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 Background and aims The Australian arid zone (AAZ) has undergone aridification and 

the formation of vast sandy deserts since the mid-Miocene. Studies on AAZ organisms, 

particularly animals, have shown patterns of mesic ancestry, persistence in rocky refugia, 

and range expansions in arid lineages. There has been limited molecular investigation of 

plants in the AAZ, particularly of taxa that arrived in Australia after the onset of 

aridification. Here we investigate populations of the widespread AAZ grass Triodia 

basedowii E.Pritz. to determine whether there is evidence for a recent range expansion, 

and if so, its source and direction. We also undertake a dating analysis for the species 

complex to which T. basedowii belongs, in order to place its diversification in relation to 

changes in AAZ climate and landscapes. 

 Methods We analyze a genomic SNP dataset from 17 populations of T. basedowii in a 

recently developed approach for detecting the signal and likely origin of a range 

expansion. We also use alignments from existing and newly sequenced plastomes from 

across Poaceae for analysis in BEAST to construct fossil-calibrated phylogenies. 

 Key results Across a range of sampling parameters and outgroups, we detected a 

consistent signal of westward expansion for T. basedowii, originating in central or eastern 

Australia. Divergence time estimation indicates that Triodia began to diversify in the late 

Miocene (crown 7.0–8.8 Ma), and the T. basedowii complex began to radiate during the 

Pleistocene (crown 1.4–2.0 Ma). 

 Conclusions This evidence for range expansion in an arid-adapted plant is consistent 

with similar patterns in AAZ animals and likely reflects a general response to the opening 

of new habitat during aridification. Radiation of the T. basedowii complex through the 

Pleistocene has been associated with preferences for different substrates, providing an 

explanation why only one lineage is widespread across sandy deserts. 

Key words: arid zone, Australia, biogeography, chloroplast, divergence dating, genotyping-

by-sequencing, SNPs, Poaceae, range expansion, Triodia basedowii species complex 
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INTRODUCTION 

Large-scale environmental changes such as aridification have shaped and continue to 

influence the evolution and composition of biomes. As conditions change, organisms may 

persist in some parts of their ranges, become extinct in others, and/or may migrate into 

newly available or previously inaccessible ecologically favourable regions. Understanding the 

drivers behind range shifts and biome assembly can be aided by revealing current patterns 

of genetic diversity in taxa occupying regions known to have been influenced by geologically 

recent large-scale environmental changes. 

The Australian arid zone (AAZ) provides an excellent location for exploring the 

influence of continent-scale aridification on biome assembly (reviewed in Byrne et al. 2008). 

Since the mid-Miocene c. 16 million years (Ma) ago , climate in inland Australia has shifted 

from predominantly mesic (Martin 2006) to current arid conditions (e.g. average annual 

precipitation less than ~500 mm/year). Concurrently, there has been extensive landform 

change (Fujioka and Chappell 2010), leading to the formation of new habitats for  AAZ biota. 

From the onset of the Pleistocene c. 2.6 Ma (Walker et al. 2012), global glacial cycles began 

to produce alternately warm/wet and cool/dry conditions in Australia (Williams 1984), 

superimposed on a trend of global cooling (Zachos et al. 2001). The onset of cooling and 

glacial cycles correspond to the earliest evidence for stony deserts in Australia c. 2–4 Ma 

(Fujioka et al. 2005). Beginning roughly 0.8–1.2 Ma, the glacial cycles increased in amplitude 

and decreased in frequency (Pisias and Moore 1981; Mudelsee and Stattegger 1997; Clark et 

al. 1999); this climatic transition coincides with the earliest evidence for sandy dunefields in 

central Australia c. 1 Ma (Fujioka et al. 2009), which suggests heightened aridity. Some 

regional variation is evident within this overall trend, with, for example, drier conditions in 

north-western Australia from as early as the mid-Miocene (Groeneveld et al. 2017) followed 

by the humid interlude c. 5.5–3.3 Ma before a return to arid conditions by 2.4 Ma 

(Christensen et al. 2017). 

