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 Abstract 

The association of carbonaceous matter (CM) with ore deposits of metals such as gold 

has long been recognized but is still poorly understood. CM is commonly accepted as a 

reducing or scavenging agent for metals out of hydrothermal aqueous ore fluids. A few 

studies on e.g., Carlin-type Gold (Au) deposits and some experimental studies though, 

suggest that liquid hydrocarbons can transport Au. Still the understanding of how Au may be 

transported by liquid hydrocarbons is very limited. Thus, this Ph.D. – project aimed to answer 

in what amounts Au may be transported by oil and how oil competes with hydrothermal 

aqueous fluids by performing partition experiments; how Au is transported in oil by 

performing synchrotron X-ray absorption spectroscopy (XAS) experiments; and whether 

proof for a hydrocarbon phase transport of Au is present in samples from the McLaughlin Au-

Hg deposit to support the hypothesis of a hydrocarbon phase Au transport, or to prove it 

wrong. 

To perform Au partition experiments a new method was developed to allow in-situ 

sampling of both fluids, the oil and the aqueous solution. To achieve this a HFS-340Z 

hydrothermal flow system (Coretest Systems, Inc.) was modified and used as a batch reactor, 

so that the density stratified aqueous solution (brine, 10 wt% NaCl) and the oil, n-dodecane 

(CH3(CH2)10CH3; DD) or 1-dodecanethiol (CH3(CH2)10CH2SH; DDT), can be sampled 

simultaneously at temperature (up to 150 °C). The samples were then processed for Au 

analyzes by inductively coupled plasma mass spectrometry (ICP-MS). First partition 

experiments with brine and DD revealed that Au partitioning is independent of temperature 

in the range of 105 °C to 150 °C and that the (“trusted”) partition coefficient (DAu
org/aq; org = oil; 

aq  = brine) is 0.1 0.1 ± 0.04. Partition experiments between brine and DDT also appear to be 

temperature independent in the same temperature range with an DAu
org/aq after data 

processing of 19 ± 21 and Au concentrations of ppm levels. These results suggest that, while 

the alkane DD is unlikely to transport Au, thiolate ligands such as DDT can contribute 

significantly to Au transport and that oils have the capacity to transport more Au than 

hydrothermal aqueous fluids at these conditions.  

The speciation and the structural properties of gold complexes in DD or DDT in contact 

with aqueous solutions (brine and pure water) from 25 °C to 250 °C were investigated by XAS 

experiments performed at the European Synchrotron Facility in Grenoble, France. Below 
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125 °C Au(III)Cl is dominant in the DD and the adjacent aqueous solution with a refined 

coordination number (CN) of chloride 4.0(3) and a Au-Cl bond length of 2.28 Å, consistent 

with the tetrachloroaurate complex (AuCl4-). An Au(I) complex dominates in both water and 

adjacent DDT with a CN of sulfur ~2.0, suggesting a [RS-Au-SR]- (RS = DDT with deprotonated 

thiol group) complex with Au-S bond lengths ranging from 2.29(1) Å to 2.31(3) Å. Sulfur is 

always present in natural oils and thus these results suggests, that Au(I) - organothiol 

complexes are the dominant form of Au below 125 °C. At temperatures ≥ 125 °C gold was 

reduced to Au(0) in all solutions investigated, suggesting that organo-stabilized nanoparticles 

may be the major form of gold to be scavenged, concentrated or transported in natural oils 

at these conditions. 

The above noted experimental results established that oils can act as excellent Au 

distributors. To complete the argument for a hydrocarbon phase Au transport samples from 

the McLaughlin Au-HG deposit, which is associated with CM ranging from liquid oil to solid 

bitumen, were investigated. Investigation of the textural relationships between CM and Au 

mineralization of samples from the McLaughlin Au-Hg deposit and analyzes of Au 

concentrations in liquid oil in these samples revealed proof of a hydrocarbon phase Au 

mobilization at least within the deposit. Textural evidence indicates an alternating and 

sometimes parallel introduction of silica - rich hydrothermal fluids and hydrocarbon fluids. 

Au concentrations in ppm levels in liquid oil demonstrate that Au is and was mobile within 

the deposit in organic liquids, and was possibly introduced with liquid oil in addition to other 

hydrothermal fluids. Since oil can migrate over long distances (km scale) it is able to act as an 

ore fluids. 
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1.1 Introduction 

Carbonaceous matter (CM) can be associated with a variety of different types of ore 

deposits including e.g., epithermal Au-Ag(-Hg) deposits (Sherlock, 1992; Pearcy and Burruss, 

1993; Mastalerz et al., 2000; Sherlock, 2000); Carlin-type Au deposits (Radtke and Scheiner, 

1970; Hausen and Park, 1986; Emsbo and Koenig, 2007; Gu et al., 2012; Groves et al., 2016); 

orogenic Au deposits (Mirasol-Robert et al., 2017); Mississippi Valley-type Pb-Zn deposits 

(e.g., Parnell, 1988; Giże and Barnes, 1989; Kesler et al., 1994), ‘Kupferschiefer’ copper 

deposits (e.g., Kucha, 1981; Kucha and Przylowicz, 1999; Sawlowicz et al., 2000), sediment-

hosted U deposits (Landais, 1996; Spirakis, 1996), and Witwatersrand-type Au-U deposits 

(Fuchs et al., 2016). In addition, high concentrations of ore metals measured in natural crude 

oil and bitumen (Hennet et al., 1988; Manning and Giże, 1993; Filby, 1994; Samedova et al., 

2009; Vorapalawut et al., 2011) suggest petroleum phase metal transport. Still, the common 

association of hydrocarbons and ores, and the role of hydrocarbons in the mobilization, 

transport, concentration, deposition, and preservation stages of ore formation processes are 

controversial and not fully understood, although there is extensive literature describing and 

interpreting the occurrence of organic matter in ore deposits (e. g., Parnell, 1988; Parnell et 

al., 1993; Giordano et al., 2000; Glikson and Mastalerz, 2000). Two of the main reasons for 

the unclear relationship are the lack and difficulty of experiments on the interaction of 

hydrocarbons, metals, and rocks, and the difficulty with identification of the paragenetic 

relationship and history of the organic matter and the ore. Consequently, this data is missing 

in current ore-formation models, but is needed to alleviate the increasing difficulty of finding 

new ore deposits.  

1.1.1 Roles of CM 

The main roles of organic matter in the literature in ore formation processes are (e. g., 

Parnell et al., 1993; Giordano et al., 2000; Glikson and Mastalerz, 2000, and references 

within): 

 Mechanical filtering of metals out of aqueous fluids 

 Providing reducing conditions or acting as an active reductant leading to ore 

mineral precipitation 

 Active biological involvement e. g., uptake in plants 
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 Organic ligands dissolved in aqueous (hydrothermal) fluids transporting 

metals 

These widely accepted roles for organic matter in ore formation processes mainly 

focus on the last stage of any ore formation, the concentration and deposition stage. There 

are exceptions of course, such as in the Witwatersrand basin South Africa, where petroleum-

phase transport was proposed in the form of mobile liquid hydrocarbons that originated from 

shales and contributed to the mobilization and re-deposition of uranium and gold (Fuchs et 

al., 2015; Fuchs et al., 2016). Simplified, there are three pre-requisites for the formation of 

any ore deposit: source, transport, and precipitation (deposition) including concentration 

(Giże, 2000). The possibility of liquid hydrocarbons such as petroleum, to actively transport 

metals is often dismissed in favor of aqueous fluids. Further, evidence for organic matter 

acting as a source for gold  the first stage of the ore formation process -- is lacking. This lack 

of evidence is in contrast to that for zinc or lead in black shales for example, which are 

possible sources for some ore deposit types (Large et al., 2011). As zinc is a borderline soft 

metal and lead is a soft metal it is possible that other soft elements such as gold, platinum, 

or mercury also can be concentrated in organic-rich shales. 

The most widespread evidence of a role for organic matter in the ore formation 

process is in the precipitation phase. There are several functions that organic matter can 

perform in the precipitation stage. Most common is the mechanical filtering of metals/sulfur 

out of later hydrothermal aqueous fluids (e. g. Molnár et al., 2016), and by acting as a 

reducing agent leading to gold precipitation due to the reduction of sulfate to solid state 

sulfite; a process that is suggested for the Carlin Au-deposit (Giże, 2000). Furthermore, 

graphite is known to be an active reductant in shear-zone hosted gold deposits (Gize, 1999; 

Giże, 2000; Giże et al., 2000). Early studies showed that living organic matter is involved by 

taking up metals as gold, when the plants are in the vicinity of gold bearing geological 

structures (e.g., gold veinlets; Warren and Delavault, 1950). This process can be assigned to 

the source and precipitation/concentration stage, with the implication that the organic 

matter enriched in gold is preserved and again introduced into the geological cycle. In 

sedimentary environments, organic matter is involved in the formation of metal sulfides in 

carbonaceous sediments during diagenesis (Saxby, 1973). 

As noted above, a variety of different ore deposits are associated with organic matter 

e. g., the Kupferschiefer (Cu-Zn-Pb) in Poland and Germany, the sedimentary Witwatersrand 
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U-Au deposits in South Africa, the McArthur River SEDEX Pb-Zn deposit in Australia, the Pine 

Point Mississippi Valley-type deposit in Canada, or the McLaughlin Au deposit in the United 

States, California, to just name a few famous deposits. In most uranium deposits for example, 

organic matter is believed to be a key component of the genetic model (Leventhal, 1980; 

Leventhal et al., 1986; Landais, 1996; Spirakis, 1996). The Grants Uranium district in New 

Mexico has a linear correlation between organic matter and the ore within host units 

(Granger, 1966; Leventhal and Threlkeld, 1978; Leventhal et al., 1986) to a degree that it is 

almost impossible to find organic matter that is not mineralized or to find primary ore 

without organic matter. Carbonaceous matter for example is an intimate part of the chemical 

structure of the uranium bearing thucholite (Ellsworth, 1928). The ore minerals uraninite and 

coffinite are intimately mixed with organic matter (Granger, 1966) suggesting that organic 

matter is necessary for the deposition of uranium, possibly due to the transport of organic 

matter and uranium within the same ground water flow paths and subsequent co-

precipitation (Leventhal and Giordano, 2000). 

Organic matter is often found in Carlin-type Au deposits (Hulen and Collister, 1999; 

Emsbo and Koenig, 2007) and Au-Hg epithermal vein deposits (Sherlock, 2005) that 

frequently have abundant carbonaceous matter in the original mineralized horizon (Berger 

and Bagby, 1993). A good example for the still ongoing discussion on the role of hydrocarbons 

is the Carlin deposit. At the Carlin deposit, the organic-rich zones are often, but not 

necessarily, gold bearing. This led some researchers (Radtke and Scheiner, 1970) to conclude 

that the organic matter was introduced with the gold, and suggested that the concentration 

of organic matter occurred during hydrothermal mineralization and alteration (e. g. Radtke, 

1981; Hausen and Park, 1986). Later studies proposed that petroleum migration predated 

gold mineralization (Kuehn, 1989), and that the organic matter was only involved during the 

deposition process (Giże et al., 2000) by provision of a reducing environment. This 

interpretation is supported by the general acceptance that aqueous brines act as the 

transport fluid for metals into the ore deposit. The lack of a consistent relationship between 

CM and Au in Carlin-type deposits is considered as a consequence of the superposition of the 

record of two independent fluids (petroleum and aqueous brine) using the same migration 

pathways (Giże, 2000). However, Emsbo and Koenig (2007) claim that clear evidence of 

organic matter acting as the transport medium was found at the northern Carlin-trend 

(Emsbo and Koenig, 2007), where gold and other trace elements are homogenously 

distributed within the bitumen grains. The authors propose that, if the gold was introduced 

after the bitumen, then it would be distributed on the outer bitumen grain margins. 
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Additionally, Emsbo and Koenig (2007) claim that the mineralization caused by hydrothermal 

fluids in the Carlin-type deposits is older than the bitumen generation and migration, due to 

the absence of alteration of the bitumen and surrounding rocks by hydrothermal Carlin-type 

fluids. If this is the case then the presence of Au in bitumen indicates gold transportation in 

organic fluids. The mineralization order and point in time of bitumen generation and 

migration after Emsbo and Koenig (2007) is the opposite of what Kuehn (1989) proposed. 

These views are yet to be reconciled; Groves et al. (2016) reported that hydrocarbons play a 

major role in the formation of giant gold provinces such as in the Carlin gold province, but 

also state that its precise role is still unclear and that the interrelated factors leading to the 

formation of the Carlin Au province are unique. 

The organic phase transport of ore metals forms only a small fraction of the current 

literature, due to lack of available data. This is a crucial issue, as understanding of the 

chemical transport mechanism is the key to understanding mobilization and deposition 

mechanisms, due to the involvement of ore fluids in all three stages: mobilization, transport, 

and deposition. 

1.1.2 Au transport by CM 

Metal transport with organic involvement is limited to low-temperature deposits 

(< 250 °C), due to the degradation of organic compounds at higher temperatures. Thus, 

investigation of the role of CM in gold deposits focuses on hydrothermal conditions at 

relatively low pressure and temperature. For effective transport, the possible ligands that 

may transport Au must be present in a high enough concentration, be persistent enough to 

not degrade during metal extraction from the source and transport, and be stable enough to 

result in sufficient metal solubilities to concentrate the metals into ore bodies. 

The dominant dissolved organic ligands in hydrothermal aqueous fluids are mono- and 

dicarboxylate species, and to a lesser degree organosulfur and phenolic compounds (see 

review in Giordano et al., 2000). The available, but not so recent literature suggests that CM 

may contribute to gold transport in the form of metal-organic complexes that are dissolved 

in aqueous fluids, mainly sulfur-based ligands and to a lesser degree nitrogen-based ligands 

dissolved in aqueous ore fluids (e.g., Wood, 1996; Giordano, 2000; Giże, 2000; Wood, 2000), 

where the gold cation is bonded directly to electron-donor atoms other than carbon 

(Langmuir, 1979). 
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Because the Au+ ion classifies as a soft Lewis acid it forms complexes with soft, easily 

polarizable ligands (Pearson, 1968). Thus, Au bonds very strongly with CN-, which is produced 

by some plants and microorganisms (Fairbrother et al., 2009), with S-bearing functional 

groups (Figure 1-1), and then, less strong, with nitrogen (e.g., amine) and oxygen 

(Vlassopoulos et al., 1990; Wood, 1996; Liu et al., 2014; Ta et al., 2014). Au(I) cyanide 

complexes can be stable in the environment for extended time periods (Ta et al., 2014), and 

thus may be a potential ligand for gold transport. Au – thiol bonds, for example Au bonds to 

thiomalate (Figure 1-1) and thioglucose, are the main gold-active species in biological 

systems (Cotton and Wilkinson, 1988; Giże, 2000; Etschmann et al., 2016; Zammit et al., 

2016).  

A liquid crude oil (also referred to as liquid bitumen, liquid hydrocarbon, or liquid oil) 

transporting metals is usually considered to have a secondary role, as it is coexisting with 

aqueous ore fluids in the same sedimentary basin, contributing to the ore metal transport 

only to a small degree (Giordano, 2000). However, wherever the two fluids are physically in 

contact, there will be partitioning of the metals between the two phases. Tetrapyrrole ligands 

were thought to be the main chemical to transport metals in a petroleum phase (Giordano, 

2000). Solvent-extractable tetrapyrrole structures are porphyrins (Figure 1-1), which are able 

to form metal-porphyrin complexes that strongly fractionate into the organic phase in a 

water-organic phase system. It is known that porphyrins form stable to very stable complexes 

with V, Ni, Fe, Cu and Co, and thus are able to contribute significantly to the organic phase 

transport. However, gold is not reported to form porphyrin complexes to any great extent, 

due to its large ionic radii, as ions with radii near 0.65 Å are preferred in metal-porphyrin 

complexes. It is assumed that the soft metal gold interacts in the organic phase most strongly 

with soft, sulfur- and nitrogen-based ligands, just as it does in the hydrothermal aqueous 

phase. 
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Figure 1-1: Some of the ligands that can form metal organic complexes. (a) carboxyls; (b) phenolic hydroxyls; 

(c) amino groups; (d) thiol; (e) metal porphyrin complex (after Giordano, 2000), (f) sodium aurothiomalate (after 

Elder and Eidsness, 1987), n-dodecane (g), 1-dodecanethiol (h), and (i) a AuNP capped with 1-dodecanethiol 

(after Daniel and Astruc, 2004 and references therein). 

1.1.3 Au transport in the form of Au nanoparticles (AuNPs) 

The means by which gold could be transported in organic liquids is mostly unknown, 

but observations in nature may give hints to the actual state of gold during the transport 

process. Gold nanoparticles are coming more and more into focus in recent years, due to 

better technologies to characterize gold nanoparticles, and to their myriad uses (e.g., Daniel 
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and Astruc, 2004; Jain et al., 2007; Sardar et al., 2009; Ansar et al., 2013; Alex and Tiwari, 

2015). Gold nanoparticles may also contribute to Au transport in liquid CM (Osterloh et al., 

2004; Reith et al., 2010; Stankus et al., 2010; Lohman et al., 2012; Pearce et al., 2016; Reith 

and Cornelis, 2017). A comprehensive review on possible formation mechanisms of natural 

gold nanoparticles, and their role in the precipitation of primary and secondary gold is given 

in Hough et al. (2011), and references therein. Gold nanoparticles can, for example, be 

transported and deposited from magmatic vapors onto vent walls (Meeker et al., 1991; Taran 

et al., 2000; Simmons and Brown, 2007; Larocque et al., 2008); occur as a combined colloid 

of silica and gold (Frondel, 1938); be incorporated in the host sulfide by solid solution (Simon 

et al., 1999; Reich et al., 2005); be incorporated as nanoparticles when Au concentrations 

exceed the gold solubility in the sulfide (Palenik et al., 2004; Reich et al., 2005); or form Au 

by coagulation from a nanoparticle suspension (Saunders, 1990) in hypogene environments. 

In supergene deposits gold is thought to be a secondary precipitate that was transported and 

deposited from solution (Hough et al., 2009) or nanoparticulate colloidal suspensions (Hough 

et al., 2008). Pearce et al. (2016) argues that the several magnitudes higher gold 

concentration in orogenic gold deposits compared to aqueous ore-forming fluids and crustal 

rocks cannot be explained by high fluid volumes, based on microstructural analysis of 

alteration around gold grains. Instead, these workers propose that silica stabilized colloids 

stable at temperatures excessing 350 °C, and able to transport large amounts of gold, were 

responsible for the gold deposit formation. 

AuNPs are of great interest in nanoscience research, materials science, inorganic 

chemistry, surface science, and medicine, for example to diagnose and treat cancer. Lohman 

et al. (2012) conducted solubility experiments with different ligated gold nanoparticles in 

several organic solvents. The authors found a strong dependence of the solubility on the type 

of ligand and the choice of solvent. A negative chemisorption enthalpy of -126 kJ/mole of 

thiol on gold surfaces was reported (Lavrich et al., 1998) indicating a strong attraction 

between gold and thiols. Edinger et al. (1997) found that metallic gold in ethanolic thiol 

solutions is corroded, with the thiol acting as the active oxidant. This effect is strongly 

reduced when using hexane as a solvent, also confirming a solvent dependence and a 

preference of gold building complexes with polarizable ligands. In the same process the 

corrosion and dissolution of gold ceases due to self-assembled monolayers (SAM) forming at 

the gold surface (Figure 1-1) leading to a passivation of the formerly reactive interface 

(Zamborini and Crooks, 1998). The organothiols build up the SAM by bonding with the AuNP 

via a Au-S bond (Figure 1-1) with the unreactive end pointing away from the AuNP (Daniel 
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and Astruc, 2004). The formation of self-assembled monolayers on AuNPs allows influence 

on the properties and size of the AuNPs (Häkkinen, 2012; Alex and Tiwari, 2015). 

Organothiols (R-SH; Figure 1-1) are commonly used to form these SAM via the addition of a 

reductant to a gold(III) solution (see Daniel and Astruc, 2004, and references therein for 

syntheses). With increasing temperatures (20°C to 60°C) the SAM will be rearranged (Heath 

et al., 1997) until oxidation of the thiols in the SAM occurs at 100°C, when in contact with air 

(Delamarche et al., 1994). 

On the basis of the above, it may be that AuNPs are stabilized in natural hydrocarbon 

liquids by thiols.  Thiol-Au NP complexes could provide a highly effective hydrocarbon phase 

gold transport, due to the potentially higher gold concentrations transported in the form of 

AuNPs compared to covalently bonded single gold atoms and ligands. 

1.1.4 Experimental data on metals in oil and aqueous fluids 

To date, only a few experimental studies on the solubility of metals in organic 

compounds have been performed. These studies suggest that gold may be dissolved and 

transported in organic liquids, even when aqueous fluid is present. Miedaner et al. (2005) 

conducted solubility experiments of mercury in organic liquids and found that 821 ppm, 647 

ppm and 280 ppm of Hg is soluble in octane, dodecane and toluene at 200°C, respectively. 

As the gold-mercury deposits of the Californian coast ranges are often associated with 

organic matter (e. g. Liu et al., 1993a; Sherlock, 2005), these experimental results not only 

suggest that organic matter may be very important for Hg mobilization, but also for Au 

mobilization. 

Au solubility studies show that 2 to 3 ppb Au are soluble in crude oil at 100°C, and up 

to 18 ppb of Au at 200°C (Williams-Jones and Migdisov, 2007). Further experiments 

conducted by (Fuchs et al., 2011) showed that a maximum of 39 ppb to 48 ppb of Au is soluble 

in crude oil at 250°C, and that the solubility is significantly lower at higher and lower 

temperatures. Furthermore, their experiments indicated a gold solubility dependence on the 

molecular structure of the oil, as the solubility decreases in refined oil fractions. The potential 

of crude oils to mobilize and concentrate Au was shown by the experiments conducted 

Migdisov et al. (2017) with maximum Au solubility’s of up to 50 ppb Au at 250 °C, which is 

enough for crude oils to be considered as ore fluids. 
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Emsbo et al. (2009) conducted mixing experiments between brine solutions spiked 

with 8 to 10 ppm of gold and other metals and crude oil. The metals, except for vanadium, 

were almost entirely partitioned into the oil phase. Liu et al. (1993b) and (Zhuang et al., 1999) 

performed portioning experiments between gold doped aqueous solutions and crude oils, 

resulting in a Au transfer from the aqueous solution to the oil of 98% and 99%, respectively. 

In contrast, there is plenty of data available on the solubility, transport mechanisms, 

and speciation of Au in hydrothermal aqueous ore fluids (e.g., Henley, 1973; Seward, 1973; 

Renders and Seward, 1989; Shenberger and Barnes, 1989; Hayashi and Ohmoto, 1991; 

Seward, 1993; Gammons and Williams-Jones, 1995; Benning and Seward, 1996; Gammons et 

al., 1997; Murphy and LaGrange, 1998; Murphy et al., 2000; Stefánsson and Seward, 2004; 

Tagirov et al., 2005; Pokrovski et al., 2009a; Pokrovski et al., 2009b; Pokrovski et al., 2014; 

Seward et al., 2014; Mei et al., 2017). Under hydrothermal conditions Au is transported by 

building complexes with hydrogen sulfide ligands in acidic to neutral aqueous fluids ≤350 °C, 

and to a lesser degree gold chloride complexes (Pokrovski et al., 2009a; Pokrovski et al., 

2009b; Liu et al., 2014). There is a big range of Au solubility in hydrothermal aqueous 

fluids/liquids depending mainly on composition and temperature. 

Considering the extensive research on hydrothermal aqueous liquids compared to the 

amount of research on organic liquids, it is interesting to consider if research has been 

somewhat one-sided, leading to biased conclusions on the role of organic matter during 

hydrothermal ore-deposit formation. 

1.2 Objectives 

(1) To provide new data on the ability or non-ability of organic liquids to transport 

gold. To do this, a primary aim of this PhD project was to develop a method for Au 

partition experiments between aqueous fluids and oil that allows in-situ sampling 

of the oil and the aqueous fluid at the specific temperature. This method was then 

used to perform gold partition experiments to generate Au partition coefficients 

between a brine solution (10wt% NaCl) and 1-dodecanethiol (CH3(CH2)10CH2SH; 

DDT) and n-dodecane (CH3(CH2)10CH3; DD). Results from this work are presented 

in Chapters 2 and 3. 
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(2) To identify the speciation of Au in organic and co-existing aqueous fluids, and to 

interpret the results in the context of possible Au transport by organic liquids, and, 

if applicable, the precipitation and deposition of Au. To accomplish this objective, 

X-ray absorption spectroscopy (XAS) was performed at the European Synchrotron 

Facility (ESRF) to constrain the oxidation state and host complexes for Au bonded 

in oils (DD and DDT) and co-existing aqueous fluids. The results from this work are 

presented in Chapter 4. 

(3) To study the role of organic material in the formation of a natural ore deposit.  

Samples from the Au-Hg McLaughlin mine, Geysers/Clear Lake area, California, 

USA, were studied to investigate the close spatial relationship of Au mineralization 

and the abundant hydrocarbon material with the objective of better 

understanding the role of hydrocarbons in the Au-Hg McLaughlin deposit. The 

results from this work are presented in Chapter 5. 

1.3 Significance 

Due to the lack of experimental data on ore-metals such as gold and their solubility 

and partitioning behavior between organic and aqueous fluids, it is difficult to satisfactorily 

determine the role of organic matter in the formation process of ore deposits, in spite of the 

common association between organic matter, gold and other ore metals. Considering that 

field studies on ore deposits are focused on the end product of the formation process, it 

becomes even more important to conduct experiments to study the dynamic processes 

before ore deposition. Data on the partitioning of gold between organic and aqueous liquids 

is required to further understand ore deposit formation processes, since the two liquids or 

fluids can be present in the same ore systems. 

A better understanding of the links between organic matter and ore deposits is not 

only crucial for research, but also for the exploration, mining and mineral industry, where the 

lack of discovering new mining targets has a costly impact on the industry. This study can 

lead to a better understanding of deposit characteristics and therefore to new exploration 

indicators, that are of high value for the minerals and mining industry. 
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An understanding of the partitioning processes of gold between aqueous and organic 

liquids may also be significant for the oil and gas industry as well, by enhancing oil refining 

processes, and additionally by increasing the understanding of oils as a possible metal source. 
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 Abstract 

Organic matter can be found in many different types of ore deposits, but its role in ore-

forming processes is not yet fully understood. Here, we present an experimental method that 

can be used to determine the partition coefficient (DAu
org/aq: partition coefficient of Au 

between an hydrocarbon and an aqueous fluid) of gold between two immiscible liquids, and 

thus whether liquid hydrocarbon fluids such as petroleum can act as ore fluids and transport 

gold or other metals of interest. To investigate liquid hydrocarbons in the presence of an 

aqueous liquid doped with gold, we modified the HFS-340Z hydrothermal flow system 

(Coretest Systems, Inc.) to enable sampling at hydrothermal P-T conditions (≤ 150 °C and 

~5 bar) of each of two density-stratified immiscible liquids. A saline aqueous solution (10 wt% 

NaCl) was doped with gold and heated with n-dodecane (CH3(CH2)10CH3) to 105 °C and 150 °C. 

Each brine sample was directly followed by an organic sample until three samples of each 

liquid were taken. Aqua regia was added to the brine samples to stabilize the gold before 

ICP-MS analyses. Each organic sample was digested chemically with a mixture of ultra-pure 

nitric acid and hydrogen peroxide to generate carbon free solutions prior to ICP-MS analysis. 

This procedure generates reproducible partition coefficients for gold, or presumably any 

other metal, between hydrocarbon and aqueous liquids, if passivation procedures of the HFS-

340Z hydrothermal flow system are strictly followed and error sources are monitored 

rigorously. The preferred DAu
org/aq between n-dodecane and the brine is 0.05 ± 0.04.
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2.1 Introduction 

Organic matter is a common constituent of various types of ore deposits, such as 

Carlin-type Au and epithermal Ag-Au-(Hg) deposits (e.g., Hofstra et al., 1991; Bowell et al., 

1999; Zhuang et al., 1999; Sherlock, 2000; Emsbo and Koenig, 2007), Mississippi Valley-type 

Pb-Zn deposits (e.g., Parnell, 1988), or sediment hosted uranium deposits (e.g., Landais, 

1996; Spirakis, 1996; Fuchs et al., 2015; Fuchs et al., 2016), and is often interpreted as a 

reducing agent involved in deposition of metals from hydrothermal ore fluids (Giże, 1999; 

Giże, 2000). However, experiments (Liu et al., 1993; Lu and Zhuang, 1996; Miedaner et al., 

2005) and analyses of crude oils and petroleum in gold deposits (e.g., Zhuang et al., 1999; 

Emsbo and Koenig, 2007) suggest that organic fluids such as petroleum may also act to 

dissolve and transport metals, a critical factor not considered in most current ore deposit 

models. Further confirmation or repudiation of this ‘missing link’ in our understanding of ore-

forming processes is not possible due to an almost complete absence of experimental data 

on metal-organic fluid interactions. 

Gold partitioning experiments by Liu et al. (1993) at 25 °C using crude oil and an 

aqueous solution containing 500 ppm gold resulted in a transfer of 98% of the gold to the oil. 

Similarly, 99% of the gold was transferred into the oil phase in thermal simulation 

experiments at 150 °C in a coexisting system of crude oil, brine and rock (Zhuang et al., 1999). 

Few studies of this type are available in the peer-reviewed literature, but the following 

experimental results have been recorded in conference proceedings. In contrast to partition 

experiments and the thermal simulation experiment, solubility experiments indicate much 

lower gold concentrations with 2 to 3 ppb gold in crude oil at 100 °C, and up to 18 ppb of 

gold at 200 °C (Williams-Jones and Migdisov, 2007). Other work documented that 39–48 ppb 

gold can be present in crude oil at 250 °C, and that the solubility is significantly lower at 

temperatures higher and lower than 250 °C (Fuchs et al., 2011). In mixing experiments 

between crude oil and brine solutions spiked with 8 to 10 ppm of gold, palladium, platinum, 

or vanadium, the metals, except for V, were almost entirely partitioned into the oil phase at 

concentrations ranging between 50 ppm and 100 ppm (Emsbo et al., 2009). 

In this study, we present a method for gold partitioning experiments between two 

density-stratified immiscible liquids -- an aqueous brine and a one-component oil consisting 

of n-dodecane (Figure 2-1). The alkane n-dodecane is not representative of natural oils. In 
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fact, it has no functional groups to form metal organic complexes (e.g., Giordano, 2000), and 

is therefore not expected to complex significantly with Au. However, the physical 

characteristics such as melting point, boiling point, and stability under a broad range of redox 

and temperature conditions are suitable for the purposes of the study, and there are a 

number of structurally related compounds that do bear functional groups with the potential 

to complex Au, such as 1-dodecanethiol. The alkane n-dodecane therefore is optimal for 

method development purposes and to demonstrate the feasibility of gold partition 

experiments between aqueous and oil based fluids. 

 

Figure 2-1: 2D structure of n-dodecane 

The experimental set-up is similar to those used for aqueous vapor-liquid fractionation 

experiments (Pokrovski et al., 2008; Rempel et al., 2012), with the addition of in-situ sampling 

of each liquid at hydrothermal P-T conditions, ≤ 150 °C and ~5 bar for this study. 

