to-failure test 

should be performed following the creep stage at 1000%.min-1 to define the 

entire isochronal stress-strain curve of the tendon for reference. 

9.3. Outcomes 

9.3.1. Stress-strain response 

Stress-strain responses were calculated from the three load and unload 

cycles, being the last cycle of the dynamic segment and the two strain rate 

sensitivity cycles. If the load-to-failure data are available, the results may also 

be determined for the entire stress-strain curve. 

Maximum values of load, stress, displacement, and strain were calculated for 

the load and unload portion of each cycle. Stiffness and elastic modulus were 

calculated using a custom implementation of the Instron BlueHill 2 (Instron, 

MA, USA) automatic slope algorithm. This algorithm, described in detail in the 

Instron BlueHill Calculation Reference manual (version 1.1), divides the data 

into six equal regions between zero and the maximum load, calculates the 

slope of each region using least-squares linear fit, and finally returns the 

highest slope value from the pair of regions with the ‘highest slope sum’. 

9.3.2. Dynamic response 

Storage modulus, loss modulus and loss tangent were calculated from the last 

five cycles of the dynamic segment of each stage. The change in stiffness and 

hysteresis were calculated across all cycles. Rate of relaxation and creep, and 

percentage change, were calculated from the peak values in each dynamic set 

for comparison with the static response. 
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9.3.3. Static response 

Rate of change and percentage change were calculated for the multi-step 

stress relaxation and creep component. Rate of change (β) was calculated 

from the power law, 𝑦 = 𝐴𝑡𝛽 + 𝑐, using the nonlinear maximum likelihood 

estimate (MLE) method described in Chapter 8. 

9.4. Conclusion 

The proposed methodology offers a comprehensive approach to soft tissue 

testing in a single sample. To the author’s knowledge, this is the first 

methodology to utilise a combination of dynamic, ramp, and static testing in 

both creep and relaxation for any soft tissue, and the first methodology to 

perform a multiple step viscoelastic evaluation of tendinopathic tendons. 

Consideration was given to protecting the integrity of the tissue during testing 

to ensure reliability of the results throughout the duration of the test. 

Performing such a suite of testing on a single sample may help to identify 

subtle differences in behaviour corresponding to structural or constitutive 

differences in the material that may elucidate degenerative, disease, or even 

treatment pathways. Parameters within the methodology may be modified to 

examine the response at difference frequencies, at different magnitudes, or 

using different waveforms to elicit different responses in the tissue. 

Validation of the methodology is required; however, this study represents an 

attempt at defining a standardised protocol for comprehensively defining the 

mechanical behaviour of samples within a soft tissue model. A standardised 

protocol would permit easier comparison between studies and potentially 

improve understanding of the mechanics of soft tissues by removing inter- and 

intra-laboratory variation. 
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CHAPTER 10. VISCOELASTIC TESTING OF 

TENDINOPATHY IN THE ACHILLES TENDON 

10.1. Introduction 

A collagenase-induced tendinopathy model was selected as the animal model 

for the Australian Research Council (ARC) Linkage Project, LP110100581, of 

which this dissertation is part. As highlighted in Chapter 9, the mechanical 

behaviour of tendinopathy has not been widely studied: most studies have 

focussed on the failure properties (ultimate tensile stress and strain) and not 

the viscoelastic response. Only three studies were identified that contained a 

form of viscoelastic testing in a tendinopathy model – two rat studies (Huang 

et al., 2004; Tucker et al., 2016) and one rabbit study (Imai et al., 2015). The 

author found no studies examining the viscoelastic response of tendinopathic 

tendons at multiple stress or strains, and no study of both stress relaxation and 

creep testing. Consequently, there is little knowledge of the effect of 

tendinopathy on the mechanics of tendon, and no knowledge of the effect of 

tendinopathy across a range of physiological stresses and strains. 

A methodology for comprehensively testing the viscoelastic behaviour of soft 

tissue was proposed in Chapter 9 and subsequently used to define the 

behaviour of tendon from the animal model. Three approaches were taken with 

respect to assessing the tendons. Firstly, the results of the collagenase-

induction model were evaluated. Secondly, the conventional approach of 

comparing groups was used to evaluate the tendinopathic group in relation to 

the control groups. Lastly, individual tendon results were compared to the 

pooled results of the control rabbits, considered to represent the behaviour of 

a normal tendon population, to evaluate whether tendinopathy can be 

identified from the mechanical behaviour of a tendon – that is, to determine 

whether tendinopathy has a unique mechanical fingerprint. 

Based on previous collagenase-induced tendinopathy models, tendinopathy 

tendons will exhibit a change in stiffness (Chen et al., 2004; Hsu et al., 2004b; 

Marcos et al., 2014; Stone et al., 1999), although the literature is conflicted as 

to whether this change will be an increase or decrease. While tendinopathy 

has also been shown to increase percentage relaxation by a small amount 
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(5%) (Tucker et al., 2016), collagenase-induction increases cross-sectional 

area (CSA) significantly (Dowling et al., 2002a, 2002b; Lake et al., 2008; Stone 

et al., 1999). 

It was hypothesised that: 

• Collagenase-induced tendinopathy is an appropriate model when 

observed over a sufficient period of time (8 weeks or more); 

• CSA will be increased in tendinopathic tendons; 

• Stiffness and modulus will exhibit changes due to tendinopathy. 

Modulus and stiffness will tend toward the same direction, but at 

different magnitudes due to the changes in CSA; 

• Tendinopathy leads to an increase in percentage creep and relaxation, 

as well as rate of change; 

• No changes will be observed in tangent modulus, but storage and loss 

modulus are expected to increase due to tendinopathy; 

• Tendinopathic tendons will exhibit viscoelastic behaviours that are 

unique to degenerative conditions; and, 

• Bilateral tendinopathy is not induced in a collagenase-induced model. 

10.2. Method 

10.2.1. Samples 

A total of sixty-seven (n=67) New Zealand White (NZW) rabbits were included 

in ARC Linkage project, LP110100581, of which this dissertation is a 

component. Of these, three served as pilot samples, 31 controls, 

30 tendinopathy, and three were excluded due to data capture issues. 

Testing, including induction of tendinopathy, was performed in accordance 

with the institutional requirements of the University of Western Australia (UWA) 

and under Animal Ethics Committee approval RA/3/100/1049. 

Before and after induction, rabbits were allowed free movement within a cage, 

regular ‘play periods’ and other enrichment. Water and feed was provided 

ad libitum. Gait analysis was performed multiple times, before and after 

induction, as part of the ARC Linkage Project, and included load platforms and 
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three-dimensional (3D) motion capture. Through surgery, electromyography 

(EMG) and force buckle transducers were implanted in some rabbits. 

Under general anaesthetic and using a 29-gauge needle, type-I collagenase 

of 0.025mL (30 µL/rabbit, 10,0000 UI/mL, Sigma Chemicals) was injected into 

the left Achilles tendon of thirty rabbits using a technique similar to that 

described in Chen et al. (2011a). The key difference was that ultrasound 

guidance was not available for this study. Post-surgical pain management 

included subcutaneous injections of buprenorphine (0.01mg/kg) and 

meloxicam (0.5mg/kg) for 2–3 days and 4–5 days, respectively. 

Animals were sacrificed at week 4, week 8, and week 12. Tendons were 

excised and wrapped in saline-soaked gauze, and stored at -20°C in 

accordance with the recommendations in subsection 7.2.1. Samples from 

each group were sent for histology, architecture, and mechanical evaluation. 

In total, 54 tendons, 25 from control rabbits and 29 from tendinopathy rabbits, 

were available for the mechanical assessment that forms this chapter. 

Tendons were macroscopically assessed using a modified version of the 

scoring system presented by Stoll et al. (2011). 

Tendons were split into subgroups by week and limb (Table 10-1). The 

contralateral tendon in the tendinopathy group was considered separate to the 

controls since contralateral tendons often exhibit tendinopathy (Andersson 

et al., 2011; Docking et al., 2015). 

For clarity, tendon groups are referred to using the initials for group and limb, 

and the week number. For example, Tendinopathy-Left, Week 4 is referred to 

as TL4, and Control-Right, Week 0 as CR0. 

Table 10-1: Summary of the tendons used for mechanical evaluation. A total of 54 tendons were 

divided into 13 groups. 

 Weeks 

Group Limb 0 4 8 12 

Control 
Left  2 5 3 

Right 3 2 7 3 

Tendinopathy 
Left  4 5 5 

Right  4 4 5 
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Despite specifying a minimum of six samples in each group, according to the 

initial scope of the ARC Linkage project, only one group (CR8) reached this 

target. A further three samples from the Tendinopathy group (TL4 and TR4, 

and TR8) were not tested as the tendons were received without the calcaneus. 

10.2.2. Sample preparation 

On the day of testing, tendons were thawed at room temperature in a bath of 

Ringer’s solution (Baxter Healthcare, NSW, Australia) to maintain hydration. 

The calcaneal tuberosity was potted in poly-methyl methacrylate (PMMA) 

(Vertex Self Curing, Vertex-Dental B.V., The Netherlands) inside of a 25mm 

section of OD20mm PVC pipe. CSA was measured using an Artec Spider™ 

(Artec Group, Luxembourg) structured light scanner as described in Chapter 4. 