 The assembly of the AAZ biome included both taxa that descended from mesic-

adapted groups present in Australia before the onset of aridity and taxa that descended 

from more recent and likely arid-adapted dispersals (see Crisp and Cook 2013). Often, 

descendents of mesic groups are restricted to range systems or putative 

environmental/substrate refugia, e.g. geckos (Oliver et al. 2010, 2014; Fujita et al. 2010; 

Pepper, Fujita, et al. 2011; Pepper, Ho, et al. 2011), pebble-mimic dragons (Shoo et al. 2008), 

blindsnakes (Marin et al. 2013), grasshoppers (Kearney and Blacket 2008), and the conifer 

Callitris (Sakaguchi et al. 2013). . In other cases, descendents of mesic groups have 

presumably adapted to desert conditions and  show evidence of recent range expansions in 

sandy deserts surrounding the rocky range systems (Strasburg and Kearney 2005; Kearney 

and Blacket 2008; Fujita et al. 2010; Pepper, Ho, et al. 2011). Decendents of more recent 

dispersals tend to show a pattern of radiation into the expanding arid zone, with plant 
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examples including chenopods (Shepherd et al. 2004; Kadereit and Freitag 2011), Lepidium 

(Mummenhoff et al. 2004), Triodia (Toon et al. 2015) and probably Ptilotus (Hammer et al. 

2015). Animal examples include rodents (Rowe et al. 2008) and elapid snakes (Keogh et al. 

1998), although those radiations occurred across the continent and presumably did not 

involve pre-adaptation of the entire group to arid conditions.  

 An outstanding knowledge gap surrounds how AAZ plants, especially recent 

dispersals with arid ancestry, have responded to climatic and landscape changes since the 

mid-Miocene and during glacial cycles. Arid-adapted lineages might be expected to respond 

favourably to cool/dry periods as in e.g. the Chilean Atacama desert (Ossa et al. 2013). 

Evidence to date, however, suggests that cool/dry periods in Australia may have been 

difficult for the majority of the flora, including the arid-adapted lineages, as evidenced by 

declines in C4 grasses around the last glacial maximum in central Australia (Johnson et al. 

1999; Smith 2009) and from dust and pollen records indicating reduced vegetation cover 

during glacial maxima (Hesse et al. 2004; Martin 2006). Here we investigate the response of 

a group of arid-adapted hummock grasses from the AAZ, the Triodia basedowii E.Pritz. 

species complex. 

 Perennial grasses in the genus Triodia R.Br. are iconic Australian plants and dominant 

components of hummock grasslands, which cover more than 18% of the continent 

(Department of the Environment and Water Resources 2007). These hummock grasses in 

general show a wide ecological adaptability and are distributed across some of the driest 

parts of the continent, extending into tropical savannahs in northern Australia and semi-arid 

temperate regions in the south (Lazarides 1997). They are ecologically important and 

provide food and/or habitat for a variety of animals (Ealey et al. 1965; Dawson and Bennett 

1978; Kitchener et al. 1983; Losos 1988; Morton and James 1988; Daly et al. 2008; Christidis 

et al. 2010; Laver et al. 2017). Triodia is a member of the subfamily Chloridoideae (Peterson 

et al. 2010), a group of C4 grasses thought to have initially diversified in dry habitats in Africa 

in the Oligocene (Bouchenak-Khelladi et al. 2010). The closest relatives of Triodia, variably 

recovered as Aeluropus, Orinus or Cleistogenes (Peterson et al. 2010; Grass Phylogeny 

Working Group II 2012), occur in dry or sandy environments from the Mediterranean to 

Japan (Clayton and Renvoize 1986; Watson and Dallwitz 1992). Ancestors of Triodia are 

thought to have arrived in Australia c. 24–14 Ma (Toon et al. 2015), probably already at least 

partly adapted to arid conditions. 

 The T. basedowii species complex is found across much of the central AAZ, with the 

bulk of its diversity in the Pilbara region of northwestern Australia (Anderson et al. 2016). 

Following a recent taxonomic revision (Anderson, Thiele, and Barrett 2017), the complex 

includes nine species: T. basedowii, T. lanigera Domim, T. birriliburu B.M.Anderson, T. 

chichesterensis B.M.Anderson, T. glabra B.M.Anderson & M.D.Barrett, T. mallota 

B.M.Anderson & M.D.Barrett, T. nana B.M.Anderson, T. scintillans B.M.Anderson & 
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M.D.Barrett, and T. vanleeuwenii B.M.Anderson & M.D.Barrett. Of these nine species, only T. 

basedowii is widespread across sandy habitats of the AAZ, while many of the others are 

restricted to discrete geographic areas and substrates. Given the high lineage richness in the 

Pilbara (Anderson et al. 2016), it might be expected that T. basedowii expanded its range 

eastward from there, but this remains to be tested. 