Temperatures were chosen to be in the liquid oil window (<160 °C), but to allow high enough 

pressures for sampling from the top (section 2) 105 °C were chosen over 100 °C. In addition 

to presenting the method, we will comment on problems encountered during the method 

development. Furthermore, the methodology can also be used to conduct partition 

experiments with other elements and metals than gold, and with immiscible liquids of more 

complex compositions to generate fundamental data for geological processes in the upper 

earth crust. 

2.2 Methodology 

Here, the final method is described. Preliminary experiments performed during 

method development are described in section 3. The advantage of the HFS-340Z 

hydrothermal flow system chosen for the experiments is that samples can be taken 

simultaneously from the top and from the bottom. In-situ sampling gives the advantage that 

several samples can be taken from one experiment over time. The titanium vessel enables 

reusability and is inert in contact with most chemicals. A disadvantage is the time consuming 

experiment preparation and the time consuming cleaning process.  
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2.2.1 Equipment 

The partitioning experiments were conducted in an adapted HFS-340Z hydrothermal 

flow system purchased from Coretest Systems, Inc. (Figure 2-2) that was used as a closed 

system. The system comprises a flexible titanium sampling cell loaded with the immiscible 

liquids, which are contained within a stainless steel pressure vessel partially filled with a low 

viscosity liquid (H2O) that applies a confining pressure to the titanium sampling cell. For 

simplification, the cell will be referred to as the Ti-cell. Note that the Ti-cell is not flexible at 

the chosen pressure and temperature conditions (more details in section 2.2). The Ti-cell has 

a volume of 410 ml, which was reduced to 225 ml by inserting Teflon rods to reduce the 

volume of chemicals needed per experiment. The pressure vessel and Ti-cell are installed 

within a vertical tube furnace. All components in contact with the experimental liquids are 

made of commercially pure Grade 2 Ti alloy passivated with nitric acid (at ~100 °C for 24h) to 

create a surface coating of inert TiO2. The aqueous liquid used for our experiments was a 

brine (125 ml, 10wt% NaCl) with a density of ~1.06 g/ml at 25 °C that was doped with 1 to 

25 ppm gold ([AuIIICl4]-), while the n-dodecane (40-50 ml, CH3(CH2)10CH3) is less dense, with a 

density of 0.749 g/ml at 25 °C. Au was added in the form of a 1000 ppm Au plasma standard 

solution (10wt% HCl (aq)). Sampling lines at the top and bottom of the Ti-cell allow for 

simultaneous sampling of the two density-stratified immiscible liquids. The upper sampling 

line extends down to the center of the Ti-cell, past the air in the headspace, and into the 

organic liquid layer, if filled with the appropriate proportions (ca. 125 ml aqueous liquid 

versus 40 ml to 50 ml of organic liquid). The length of this sampling line (extended tube) can 

be varied during the set-up to the desired length. In our case, the extended tube reaches 

~16 cm, to the center of the Ti-cell. The sampling lines on the Ti-cell lead to two valves with 

fittings to sample directly into a sample container, a PP (polypropylene) vial for the aqueous 

samples and a titanium autoclave (Ti grade 2) for the organic samples. Attached to the valves 

are 1 cm long clear PVC (polyvinyl chloride) tubes to allow for visual examination of the 

sampled liquid. Using a two-way valve, the top line is also connected to a pressure transducer 

to record the pressure inside the Ti-cell. Titanium frit filters (10 μm pore size) can be 

integrated into both sampling lines to filter out undissolved particles (Figure 2-2). We tested 

the set-up with and without the titanium frits and omitted the titanium frits in our final setup 

for reasons discussed below. 
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Figure 2-2: Schematic diagram of the HFS-340Z hydrothermal flow system, Coretest Systems, Inc. The volume of 

the titanium cell was reduced to 225 ml by inserting Teflon rods.   

2.2.2 Materials and experimental strategy 

A schematic chart of the experimental procedure is given in Figure 2-3. Diluted ultra-

pure NaOH and HCl were used to modify the pH of the aqueous brine to the desired value 

(pHStart) prior to loading. The remaining atmosphere (air) in the headspace above the liquids 

was 40 to 50 ml. The atmosphere was not flushed due to the reducing conditions of the 

experiment (see section 2.5.5). The confining pressure was set to 5 bar for all experiments. 

However, the flexible Ti-cell is rigid enough to withstand this relatively low confining 

pressure, so the pressure in the Ti-cell, as measured by the pressure transducer, is controlled 

by the temperature and salinity of the brine and is constrained to saturated water vapour 

pressure for the 10 wt% brine. Following loading, the Ti-cell was heated slowly to the desired 

temperature, taking ~12 h to reach 105 °C and ~15 h to reach 150 °C (halite + water + vapor 

liquid; Driesner and Heinrich, 2007). A temperature of 105 °C was needed to generate 

enough pressure to sample from the top-line. A further consideration in specification of a 

temperature range was the need to generate conditions within the liquid oil window i.e. less 

than 160oC. The apparatus was left at the final temperature for 6 h before sampling. Before 



 Chapter 2 

27 

each aqueous and organic sample pair was taken, both sampling valves were opened to 

release unreacted liquids contained in the tubes between the Ti-cell and the valves (~2 ml 

unreacted liquid per sampling line), and up to 5 ml to rinse the lines. For each experiment, 

three sample pairs of brine and organic liquid were taken at roughly equal pressure and the 

same temperature, with each brine sample directly followed by one of organic liquid. The 

subsequent fluid volume loss resulted in a pressure decrease of up to 0.5 bar between 

sampling events. Samples were directly released into the vial (brine) and the titanium 

autoclave (n-dodecane), and visually examined in the vial (brine) and while the liquid was 

released (n-dodecane) to recognise mixed phase samples. After each sampling event, the 

system was allowed some time to adapt to the new conditions. Once the pressure was stable, 

the next sample was taken. The temperature was not affected by the volume loss. To assess 

whether equilibrium conditions were reached, a time series experiment was made (PE10), 

with samples after 18 h and again after 42 h (section 4.3). In PE 10, the ratio of n-dodecane 

to brine was changed to 80 ml n-dodecane to 90 ml brine to move the brine further away 

from the top sampling line. The Au in HCl standard solution was added in this experiment 

directly into the Ti-cell after loading the brine, followed by n-dodecane. Directly after 

sampling (all experiments), the pH of the aqueous sample was determined (pHEnd). By 

releasing aliquots of either liquid through the valves, the pressure during individual 

experiments can be decreased. Alternatively, the confining pressure and temperature can be 

adjusted during the experiments to modify P-T conditions as required, but this was not done 

in these experiments.  

Partitioning experiments between aqueous brine (10 wt% NaCl) and n-dodecane were 

conducted at 105 °C (18 h) and 150 °C (21 h). Each experiment was repeated three to four 

times at the same P-T-X conditions to assess the repeatability of the gold partitioning results. 

During the sampling series, the volume of the aqueous liquid decreases more rapidly than 

that of organic liquid, and the volume of the air in the headspace increases with decreasing 

pressure. The aqueous samples were between 5 to 8 ml and the volume of the organic 

sample was 0.1 to 1.0 ml. The volume loss upon sampling and rinsing the sampling lines (dead 

liquid volume) varied a little. After each experiment, the Ti-cell, the sampling lines and valves 

were first rinsed several times with Milli-Q water, then with a aqua regia solution (35% HCl 

and 67% HNO3, 3:1 ratio), followed by Milli-Q water again (lines and valves were rinsed by 

attaching a vacuum pump). This procedure was applied after each experiment. In addition 

we tested passivating the Ti-cell after a set of 3 to 5 experiments and after each experiment 

with nitric acid (20%) over 8 h at 150 °C to create a surface coating of inert TiO2 (24 h 
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including heating and cooling time), and to break down remains of the n-dodecane in our 

final method. To remove any remaining nitric acid, the Ti-cell, sampling lines, and valves were 

rinsed several times with Milli-Q water, prior to heating the Ti-cell with 200 ml of Milli-Q to 

150 °C for 8 h (24 h including heating and cooling time). 

2.2.3 Sample processing 

After transferring the brine samples into vials, we added 6 ml of aqua regia to stabilize 

the gold solution, and diluted the samples with Milli-Q water to 45 ml for ICP-MS analysis of 

gold. During earlier experiments, aqua regia was not added to the aqueous sample solution, 

resulting in a systematic reduction in gold concentrations by 30--40%. 

The n-dodecane samples were digested in in-house made 45 ml screw top titanium 

autoclaves to produce carbon-free, homogeneous aqueous solutions suitable for ICP-MS 

analyses, using a method based on the microwave assisted digestion technique described by 

Wondimu et al. (2000). Their method was modified via addition of a Vulcan laboratory 

furnace and the titanium autoclaves with 45 ml volumes, and a rinsing step was added, 

resulting in two aqueous solutions per organic sample as described below. 

For the digestion, 7.5 ml of ultra-pure HNO3 (nitric acid, 67%) and 2.5 ml of H2O2 

(hydrogen peroxide, 30%) were added to each of the three titanium autoclaves containing 

the samples. The autoclaves were sealed, heated to 100 °C for 1 h, and opened briefly to 

release the initial gases produced in order to reduce the pressure inside the autoclaves. The 

autoclaves were then heated at a rate of 5 °C/min, completing the digestion at 125 °C (24 h). 

Preliminary experiments revealed that the most effective ratio for digestion is a maximum of 

0.5 ml oil to 7.5 ml HNO3 and 2.5 ml H2O2. Note that this reaction is strongly exothermic and 

volumes must be limited to prevent over-pressure in the autoclaves with potentially 

undesirable consequences, such as deformation and breach of the autoclaves. The digestion 

process plays a dual role in that it also passivates the titanium autoclaves resulting in a 

surface coating of inert TiO2. The volume of acids can be reduced proportionally for smaller 

volumes of organic liquid. 

After digestion, the digested solution was set aside for analysis. The titanium 

autoclaves were then filled with an aqua regia solution based on ultra-pure HCl (35%) and 

HNO3 (67%), and heated to 125 °C (24 h) to dissolve any residual gold and rinse the autoclave, 
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creating a second solution for analysis. The two solutions originating from each organic 

sample were diluted to 45 ml with Milli-Q water separately. After each digestion the titanium 

autoclaves were rinsed in Milli-Q water, cleaned in an aqua regia bath for ≥24 h, rinsed in 

Milli-Q water, soaked in a Milli-Q water bath (24 h), and dried in an oven at 100 °C.  

All three solutions for each sample pair (two from the organic liquid, and one brine) 

were analyzed by ICP-MS at LabWest Minerals Analysis Pty Ltd in Perth using a Perkin Elmer 

Nexion 300 inductively coupled plasma mass spectrometer. The time period between the 

end of sample processing and analyses by ICP-MS in the final method stage was one to two 

weeks (samples 1 to 10; section 4); in the early method development stage the time period 

was up to three weeks. The detection limit for gold was 0.05 ppb, which is equivalent to 

10 ppb to 150 ppb in the n-dodecane samples, depending on the mass of the sample, and 0.3 

to 0.5 ppb in the brine samples. Blank digestion runs in the titanium autoclaves (no sample 

and gold, chemicals only) were performed after 30 and 42 digestions to monitor gold loss to 

the titanium autoclaves (Table 2-1). In addition to Au analyses, Cl concentrations in the 

organic samples were analyzed by inductively coupled plasma optical emission spectrometry 

(ICP-OES) in six partition experiments (PE) during the early stages of method development. 

The Na and Cl concentration was also analyzed in a second analysis of the samples of one 

partition experiment 9 months after the experiment (PE42; Table 2-2) and in the time series 

experiment (Table 2-3; PE 10). Au concentrations in PE 42 were also measured after this 

extended time period to assess any changes in gold stability in the processed samples over 

time. The Na and Cl concentrations were only analyzed in the first solutions of a few selected 

experiments, after digesting the samples with HNO3 and H2O2 to allow for evaluation of Na 

and Cl concentrations in the n-dodecane samples. 

The organic sample digestion creates two solutions that were analyzed separately by 

ICP-MS, so the absolute mass of gold in the two solutions was summed to calculate the gold 

concentration in the original sample. The partition coefficients for gold between the organic 

liquid (org) and the aqueous liquid (aq) were calculated using a mass concentration ratio: 

 DAu
org/aq=cAu

org/cAu
aq  Eq. 2-1 

DAu
org/aq is the partition coefficient, cAu

org is the gold concentration of the organic liquid, 

by mass, and cAu
aq  is the gold concentration of the aqueous liquid, by mass. Uncertainties in 
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the partition coefficients were calculated by standard error propagation, assuming the 

individual components of the error are uncorrelated (Table 2-3). The largest contribution to 

the uncertainty originates from the variation of the gold concentrations of the three samples 

taken per experiment. Mass balance calculations were applied to determine the gold 

recovery (Aurecov) by dividing the total gold determined from the samples by total gold loaded.  

 Au�����=mAu total
sampled/mAu total

loaded  Eq. 2-2 

The gold recovery is a useful monitor of gold loss during the partition experiment. A 

scheme summarizing the experimental and sample processing steps is given in Figure 2-3. 

 

Figure 2-3: Experimental and sample processing scheme. Numbers and text in green emphasize the major 

difficulties that were encountered in the preliminary method development stage, which need to be carefully 

avoided (see section 3 and 5). 

2.2.4 GC-MS 

Gas Chromatography Mass Spectroscopy (GC-MS) was used to determine if n-

dodecane breaks down during the partitioning experiments at 105 °C and 150 °C. Post run n-

dodecane samples were rinsed through magnesium sulfate (pre-washed with n-hexane) to 

desorb water from the samples and then diluted (~100000 times) with n-hexane to prepare 

the samples for GC-MS. The sample results were compared to the GC-MS spectra of the 

initial, pure chemical compound (> 99%). GC-MS analyses were performed using a Hewlett 
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Packard 6890A gas chromatograph (GC) interfaced to a Hewlett Packard 5973 mass 

spectrometer (MS). The GC was fitted with a 60 m × 0.25 mm in diameter WCOT (wall coated 

open tubular) fused silica column coated with a 0.25 μm phenyl arylene polymer phase (DB-

5MS, J&W Scientific). The GC oven was programmed from 40 °C (hold 1 minute), then heated 

to 320 °C at 20 °C/min with a final hold time of 15 min. Ultra-high purity helium was used as 

carrier gas with a constant flow of 1.1 ml/min. Sample injection was 1 µl, pulsed splitless at 

310 °C. The MS was operated at 70 eV with a source temperature of 230 °C. Mass spectra 

were acquired in full scan mode (m/z 50-550 at 2.9 scans/sec). 

2.3 Observations and results during preliminary method development 

2.3.1 Method development, tests, blanks, and gold loss 

Gold introduction into the brine was tested with Au(I)Cl, Au(III)Cl3 (powder) and the 

gold plasma standard (final method: HAuCl4 in 10wt% HCl (aq)). The Au(I)Cl does not dissolve 

completely in the brine (at 25-90 °C), thus undissolved particles were added to the 

experiment, making it difficult to ascertain how much dissolved gold was present during the 

experiment. The strongly hydroscopic nature of Au(III)Cl3 made it difficult to load an exact 

amount of gold. Thus, using the gold powders unnecessarily increases the uncertainty in the 

mass balance calculation for determining gold recovery, and the presence of Au particles 

presents a contamination risk for determination of dissolved Au in the samples. The gold 

plasma standard (1000 ppm Au in 10wt% HCl) proved to be the most efficient way to 

introduce gold to the brine, although the pH has to be adjusted if acidic conditions are not 

desired. 

During testing of the experimental method we initially used gas-tight, inert syringes 

attached to the valves to sample the liquids. Aqua regia was rinsed through the syringes and 

added to the sample solution that was analyzed by ICP-MS at LabWest Minerals Analysis Pty 

Ltd. After sampling, the syringes were cleaned with aqua regia and Milli-Q water again. Even 

after cleaning, analysis of aqua regia rinsed through the syringes yielded gold concentrations 

of ~100 ppb (organic sample) and ~300 ppb (aqueous sample, Table 2-1). Thus, it is 

recommended to always sample directly into the final vial for the brine, and into the 

autoclave for the digestion of the organic liquid, rather than using contamination-prone 

syringes or other containers before transferring the samples into the final container. 
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Several types of blanks were run to investigate the possibility of gold loss or 

contamination throughout the sampling and digestion procedure. Aqua regia rinsed through 

the sampling lines (including the valves) contained up to 15 ppb gold (Table 2-1), and acidic 

solutions used for a blank digestion run in titanium autoclaves that had been used for 30 

digestions of organic samples ranged from below the detection limit of 0.05 ppb to ~6 ppb 

gold (Table 2-1), calculated to represent the equivalent gold concentration in a n-dodecane 

sample of 1 ml. One blank run after 42 digestions yielded a significant gold concentration of 

360 ppb indicating gold accumulation on the walls of the autoclave. 

Table 2-1: CAu of blank digestions, sampling lines, and syringes 

Sample 
CAu 

Nr. of Dig.c 
[ppb] 

Blank 1 4 30 

Blank 2 6 30 

Blank 3 b. d.d 30 

Blank 4 5 30 

Blank 5 360 42 

Syringe Orga 90 - 

Syringe Aqb 320 - 

Sampl. Lines 15 - 
a) used for sampling dodecane 
b) used for sampling the brine 
c) Number of digestions in Ti-
autoclaves prior to blank 
d) below detection limit 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) 

(Hitachi TM 3030) investigation of the two Ti sealing disks from the base of the Ti-cell (sealing 

the Ti-cell at the bottom, and in contact with the brine during the experiment) revealed that 

passivation with nitric acid every couple of experiments was only partially successful (Figure 

2-4). While one disk shows no observable gold particles, the other disk shows areas that are 

mostly passivated and areas that are not passivated. The non-passivated areas are the host 

for numerous precipitated gold particles, indicating that gold precipitated from solution onto 

non-passivated areas of the Ti-cell walls during the experiments. The gold particles ranged in 

size from nm to μm scale. The larger particles appear to have formed by accumulation of 

many smaller particles (Figure 2-4). The accumulation of gold particles is the most likely 

explanation for low gold recoveries (Table 2-3). During the early method development, the 

Ti-cell was passivated only after sets of several experiments (3 to 5), but the frequency of 

passivation was increased to before each experiment in the final method to reduce the gold 
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loss. The proportion of gold recovered was found to correlate negatively with the number of 

runs since passivation of the Ti-cell (see section 4). 

 

Figure 2-4: Back-scattered electron (BSE) images of passivated and not passivated surfaces of a titanium disk in 

contact with the brine during the partition experiment; image B shows a higher-magnification view of the area 

shown in A. 

Gold particles accumulated on the 10 μm-pore size titanium filter frits, which filtered 

or absorbed even much smaller gold particles in the nm range (Figure 2-5). Loss of gold to 

the frits may have led to issues with erroneously low measured gold concentrations and 

contributed to low calculated gold recovery. Secondary electron microscopy images of the 

bottom titanium filter frit showed bright particles <1 μm in size, which were confirmed to be 

gold by EDX spectroscopy. Particles in the low nm range are not supposed to be filtered by 

the 10 µm pore sized titanium frit filter, yet the surface of the frit that was oriented toward 

the liquids was covered by the gold particles, very likely due to the same process as the gold 

precipitation on to the Ti-cell walls. The relative gold concentration reproducibility did not 

increase or decrease in a setup with or without titanium filter frits. We therefore recommend 

the omission of the titanium filter frits to reduce the possibility of filtering gold nanoparticles. 

 

Figure 2-5: BSE images (15 keV, uncoated) of the titanium frit filters, with bright gold (nano-) particles. 
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2.3.2 GC-MS 

The initial n-dodecane (170.34 g/mol) and the n-dodecane that has undergone contact 

with the 10 wt% NaCl aqueous solution at 105 °C and 150 °C show identical peaks at the same 

retention time at 9.45 s and the same mass spectra with the identifying peaks at the. m/z 

ratio of 170 (Figure 2-6). No other mass peaks at other retention times were observed. Thus, 

the GC-MS data indicates that elevated temperatures and contact with the aqueous brine 

have no influence on the majority of the n-dodecane for this temperature and pressure 

range. However, the large volume of n-hexane used to dilute the sample prior to GC-MS 

analysis prevents the detection of compounds with a smaller carbon number than n-hexane, 

compounds with concentrations significantly lower than wt% in the undiluted sample, and 

polar compounds that are not soluble in n-hexane (detection limit: ~1 wt%). 
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Figure 2-6: Relative abundance versus the m/z ratio of n-dodecane, and n-dodecane after a 105 °C and 150 °C 

experiment. 

2.3.3 Gold stability over time in processed samples and Na and Cl in n-

dodecane in preliminary experiments 

To test if gold concentrations remain stable in the processed sample solutions during 

the time between sample processing and ICP-MS analyses, the processed sample solutions 

of PE X42, originally analyzed two weeks after the experiment, were re-analyzed 9 months 

after the experiment (Table 2-2, Figure 2-7). The results show that, after 9 months, gold 

concentrations in n-dodecane and brine are within error of the original values. The average 

cAu
org of the 4 samples of PE X42 was 427 ± 172 ppb after two weeks, and 396 ± 161 ppb after 
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nine months -- within error the same concentration. In the brine, cAu
aq

 concentrations were 42 

ppb ± 3 ppb and 46 ± 1 ppb at two weeks and nine months respectively. The resulting 

partition coefficients are therefore within error of each other after 2 weeks and after 9 

months. The average Na concentration of the 4 n-dodecane samples is 1460 ppm, and the 

average Cl concentration is 36150 ppm resulting in a Na:Cl ratio of 0.04 (Table 2-2). The 

expected Na:Cl ratio by mass for NaCl is 0.66. 

Table 2-2: Gold concentrations of PE X42 in the 4 processed samples 2 weeks and 9 

months after the experiment 

  CAu
Org Δxb CAu

Aq Δx Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean CNa
Org CCl

Org 

timea [ppb] [ppb] [ppb] [ppb] n = 1 n = 3 1 σC [ppm] [ppm] 

2 w
eeks 

450 20 40 <5 11   
- - 

580 30 40 <5 15 9.7 3.5 - - 

240 10 45 <5 5.3   
- - 

390 20 50 <5 7.8    - - 

9 m
o

n
th

s 

440 20 45 <5 9.8   50 63140 

530 30 50 <5 11 8.3 3.1 2630 23770 

220 10 50 <5 4.4   690 29900 

370 20 50 <5 7.4   2450 27780 
a) time between experiment and ICP-MS analyzes 
b) analytical error (including balance, volume, and mass spectrometer uncertainties) 
c) total error by error propagation (2σ) 

 

Figure 2-7: Gold concentration in processed samples, n-dodecane and brine, 2 weeks (filled symbols) and 9 

months (open symbols) after the experiment (PE X42). Errors are omitted for clarity (see Table 2-2). 
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Cl concentrations of organic samples (X4 to X6, X42, and X20 to X22; Table 2-2 and 

Table 2-3) were also determined for six partition experiments during an earlier stage of the 

method development (Figure 2-8), and yielded up to 2700 ppm Cl in the average of three n-

dodecane samples, and 36150 ppm in the average of the four n-dodecane samples of PE X42. 

There is no systematic correlation between Cl concentration and cAu
org or DAu

org/aq in these 

preliminary experiments (Figure 2-8). 

 

Figure 2-8: (A) Partion coefficient and Cl concentrations in n-dodecane and (B) cAu
org

 and Cl concentrations in n-

dodecane of X4 to X6 and X42 (105 °C) and X20 to X22 (150 °C). 

2.3.4 Results of the preliminary method development stage 

Partition coefficients of all partition experiments (PE) were plotted against gold 

recovery (Figure 2-9). Preliminary experiments discussed in the text are marked with an X 

(Table 2-3), where different gold sources (Au(I)Cl or Au(III)Cl3 powder), sampling techniques, 

and the influence of titanium filter frits were tested. With a few exceptions, the majority of 

preliminary experimental results are useful only as a cautionary tale and are presented to 

help future researchers avoid the discussed issues. The experiments PE 1 to 10 (Table 2-3; 

Figure 2-9) were doped with the Au plasma standard and were conducted using the final 

method described in section 2 in all respects except for the regular passivation of the Ti-cell 

(passivated experiments are identified in the figures and in Table 2-3). 

The DAu
org/aq in the brine – n-dodecane system is highly variable when gold recovery is 

low (<50%), and ranges from <1 to ~103 at 105°C and 150°C, while DAu
org/aq for experiments 

with higher gold recoveries (>50%) are reproducible and <1 (Figure 2-9). Values of DAu
org/aq on 
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the order of 103 are obtained when gold is at ppm levels in the organic liquid (e.g., X20 with 

60 ppm Au in n-dodecane, Table 2-3) and less than 50 ppb in the brine, and coincide with 

several experiments in a row without passivation of the Ti-cell. Passivation of the Ti-cell 

before each experiment coincides with gold recoveries over 75%. The correlation between 

passivation, assumed to be proportional to Au recovery and DAu
org/aq, is a useful diagnostic that 

can be monitored to recognize faulty experiments. Variation in DAu
org/aq at low Aurecov also 

suggests contamination by remains of Au bearing n-dodecane, brine, or aqua regia of 

previous experiments, when the Ti-cell was not passivated and thus cleaned again (section 

5.3). 

 

Figure 2-9: Partition coefficients versus gold recovery for all experiments conducted during the method 

development, independent of sampling technique, the use of titanium filter frits in the setup, or gold species 

used to dope the brine. Error bars are not shown to aid clarity. The numbers identify the partition experiments 

using the final methodology (PE, see Figure 2-10 and section 4); red numbers indicate passivation of the Ti-cell 

prior to the experiment. X24 and X27 were passivated, but were conducted during early stages of the method 

development, not using the final methodology. The other preliminary experiments are not numbered for clarity. 

PE 10a was sampled after 21 h and PE 10b after 48 h.  

2.4 Results  

2.4.1 Effects of passivation of the Ti-Cell 

The partition experiments selected and numbered in Figure 2-10 and Figure 2-11 were 

performed using the final method, with the exception that passivation of the Ti-cell was not 

performed before every experiment. In these experiments, gold was added via the gold 



 Chapter 2 

39 

plasma standard solution, titanium frits were omitted, and samples were taken by directly 

transferring the liquids into the vials (brine) or the titanium autoclaves (n-dodecane). The 

experiments for which the Ti-cell was passivated prior to the experiment are indicated in 

Table 2-3. The DAu
org/aq of the n-dodecane brine within the selected experiments at 105 °C and 

150 °C (Table 2-3, Figure 2-10) ranges from 0.1 ± 0.02 when Aurecov = 100% and 16 ± 7.6 when 

Aurecov = 1%, for both temperatures. Experiments with Aurecov below 50% result in DAu
org/aq >1, 

and those with Aurecov above 50% result in DAu
org/aq < 1. Taking into account the variation of 

DAu
org/aq at low Aurecov in the preliminary experiments may indicate that experiments with low 

Aurecov are affected by contamination (section 5.3). 

 

Figure 2-10: Partition coefficients versus pressure at 105 °C and 150 °C (A) and versus gold recovery (B). The 

numbers identify the partition experiment (PE); red numbers indicate passivation of the Ti-cell prior to the 

experiment. PE 10a was sampled after 18 h and 10b was sampled after 42 h (Table 2-3). 

Initial Au in the brine varied from 90 μg to 3500 μg per 125 ml brine (except for PE 10 

with 90 ml brine and 60 ml n-dodecane). The initial gold concentration does not show a 

statistically significant relationship with the partition coefficients (Figure 2-11). Higher initial 

amounts of Au result in higher concentrations in the liquids, than lower initial amounts of Au, 

but with no effect on the partition coefficients. 
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Figure 2-11: Partition coefficients versus the overall added gold of PE 1 to 10 and X24 and X27. PE 10 displays the 

average partition coefficient of the samples after 18 h and after 42 h. Red numbers identify successful 

passivation of the Ti-cell. 

2.4.2 Effects of temperature, pressure and pH 

All PE with DAu
org/aq < 1 were conducted at 105 °C, and three of the four experiments 

with DAu
org/aq > 1 were conducted at 150°C (PE 2, 7-9, Aurecov max. 12%), which at first sight 

suggests an increase DAu
org/aq of with temperature. However, DAu

org/aq increases with decreasing 

Aurecov at 105 °C and at 150 °C, and the majority of low Aurecov
 experiments took place at 

150 °C (Figure 2-10 b). It is therefore possible that the apparent temperature dependence is 

related to Aurecov or contamination of n-dodecane rather than temperature.  

There is no detectable correlation between pressure, and DAu
org/aq at these low P-T 

conditions (105 °C to 150 °C, ≤ 5 bar), though the scatter in the data caused by variable gold 

recovery could obscure a correlation. We tested different pHStart for the brine, ranging from 

1.5 to 10.0, and found that regardless of pHStart the pHEnd ranges from 2.4 to 3.7 with the 

majority of experiments between a pH of 2.4 and 2.9. It was, therefore, not possible to 

determine the influence of the pH on DAu
org/aq because experiments with the same pHStart have 

variable DAu
org/aq due to the different gold recoveries, and because all experiments ended in a 

similar pH range of 2.4 to 2.9 with one outlier of 3.7, and the very low pH of PE 10. Reasons 

for the low pH in PE 10 are discussed in section 5.2. 
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2.4.3 Time series: Results after 18 h and after 42 h in PE 10 at 105 °C 

Sample 4, the first sample taken from run PE 10 after 42 h was not included in the 

calculations, as it has a cAu
org of 1170 ppb, which is up to three magnitudes higher than in the 

other n-dodecane samples taken from PE 10 (Table 2-3). The high value was probably 

attributed to Au contamination. Lower Au values than 1170 ppb could also result from Au 

contamination but the consistency between the other five samples from PE10 is such that 

contamination is not suspected in these cases. The n-dodecane and brine were sampled after 

18 h and 42 h and resulted in a DAu
org/aq of 0.06 ± 0.03 and of 0.05 ± 0.04 (Figure 2-12). The 

pHEnd in the brine was 1.4 after 18 h, and decreased to a pHEnd of 1.0 after 42 h. The Aurecov 

was 87% after 18 h and 98% in the samples after 42 h. [AuIIICl4]- was added in this experiment 

directly into the Ti-cell after loading the brine, followed by n-dodecane. The average Na 

concentration in the triplicate samples of n-dodecane after 21 h is 350 ppm, and the average 

Cl concentration is 14670 ppm (Na:Cl ratio of 0.02). 