10.2.3. Test setup 

Mechanical testing was performed on an Instron 5566 uniaxial materials 

testing system with 100N load cell, and controlled via Instron BlueHill software 

(Instron, MA, USA). The myotendinous junction was secured within 

thermoelectrically cooled (TEC) grips (Bose Enduratec, MN, USA). The 

calcaneus was secured perpendicular to the tendon axis, in an anatomical 

 

Figure 10-1: The rabbit Achilles tendon tensile test setup on the Instron 5566. The calcaneus was 

potted in poly-methyl methacrylate (PMMA) and secured perpendicular to the tendon axis in an 

anatomical position. The myotendinous junction was frozen within the thermoelectrically cooled 

(TEC) grips. 
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position. The setup (Figure 10-1) was similar to that described by Warden 

(2007). Once the musculotendon junction was secured, a preload of 1N was 

applied and the grip-to-grip length measured using digital callipers (accuracy 

0.01mm). Tendons were sprayed with saline during testing to keep them moist. 

CSA and gauge length were inputs to the BlueHill method allowing for strain 

and stress control of the machine. Load, displacement, strain, and stress were 

recorded at 100Hz during testing. 

This testing followed the methodology outlined in Chapter 9; that is, a 

preconditioning stage followed by the stress relaxation and creep stages. A 

triangle waveform was used in the cyclic portions of the testing due to 

limitations in the testing software. 

10.2.4. Statistics 

Data were analysed using Microsoft Excel (2016) and in the 

R Statistical Environment (Lianoglou and Antonyan, 2014; R Core Team, 

2015; RStudio, 2016; Wickham, 2009, 2011, 2015). Results are presented as 

mean and standard deviation. One-way ANOVAs and Tukey's honest 

significant difference (HSD) post hoc test were used to determine statistical 

significance of the means. All tests were performed assuming an alpha level 

of 0.05. 

 

   



 

 

 

 

Table 10-2: Summary of the rabbit (New Zealand White) demographics used in mechanical testing. 

 Control Tendinopathy All 

Week 0 4 8 12 4 8 12  

Male 2 1 3 1 3 2 2 14 

Female 1 1 4 2 2 3 3 16 

M:F 2:1 1:1 3:4 1:2 3:2 2:3 2:3 14:16 

Start Age (week) 22.0 ± 0.0 30.3 ± 0.2 24.6 ± 2.0 30.2 ± 0.2 28.2 ± 0.1 22.5 ± 0.1 28.3 ± 0.1 26.1 ± 3.1 

Final Age (week) 27.6 ± 0.0 32.3 ± 0.2 35.4 ± 1.6 40.4 ± 0.2 32.3 ± 0.1 34.6 ± 0.8 40.4 ± 0.1 35.1 ± 4.0 

Average diff. 5.6 ± 0.0 2.0 ± 0.0 10.8 ± 0.7 10.1 ± 0.0 4.1 ± 0.0 12.1 ± 0.8 12.0 ± 0.0  

Start Mass (kg) 2.6 ± 0.2 4.0 ± 0.7 2.9 ± 0.3 3.5 ± 0.5 3.2 ± 0.5 3.1 ± 0.2 3.3 ± 0.4 3.2 ± 0.5 

Final Mass (kg) 2.8 ± 0.2 4.2 ± 0.8 3.2 ± 0.3 3.7 ± 0.4 3.2 ± 0.3 3.6 ± 0.3 3.7 ± 0.4 3.4 ± 0.5 

Average diff. 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.1 ± 0.1 0.0 ± 0.2 0.5 ± 0.2 0.4 ± 0.1 0.3 ± 0.2 
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10.3. Results – Tendinopathy model 

10.3.1. Samples 

A total of 30 rabbits – 14 males and 16 females – were used for this portion of 

the study. The average age of the cohort at the beginning of experiments was 

26 ± 3 weeks at a starting mass of 3.2 ± 0.5kg. The average final mass was 

3.4 ± 0.5kg. Gender was evenly distributed between groups. Demographics 

are summarised in Table 10-2. 

Differences between starting age and finishing age did not match the allocated 

groups in all cases due to requirements for the gait analysis, which focussed 

on the zero and eight-week time points. As a result, starting ages for the four 

and twelve-week groups were later than the zero and eight-week groups as 

they did not require any additional assessment. Starting ages were chosen so 

that the youngest rabbits were of skeletal maturity (26 weeks) at sacrifice. Final 

ages, therefore, more closely matched the desired spacing between time 

points.  

Average mass was consistent between the groups, with the exception of the 

Control group at week four which was significantly larger than the zero and 

eight-week Control groups (Figure 10-2). This was due to low sample numbers 

(n=2) and above average masses for both rabbits, including the largest rabbit 

in the study (4.51kg starting mass). There was no significant difference 

between the starting and final mass for any group. This indicates a stable 

 

Figure 10-2: Mean ( ± SD) mass (kg) of rabbits used in testing. Initial masses (red) and final 

masses (blue) at each week are indicated. 
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population with no influence on mass caused by exercise or induction of 

tendinopathy. 

No slippage was observed at the myotendinous junction during testing. Two 

CL8 tendons failed during testing as the calcaneus was not secured 

adequately in the PMMA and came loose during creep analysis. These 

tendons were excluded from the data analysis as, upon closer inspection, it 

appeared that there was movement within the PMMA during preconditioning 

and relaxation. This was likely due to an error at time of explantation which left 

the calcaneus not fully intact. It was determined that movement within the 

PMMA likely occurred during relaxation testing and so the tendon was 

excluded completely to avoid issue with subsequent analysis. Revised sample 

 

Figure 10-3: The isochronal stress-strain response at 1%.s-1, showing the excluded samples 

(red). The excluded samples demonstrated noticeably low stiffness, supporting the observation 

of movement at the bony interface. 

Table 10-3: Updated summary of the rabbit Achilles tendon used for mechanical evaluation. A 

total of 54 tendons were provided for mechanical evaluation, with 52 tested successfully. 

 Weeks 

Group Limb 0 4 8 12 

Control 
Left  2 3 3 

Right 3 2 7 3 

Tendinopathy 
Left  5 5 5 

Right  5 4 5 
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numbers for each group are presented in Table 10-3. Tendon appearance and 

morphology was still considered as evidence for tendinopathy progression. 

The behaviour of the excluded tendons can be seen in Figure 10-3. 

10.3.2. Histology 

Given no histology results have been published for the ARC Linkage Project 

to date, histology cannot be assessed directly for this set of tendons. A similar 

study by Chen et al. (2011a) reported histology scores of 11.0 ± 3.5 and 

11.7 ± 1.2 at 8 and 12 weeks post-induction, with no reports made for normal 

tendon. 

10.3.3. Tendon appearance 

Stoll et al. (2011) proposed a macroscopic scoring system for tendon healing, 

where a score of 17 is considered a normal, healthy tendon. Several of these 

aspects were not appropriate for assessing degradation alone, as they 

pertained to defects and surgical intervention; however, of note are the 

following scores: 

• Connection tendon to skin (1 point); 

• Connection tendon to fascia and paratenon (1 point); 

• Tendon rupture (1 point); 

• Inflammation (1 point); 

• Tendon surface (1 point); 

• Neighbouring tendon (1 point); 

• Swelling/redness of tendon (2 points); 

• Shape of tendon (3 points); and, 

• Colour of tendon (1 point). 

Adjusting for the selection of scores, a score of 12 would be considered normal 

and healthy, where zero is completely degenerated and ruptured.  

Representative samples of the tendons are presented in Figure 10-4, 

Figure 10-5, and Figure 10-6. Of the tendons tested, only six did not score 12, 

being four tendinopathy tendons (one TL4, two TL8, one TL12) and two CL8 

tendons.
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Figure 10-4: Examples of control rabbit Achilles tendon showing no signs of tendinopathy. From 

L to R: one tendon each from week 0, week 4, week 8, and week 12. 

 

 

  

Figure 10-5: Examples of tendinopathic rabbit Achilles tendon showing signs of tendinopathy. 
From L to R: three tendons from week 8, and one tendon from the week 12. 

  
  

Figure 10-6: Examples of tendinopathic rabbit Achilles tendon showing no signs of tendinopathy. 
From L to R: one tendon from week 4, and three tendons from week 12. 
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Two tendons showed signs of tendinopathy, being a loss of the bright and 

shiny white appearance and disorganised fibre bundles representative of 

‘crabmeat’ (Maffulli et al., 2015; Schwartz et al., 2015). These tendons (both 

TL8) scored only three, with one point each for not-conjoined, not-adnated, 

and no rupture. The remaining two tendinopathy tendons (TL4 and TL12) 

scored eight as there was also no swelling of the tendon (+2) and the tendon 

exhibited a normal shape (+3). The two control tendons scored 11 due to some 

thickening and redness of the tendon sheath likely caused by use of a force 

buckle during in vivo experimentation prior to this study, as noted above. No 

signs of adhesion were noted in any samples. 

10.4. Results – Grouped 

10.4.1. Tendon morphology 

Cross-sectional area 

CSA was measured prior to each test to monitor the tendons for changes in 

the morphology and input to Instron BlueHill to calculate the stress during 

testing. For statistical calculations, only CSA prior to preconditioning was 

considered. The average CSA for control tendons was 8.85 ± 1.55mm2 and for 

tendinopathy tendons was 9.30 ± 2.20mm2. 

CSA was significantly different between the Tendinopathy-Left group at 

week 8 and Control-Left, Control Right and Tendinopathy-Right. There was no 

significant difference within groups with time, or between groups at any other 

time point. 