 In this study, we examine evidence for range expansion in T. basedowii to identify a 

source area using novel analyses of a previously published genomic SNPs dataset (Anderson, 

Thiele, Krauss, et al. 2017). In addition, we put the diversification of the T. basedowii 

complex in a temporal context using new and existing chloroplast genomic sequences to 

relate to climate and landscape changes in the AAZ. 

MATERIALS AND METHODS 

Range expansion 

 To evaluate range expansion in T. basedowii, we used genomic SNPs obtained from a 

previously published genotyping-by-sequencing dataset (Anderson, Thiele, Krauss, et al. 

2017). We included 36 samples of T. basedowii from 17 populations across its range (see 

Supporting Information Table S1), along with three samples of T. birriliburu, four of T. nana 

and five of T. glabra to be used alternately as outgroups for determining ancestral and 

derived SNP states. Genomic SNP datasets were generated following a modification of a 

genotyping-by-sequencing approach (Elshire et al. 2011), using primers and barcodes from J. 

Borevitz (Grabowski et al. 2014). Paired-end reads were assembled using PyRAD v. 3.0.6 

(Eaton 2014) based on optimal clustering thresholds determined in Anderson, Thiele, Krauss, 

et al. (2017). The generated datasets consisted of target T. basedowii samples as well as 

samples from one of the outgroups, with SNPs retained only when they were present in at 

least four samples. SNPs were obtained from two sets of loci: "assembled" loci that had been 

generated from overlapping reads merged by PEAR (Zhang et al. 2014) and "unassembled" 

loci that had not, i.e. shorter and longer sequenced fragments with greater and lesser read 

depth, respectively (see Anderson, Thiele, Krauss, et al. 2017). We used custom Python 

(Python Software Foundation 2016) scripts to select a single SNP per locus either (1) 

randomly or (2) with a bias toward biallelic SNPs with multiple copies of the rare allele. We 

used a custom R v. 3.2.5 (R Development Core Team 2015) script to filter the resulting 

datasets to keep only SNPs present in at least one outgroup sample and to format them for 

the range expansion analyses. 

 The range expansion analyses implemented here use a measure developed by Peter 

& Slatkin (2013, 2015) based on the difference in derived allele frequencies for biallelic SNPs 

between two populations. If a source population extends its range through a series of 

founder events, it is expected that populations further from the origin of the expansion will 

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/advance-article-abstract/doi/10.1093/aobpla/plz017/5421259 by C

urtin U
niversity Library user on 17 April 2019

https://paperpile.com/c/sKpIuk/A0Bn
https://paperpile.com/c/sKpIuk/A0Bn
https://paperpile.com/c/sKpIuk/A0Bn
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/m6zb
https://paperpile.com/c/sKpIuk/m6zb
https://paperpile.com/c/sKpIuk/m6zb
https://paperpile.com/c/sKpIuk/TGs5
https://paperpile.com/c/sKpIuk/TGs5
https://paperpile.com/c/sKpIuk/TGs5
https://paperpile.com/c/sKpIuk/w4g8
https://paperpile.com/c/sKpIuk/QVqd/?noauthor=1
https://paperpile.com/c/sKpIuk/qxeV
https://paperpile.com/c/sKpIuk/qxeV
https://paperpile.com/c/sKpIuk/qxeV
https://paperpile.com/c/sKpIuk/QVqd/?prefix=see
https://paperpile.com/c/sKpIuk/QVqd/?prefix=see
https://paperpile.com/c/sKpIuk/QVqd/?prefix=see
https://paperpile.com/c/sKpIuk/SEHq
https://paperpile.com/c/sKpIuk/56Ao
https://paperpile.com/c/sKpIuk/qhXl+ymu2/?noauthor=1,1


Acc
ep

te
d 

M
an

us
cr

ipt

6 

 

have experienced more genetic drift, producing clines in the frequencies of neutral alleles 

(as alleles are lost with each subsequent founder event), and leading to populations further 

away from the origin having higher frequencies of derived alleles (Peter and Slatkin 2013). 