 

Figure 2-12: (A) Gold concentrations after 18 h and after 42 h (errors are standard deviations of cAu) and (B) the 

corresponding partition coefficients (errors are total errors as in Table 2-3). The percentages are the Aurecov 
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Table 2-3: Partition coefficients and gold concentrations for experiments at 105 °C and 150 °C 

  
T        P ± 0.1 Austart

g CAu
Org Δxc CAu

Aq Δx NaOrg ClOrg Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean 

Au 

recovery timef 

PEa [°C] pHStart pHEnd Smpl#b [bar] [µg] [ppb] [ppb] [ppb] [ppb] [ppm] [ppm] n=1 n=3 2 σd [%] [h] 

1 105 

    1 2.4   4070 210 13300 690 - - 0.3     

60 

  

1.5 - 2 2.3 3000 2500 130 12590 650 - - 0.2 0.3 0.1 18 

    3 2.0   3030 160 11780 610 - - 0.3       

2 105 

    1 2.5   640 30 70 4 - - 9.3     

1 

  

10.0 - 2 2.3 3500 970 50 40 2 - - 22 16 14 18 

    3 2.1   540 30 40 2 - - 15       

3pass 105 

    1 2.6   2760 140 22920 1190 - - 0.1         

7.5 - 2 2.4 3400 2670 140 24530 1280 - - 0.1 0.1 0.04 101 18 

    3 2.1   2220 120 27580 1430 - - 0.1         

4pass 105 

    1 2.3   2650 140 7150 370 - - 0.4     

140 

  

4.4 - 2 2.1 750 1340 70 7510 390 - - 0.2 0.3 0.1 18 

    3 1.9   2110 110 7390 380 - - 0.3       

5 105 

    1 2.2   1490 80 1880 100 - - 0.8         

4.7 2.4 2 2.0 612 2130 110 2170 110 - - 1.0 0.9 0.5 60 18 

    3 1.9   2410 130 2350 120 - - 1.0         

6 105 

    1 2.4   1590 80 1830 100 - - 0.9         

5.7 2.8 2 2.2 556 1460 80 1850 100 - - 0.8 0.8 0.3 53 18 

    3 2.0   1110 60 1690 90 - - 0.7         

7 150 

    1 4.9   820 40 300 20 - - 2.8         

5.1 2.7 2 4.7 556 830 40 280 10 - - 3.0 2.3 1.5 12 21 

    3 4.6   350 20 280 10 - - 1.3         
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T        P ± 0.1 Austart

g CAu
Org Δxc CAu

Aq Δx NaOrg ClOrg Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean 

Au 

recovery timef 

PEa [°C] pHStart pHEnd Smpl#b [bar] [µg] [ppb] [ppb] [ppb] [ppb] [ppm] [ppm] n=1 n=3 2 σd [%] [h] 

8 150 

    1 4.9   1220 60 70 0 - - 16         

5.1 2.9 2 4.7 500 890 50 60 0 - - 15 19 14 9 21 

    3 4.6   910 50 30 0 - - 27         

9 150 

    1 4.9   950 50 60 0 - - 16         

5.0 3.7 2 4.8 500 1110 60 70 0 - - 17 14 7.7 9 21 

    3 4.8   790 40 90 0 - - 9.0         

10pass 105 

    1 2.0   20 <5 850 40 170 16300 0.02         

- 1.4 2 1.7 90.0 70 <5 860 40 350 14320 0.08 0.06 0.03 87 18 

    3 1.7   60 <5 780 40 520 13380 0.08         

10 105 

    4h 1.7   1170 <5 930 50 - - 1.25         

1.4 1.0 5 1.6 90.0 90 <5 950 50 - - 0.09 0.05 0.04 98 42 

    6 1.6   10 <5 940 50 - - 0.01         

X3e 105 - - 1 - 2627 110 - 160 - - - 0.7 - - 1 24 

  

105 

    1 2.0   260 10 2830 150 - 960 0.1         

X4 - - 2 1.7 3729 220 10 3020 160 - 810 0.1 0.1 0.2 12 21 

      3 1.5   740 40 3030 160 - 0 0.2         

  

105 

    1 2.4   340 20 939 50 - 630 0.4         

X5 - - 2 2.2 3136 70 5 1122 60 - 300 0.1 0.2 0.2 5 24 

      3 1.8   140 10 1219 60 - 390 0.1         

  

105 

    1 2.5   50 5 1090 60 - 2890 0.05         

X6 - - 2 2.0 3730 2230 120 690 40 - 2300 3.2 1.1 2.4 4 18 

      3 1.8   60 5 820 40 - 2850 0.1         
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T        P ± 0.1 Austart

g CAu
Org Δxc CAu

Aq Δx NaOrg ClOrg Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean 

Au 

recovery timef 

PEa [°C] pHStart pHEnd Smpl#b [bar] [µg] [ppb] [ppb] [ppb] [ppb] [ppm] [ppm] n=1 n=3 2 σd [%] [h] 

  

105 

    1 2.0   2710 140 15300 800 - - 0.2         

X23 - - 2 1.7 5000 2120 110 17050 890 - - 0.1 0.2 0.1 49 19 

      3 1.5   2790 150 17690 920 - - 0.2         

  

105 

    1 -   680 40 100 5 - - 6.9         

X25 - - 2 - 8475 1000 50 70 5 - - 14 8 6.7 0.4 18 

      3 -   230 10 70 5 - - 3.0         

X27pass 

 

    1 2.3   5260 170 11190 580 - - 0.5         

  - - 2 2.0   5030 260 9270 480 - - 0.5         

X27pass     3 1.8 3051 5080 260 11210 580 - - 0.5 0.3 0.1 80 15 

      Aq4 1.7   5130 270 16850 880 - - 0.3         

      Aq5 1.7   5130 270 17040 890 - - 0.3         

  

105 

    1 2.2   6100 320 12550 650 - - 0.5         

X28 - - 2 2.1   5560 290 10500 550 - - 0.5         

      3 1.7 4153 5650 290 12320 640 - - 0.5 0.3 0.1 65 18 

        Aq4 1.6   5770 300 17990 940 - - 0.3         

        Aq5 1.6   5770 300 18590 970 - - 0.3         

  

105 

    1 2.5   2240 120 4300 220 - - 0.5         

X31 - - 2 2.3 1356 1360 70 4410 230 - - 0.3 0.4 0.2 48 19.0 

      3 2.0   1420 70 4680 240 - - 0.3         

        1 2.7   450 20 40 2 - - 11.6       18 

X42 105 7.5 2.2 2 2.5 500 580 30 40 2 - - 13.9 9.8 3.4 5 18 

        3 2.3   240 10 45 2 - - 5.5       42 

        4 2.3   390 20 50 3 - - 8.1       42 
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T        P ± 0.1 Austart

g CAu
Org Δxc CAu

Aq Δx NaOrg ClOrg Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean 

Au 

recovery timef 

PEa [°C] pHStart pHEnd Smpl#b [bar] [µg] [ppb] [ppb] [ppb] [ppb] [ppm] [ppm] n=1 n=3 2 σd [%] [h] 

        1 5.2   60820 3160 30 5 - 940 2186         

X20 150 - - 2 4.8 8983 30910 1600 50 5 - 1840 641 1033 834 17 22 

        3 4.7   17470 910 70 5 - 2250 271         

        1 3.4   8300 430 2 0 - 2920 3667         

X21 150 - - 2 3.2 7288 3150 160 1 0 - 1270 4019 3940 5759 3 22 

        3 3.0   3750 200 1 0 - 2040 4133         

        1 5.0   1390 70 70 5 - 950 19         

X22 150 - - 2 4.7 7119 1210 60 50 5 - 1430 23 21 4.3 1 22 

        3 4.4   1250 70 60 5 - 1260 21         

        1 -   12350 640 34030 1770 - - 0.4         

X24pass 150 - - 2 - 5847 3390 180 33210 1730 - - 0.1 0.2 0.2 85 21 

        3 -   4830 250 32850 1710 - - 0.1         

        1 -   470 20 344 20 - - 1.4         

X26 150 - - 2 - 4746 190 10 530 30 - - 0.4 0.7 0.6 2 21 

        3 -   210 10 630 30 - - 0.3         

        1 4.6   980 50 250 10 - - 3.9         

X29 150 - - 2 4.5 2966 1370 70 280 20 - - 5.0 4.0 2.8 3 21 

        3 4.2   1150 60 360 20 - - 3.2         

        1 5.5   1590 80 610 30 - - 2.6         

X30 150 - - 2 5.3 1525 1200 60 970 50 - - 1.2 1.7 1.0 12 22 

        3 4.8   1470 80 1090 50 - - 1.3         
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T        P ± 0.1 Austart

g CAu
Org Δxc CAu

Aq Δx NaOrg ClOrg Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean 

Au 

recovery timef 

PEa [°C] pHStart pHEnd Smpl#b [bar] [µg] [ppb] [ppb] [ppb] [ppb] [ppm] [ppm] n=1 n=3 2 σd [%] [h] 

a) partition experiment 
b) sample number 
c) analytical error (including balance, volume, and mass spectrometer uncertainties) 
d) total error by error propagation (2σ) 
e) X indicates experiments of the early method development stage 
f) time between loading the Ti-cell and sampling. Heating to 105°C was 12 h, and 15 h to 150°C 
g) PE 1 to 10: Au added as HAuHCl4. Variable in preliminary experiments (X): Au(I)Cl powder or Au(III)Cl3 powder 
h) sample 4 was not included in calculations of Dorg/aq, Aurecov and P 
pass Ti-cell was passivated before the experiment for 24 h at 100 °C 
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2.5 Discussion 

The final method, exemplified by experiment PE10, produces repeatable results and 

can therefore be used to measure the partitioning of gold, and other metals with similar 

characteristics, between oil and aqueous fluids, so long as a rigorous routine for passivation 

of the Ti-cell is applied. Partition coefficients can be used to identify the ability of fluids to 

transport gold or other metals. A number of processes that may have caused artefacts in the 

experiments were recognized during the experiment development phase. These processes 

shed light on the transport of gold in aqueous and organic fluids and are discussed further 

here. 

2.5.1 Evaluation of the relationship between DAu
org/aq , cAu

org and cAu
aq

 for 

speciation 

The relationship between DAu
org/aq, cAu

org and cAu
aq  is a useful first order indication of the 

quality of the results. If the experiments are at equilibrium, and if speciation in the 

experiments is consistent, then a plot of cAu
org versus cAu

aq  on a log plot, should produce a 

straight line with a slope of 1 (Pokrovski et al., 2002). A linear regression through the results 

of PE 1 to 9 (final method other than regular passivation) in a cAu
org versus cAu

aq  log plot (Figure 

2-13 A) has a slope of 0.21 (r2=0.17). Given the variation in gold recovery, this indicates that 

the data cannot be used to extract equilibrium constants or speciation information. However, 

if the regression is restricted to experiments, including the preliminary experiments, with 

DAu
org/aq <1, then the data plot parallel to the reference line with a slope of 1 (Figure 2-13 B). 

This first assessment enables some confidence in the results, although, clearly, a full set of 

experiments performed using the final method and with regular passivation are needed. 

However, the high Aurecov and consistent Au concentrations in PE 10 lead us to believe that 

PE 10 produced a partition coefficient between brine and n-dodecane that can be treated 

with a high degree of confidence. Thus, it is assumed that experiments with DAu
org/aq > 0.2 were 

affected by contamination or processes that led to low Aurecov. This will be discussed further 

in the section 5.3. 
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Figure 2-13: Gold concentrations (ppb) in the n-dodecane versus gold concentrations in the brine (lg=log10) of (A) 

PE 1 to 10 (red) and of all (B) partition experiments. The blue areas contain the experiments with �Au
org/aq

 < 1, 

while the �Au
org/aq

 of the experiments outside the blue areas are >1. The line with a slope of 0.21 is a linear 

regression line through the data of PE 1 to 10 (red). The line with a slope of 1 is given for reference. Red numbers 

indicate the passivated Ti-cell. Errors are not shown for clarity. 

2.5.2 Equilibration 

Thermodynamically valid results require that equilibrium between the organic and 

aqueous phases is reached prior to sampling and analysis. The heating rate of ~10 °C/h is very 

slow, and the apparatus was left at operating temperature for 6 h before sampling. This 

method step was included to facilitate equilibration of the system prior to sampling. This 

time should be sufficient for equilibration between the aqueous and organic fluids based on 

known equilibration kinetics of fluids and gases (Bischoff et al., 1986; Hovey et al., 1990; 

Bischoff, 1991; Pokrovski et al., 2002; Pokrovski et al., 2005). In PE 10, where samples were 

taken 24 h apart (Table 2-3; Figure 2-12), the average cAu
org is effectively constant at ~50 ppb, 

when the outlying sample 4 is not included (section 4.3; Table 2-3). The average cAu
aq  increases 

by 110 ppb from 830 ± 40 to 940 ± 10 ppb. This increase coincides with an increase in Aurecov 

from 87% to 98% and is attributed to acidification of the brine from a pH of 1.35 to 1.00 due 

to the extended time available for n-dodecane decomposition (see section 5.2 for 

discussion). However, the pH change does not affect the DAu
org/aq, which is the same average 

for both measurements, within error (Table 2-3).  

Full equilibration of the system requires not only equilibration between gold 

concentrations in the brine and organic phase, but also equilibrium between n-dodecane, 

dissolved Au, the air present in the system, and the walls of the vessel. Consistent values for 
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DAu
org/aq obtained for PE10 after 18 h and 42 h, as discussed above, suggest that the former is 

achieved, but changes in pH observed in the same experiment, plus the Au precipitation 

discussed below (section 5.2.2 and 5.2.3) suggest that the latter is not. The extent to which 

these non-equilibrium processes could have affected the results is discussed below. 

2.5.2.1 Acidification by n-dodecane decomposition 

Time dependent, and therefore non-equilibrium, behavior is recorded by the decrease 

in pH in the brine that occurred in all experiments (Table 2-2) and it is necessary to consider 

the possibility that n-dodecane broke down to form molecules with polar functional groups, 

such as carboxylic acids that partitioned into the aqueous phase and caused a pH decrease. 

The pH-decrease in the brine is independent of the initial pH (Table 2-3). The GC-MS data 

indicates that the major component in the organic sample is n-dodecane after the 

experiments, but compounds generated by decomposition could have been obscured due to 

the high dilution of the n-dodecane with n-hexane to allow GC-MS (detection limit is ~1 wt%). 

Additionally, polar compounds that transferred to the aqueous phase would not have been 

detected by GC-MS analysis of the organic phase, while decomposition products such as CO2, 

CH4, and CO could also be released into the gas phase without being sampled. 

2.5.2.2 Gold loss 

Low Au recoveries for unpassivated experiments suggest that gold loss somewhere in 

the system needs to be accounted for. Blank measurements and gold recoveries suggest that 

gold loss to the sampling lines and during the digestion process is minor when the final 

method is used (Table 2-1 and Table 2-3). The autoclaves used for the digestions are 

passivated during each digestion resulting in an inert TiO2 surface and analyses of blank 

digestions in all autoclaves were below ≤ 6 ppb after 30 digestions. In the second step of the 

digestion process, the remaining Au is dissolved in aqua regia, and subsequently cleaned in 

an aqua regia bath. However, as a precautionary measure the Ti-autoclaves should be 

monitored with regular blank measurements and passivated with HNO3 at 150 °C (24 h) every 

few experiments, or replaced after being used for a significant number of digestions. 

The variable gold loss/gold recovery indicates different degrees of passivation of the 

Ti-cell between the experiments. This may only be an issue for Au rather than all metals, as 

gold is known to be sensitive to reduction during experiments at elevated temperatures 
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(Pokrovski et al., 2009; Liu et al., 2014). The observation of metallic gold particles in the 

removable parts of the Ti-cell (Figure 2-4 and Figure 2-5) indicate that dissolved gold is 

reduced to metallic gold at the experimental conditions in one or both phases. It was not 

possible to take BSE images of the vertical parts of the Ti-cell in contact with the n-dodecane 

or brine without destroying the Ti-cell. Thus, this did not allow to determine if metallic gold 

precipitated from the n-dodecane only, the brine only, or both. However, the linear 

correlation between the Au concentrations and the Aurecov plotted in Figure 2-14 indicates 

that Au loss is proportional to cAu
aq  and cAu

org, and thus Au is lost from both liquids (section 5.2). 

2.5.2.3 Systematics of Au precipitation 

Au0 precipitation from aqueous solutions in single phase aqueous experiments is 

known to be temperature dependent – for example, Murphy et al. (2000) demonstrated that 

the Au(III) complex [AuCl4]- breaks down and precipitates Au0 at temperatures above 250 °C 

and at low pH. Further, in synchrotron XAS experiments on Au in aqueous solution, metallic 

gold precipitation was noted at ≥ 150 °C (Pokrovski et al., 2009; Liu et al., 2014). These 

workers proposed that processes related to their experimental conditions, such as Au 

reduction by the X-ray beam and the use of a glassy carbon tube to contain samples, 

facilitated precipitation. Precipitation of Au(0) from Au(III) chloride in our system occurs at 

lower temperatures than that noted in previous investigations of aqueous solutions, 

somewhere between 25 ° and 150 °C. 

Reduction of the Au(III) complex [AuCl4]- to Au0 in the partition experiments indicates 

that conditions were more reducing than those required for Au(III) stability, either in the 

solution, or at the Ti surface. Due to the reducing conditions, gold accumulates on 

unpassivated titanium surfaces. The gold accumulates may act further as a catalyst for Au 

precipitation by acting as nucleii. In contrast, after successful passivation most of the gold 

stays in solution either dissolved or as nanoparticles. Precipitation may be enhanced in each 

subsequent unpassivated experiment due to the previously-precipitated gold acting as 

nucleii for the gold still in solution, as indicated by decreasing gold recoveries as the time 

since passivation increases (PE 3 to 9, Table 2-3).  

Precipitation of Au when an unpassivated Ti-surface is available suggests either (1) that 

Au(III) is metastable in solution relative to Au0, and/or (2) that the Ti surface provides a local 

environment where Au(III) is not stable. In either case, partition coefficients should be robust 
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at high Au recovery, because the high Au recovery means that Au precipitation is slow 

compared to partitioning between the organic and aqueous phases. 

Organic matter is commonly thought to act as a reducing agent in ore deposits 

(Gatellier and Disnar, 1989; Giże, 1999; Giże, 2000). For example, Gatellier and Disnar (1988) 

found that Au was reduced and precipitated in the presence of lignite in an Au chloride 

solution, which is in agreement with gold reduction at the relatively low temperatures of our 

experiments. It may be, therefore, that the organic liquid provides the reducing conditions 

that drives reduction of Au(III) in the brine. This is discussed further in section 5.5 below. 

2.5.3 Contamination 

The experimental results indicate two sources of contamination: Contamination of n-

dodecane by the brine and contamination by remains (Au and Cl bearing n-dodecane, brine, 

or aqua regia of previous experiments) in the Ti-cell, when the Ti-cell was not passivated 

before the experiments, which is an additional cleaning step. 

2.5.3.1 Contamination by boiling-induced mixing of the brine and n-

dodecane 

Brine and n-dodecane are theoretically chemically immiscible, but it is possible that 

traces of the brine can be found in the organic liquid and vice versa due to physical mixing. A 

vapor phase is generated in experiments at 105 °C and 150 °C (internal pressures of 1.9 bar 

to 4.9 bar; halite + water + vapor liquid). The water vapor has a lower density than n-

dodecane, and would migrate to the top of the Ti-cell, filling the headspace (well above the 

position of the n-dodecane sampling line), so vapor-sampling is not considered to be a major 

source of contamination. N-Dodecane boils at 215 °C and was therefore not boiling during 

the experiments. The brine however, could be boiling in the 150 °C experiments. The brine 

boiling point ranges from 149.8 °C to 152.8 °C for the respective pressures ranging from 4.6 

to 4.9 bar (Meranda and Furter, 1977; Driesner and Heinrich, 2007; and references therein), 

while the brine is always below the boiling point in the 105 °C experiments. If the brine was 

boiling at 150 °C mixing could have been induced between the two liquids at the phase 

interface by generating a turbulent boundary between the two liquids. The sampled liquids 

can be checked visually to avoid mixed samples, which is especially important for the oil 

phase, due to the top sampling inlet being closer to the phase boundary than the bottom 
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sampling inlet. However, the possibility of trace amounts of one component mixed into the 

other cannot be eliminated, and adds to the experimental uncertainty. Contamination by 

mixing of the phases would be expected to occur to different extents between samples, and 

lead to highly variable Au concentrations. In experiments where Au concentrations were 

consistent between samples, contamination by mixing was assumed not to have occurred. 

2.5.3.2 N-dodecane contamination by brine 

The ~2000 ppm Cl in the n-dodecane samples from experiments X4 to X6 and X20 to 

X22, and the 36150 ppm Cl in X42 may indicate that Cl may have entered the n-dodecane as 

contamination, by droplets of brine mixed into the n-dodecane samples. However, the low 

Na concentration (Na:Cl ratio = 0.04 by weight in PE 42 and 0.02 in PE 10) suggests that simple 

NaCl contamination is not the only cause of the high values, because contamination with 

either solid salt or brine droplets would be expected to produce a Na:Cl ratio of 0.66 by 

weight, and a molar Na:Cl ratio of 1. A possible process to explain the low Na:Cl ratios is 

discussed in section 5.3.4. 

The cAu
org in the triplicate samples of PE X6, X20, and X21 varies by factors from 2 to 44, 

which may indicate contamination of some of the n-dodecane samples with Au bearing brine 

(second sample of X6 and the first sample of X20 and X21). The Cl concentrations vary by 

factors of up to 2.3 in these experiments, which also indicates a Cl- contamination. However, 

Cl- contamination does not correlate with Au contamination. Taking PE X42 as an example to 

calculate the possible Au contamination due to brine droplets into the n-dodecane samples, 

we assume that the brine droplet has 10 wt% NaCl. The measured average of 1460 ppm Na 

in PE X42 would relate to a brine droplet of ~36.7 mg in 1 ml n-dodecane, which is ~4.9 wt% 

or 3.4 vol%. It seems unlikely that such brine droplet of this size got past the visual 

examination unnoticed, but if it did, the 50 ppb Au in the brine of PE X42 results in an increase 

in cAu
org of n-dodecane by 2.5 ppb. Given the experimental uncertainties and high cAu

org, the 

effect of the contamination should be negligible, even for the lowest measured cAu
org. 

However, DAu
org/aq > 1 in the unpassivated PE 2, 7, 8, 9 indicate Au contamination of n-

dodecane possibly by another process (Figure 2-9 and Figure 2-14). This will be discussed in 

the next section 5.3.3. 
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2.5.3.3 Contamination by remains in the Ti-cell 

Another contamination source that would explain the elevated NaCl and/or Cl, and Au 

concentrations in n-dodecane are remains (Au and Cl bearing n-dodecane, brine, or aqua 

regia) from previous experiments in the Ti-cell due to insufficient cleaning. For example, the 

unpassivated final PE 2, 7, 8, and 9 resulted in DAu
org/aq > 1 (Figure 2-9 and Figure 2-14) and 

Aurecov below 20%. On the other hand DAu
org/aq of all experiments (preliminary and final) ranges 

from ~0.15 to 103 (Figure 2-9) at Aurecov below 20%. This suggests that Au (and NaCl) may 

have accumulated in the lines leading to the high DAu
org/aq in PE 2, 7, 8, and 9, and that the 

reason for the high DAu
org/aq at low Aurecov is not the Au loss, but the lack of passivation and 

thus the additional cleaning of the Ti-cell. This would further indicate that DAu
org/aq would not 

be effected by the unpassivated surfaces of the Ti-cell, if the Ti-cell is absolutely clean. This 

is supported by DAu
org/aq of unpassivated preliminary experiments with low Aurecov, which are 

comparable to the DAu
org/aq of PE 10. 

Cl added by brine contamination or by remains from previous experiments of these 

mechanisms would be expected to produce (1) inconsistent Cl contents in the triplicate 

samples, because the extent of contamination would vary; and (2) molar Na:Cl ratios close 

to 1. A possible process to explain the low Na:Cl ratios is discussed in section 5.3.4. 

2.5.4 Chlorination on n-dodecane 

Alternatively, n-dodecane or its decomposition products became chlorinated resulting 

in the measured Cl concentrations. It is unlikely that the polar Cl- ion, which is not soluble in 

non-polar and saturated n-alkanes, partitioned to any extent into an organic phase consisting 

of pure n-dodecane. However, any decomposition of n-dodecane, and the associated 

decrease in pH in the aqueous phase would contribute to production of free radicals that 

could enable hydrogen atom abstraction of n-dodecane and consequent chlorination or di-

chlorination (Shilov and Shul'pin, 1997). It has been demonstrated that chlorination reaction 

rates are very fast, within minutes, in photo induced reaction experiments (Ramage and 

Eckert, 1975) at temperatures <35 °C. Furthermore, AuCl4- is used for photochlorination of 

alkanes (e.g., Shilov and Shul'pin, 1997). The photo-induced effect is necessary to produce 

radicals, such as ketones, to enable the hydrogen atom release which then allows alkane 

chlorination. In our experiments, instead of the photo-induced effect, the elevated 
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temperatures and longer experimental run time, and also acidic conditions may have 

facilitated the production of radicals (e.g., decomposition of n-dodecane). Thus, it must be 

considered if formation of alkyl halides is partially responsible for the observed Cl 

concentrations in the n-dodecane samples, especially as the Na:Cl ratio in PE X42 and PE 10 

is lower than expected for the salt NaCl (Table 2-2 and Table 2-3). The molar Cl concentration 

in n-dodecane in experiment PE X42 is ~ 0.22 mole Cl per mole n-dodecane and ~0.012 mole 

Cl per mole n-dodecane in PE 10, while in the other preliminary experiments with ~2000 ppm 

Cl the mole fraction is around 0.013 mol Cl per mole n-dodecane. These concentrations imply 

a maximum chlorination of 22 %, 1.2 %, and 1.3 % of n-dodecane, respectively. The 

inconsistency in these proportions may be linked to different degrees of passivation and 

cleanliness of the Ti-cell, which may affect the Cl concentrations as well. 

The increase in the amount of oil and decrease in the amount of brine in PE 10 

compared to earlier experiments moved the brine further away from the oil-sampling line, 

and indeed PE 10 samples exhibit lower Na and Cl concentrations compared to PE X42. Still, 

the presence of Na and Cl and the low Na:Cl ratio indicates a combined effect of chlorination, 

small brine droplets mixed into n-dodecane, remains of previous experiments, and possibly 

Cl contamination in the digestion process of n-dodecane (aqua regia cleaning of titanium 

autoclaves). The 1 cm long PVC tube attached to the valves could account for the low Na:Cl 

ratios, by contamination of Cl from the tube. To avoid the issues discussed here, regular 

passivation and monitoring of Na+ and Cl- concentrations in both liquids is recommended to 

reduce possible contamination. 

2.5.5 Statistical correlation between cAu and Aurecov 

A plot of the cAu
aq  and cAu

org normalized by the initially added Au against the Aurecov shows 

a temperature independent linear correlation of the Au concentration with the Aurecov, when 

results possibly biased by contamination are not included (Figure 2-14). The simplified criteria 

for contamination discussed in section 5.3 are cAu
org > cAu

aq  or DAu
org/aq > 1 and would apply to the 

n-dodecane samples of PE 2, 5, 6, 7, and 9 (Figure 2-14). The correlation has to be interpreted 

carefully, due to variations in the experimental methods used to acquire the data and the 

large uncertainties. However, this correlation can be used to extrapolate cAu
aq  and cAu

org to 

Aurecov = 100, as long as sufficient data are available and Aurecov cover enough range that the 

extrapolation is robust. The extrapolated cAu
aq  and cAu

org could then be used to calculate DAu
org/aq 
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for Aurecov = 100 %. Based on PE 1 to 10 and excluding results thought to be biased by 

contamination, the equation for cAu
aq  is (Figure 2-14) 

 ��
,���%

��
=  − 0.4315 +  0.07349 ∗ 100% Eq. 2-3 

and the equation for the brine is (Figure 2-14),  

 ��
,���%

�� 
=  − 0.5076 +  0.02013 ∗ 100% Eq. 2-4 

where cAu, 100%
aq  and cAu, 100%

org  are the cAu
aq  and cAu

org for Aurecov = 100 %. The DAu
org/aq derived 

from the cAu, 100%
aq  and cAu, 100%

org  is 0.22 ± 0.09 and is larger than the DAu
org/aq from PE 10 due to 

the influence of the less good experiments. Plotting cAu
aq  and cAu

org against the Aurecov also 

highlights, if samples are possibly contaminated, for example for PE 2, 5, 6, 7, and 9, where 

the cAu
org plots close to or above the regression line of cAu

aq . Furthermore, this plot highlights 

that Au loss is proportional to cAu
aq  and cAu

org and that the DAu
org/aq can be meaningful at low 

Aurecov, when no contamination occurred. 
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Figure 2-14: The cAu
aq

 and cAu
org

 normalized by the initially added Au content plotted against the Aurecov. The data 

labelled with a red “c” for contamination (PE 2, 5, 6, 7, and 9) are not included in the calculation of the 

regression lines. 

A bigger dataset of final method experiments would enable to derive DAu
org/aq with 

confidence, and thus this technique should be applied at least to investigate the quality of 

the experiments. 

2.5.6 Gold species in n-dodecane 

The discovery of significant concentrations of gold in n-dodecane is surprising (not 

regarding the possibly contaminated samples), because n-dodecane, as an alkane, does not 

belong to the typical group of hydrocarbon NSO-compounds and porphyrins with functional 

groups that are expected to complex with metals and thus dissolve significant concentrations 

of metals (Giordano, 2000 and references therein). Two possible explanations are explored 

here; (1) n-dodecane partially decomposed to produce hydrocarbons more capable of 

complexing with Au(I), and (2) that a Au(III) complex such as [AuCl4]- was present in the 

organic phase in the 105°C experiments (in addition to possible decomposition products 

acting as ligands), which is reduced to Au(0) in the 150 °C experiments (Crede et al., 2017; 

Crede et al., 2019). 
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(1) Partial decomposition of n-dodecane in the presence of water and air could 

produce strong ligands for Au, such as carbonyls that can form weakly polar Au(I)-Cl-carbonyl 

complexes (Antes et al., 1996; Kokh et al., 2016). Such complexes would have an affinity for 

the organic phase and could account for the ppb levels of Au in n-dodecane. In most cases, 

the reaction would involve reduction of Au(III) to Au(I), a transformation that is expected 

given the relatively reducing combination of hydrocarbons and Ti-metal, and the eventual 

precipitation of Au(0). 

(2) However, X-ray absorption spectroscopy (XAS) results provide evidence for a 

[AuCl4]- species in the organic phase (Crede et al., 2017; Crede et al., 2019). In these 

experiments, XAS spectra were measured at the Au LIII-edge in an n-dodecane plus acidified 

water system doped with Au(III)Cl3 in a glassy carbon tube and equilibrated for 7 h. Below 

125 °C the Au(III) complex [AuCl4]- is dominant in n-dodecane and the aqueous liquid. 

Metallic gold precipitation was observed at T ≥125 °C from both liquids. This raises the 

question of whether there could be an Au(III) or Au(III)-Cl-R complex in the organic phase in 

the < 125 °C partition experiments, and metallic Au in the ≥ 150 °C partition experiments. The 

presence of a Au(III)-complex is difficult to explain, given that experiments were performed 

in the glassy carbon tube in the XAS study, or the Ti-cell in this study, and these materials 

plus n-dodecane are expected to have been sufficiently reducing to destabilize an Au(III) 

complex (e.g., Pokrovski et al., 2009a; Pokrovski et al., 2009b; Brugger et al., 2016). Further 

work is necessary to resolve this question. 