Of note was the variation in CSA at Week 8. The three tendons exhibiting signs 

of tendinopathy were the largest tendons at 14.0mm2, 14.4mm2 and 15.4mm2 

(Figure 10-7) which is 50, 55, and 65% larger than average, respectively. One 

tendinopathy sample in week 12 also exhibited enlarged CSA (12.2mm2), but 

was similar to other seemingly natural variations in CSA. 

The larger CSA in the Tendinopathy-Left group at Week 8 is consistent with 

reports of continued degradation in the tendons up to eight weeks following 



Mechanical Behaviour of Tendinopathic Tendon: An Engineering Perspective 

180 

collagenase injection. However, CSA showed no enlargement or swelling at 

Week 4 or Week 12. This is consistent with the macroscopic observations and 

counter to expectations based on the histology reports of a similar 

collagenase-induced tendinopathy model (Chen et al., 2011a). 

Tendon length 

Tendon length was unremarkable. The gauge lengths for each test are 

presented in Figure 10-8 and summarised in Table 10-4. All groups had gauge 

lengths of approximately 25mm and greater. It can be assumed that the 

variation is as much related to the clamping as it is to the true length of the 

tendon, since it is difficult to clamp the tendon at an exact location. 

Significant differences were seen between the Control-Left samples at Week 4 

and Control-Left at Week 8, and Tendinopathy-Right at Week 4 and Week 8. 

Significant differences were also seen between Control-Left at Week 4 and 

 

Figure 10-7: Summary (mean  ±  SD) of the rabbit Achilles tendon CSA measurements (mm2) for 
control and tendinopathy groups. Individual measurements are shown as dots. 

Table 10-4: Summary (mean  ±  SD) of the rabbit Achilles tendon gauge lengths (mm) for control 

and tendinopathy groups. 

 Weeks 

Group Limb 0 4 8 12 

Control 
Left  30.02 ± 1.14 25.02 ± 3.32 27.93 ± 2.24 

Right 24.87 ± 1.23 25.76 ± 5.13 24.57 ± 3.46 27.75 ± 2.01 

Tendinopathy 
Left  27.46 ± 1.93 25.83 ± 3.36 26.20 ± 2.70 

Right  27.97 ± 2.16 24.04 ± 3.28 26.17 ± 3.11 
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Tendinopathy-Right at Week 8 and Control-Left at Week 4 and Control-Right 

at Week 8. 

Despite significant differences between some groups, Figure 10-8 suggests 

there is no difference of practical relevance in lengths between the groups. 

10.4.2. Isochronal response 

Stress-strain response 

The stress-strain response in the three load-unload cycles (Figure 10-9) 

showed that the tendons operated within the toe and lower portions of the 

linear region. This is in agreement with the literature that reports the toe region 

is around 0–2% with reports up to 5% (Arnoczky et al., 2002a; Screen, 2008; 

Screen et al., 2004a; Screen et al., 2002b; Sharma and Maffulli, 2005b; Wang 

et al., 2006). 

Modulus was measured using the automatic slope algorithm from the stress-

strain data between 0% and 2% strain to ensure consistency when including 

the last cycle from the dynamic segment of the creep stage (Figure 10-10). 

 

Figure 10-8: Scatter plot of the gauge lengths (mm) for the rabbit Achilles tendon during each 

stage (preconditioning, relaxation, and creep). Colour indicates group.  
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The stress-strain behaviour of the excluded samples was compared to those 

that were included (Figure 10-3). As expected, the excluded tendons 

demonstrated abnormally low modulus and abnormal excursion compared to 

other tendons. Three tendons exhibited similarly large displacements (greater 

than 3.5% strain) during this stage of the testing, as seen in Figure 10-3. One 

 

Figure 10-9: Stress-strain response of the rabbit Achilles tendon in relaxation (top) and creep 

(bottom) at different strain rates. 
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sample was identified earlier as showing signs of tendinopathy. The remaining 

tendons were control tendons (one right and one left) with no signs of 

degeneration or damage. These samples displayed behaviour similar to the 

excluded samples, suggesting movement at the bony interface most likely 

within the PMMA as with the excluded samples.  

 

Figure 10-10: Summary (mean  ±  SD) of the elastic modulus (0-2% strain) for the rabbit Achilles 

tendon in relaxation (top) and creep (bottom) at different strain rates. 
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Within the bounds of the experiment, that is up to 2% strain, the elastic 

modulus of each group showed no sensitivity to strain rate (p>0.05 in all 

samples). Significant differences (p<0.05) were seen between CL8 and TR8 

samples during loading at 1% s-1, and unloading at all three strain rates. There 

were no differences between loading and unloading, suggesting elastic 

nonlinear behaviour. 

Interestingly, the curve of the fastest strain rate (4% s-1) showed slightly higher 

stresses during unloading than loading. Since hysteresis is the difference 

between energy stored and energy returned, this would suggest more energy 

was returned. This net positive energy return (seen as a negative hysteresis) 

 

Figure 10-11: Summary (mean ± SD) of the energy density measurements (MPa) for the rabbit 

Achilles tendon at different strain rates. 
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was observed in all groups at the highest strain rate (Figure 10-11). It is likely 

that this was an artefact caused by inertia of the Instron 5566 cross-head and 

is discussed further in subsection 10.7. A net energy loss was measured 

at 0.1% s-1 and a near neutral energy difference was measure at 1% s-1.  

Strains and stresses were maintained at physiological levels in agreement with 

previous studies (West et al., 2004). Behaviour did not extend outside the 

linear region and, in some cases, may not have left the toe region. 

Force-displacement response 

Forces were below 40N up to 2% strain, in agreement with findings by West 

et al. (2004). Figure 10-12 and Figure 10-13 show similar behaviour to the 

stress-strain response of the tendon. This is expected from the similarities in 

CSA between groups. 

Stiffness was not significantly different between groups, strain rates or 

between load and unload curves. Values (56 ± 22 N/mm) were similar to those 

reported by Chen et al. (2011b), Trudel et al. (2007), and Awad et al. (1999), 

and lower than Wang et al. (2015), suggesting 2% is near the transition into 

the linear region. 

 

Figure 10-12: Representative force-displacement response of the rabbit Achilles tendon at 

different strain rates. 
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Hysteresis measured between 1.3 and -1.5mJ, or 23% and -52% energy loss. 

In all groups at each week, the highest strain rate was calculated as having a 

net energy gain. Load-unload curves showed an average difference of 

1.3 ± 0.7N, 0.6 ± 0.2N, and -1.3 ± 0.8N between the load and unload curve at 

0.1% s-1, 1% s-1, and 4% s-1, respectively. The magnitude of this difference 

 

Figure 10-13: Summary (mean ± SD) of the stiffness (N/mm) for the rabbit Achilles tendon in 

relaxation (top) and creep (bottom) at different strain rates. 
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supports the notion that inertia of the cross-head may have created 

measurement error. 

10.4.3. Dynamic response 

The change in stiffness, hysteresis, storage modulus, loss modulus and loss 

tangent were calculated from the dynamic segment at the start of each stage. 

Rate of relaxation and creep, and percentage change, were calculated from 

the peak values in each dynamic set for comparison with the static response. 

Change in stiffness and modulus 

Stiffness and modulus increased over the first 5–10 cycles until reaching a 

steady state (Figure 10-14 & Figure 10-15). There was no significant 

 

Figure 10-14: Elastic modulus (MPa) of the loading segment in the rabbit Achilles tendon 

increased for 5-10 cycles before reaching a plateau. 
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difference between cycles, type, or group suggesting that the toe region was 

unaffected by tendinopathy. 

 

Hysteresis 

Hysteresis, calculated using a trapezium approximation of area under the 

curve, reached a steady-state after 5–10 cycles (Figure 10-16). As with the 

isochronal hysteresis measurements, high strain rates led to measurement 

errors and a positive net energy gain (Figure 10-17). In this case, 

preconditioning (8% s-1) was more pronounced than the creep and relaxation 

cycling (4% s-1). 

 

Figure 10-15: Stiffness (N/mm) of the loading segment in the rabbit Achilles tendon increased for 

5-10 cycles before reaching a plateau. 
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Since positive net energy gain in this system is not possible, no statistical test 

was performed. This is discussed further in subsection 10.7. 

 

 

Figure 10-16: Hysteresis (mJ) of the loading segment in the rabbit Achilles tendon decreased for 

5-10 cycles before reaching a plateau. 
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Storage and loss modulus, and tan(δ) 

Strain versus time and stress versus time curves for each sample and cycle 

were fitted via maximum likelihood estimates (MLE) using the triangle 

waveform equation: 

 

 

Figure 10-17: Summary (mean ± SD) of the hysteresis (mJ), averaged across the last five cycles, 

during dynamic testing of the rabbit Achilles tendon. 

𝑓(𝑡) =  
𝐴

𝜋
sin−1 (sin (

2𝜋𝑡

𝑝
−  𝛿)) +

𝐴

2
 

Equation 10-1: Function to describe triangle waveform. 
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Figure 10-18: Summary (mean ± SD) of the (top) Storage modulus (MPa), (middle) Loss modulus 

(MPa), and (bottom) tangent delta for the rabbit Achilles tendon, average across the last five 

cycles of the dynamic segment of testing. 
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Amplitude and phase angle (δ) estimates were used to calculate the 

storage(E’) and loss (E’’) moduli and tan(δ) using the equations: 

 

A representative curve fit is shown in 

Figure 10-19, and the average values 

in Figure 10-18. Control variables were 

fitted with an R2 of 0.993±0.002, while 

response variables were fitted with an 

R2 of 0.764±0.069. There was no 

significant difference between groups 

in storage, loss, and tan(δ), with the 

exception of tan(δ) between CR0 and 

CR4. 