Peter & Slatkin (2013) observed that the measure increased linearly with distance from the 

origin of an expansion, so it could be used with a time-difference of arrival method 

(Gustafsson and Gunnarsson 2003) to detect the most likely location of the origin of an 

expansion for a set of populations. The approach has been used to infer origins of 

expansions in a group of tropical skinks (Potter et al. 2016) and to support similar inferences 

for monarch butterflies (Zhan et al. 2014), coralsnakes (Streicher et al. 2016), hares 

(Marques et al. 2017), and zebras (Pedersen et al. 2018). Dr. Peter kindly provided scripts 

implementing these analyses, which we adjusted to fit our data and geographic area of 

interest. The scripts use the R packages 'geosphere' v. 1.5-1 (Hijmans 2015), 'sp' v. 1.2-2 

(Pebesma and Bivand 2005), 'rworldmap' v. 1.3-6 (South 2011), 'maps' v. 3.1.0 (Becker et al. 

2016), and 'mapproj' v. 1.2-4 (McIlroy et al. 2015). 

 Subsets of the SNP datasets were run through the expansion scripts to assess 

consistency of any signal of expansion depending on choice of outgroup, inclusion or 

exclusion of polyploids, numbers of individuals per population, and presence of geographic 

structure. Separate analyses were run for these variations using each of the three outgroup 

taxa. Some populations of T. basedowii are tetraploid and have a slightly higher individual 

heterozygosity (Anderson, Thiele, Krauss, et al. 2017). Given that higher heterozygosity in 

polyploids could affect a signal based on allele frequencies, we ran analyses including and 

excluding tetraploid populations. Population sampling was uneven, so we ran the scripts by 

either (1) randomly choosing a single individual per population for comparison or (2) 

allowing the scripts to downsample larger populations. The expansion scripts assume a 

single origin; in the case of multiple suspected origins, Peter & Slatkin (2013) recommend 

estimating which samples are likely to have come from each origin (e.g. using geographic 

structure) and then applying their method to each group of samples separately. We assessed 

geographic structure in T. basedowii using genomic SNPs in a principal components analysis 

(PCoA; 'cmdscale' function in R) based on Euclidean distances ('dist' function in R) between 

samples. The 8663 SNPs used in the PCoA were obtained using T. birriliburu as an outgroup, 

and were randomly selected from "assembled" loci. Clusters of samples apparent in the 

PCoA were run separately in the range expansion analyses, in addition to running all samples 

together. The accuracy of origin detection is reduced and should be interpreted cautiously if 

the origin is near or beyond the edge of the sampled area (Peter and Slatkin 2013). Initial 

analyses sometimes recovered the origin at the edge of the area bounded by our sampling, 

so we broadened the geographic area for detecting the origin. 
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 We newly sequenced and assembled 28 Poaceae plastomes and downloaded 26 

more from GenBank (see Supporting Information Table S2) to conduct fossil-calibrated 

dating analyses across the grasses (dataset 1) and within the Chloridoideae (dataset 2) using 

BEAST v. 2.4.6 (Bouckaert et al. 2014). We ran multiple analyses to assess the impact of 

calibration, model choice and alignment length. We evaluated results based on two 

placements of controversial early grass fossils (Prasad et al. 2005, 2011; see Christin et al. 

2014). Clock models included the relaxed uncorrelated log-normal (UCLN; Drummond et al. 

2006) and a random local clocks model (RLC; Drummond and Suchard 2010). Further details 

of the sequencing and analyses are included in Supporting Information. 

RESULTS 

Range expansion 

Across multiple analyses we recovered a consistent signal of westward expansion for 

T. basedowii (a subset is shown in Fig. 1; see also Supporting Information Table S3), 

regardless of outgroup choice, inclusion or exclusion of polyploids, or sampling of genomic 

SNPs. The origin was variously resolved in central or eastern Australia, sometimes outside 

the current known range of T. basedowii. While the precise location of the inferred origin 

was not consistent, the analyses only recovered the origin in the eastern portion of the study 

area.   

To evaluate the possibility of multiple expansion origins, we examined geographic 

structure within T. basedowii in a PCoA (Fig. 2). There was strong evidence for geographic 

clustering, with three clearly distinct groups of samples: a "western" group focused near the 

Pilbara, an "eastern" group in central Australia, and an "intermediate" group distributed 

between these two. Running the range expansion analyses on the groups separately did not 

recover significant (P < 0.01) signals of expansion compared to isolation by distance (see 

Supporting Information Table S3), with a single exception for the eastern group. In almost all 

analyses, significant signals of expansion were only detected for all samples combined. 