2.6 Conclusion 

The method presented here generates reproducible results for metal partitioning 

between immiscible liquids at hydrothermal P-T conditions, when a rigorous passivation of 

the Ti-cell is applied and the oil brine interface is far away from the top-sampling line. The 

data obtained can be used to determine partitioning behavior of elements of interest and 

can also be used to generate fundamental data of scientific and economic interest for other 

chemical systems of interest. However, further work is needed to characterize and interpret 

the transformation of Au to its metallic state, and the possibility of an Au(III) species in the 

organic phase. N-dodecane, or more likely its decomposition or possibly chlorinated products 

coexisting with brine, can transport an appreciable concentration of gold, indicating that the 

common presence of hydrocarbons in gold deposits may be the record of a hydrocarbon ore 

fluid. 
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 Abstract 

Gold can be associated with hydrocarbons in hydrothermal gold deposits, but the near-

absence of experimental data on gold-hydrocarbon interactions at hydrothermal conditions 

prevents a quantitative interpretation of this relationship. In this study, we investigate the 

ability of liquid hydrocarbons to act as gold-transporting ore fluids using experiments on the 

partitioning of gold between brine (10 wt% NaCl) and 1-dodecanethiol (DDT). Experiments 

were conducted at 105 °C and 150 °C and < 5 bar in a batch reactor vessel. Partition 

coefficients (DAu
org/aq) obtained from the 105 °C and 150 °C experiments range from 10 ± 3.0 

to 91 ± 30 at 105 °C and from 4.9 ± 0.9 to 33 ± 6.9 at 150 °C, with averages of 37 ± 33 and 

21 ± 12, respectively. Gold concentrations in both the brine (< 1 ppm) and DDT (up to 10 

ppm) are dependent on the initial bulk concentration of gold (up to 4 ppm) and on the Au 

loss to the vessel walls during the experiment, as the Au concentrations correlate linearly 

with Au loss, while DAu
org/aq appears independent of bulk composition and Au loss. This linear 

dependency results in a stronger Au loss from the oil that bears more Au (DDT), and enables 

the calculation of DAu
org/aq for zero Au loss, which is 19 ± 21. These findings indicate that DAu

org/aq 

is a constant at the P-T-X conditions investigated. While these experiments did not directly 

assess Au solubility in DDT, no indication of Au saturation was observed, suggesting that 

higher concentrations are possible. The pH of the brine decreases during the experiments, 

indicating that the DDT underwent deprotonation and possibly decomposition during the 

partitioning reaction, but the pH does not have an observable effect on the gold 

concentrations in the brine and DDT. Preferential partitioning of gold into DDT is attributed 

to bonding with the thiol group, and as thiols compose up to 7 wt% of the total organic sulfur 

content of crude oils, liquid hydrocarbons have the potential to transport significant amounts 

of gold in ore formation processes. This is of importance for ore systems forming at relatively 

low temperatures and ore deposits known to be associated with organic matter such as Carlin 

type Au deposits.
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3.1 Introduction 

The common association of metals with carbonaceous material (CM) in various types 

of hydrothermal ore deposits (Glikson and Mastalerz, 2000 and references therein), 

anomalously high gold concentrations in CM (Bowell et al., 1999; Sherlock, 2000; Emsbo and 

Koenig, 2007; Hu et al., 2015; Hu et al., 2016; Robert et al., 2016; Hu et al., 2017; Mirasol-

Robert et al., 2017) and the high concentrations of ore metals measured in natural crude oil 

and bitumen (Samedova et al., 2009) raise the possibility of petroleum-phase metal transport 

in ore-forming processes. Gold may be associated with CM in a wide variety of deposit types, 

including epithermal Au-Ag (-Hg) deposits (Sherlock, 1992; Pearcy and Burruss, 1993; 

Mastalerz et al., 2000; Sherlock, 2000), Carlin-type Au deposits (Radtke and Scheiner, 1970; 

Hausen and Park, 1986; Emsbo and Koenig, 2007; Gu et al., 2012; Groves et al., 2016), 

orogenic Au deposits (Mirasol-Robert et al., 2017), and Witwatersrand-type Au-U deposits 

(Fuchs et al., 2016), indicating that CM plays an important genetic role in gold deposition. 

However, few experimental data exist for hydrocarbon-gold interactions under 

hydrothermal conditions, precluding accurate assessment or quantitative models of the role 

of CM in ore genesis. 

Elevated concentrations of gold and other metals in immobilized CM is insufficient 

evidence for metal transport in liquid hydrocarbons, so CM has been historically interpreted 

to act as a reducing or scavenging agent during metal precipitation rather than as a transport 

agent (e.g., Parnell, 1988; Manning and Giże, 1993; Gize, 1999; Giże, 2000, and references 

therein). Hydrocarbon-mediated metal precipitation is envisaged to occur when CM 

constituents (bitumen, oil and gas) encounter metal-rich aqueous solutions, leading to 

reduction and precipitation of metals and sulfides (Leventhal and Giordano, 2000). However, 

a few studies have used the above lines of evidence to suggest that a liquid hydrocarbon 

phase may contribute to metal transport (Connan, 1979; Giordano and Barnes, 1981; Mauk 

and Hieshima, 1992). Possible mechanisms include complexation of metals by oil-based 

fluids, formation of metal-organic complexes in aqueous fluids (e.g., Saxby, 1976; Giże and 

Barnes, 1989; Sicree and Barnes, 1996), or a combination of these processes, i.e., partitioning 

of metals between coexisting aqueous and hydrocarbon fluids and complexing of gold 

nanoparticles (AuNP). For example, petroleum-phase transport was proposed for the 

Witwatersrand Basin in South Africa in the form of mobile liquid hydrocarbons that 
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originated from shales and contributed to the mobilization and re-deposition of uranium and 

gold (Fuchs et al., 2015; Fuchs et al., 2016). 

Many studies have focused on the solubility, transport mechanisms, and speciation of 

gold in aqueous hydrothermal fluids (e.g., Henley, 1973; Seward, 1973; Renders and Seward, 

1989; Shenberger and Barnes, 1989; Hayashi and Ohmoto, 1991; Seward, 1993; Gammons 

and Williams-Jones, 1995; Benning and Seward, 1996; Gammons et al., 1997; Murphy and 

LaGrange, 1998; Murphy et al., 2000; Stefánsson and Seward, 2004; Tagirov et al., 2005; 

Pokrovski et al., 2009a; Pokrovski et al., 2009b; Pokrovski et al., 2014; Seward et al., 2014; 

Mei et al., 2017). It has been shown that hydrosulfide complexes dominate in acidic to 

neutral, sulfur-bearing aqueous fluids at temperatures up to 350 °C, whereas chloride 

complexes become more important in acidic, sulfur-poor acidic fluids, particularly above 

350 °C (Williams-Jones et al., 2009). Gold solubilities range from low-ppb values in vapors to 

~7000 ppm in sulfide solutions, with composition and temperature acting as the first order 

controls on Au concentrations (e.g., Henley, 1973; Shenberger and Barnes, 1989; Hayashi and 

Ohmoto, 1991; Zezin et al., 2007; Zezin et al., 2011; Pokrovski et al., 2014). 

In contrast, little is known about metals in liquid hydrocarbons at temperatures and 

pressures applicable to hydrothermal ore deposits, though some data are available for 

ambient conditions. In liquid hydrocarbons, compounds containing nitrogen, sulfur and 

oxygen (NSO-compounds) may act as ligands (e.g., Wood, 1996; Giordano, 2000; Greenwood 

et al., 2013). This premise is supported by an observed positive correlation of gold and 

heterocompounds enriched in N, S, and O in crude oil samples in the Jiyang Depression in the 

Shandong province, China (Sun et al., 2009). Gold complexes bond most strongly with S-

bearing functional groups, and then, with decreasing effectiveness, with nitrogen and oxygen 

(Vlassopoulos et al., 1990; Ta et al., 2014). The preference of gold for soft, easily polarizable 

ligands such as sulfur-based anions is based on the Lewis acid-like behaviour of the Au+ ion 

(Pearson, 1968; Lewis and Shaw III, 1986). This behavior is observed in biological systems, in 

which gold taken up by cells is mainly bonded to sulfur-bearing molecules, especially thiols, 

sodium gold thiomalate and thioglucose (Cotton and Wilkinson, 1988; Giże, 2000 and 

references therein; Etschmann et al., 2016; Zammit et al., 2016). Au(I) cyanide complexes can 

survive for extended periods of time in environmental surface waters (Ta et al., 2014), 

rendering CN- a potential ligand for gold transport (La Brooy et al., 1994). In addition, the 

following species, Carboxyl (-COOH), phenolic hydroxyl (-OH), amino (-NH2), and thiol (-SH) 

groups (Figure 3-1) are known to form metal-organic complexes in aqueous solution 
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(Giordano, 2000 and references therein) and may be relevant for ore systems involving 

coexisting aqueous and hydrocarbon fluids. Thiolate ligands such as 1-dodecanethiol (DDT) 

are also used in organic chemistry (Häkkinen, 2012; Alex and Tiwari, 2015 and references 

therein) to form self-assembled monolayers (SAMs) on gold nanoparticles that stabilize the 

gold nanoparticles, which raises the possibility of Au transport in the form of nanoparticles. 

Thiol groups form up to 7 wt% of the total sulfur content in crude oils (Krein, 1993), and thus 

thiolate ligands may contribute to gold complexation and gold transport in oil-based fluids. 

Sulfur ranges from 0.1 % to 14 % (sweet to sour oils) in crude oils and is held in thiols, 

thioethers and thiophenes (Krein, 1993; Robbins and Hsu, 2000). The sulfur content of crude 

oils is controlled by the depositional environment, thermal history, mineral catalytic effects, 

and the reservoir environment of the oils (Krein, 1993). The majority of sulfur bearing 

compounds in crude oils have higher molecular weights than thiols e. g., thiophenes (Krein, 

1993 and references therein). 

A limited number of experimental studies have been conducted on the transport of 

gold and other precious metals in liquid hydrocarbons, but the results so far demonstrate 

that liquid hydrocarbons are able to dissolve substantial concentrations of metals and thus 

act as an ore fluid. Gold solubility experiments document that 2 to 3 ppb gold can be dissolved 

in crude oil at 100°C, with increasing gold solubility with temperature up to 250 °C, where Au 

can reach concentrations of 39–48 ppb (Williams-Jones and Migdisov, 2007). Further 

increases in temperature result in decreasing gold solubility, as does the use of more refined 

oil fractions with a smaller proportion of large molecules like porphyrins (Fuchs et al., 2011). 

Migdisov et al. (2017) showed that liquid hydrocarbons have the potential to mobilize and 

concentrate metals at concentrations of up to 50 ppb Au in solubility experiments at 250 °C. 

Such concentrations in aqueous ore fluids are considered to be more than sufficient to form 

ore deposits (Williams-Jones et al., 2009). 

For coexisting brine and oil, mixing experiments between brines spiked with 8 to 10 

ppm of Au, Pd, Pt, or V have demonstrated that the metals, except for V, were almost entirely 

sequestered into the oil phase, at concentrations ranging between 50 ppm and 100 ppm 

(Emsbo et al., 2009). Gold partitioning experiments by Liu et al. (1993) at 25°C, using crude 

oil and an aqueous solution containing 500 ppm gold, resulted in a transfer of 98% of the 

gold to the oil. Similarly, 99% of the gold was transferred into the oil phase in experiments at 

150 °C in a coexisting system of crude oil, brine and rock (Zhuang et al., 1999). These studies 

indicate that liquid hydrocarbon may carry more Au than aqueous fluids in brine-oil systems, 
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but more rigorous experiments are needed to quantify the concentrations of gold that may 

be transported and the conditions at which this may occur. 

 

Figure 3-1: Molecular structure of potential organic ligands for metals and metal organic complexes: (a) 

carboxyls; (b) phenolic hydroxyls; (c) amino groups; (d) thiols (Giordano, 2000), (e) metal porphyrin complex 

(Robert et al., 2016), (f) 1-dodecanethiol (DDT), and (g) sodium aurothiomalate (Elder and Eidsness, 1987). M2+ 

refers to any divalent metal ion, and R is any free radical species (e.g., unbonded H+ or hydrocarbon chain). 

To investigate the potential of organic compounds such as thiols to transport gold, we 

have performed gold partitioning experiments (PE) between an aqueous brine (10 wt% NaCl) 

and a co-existing organic phase, DDT, at 105 °C and 150 °C. The temperatures were chosen 

to be within the oil window (ca. <160 °C). 

An overview of typical concentrations of mercaptans/thiols in sulfur rich and sulfur 

poor crude oils is given in table 3-1 after Bol′shakov (1986, and references therein). The listed 

concentrations are average concentrations based on crude oils from different geological ages 

and do not differentiate the sulfur content of different depth occurrences. Individual sulfur 

concentrations of certain depths for example can be higher or lower (see Table 4 in 

Bol′shakov, 1986). Sulfur concentrations depend on the initial organic matter and on the 

environmental conditions such as lithology and depth (Bol′shakov, 1986). Thiols can host up 

to 7 wt% to 8 wt% of the total sulfur content in crude oils originating from carbonic lithologies 

(Tissot and Welte, 1978; Bol′shakov, 1986). Thiol concentrations of oils associated with 
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terrigenous lithologies are usually below 2 wt% of the total sulfur compound content in crude 

oils. 

Table 3-1: Chemical composition of organic sulfur compounds in crude oils after 

Bol′shakov (1986) 

Lithology 

total 

sulfur 

total sulfur 

range 
wt% of total sulfur compound contents 

≤ 1wt% > 1wt% 
elemental 

sulfur 
mercaptans sulfide residual 

Terrigeneous 0.87   0.0 0.0 8.0 92.0 

Terrigeneous   1.00 - 1.91 0.0 0.0 - 0.9 
17.9 - 
19.7 

80.0 - 82.9 

Carbonic   1.23 - 5.75 0.0 - 0.6 0.3 - 4.3 5.5 - 17.8 78.7 - 94.2 

Thiols were chosen for the experiments in contrast to the more abundant thiophenes, due 

to their better experimental suitability and health and safety properties. DDT is a suitable 

representative for the thiols and thus was used as a proxy for the mercaptans. 

3.2 Experimental 

3.2.1 Partitioning experiments 

Experiments investigating the partitioning of gold between brine and DDT were 

conducted at 105 °C and 150 °C. The method was described in detail by Crede et al. (2018-

B). In brief, the batch reactor used for the experiments (HFS-340Z, from Coretest Systems, 

Inc.) comprises a flexible titanium sampling cell loaded with the immiscible liquids, which are 

contained within a stainless steel pressure vessel partially filled with a low viscosity liquid 

(H2O) that applies a confining pressure to the reactor cell (Figure 3-2). The pressure vessel 

and titanium cell are installed within a tube furnace. The titanium cell was passivated with 

nitric acid before each experiment to generate high gold recoveries (sampled gold 

concentration divided by added gold concentration), by reducing the amount of gold lost to 

the titanium cell walls (Crede et al., 2018-B). 
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Figure 3-2: Schematic diagram of the HFS-340Z batch reactor system, Coretest Systems, Inc. The volume of the 

titanium cell was reduced to 225 mL by inserting Teflon rods after Crede et al. (2018-B). 

For each experiment, the titanium cell was loaded with ~125 mL brine that was doped 

with 0.1 mL to 0.5 mL of a 1000 ppm Au plasma standard solution (Au(III)Cl4- in 10 wt% HCl 

(aq)); and ~40 mL of DDT, then heated to 105 °C or 150 °C. The added Au is equivalent to 800 

to 4000 ppb Au in the brine. Due to liquid immiscibility and the density difference between 

the brine (1.06 g/mL) and DDT (0.845 g/mL), sampling lines at the top and bottom of the 

titanium cell allow for simultaneous in-situ sampling of both liquids at experimental 

conditions. The pH of the brine was adjusted with HCl and NaOH to test the influence of the 

acidity of the brine on gold partitioning behavior. For each experiment, three sample pairs of 

brine and DDT were taken at roughly equal P-T conditions, with each brine sample directly 

followed by one of organic liquid. Samples for the 105 °C and 150 °C experiments were taken 

18 h and 21 h after loading the Ti-cell, respectively, which was 6 h after the specified 

temperature was reached (Crede et al., 2018-B). Proof of concept experiments by Crede et 

al. (2018-B; Chapter 2) demonstrate that near-equilibrium conditions with respect to the 

partitioning are reached after that time.  

After sampling and visually checking that the brine sample was not contaminated by 

DDT, Au in the brine samples was stabilized by the addition of 5 mL of concentrated aqua 

regia (1:3 ratio of HNO3 to HCl). Visually-checked DDT samples were digested in a mix of HNO3 

and H2O2, and the subsequent solutions were analyzed by ICP-MS at LabWest Minerals 
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Analysis Pty Ltd in Perth. The sample processing is described in more detail in Crede et al. 

(2018-B; Chapter 2). After each experiment, the Ti-cell, sampling lines and valves were rinsed 

several times with Milli-Q water, then with a diluted aqua regia solution (35% HCl and 67% 

HNO3, 3:1 ratio), followed by Milli-Q water again. After cleaning, the Ti-cell was passivated 

with HNO3 at 150 °C for 24 h. The passivation also decomposes any lingering traces of DDT. 

The partition coefficients for gold between DDT (org) and the aqueous solution (aq) 

were calculated using a mass concentration ratio: 

 DAu
org/aq=cAu

org/cAu
aq  Eq. 3-1 

In the above equation, DAu
org/aq is the partition coefficient, cAu

org is the gold concentration 

in DDT, and cAu
aq  is the gold concentration in the brine. Uncertainties in the partition 

coefficients were calculated by standard error propagation, assuming the individual 

components of the error are uncorrelated. The largest contribution to the uncertainty 

originates from the standard deviation of the gold concentrations in the three samples taken 

for each experiment (i.e., each set of sampling conditions). The contact zone of DDT and brine 

is closer to the top sampling line than it is to the bottom sampling line (Crede et al., 2018-B). 

Thus, cross contamination could arise from brine droplets in DDT samples, and visual checks 

were made to check for immiscible brine in the sampled DDT. Mass balance calculations 

indicate that, even in the event of a 10 wt% brine contamination, the decrease of the DAu
org/aq 

due to contamination would be within the experimental error. Thus, the effect of cross-

contamination is considered negligible. Partition coefficients were not systematically related 

to the initially added amount of Au, as was also the case in the method development work 

described in Crede et al. (2018-B). 

Gold recovery (Aurecov) was calculated by dividing the total gold determined from the 

samples by total gold loaded.  

 Aurecov=mAu total
sampled/mAu total

loaded  Eq. 3-2 

The gold recovery is a useful monitor of gold loss during the partition experiment, and 

was found to depend mainly on the effectiveness of passivation of the titanium cell with nitric 
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acid (see Crede et al., 2018-B, for more details). Passivation of the inner titanium cell walls 

prior to each experiment led to high gold recoveries of >75%. 

3.2.2 Gas Chromatography- Mass Spectrometry (GC-MS) 

To determine whether DDT was modified during the partitioning experiments, DDT 

samples from selected experiments at 105 °C and 150 °C were analyzed with gas 

chromatography-mass spectrometry (GC-MS). The samples were prepared by rinsing 

through a column of anhydrous magnesium sulfate (pre-washed with n-hexane) to desorb 

water from the samples and then diluted with n-hexane. The sample results were compared 

to the GC-MS spectra of the pure chemical component (>98%). GC-MS analyzes were 

performed using a Hewlett Packard 6890A gas chromatograph interfaced to a Hewlett 

Packard 5973 mass spectrometer. The GC was fitted with a 60 m x 0.25 mm in diameter 

WCOT (wall coated open tubular) fused silica column coated with a 0.25 μm phenyl arylene 

polymer phase (DB-5MS, J&W Scientific). The GC oven was programmed to begin at 40 °C 

(hold time of 1 minute), then heated to 320 °C at 20 °C/min with a final hold time of 15 

minutes. Ultra-high purity helium was used as carrier gas with a constant flow of 1.1 mL/min. 

Sample injection was 1 µl, pulsed splitless at 310 °C. The MS was operated at 70 eV with a 

source temperature of 230 °C. Mass spectra were acquired in full scan mode (50-550 Daltons 

at 2.9 scans/sec). 

3.3 Results  

3.3.1 GC-MS 

GC-MS data of DDT for pre- and post-experiment liquids are indistinguishable (see 

supplementary data). The initial pre-run DDT (202.18 g/mol) and the post-run DDT sampled 

at 105 °C and 150 °C show a dominant peak at 11.9 s and an identical mass spectrum with 

the diagnostic peak at the m/z of 202 corresponding to the molecular weight of DDT. The GC-

MS data indicate that the elevated temperatures and contact with the aqueous brine have 

no discernible influence on DDT for this temperature and pressure range, although the strong 

dilution of DDT with n-hexane does not allow detection of decomposition products present 

at ppm levels. 
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3.3.2 Gold partitioning 

The individual experimental parameters, the gold concentrations in the brine (cAu
aq ) and 

in DDT (cAu
org), DAu

org/aq, and the Aurecov are given in Table 3-2. Partition coefficients, given as the 

average of triplicate measurements for each experiment, are plotted versus gold recovery in 

Figure 3-3, along with selected previously-reported data for DAu
org/aq between brine and n-

dodecane (DD) for comparison (Crede et al., 2018-B). 

3.3.3 T = 105°C 

In all partitioning experiments (PE), Au partitioned preferentially from the brine into 

the DDT. At 105 °C and 2.1-2.7 bar, DAu
org/aq ranges from 10 ± 3.0 to 91 ± 30 with a neutral pH 

in the initial brine and a post-run pH ranging from 2.0 to 3.7 and Aurecov ranging from 5% to 

141%. The gold recoveries in PE 43 and 50 are above 100%. The gold concentrations in the 

brine and DDT correlate with the initially-added bulk composition of gold, but the partition 

coefficient itself is not affected. For example, in PE 43, 500 µg gold were added, resulting in 

cAu
org ranging from 6550 to 13260 ppb and a cAu

aq  ranging from 890 ppb to 950 ppb at an Aurecov 

of 118%. PE 49 and 50, on the other hand, both had 87 µg added gold, resulting in 

proportionally lower cAu
org and cAu

aq  than in PE 43 (by factors of up to 6 and 30). 

3.3.4 T = 150°C 

At 150 °C and 3.2-4.7 bar, DAu
org/aq ranges from 4.9 ± 0.9 to 33 ± 6.9 with on outlier of 

545 ± 357. Without the outlier, the average DAu
org/aq is 21 ± 12. The pH of PE 46, 47 and 55 

decreased from near-neutral at the start of the experiment to 3.2, 2.7 and 1.7, respectively, 

and the pH of PE 51 and 52 decreased from 3.0 to 2.1 and 2.2. The gold recoveries of 

experiments at 150 °C were all greater than 75%, except for PE 52 with 42%. In the three 

experiments with gold recoveries >75%, the average cAu
org ranges from 880 ppb (PE 51) to 

1650 ppb (PE46), and cAu
aq  ranges from 80 ppb (PE 46 and 55) to 185 ppb (PE 51). 

3.3.5 Influence of pH and temperature 

The range of ��


�� /��
 at 105 °C coincides with the range of DAu

org/aq at 150 °C, with the 

exception of the outlier. As shown in Figure 3-3, DAu
org/aq also appear to be independent of 
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gold recovery, though Crede et al. (2018-B) show that low recoveries may cause significant 

scatter in partitioning coefficients. Experiments at 105 °C were all conducted at a starting pH 

with near-neutral values (6.7 to 7.2; Table 3-2), which decreased during the experiments to 

end pH of 2.0-2.5, but pH variation had no discernible effect on the partition coefficients 

(Figure 3-4 A and B). Experiments at 150°C were conducted with starting pH values that were 

either near-neutral (6.8-7.1) or acidic (3.0), and, like the lower-temperature experiments, 

decreased during the experiments to an end pH of 1.7-3.2 with no effect on DAu
org/aq (Table 

3-1). In PE 46 and PE 55, at 150 °C and neutral starting pH, gold concentrations in the brine 

and DDT were comparable, although the pH decreased to 3.2 in PE 46 and 1.7 in PE 55; these 

experiments had similar gold recoveries of 88 and 89%, respectively. In PE 51 and 52, the pH 

decreased from 3.0 to 2.1 and 2.2, respectively, with similar gold concentrations in DDT, but 

in the brine, PE 51 and 52 yielded average Au concentrations of 190 and 20 ppb, respectively 

(gold recoveries of 76% and 42% respectively). A plot of pHStart against pHEnd (Figure 3-4 C) 

shows that the pHEnd is variable and independent of pHStart. To summarize, any trends in Au 

partitioning as a function of start or end pH (Figure 3-4) or temperature fell within the 

uncertainties of analysis, so partitioning is treated as independent of these parameters in the 

following discussion. 

 

Figure 3-3: Partition coefficients versus Au recovery of the brine-dodecanethiol system (DDT; filled symbols) and 

a brine n-dodecane system (DD; open symbols, from Crede et al. (2018-B) experiments at 105 and 150°C. 
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Figure 3-4: Results for the brine-dodecanethiol system. (A) Partition coefficient against pHStart, (B) against pHEnd, 

and (C) pHStart against pHEnd. 
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Table 3-2: Gold concentrations and DAu
org/aq

 of the partition experiments 

  T        

P ± 

0.1 Austart CAu
Org ΔxOrg, b CAu

Aq ΔxAq Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean timed 

Au 

recovery 

PEa [°C] pHStart pHEnd Smpl# [bar] [µg] [ppb] [ppb] [ppb] [ppb] n=1 n=3 1 σc [h] [%] 

        1 2.33   820 80 1830 100 54         

41 105 7.3 3.7 2 2.26 500 1160 80 1850 100 89 91 47 18 7 

        3 2.12   710 60 1690 90 130         

        1 2.68   450 40 300 20 12         

42 105 7.5 2.2 2 2.54 500 580 40 280 10 14 10 3 18 5 

        3 2.26   240 20 280 10 6         

        1 2.6   9850 510 890 50 11         

43 105 7.2 2.4 2 2.4 500 13260 690 900 50 15 11 3.5 18 118 

        3 2.0   6550 340 950 50 6.9         

        1 2.3   490 30 20 <5 30         

48 105 7.1 2.4 2 2.0 87 250 10 20 <5 16 22 10 18 18 

        3 1.8   250 10 10 <5 21         

        1 2.3   2270 120 20 <5 96         

49 105 7.2 2.0 2 2.2 87 1830 90 30 <5 69 65 30 18 97 

        3 2.1   1240 60 40 <5 30         

        1 2.7   3010 160 100 10 30         

50 105 6.7 2.5 2 2.6 87 2280 120 100 10 23 24 7 18 141 

        3 2.4   1700 90 90 <5 18         

        1 3.9   1800 90 120 10 15         

46 150 7.1 3.2 2 3.7 96 1570 80 80 <5 20 26 12 21 88 

        3 3.2   1590 80 40 <5 44         
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  T        

P ± 

0.1 Austart CAu
Org ΔxOrg, b CAu

Aq ΔxAq Dorg/aq Dorg/aq
mean  ΔDorg/aq

mean timed 

Au 

recovery 

PEa [°C] pHStart pHEnd Smpl# [bar] [µg] [ppb] [ppb] [ppb] [ppb] n=1 n=3 1 σc [h] [%] 

        1 4.1   2130 110 2 <5 985         

47 150 7.1 2.7 2 4.1 100 790 40 4 <5 189 545 357 21 89 

        3 3.9   2630 140 10 <5 460         

                

        1 4.1   860 40 170 10 5.0         

51 150 3.0 2.1 2 3.9 87 930 50 200 10 4.7 4.9 0.9 21 76 

        3 3.4   860 40 - - -         

        1 4.2   730 40 20 <5 32         

52 150 3.0 2.2 2 4.1 87 730 40 20 <5 31 33 6.9 21 42 

        3 3.7   670 30 20 <5 36         

        1 4.7   1440 70 80 <5 19         

55 150 6.9 1.7 2 4.4 87 1370 70 80 <5 16 18 2.6 21 89 

        3 4.1   1410 70 80 <5 18        

a) partition experiment 

b) analytical error (including balance, volume, and mass spectrometer uncertainties) 

c) total error by error propagation (1σ) 

d) time from loading the Ti-cell to sampling 
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3.4 Discussion 

The experimental results show that gold partitions preferentially into DDT in the 

presence of brine, and DAu
org/aq for DDT is up to 3.5 orders of magnitude higher than DAu

org/aq 

reported for high gold-recovery experiments made in the brine and n-dodecane system at 

105 °C and 150 °C (Crede et al., 2018-B). A plausible explanation for this observation is that 

the higher DAu
org/aq is a consequence of the presence of the thiol group in the DDT and the 

strong attraction between gold and sulfur (Vlassopoulos et al., 1990; Ta et al., 2014). This 

preference for the hydrocarbon phase is in agreement with previous experiments on mixed 

oils (Liu et al., 1993; Zhuang et al., 1999; Emsbo et al., 2009). While these experiments did 

not directly assess Au solubility in DDT, no indication of Au saturation was observed, 

suggesting that higher concentrations are possible. These first results on a pure phase 

confirm the potential importance of liquid hydrocarbons for gold transport in ore systems 

that involve coexisting oil and hydrothermal fluid.  

3.4.1 Au concentrations, Au loss, and calculation of DAu
org/aq for 

Aurecov = 100% 

The calculated DAu
org/aq, enables use of the results from this study as inputs for 

thermodynamic models, although the uncertainties must also be propagated through any 

quantitative calculations. 

Because of the potential increase in the scatter of the data due to variable Au recovery 

(Crede et al., 2018-B), we have used the temperature-independent correlation between Au 

concentrations in the brine and DDT versus Au recovery to calculate DAu
org/aq at Aurecov = 100% 

(Figure 3-5). The Au concentrations in the brine and DDT, normalized to the initially-added 

Au to enable comparison (cAu/AuStart), show a linear correlation with the calculated Aurecov 

(Figure 3-5). The Au concentrations plot on the same line in the 105 °C and the 150 °C 

experiments, but with a different slope for the Au concentrations in the brine and in DDT due 

to the preference of Au for DDT. Thus, the Au concentration in the brine and in DDT have to 

be calculated for Aurecov = 100% to derive the ��


�� /��
. The equation for Au in DDT is  
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 cAu, norm
org = 0.1843 Aurecov + 0.1567 Eq. 3 

(R2 = 0.9567, p < 0.001), where R2 is the square of the correlation coefficient and p is 

the probability that the points are unrelated to the regression line, based on a two-tailed 

significance test of the Pearson’s correlation coefficient. The equation for Au in the brine is 

 cAu, norm
aq = 0.0096 Aurecov  + 0.0266 Eq. 4 

(R2 = 0.3586, p < 0.05). The linear relationship enables removal of the effects of variable 

gold recovery to calculate cAu
org and cAu

aq , and subsequently DAu
org/aq by projecting cAu

org and cAu
aq  to 

Aurecov = 100%. The standard deviations on the projected values are low for most 

experiments, except for the six organic samples with the highest Aurecov. For these samples, 

the uncertainties are high because Au concentrations in the triplicate samples were variable. 

Combining all 12 experiments,  and using triplicate samples for each phase per experiment, 

the best estimate of DAu
org/aq (with the corrected cAu

org and cAu
aq  calculated using equations 3 and 

4) is 19 ± 21. Calculations done individually for each temperature do not show any significant 

variation. This value is consistent with the partition coefficients for the experiments with the 

best recovery rates (PE 46, Aurecov of 88%, 150 °C, DAu
org/aq = 26 ± 12 and PE 55, Aurecov of 89%, 

DAu
org/aq = 18 ± 2.6), although the error is large due to the nature of the calculation of the 

meaningful DAu
org/aq for Aurecov = 100%. 
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Figure 3-5: (A) Au concentrations in the DDT (circles) and brine (triangles) normalized with Austart and plotted 

against Aurecov. Error bars are the standard deviations of the three Au concentrations measured in the triplicate 

samples for each experiment. Solid lines are linear regression lines through the Au concentrations in the DDT and 

brine. 