10.4.4. Static response 

Magnitude of change 

There was no significant difference in the magnitude of creep within or between 

groups. Relaxation showed significant differences in the Tendinopathy Right 

group between step 1 and steps 3, and step 1 and step 4 within each week, 

and between step 1 and step 2 at week 12. 

Percentage change 

Tendons showed little sensitivity to percentage change between groups and 

time points at each step. Significant differences were only seen in the 

percentage relaxation between TL8 and CL8 at all steps, and between TL8 

and CR8 at steps 1 and 2. TR8 was significantly different to CL8 at step 4. 

Within groups, CR8, TR8, and TL12 showed a greater creep at 4MPa 

compared to 2MPa. TR12 showed greater creep at 4MPa compared to 1MPa 

and 2MPa. Percentage relaxation as a measure showed a greater sensitivity 

to differences, with significance between 1% strain and at least one other step 

𝐸′ =  
𝜎0

𝜀0
cos 𝛿 and 𝐸′′ =  

𝜎0

𝜀0
sin 𝛿 

Equation 10-2: (L) Storage modulus (E’), and (R) Loss modulus (E’’). 

 

Figure 10-19: Representative cycle from the 

dynamic testing showing triangle waveform fit 

(red).  
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in all groups except CR0 and CR4. However, the magnitude of relaxation at 1% 

strain was small in absolute terms. 

Rate of change 

Curve fitting was performed as recommended in Chapter 8; that is, using data 

from time greater than 2.5 tr to remove noise caused by overshoot from the 

ramp. Viscoelastic behaviour was measured in terms of rate of change and 

magnitude of change for each step. From this, the effect of stress and strain 

magnitude was able to verify or falsify quasilinear models as per Duenwald 

et al. (2009b). 

No significant difference was seen in the rate of change within each group, 

with the exception of rate of relaxation in CR8, which was significantly different 

between 1% and 3%, and 1% and 4%. Similarly, no significant differences 

were seen between groups at each step, with the exception of TL8 and CR0 

at 3MPa, and TL8 and TR12 at 3MPa. There were significant differences 

between creep and relaxation in all groups, with the rate of creep larger than 

the rate of relaxation. 

Static versus dynamic response 

Creep values for percentage and rate of change were significantly different 

between the static curves and the dynamic curves (approximated from the 

peak values from each cycle) in almost all cases. No significant difference was 

measured in the relaxation curves, or in the magnitude of change for creep. 

Within the dynamic response, significant differences were seen in the rate of 

change between TL8 and CR8 in creep, and in the percentage change 

between CL4 and CL8, and TL8 and CR8. 

10.5. Results – Individual 

Mean values for the parameters were derived from the population group 

comprising the control samples independent of time and side. In graphs, 

control samples are represented as dots and tendinopathy samples as 

triangles. Individual samples from both groups were compared to the mean 

values (solid lines), plus or minus one standard deviation (dashed lines), and 

plus or minus two standard deviations (dotted lines), for each parameter as 

calculated from the control population. Samples were coloured black if within 
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one standard deviation, blue if they fell between one and two standard 

deviations, and red if the values fell outside two standard deviations. Control 

samples were plotted for consideration of the natural variation. 

10.5.1. Tendon morphology 

One contralateral and five tendinopathy samples were identified as having 

CSAs greater than the population mean, with a further three contralateral 

samples falling below the mean 

(Figure 10-20). These elevated 

CSAs were previously examined in 

the macroscopic observations and 

were treated as a measure of 

degeneration. Four control 

tendons fell above the range and 

four fell below the range, 

suggesting natural variability in the 

tendons. In this case, further 

investigation for degeneration in 

the top four TL tendons would be 

warranted. 

Gauge length was not considered 

as this was unaffected by 

tendinopathy. 

10.5.2. Isochronal response 

There appeared to be no discernible difference in the isochronal properties 

between tendinopathic, contralateral, and control tendons. While several 

tendons were highlighted as having values outside two standard deviations, 

this was more prevalent in the contralateral and control tendons, with 

tendinopathic tendons being within this range in almost all measures of 

isochronal response. This suggests that either the contralateral tendons were 

suffering degeneration or, more likely, that tendinopathy does not influence the 

isochronal properties at the magnitudes used within this protocol.  

 

Figure 10-20: CSA (mm2) of individual rabbit 

Achilles tendons compared to the control 

population. The solid line represents the population 

mean, dashed lines represent one standard 

deviation (SD), and dotted lines represent two SD. 

Control samples are shown as dots and 

tendinopathy samples as triangles. Samples within 

one SD are black, within two SD are blue, and 

outside of the ranges are red. 
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10.5.3. Dynamic response 

No tendinopathy samples fell outside of the range for stiffness or modulus 

response during cycling.  

Hysteresis was negative in all samples; that is, energy was gained during 

cycling, an artefact that is discussed further (subsection 10.7). No 

tendinopathy samples were outside the ranges. Similarly, there were no 

outliers from the tendinopathy group in any of the measures of dynamic 

modulus.  

10.5.4. Static response 

Of interest is a number of tendinopathy samples exhibiting lower percentages 

and rates of creep and relaxation. This behaviour contradicts a previous study 

that showed a small increase (5%) in the percentage relaxation of 

tendinopathic supraspinatus tendons (Tucker et al., 2016) but suggests that 

this small change may be real and warrants further investigation. 

10.6. Discussion 

10.6.1. Strain rate sensitivity 

Strain rate sensitivity was discussed in Chapter 7, with several observations 

regarding the behaviour of the tendon. The influence of strain rate may have 

been overstated (Masouros et al., 2009) and dependence may only exist in the 

toe region (Masouros et al., 2009; Pioletti et al., 1999). Strain rate selection is 

often a product of machine capabilities and data acquisition rate (Duenwald 

et al., 2009b). 

Within the bounds of the experiment, that is up to 2% strain, this study has 

indicated that tendons are strain rate insensitive, in terms of both stiffness and 

elastic modulus. This is true of both control and tendinopathy groups. This is 

in agreement with the study of control tendons in Chapter 7 and in 

disagreement with suggestions in the literature reviewed above. However, it 

should be acknowledged that the range of strain rates was relatively small. It 

is suggested that the parameters be chosen to include a wider range of strain 

rates, such as 0.1% s1, 1% s1, 10% s1, 100% s1 and, if permissible, 1000% s1 

to improve the robustness of the conclusions. If testing through this range of 
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strain rates cannot elucidate a difference in response, then it is unlikely that a 

response exists. 

Hysteresis measured between 1.3 and -1.5mJ, or 23% and -52% energy loss. 

Energy density measured between 6.48Pa and -6.8Pa. In all groups, the 

highest strain rate was calculated as having a net energy gain (see 

subsection 10.7 for discussion). These values are lower than many reported 

in literature (Andarawis-Puri et al., 2012; Freedman et al., 2015; Fryhofer 

et al., 2016; Pardes et al., 2017; Pardes et al., 2016)., but similar to reports of 

percentage hysteresis (Maganaris and Paul, 2000; Yahia and Drouin, 1990). 

It has been shown that soft tissues exhibit a decrease in hysteresis following 

preconditioning (Schatzmann et al., 1998; Yahia and Drouin, 1990). 

Therefore, it is likely that the low energy and energy-density losses are due to 

the elasticity of the tendon within the strain region tested, and the effect of 

preconditioning and cycling prior to performing the load-unload cycles. Despite 

being well described in literature, few papers report values for the hysteresis. 

10.6.2. Dynamic response 

Dynamic modulus has been used to characterise tendons, including human 

(Schwerdt et al., 1980), rat (Fessel and Snedeker, 2009), and rabbit (Ikoma 

et al., 2013; Imai et al., 2015; Nagasawa et al., 2008). Figure 10-18 shows 

values for storage and loss moduli ranging from 33–135MPa and 0.75–42MPa, 

respectively, and a tan(δ) of 0.01–0.29 for the test groups. In comparison, 

Schwerdt et al. (1980), investigating human flexor digitorum, reported that the 

dynamic, or complex, modulus was strongly influenced by the strain, but that 

the strain did not influence phase angle. Complex modulus values at 1 Hz were 

508MPa at 0.5% strain, 1361MPa at 2% strain, to 3731MPa at 5% strain. 

Nagasawa et al. (2008), reported tan(δ) of approximately 0.135 in rabbit 

Achilles tendon at 1Hz. This increased to 0.173 in regenerating tendon at three 

weeks after injury, returning to 0.135 by week six. It was concluded that the 

dynamic mechanical properties recovered faster than the static properties, but 

with no correlation to histological findings. It was proposed that cross-linking 

of the collagen may be involved in the dynamic response. Imai et al. (2015) 

reported a tan(δ) of approximately 0.1, noting no difference between treated 

and untreated samples in a collagenase model. Fessel and Snedeker (2009) 
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provided evidence against the involvement of proteoglycans (PG) in 

mechanical properties, including dynamic properties. Storage and loss 

modulus for control samples at 2% excursion were approximately 1400MPa 

and 60MPa, with an estimated tan(δ) of 0.04. Ikoma et al. (2013) reported 

storage moduli of 76GPa for control samples and 56GPa for stress shielded 

samples, and 10GPa and 7GPa for loss moduli, for an estimated tan(δ) of 

0.131 and 0.125, respectively. Schechtman and Bader (2002) reported 

storage and loss moduli of 885–1405Ma and 36–49MPa, respectively, at a 

stress of 5MPa. 