Diversification timing 

Phylogenetic relationships within Poaceae were recovered (see Supporting 

Information Figs S1–S4) consistent with current understanding of grass evolution (Grass 

Phylogeny Working Group II 2012; Soreng et al. 2015) and node ages for most major splits 

(Table 1; see Supporting Information Fig. S5) were comparable to estimates from recent 

studies (Prasad et al. 2011; Christin et al. 2014; Burke et al. 2016). Estimated node ages 

within Chloridoideae (Table 2; Fig. 3) indicate that Triodia began to diversify in the late 

Miocene (7.9 Ma; 7.0–8.8 Ma 95% HPD), and that the T. basedowii complex began to radiate 

in the Pleistocene (2.3 Ma; 1.9–2.7 Ma 95% HPD). Alternative placement of the controversial 

Diversification timing 
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fossils had minimal impact (see Supporting Information Table S6) on the crown age of the 

complex (1.7 Ma; 1.4–2.0 Ma 95% HPD), and still indicated a Pleistocene radiation. 

DISCUSSION 

Expansion of T. basedowii across the sandy dunefields 

 Our results indicate that T. basedowii has undergone a recent east-to-west range 

expansion, with the origin most likely in central or eastern Australia. This finding augments 

an increasing number of studies indicating recent range expansions in AAZ lineages (e.g. 

Kearney and Blacket 2008; Fujita et al. 2010; Pepper, Ho, et al. 2011). While arid conditions 

in Australia have a history dating back to the Miocene, the more recent heightened aridity 

and formation of sandy dunefields c. 1 Ma (Fujioka et al. 2009) are likely to have created a 

widespread and relatively open niche onto which AAZ organisms with adaptations for sandy 

environments could expand. Geographic structuring in the T. basedowii complex (see 

Anderson et al. 2016) is strongly associated with substrate differences, and species now 

associated with rockier areas tend to grow poorly when cultivated in sand (e.g. T. 

vanleeuwenii; P. Grierson, University of Western Australia, unpubl. res.). Substrate has been 

implicated as a factor limiting the distributions of other AAZ organisms, principally as rocky 

refugial areas separated by inhospitable sandy habitat (e.g. Shoo et al. 2008; Oliver et al. 

2014). We hypothesise that much of the AAZ flora with similar widespread distributions 

across sandy regions will show evidence of recent range expansion, and that elements of the 

AAZ flora with sand affinities will have lower lineage richness than their sister groups in 

rocky areas, given the relatively young age of the sandy deserts. Both these hypotheses 

require further investigation. 

While the pairwise signal for expansion between populations varied across sampling 

schemes, the consistency of an east-to-west signal suggests that the Pilbara, at the western 

end of the range of the species, was not a source area for T. basedowii prior to its expansion 

across sandy dunefields. Previous work on the T. basedowii complex (Anderson et al. 2016) 

found no evidence for a refugium in central Australia, but was unable to look at diversity 

within T. basedowii populations. Based on the findings of the present study, we suggest that 

the Central Ranges or some other region of central Australia may have maintained 

populations of T. basedowii during the formation of the sandy dunefields and/or through 

Pleistocene glacial cycles. Our findings of a population expansion from eastern or central 

Australia also imply that Pilbara populations of T. basedowii, which are restricted to the 

sandy Fortescue River valley, are relatively recent incursions. These recent incursions may 

explain examples of hybridization with Pilbara species. One example of possible 

introgression involves T. lanigera, which based on genomic SNP data (Anderson, Thiele, 

Krauss, et al. 2017) is part of a different clade and closely related to T. chichesterensis, but 
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which has an ITS sequence highly similar to that of T. basedowii (Anderson et al. 2016). This 

pattern of ITS introgression in the absence of genomic mixing has previously been observed 

in a mixed population of T. lanigera and T. chichesterensis that shared ITS copies but were 

well differentiated across thousands of genomic SNPs (Anderson, Thiele, Krauss, et al. 2017). 