3.4.2 Implications of the statistical correlation between cAu and Au loss 

for DAu
org/aq 

The linear relationship between Au concentrations and Aurecov enables calculation of a 

meaningful DAu
org/aq (Figure 3-5), even if only one or two experiments have Aurecov between 

~80% and 100%. The strategy is robust when there is a sufficient number of experiments with 

a wide range of Aurecov available, and so long as the Au concentrations are not significantly 

affected by other factors, such as cross contamination or Au contamination after the 

experiment, e.g., in the sample processing step. However, significant effects from such 

factors can be recognized because they would cause a scattered data set without a 

statistically significant correlation between Aurecov and the relevant concentrations. The use 

of triplicate samples and the resulting calculated average Au concentrations also aid 

confidence in this method, especially as Au concentrations are variable at high Aurecov in DDT 

samples (Table 3-2, Figure 3-5). 
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3.4.3 Sources of uncertainty 

Variability in calculated DAu
org/aq is attributed to a combination of factors. The main 

factor is the processes that cause low Aurecov (Crede et al., 2018-B; section 4.2.1). These 

effects combine with pH effects related to decomposition of DDT. However, the magnitude 

of such effects are hard to judge because while DDT decomposition was not detected by GC-

MS, some DDT breakdown may have been masked by the high degree of dilution required to 

prevent contamination of the GC column by the DDT (detection limit of the order of ~1wt%). 

With varying pH comes varying deprotonation of the thiol group to bond with Au – these 

effects are discussed in section 4.3.1. Pressure and temperature are not considered explicitly 

here because there is no detectable trend in DAu
org/aq as a function of pressure or temperature.  

3.4.4 Gold recovery 

Crede et al. (2018-B) showed that gold recovery was inversely correlated with DAu
org/aq 

in Aubrine – n-dodecane partition experiments. Low gold recovery and thus high Au loss 

were attributed to breakdown of the passivated layer on the Ti-cell and subsequent Au 

precipitation. Precipitated Au was observed when passivation was not performed after every 

run. 

In contrast to the n-dodecane experiments, DAu
org/aq values for DDT show no significant 

correlation with gold recovery and are all within an order of magnitude (Figure 3-3), if the 

outlier of PE 47 is excluded. This result indicates that DAu
org/aq in these experiments are not 

affected by gold loss to the same extent as the DD experiments (Figure 3-3). This may be due 

to lower Au concentrations in the brine, or to differing kinetics in the DD and DDT systems. 

Experiments with gold recoveries >100% may indicate addition of residual gold in the Ti-cell 

from prior experiments (incomplete cleaning), that more gold was added than intended, or 

that either the AuHCl solution or sample solutions were not well mixed. Nevertheless, the 

experiments with Aurecov ≥ 100% still plot on the same linear trend (Figure 3-5) and indicate 

that these factors do not significantly affect the certainty of the calculated partition 

coefficient. 
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3.4.5 pH 

The use of variable starting pH in PE at 150 °C was intended to enable assessment of 

the effect of pH on Au partitioning. However, pH effects, if present, were masked by 

variability in the experimental results related to Aurecov. The observed pH decrease is thought 

to be the result of two factors: the decomposition of DDT (section 4.2.3) and the 

deprotonation of the S in DDT (section 4.3.1). 

3.4.6 Influence of decomposition products 

Decomposition of DDT in the presence of an initially oxygenated brine at the elevated 

temperatures of the experiments is likely to produce carboxylic acids, CO2, CH4, and CO that 

could act as ligands for Au and theoretically add to the data scatter. This would have little 

effect on the Au concentration in DDT, as the thiol group would be expected to have a 

stronger affinity for Au than any of those products.  

In contrast, partitioning of DDT decomposition products, for example, polar carboxylic 

acids, into the brine could affect calculated Au partition coefficients to a greater extent. Some 

addition of DDT decomposition products to the brine is suggested by the pH decrease that 

was also observed in the DD experiments by Crede et al. (2018-B), consistent with similar 

equilibration kinetics in both the DD and DDT experiments. If DDT-derived polar compounds 

complex with Au, then changes to cAu
aq  due to DDT decomposition may affect DAu

org/aq. For 

example, an increase of cAu
aq  by 25% in PE 55 would change the DAu

org/aq from 18 to 14. Ideally, 

it would be possible to quantify uncertainties arising from this source of error, but this would 

require knowledge of the species involved and their concentrations, and acquisition of these 

data is beyond the scope of this study. 

3.4.7 Gold speciation in brine and 1-dodecanethiol  

In a related study based on chapter 4, the speciation of gold in coexisting aqueous fluid 

and DDT were assessed in-situ with X-ray absorption spectroscopy (XAS) within a glassy 

carbon cell up to 250 °C (Crede et al., 2017; Crede et al., 2019). The chemicals and 

experimental conditions are comparable to this study and may allow to interpret the Au 

speciation in the experiments of this chapter.  
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In the XAS experiments gold was added as HAuCl4•3H2O powder (Au(III) complex). 

Spectra from XAS experiments at 30 °C for coexisting aqueous solution and DDT showed an 

Au(I) complex (pH=1.85) in both fluids. Au(III) complexes are thermodynamically stable in 

aqueous fluids at low T and high f(O2) (Pokrovski et al., 2009a; Pokrovski et al., 2009b; Usher 

et al., 2009; Williams-Jones et al., 2009; Liu et al., 2014; Brugger et al., 2016). However, 

sufficiently high f(O2) to stabilize Au(III) complexes are unlikely to be sustained in the 

presence of DDT, so the initially present Au(III) complexes would have been metastable and 

the production of Au(I) complexes is expected in the experiments of this chapter 

At temperatures below 125 °C, XANES and EXAFS data were consistent with the 

structure of a sodium aurothiomalate(I) -like compound (Figure 3-1 g) in the aqueous and 

organic fluids (same Au speciation and Au-S bond lengths). The laboratory experiments 

described here were conducted over somewhat longer timescales than the synchrotron 

experiments, so it is likely that Au(III) was reduced to Au(I) in the brine and DDT within the 

Ti-cell once the chemicals were loaded. Results of the synchrotron work indicate that one 

gold atom bonds to two DDTs at 105 oC (Crede et al., 2019), to preferentially produce a 

formally negatively-charged, quasi-linear [RS-Au-SR] complex (Ning et al., 2012). The 

geometry of such a species is similar to that of Au(HS)2
- in aqueous solutions (Liu et al., 2014; 

Brugger et al., 2016). In the synchrotron experiments at temperatures ≥ 125 °C, however, 

Au(I) was reduced to Au(0), possibly forming Au(0) nanoparticles, which may be stabilized by 

or bonded to DDT. Similarities in redox buffering capacity and fluids used for the Ti-cell and 

synchrotron experiments suggest that the same species are probably present in both studies. 

3.4.8 The role of Au(0) 

If Au speciation in the Ti-cell experiments is similar to that of the synchrotron 

experiments, then it is likely that Au in the DDT at 150 °C was present as Au(0), and may have 

been held in the form of nanoparticles bonded to DDT (Daniel and Astruc, 2004).  

Thiols bond via S to the gold nanoparticle (Daniel and Astruc, 2004), so that the 

unreactive end, the hydrocarbon chain, points away from the nanoparticle (Figure 3-6). This 

configuration shields the surface of the nanoparticle, and protects it from direct interaction 

with other ligands or reactive molecules. The adsorption of organothiols onto gold 

nanoparticles is accompanied by an acidification of the solution, because protons are 

released from the thiol group upon the formation of the covalent Au-S bonds. Thus, the 
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number of released protons is proportional to the amount of adsorbed organothiols (Ansar 

et al., 2013). Protons are highly polar and would therefore have an affinity for the aqueous 

phase relative to the less polar organic phase. The acidification observed in our partition 

experiments is consistent with deprotonation of the thiol group of DDT, although a 

quantification of the magnitude of the effect is not possible due to a combination of the fact 

that the Au to DDT ratio is not known, and that the DDT may have partially decomposed as 

discussed above and in Crede et al. (2018-B). 

If the Au species in this study are the same as in the XAS study (Crede et al., 2017; 

Crede et al., 2019), the 105 °C and the 150 °C experiments should have involved different Au 

species. In this case, the well correlated linear regression line and lack of temperature 

dependence is surprising. There are, broadly speaking, three possibilities here. The first is 

that the species are, in fact, different in the synchrotron and laboratory experiments, due to 

the longer runtimes, the different cell material, and the absence of the X-ray beam in the 

experiments conducted here. Alternatively, it may be that the NP formation simply 

transforms Au already present in solution, and that the kinetics of any further loss/gain of Au 

are too slow for changes in solubility to be detected. A third possibility is that the solubility 

of the two species is different but insufficiently so to be detected through the scatter 

associated with heterogeneity of Au concentrations in the triplicate sample sets. Further 

work is necessary to distinguish between these possibilities. 

 

Figure 3-6: AuNP coted with organic shell (DDT) after Daniel and Astruc (2004) and references therein. 
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3.4.9 Geological implications 

In these experiments, DDT is used as an analogue for S-bearing compounds in the 

organic phase in natural ore systems. The melting point, boiling point, and stability under a 

broad range of redox and temperature conditions of DDT are representative of other thiol 

bearing oil molecules, and up to 7 wt% of the total sulfur content of crude oils is held in thiol 

groups (Krein, 1993). Therefore, DDT provides a practical analogue for thiol-compounds in 

oils. The strong preference of gold for the liquid hydrocarbon phase suggests that oils may 

act as ore fluids and contribute to gold transport at low to moderate temperatures in natural 

systems when liquid oil is present. Oil degradation and significant gas generation start at ca. 

160 °C (Khorasani and Murchison, 1988), which is below the boiling point of 275 °C of DDT; 

thus DDT may be able to mobilize gold at temperatures outside the oil window if the 

compound does not break down in response to oxidation. 

Liquid hydrocarbons may transport precious metals until immobilization occurs due to 

changing P-T-X conditions (pressure, temperature and unknown factors). For example, 

thermally-induced degradation of liquid oil to immobile organic matter may occur as a 

consequence of the addition of heat or redox budget from active hot springs or hydrothermal 

brines. Alternatively, in basinal settings, Au may be deposited when the hydrocarbon liquid 

is trapped and thermally degraded after subsidence. A natural limit on the temperatures at 

which Au may be transported by oils is provided by the limited stability of oils to <200 °C. 

Thus oils may be particularly important for gold transport in lower-temperature 

environments such as sedimentary basins e.g., Carlin-type Au deposits, for which 

hydrocarbon ore fluids were proposed (Zhuang et al., 1999; Emsbo and Koenig, 2007; Gu et 

al., 2012), or sub-volcanic environments (epithermal Ag-Au deposits). On the other hand, 

maturation modelling shows that organic matter at the Carlin deposit was matured beyond 

the oil and gas windows before gold mineralization (Gize et al.; 2000). Thus, gold transport 

in organics is not necessarily a general feature of Carlin-type deposits indicating that the 

individual deposit settings have to be considered. However, more work is needed to secure 

direct evidence, for example by analysis of hydrocarbon fluid inclusions in ore deposits. 

3.4.10 Metal enriched oils/brine interactions 

The elevated brine-DDT partition coefficients found from the experiments also suggest 

that metal-enriched crude oils may form by leaching metals from metal-bearing brines (Filby, 
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1994; Samedova et al., 2009). In this scenario, Au may switch between the competing fluids, 

bringing a new level of complexity to Au transport and distribution. Removal of Au into the 

organic phase would deplete the hydrothermal ore fluids in Au and other metals with similar 

properties. Under these circumstances, it is interesting to consider whether it is possible to 

recognize the chemical signature of this process, in, for example, ratios of metals compatible 

and incompatible in the organic phase. However, such work is beyond the scope of this 

project.  

3.5 Conclusions 

The calculated partition coefficient determined here is the first pure-phase partition 

coefficient derived for a fluid system involving a brine and single-phase, sulfur-bearing 

organic liquid. The results indicate that Au demonstrates a strong preference for DDT over 

brine. The linear relationship between the Au concentrations and Au recovery demonstrate 

that the calculated partition coefficient is robust, despite variability in DAu
org/aq as a function of 

Aurecov. The results indicate that, at the investigated temperature range, hydrocarbon-phase 

transport for Au may be effective. 
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 Abstract 

Organic matter is often associated with mineralization in hydrothermal ore deposits. 

One hypothesis is that this organic matter represents remnants of organic fluids (crude oils) 

that were competing with aqueous fluids for metal transport and contributed to metal 

endowment. We investigated the transport of gold (Au) in model oil compounds (S-free n-

dodecane, CH3(CH2)10CH3, DD; and S-bearing 1-dodecanethiol, CH3(CH2)10CH2SH; DDT) from 

25 °C to 250 °C using in-situ synchrotron X-ray absorption spectroscopy (XAS) experiments to 

determine the speciation and the structural properties of gold complexes in the aqueous- 

and oil-based fluids. For most experiments, DD or DDT were in contact with Au-bearing 

acidified water, or acidified water plus 10 wt% NaCl (pH25˚C=1.85 in both cases). Gold rapidly 

partitioned from the aqueous phase into DD and DDT. Below 125 °C, Au(III)Cl is dominant in 

the DD and the adjacent water with a refined coordination number (CN) of chloride of 4.0(3) 

and an Au-Cl bond length of 2.28 Å, consistent with the tetrachloroaurate complex (AuCl4-) 

being stable in both the aqueous and organic phases. In contrast, Au(III) is rapidly reduced in 

the presence of DDT and an Au(I) complex dominates in both water and adjacent DDT with a 

CN of sulfur ~2.0, suggesting a [RS-Au-SR]- (RS = DDT with deprotonated thiol group) complex 

with Au-S bond lengths ranging from 2.29(1) Å to 2.31(3) Å. In an open system of DDT in 

contact with water, of which the water and DDT were analyzed separately, AuCl4- was 

dominant in the water phase, and Au(RS)2
- dominant in DDT, possibly due to different 

equilibration kinetics in the beaker and glassy carbon tube. 

Since sulfur and organothiol compounds are ubiquitous and abundant components in 

natural oils, this study demonstrates the potential of natural oils to scavenge and enrich gold 

from co-existing gold-bearing brines. In particular, Au(I) organothiol complexes may 

contribute to transport in low-temperature (<125 °C) ore fluids such as those in basinal 

environments – in both hydrothermal fluids and oils. At temperatures ≥ 125 °C, gold was 

reduced to metallic gold in all experiments, suggesting that organo-stabilized nanoparticles 

may be the major form of gold to be scavenged, concentrated or transported in crude oils at 

these conditions. The results imply that brine-oil interactions may enrich Au in oils, and that 

oils may be an effective ore fluid in sedimentary environments.
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4.1 Introduction 

Organic matter is a common constituent in many types of ore deposits, including 

epithermal Au-Ag(-Hg) deposits (Sherlock, 1992; Pearcy and Burruss, 1993; Mastalerz et al., 

2000; Sherlock, 2000); Carlin-type Au deposits (Radtke and Scheiner, 1970; Hausen and Park, 

1986; Emsbo and Koenig, 2007; Gu et al., 2012; Groves et al., 2016); orogenic Au deposits 

(Mirasol-Robert et al., 2017); Mississippi Valley-type Pb-Zn deposits (e.g., Parnell, 1988; Giże 

and Barnes, 1989; Kesler et al., 1994), ‘Kupferschiefer’ copper deposits (e.g., Kucha, 1981; 

Kucha and Przylowicz, 1999; Sawlowicz et al., 2000), sediment-hosted U deposits (Landais, 

1996; Spirakis, 1996), and Witwatersrand-type Au-U deposits (Fuchs et al., 2016), but the 

significance of this occurrence for ore-forming processes remains poorly understood and 

controversial (e.g., Manning and Giże, 1993; Parnell et al., 1993; Gize, 1999; Giże et al., 2000; 

Greenwood et al., 2013; Groves et al., 2016). Organic matter is often interpreted to act as a 

redox barrier for metal deposition (e.g., Radtke and Scheiner, 1970; Giże, 2000; Glikson and 

Mastalerz, 2000; Sherlock, 2000). However, a few studies challenge the consensus that 

aqueous fluids are the only medium responsible for metal transport and deposition in 

sedimentary basins, and suggest that hydrocarbon/petroleum may contribute to Au 

transport in some sediment-hosted gold deposits, including World-class Carlin-type gold 

deposits in Nevada, USA (Emsbo and Koenig, 2007) and in South China (Zhuang et al., 1999; 

Sun et al., 2009; Gu et al., 2012). Just recently, Migdisov et al. (2017) demonstrated 

experimentally that natural crude oils have the ability to mobilize metals (Zn, Au) from source 

rocks, and transport them in concentrations sufficient to contribute to ore-forming 

processes. Further understanding the capacity of organic-based fluids to mobilize metals is 

not only important for mineral exploration, it is key information for assessing the cycling of 

metals in the Earth’s crust. 

Since aqueous hydrothermal fluids are expected to form most economic gold deposits 

within the Earth’s crust (Pokrovski et al. 2014), and chloride and hydrosulfide are the most 

abundant ligands in these fluids (Brugger et al., 2016), a large number of experimental studies 

have focused on the geochemical behavior of gold in aqueous hydrothermal chloride- and 

sulfide-bearing hydrothermal fluids (e.g., Henley, 1973; Seward, 1973; Renders and Seward, 

1989; Shenberger and Barnes, 1989; Hayashi and Ohmoto, 1991; Seward, 1993; Gammons 

and Williams-Jones, 1995; Benning and Seward, 1996; Gammons et al., 1997; Murphy and 

LaGrange, 1998; Murphy et al., 2000; Stefánsson and Seward, 2004; Tagirov et al., 2005; 
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Pokrovski et al., 2009a; Pokrovski et al., 2009b; Pokrovski et al., 2014). These experiments 

give a broad consensus that gold hydrosulfide complexes predominate in acidic to neutral 

sulfur-bearing aqueous fluids up to 350 °C, and that chloride gold complexes can become 

important above 350 °C in sulfur-poor acidic fluids (Williams-Jones et al., 2009; Zhong et al., 

2015). 

Despite the common association of gold and organic matter, only a few experimental 

studies have investigated the solubility of gold in oils and/or the partitioning of gold between 

aqueous and oil-based liquids (Liu et al., 1993; Lu and Zhuang, 1996; Zhuang et al., 1999; 

Williams-Jones and Migdisov, 2007; Emsbo et al., 2009; Fuchs et al., 2011). Aside from 

Migdisov et al. (2017), all of these studies are preliminary, and none investigated the 

speciation or possible ligands of gold in oils. Apart from metal porphyrin complexes (Figure 

4-1), that are especially relevant for Ni and V, there is little data available for metal-organic 

species in nature (Maryutina and Timerbaev, 2017). However, a number of species that are 

stable in aqueous fluids may be relevant for gold: carboxyl (-COOH), phenolic hydroxyl (-OH), 

amino (-NH2), and thiol (-SH) groups (Figure 4-1) are known to form metal-organic complexes 

in aqueous solution (Giordano, 2000 and references therein), and as they are present in 

crude oil, they may contribute to metal and in particular gold transport in the organic phase. 

The capacity of organic-rich fluids to carry gold is also supported by a positive correlation of 

gold and hetero-compounds enriched in N, S, O in crude oil samples from the Jiyang 

Depression in the Shandong province, China (Sun et al., 2009). 

The Au+ ion is classified as a soft Lewis acid that forms complexes with soft, easily 

polarizable ligands (Pearson, 1968). Consequently, Au(I) bonds strongly with CN-, which is 

produced by some plants and microorganisms (Fairbrother et al., 2009), and with S-bearing 

functional groups, and then, with decreasing effectiveness, with nitrogen (e.g., amine) and 

oxygen (Vlassopoulos et al., 1990; Wood, 1996; Liu et al., 2014; Ta et al., 2014). Bonds with 

thiols (Figure 4-1), thiomalate, and thioglucose are the main gold-active species in biological 

systems (Cotton and Wilkinson, 1988; Giże, 2000; Etschmann et al., 2016; Zammit et al., 

2016), and Au(I) cyanide complexes have been shown to survive for extended periods of time 

in environmental surface waters (Ta et al., 2014), rendering CN- a potential ligand for gold 

transport. 

Another possibility for gold transport in organic ore fluids is via gold nanoparticles 

(AuNP). Organothiols have long been used to stabilize and passivate AuNPs (e.g., Weisbecker 
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et al., 1996; Edinger et al., 1997; Fink et al., 1998; Lavrich et al., 1998; Brust and Kiely, 2002; 

Daniel and Astruc, 2004; Häkkinen, 2012; Lohman et al., 2012; Ansar et al., 2013; Alex and 

Tiwari, 2015), and the role of AuNPs as a potentially critical factor for metal migration in the 

environment and the formation of ore deposits is attracting increasing attention (Reith et al., 

2010; Hough et al., 2011, and references therein; Reith and Cornelis, 2017; Shuster et al., 

2017). 

The aim of this study is to investigate gold speciation and complexation in crude oils in 

contact with aqueous solutions by in-situ XAS spectroscopy to identify potential gold ligands 

in oils and the effect of two competing liquids at low temperatures (25 °C to 200 °C). To 

represent the many types of organic groups that exist in the oil, we chose the model 

compounds n-dodecane (CH3(CH2)10CH3) and 1-dodecanethiol (CH3(CH2)10CH2SH; Figure 4-1) 

as they are common components of crude oils. XAS spectroscopy has been successfully 

applied in previous work to identify and characterize the molecular-level structure of 

aqueous gold species with inorganic ligands such as Cl-, Br-, HS- and NH3 in aqueous 

hydrothermal fluids (Pokrovski et al., 2009a; Pokrovski et al., 2009b; Liu et al., 2014). As in 

chapter 3, thiols were chosen for the experiments in contrast to the more abundant 

thiophenes, due to their better experimental suitability and health and safety properties. Di-

benzothiophene was tried but solidified during the experiment and destroyed the glassy 

carbon capsule.  
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Figure 4-1: Some of the ligands that can form metal organic complexes. (a) carboxyls; (b) phenolic hydroxyls; 

(c) amino groups; (d) thiol; (e) metal porphyrin complex, and the compounds of this study: sodium 

aurothiomalate (f), n-dodecane (g) and 1-dodecanethiol (h). 

4.2 Experimental 

4.2.1 Sample preparation 

The aqueous solutions were prepared by adding Au(III) chloride powder 

(HAuCl4•3H2O) to three aqueous solutions: either pure water (Milli-Pore grade), water 

acidified to pH25˚C = 1.85 using HCl, or an acidified brine plus 10 wt% NaCl (pH25˚C = 1.85). Each 

aqueous solution was simultaneously loaded with n-dodecane (99%) or 1-dodecanethiol 

(98%) directly into either a glassy carbon cell for XAS measurement, or into a beaker, from 

which the aqueous solution and the oil were sampled separately and individually measured 

by XAS. The aqueous solutions and the oils do not mix and were density-stratified within one 

hour, allowing collection of XANES (X-ray absorption near edge structure) and EXAFS 

(extended X-ray absorption fine structure) spectra from both liquids in the same experiment. 

The oils and adjacent aqueous phase were distinguishable under the X-ray beam by the 

difference in absorbance, except for the DDT and brine solutions, which have similar 
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absorption coefficients (Table 4-1). DD plus brine experiments were only conducted in the 

beaker, and thus DD and the brine were sampled and measured separately in glassy carbon 

tubes, that were open at the top. 

Table 4-1: Absorption lengths (L=1) at 11.85 keV 

Composition 
 

Density 
[g/cm3] 

L=1 
[cm] 

H2O 1.00 0.308 

H2O + 10wt% NaCl 1.069 0.172 

n-dodecane 0.749 0.765 

1-dodecanethiol 0.845 0.168 
 

XAS standards were a sodium aurothiomalate(I) (C4H3AuNa2O4S, Figure 4-1) solution 

chosen to represent the Au-S bond; a 2% solution of gold nanoparticles stabilized by n-

dodecanethiol in toluene; and a metallic gold foil to represent Au(0). Sodium 

aurothiomalate(I) dissociates into a gold(I) thiomalate complex (Bau, 1998) and free sodium 

ions in aqueous solution. Dissolved aurothiomalate retains to some degree the structure of 

crystalline aurothiomalate(I) (Grootveld and Sadler, 1983; Graham et al., 1985; Bau, 1998), 

and Elder and Eidsness (1987) suggest that the solid-state chain structure is maintained in 

solution. 

4.2.2 XAS measurements and data treatment 

Gold LIII-edge XANES and EXAFS spectra were measured at the FAME (BM-30B) 

beamline, at the European Synchrotron Research Facility (ESRF) in Grenoble, France. The 

ESRF has a 6.03 GeV ring, and when operating in 7/8 multi-bunch mode, it has a maximum 

current of 200 mA. FAME is a bending magnet beamline with a double crystal Si(220) 

monochromator, and an energy resolution of 0.61 eV at the Au L3-edge (Proux et al., 2005). 

A focused beam size of FWHM 300 × 150 μm2 was used. 

Silicon diodes were used to measure the incident and transmitted beam intensities, 

and a 30-element solid-state fluorescence detector (Canberra) was used for detecting 

fluorescence data. The maximum of the first derivative was set to 11.919 keV by calibrating 

the energy with a metallic gold foil. The high T–P cell developed by the CNRS (Testemale et 

al., 2005) was used for data collection. As described in Etschmann et al. (2010) and Liu et al. 

(2011), the temperature at the beam position was calibrated using measurements of the 
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density of water. Measurements were conducted 1–5 hours after sample solutions had been 

prepared to allow full unmixing of organic and aqueous fluids. Spectra for each sample 

solution were collected from at least four vertical positions, from the top to the bottom of 

the solutions, to investigate gold in the aqueous liquid and in the oil (when both were 

loaded). Experiments all started at 30 °C and progressively heated to 250 °C; pressures 

ranged from 1 to 600 bar, but the pressure was found to have no effect other than reducing 

measurement noise in some solutions. 

The XANES and EXAFS data were processed and refined using the HORAE package 

(Ravel and Newville, 2005) with the theoretical standards calculated by FEFF6 (Zabinsky et 

al., 1995). The k3-weighted data were refined in R space. For the DDT solutions, optimum fits 

were obtained for a fitting range of 1 to 3.5 Å in R-space. For DD, the best fits were obtained 

for a fitting range of 1 to 5 Å. The range chosen for the Fourier transformation from k to R 

space was selected depending on data quality (Table 4-3). The amplitude-reduction factor 

(S0
2) of 0.82 was obtained by fitting the known structure of gold(I) thiomalate (Bau, 1998) to 

the spectrum of a gold(I) thiomalate solution, and was used to fit all sample spectra. The fits 

included the first 5 scattering paths, and the fitting results are listed in Table 4-3. 

4.3 Results 

The first spectrum for each experiment was collected at 30 °C in all solutions. Gold 

partitioned rapidly (within less than one hour) from the aqueous phase into DD and DDT 

(Figure 4-2; more details in sections 3.2 and 3.3). At this point the Au-LIII-edge spectra was 

measured in both the organic and the aqueous phase. Figure 4-2 shows the yellow coloration 

of aqueous solution containing AuCl4- (AuIII, t=0 h; Usher et al. 2009) and the disappearance 

of this yellow color after adding DDT and waiting for t=24 h, while the added, former 

colorless, DDT turns slightly yellow. The Au LIII-edge XANES and EXAFS spectra were collected 

at various temperatures and pressures (30-250 ˚C and 1-600 bar) for n-dodecane (99%, DD) 

or 1-dodecanethiol (98%, DDT) coexisting with H2O, or with H2O and NaCl. Sample 

compositions are listed in Table 4-2. 
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Figure 4-2: Water with AuCl4-
(aq) (left; t = 0) and its change in color after adding DDT, right image taken at t = 

24 h. 

Table 4-2: Starting compositions and measurement conditions of experimental solutions 

Sample Starting Compositions  Conditions 

Au-thiomalate std 49.2 mma C4H3AuNa2O4S in H2O 30-150 °C, 600 bar 

S7 AuNP standard 2.5 ml DDT+ 0.25 ml n-Dodecanethiol gold nanoparticlesd 30-250 °C, 15-400 bar 

S11 10.2 mm AuCl3 in H2O + DDT 30-70 °C, 1-200 bar 

S13 10.2 mm AuCl3 in H2O, pH25°C=1.85b + DDT 30-125 °C, 1-400 bar 

S14 10.2 mmAuCl3 in H2O, pH25°C=1.85b + DD 30-130 °C, 15-200 bar 

S16 39.8 mm AuCl3 + 1.74 m NaClc in H2O, pH25°C=1.85b + DDT 30-130 °C, 1-400 bar 

S17 39.8 mm AuCl3 + 1.74 m NaClc in H2O, pH25°C=1.85b + DDT 30-130 °C, 1-200 bar 

S18 DDT sampled from beaker, composition = S16 30-150 °C, 1bar 

S19 Brine sampled from beaker, composition = S16 30 °C, 2 bar 

a milli molal; b adjusted with HCl; c equals 10wt% NaCl in the aqueous phase;d 2% solution in toluene. 

4.3.1 XANES spectra for Au references 

The Au LIII-edge XANES spectra for representative solutions and standards are plotted 

in Figure 4-3. Two examples of the changes in XANES spectra changes with increasing 

temperature are shown in Figure 4-4. The XANES spectrum of the solid gold(I) thiomalate 

standard was identical to that of the gold(I) thiomalate (Au-thiomalate std) in solution and is 

thus not shown. The gold(I) thiomalate standard is representative of Au(I) complexes and Au-

S bonds with an alkyl chain attached to the S and a Au : S ratio of 1 : 2, and thus a CN for S of 

2. The XANES spectrum of gold(I) thiomalate shows a small peak at ~11922 eV (band I) and a 

small peak at ~11929 eV (band II). The XANES spectrum of the AuNP standard solution 

(S7AuNP) is similar to that collected for the metallic gold foil, though it exhibits a less 

pronounced peak at 11945 eV, which reflects the state of Au on the surface of the foil, and 

in particular, capping by thio-groups from DDT molecules (Zhang and Sham, 2002). 
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4.3.2 1-Dodecanethiol (DDT) – water system < 125 °C 

The absorbance of the DDT and the aqueous liquid (with and without NaCl) and the 

gold fluorescence signal intensity across the two solutions were determined to identify 

spectra derived from the DDT and the aqueous liquid, and to qualitatively determine the gold 

distribution between the two liquids. Absorbance measurements were made before 

collection of the first XANES spectrum and a maximum of ~2h after the solutions were 

prepared and loaded into the carbon cell. Gold was found to be present in DDT and the 

aqueous phase, with a 5 to 6 times higher step height at the AuLIII-edge in the DDT than in 

the aqueous liquid. 

All XANES spectra collected for the samples with DDT in contact with the aqueous 

solution with and without NaCl (10 wt%) display similar sequences of spectra at 

temperatures between 30 °C to 125 °C in DDT and in the adjacent aqueous phase (Figure 4-3, 

Figure 4-4 a; S11, S13, S16, S18). At temperatures below 125 °C all the spectra resemble the 

spectrum of the gold(I) thiomalate standard, with a small peak at ~11922 eV (band I) and a 

small peak at ~11929 eV (band II). It is also notable that the second peak (edge energy 

position) in all the solution XANES spectra and Au(I) thiomalate is located at 11929 eV, which 

is a 2 eV shift relative to the position of the second peak (11927 eV) in the Au(HS)2
- complex, 

so these spectra are distinct from that of Au(HS)2
-. The edge energy position is shifted to 

slightly lower eV compared to that of the Au foil and the AuNPs. The gold(I) thiomalate 

resemblance suggests a Au complex in the DDT experiments that is similar to that of an 

Au(RS)2
- complex, where RS symbolizes DDT with a deprotonated thiol group. The same 

spectral observations in DDT and in the adjacent aqueous phase indicate the same gold 

complex in both liquids. 