Despite finding improvements in the histological markers and CSA associated 

with treatment, Imai et al. (2015) did not find a significant difference in storage 

modulus or tan(δ) at 1Hz. Loss modulus exhibited a slight increase in untreated 

samples. Together, these null results may indicate that tendinopathy has 

limited effect on the dynamic modulus of tendons, but requires further analysis. 

10.6.3. Static response 

Tendons did not exhibit significant nonlinear viscoelastic behaviour as 

hypothesised, with only subtle and not significant differences in the rate of 

tendon at each step in both creep and relaxation. Percentage relaxation and 

creep more clearly demonstrate the nonlinear viscoelastic behaviour described 

in literature (Abramowitch et al., 2010; Davis and De Vita, 2012; Duenwald 

et al., 2008; Duenwald et al., 2010; Kahn et al., 2010; LaCroix et al., 2013a; 

Pradas and Calleja, 1990). The results, however, demonstrate a decrease in 

the creep and relaxation with increasing magnitude, a behaviour more 

commonly associated with ligament (Duenwald et al., 2010). This finding may 

highlight functional differences in the tendons used in the studies, as previous 

studies reporting this behaviour used digital flexor tendons (Duenwald et al., 

2008; Duenwald et al., 2009a; Sverdlik and Lanir, 2002). 

Static creep and relaxation values were significantly different to the dynamic 

values obtained from the cyclic portion of each phase of testing. Visually, 

behaviour between groups was similar between the static and dynamic groups. 

This should be considered when designing experiments, as the difference in 

static and dynamic behaviours may offer insight into the influence of different 
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constituents and structures on tendon behaviour. However, care should be 

exercised for longer or high amplitude testing protocols, as cyclic testing has 

been shown to reduce the modulus, strength, and time to rupture 

(Thornton and Bailey, 2012; Thornton et al., 2007). 

Age and PG-deficient mice tendons demonstrated relaxation of an estimated 

25–32% over 600s, with younger tendons showing greater relaxation in control 

and decorin-null tendons (Connizzo et al., 2013). Similar findings were seen 

as mice developed, with relaxation percentage decreasing from 50% to 40% 

as the mice aged from four days to four weeks (Ansorge et al., 2011). PG 

deficiency did not appear to influence the relaxation behaviour (Connizzo 

et al., 2013). Relaxation rate (0.056–0.095) and percentage relaxation (30–

49%) after 100s decreased with age in rat tail tendon (LaCroix et al., 2013a). 

Despite presenting a multi-step stress relaxation protocol, LaCroix et al. 

(2013a) did not discuss in detail the effect of the strain magnitude on the 

relaxation behaviour of the test groups. Shepherd et al. (2014) reported stress 

relaxation of 30–48% after 300 cycles in various tendon types, while Screen 

et al. (2013) reported relaxation of 40–65% for incremental stress relaxation. 

Legerlotz et al. (2013b) noted that cyclic stress relaxation resulted in a greater 

percentage relaxation than statically loaded tendon fascicles, and in the order 

of 30–40% (estimated) after 100s, with greater relaxation in 

glycosaminoglycan-deficient samples possibly due to a reduced water content. 

Screen (2008) reported between 25% and 107% relaxation in fascicles at 

increments of 2–8% strain for 200s. Human patella tendon showed a relatively 

constant percentage relaxation as a function of strain magnitude of 

approximately 40% relaxation after 100s (Pioletti and Rakotomanana, 2000b). 

Rabbit patellar tendon fascicles showed relaxation of only 20–25% in controls, 

and 35–40% in stress shielded tendons (Yamamoto et al., 1999). Rat Achilles 

tendon relaxed 40% after 300s at 2.5% strain (Ng et al., 2011). Tucker et al. 

(2016) found a significant difference in percentage relaxation between healthy 

and overuse tendons in a supraspinatus rat model, showing relaxations of 

approximately 35% and 30%, respectively. Perry et al. (2009) reported 

relaxations of 25–38% in rat shoulder tendons, including some significant 

decreases in relaxation following rotator cuff injury, while exercise immediately 
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after immobilisation saw a decrease in percentage relaxation compared to 

cage activity (Peltz et al., 2010). The absence of interleukin-6 (IL-6) resulted 

in less relaxation (30%) compared to control (~38%) in a mouse patellar 

tendon model (Lin et al., 2005). Detached rat supraspinatus tendons exhibited 

lower percentage relaxation (25%) compared to control tendons (35%) 

following injury (Dourte et al., 2010). 

Rate of relaxation and rate of creep in rat medial collateral ligaments (MCL) 

has been shown to vary from 0.005–0.17 and 0.005–0.06, respectively, in a 

nonlinear manner under various strain and stress levels (Provenzano et al., 

2001). Similar behaviour was noted in rabbit MCLs, with more variance and 

higher rates of relaxation at low strain magnitudes (0.1–0.4 at 1%) compared 

to higher magnitudes (0.05–0.1 at 3–5%) and in creep (0.05–0.25 at 1MPa and 

0.01–0.05 at 45MPa) (Hingorani et al., 2004). Hingorani et al. (2004) 

highlighted that the creep behaviour is likely related to the fibre recruitment, 

while the relaxation rate is related to the hydration and non-collagenous 

content. Duenwald et al. (2009a; 2010) found that the rate of relaxation in 

porcine digital flexor tendon ranged from 0.01–0.15, and increased with 

increasing strain, unlike ligament which decreased with increasing strain. 

In this study, percentage relaxation and percentage creep were 8–41% and 7–

17%, respectively, with rate of relaxation and creep ranging from 0.31–0.52 

and 0.58–0.83. The values for percentage relaxation are similar to those 

presented in literature. On the other hand, the rates of relaxation and creep in 

this chapter are higher than in the few studies presenting this information, 

including the results of Chapter 8 which reported rate values for relaxation and 

creep of approximately 0.05 and -0.12, respectively. The author found no 

published data on the percentage or rate of change in NZW rabbit Achilles 

tendon for comparison. The difference is likely the result of performing creep 

and relaxation tests as part of a wider protocol, and not as isolated 

experiments. 

It has been shown in literature that the structural mechanisms of relaxation and 

creep differ (Miller et al., 2012c) and, therefore, it is of value to compare the 

behaviour to elucidate the structural components that may be involved in any 
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degenerative changes in tendon. In this methodology, the benefit of comparing 

between creep and relaxation at multiple steps and between dynamic and 

static responses, coupled with the dynamic and isochronal data, outweighs the 

potential influence of multiple test segments on the rate of change values. This 

information should be reported to permit comparisons between studies. 

10.6.4. Ability to identify tendinopathy 

Control data (that is, Control-Left and Control-Right) were pooled to provide a 

better estimate of population behaviour for each component of testing, 

independent of time. Individual tendons in the induced (left) and contralateral 

(right) tendinopathy groups were compared to the pooled control results to 

evaluate whether any differences were seen, thus providing an indication as 

to whether tendinopathy exhibits any abnormal behaviours that are not 

observed in controls. However, as with the grouped data, no practical 

difference was observed between tendinopathy and control samples in any of 

the test segments. 

10.6.5. Tendinopathy model 

With no histology results for the tendons used in this study, it is difficult to 

adequately assess the collagenase model in terms of inducing tendinopathy. 

However, macroscopic assessment suggests limited success with induction 

and no apparent degeneration with time. Using a modified version of the 

scoring system proposed by Stoll et al. (2011), only six out of the 52 tendons 

assessed showed signs of ill-health (that is, did not receive a perfect score) 

and, of these, four were tendinopathy tendons (out of 14 inductions). Two of 

these showed definite signs of tendinopathy (both TL8), with the other two (TL4 

and TL12) showing mild signs of ill-health. This correlated with a markedly 

larger CSA in the case of the TL8 and a moderate increase in size in the case 

of the TL12 tendon. Two of these rabbits had paired tendons for comparison. 

The difference between the pairs was ~7.5mm2 and ~2.4mm2 for the marked 

and moderate responses. As mentioned previously, three TL8 tendons were 

noticeably larger than the average for all samples at 14–15mm2 (compared to 

9.2 ± 0.3mm2) and could clearly be seen when overlaid on the plot of CSAs 

(Figure 10-7). 
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With no reference to the results of testing, it may be inferred that the 

collagenase-induced tendinopathy model was not reliable. While there are 

several possible reasons for this, inexperience in induction and a lack of image 

guidance are likely the key contributors. It is not uncommon for models to be 

shown to be unsuccessful (Dirks and Warden, 2011; Lake et al., 2008; Lui 

et al., 2011; Warden, 2007), with at least two studies unable to replicate 

tendinopathy in the Achilles tendon using validated models (Archambault 

et al., 2001; Huang et al., 2004). 

Within tendinopathy models, examination of the literature also reveals 

inconsistencies in the findings. Collagenase-induced tendinopathy models, 

when continued to eight weeks, appear to demonstrate a progressive 

deterioration comparable to tendinopathy (Chen et al., 2011a; Stone et al., 

1999). CSA has been shown to increase in these models (Dowling et al., 

2002a, 2002b; Lake et al., 2008; Stone et al., 1999). However, the literature is 

conflicted as to whether tendinopathy causes an increase or decrease in 

stiffness and modulus (Chen et al., 2004; Hsu et al., 2004b; Marcos et al., 

2014; Marcos et al., 2012; Stone et al., 1999). In addition, maximum failure 

load has been shown in some studies to decrease, while in others the failure 

load remained unchanged (Chen et al., 2011a; Chen et al., 2004; Dowling 

et al., 2002a, 2002b; Hsu et al., 2004a; Hsu et al., 2004b; Lake et al., 2008; 

Marcos et al., 2014; Marcos et al., 2012; Stone et al., 1999). Structural 

changes in the tendon were correlated with the ultimate tensile load (Hsu et al., 

2004a; Hsu et al., 2004b). 