The demographic history of T. basedowii is likely more complex than the single point 

source of expansion assumed by the model of Peter & Slatkin (2013), as some populations 

may have diverged prior to acting as sources for others. Across most sampling schemes, 

however, we failed to detect significant signals of expansion from individual geographic 

groups. The geographic structure in T. basedowii suggests a level of differentiation, perhaps 

due to periods of minimal genetic exchange following an initial expansion (possibly during 

glacial maxima) or through ongoing isolation by distance. Recently, a simulation study (He et 

al. 2017) has challenged the reliability of the analyses we used for detecting an origin when 

the underlying heterogeneity of the environment through time is not taken into account. 

This is a particular challenge for researchers working in the AAZ, as our knowledge of the 

extent of suitable habitat for AAZ species since the mid-Miocene is poor (e.g. the extent of 

sandy dunefields through the Pleistocene). In the case of Triodia, with its varied substrate 

preferences across species, it is an additional challenge to predict large-scale suitability 

when species turnover can be at a fine scale in the landscape. Our sampling of T. basedowii 

(36 samples across 17 locations) is low compared to many population genetics studies, but 

similar sampling has been used with this approach (e.g. Potter et al. 2016, Streicher et al. 

2016), and limitations in statistical power from lower sampling of individuals is partly offset 

by the large number of markers in comparisons ( ~2000–7000; see Table S3; e.g. Willing et 

al. 2012). The variability in the location of the origin in our analyses suggests limitations of 

the method and/or the completeness of our genomic SNP sampling, as genotyping-by-

sequencing datasets are characterised by high levels of missing data. While these challenges 

raise uncertainty as to the precise location of an origin, the finding of a consistent large-scale 

pattern of westward expansion remains robust. 

Diversification timing in the T. basedowii complex 

Our dating analyses provide a new estimate for the timing of diversification in Triodia 

and the T. basedowii complex. We estimate that ancestors of Triodia diverged from their 

Asian relatives approximately 20 Ma, subsequently migrated to Australia and had begun to 

diversify by the late Miocene c. 8 Ma. Extant diversity in the T. basedowii complex arose 

from a crown radiation that began about 1.9–2.7 Ma in the Pleistocene and continued 

through glacial cycles and the climatic transition c. 1 Ma that led to the formation of sandy 

dunefields. This finding contrasts with patterns seen in some AAZ lineages that have a mesic 

ancestry, where species divergences often date to the Miocene, and Pleistocene glacial 

cycles appear to have affected phylogeographic structure rather than speciation (Byrne et al. 

2008; e.g. Pepper, Ho, et al. 2011; Marin et al. 2013). A recent study by Toon et al. (2015) 

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/advance-article-abstract/doi/10.1093/aobpla/plz017/5421259 by C

urtin U
niversity Library user on 17 April 2019

https://paperpile.com/c/sKpIuk/A0Bn
https://paperpile.com/c/sKpIuk/A0Bn
https://paperpile.com/c/sKpIuk/A0Bn
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/QVqd
https://paperpile.com/c/sKpIuk/qhXl/?noauthor=1
https://paperpile.com/c/sKpIuk/g9EJ
https://paperpile.com/c/sKpIuk/g9EJ
https://paperpile.com/c/sKpIuk/g9EJ
https://paperpile.com/c/sKpIuk/g9EJ
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/rogd+n0jc+Vkco/?prefix=,,e.g.
https://paperpile.com/c/sKpIuk/vku5/?noauthor=1


Acc
ep

te
d 

M
an

us
cr

ipt

10 

 

had limited sampling of the T. basedowii complex and indicated a somewhat older crown 

radiation in the Pliocene (see Table 2). Discrepancies between our dates and those of Toon 

et al. (2015) may be the result of dataset size (chloroplast vs. ITS + matK) and/or sampling 

effects. Sparser sampling (as in our dataset) may produce node density effects (see Heath et 

al. 2008; Simon Ho, University of Sydney, Australia, pers. comm.)), but undersampling of a 

specific clade is not expected to affect the age of the subtending node (see Linder et al. 

2005). In addition, the lack of other members of Triodia (such as a potentially faster evolving 

northern group) in our data set might have biased the age of the crown to be younger (see 

Beaulieu et al. 2015). Regardless, using either their or our date at least rules out rapid 

radiation of the complex since the earliest evidence of sandy dunefields c. 1 Ma (Fujioka et 

al. 2009). 