Since DDT and the brine have similar absorption coefficients (Table 4-1), it was not 

possible to identify the analyzed liquid in experiments S16 and S17. However, all XANES 

spectra across the sample profile resemble the gold(I) thiomalate, and are very different from 

the XANES spectrum of Au(HS)2
-(Figure 4-3 and 4a). 

4.3.3 Open system DDT – brine solution 

A XANES spectrum identical to that of AuCl4- was collected in the brine (S19) that was 

sampled and analyzed individually from a brineDDT solution in an open beaker. This is in 
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contrast with an Au(I) thiomalate-like spectrum measured in the aqueous liquid (S11) that 

was in direct contact with the DDT in the glassy carbon cell. The XANES spectrum of S19 

(Figure 4-3) shows a sharp pre-edge feature at ~11920 eV that rises above the post-edge 

feature region and is in agreement with the spectra reported for AuCl4- in Pokrovski et al. 

(2009a) and Liu et al. (2014). The spectrum of the AuCl4- complex has an intense peak at this 

energy due to the 2p-5d transition (Berrodier et al., 2004). 

 

Figure 4-3: Normalized Au L3-edge XANES spectra of the solutions and the complexes they resemble, shown 

labelled in (a) and the same (b) on a different scale to emphasize the pre-edge (A) and edge (B) energy position 

(right dashed line to aid the eye, as it is not always at the edge). The AuCl2- spectrum is from Pokrovski et al. 

(2009a). The Au(HS)2
- and the AuCl4- spectra are from Liu et al. (2014). S7 at 100 °C; S11, S13, and S19 at 30 °C; 

S14 at 75 °C; S16 at 70 °C; S18 at 100 °C. The subscript abbreviations indicate whether the spectrum was 

collected in water (aq), brine, n-dodecane (DD), 1-dodecanethiol (DDT), or if the phase was unclear (*). 
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Table 4-3: EXAFS model parameters 

Fit EXAFS parameters for selected sample spectra. N: ligand number; R: bond length (Å); σ2: 
magnitude scale factor; χ2

red: reduced chi-squared parameter. 

Solution 
T 

(°C) 
Ligand N R (Å) 

σ2 x 
103 

χ2
red 

k 
weight 

Data range 
(Å-1) 

Au-
thiomalate 

std 
30 S 2 (fix) 2.31(3) 2.8(5) 5.1 3 2-12.3 

S11aq 30 S 2.59 ± 0.41 2.30(4) 5.2(1) 2.05 3 2-11 

S13DDT 30 S 1.83 ± 0.30 2.29(1) 0.9(1) 19.9 3 2-11.2 

S16* 70 S 1.60 ± 0.50 2.30(2) 0.2(5) 20.3 3 2-11 

S17* 30 S 2.31 ± 0.45 2.29(3) 2.0(2) 17 3 2-11 

S14DD 75 Cl 4.36 ± 0.77 2.27(6) 2.0(0) 5.62 3 2-10 

S14aq 75 Cl 3.94 ± 0.34 2.280(3) 2.0(1) 55.81 3 2-11.5 

*not clear if DDT or brine was analyzed.           

4.3.4 n-Dodecane (DD) – water system < 125 °C 

The step height at the LIII-edge was found to be ~50 times smaller in DD than in the 

adjacent aqueous phase. All XANES spectra collected in DD and in the adjacent water and/or 

brine below ~125 °C resemble that of the AuCl4- complex (S14, Figure 4-3) with a peak at 

~11920 eV rising above the post-edge region and a small peak at 11932 eV. 

4.3.5 Metallic gold 

At 125 ˚C and 130 °C, the X-ray-absorption at the Au-edge of all sample solutions (DD, 

DDT, water, and water plus NaCl, from all experiments) decreased and exhibit an increase in 

signal noise (Figure 4-4a). This was accompanied by the disappearance of features 

representative of Au(I) and Au(III) complexes (Au(RS)2
- and AuCl4-), and the concurrent 

appearance of features characteristic for metallic gold in the Au XANES spectra in DD, DDT, 

water, and water plus NaCl (Figure 4-3 and Figure 4-4). 

The time periods between spectrum collection at 30 °C and 125 °C/130 °C for solutions 

11, 13, 14, 16, 17, and 18 were 5 h, 7 h, 7 h, 8 h, 6 h, and 3.5 h respectively. Features 

representative of metallic gold appeared in the first spectrum collected at 125 °C/130 °C, 

with the only time delay between inserting the loaded glassy carbon tube and the first 

measurement being the beam position adjustment in the above named solutions 11 to 17. 

Features typical of metallic gold did not appear in S18 until the second spectrum was 

collected– there was a delay of 30 min at 130 °C under the X-ray beam between the last 
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AuCl4- like spectrum and the first Au(0)-spectrum. After heating to 130 °C in the DD-water 

experiment (S14), which had produced only Au(III) spectra below 130 °C, no intermediate 

Au(I) complexes (e.g., AuCl2-) were detected at any point in time between collection of the 

last Au(III) spectrum and the first Au(0) spectrum. This result is consistent with the results of 

a Raman study by Murphy et al. (2000), where metallic gold precipitated at 250 °C from an 

AuCl4- solution, without a detectable intermediate stage of reduction to Au(I)Cl2-. 

 

Figure 4-4: The change in Au LIII-edge XANES spectra for S13 in DDT (a) and for S14 in DD and the aqueous phase 

(b) with increasing temperatures and the appearance of Au(0) at 130 °C. The AuCl2- spectrum is from Pokrovski 

et al. (2009a), and the AuCl4- spectrum is from Liu et al. (2014). 

4.3.6 EXAFS 

The results of the EXAFS refinement of selected spectra are given in Table 4-3, and the 

fitted spectra of the k3 weighted EXAFS data and the Au L3-edge Fourier-transformed EXAFS 

data are plotted in Figure 4-5 and Figure 4-6. The refined Au-S bond lengths for the gold(I) 

thiomalate and for the solutions with XANES spectra that resemble the gold(I) thiomalate 

range from 2.29(1) Å to 2.31(2) Å. These distances are equivalent to, within error of, the Au-

S bond distances found in sodium aurothiomalate crystals (Au1-S at 2.289(8) Å; Au2-S at 

2.285(7) Å; Bau (1998)), and are in agreement with the bond lengths of 2.29 Å reported in 

earlier studies for aurothiomalate in solution (Elder et al., 1985). The refined coordination 

number of sulfur of 2 (within uncertainties; Table 4-3) is in agreement with the gold(I) 

thiomalate resemblance of the XANES spectra and its CN of 2. 

In the DD experiments, a refined coordination number of chloride of 4.0(3) and Au-Cl 

bond length of 2.280(3) Å (Table 4-3) are in agreement with tetrachloroaurate (AuCl4-) and 
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the reported Au-Cl bond lengths of ~2.29 Å (Welter et al., 2001) and 2.28(1) Å (Liu et al., 

2014), and thus the EXAFS data is in agreement with the AuCl4- resembling XANES spectra. 

 

Figure 4-5: Normalized k3 weighted EXAFS data. The solid lines are the raw data, and the dashed lines are fitted 

spectra from the parameters listed in Table 4-3. In S15 to S17 it is not clear whether the DDT or brine phase was 

analyzed due to similar absorption length of the two fluids. 
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Figure 4-6: Au L3-edge Fourier-transformed EXAFS data and fits. The solid lines are the raw data, and the dashed 

lines are fitted spectra from the parameters listed in Table 4-3. All solutions shown resembled the Au(I) 

thiomalate in XANES except for S14, which resembled AuCl4-. In S15 to S17 it is not clear whether the DDT or 

brine phase was analyzed. 

4.4 Nature of Au transport in model hydrocarbons 

4.4.1 Interpretation of the DDT experiments below 125 °C 

The yellow coloration of the water doped with AuCl4-
(aq) (Figure 4-2) and the change to 

colorless after addition of DDT indicate that Au partitions preferentially into DDT. This is 

confirmed by the up to 5 times higher step height at the LIII-edge in DDT, which translates to 

a higher Au concentration in DDT, in comparison to adjacent aqueous liquid. No differences 

were observed in the spectra between the experiments with acidified, neutral, NaCl-

containing and NaCl-free aqueous liquids, suggesting that the pH and the NaCl content of the 

aqueous liquid have no influence on the Au speciation at these conditions. 

The XANES spectra collected in the DDT and in the adjacent aqueous solution are 

identical, and closely match the XANES spectrum of the Au(I) thiomalate standard. Together 

with the CN for S of 2 and the Au-S bond lengths refined from the EXAFS data, this shows that 

Au exists as a Au(I) complex bonded to two sulfur atoms, which are each bonded to an alkyl 



Chapter 4 

108 

chain, resulting in a complex similar to Au(I) thiomalate (Bau, 1998) in both the aqueous and 

organic phases. An important difference between the XANES data of the inorganic Au(HS)2
- 

complex and thiol-ligand is the position of the second peak, which is located at 11929 eV in 

Au thiomalate, 2 eV higher than its position (11927 eV) in Au(HS)2
-. In all spectra for the DDT 

and coexisting waters, this second peak is located at 11929 eV. Since Au(I) is coordinated in 

distorted linear fashion to two sulfur ligands in both complexes, the shift of this second peak 

is a strong indication that the sulfur ligands are not free bisulfide ions but are S-radicals 

attached to an organic group in these DDT experiments. To create a covalent Au-S bond with 

a Au:S ratio of 2, the sulfhydryl group of two DDT molecules needs to be deprotonated, 

creating thiyl radicals (e.g., Häkkinen, 2012; Ansar et al., 2013). The hydrogen ions released 

by deprotonation would go into solution and cause acidification of the solution (Ansar et al., 

2013). Density functional theory (DFT) calculations for RS(AuSR)n, with R being a methyl 

group, suggest that the lowest unoccupied molecular orbital (LUMO) of the neutral RS(AuSR)n 

(n = 1) has an antibonding Au-S character, and that the neutral complex is an odd-valence-

electron system (radical). The neutral complex is therefore less stable than the anionic 

complex (Häkkinen, 2012 and references therein). Thus, the anionic complex may be 

dominant over the neutral complex. Hence, the overall reaction involving reduction of Au(III), 

complexing of the Au(I) product, and partitioning among aqueous (aq) and organic (o) phases 

can be written as 

Au(III)Cl4-
(aq) + 2RH(o) + 2e- = Au(I)R2

-
(o/aq) + 4Cl-(o/aq) + 2H+

(o/aq) Eq. 4-1 

with R = [CH3(CH2)10CH2S]-. Thiol groups are the most likely electron donor, since DD, 

which does not contain thiol groups, did not reduce Au(III) to Au(I) at room temperature 

under similar conditions as the DDT-induced reduction. XANES and EXAFS spectra suggest 

that the same gold complex is present in DDT (indicated by “o” for organic liquid) and in the 

adjacent aqueous phase. Thus, the Au(RS)2
- complex is to some degree soluble in water, 

although the step height at the Au LIII-edge remained consistently higher in the DDT 

throughout the period of data collection. 

 

Figure 4-7: Au(RS)2
- 2D-structure. 
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4.4.2 Interpretation of the open system DDT – brine solution 

In contrast to the Au(I) complexes in the aqueous liquids in contact with DDT in the 

glassy carbon tubes, gold remained as AuCl4- in the acidic brine (S19) in contact with DDT 

(S18) at room temperature that was sampled and analyzed separately from the DDT. The DDT 

(S18) was analyzed over a time period of 4 h. It may be that the AuCl4--like spectra record a 

metastable Au(III) complex and that an extended period of equilibration could have resulted 

in reduction to Au(0). However, a time series of analyzes was not made so it is not possible 

to assess this possibility. 

Reduction from Au(III) to Au(0) could be enhanced by the X-ray beam, which could 

accelerate the equilibration process by creating turbulence in the solution within the glassy 

carbon tube and/or redox-active radiolysis products. Neither of these factors would operate 

in the beaker experiment, where DDT and the brine were analyzed separately. Alternatively, 

the open system of the brine/DDT system could have stabilized the AuCl4- complex, although 

the brine is shielded from the oxidizing atmosphere by the overlying low density DDT phase.  

4.4.3 Interpretation of the DD experiments below 125 °C 

The XANES and EXAFS results indicate that AuCl4- is the dominant species in DD and in 

the adjacent acidified water below ~125 °C. Based on the ~10 times lower step height at the 

LIII-edge in DD compared to the brine, AuCl4- is weakly soluble in DD. This is consistent with 

the known chemical properties of DD, including the low solubility of polar groups in DD and 

an absence of functional groups available for bonding with Au. Furthermore, DD did not 

reduce the Au(III) complex over the time frame of the experiments at these conditions, even 

in the presence of the X-ray beam, which catalyzes reactions by induction of the formation 

of redox-active radiolysis radicals (review in Brugger et al., 2016). In the presence of thiol-

held sulfur or other bonded S, significant Au transport in the form of AuCl4- dissolved in or 

bonded to an alkane, such as DD, seems improbable, because the always present S in natural 

oils would induce reduction of the Au(III) complex within a few hours or less.  

4.4.4 Formation of gold nanoparticles at 125 °C/130 °C 

In aqueous solutions, Au(III) complexes are only thermodynamically stable at low pH 

and low temperature in the presence of free oxygen, but can remain metastable for days at 
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room temperature (Usher et al., 2009; Ta et al., 2014). Heating at constant fO2(g) will cause 

reduction of Au(III) and possibly of Au(I) as a thermodynamic reduction process. Au(III) 

complexes are stabilized relative to Au(I) complexes by high chloride and low HS- activities. 

Reduction to metallic gold was observed in all solutions at 125 and 130 °C, though from 

different low temperature species. In the DDT experiments the organic-Au(I) complex was 

reduced to Au(0), while in the DD experiment, the Au(III) complex (AuCl4-) was reduced to 

Au(0) without a detectable intermediate Au(I) complex (e.g., AuCl2-; S14). The spectroscopic 

Raman study by Murphy et al. (2000) observed similar Au(0) formation at 250 °C in the HAuCl4 

– HCl aqueous system. Pokrovski et al. (2009a) reported metallic gold precipitation from 

HAuCl4-NaCl-HCl solutions but with an accompanied increase of AuCl2- at the expanse of 

AuCl4-, at the same beamline as in this study with the same set-up at 150 °C in the carbon cell 

and in addition at 250 °C in a sapphire cell. It is not clear whether AuCl2- was present in the 

Murphy et al. (2000) experiment but not detected due to instrumental constraints (Pokrovski 

et al., 2009a), or whether different redox conditions may have caused the discrepancy. The 

possible reduction path from Au(III) to Au(I) and then Au(0) in the DD experiments, may have 

been concealed in our experiments in the time needed to heat from 100 °C to 125 °C/130 °C 

and to adjust the beam spot position. 

The carbon cell appears to generate more reducing conditions than the sapphire cell 

consisting of Al2O3 that was used in the Pokrovski et al. (2009a) experiments at 250 °C, so 

that metallic gold appears at a lower temperature in the carbon cell. This proposal is 

consistent with the metallic gold precipitation at 150 °C in the Pokrovski et al. (2009a) 

experiments in the glassy carbon cell and with the conclusions of Murphy et al. (2000), who 

proposed that the exact temperature of metallic gold formation depends on the oxygen 

fugacity; note that equilibration times in the Murphy study were 10 to 15 min, in contrast to 

several hours in this study.  

Interestingly, the temperature at which Au(0) forms in our experiments is the same in 

sulfur-free (DD) and sulfur-rich (DDT) experiments. Thus, the formation temperature of 

metallic gold is independent of solution composition in our experiments, and is in agreement 

with the study of Au in aqueous liquids by Pokrovski et al. (2009a), where Au(0) appeared at 

150 °C using the carbon cell, whereas spectra collected at 100 °C in the same experiments 

did not show Au(0). The similar temperature of metallic gold appearance in the carbon cell 

with a different chemical system, and the higher temperature of metallic gold appearance in 
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the sapphire cell in the HC- and S-free experiments by Pokrovski et al. (2009a) further 

emphasize that, rather than fluid composition, factors related to the experimental set-up 

such as X-ray beam, temperature and carbon cell induced reduction control the reduction of 

Au(I) or Au(III) to Au(0). 

The extent of X-ray beam-induced photoreduction depends strongly on the ratio of the 

volume affected by the beam to the sample volume (Brugger et al., 2016). In that study, 

redox-active radicals generated by the X-ray beam occur at relatively low concentrations 

because the sample volume is large compared to the beam-affected volume. Nevertheless, 

these species may have accelerated the Au reduction process by catalyzing the conversion to 

the thermodynamically-stable species via a decrease in the activation energy required for 

the reduction and speciation changes. Consequently, the observed temperature at which 

speciation changes occur needs to be interpreted with caution in XAS studies. In other 

studies, X-rays have been used to synthesize and precipitate AuNPs from Au(III) chloride 

complex solutions onto a substrate (Karadas et al., 2005), or in solution (Wang et al., 2007; 

Plech et al., 2008); the latter work used citrate as a reductant, and demonstrated an increase 

in reduction kinetics when X-rays were used. The situation of our experiment is similar to 

that of Wang et al. (2007), i.e., reduction to metallic gold occurs at 125 °C/130 °C even in the 

absence of the beam, but the beam may have affected the reduction kinetics. 

In summary, temperature is the first order control on Au(0) formation at our 

experimental conditions. However, different redox conditions and catalysts may increase or 

decrease the temperature at which Au(0) forms.  

4.5 Alkanes and organothiols as ore fluids 

4.5.1 Crude oil and gold transport 

The temperatures employed in this study are typical of low temperature hydrothermal 

systems near the surface and in non-hydrothermal systems (e.g., sedimentary basins) 

generally not deeper than ~3 km, and are well within the liquid oil window (< 160 °C). 

Obvious examples include the Carlin-type gold deposits where evidence of gold transport by 

hydrocarbon/petroleum has already been proposed (e.g., Carlin-type Au deposits in Nevada, 

US, (Emsbo and Koenig, 2007); and Southwest China, (Gu et al., 2012).  
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The organic S content (S bound to an organic compound) in low and high S petroleum 

ranges from < 0.1 wt% to 1 wt% organic S, and can be up to 10 wt% in carbonate-hosted 

biodegraded oils (Tissot and Welte, 1978; see also section 3.1). Up to 7 wt % of the total 

sulfur content of crude oils is held in thiol groups (Krein, 1993). Assuming the Au : S atomic 

ratio of 1 : 2 based on AuRS2
-, 1 g of oil with 1 wt% S, of which 7 wt% is held by thiolate 

ligands, would account for 55 ppb Au if only the thiols bond with Au. If all the S bonds with 

Au (Au : S ratio of 1 : 2), the S would account for 792 ppb Au in an oil with 1 wt% S, or 

7920 ppb Au in a carbonate-hosted oil with 10 wt% S. These concentrations are in agreement 

with the 50 ppb Au in crude oils at 250 °C in solubility experiments by Migdisov et al. (2017) 

and Williams-Jones and Migdisov (2007), but are still below the hundreds of ppm Au in crude 

oils in partition experiments between crude oils and aqueous solutions (Liu et al., 1993; 

Zhuang et al., 1999; Emsbo et al., 2009). 

This concentration discrepancy suggests that there is an additional factor at play in the 

chemical transport of gold in crude oil. For instance, Au may be in the form of AuNPs, which 

would allow a decrease in the number of S-bearing ligands required for bonding of individual 

gold atoms, yet increase the amount of Au carried by the solution (Hough et al., 2011). 

Although other functional groups (-COOH, -OH, -NH2) are present in oil and may complex 

with Au and increase the Au solubility, the formation of AuNPs would be the most efficient 

to increase Au solubility. We also note that our experiment deals with partitioning between 

a brine and the oil, whereas Migdisov et al. (2017) studied the dissolution of metallic Au in 

(natural) oils.  

The marked partitioning of Au into DDT suggests that organothiols such as DDT act as 

effective ligands for Au transport at temperatures below 160 °C (within the liqiuid oil 

window), either in dissolved form (monomeric Au(I) complex) or potentially in the form of 

metallic Au, possibly AuNPs capped with organic (thiolate) ligands (Zhang and Sham, 2002).  

4.5.2 Au transport in nanoparticulate form 

The importance of AuNPs as an alternative form to dissolved complexes for 

contributing to the migration and concentration of Au and the formation of ore deposits from 

aqueous fluids or organic ore fluids, is still a hotly debated topic (Hough et al., 2011, and 

references therein). 
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Gold nanoparticles (AuNPs) have different physical properties from molecular macro-

scale metallic compounds, due to their special electronic structures arising from quantum 

mechanical rules (Daniel and Astruc, 2004, and references therein). The physical properties 

strongly depend on size, shape, crystallinity, interparticle distance, and the nature of the 

protecting organic shell. AuNPs can act as delocalized redox molecules, and thus exhibit 

different oxidation states within a single AuNP (Daniel and Astruc, 2004, and references 

therein). Alkanethiolate ligands such as DDT are used to synthesize self-assembled 

monolayers (SAMs) onto the surface of the AuNP to stabilize and passivate AuNP. The 

alkanethiol-stabilized AuNPs are thermally stable, air-stable, size-controllable (e.g., Brust–

Schiffrin method), re-dissolvable in organic solvents without aggregation or decomposition, 

can be handled and functionalized like organic and molecular compounds and have a reduced 

dispersity, (Daniel and Astruc, 2004, and references therein). 

Zhang and Sham (2002) measured XANES spectra of AuNPs capped with thiols, and 

interpreted a less-pronounced peak at 11945 eV, compared to the peak of Au(0) as an 

indicator that Au(0) is capped by DDT. The spectra in this study at temperatures above 125 °C 

were too noisy to identify a possibly reduced peak at 11945 eV, so further information on the 

speciation of AuNP could not be obtained. 

However, as noted above, DDT and other organothiols are used to stabilize Au(0) NPs 

(Daniel and Astruc, 2004), via self-assembling of the deprotonated thiol-groups onto the gold 

surface (Ansar et al. 2013). DDT reduces the surface energy of the AuNP as long as the size 

of the AuNP provides an energetic advantage for the thiol (Leff et al., 1995), and the 

unreactive ends of the thiol group create a passivation shell around the exterior of the AuNP-

thiol structure (e.g., Daniel and Astruc, 2004). This suggests that AuNPs may be a stable form 

of gold in DDT, and given enough time, Au(0) would form at the expanse of Au(I) at some 

point.  

It has also been proposed that AuNPs are an important factor in the formation of 

economic deposits because the unique properties of AuNPs, such as the variety of possible 

shapes and the high surface areas may contribute towards Au transport and deposition 

mechanisms in hydrothermal and supergene environments (e.g., Hough et al., 2011). AuNPs 

capped with alkane thiolate ligands would be very soluble in oils (e.g., Daniel and Astruc, 

2004), which raises the question whether they do exist in oil-based ore fluids in nature. We 

note that AuNP were first observed in a sediment-hosted Carlin-type Au deposit (Palenik et 
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al., 2004). Experiments in water (ambient conditions) by Stankus et al. (2010) showed that 

the adsorption of natural organic matter onto AuNPs is more effective for the AuNPs colloidal 

stability of the particles, in contrast to the one-compound capping agents, which were either 

anionic, neutral, or cationic. This suggests that in the presence of complex oils and natural 

organic matter, a stabilization of AuNPs by only one compound like DDT is not realistic, but a 

capping by natural organic matter is within the realms of possibility (Stankus et al., 2010).  

4.6 Conclusions 

The abundance of sulfur in thiols and the ability of thiols to stabilize AuNPs suggest 

that organothiols or natural organic matter in general (Stankus et al., 2010) may contribute 

to Au migration in low temperature hydrothermal fluids. For example, this is of importance 

in basinal environments, where organothiols could contribute to the Au endowment of some 

Carlin-type gold deposits. One scenario for immobilization of the gold transported in oil is an 

increase in temperature, e.g. via mixing with hotter hydrothermal fluids leading to an 

increase in temperature and the degradation of oil resulting in its immobilization along with 

the AuNPs. 

In our experiments, both the Au(III) complex in DD and the Au(I) complex in DDT were 

stable up to a temperature between 100 °C and 125 °C, even after exposure to the X-ray 

beam for 7 h (DD) and 8 h (DDT). At elevated temperatures, metallic Au is formed. The 

experiments reveal that the presence of oil can contribute to the formation of Au deposits in 

a number of manners. (i) Crude oil may act as an ore-fluid, transporting gold either via the 

formation of Au organothiol complexes, or, at higher temperatures, through the formation 

of AuNPs, possibly capped and stabilized by organic molecules. In natural systems metallic 

Au would either precipitate and drop out of solution in the presence of organic oils, or form 

nanoparticles that could be transported until the oil is degraded and immobilized. (ii) An 

important lesson from our experiments is that DDT is able to scavenge and enrich Au from 

adjacent aqueous gold-bearing brines; this provides a new process for concentrating Au from 

hydrothermal fluids to levels that are high enough to contribute to ore formation. 

(iii) Conversely, the strong organic complexes that form in oils can also be transferred to a 

coexisting aqueous fluid, increasing Au solubility in the aqueous phase. 

The new results show that the commonly observed gold-enriched organic matter in 

gold deposits may reflect an active role of OM in gold transport and concentration, either via 
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scavenging, transport and/or concentration of Au(I) from aqueous fluids at low T (<125 °C) 

or in the form of AuNPs at higher T (~125-250 °C). Thus, organic matter has the potential to 

transport Au and does not simply act as a reducing agent only, and this possibility needs to 

be considered in the study of genetic models of Au deposits that are closely associated with 

organic matter, in particular some Carlin-type gold deposits where evidence of gold transport 

by hydrocarbon/petroleum has already been proposed (e.g., Carlin-type Au deposits in 

Nevada, US, Emsbo and Koenig, 2007; and Southwest China, Gu et al., 2012). In the case of 

aqueous fluids, studies of modern ore-forming environments were critical in providing a 

definitive proof of their capacity to form large Au deposits (e.g., Simmons and Brown, 2006 

and references therein). Hence, further experimental work associated with studies of oil 

geochemistry in Au-bearing sedimentary basins is needed in order to further constrain and 

quantitatively model the role of gold-organic complexes in the formation of hydrothermal 

gold deposits. 
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 Abstract 

Hydrocarbon (HC) – enriched silica is co-located with gold (Au) mineralization in the 

Au-Hg McLaughlin deposit, Geysers/Clear Lake area, California. This co-location suggests that 

HC  material may be involved in the mineralization and metal concentration process, but in 

general little is known about the role of HC  material in the formation of ore deposits. 

Previous studies noted liquid oil inclusions in samples from the McLaughlin deposit, and 

proposed that the hydrocarbons were liquid at the time of ore deposition. Hydrocarbon 

materials in the McLaughlin deposit range from solid to liquid forms. Textural evidence 

suggests that hydrocarbon-rich and aqueous, silica-rich fluids were present simultaneously, 

as well as separately in alternating pulses. Synchrotron X-ray fluorescence microscopy of 

microscopically silica free carbonaceous material (CM) reveals that the CM contains 

abundant ore metals e.g., Au, Ag, Hg, and Pb. The CM could have become metal enriched by 

scavenging metals from other ore fluids, or it could have transported metals when the CM 

was still liquid, with subsequent in-situ degradation due to hydrothermal heat. Au 

concentrations of up to 18 mg/kg in HC and CM were measured via acid digestion of solid 

and liquid HC material and subsequent inductively coupled plasma – mass spectrometry (ICP-

MS) analyzes. HC material with liquid to medium viscous properties bearing 10.8 mg/kg Au 

provides evidence that Au in liquid HC in the McLaughlin Au-Hg deposit is still mobile and 

that remobilization and/or transport of metals to the deposit by HC liquids cannot be ruled 

out. 

5.1 Introduction 

Carbonaceous matter (CM) or hydrocarbon matter can be a common constituent of 

hydrothermal ore deposits (Bowell et al., 1999; Zhuang et al., 1999; Sherlock, 2000; Emsbo 

and Koenig, 2007). Still the role of CM in ore formation processes is controversial and often 

uncertain. Solid CM has been commonly proposed to act as a trap for the deposition of metals 

from hydrothermal ore fluids, either via reduction (Giże, 1999; Giże, 2000) or via sorption or 

complexation (Etschmann et al., 2017; Cumberland et al., 2018). In contrast, some 

researchers of crude oils and petroleum or CM associated with Au deposits, e.g., Carlin-type 

Au deposits in Guizhou, China and Nevada, USA (e.g., Zhuang et al., 1999; Emsbo and Koenig, 

2007), Pb-Zn-Ba ore deposits (Connan, 1979), Pb deposits, e.g., Mississippi Valley-type 

deposits (Giordano and Barnes, 1981), Cu deposits, Zechstein Cu deposits (e.g., Kucha, 1981; 

Kucha and Przylowicz, 1999; Sawlowicz et al., 2000), or with U-Ti deposits, Witwatersrand 
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Supergroup, South Africa (Fuchs et al., 2015; Fuchs et al., 2016) argue that the hydrocarbon 

phase contributed to metal transport. It is thought that hydrocarbons may have played a 

major role for example in the formation of the giant Carlin-type deposit province in Nevada 

(Groves et al., 2016). Out of 41 Carlin-type deposits, 39 are reported to have CM in the 

original mineralized horizon (Berger and Bagby, 1993). The two deposits without CM indicate 

that the formation of Carlin deposits is not dependent on CM. The bitumen in the Upper Zone 

of the Rodeo deposit, northern Carlin trend, Nevada contains up to 100 mg/kg Au, and there 

is evidence suggesting that Au and associated metals were remobilized in petroleum as 

organo-metallic compounds during oil generation and migration (Emsbo and Koenig, 2007). 

However, organic matter at the original Carlin deposit was matured beyond the oil and gas 

windows before gold mineralization (Gize et al.; 2000). Thus, it is important to consider 

individual deposit settings in context if Au transport in organic fluids is to be proposed. 

A few experimental results indicate that metal transport in a hydrocarbon phase is 

viable (Liu et al., 1993; Lu and Zhuang, 1996; Miedaner et al., 2005; Fuchs et al., 2011; Crede 

et al., 2017; Migdisov et al., 2017; Crede et al., 2019; Crede et al., 2018-A; Crede et al., 2018-

B).  

For example, in mixing experiments between a brine (20 % NaCl, doped with metals) 

and crude oil (Wyoming, Barbour Crude), 50 to 100 mg/kg of platinum, palladium and gold 

were present in the oil after a 24 h agitation at room temperature (Emsbo et al., 2009). Crede 

et al. (2018-A) showed in partition experiments between brine and 1-dodecanethiol that 

more than 95% of the Au partitions into the oil phase between 105 °C and 150 °C, and the 

study by Crede et al. (2019) showed that at temperatures ≥ 125 °C gold transport as 

nanoparticle was possible. 

This study focuses on samples from the epithermal McLaughlin Au-Hg deposit, 

Geysers/Clear Lake area, California to understand the roles of CM in the ore formation, where 

CM is present in liquid and solid form. Oils in hydrothermal systems are generated 

instantaneous in geological time compared to the accepted conventional petroleum 

formation and differ in composition from conventional petroleum by being relatively 

enriched in unsubstituted aromatic hydrocarbons (Simoneit, 1993; Simoneit, 2000b). 