It has been found that the application of strain during collagenase diffusion 

protected the tendon from degeneration and that no strain, or delayed 

application of strain, resulted in significantly inferior properties (Bhole et al., 

2009; Flynn et al., 2010; Nabeshima et al., 1996). It is, therefore, possible that 

allowing animals to return to activity immediately following collagenase-

induction may prevent the onset of tendinopathy. To achieve a consistent 

model between animal cohorts it may be necessary to immobilise the tendon 

for a period of time to permit diffusion of the collagenase into the tendon. 
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It has been suggested that care should be taken when using the contralateral 

side as a control, since it is usually compromised in patients with unilateral 

Achilles tendinopathy and through intervention (Andersson et al., 2011; 

Docking et al., 2015). This study did not find evidence for this, within the limits 

of the testing, as the contralateral tendinopathy tendon was not different to the 

control tendons. However, there may be microstructural changes that are 

evident on histological examination and this should be explored further. 

10.7. Limitations 

10.7.1. Tendinopathy model 

As discussed in 10.6.5, the tendinopathy model did not appear to be reliable. 

Furthermore, there was no histopathological information to evaluate the 

efficacy of inducing tendinopathy using collagenase. This is a significant 

limitation in the study. Samples used in this study were induced as part of a 

related study, and therefore, there was limited scope to influence the selection 

or induction of the tendinopathy. However, the techniques, methodologies, and 

evaluations presented may still be useful in future complex mechanical testing 

of soft tissues. Further studies, using a reliable and validated model, are 

necessary to evaluate these findings. 

10.7.2. Strain rate 

The Instron 5566 used for this study is limited to a maximum cross-head speed 

of 500mm/min, thereby restricting the testing to a maximum of approximately 

30% s-1, highlighting some of the machine restrictions described in literature 

(Duenwald et al., 2009b). The results showed that the tendons are strain rate 

insensitive, in both stiffness and elastic modulus. However, it should be 

acknowledged that the range of strain rates was relatively small. As such, it is 

suggested that future testing could be expanded to include strain rates 

of 0.1% s1, 1% s1, 10% s1, 100% s1, and if permissible, 1000% s1 to capture a 

greater range of data.  

10.7.3. Crosshead 

Interestingly, the curve of the fastest strain rate (4% s-1) showed slightly higher 

stresses during unloading than loading. Since hysteresis is the difference 

between energy stored and energy returned, this would suggest more energy 
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was returned. This net positive energy return (seen as a negative hysteresis) 

was observed in all groups at the highest strain rate (Figure 10-11). A net 

energy loss was measured at 0.1% s-1 and a near neutral energy difference 

was measure at 1% s-1. From these results, it may be inferred that the inertia 

caused by motion of the cross-head resulted in measurement errors in the load 

cell for all tests, and that this effect increased with the strain rate. For example, 

overshoot (seen in this study as rounding of the stress-strain curve at peak 

stress) is clearly evident at high strain rates, but is subtle at lower strain rates. 

This also highlights the issues with equipment limitations mentioned in 

discussions on ramp speed (Duenwald et al., 2009b; Gimbel et al., 2005), as 

the issues were more pronounced at the faster strain rate. 

Load-unload curves showed an average difference of 1.3 ± 0.7N, 0.6 ± 0.2N, 

and -1.3 ± 0.8N between the load and unload curve at 0.1% s1, 1% s1, 

and 4% s1, respectively (Figure 10-21).  

The magnitude of this difference supports the inference that inertia of the 

cross-head may have created measurement errors during testing. A 100N load 

cell was selected for this study to ensure that the sensitivity of the load cell was 

greater than the potential error. However, unlike the dynamic load cells 

produced by the manufacturer, the load cell used was a ‘static’ load cell with 

no inertial compensation. Therefore, post-testing inertial compensation may be 

required: for example, a temporal offset between the displacement and load. 

 

Figure 10-21: Difference in mean force (N) between load and unload curves at different strain 

rates during testing. 
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Additionally, the software was limited to a triangle waveform, which requires 

greater acceleration than a typical sine-waveform, leading to inertial 

measurement errors. 

With appropriate management of the physical limitations of the machine these 

measurement errors may be reduced. When testing small samples, larger 

machines may need to be operated at a slower strain rate to avoid error from 

crosshead inertia that was observed in this study. For larger machines, a 

dynamic load cell with inertia compensation may also be useful. Preferably, a 

machine with a smaller cross-head designed for smaller samples should be 

used. The drive mechanism should also be considered – screw-driven 

machines may be susceptible to backlash at high strain rates. 

10.7.4. Waveform 

Despite preconditioning resulting in stiffer and more repeatable and linear 

isochronal behaviour, the toe region is still present in the tendon behaviour 

(Figure 10-19) and, therefore, it is not sufficiently linearly elastic to be 

represented by a triangle waveform. This is seen in the difference in the 

coefficient of determination (R2) between the control and response variables, 

where R2 for the control variable was strong while the response variable was 

only moderate. The lower R2 suggests that the results calculated from the 

response variable may not be truly representative of the sample. This was 

unexpected, as pilot testing had demonstrated a more linear response. The 

amplitude of the stress component was generally underestimated due to the 

presence of this toe region, leading to underestimated storage and loss 

modulus. However, tan(δ) is independent of amplitude and provided a 

reasonable measure of dynamic response.  

To the author’s knowledge, results of dynamic testing using a triangle 

waveform have not been reported for tendon. From a mathematical 

perspective and a machine perspective, using a sine waveform is preferable 

as it simplifies the calculation of the phase difference (δ) between stress and 

strain responses and provides a gentler acceleration profile, reducing inertia-

related measurement errors. While it is still possible to use a triangle waveform 
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if necessary, it is recommended that a sine or haversine waveform be used 

where possible to more accurately account for this nonlinearity. 

10.8. Conclusion 

This is the first study to describe the isochronal, dynamic, and static 

viscoelastic responses of individual tendons, and at multiple steps. Tendons 

exhibited typical nonlinear responses, including a decrease in creep and 

relaxation response with increasing step magnitude. Tendon was also shown 

to be strain rate insensitive. The methodology described in Chapter 9 has been 

presented as a means of describing the mechanical behaviour of soft tissue, 

validated against the literature, and may offer a standard protocol for future 

work in comprehensively describing the mechanical behaviour of individual 

samples.  

Within the bounds and limitations of this study, it may be concluded that 

collagenase-induced tendinopathy does not appear to influence the 

mechanical behaviour of the Achilles tendon. However, considering the results 

of previous studies and the analysis of the literature, it may be that 

tendinopathy influences the failure properties of the tendon, as evidenced by 

the high proportion of ruptures exhibiting tendinopathic changes. These 

ruptures are also generally seen in people returning to explosive sports where 

the tendon may experience near-failure loads. This finding may help to better 

inform clinical management of tendinopathy. 
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10.9. Appendix 

 

 

 

Table 10-5: Summary (mean  ±  SD) of the rabbit Achilles tendon CSA measurements (mm2) for 

control and tendinopathy groups. 

 Weeks 

Group Limb 0 4 8 12 

Control 
Left  10.98 ± 0.27  8.15 ± 0.83  8.35 ± 0.52 

Right  7.78 ± 1.00 10.33 ± 1.33  8.84 ± 2.07  8.80 ± 0.82 

Tendinopathy 
Left   9.25 ± 1.41 12.40 ± 3.08  9.67 ± 1.64 

Right   7.84 ± 0.65  7.70 ± 0.75  8.51 ± 1.09 

 

 

Figure 10-22: Representative stress-strain response of the rabbit Achilles tendon at different 

strain rates. 
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Figure 10-23: Summary (mean ± SD) of the hysteresis (mJ) for the rabbit Achilles tendon at 

different strain rates. 
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Figure 10-24: Representative force-displacement (top) and stress-strain (bottom) behaviour of 

the rabbit Achilles tendon during cycling. 
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Figure 10-25: Summary (mean ± SD) of the elastic modulus (MPa) in loading (top) and unloading 

(bottom) at various cycles during dynamic testing of the rabbit Achilles tendon. 
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Figure 10-26: Summary (mean ± SD) of the stiffness (N/mm) in loading (top) and unloading 

(bottom) at various cycles during dynamic testing of the rabbit Achilles tendon. 