Synthesis: historical biogeography of the T. basedowii complex 

 Since the ancestors of Triodia arrived in Australia, probably around the mid-Miocene 

and in the southwest of the continent, major clades have diverged as the genus spread 

northwards (Toon et al. 2015). The clade to which the T. basedowii complex belongs 

diverged prior to the bulk of diversification in Triodia and currently occupies areas in central 

Australia, between and overlapping the distributions of (older) southern and (more recently 

diverged) northern clades. The two closest relatives of the T. basedowii complex (T. 

plurinervata N.T.Burb. and T. concinna N.T.Burb.) are currently distributed on the west coast 

and in the central interior of Western Australia (Anderson, Thiele, and Barrett 2017), 

suggesting that ancestors of the T. basedowii complex likely occurred in central and western 

Western Australia. 

 While phylogenetic relationships in the complex remain partly unresolved, analyses 

of genomic data (Anderson, Thiele, Krauss, et al. 2017) indicate two main groups in the 

complex (Fig. 4): a western group (T. mallota, T. glabra, T. lanigera and T. chichesterensis) 

and an eastern group (T. basedowii, T. birriliburu, T. vanleeuwenii, T. scintillans, and T. nana). 

Some of these relationships are supported by the chloroplast data presented in this study, 

although T. vanleeuwenii samples have been found with both of the two main chloroplast 

haplotypes, possibly due to chloroplast capture or incomplete lineage sorting (Anderson et 

al. 2016). We speculate that early divergences in the complex included a split between 

predominantly western and eastern lineages. 

 Substrate and potentially ecological differentiation have probably influenced 

divergences in the complex (Anderson et al. 2016). Western lineages may have diversified 

along the west coast of the continent and into the northern Pilbara (see Fig. 4), regions that 

currently have different substrates (sandy coastal plains vs. gravelly plains). Current habitat 

preferences of allopatric T. glabra (sandy) compared to T. chichesterensis (gravelly) suggest 

ecological differentiation may have developed over time in isolation, while the contrasting 
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sympatric pattern of T. lanigera and T. chichesterensis (less pronounced substrate 

preferences) might be explained by divergence in isolation. Eastern lineages, too, show 

strong substrate preference differences, with three species that are largely restricted to 

rocky substrates (T. vanleeuwenii, T. scintillans, and T. nana) and two that are found on 

sandy substrates (T. basedowii and T. birriliburu). The extent of sandy habitats prior to the 

formation of the dunefields c. 1 Ma is currently unknown, and it is possible that the 

ancestors of the sand specialists had available habitat in central Australia. We speculate that 

the eastern lineage split into a sandy lineage and a rocky lineage, the latter occupying rocky 

habitats and entering the southeast Pilbara. 

 The timing of the restriction of T. basedowii to central or eastern Australia is unclear, 

though climatic changes around the formation of the sandy dunefields c. 1 Ma could be 

reasonably implicated. Whether the split of T. basedowii from its sister T. birriliburu was 

coincident with that isolation or occurred after a later expansion from the east is also not 

clear. The westward expansion of T. basedowii across new sandy habitat may reflect an 

initial colonization of the dunefields followed by persistence through glacial cycles, or 

possibly a series of range expansions, with regional genetic differentiation from range 

restrictions or isolation by distance. 

 Despite the lack of precision around the timing of evolutionary events in the T. 

basedowii complex, distribution patterns illustrate that lineages have responded variably to 

the effects of aridity and associated landscape changes. Even among these close relatives, 

some are restricted to narrow ranges associated with specific rocky substrates, while others 

have adapted to expand onto newer sandy dunefield habitats, ultimately occupying vast 

areas of inland Australia. Future discoveries around the extent and types of habitats and 

substrates available to plants in the AAZ, and the amount of vegetation cover, from the 

onset of aridity in the mid-Miocene through Plio-Pleistocene climate changes will improve 

our understanding of adaptation, colonization and evolution within the AAZ. 

SUPPORTING INFORMATION 

Supporting information may be found in the online version of this article, and 

includes the following: (1) Sampling (Tables S1, S2), range expansion results (Table S3), and 

additional details for divergence dating analyses (including Tables S4–S6 and Figs S1–S5); (2) 

chloroplast alignments for datasets 1 and 2; and (3) custom scripts. 