Bitumen in the McLaughlin Au-Hg deposit was found to have Au concentrations of up to 15.1 

mg/kg, and 46.2 mg/kg Au was measured in bitumen from the Scorpion vein area in the 

Sulphur Creek District, ~20 km north of the McLaughlin mine (Sherlock, 2000). Furthermore, 
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Au is strongly associated with hydrocarbon-enriched chalcedony and opal in the McLaughlin 

deposit (Sherlock, 2000), and rocks in the Geysers/Clear Lake area and the McLaughlin mine 

have been documented to contain hydrocarbon fluid inclusions (FLINCS; Peters, 1991; 

Sherlock, 2000) and various types of CM in the form of pyrobitumen in sinter materials, vug 

fillings of tars and light oils, and hydrocarbon-enriched opal (Sherlock, 1992; Rytuba, 1993; 

Sherlock and Lehrman, 1995). In the McLaughlin deposit, Au concentrations of up to 240 

μg/kg were found in bitumen, up to ~450 μg/kg in low viscosity oils, and Au concentrations 

elevated above background sinter values of 4.49 mg/kg are associated with hydrocarbon-rich 

silica (Tosdal et al., 1993; Sherlock and Lehrman, 1995). The McLaughlin deposit is therefore 

a suitable locality for this study on Au-CM associations. Despite these observations, Sherlock 

(2000) concluded that hydrocarbons were not instrumental in forming the McLaughlin 

deposit, although CM is present throughout the entire paragenetic history of the 

hydrothermal system, and suggested instead that particulate Au was scavenged and 

immobilized by hydrocarbons from aqueous ore fluids via the action of opposing surface 

charges. However, new experimental measurements of the partitioning coefficients of ore 

metals between liquid hydrocarbons and aqueous hydrothermal fluids by Crede et al. (2018-

A) and experiments of Au solubility in oil (Migdisov et al., 2017) suggest that a metal transport 

by liquid hydrocarbons is possible, and thus liquid hydrocarbons may have acted as an ore 

transport medium in this deposit. Consideration of such non-aqueous fluids is a potentially 

critical factor missing from most current ore deposit models. This is related to the 

observation, that bitumen enriched in Au is often pre- or postAu mineralization and rarely 

syn-genetic and that it is difficult to attain information on the genetic role of hydrocarbons 

in the mineralization process (Parnell and McCready, 2000).  

In this work, textural interpretation of the association between CM, Au-Ag alloys, and 

silica which are combined with the results of acid digestion of CM and Au analyses by 

inductively coupled mass spectrometry (ICP-MS) and with synchrotron X-ray fluorescence 

(SXFM) mapping, reveal insights into the possibility of a hydrocarbon phase gold transport in 

the McLaughlin deposit. 

5.1.1 Geological setting 

The McLaughlin deposit is associated with the Clear Lake volcanic field and is part of 

the hydrothermally active Geysers/Clear Lake area in north-western California (Figure 5-1). 

The major Mesozoic lithologies in the area comprise the Great Valley Sequence, Coast Range 
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Ophiolite and Franciscan Complex (Blake, 1981; Blake and Jones, 1981; Dickinson, 1981). The 

Franciscan Complex is thought to be an accretionary wedge formed by the subduction of the 

Pacific plate under the North American plate (Blake, 1981; Blake and Jones, 1981; Dickinson, 

1981). The Great Valley sequence is proposed to have been deposited in a fore-arc 

environment (Dickinson, 1981) and is thought to have been deposited on top of the 

tectonically emplaced oceanic crust of the Coast Range ophiolite. The Mesozoic units are 

overlain by Late Tertiary and Quaternary volcanic rocks of the Clear Lake volcanic field (Hearn 

et al., 1981). Magma was introduced into the crust of the Clear Lake area in relation to an 

east-southeast extensional field together with the northward propagation of the San Andreas 

transform (Hearn et al., 1981). Regional normal, strike-slip and thrust faults, along with 

tectonic interleaving of the underlying Great Valley Sequence, Coast Range Ophiolite, and 

Franciscan complex, occurred during multiple episodes of Mesozoic and Cenozoic tectonic 

activity (McLaughlin, 1981). The basaltic andesite Clear Lake volcanic rocks of the McLaughlin 

mine have a whole-rock age of 2.2 ± 0.2 Ma and indicate the maximum mineralization age 

(Lehrman, 1986).  

The McLaughlin deposit lies on the Stony Creek Fault, which forms the contact 

between the Great Valley Sequence and the Coast Range Ophiolite (Figure 5-1). (Tosdal et 

al., 1993). The deposit is a sheeted vein complex built almost entirely of hydrothermal silica-

rich veins, emplaced between the tholeiitic basalts and the polymictic sediment-serpentinite 

mélange of the Coast Range Ophiolite, and capped by a hot spring-type silica sinter terrace 

(Sherlock and Lehrman, 1995). At the base of the sinter is an alunite-bearing vein that has 

K – Ar ages between 0.75 and the 2.2 Ma recorded by the basaltic andesite (Lehrman, 1986; 

Tosdal et al., 1993). This suggests that hydrothermal activity took place during the late 

Pliocene to Pleistocene age (Lehrman, 1986; Tosdal et al., 1993). The McLaughlin mine was 

opened when Au mineralization was discovered at the Manhattan mercury deposit in 1978, 

which was then renamed to McLaughlin. The total resources of the deposit, now mined out 

and remediated, has been estimated at 109.1 tons of Au (Tosdal et al., 1993).  

Mineralization consists of electrum or native gold, silver sulfosalts, cinnabar and native 

mercury, along with stibnite, arsenic phases, and base metal sulfides. The metals are 

vertically zoned; the upper Hg-rich sinter overlies the Au-rich upper levels of the sheeted 

veins (<50 m depth), located in turn above an Au-Ag transitional zone (50200 m) which 

grades to more Ag-rich veins at 200-350 m, and finally to base metal sulfides at depth 

(Sherlock et al., 1995). 



Chapter 5 

128 

The fluid source of the ore fluids in the McLaughlin deposit is meteoric fluids, based on 

δ18O and δD data. Isotope characteristics for δ18O and δD are typical of meteoric water 

dominated hydrothermal systems that interacted with large volumes of marine sedimentary 

rocks such as the hanging wall Great Valley sequence (Peters, 1991; Thompson, 1993; 

Sherlock et al., 1995, and references therein). The interaction with marine sedimentary rocks 

is consistent with the high abundance of hydrocarbon material in the McLaughlin Deposit 

(Sherlock et al., 1995; Sherlock, 2005). 

Based on fluid inclusion data, Sherlock et al. (1995) interpreted metal precipitation to 

result from boiling of the hydrothermal fluids and consequent chemical and physical changes. 

The homogenization temperatures of the aqueous fluid inclusions at McLaughlin average 

~235 °C, but range from cooler temperatures (down to 121 °C) at the surface and higher 

temperatures (up to 263 °C) at depth (Sherlock et al., 1995). The average salinity of aqueous 

fluid inclusions is ~2.4 eq. wt% NaCl (Sherlock et al., 1995). A small second population of fluid 

inclusions has salinities of up to 14.5 eq. wt% NaCl; these are interpreted to have resulted 

from sustained boiling in a low permeability fracture (Sherlock et al., 1995).  

Both Au and hydrocarbons are present at relatively shallow depths (<200 m) and Au is 

often associated with hydrocarbon-rich hydrothermal silica, such as opal and chalcedony 

(Sherlock, 1992; Sherlock and Lehrman, 1995). Sherlock and Lehrman (1995) show images of 

dendritic Au aligned parallel and perpendicular to colloform hydrocarbon-silica banding, and 

of dendritic Au cross-cutting opaline spheres. These textures are suggestive of co-

precipitation of silica, hydrocarbons and dendritic Au, especially as the Au dendrites are only 

observed in association with hydrocarbon-rich opaline silica (Sherlock, 2000). A spatial and 

temporal association of Au mineralization with hydrocarbon migration is also supported by 

mg/kg levels of Au found in hydrocarbons throughout the nearby Sulphur Creek District and 

elevated Au levels, compared to other crude oils, in thick tar and low viscosity oils from the 

McLaughlin deposit of up to ~0.45 mg/kg and one bitumen sample with 15.1 mg/kg Au 

(Pearcy and Burruss, 1993; Sherlock, 2000). 

The close spatial association of the McLaughlin deposit with the Great Valley Sequence 

(Figure 5-1) is consistent with an origin of the hydrocarbons in the Great Valley Sequence, 

which produced small amounts of petroleum at the Terhel 1 well, 2 km east of the Sulfur 

Creek District (Brabb et al., 2001; Sherlock, 2005). 
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Figure 5-1: Geological map of the Clear Lake area in the northern Coast Ranges of California. McL: McLaughlin 

Deposit; GGS Geysers geothermal system; SCD: Sulphur Creek district. Modified after Sherlock et al. (1995) and 

compiled from McLaughlin (1978), McLaughlin et al. (1985), Wagner and Bortugno (1982), and Chapman et al. 

(1972). 

5.2 Materials and methods 

We chose three samples with different forms of CM from approximately 100 

McLaughlin samples provided by the administrators of the McLaughlin Natural Reserve 

(University of California, Davis) for this study. The selected samples bear various forms of 

CM, liquid to solid (section 3), and Au and are thus suitable for the study on the role of the 

CM in the ore formation. 
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5.2.1 Synchrotron X-ray fluorescence microscopy (SXFM) 

SXFM on a billet of sample 2 (section 3.1.2) was performed at the X-ray fluorescence 

microscopy (XFM) beamline at the Australian Synchrotron (Kirkham et al., 2010; Paterson et 

al., 2011; Ryan et al., 2014). The setup enables a 2 µm2 spot size in the 4-20 keV range and is 

equipped with a Maia 384 large angle detector array with an integrated real-time processor. 

The beam is focused by Kirkpatrick-Baez mirrors. SXRF maps and Au-XANES stacks 

(Etschmann et al., 2010; Etschmann et al., 2014) were collected with the Maia fluorescence 

detector (Ryan et al., 2010a; Ryan et al., 2010b; Ryan et al., 2014). Images of up to 100M 

pixels can be acquired using the Maia detector.  

Element mapping was performed on the polished billet of sample 2 (section 2.3 and 3) 

over an area of 40.25 × 18.38 mm2 with a beam energy of 18.5 keV, a step size of 5 µm and a 

dwell time of 0.5 ms per 5 µm pixel. A rough XANES stack was constructed by collecting SXRF 

maps on the thin section of sample 2 at 26 monochromator energy points across the Au L3-

edge starting at ~12 keV with a pixel size of 2 µm2 over an area of 2.27 × 0.28 mm2. Standard 

metal foils were measured to account for self-absorption, absorption in air and the efficiency 

response of the detector. X-rays can penetrate into the sample resulting in relative average 

pixel concentrations representing the sampled volume (Ryan et al., 2014); in comparison to 

electron-based microanalysis, this relatively large penetration of X-rays is advantageous for 

revealing the distribution of rare (sub)micron size particles below the surface (Li et al., 2016). 

Data reduction was performed with the GeoPIXETM software (Ryan et al., 2005), which 

includes a fundamental parameter model, the Maia detector array efficiency model, and a 

dynamic analysis (DA) matrix method to deconvolute spectra and create images. By fitting 

multiple lines per element, it becomes possible to distinguish between elements that have 

overlapping X-ray lines, that are difficult to separate using the traditional region-of-interest 

approach: As K1 and Pb L1, Pb M and S K(Ryan et al., 2010b). DA matrix analysis was 

used to generate images of the mapped area (Ryan et al., 2010b). 

5.2.2 Petrography to locate fluid inclusions 

Thirteen thin sections (30 μm thick) and fifteen doubly polished thin sections (250 μm 

thick) from the quartz veins visually assessed as enriched in hydrocarbons were prepared for 

the fluid inclusion study. Quartz veins were investigated using fluid inclusion techniques. This 

mineral has suitable mechanical properties for preserving primary fluid inclusions and optical 
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properties allowing their observations (Roedder, 1984; Van den Kerkhof and Hein, 2001). 

Fluorescing oil inclusions and/or CM were identified by UV illumination using a petrographic 

Olympus AX 70 microscope with a 100 W high pressure mercury-vapor light source (Olympus 

BH2-RFL-T3) that was filtered through a broad 330 - 385 nm band pass filter giving a high 

peak intensity at 365 nm. 

5.2.3 Digestion of CM for Au analysis 

Au concentration in CM was determined in three samples (Figure 5-3): viscous CM 

covering and filling the pore spaces of quartz in sample 1; CM in a polymictic mudstone-

sandstone-CM breccia with fractured CM-quartz infill in sample 2; and CM vug fillings in 

colloform layers of chalcedony and quartz in sample 3 (Figure 5-3). Au concentrations were 

determined by digesting 0.0098 g to 1.042 g of the bitumen in 7.5 ml HNO3 (67 %) and 2 ml 

H2O2 (30 %) at 125°C in titanium autoclaves (V = 40 ml) for three days. After decanting the 

solution, aqua regia was added to the autoclaves and heated to 150°C (24 h) to dissolve any 

remaining Au that may have precipitated onto the autoclave walls during the digestion, thus 

generating two solutions per sample for ICP-MS analyses. ICP-MS analyses were performed 

by LabWest Minerals Analysis Pty Ltd. A blank digestion produced concentrations of ~300 

μg/kg Au, which was attributed to earlier experiments using the same autoclaves. However, 

an uncertainty of around 300 μg/kg is negligible in comparison to the orders of magnitude 

higher Au concentrations (~10000 μg/kg) in the CM. 

5.2.4 Feasibility of LA-ICP-MS on the OFLINCS 

One purpose of this study was to directly analyze the metal contents in fluid inclusions. 

The small sizes (< 5 μm) and irregular shapes of the hydrocarbon fluid inclusions are poorly 

suited to laser ablation techniques and the maximum of one to three hydrocarbon fluid 

inclusions per section in our samples, on average 0.5 oil inclusions per section, is far too few 

to obtain robust and statistically significant results by LA-ICP-MS. The low OFLINC (organic 

fluid inclusion) abundance means that 100 to 200 thin sections would be needed to find 50 

to 100 hydrocarbon fluid inclusions, which would require the equivalent of 20 kg to 70 kg of 

pure quartz samples from the McLaughlin deposit, assuming that 200 g to 350 g are needed 

per thin section (Figure 5-2). Future studies of oil inclusions in hydrothermal deposits should 

therefore plan for large sample volumes and high numbers of thin sections, and carefully 

choose the samples. 
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Figure 5-2: Predicted number of oil inclusions vs number of thin sections (300 μm thickness) based on the results 

of this study. Labels for each line are the average number of inclusions per thin section. 

5.3 Results 

5.3.1 CM and textures in samples from the McLaughlin mine 

The three samples used to determine the Au concentration in CM exhibit different 

textural relationships between the CM and associated host rock material (Figure 5-3). CM is 

present as liquid oils and relatively low to high viscous CM (tar), solid bitumen, bituminous 

vug infills, and as fluid inclusions. The main phases of interest are the CM enriched phases 

that are either pure or associated with silica (usually quartz and chalcedony), pure quartz, or 

pure chalcedony. 

5.3.1.1 Sample 1 

Sample 1 consists purely of coarse, crystalline quartz that is dominated by euhedral 

grains with c-axis lengths ranging from 0.1 mm up to 3 mm. The outside of the sample is 

covered with viscous CM, which is also found in late stage macroscopic vugs (Figure 5-3 A), 

and in the macroscopic and microscopic pore spaces (section 3.3). A few very fine, loose 

quartz crystals are present within the CM covering the sample. Liquid oil spreads from the 

viscous bitumen into and through the sample along connected pore spaces and fractures 

(Figure 5-3 A; section 3.3). When leaving the sample on paper for a while, the paper becomes 

stained by liquid oil. While hydrocarbons are found in vugs, fractures, pore spaces and along 

grain boundaries of the quartz crystals, less than one hydrocarbon fluid inclusion per thin 
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section was found trapped in quartz crystals from this sample. No metal sulfides or other 

opaque/ore minerals were found within the quartz of sample 1. 

 

Figure 5-3: Samples 1 to 3 from the McLaughlin mine, Geysers/Clear Lake area, California. Surfaces of samples in 

images A, B and D were wetted prior to photography. (A) Sample 1: Quartz coated and soaked with viscous CM 

and liquid light oils. The viscous CM was sampled, digested and analyzed. (B) Sample 2: Brecciated network of 

solid and brittle brown-black CM, quartz and fine grained weathered material in yellow. The brown-black CM 

was sampled (labelled sampled in white), digested and analyzed. (C) Sample 3: Colloform layers of chalcedony 

and quartz showing botryoidal textures, and calcite blades that were replaced by quartz at the top. The CM of 

the vug infills (red arrows) were sampled, digested, and analyzed. (D) Sample 3: Crystalline CM sphere in quartz 

cavity from sample 3. The red arrow indicates very fine CM layers in between the silica layers. 

5.3.1.2 Sample 2 

Sample 2 (Figure 5-3 C) is a brecciated, fractured, and partially layered rock composed 

of quartz, chalcedony, carbonates and solid but brittle CM. The sample comprises a cockade 

of carbonate (yellow and orange due to Fe-oxide staining) and CM fragments cemented by 

layered CM and silica (quartz and chalcedony), as well as a fractured zone of solid, brittle CM. 
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Dark grey silica veins, which crosscut CM and altered rock, do not crosscut the white silica in 

the center of the sample. This indicates at least two generations of silica that were introduced 

into the open space after the CM, as the CM surrounds the silica, indicating inward deposition 

of CM followed by silica. The brecciated part of the sample is dominated by carbonates with 

fragments of CM that correspond in texture and coloration to the preserved CM layers at the 

top of the sample. The top shows well preserved CM around presumable former bladed 

calcite that was replaced by quartz, as the quartz pseudomorphs now has the typical crystal 

habit of bladed calcite (Etoh et al., 2002). 

In sample 2, hydrocarbon-enriched chalcedony and quartz crystals up to 500 μm in 

length are crosscut by later hydrocarbon-free quartz veins (Figure 5-4 A; Figure 5-5). The thin 

section is very complex, so the description here is focused on features that constrain the 

paragenesis of CM-free and CM-dominant phases. Briefly, the thin section exhibits a primary 

CM-rich layering (e.g. pure CM band #1 and CM-enriched silica and silica-carbonate layers 

#4), which is disrupted by crosscutting silica veins #2 (Figure 5-5). The thick pure-CM layer 

(~5000 µm; #1) lies between two CM-enriched silica layers to the left and right (only a small 

piece of the right-hand layer is visible). CM also fills pore spaces (#3), from which it seems to 

spread into the surrounding silica. The silica grains in contact with the CM and the grains 

within the CM show fringed edges/dissolution textures (Figure 5-4 A). 

A few quartz veins crosscut the alternating layered CM and silica veins (Figure 5-5). The 

full map of the thin section (Fig. 5-5) shows one CM layer (dark brown; #1) to the right of the 

image that is free of silica (#4 in Figure 5-4 B; Figure 5-5) and several brecciated fragments of 

almost silica-free CM to the far left within a silica and carbonate matrix. The majority of the 

remaining CM in the thin section is associated with quartz and chalcedony. Still, in some areas 

CM is dominant and contains individual grains of quartz (Figure 5-4 A; Figure 5-5 A). These 

areas appear almost black in cross-polarized light (Figure 5-5 B). Most Au-Ag alloys are 

associated with CM-enriched silica Figure 5-4; B, C), but can also be found within CM only 

(Figure 5-4 C), and in association with different sulfides; mostly proustite-pyrargyrite, but also 

chalcopyrite, pyrite, and sphalerite (Figure 5-4 D) in silica or CM-enriched silica. 
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Figure 5-4: Transmitted (A, B) and reflected light (C, D) photomicrographs of sample 2. A Quartz vein (1) 

crosscutting individual quartz grains (2) with fringed edges and chalcedony enriched in hydrocarbon (brown; 3). 

B Hydrocarbon-rich chalcedony (1), a single Au-Ag alloy grain (2) in the chalcedony, and a vein filled with sulfides 

(3), mainly pyrite and some cinnabar, cutting through CM (4). C Enlarged (50x magnification) reflected light view 

of Au-Ag alloy within hydrocarbon-rich chalcedony shown in B. D Au-Ag alloy(1) associated with proustite-

pyrargyrite (2), chalcopyrite (3), sphalerite (4), and pyrite (5) surrounded by chalcedony and quartz. 
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Figure 5-5: Photomicrographs in plane-polarized light (A) and crossed-polarized light (B) of sample 2 (see also 

Figure 5-4). The red box indicates the region in which Au XANES stack was measured (Figure 5-7). Brown to dark 

brown colors are CM-enriched silica veins (mainly quartz, chalcedony; #4), and the dark brown region (#1) is pure 

CM. #2 are silica veins disrupting a silica-CM layer, and #3 is pore space filled with CM. 

5.3.1.3 Sample 3 

Sample 3 is made up of colloform silica layers, mostly chalcedony and some quartz, 

with botryoidal texture, and an upper layer of bladed calcite that was completely replaced 

by quartz. The colloform layers have a maximum thickness of 2 mm and are very fine grained. 

The bladed calcite was replaced by coarser euhedral quartz crystals with lengths of ~0.2 mm. 

Vugs within the colloform layers are commonly filled with CM, and some small vugs and 

fractures are filled with CM and liquid oil (Figure 5-6). In a vug with crystalline quartz (Figure 

5-3 D), a large (Ø = 0.5 mm) solid glassy-looking CM sphere and two smaller CM spheres (Ø < 

1 mm) are embedded within a quartz cavity. In addition, there are very fine grained layers of 

disseminated CM between the chalcedony layers, as well as chalcedony layers enriched in 
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CM, visible in both the hand sample and thin section (Figure 5-3 C and Figure 5-6). In contrast 

to the chalcedony layers, the quartz layers are usually CM free (Figure 5-6). To summarize, 

CM is present in sample 3 in the form of hydrocarbon-enriched chalcedony, as liquid oil in 

small vugs and fractures, and as solid CM in microscopic to macroscopic vugs. The textural 

relationships indicate that several CM deposition events that occurred both in parallel to, 

and alternating with, the precipitation of colloform silica. Based on optical microscopy, the 

only opaque minerals present in sample 3 are small amounts (< 0.5 vol%) of iron sulfides, 

mostly pyrite; no particulate Au-Ag alloys were observed. 

 

Figure 5-6: Transmitted light photomicrographs of sample 3 in plane-polarized (A, C, D) and cross-polarized light 

(B). A Quartz (1) and recrystallized quartz (2) in between hydrocarbon-enriched chalcedony (3). B Image A under 

crossed polars. C Vugs filled with liquid oil (1) and solid bitumen (2) and colloform layers of hydrocarbon-rich 

material (3) and hydrocarbon-free chalcedony (4). D Liquid oil filing vugs (1), veins, and fractures (2) within 

different layers of hydrocarbon-enriched chalcedony (3) that is alternating with recrystallized, elongated quartz 

(4) and fine quartz grains (5). 

5.3.2 Synchrotron X-ray fluorescence microscopy 

A gold XANES stack was measured in the area indicated in sample 2 (Figure 5-7); Au 

XANES were extracted from 6 regions in this area. The spectra of regions 1, 2, 3, 4, and 5 

resemble the spectrum of metallic Au. The quality of spectra 6 is low, but may still be in 

agreement with the spectrum of metallic Au. 
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Figure 5-7: At the top is the plane-polarized (PPL) photomicrograph of the greater region selected for the Au 

XANES stack (see Figure 5-5), and the Au XANES spectra extracted from 6 regions indicated in green are shown 

below. The metallic Au foil spectrum is from Crede et al. (2017). The spectra indicate that the Au in the selected 

regions is metallic. Spectra 1, 2, 3, 4, and 5 were measured in CM-enriched silica, while 6 and 7 were measured in 

a nearly CM-free silica vein. 

SXFM element maps collected on the billet of sample 2 and a labeled interpretation of 

the distribution of different types of dominant vein material in the billet are shown in Figure 

5-8. While visual observation of the billet suggests a clear separation of pure CM and silica 

veins (Figure 5-8 A), the thin section indicates that most of the apparent CM layers are silica 

layers and veins enriched in CM (Figure 5-5). Thus, both CM and silica are present in most 

veins and layers, with CM #1 being an exception. The CM #1 layer is silica-free according to 

optical microscopy (Figure 5-5, section 3.1.2), and a number of these pure, black and 

apparently CM-only layers are present in the hand sample (Figure 5-3 B). Some CM-free silica 

veins cross-cut CM-silica veins and layers (e.g., #6 and #9). 

The transparent Au SXFM map on top of the photo of the billet illustrates the spatial 

distribution of Au within the different veins (Figure 5-8 C). Note that due to the depth 

penetration of the SXFM technique, the element maps may not fit accurately with the vein 

pattern on the surface of the billet. The SXFM maps may cautiously be compared with the 

thin section (Figure 5-5) but it has to be kept in mind that the thin section was cut a few 

millimeters away from the surface of the billet. 
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5.3.2.1 Au SXFM 

The Au SXFM map (Figure 5-8 B) shows distinctive colloform layers and veins that are 

either low in Au or enriched in Au. Starting from the right side of Figure 5-8 B (Numbered 

from #1 to #17), the first Au-rich vein is a thin silica vein (#2; <5 µm) dividing a pure CM layer 

(#1) and a CM-silica layer (#3, Figure 5-8 A). The CM layer and the CM-silica layer appear 

brown to dark brown in plain-polarized light (Figure 5-5 A), and exhibit a low density 

distribution of Au, with #3 having a relatively higher Au density than #1. The next distinctive 

layer (#4) is a mixture of CM and silica (marked as CM-Si in Figure 5-8 D), relatively low in Au 

(see color coded Figure 5-8) and, like most of the Au in the billet, oriented parallel to the 

layer pattern. This layer is to the right of a CM-Si layer (#5, Figure 5-8D) that is relatively low 

in Au and crosscut by a silica (blue chalcedony and quartz)-dominated vein (#6) with a high 

density of Au and relatively high Au concentrations, and surrounds a fragment of relatively 

pure CM (#7) (Figure 5-8 A and C). To the left of this Au-rich silica vein is a thicker CM and 

CM-silica layer (#8) with a relatively higher Au density compared to the previously described 

CM or CMsilica layers and the vein #6. The silica vein (#9) next to this CMsilica layer is, in 

comparison, relatively Au free and is in contact with an Au-rich CMsilica wedge (#10), 

followed by a thick (5000 to 7000 µm) mélange of chalcedony and CM in contact with a quartz 

layer (#11) showing a high Au density along the contact with CMsilica layer #12. CMsilica 

layer #12 exhibits a clustered distribution of Au in addition to the high gold intensity along 

the margin to #11. CM-silica layer #13 has a few Au clusters. The distinctively Au-rich vein to 

the left is difficult to assign to a particular vein, but is very likely associated with the dark, 

thin CM rich vein (#15) that can also be seen in the thin section (Figure 5-5) and is in contact 

with a silica and carbonate rich layer (#14). The area to the left of that vein shows a relatively 

homogenous Au distribution in a broad CM and silicadominated layer (#16), followed by silica 

and Fe rich carbonates (#17). 
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Figure 5-8: (A) Photo of the billet of sample 2; (B) Transparent overlay of the AuSXFM map on top of the billet 

photo (A); (C) Interpreted layers superimposed on the Au SXFM map and the billet photo (B) with relative 

concentration of Au in A, B and C (color coded legend in the bottom right). Labels indicate the dominant material 

(CM=Carbonaceous Matter; S=silica; CM-Si= mix of CM and S); X-rays penetrate into the sample, and thus the 

overlay in (C) may not be 100% accurate, as veins may dip and change with sample depth. (D to H) Au SXFM Red-

Green-Blue maps of the billet with the elements in the color as indicated. 

5.3.2.2 SXFM of other elements 

The S background is high due to relatively high S concentrations in the epoxy of the 

billet and the CM (Figure 5-8 E) and therefore the S amount in the sample is close to the 

detection limit. Most S is associated with the silica- and CM-silica dominated veins (#6, #9, 

#11), and less so with CM-dominated veins or layers. 

Fe is present in the layers/veins #2, 5, 9, 10, 13, and 17, but is spatially not well 

associated with the distribution of Au. It correlates more strongly with the distribution of As, 

Pb, Hg and Ag. Iron sulfides identified as pyrite (FeS2) are present in #2.  



 Chapter 5 

141 

The metals Ag, Pb, and Hg correlate strongly with Au in the silica vein #6 and in the 

two distinctive Au rich layers between #11 and #12 and #14 and #15. Of these metals, Hg 

shows the strongest spatial correlation with Au distribution. These metals are also present in 

Au-poor areas of the sample e.g., the area between #11 and #15. Ag, As, and Hg are more 

abundant within the silica free CM layer #1 than Au and Pb. The presence of As is mostly 

restricted to the layers/veins #2, 5, 7, 9, and 10. Note that only the Ag hot spots are 

significant, because Ag X-ray fluorescence lines overlap with those resulting from Ar in the 

air, which results in high Ag detection limits. 

5.3.3 Fluid inclusions and CM 

Aqueous fluid inclusions in the McLaughlin samples average 10 to 15 μm in size, with 

maximum sizes of ~50 μm, and have regular to negative-crystal shapes. The inclusions are 

two phase, containing a liquid and a vapor bubble (Figure 5-9). Aqueous inclusions 

dominantly occur along crystal growth boundaries and fractures. 

 

Figure 5-9: Photomicrograph of aqueous fluid inclusions in quartz ranging from 20 μm to < 5 μm in size (sample 

1), McLaughlin deposit. 
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While aqueous fluid inclusions are abundant in the samples, less than one liquid oil 

inclusion was found on average per double polished thick section, and only one group of 

several liquid oil inclusions with sizes far smaller than 5 μm. An example of a typical 

fluorescing hydrocarbon oil or gas inclusion in quartz of sample 1 is shown in Figure 5-10 A-

B. The hydrocarbon fluid inclusions have highly irregular shapes, no visible vapor bubble, and 

show bright white fluorescence. The low number, small sizes and irregular shapes of the oil 

inclusions were not suitable for LA-ICP-MS, which was originally intended to be used to 

determine element concentrations in trapped fluids.  

The majority of hydrocarbons in the thin sections occur as liquid (especially sample 1) 

to non-liquid CM filling veins, cracks, or pore spaces along grain boundaries (Figure 5-10; C 

to F). The CM is grey, dark brown to black under reflected light in the 250 μm thick thin 

sections and is abundant (Figure 5-10). Fluorescence colors range from white to green and 

yellow.  
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Figure 5-10: Reflected light (left) and UV-light images (right) of sample 1. A and B: Highly irregular hydrocarbon 

fluid inclusion in quartz. C and D: Vein and cracks filled with hydrocarbons. E and F: Microcrystalline 

hydrocarbons on grain boundaries and in pore spaces. 

5.3.4 Au concentrations in digested CM 

The viscous CM covering the quartz and filling the pore spaces of sample 1, although 

it is soaked in liquid oil, yields an Au concentration of 10800 μg/kg. The solid but brittle silica-

free CM of sample 2 has an Au concentration of 5000 μg/kg. The vug fillings in the quartz and 

chalcedony layers of sample 3 have the highest Au concentration of 18800 μg/kg. 
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Table 5-1: Au contents in CM digested with acids 

Sample Au Mass Description 

  (μg/kg) (g)   

Sample 1 10800 0.035 Viscous CM soaked with liquid oil   

Sample 2 5000 0.104 Solid, brittle CM (bitumen)   

Sample 3 18800 0.010 Vug fillings, solid and brittle CM (bitumen) 
 

5.4 Discussion 

Below, the likelihood that metals may have been transported by CM is compared to 

the likelihood that CM/HC acted only to scavenge metals from aqueous fluid. We discuss the 

relative timing of deposition of CM, silica and the associated metals, based on textural 

observations and its implications and the possible importance of the low abundance of 

hydrocarbon fluid inclusions. 