Chapter 10 Viscoelastic testing of tendinopathy in the Achilles tendon 

211 

 

 

Figure 10-27: Representative example of stress relaxation (top) and creep (bottom) response of 

the rabbit Achilles tendon during the static viscoelastic portion of the testing protocol. The 

dynamic response is shown as a dashed line. 
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Figure 10-28: Representative overshoot in a rabbit Achilles tendon undergoing static creep 
testing at different increments. 
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Figure 10-29: Summary (mean ± SD) of the magnitude of change in the static relaxation (top) and 
creep (bottom) testing at different increments in the rabbit Achilles tendon. 
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Figure 10-30: Summary (mean ± SD) of the percentage change in the static relaxation (top) and 

creep (bottom) testing at different increments in the rabbit Achilles tendon. 
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Figure 10-31: Summary (mean ± SD) of the rate of change (β) in the static relaxation (top) and 
creep (bottom) testing at different increments in the rabbit Achilles tendon. 
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Figure 10-32: Summary (mean ± SD) of the magnitude of change in the static and dynamic 
relaxation (top) and creep (bottom) testing at different increments in the rabbit Achilles tendon. 
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Figure 10-33: Summary (mean ± SD) of the percentage change in the static and dynamic 
relaxation (top) and creep (bottom) testing at different increments in the rabbit Achilles tendon. 
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Figure 10-34: Summary (mean ± SD) of the rate of change (β) in the static and dynamic relaxation 
(top) and creep (bottom) testing at different increments in the rabbit Achilles tendon. 
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Figure 10-35: (Top) Stiffness (N/mm) and (bottom) elastic modulus (MPa) of individual rabbit 

Achilles tendons compared to the control population. The solid line represents the population 

mean, dashed lines represent one standard deviation (SD), and dotted lines represent two SD. 

Control samples are shown as dots and tendinopathy samples as triangles. Samples within 

one SD are black, within two SD are blue, and outside of the ranges are red. 
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Figure 10-36: (Top) Hysteresis (mJ) and (bottom) energy density (MPa) of the individual rabbit 

Achilles tendons, calculated from the isochronal portion of the testing, compared to control 

population. The solid line represents the population mean, dashed lines represent one standard 

deviation (SD), and dotted lines represent two SD. Control samples are shown as dots and 

tendinopathy samples as triangles. Samples within one SD are black, within two SD are blue, and 

outside of the ranges are red. 
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Figure 10-37: (Top) Storage modulus (MPa), (middle) Loss modulus, and (bottom) tangent delta 

of the individual rabbit Achilles tendons, averaged from the last five cycles of the dynamic 

portion of the testing, compared to control population. The solid line represents the population 

mean, dashed lines represent one standard deviation (SD), and dotted lines represent two SD. 

Control samples are shown as dots and tendinopathy samples as triangles. Samples within 

one SD are black, within two SD are blue, and outside of the ranges are red. 
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Figure 10-38: (Top) Stiffness (N/mm) and (bottom) elastic modulus (MPa) of the individual rabbit 

Achilles tendons, averaged from the last five cycles of the dynamic portion of the testing, 

compared to control population. The solid line represents the population mean, dashed lines 

represent one standard deviation (SD), and dotted lines represent two SD. Control samples are 

shown as dots and tendinopathy samples as triangles. Samples within one SD are black, within 

two SD are blue, and outside of the ranges are red. 
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Figure 10-39: Hysteresis (mJ) of the individual rabbit Achilles tendons, averaged from the last 

five cycles of the dynamic portion of the testing, compared to control population. The solid line 

represents the population mean, dashed lines represent one standard deviation (SD), and dotted 

lines represent two SD. Control samples are shown as dots and tendinopathy samples as 

triangles. Samples within one SD are black, within two SD are blue, and outside of the ranges are 

red. 
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Figure 10-40: (Top) Magnitude of change (MPa/%), (middle) Percentage change (%), and (bottom) 

rate of change (β) in static relaxation and creep of the individual rabbit Achilles tendons at each 

increment, compared to control population. The solid line represents the population mean, 

dashed lines represent one standard deviation (SD), and dotted lines represent two SD. Control 

samples are shown as dots and tendinopathy samples as triangles. Samples within one SD are 

black, within two SD are blue, and outside of the ranges are red. 
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CHAPTER 11. EPILOGUE 

11.1. Summary of chapters 

The Australian Research Council (ARC) Linkage project, LP110100581, titled 

Bioengineered Bioscaffolds for Achilles Tendinopathy Treatment, aimed to 

improve the outcomes of surgical treatment of Achilles tendinopathy via 

research based on a New Zealand White (NZW) rabbit (Oryctolagus cuniculus) 

tendinopathy model. This dissertation aimed to evaluate the tendinopathy 

model from an engineering perspective, by developing a methodology to 

evaluate the mechanical behaviour of tendons within the tendinopathy model. 

This information was intended to aid in the understanding of how degeneration 

affects the behaviour of tendons, as well as to assist in the development of 

computational models of tendon degeneration and healing. The thesis, stated 

at the beginning of this dissertation, was that tendinopathy adversely affects 

the mechanical behaviour of tendon, via disruption of the collagen matrix, 

resulting in a decrease in strength, stiffness, and resilience.  

11.1.1. Structured light scanning of tendon (Chapters 4 and 5) 

Cross-sectional area (CSA) is often used as an indication of injury, as enlarged 

area may suggest swelling and inflammation. CSA is also an important 

measurement in mechanical testing, as it allows for the force measurement to 

be normalised and presented as ‘stress’. The literature described few 

techniques capable of capturing the total volume of the tendon from a single 

scan, which is necessary to adequately describe the complete morphology for 

finite element analysis (FEA). Ideally, a method would be applicable to 

materials testing systems (MTS) as a way of measuring deformation of the 

tendon under load and for use in calculating true stress, as well as to inform 

finite element models (FEM). Using structured light scanning (SLS), a method 

was developed and validated in Chapter 4 to measure CSA along the entire 

length of tissue with high accuracy and repeatability (Hayes et al., 2016). This 

method was subsequently used to measure CSA of tendons in all other test 

methods. 

It was hypothesised in Chapter 5 that rabbit Achilles tendon would show a 

decrease in CSA proportional to an applied load. Using the technique 
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described in Chapter 4, CSA of rabbit Achilles tendon was found to decrease 

approximately 0.6%/MPa to stresses up to 8MPa. This corresponds to the end 

of the toe region, suggesting that as well as being of low stiffness, this region 

exhibits only small changes in morphology. It was found that, for testing at or 

near the toe region, engineering stress is sufficient to approximate true stress. 

It is anticipated that greater differences will be evident as the tendon enters 

the linear region and transverse strains increase. The SLS technique was able 

to rapidly capture the entire three-dimensional (3D) morphology of the tendon 

as loads were manually applied. The advantages of this technique were well 

demonstrated for use in an MTS and should be considered as an alternative 

to laser-based measurement tools for 3D measurements. 

11.1.2. Tensile testing protocol (Chapter 7) 

A rigorous analysis of the literature showed that there is no consistent 

mechanical testing protocol to measure the tensile properties of soft tissue (for 

example, elastic modulus, ultimate tensile force, ultimate tensile strain), 

making it difficult to directly compare between studies. To ensure the 

application of an appropriate methodology, tensile testing parameters were 

studied in detail to develop a recommended experimental protocol for 

measuring the tensile properties of tendons and other suitable soft tissues. 

Despite many studies utilising similar test setups, few have detailed the 

selection of testing parameters, despite many reviews indicating the 

importance of factors such as strain rate on the behaviour of samples. 

This dissertation presents what may be considered a current best-practice 

methodology for uniaxial tensile testing of soft tissue. This methodology was 

developed from recommendations in literature and subsequently validated 

against published results. It was found that samples should be tested as bone-

tendon-muscle constructs at high strain rates to ensure failure of the tendon 

body rather than the bony interface. Additionally, strain appears to determine 

the point of failure of the tendon, with all groups failing at approximately the 

same strain, regardless of strain rate and gripping method. 
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11.1.3. Required duration of viscoelastic testing (Chapter 8) 

One of the key parameters in viscoelastic testing is the duration of testing 

required to adequately define the time-dependent properties. Analysis of 

literature showed little consensus in the duration of testing used in studies, with 

few authors offering any justification for their selected value. Despite its 

importance, only a single study investigated the effect of duration on the ability 

to measure static viscoelastic properties, such as rate of change. Manley Jr 

et al. (2003) tested ligament in both creep and stress relaxation, finding that 

100 seconds was sufficient to adequately predict the behaviour of tissue up to 

10,000 seconds. Shorter testing durations allow for more tests on the same 

samples, with less risk of damage or dehydration, as well as being more 

practical for researchers (Duenwald et al., 2009b). 

While tendons and ligaments are often considered interchangeably, they have 

been shown to exhibit different viscoelastic properties, and so it was necessary 

to investigate if the findings of Manley Jr et al. (2003) were applicable to 

tendon. Following a modified protocol, including exploring alternative curve 

fitting methods, it was confirmed that 100 seconds is sufficient to predict the 

behaviour of tissue to 3600 seconds with minimal loss of accuracy. This study 

also recommended a preferred method of curve fitting for individual and 

grouped samples. By confirming the work of Manley Jr et al. (2003) in tendon, 

it was possible in this dissertation to develop a more comprehensive 

methodology of the viscoelastic behaviours of tendon in subsequent testing. 

To the author’s knowledge, this work also provides the first reported values for 

rate of change in relaxation and creep for rabbit Achilles tendon. These values 

may serve as a baseline against which to measure changes in tendon 

behaviour. 

11.1.4. Viscoelastic testing (Chapters 9 & 10) 

Disease of the tendon, known as tendinopathy, is characterised by pain and 

reduced mobility and functionality. The pathology is complex, with markers 

including disordered healing causing fibre disruption and disorientation, 

generally with an absence of inflammatory cells. Degenerated tendons exhibit 

decreased mechanical properties, such as stiffness and ultimate tensile stress 
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(UTS) (Hansen et al., 2013; Helland et al., 2013), and are generally observed 

to be disordered with a larger CSA, a lower stiffness, and a lower elastic 

modulus (Arya and Kulig, 2010; Helland et al., 2013). Tendinopathy models in 

the literature have not fully explored the mechanical behaviours of tendons 

under physiological loading conditions. Most tests used simple uniaxial traction 

tests to measure failure properties of the tendons. This offers an insight into 

why tendons may fail during high-intensity exercises; however, it does not 

provide information on changes that may affect the performance of the tendon 

during daily activities. 