Demultiplexed genotyping-by-sequencing reads are available on the NCBI Sequence 

Read Archive (SRA) under BioProject PRJNA350598, samples SAMN05942208–

SAMN05942351. GenBank accession numbers for newly sequenced chloroplasts are included 

in Table S2. 
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FIGURE LEGENDS 

 

Fig. 1. Some of the results of range expansion analyses for Triodia basedowii using different 

genomic SNP subsets. Ancestral states of SNPs were determined using T. birriliburu (A, B),  T. 

nana (C) or T. glabra (D) as outgroups. Loci sets were assembled (A, C), unassembled (D), or 

a combination of the two (B). SNPs were chosen randomly (A, D) or with a bias toward SNPs 

with multiple copies of the rare allele (B, C). Population sampling was one per population 

(A), one per population excluding tetraploids (D), all samples (C), and all samples excluding 

tetraploids (B). Panels show heat maps and probable locations of the origin of range 

expansion (purple 'X'). Populations are indicated with circles, where darker shades show 

higher heterozygosity.  

 

Fig. 2. Principal components analysis (PCoA) of genomic SNPs from individual plants of 

Triodia basedowii. Population localities are shown on the map with symbols reflecting their 

grouping in the PCoA. 

 

Fig. 3. Chronogram from the BEAST analysis of dataset 2, comprising chloroplast alignments 

with a focus on Chloridoideae and Triodia, with two outgroup samples from Danthonioideae. 

The secondary calibration from the analysis of dataset 1 is indicated by the "S" in a black 

triangle. Node bars for selected nodes of interest are 95% highest posterior density intervals. 

Node support values are posterior probabilities and are shown for values < 1.00. The Triodia 

basedowii complex is shaded at the top right. 

 

Fig. 4. Current distributions of taxa in the Triodia basedowii complex, with phylogenetic 

relationships superimposed. Two putative refugia, the Pilbara and the Central Ranges, are 

labelled and denoted with dotted lines. Taxa are denoted by letters, where G: T. glabra, M: 

T. mallota, L: T. lanigera, C: T. chichesterensis, V: T. vanleeuwenii, S: T. scintillans, Bi: T. 

birriliburu, N: T. nana, and Ba: T. basedowii. 
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Table 1. Node ages (Ma) from analysis of dataset 1 compared to previous molecular dating of the 

grasses. Node ages from Prasad et al. (2011) are with placement of the phytoliths at stem Oryzeae 

(their H1), while those from Christin et al. (2014) are based on their BEAST analysis of chloroplast 

data from across angiosperms, which included the placement of the phytoliths at stem Oryzeae. HPD 

is the highest posterior density interval. 

Study Current study Prasad et al. (2011) Christin et al. (2014) Burke et al. (2016) 
Node Age 95% HPD Age 95% HPD Age 95% HPD Age 95% HPD 
crown Poaceae 123 119–125 121 95.9–149 88.5 80.9–97.8 106 99.5–110 
crown 
BOP+PACMAD 82.4 78.5–86.5 81.6 69.6–93.8 74.5 70.3–80 85.7 75.7–97.6 
crown Oryzoideae 65.6 65–66.6 67.1 56.9–77 68 67–70.8 72.9 66–87.9 
crown 
Bambusoideae 50 40.9–59 47.4 36.5–59.7 34.2 19.8–56.2 41.5 2.9–63.8 
crown Pooideae 60.1 55.1–65.2 57.8 48.2–67.6 59.9 51.4–68.5 62.9 50.1–75.7 
crown 
Chloridoideae 41.7 38.1–45.7 33.6 24.5–42.5 41.2 33.2–49 37.3 22.6–52.7 
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Table 2. Node ages (Ma) from analyses of dataset 2. Node ages from Toon et al. (2015) are shown for 

comparison. HPD is the highest posterior density interval, RLC is a random local clocks model, and 

UCLN is an uncorrelated log-normal clock model. 

Node stem Triodia crown Triodia 
crown T. basedowii 

complex 
Analysis Age 95% HPD Age 95% HPD Age 95% HPD 
RLC 20.2 18.4–22.2 7.89 6.98–8.82 2.29 1.91–2.70 
UCLN 18.1 15.9–20.5 5.62 4.86–6.39 1.58 1.29–1.87 
matK only 19.8 11.9–28.0 10.4 5.50–17.2 3.8 1.29–7.36 
Toon et al. (2015) 20.9 17.9–23.5 14.7 11.4–18.3 4.58 2.60–6.86 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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