5.4.1 Re-mobilization and mobilization Au by CM 

CM is present as liquid oils and viscous CM (tar) soaked with liquid oil, bitumen, 

bituminous vug infills, as fluid inclusions, and as a solid phase within the McLaughlin deposit. 

The liquid oil and viscous tar are still mobile, and may have been mobile from the beginning 

of the formation process of the McLaughlin deposit. This mobile form of CM has ~ 

10800 μg/kg Au (Table 5-1) and demonstrates that Au occurs in a mobile hydrocarbon phase 

within the deposit. Similarly, the high concentrations of Au in the viscous CM soaked in liquid 

oil in sample 1, in the solid silica free CM of sample 2, in the CM vug infills in sample 3, and 

in bitumen analyzed by Sherlock (2000) suggest that the Au was at one point in time 

mobilized by the hydrocarbon phase, and is still mobile in the liquid oils present until today 

within the deposit. This evidence suggests that the role of hydrocarbons may be 

underestimated, when they are interpreted to have acted as a scavenging agent only, in ore 

deposits where mineralization is closely associated with organic matter. Liquid hydrocarbons 

can act as a transport medium for Au and other metals, and may be a rival ore fluid to 

aqueous ore fluids and this ability was also demonstrated in a number of experimental 

studies (Liu et al., 1993; Zhuang et al., 1999; Williams-Jones and Migdisov, 2007; Emsbo et 

al., 2009; Migdisov et al., 2017; Crede et al., 2019; Crede et al., 2018-A; Crede et al., 2018-B). 

However, direct evidence of Au-transport by hydrocarbons may not be preserved within the 

deposit, as the observable CM is usually a decay product, i.e. secondary material that does 

not necessarily preserve the original Au distribution and concentration in CM, due to 
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modification by subsequent maturation in response to heat associated with the high 

temperature fluids that transported the quartz, and due to Au redistribution into the 

different forms of CM. Whether a hydrocarbon phase migrated from its source and was 

enriched in Au and transported the Au from the source into the later McLaughlin deposit is 

beyond the scope of this study to determine given that direct proof is so difficult to attain. 

Studies to determine the hydrocarbon origin have still to be performed and may help in that 

matter. Nevertheless, the fact remains that oil can migrate on the km-scale from a source 

rock into a rock formation that acts as a trap. Under these circumstances we can assume that 

oil is capable of transporting Au and other metals over long distances and not just within a 

deposit. This is very important for understanding ore formation processes and the 

development of ore formation models of deposits associated with CM, like e.g., the 

McLauhglin deposit, the Witwatersrand Au-U deposits (Fuchs et al., 2016), South Africa, the 

Erickson Au-Ag deposit (Parnell and McCready, 2000), some Carlin-type deposits (Groves et 

al., 2016), Nevada and many others. 

5.4.2 Au species 

Only metallic Au and Au-Ag alloys species where detected by using XANES and optical 

microscopy. XANES stacks were not collected in a pure CM layer, and thus, although metallic 

Au was found by optical microscopy in silica-free CM layers (Figure 5-4), we cannot exclude 

the possibility that Au dissolved in CM may be present within the CM. Due to the high S 

background, the XFM maps indicate only that S is present, but do not allow to interpret the 

relationship of Au and S in sample 2. A synchrotron X-ray absorption spectroscopy study by 

Crede et al. (2019) on Au in 1-dodecanethiol (CH3(CH2)10CH2SH) in contact with a 10 wt% Cl 

bearing brine suggests that Au is transported as metallic Au at temperatures above 125 °C, 

and in a dissolved form (AuI) bonded to the thiol group of 1-dodecanethiol below 125 °C. 

Depending on the timing of CM introduction and current temperature of the hydrothermal 

deposit, Au could have been transported within CM in both forms. 

5.4.3 Do textures preserve information on Au introduction? 

The following sections focus on the textural relationships and the information they 

may have preserved and whether it is possible to determine from the textures only, whether 

Au and other metals were transported by CM or scavenged by CM from aqueous fluids. 
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5.4.3.1 Scavenging of Au by CM and interpretation of textural 

observations 

Sherlock (2000) proposed the scavenging theory for the Au-enriched hydrocarbon 

silica phase and implied that particulate gold precipitated on surfaces with a negative surface 

charge that may have attracted positively charged protonated areas of hydrocarbons 

(Frondel, 1938). When exposed to hydrothermal fluids the hydrocarbons would scavenge the 

Au by absorption. However, the repeated superposition of textural features makes it hard to 

confirm or refute this hypothesis. If, as suggested by the oxygen and hydrogen isotopes, the 

source of the ore fluids is meteoric water that interacted with the marine sedimentary rocks 

of the Great Valley Sequence, and if this process let to a co-migration of hydrocarbons from 

the marine sedimentary rocks, then metals could have partitioned into the hydrocarbon 

phase during the migration stage. Partitioning of Au into the HC phase is consistent with the 

results of Au partition experiments between brine and oil (Crede et al., 2017; Crede et al., 

2019; Crede et al., 2018-A; Crede et al., 2018-B). 

The metals mapped by SXFM are associated with CM-free silica veins, intermixed CM-

silica veins, and CM dominated veins. Some CM and silica are also almost metal-free (#13 and 

#9). These associations can be used to assess the possibility that metals were transported by 

the hydrocarbon fluid. The CM in samples 1 and 3 contains Au (Table 5-1), but microscopically 

visible Au or AuAg alloys were not found in these samples. Since the Au could be in 

nanoparticulate form within the silica and thus not-visible (for optical microscope imaging), 

Au could have been scavenged from the silica bearing ore fluids. Thus, these two samples are 

less informative than sample 2, where the presence of alloy grains and the SXFM data allows 

more comprehensive interpretation. However, the preserved liquid oil in samples 1 and 3 

suggests a late oil fluid migration into the deposits and that temperatures after that event 

were not much higher than 160 °C. The combined conceptual model discussed in this section 

is summarized in Figure 5-11. 

The silica free CM layer in sample 2 (#1, Figure 5-8 D and Figure 5-5 A) contains Au, As, 

Ag, Hg, and Fe. Although not much Au is visible via SXFM, digestion and ICP-MS analyses of 

the macroscopically silica free CM of the same sample revealed 5000 μg/kg Au (Table 5-1) 

and some Au particles were identified via optical microscopy (Figure 5-4). The lack of silica in 

this thick layer is consistent with hydrocarbon phase metal transport. But it is also possible 

to argue that these metals transferred into the CM in its current location, when the CM or its 
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precursor hydrocarbon fluid came into contact with metal-bearing hydrothermal silica rich 

fluids.  

The silica-free CM (#1 Figure 5-8 D and Figure 5-5 A) layer in sample 2 shows the same 

orientation as most layers in the billet and the thin section (e.g., #4 in Figure 5-5; Figure 5-8), 

suggesting that these layers formed in the same stress-field. Layers with this orientation are 

crosscut by later silica CM-free veins that can be Au-rich (#6) or Au-free (#9). The metals could 

have been transported within a hydrocarbon fluid to result in the metal distribution in CM 

#1 (Figure 5-5; Figure 5-8), but they also could have been scavenged from the later 

introduced silica. 

The layers of sample 2 between #1 and #2 and between #2 and #3 in Figure 5-5A (#1 

to #8, Figure 5-8) show chalcedony closely associated and intermixed with CM. This 

combination is of a light brown to beige color, and is in between layers of a darker brown 

CM. The Au rich silica dominated vein (#6, Figure 5-8 C) crosscuts both, the Au bearing light 

brown CM + chalcedony and the dark brown CM, which may be Au bearing. Whether Au 

spread from the Au rich silica vein into the CM associated layers, was scavenged by the CM 

associated layers, or whether Au was transported within the CM associated layers is 

impossible to determine just from these textures. However, the Au free silica vein #9 (Figure 

5-8) crosscuts the Au rich CM and CM + quartz grains with the dissolution features (#8 and 

#10, Figure 5-8). Thus, here Au was possibly introduced in a mix of CM and aqueous fluids 

that precipitated chalcedony, and did not diffuse from the adjacent Au free silica vein into 

the CM-rich layers. 

The presence of CM is a key factor in explaining the distribution of Au within the 

deposit e.g., the correlation of Au and CM enriched chalcedony. But, based on the textural 

observations, it remains mostly inconclusive whether Au and other metals were introduced 

or transported within any form of CM. Liquid or solid CM enriched in Au is consistent with 

either Au transport within CM and scavenging of Au from aqueous hydrothermal fluids. CM 

and aqueous fluids coexisted during the formation of the deposit.  

Solid CM may immobilize Au effectively if it contains appropriate ligands, such as S, to 

bind ionic gold, which would then promote the formation/aggregation of metallic gold 

(Hough et al., 2008; Hough et al., 2011). This process could promote secondary Au mobility 

and may contribute to grade increase, but with similar textures as observed here. Thus, in 
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fossil ore deposit systems like this, it probably is impossible to reconstruct, based on the 

preserved textures and even the fluid inclusions (due to late metal diffusion), whether CM 

transported Au and other metals or not. The high Au contents in the liquid hydrocarbons are 

most likely derived by scavenging from other Au bearing phases and cannot confirm an Au 

transport in oils into the deposit. 

5.4.3.2 Relative timing of fluids 

Variation in thermal maturity of the CM phase is thought to record multiple infiltration 

episodes and with some in-situ thermal maturation, synchronous and asynchronous with 

aqueous fluids. Liquid and viscous properties of the CM are an indicator of the thermal 

maturity of the CM and the temperature that the CM has seen. Liquid oils for example must 

have been within the liquid oil temperature window not greater than 160 °C. The coincidence 

of CM and silica suggests that hydrocarbon and non-hydrocarbon fluids used the same 

pathways within the McLaughlin deposit both simultaneously, to deposit the CM-enriched 

chalcedony layers, and alternately. This implies that at some points in time hydrocarbons 

migrated without aqueous fluids from their source or from some intermediate location 

between the source and the deposit, into the McLaughlin deposit. 

The shared use of the same pathways in spite of the near absence of hydrocarbon fluid 

inclusions entrapped in the vein quartz, discussed above, is supported by textural analyses 

of samples 1 to 3 (section 3.1 and 4.3). These textures indicate that oil migration pre-, and 

post-dated precipitation of vein quartz, and that oil migrated within the deposit. 

Furthermore, the close association of CM and chalcedony suggests a parallel precipitation of 

chalcedony and CM. Observations in support of this notion are the viscous nature of the CM 

and specially the liquid oil in sample 1, and the liquid oil in sample 3. For example, the liquid 

oil associated with solid CM that is enclosed by colloform chalcedony and quartz (Figure 5-6 

C and D) in sample 3 appears to be liquid oil remaining after enclosure and partial 

degradation of the associated CM. The CM within the liquid oil must have experienced lower 

temperatures compared to the solid, degraded CM. The remaining liquid oil could then have 

migrated through micro cracks and along boundaries into the adjacent silica phases.  

The glassy CM spheres in sample 3 (Figure 5-3 D) are emplaced on quartz in only 

partially filled vugs and are thus interpreted to have formed after the quartz. The vugs are 

residual open spaces left by incomplete filling of a cavity or fracture i.e., the colloform quartz 
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bands were filling in a fracture. The hydrocarbon fluids then passed through the vugs and 

deposited the CM that we can observe now (Figure 5-11). The described order of events is 

consistent with the suggestions of hydrocarbon migration into the deposit with and without 

aqueous fluid interaction or mixing. This CM material contains 18800 μg/kg Au, but contact 

with Au-bearing aqueous fluids can’t be eliminated as a possibility. 

The complex cross-cutting relations between CM, chalcedony and quartz in samples 2 

and 3 are interpreted as repeated cycles of CM, chalcedony and quartz deposition. CM is also 

closely interlayered with chalcedony (but not quartz) indicating that CM introduction was 

synchronous with silica-bearing fluids (Figure 5-5) and that the source fluids could bear both 

silica and organic species. However, the thick CM layer (#1 inFigure 5-5 A) free of silica 

indicates that CM did precipitate, at times, without co-precipitation of chalcedony. The lack 

of CM + quartz veins suggests that CM did not precipitate together with quartz and that the 

temperature of the fluids responsible for quartz precipitation was too high for liquid CM to 

be stable. At these temperatures (>160 °C) bituminous overmature CM is expected. Aqueous 

fluids at these temperatures would have lost any dissolved CM before the fluids entered the 

deposit. On the other hand, the co-location of CM and chalcedony is consistent with 

precipitation of chalcedony at lower temperatures that permit hydrocarbon stability 

transport of hydrocarbons within the silica bearing fluids into the deposit. The other 

possibility that must be considered is that CM- bearing fluids did not use the fluid pathways 

at the same time as aqueous fluids, and that CMfree quartz was simply precipitated from 

CM-free fluids. 

Evidence of hydrocarbon introduction post-dating quartz precipitation is also provided 

by dissolution features at the margins of the quartz grains in sample 2 and the distribution of 

these quartz grains within an hydrocarbon matrix (Figure 5-4), if dissolution is assumed to be 

related to organic acids introduced after the quartz grain precipitation (e.g., Bennett et al., 

1988; Bennett, 1991; Drever and Stillings, 1997). An absence of hydrocarbon fluid inclusions 

in the quartz grains with the dissolution features, and CM filling pore spaces (Figure 5-6) also 

suggests that the CM was introduced after the quartz was introduced. To summarize, the 

textural observations imply repeated influxes of fluids that deposited quartz, chalcedony and 

CM.  



Chapter 5 

150 

5.4.3.3 Fluorescence colors 

The variation of fluorescence colors of the liquid and solid CM in this study indicate 

different compositions and thus can possibly indicate different thermal maturity stages of 

the hydrocarbons (Khorasani, 1987; Mclimans, 1987; Pradier et al., 1991; Stasiuk and 

Snowdon, 1997; George et al., 2001). The samples therefore may be either preserved oils 

from distinct migration or maturation stages in the McLaughlin deposit or alternatively, the 

oils or CM could be from a single event, with variation due to polar compounds being 

preferably adsorbed onto charged mineral surfaces leading to a separation of organic 

compounds and potentially different fluorescence colors (George et al., 2001). However, the 

range of different forms of CM from liquid to crystalline is more consistent with the expected 

result of a combination of multiple phases of migration with or without in-situ modification 

by hydrothermal heat, biodegradation or water washing (Pradier et al., 1991; Simoneit, 

1993), in addition to the separation of organic compounds. This is an indicator of multiple 

CM introduction episodes. 

5.4.3.4 Fluid Inclusion microthermometry 

Fluid inclusion microthermometry suggests that the aqueous fluids were trapped 

between 121°C and 263°C with an average temperature of 253 °C (Sherlock et al., 1995). This 

is in agreement with the replacement textures of bladed calcite, which indicates that the 

aqueous fluid was at P-T-X conditions consistent with boiling (Simmons and Christenson, 

1994). CM filling the open spaces between the bladed calcites suggest that hydrocarbons 

were either introduced or still mobile after boiling took place because at temperatures above 

200 °C, hydrocarbons would be thermally mature or over-mature and could not have 

migrated into the open space (Glikson and Mastalerz, 2000). The viscous CM and liquid oil, 

which require lower temperatures to preserve the liquidity, support the suggestion that 

liquid oils migrated into the deposit at temperatures lower than 160 °C with a source rock 

elsewhere (Jacob, 1993; Simoneit, 1993, 2000a; Simoneit, 2000b). The solid CM is clearly ex-

situ and is therefore interpreted as a maturation and degradation product of liquid HC 

introduced with or without aqueous fluids after the meteoric water interacted with the 

sedimentary rocks of the Great Valley sequence (Sherlock et al., 1995) and experienced 

temperatures above 160 °C. 
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The McLaughlin Au-Hg deposit has a prolonged dual fluid (oil and aqueous fluids) 

history. The samples bear several indicators supporting a model with multiple phases of CM 

migration, partially asynchronous with silica-introduction, into the McLaughlin deposit, 

possibly followed by in-situ maturation by hydrothermal heat, biodegradation or water 

washing and migration of viscous CM and liquid oil within the deposit, and late stage 

infiltration of liquid oil. The order of events based on samples 1 to 3 is illustrated in Figure 

5-11. 

 

Figure 5-11: Combined conceptual model recorded in samples 1 to 3 as discussed in section 4.3. 

5.4.4 Low hydrocarbon FLINCS versus abundant aqueous FLINCS 

Although some of the McLaughlin vein samples are literally soaked in viscous and liquid 

hydrocarbons (sample 1), hydrocarbon inclusions that could provide information on the 

hydrocarbon fluid composition at the time of trapping are present in extremely low 

abundances, while there are hundreds of aqueous fluid inclusions in quartz. Aqueous and 

hydrocarbon fluids could have been present in similar amounts at some points in time during 

the deposit formation, but the different fluid properties and different trapping processes of 

the two fluids could have led to differential preservation of the two types of fluid inclusions. 

The absence of a bubble in the oil inclusions indicates entrapment at low pressure or 

moderate temperature and high pressure (Bourdet et al., 2008).  
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The samples chosen for our fluid inclusion study lack the oil inclusions reported in the 

other studies of McLaughlin veins (Peters, 1991; Sherlock et al., 1995; Sherlock, 2000). One 

explanation of this difference is that liquid oil migration pathways, on which abundant liquid 

oil inclusions were produced, were missed by our sampling. The probability that this 

possibility is correct is increased if the fluid pathways are discrete and cover only a small 

proportion of the deposit. In the samples described here, cross-cutting relationships suggest 

that some of the quartz veins could have been precipitated without any presence of a 

hydrocarbon fluid if the rare fluorescing fluid inclusions in these veins are interpreted as 

inclusions of pre-existing CM similar to that in contact with the veins. Other silica veins have 

an unambiguously syn-genetic relationship with CM, but still lack abundant oil inclusions. It 

is therefore not possible to eliminate this possibility. 

However, we note that the previous works that reported hydrocarbon fluid inclusions 

did not publish images or specific information on the amount of hydrocarbon fluid inclusions 

found in their samples. Peters (1991) stated that half of her sections contained inclusions 

which fluoresced yellow-green under blue light (405-490 nm), a few of which were also 

excited by UV light (334-365 nm). According to the author, these wavelengths are indicative 

of liquid hydrocarbons in the fluid inclusions. Other studies have shown that all oil inclusions, 

even very light condensates (methane and short-chained hydrocarbons), fluoresce under 

blue light and fluoresce more strongly at shorter wavelengths (Downare and Mullins, 1995; 

Liu and Eadington, 2005). Thus, all hydrocarbons, from light to heavy and liquid to solid, 

would fluoresce under UV light. This inconsistency leads us to suspect that Peters (1991) may 

have defined all hydrocarbons, including solids, present in the samples as oil inclusions, thus 

over-representing the number of “true” liquid oil inclusions at McLaughlin.  

A likely explanation for the small number of oil inclusions as compared to hundreds of 

aqueous inclusions in single grains is a difference in wettability of the two fluids, leading to 

preferential trapping of the aqueous phase. This enables the lack of fluid oil inclusions to be 

reconciled with the proposal that hydrocarbons are present throughout the whole 

paragenetic sequence of the McLaughlin deposit (Sherlock, 1992; Sherlock, 2000). While the 

wettability of aqueous versus hydrocarbon fluids are dependent on factors such as fluid 

composition and temperature, studies of oil reservoirs have shown that silicates may be 

dominantly wetted by either oil or water (Xie et al., 1997; Morrow et al., 1998). If the oil is 

not able to wet the growing minerals because it is forced away by the aqueous phase 

(surfaces are water-wetted), aqueous fluid inclusions will be in the majority compared to oil 
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inclusions. A low oil wettability would lead to a low number of oil inclusions compared to 

aqueous inclusions and could explain the near absence of oil inclusions. 

5.4.5 Implications 

Common genetic models of Au deposits involving hydrocarbons indicate that 

hydrocarbons are usually not syn-genetic with Au mineralization and are thus not involved in 

metal transport, but acted as a reductant or when Au was available for uptake were enriched 

in Au aided in this way in metallogenesis (e.g., Parnell and McCready, 2000). This study in 

combination with the earlier presented experimental studies suggest that hydrocarbon 

liquids have to be considered as potential ore fluids. If indicators of a syn-genetic 

hydrocarbon introduction are observed, it is possible that hydrocarbons were involved in 

metal transport and further investigations can be applied to investigate the involvement of 

hydrocarbons. Re-mobilization of metals by liquid hydrocarbons can result in further 

concentration of metals within the deposit. And lastly, the role of hydrocarbons could be 

given more prominence in ore deposit exploration, by taking into account the possible 

migration pathways of hydrocarbon fluids when exploring for deposits that are known to be 

associated with hydrocarbons (Taylor, 2000). 

5.5 Conclusions 

Hydrocarbon/CM fluids and aqueous fluids were present synchronously during 

formation of the McLaughlin deposit, and the CM forms an important reservoir for Au with 

higher Au concentrations than in the average background sinter of 4490 μg/kg (Tosdal et al., 

1993). While textural evidence alone is not enough to constrain the exact role of CM, the 

high Au concentrations in liquid HC/CM in the McLaughlin deposit, the ability of oil to migrate 

long distances in addition to experimental studies showing that CM can transport metals 

better than aqueous fluids in specific environments (low to medium temperatures), and that 

hydrocarbon and aqueous fluids have used the same pathways could be strong indicators of 

a HC/CM metal phase transport. It is not clear whether metals such as Au have been 

transported into the McLaughlin deposit, but they were (re-) mobilized within the deposit. 
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6.1 Discussion and conclusions 

In this chapter progress towards the objectives of this thesis is summarized, and the 

implications of the results are discussed 

6.1.1 Progress on the objectives 

6.1.1.1 Experimental method development and oil as an ore fluid 

The experimental method for Au partitioning experiments between oils and aqueous 

fluids, or any other immiscible and density stratified fluids, was successfully developed. 

Solutions for the major issues that can arise, such as the Au loss, were devised and described 

and allow derivation of statistically robust Au partition coefficients, even when the Au 

recoveries were not 100%.  

The objective to determine the capacity and ability of oil in comparison to an aqueous 

fluid was successfully achieved using the partitioning method at the tested temperature and 

pressure conditions, The Au--brine--DDT experiments enable calculation of a DAu
org/aq of 19, 

without variation as a function of the range of pressures and temperatures investigated 

(105 °C to 150 °C, <10 bar). With this partition coefficient, 95% of the Au partitions from the 

brine to DDT. DDT, were it to be present as a pure fluid in natural systems would be an 

effective ore fluid with the potential to transport Au at high ppm concentrations with a 

currently unknown upper limit. Natural oils are not composed of 100% DDT or thiols in 

general – nevertheless other S bearing ligands in oils may act as ligands for Au as well and 

small percentages can transport significant amounts of Au for oils to act as ore fluids as 

demonstrated in Chapter 4, section 5. 

6.1.1.2 Au speciation 

New information on the speciation of Au in organic liquids as obtained. The speciation 

and coordination number of Au were determined in-situ in n-dodecane and 1-dodecanethiol 

by EXAFS measurements. At low temperatures (< 125 °C) Au can be expected to form 

covalent bonds with S in the form of Au(I)RS2
-, where R is a radical attached to the S. However, 

at T >125 °C Au(I) is reduced to Au(0) suggesting metallic Au transport, possibly in the form 

of Au nanoparticles (NPs). 
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6.1.1.3 Natural observations 

Analyses and textural observations of samples from the Au-Hg McLaughlin mine allow 

constraints to be placed on the possible roles of CM in a natural ore deposit environment. 

While textural observations remain, to some degree, inconclusive, as it is unknown whether 

the original textures were preserved, Au analysis of liquid oils containing ppm level of Au are 

consistent with experimental results. Au concentrations at ppm levels in preserved liquid oil 

indicate the potential importance of oils in ore deposits associated with CM and its capacity 

to transport Au. 

6.1.2 Implications of results 

One of the outcomes of this research, the successful method development, enables 

scientists to produce metal partition data in two-fluid systems with aqueous and oil based 

fluids in the future. Such data is much needed to understand the mechanisms responsible for 

ore formation processes in ore deposits associated with organic matter such as e.g., the 

Carlin Au deposit and province, Nevada, USA; or the McLaughlin Au-Hg deposit and the Sulfur 

Creek District, California, USA; the Lannigou Au deposit, SW Guizhou, China, and many more. 

A key result of this thesis is demonstrated by the partition experiments and the XAS 

experiments. Liquid hydrocarbons can transport significant amounts of Au and presumably 

other metals. Thiols such as DDT make up to 7 wt% of the total S content of crude oils, and 

are thus a strong possible ligand for Au. In addition, crude oils contain many other N, S, and 

O compounds that can act as ligands increasing the ability to transport Au and other metals 

even more. Oils have the ability to scavenge Au from aqueous fluids, rendering oils as a 

competing ore fluid to aqueous ore fluids. If the fluids follow the same pathway, the presence 

of an oil and an aqueous ore fluid may enhance the effectivity of the ore formation process 

by transporting more Au from the source to the final destination.  Alternatively, hydrocarbon 

fluids may have a competing role and re-distribute Au and other metals. In other cases, 

hydrocarbon fluids can simply scavenge the Au from aqueous hydrothermal fluids and 

concentrate the Au. This highly depends on the chemical composition of the two ore fluids, 

as aqueous ore fluids can contain sulfur in the lower weight-% range and are able to 

concentrate >500 ppm Au. Proof that the two fluids use the same pathways was observed in 

the Au-Hg McLaughlin deposit ore samples.  
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While Au transport in the form of AuNPs is potentially more effective compared to Au 

bonded to ligands in the form of Au(I)RS2
-, due to higher Au concentrations being able to be 

transported in the same amount of fluid (Hough et al., 2011), it remains unclear whether, in 

natural environments AuNPs are capped and stabilized by single organic compounds, such as 

DDTs that form SAMs around the individual AuNPs. Based on Stankus et al. (2010) 

observations, AuNPs are capped and stabilized by more complex natural organic matter in 

preference over single organic compounds. Thus, in low temperature environments, such as 

sedimentary basins, where natural organic matter can be abundant in many forms from 

bitumen to liquid oils, natural organic matter may effectively transport metallic AuNPs.  

6.1.2.1 Implications for genetic models for ore deposits  

The ability of liquid hydrocarbons to scavenge and transport Au, and thus to support 

or compete with aqueous ore fluids, add another level of complexity to the formation 

processes of ore deposits. This affects epithermal Au-Ag(-Hg) deposits (Sherlock, 1992; 

Pearcy and Burruss, 1993; Mastalerz et al., 2000; Sherlock, 2000); Carlin-type Au deposits 

(Radtke and Scheiner, 1970; Hausen and Park, 1986; Emsbo and Koenig, 2007; Gu et al., 2012; 

Groves et al., 2016); orogenic Au deposits (Mirasol-Robert et al., 2017); Mississippi Valley-

type Pb-Zn deposits (e.g., Parnell, 1988; Giże and Barnes, 1989; Kesler et al., 1994), 

‘Kupferschiefer’ copper deposits (e.g., Kucha, 1981; Kucha and Przylowicz, 1999; Sawlowicz 

et al., 2000), sediment-hosted U deposits (Landais, 1996; Spirakis, 1996), and Witwatersrand-

type Au-U deposits (Fuchs et al., 2016). Thus, CM is, in addition to aqueous ore fluids, a key 

factor to the metal influx. CM has the capacity to augment the metal influx and to 

concentrate and remobilize metals within a deposit. For example, after metals migrate via 

either organic or aqueous fluids and get concentrated at a location, these metals can be 

scavenged by later liquid hydrocarbons that can redistribute and further concentrate the 

metals within the deposit. A process like this is a possible explanation for the elevated metal 

concentrations in the CM associated sequences in the Au-Hg McLaughlin deposit. Such 

sequences are restricted to shallower depths of the McLaughlin deposit (Sherlock, 2000). The 

low density of liquid hydrocarbons compared to rocks would ultimately lead to hydrocarbon 

fluid migration to shallower depths of the deposit, resulting in the metal and CM-enriched 

sequences. Whatever the specific role of CM in the formation of an ore deposit, the influence 

of CM should never be disregarded when studying ore deposits associated with CM and 

derivation of genetic models 
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In addition to the role as a metal transport agent, oils may become a metal deposit of 

the future itself, due to its ability to scavenge Au and other metals from aqueous fluids, as 

demonstrated in this PhD project and based on observed metal rich crude oils (e.g., 

Samedova et al., 2009). Au and other metals may be recovered from the ashes and remains 

of burnt fossil fuels (Gilliam et al, 1982). 

6.1.3 Recommendations for future work 

Regarding the experimental work (partition and XAS experiments), future works would 

benefit from a focus on more complex fluid compositions to better represent natural 

conditions. It would be interesting to extend the temperature range to higher temperatures 

to observe the behavior of Au and/or other metals in fluids as hydrocarbons degrade. Such 

experiments would enable us to better understand CMassociated textures in ore deposits. A 

comparison of single organic compounds such as DDT with complex natural organic matter 

interacting with Au and Au nanoparticles would clarify how the AuCM interaction behaves in 

a natural environment. Specifically regarding partition experiments, research would benefit 

from experiments with aqueous fluids with more natural chemical compositions, for example 

sulfur-bearing brines. 

Regarding ore deposits, the next logical step would be to determine the source of CM, 

the possible pathways, and when and how they were enriched in Au and other metals. This 

may be achieved via fluid inclusion studies, and especially metal fractionation studies 

depending on mass, atomic radii or isotopes. As Au has no isotopes, indirect fractionation 

data may be acquired by investigating the fractionation of elements associated or bonded to 

Au such as sulfur. This could be first investigated experimentally and then compared to 

isotopic data of CM and fluids in ore deposits. 

6.1.4 Conclusions 

The objectives of this PhD project were to demonstrate experimentally whether 

hydrocarbons can act as ore fluids or not, in what form Au may be transported, and to 

support or rebut the experimental results with observations from an actual Au deposit 

associated with CM. The overall results of these three main objectives suggest that 

hydrocarbons can be as effective in transporting Au as aqueous ore fluids and thus have to 

be considered in genetic models of Au and other metal deposits associated with CM. Apart 
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from forming Au or metal reservoirs, or act as a reductant, hydrocarbons can mobilize and 

re-mobilize Au and other metals and compete with hydrothermal aqueous fluids resulting in 

a metal depletion of aqueous hydrothermal fluids. While hydrocarbon fluids may be able to 

dissolve higher concentrations of Au and presumably other metals than aqueous fluids, they 

are less abundant than aqueous ore fluids and are usually restricted to a thin zone of the 

upper crust. The extent of this zone depends on the temperature stability of hydrocarbons, 

especially liquid hydrocarbons. Thus, the role of liquid hydrocarbons in metal transport and 

deposition is restricted to the upper ~3 km of the earth crust, where liquid oil can exist. 

Therefore, a liquid hydrocarbon fluid metal transport is applicable for deposits forming in low 

temperature environments, such as Carlin-type deposits, hydrothermal deposits and 

sedimentary deposits. Summarizing, this PhD thesis demonstrated that at specific conditions 

liquid hydrocarbons are excellent ore fluids for Au and that hydrocarbons can be a key factor, 

which is often underestimated, in the formation of ore deposits  
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1 Figure (Chapter 3) 

 

Appendix Figure 1 (Chapter 3): GC-MS spectra of the unaltered 1-dodecanethiol (a, b), and after 20 h at 105 °C 

while in contact with the Au doped brine (c, d), and after 20 h at 150 °C while in contact with the Au doped brine 

(e, f). 
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