Despite calls in the literature to perform complex testing protocols to help 

identify underlying behaviours, such as nonlinearity, relatively few studies have 

measured the behaviour of soft tissue at multiple strain or stress levels and 

fewer have measured the static and dynamic properties of tissue in the same 

test. Based on rigorous analysis of the available literature, a methodology was 

proposed to incorporate all practical aspects of mechanical behaviour in a 

single protocol that could be applied to each tendon to provide a 

comprehensive assessment of the tissue. This methodology is designed to 

prevent damage while maximising the amount of data available for analysis. 

This is the first methodology to assess the isochronal, dynamic, and static 

properties of creep and stress relaxation at multiple steps in a single protocol 

to be applied to individual samples. The methodology may be used as a 

standard protocol for defining the behaviour of soft tissues. 

The methodology was subsequently applied to the rabbit cohort used in the 

collagenase-induced tendinopathy model for the ARC Linkage project. To the 

author’s knowledge, this is the first study to perform complex testing protocols 

on a tendinopathic model and the first to report results on the viscoelastic 

behaviour of rabbit Achilles tendon in a tendinopathy model. The study 

described mechanical properties including elastic modulus, energy density, 

dynamic modulus, and rate of creep and relaxation in both control, 

contralateral, and tendinopathic tendons. Using two techniques for analysing 

the tendons – grouped and individual – it was demonstrated that, within the 

bounds and limitations of the study, tendinopathy does not influence the 

properties of the tendon under the physiological conditions used in the study. 
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Due to planned post-testing analysis of the tendon for further studies under the 

ARC Linkage Project, no failure testing was performed. However, the findings, 

coupled with the failure properties from the literature, offer a significant insight 

into the influence of tendinopathy and have implications for evidence-based 

management of the disease. 

11.2. Implications 

11.2.1. Methodologies 

A comprehensive review of the literature revealed that the selection of 

parameters in many simple protocols, such as tensile and static viscoelastic 

testing of tissue, was not well justified, despite these being reported as having 

significant influence on the properties. Therefore, in this thesis consideration 

was given to many parameters and factors with a view to improving the 

justification for choices during testing. The methodologies developed in this 

thesis represent best-practice as determined via rigorous analysis of the 

literature and validation against published results. Adoption as standard 

practice would contribute to reduction of intra- and inter-laboratory differences 

and improve the comparability of results between studies. 

11.2.2. Mechanical behaviour of tendinopathy 

The work presented in this dissertation demonstrates that, within the limitations 

of the study, tendinopathy may not influence the behaviour of tendon across 

the range of strains and loads experienced during daily activities. Findings 

suggest that tendinopathy does not influence the behaviour of tendon toward 

the toe region of the stress-strain curve, in isochronal or viscoelastic testing 

protocols. Since the tendons in this study were not tested to failure, no 

conclusion can be drawn regarding the failure behaviour of this tendinopathy 

model; however, adding this to the protocol in future studies would enhance 

the value of these studies and provide a more complete suite of results. 

Achilles tendon rupture is often seen in older athletes returning to sports 

involving explosive actions, such as jumping. Tendinopathic degeneration is 

more commonly seen in ruptured tendons than symptomatic tendons, 

suggesting tendinopathy has a greater influence in their failure. This is 

supported by previous studies of tendinopathy that reported a reduction in 
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failure properties. Despite histological and other analyses in literature 

describing clear structural changes, the primary indication for tendinopathy is 

pain. 

The findings of this dissertation may help to guide evidence-based 

management of tendinopathy. Clinical focus on pain management would 

permit the patient to return to daily activities unencumbered. The use of 

eccentric exercise has been identified as showing positive signs in the 

management of tendinopathy. Explanations of the potential mechanism for its 

efficacy have been proposed in relation to the mechanical underuse theory, 

that is, eccentric exercises are able to apply greater loads to the tendon which 

in turn elicits a mechanotransducive response from cells that were 

‘disconnected’ from the tendon via micro-failures of the fibrils. It is the author’s 

opinion that, as well as stimulating these cells to promote healing, eccentric 

exercises may be acting to improve the mechanical strength of the tendon, 

thereby returning the tendon properties to functionally normal levels. Since 

eccentric exercises are generally not explosive, it is plausible that sufficiently 

large loads could be applied without exceeding the failure strength of the 

tendon. Thus, clinical management of the tendon would involve pain relief, 

coupled with tendon strengthening exercises. It is noted that this may not truly 

deal with the aetiology of the disease and may not restore the tendon to a pre-

disease state as defined in literature; however, it may return the tendon to a 

clinically functional state, which may be of more practical significance. 

11.3. Future work 

Dynamic measurement of soft tissue morphology during mechanical testing 

was not achieved in this dissertation. SLS was demonstrated to be a reliable 

technique; however, the available scanner and MTSs were found to be 

incompatible for the purposes of this study. Digital image correlation (DIC), or 

speckle imaging, has also demonstrated promise, but was not utilised due to 

difficulty in applying a speckle pattern to the tendon. Both techniques offer the 

ability to measure true stress and instantaneous morphology, which would aid 

in the development of more accurate computational models of tissue 

behaviour. Additionally, DIC offers the ability to measure surface strains, 

providing additional data for comparison. Since these techniques have 



Chapter 11 Epilogue 

231 

potential applications outside of biological materials testing, they warrant 

further investigation for implementation in materials testing protocols. 

Testing protocols for metals, polymers, and other engineered materials, are 

often dictated by a set of testing standards, such as International Organization 

for Standardization (ISO), American Society for Testing and Materials (ASTM), 

and Australia Standards (AS). This allows for comparison within and between 

batches and laboratories, to ensure consistent measurement and reporting. In 

a similar way, there a need to perform standardised testing, where possible, in 

the field of biological systems to achieve intra- and inter-laboratory 

consistency. Several chapters in this dissertation were dedicated to developing 

a standardised methodology for each aspect of testing. More work is required 

and is recommended as a collaborative project to ensure that the most suitable 

and robust protocols are developed. This includes all the parameters 

discussed in Chapters 7–9.  

There is a clear need to describe the progression of tendinopathy, from acute 

to subacute injury and on to chronic tendinopathy, and the associated 

mechanisms of pain in order to understand the aetiology and help guide clinical 

management. One of the possible management pathways includes use of 

tissue-engineered constructs to assist the natural healing response of the 

body. This is a long-term focus of the ARC Linkage Project. 

Tendinopathy models are not mechanically well validated, which could have 

negative implications when comparing the outcomes of models against clinical 

outcomes. Ultimately, the mechanical behaviour of tendinopathy models must 

be validated against human tendinopathy. Models, such as collagenase-

induction, have been criticised as not truly representing the appearance of 

clinical tendinopathy in many cases. This assumes that appearance and 

function are interrelated, which itself requires further investigation. Future 

mechanical assessment of tendinopathy models should include both the sub-

failure properties, including viscoelastic and dynamic, and failure properties of 

tendinopathic tendons for each sample to assess the validity of the conclusions 

presented. This should be performed in conjunction with biochemical and 

histological assessments to validate both the model and conclusions. 
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11.4. Conclusions 

Tendinopathy is a debilitating disease affecting millions of people worldwide. 

The aetiology of this disease is not well understood, and treatment remains 

difficult due to a lack of evidence-based management. This dissertation 

presents a series of methodologies for assessing the mechanical behaviour of 

tendons to determine differences caused by degeneration and disease. These 

methodologies, derived from rigorous analysis of the literature and validated 

through testing, may be considered best-practice for measurement CSA, 

uniaxial mechanical testing, and static viscoelastic testing of tendon. A 

comprehensive protocol for evaluating changes in tendon behaviour was 

proposed and validated against a collagenase-induced tendinopathy model. 

These methodologies offer researchers standardised means of assessing 

mechanical properties of soft tissues, in particular elucidating abnormal 

behaviours with a view to isolating and identifying contributory factors to the 

aetiology and true effect of the disease. 

The following conclusions may be drawn from the results of this dissertation: 

1. SLS is an effective tool for measuring the morphology of soft tissue; 

2. Tendon demonstrates a measurable change in CSA with stress; 

3. Engineering stress may be used as an approximation of true stress 

when testing is performed in or near the toe region; 

4. Rabbit Achilles tendons should be tested as bone-tendon-muscle 

constructs to preserve the anatomy of the tendon; 

5. Rabbit Achilles tendon is strain rate insensitive; 

6. Strain is the limiting factor in determining failure properties; 

7. The minimum required duration of testing required to assess the 

viscoelastic properties of tendon is 100 seconds; 

8. Tendinopathy does not result in significant differences compared with 

control values, within the bounds of the testing protocol; and, 

9. Management of the tendon should involve pain relief, coupled with 

tendon strengthening exercises. 

This dissertation represents the first study to investigate the rate of change for 

creep and relaxation in a rabbit model, to report viscoelastic properties in rabbit 
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tendinopathy model, and to provide a detailed mechanical analysis of 

tendinopathic tendons. While the findings did not support the thesis that 

tendinopathy adversely affects the mechanical behaviour of tendon, via 

disruption of the collagen matrix, resulting in a decrease in strength, stiffness, 

and resilience, the outcomes offer significant insights that may contribute 

toward the development of better clinical management of tendinopathy. 
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