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Abstract

This thesis applies methods from the discipline of Information Theory to selected prob-

lems in both Economics and Finance. One concept that is central to Information Theory

is Entropy. Entropy aims to measure the degree of uncertainty or randomness in a prob-

ability distribution. Rather than arbitrarily choosing a distribution as a suitable model,

one could choose a distribution that possesses the maximum uncertainty while satisfying

certain characteristics such as integrating to one and having specific moments (supplied

by the modeller). A set of these characteristics form the constraints (or conditions) in the

optimisation problem which involves maximising Shannon’s entropy. The solution to this

optimisation problem is known as the Maximum Entropy Density (MED) and it is the

most non-committal distribution function. As such, it is an excellent choice for modelling

random phenomenon. This thesis applies this framework to four different applications

across Economics and Finance.

The global financial crisis led to a renewed focus on risk management along with an

increased need to develop more robust methods to measure financial risks. Among these

risks is liquidity i.e. an investor may find it difficult to convert some of their assets to

their true market values in cash. As such, the investor may have to sell at a discount in

order to maintain a certain level of liquidity. This thesis develops a model for liquidation

discount rate, the discount an investor has to bear in the event of a liquidation sale of a

portfolio of Australian stocks. The results indicate that the log liquidation discount rate

possesses a long memory property. Hence, an ARFIMA-GARCH model is used to capture

its dynamics. The resulting model is used for forecasting future discount rates as well as

creating a new measure of liquidation discount-at-risk. This at-risk measure provides

fund managers with a likelihood of an expected discount rate. A MED is estimated from

the liquidation data and subsequently used to calculate the liquidation discount-at-risk.

This process allows fund managers to budget for the future cost of liquidity for a given

liquidation horizon and confidence level.
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For the second application, this thesis examines the seasonality in financial returns.

This topic has been of major interest to financial investors ever since the creation of finan-

cial markets. In the existing literature, the majority of the studies focus on the seasonal

behaviour of returns in terms of the mean and variance. This behaviour/periodic change

for returns is not considered in terms of higher moments. Using a MED, this thesis to

generalises the method for detecting seasonal behaviour in return data. The proposed

method will enable the analyst to capture seasonal/periodic changes in higher moments.

This method is applied to study seasonality in weekdays (day of the week effect) and also

for trading hours within a given day (time of the day effect). By comparing MED densities

(parameters) across each weekday or time of the day, one can test for differences between

different days or for different times of the day. This methodology is applied to examine

the seasonal behaviour of returns for foreign exchange rates. The results indicate that

Wednesday is significantly different from the rest of the weekdays. Secondly, the 12 p.m.

to 2 p.m. time slot is significantly different from the rest of the trading hours in the day.

Both these results indicate changes in higher moments and these results have implications

for funds management.

For the third application, this thesis proposes a novel multivariate framework for

MED. Unlike existing approaches, this framework is able to handle both a high num-

ber of variables as well as a high number of moment constraints with relative ease. In

addition to this, the framework allows the each MED parameter to be function of one or

more exogenous variables. The statistical properties (consistency and asymptotic normal-

ity) are provided for this multivariate framework. Next, this framework is used to model

the distribution of Body Mass Index (BMI) for an individual given their socioeconomic

attributes. From the results, it is evident that these attributes affect different moments of

the estimated BMI distribution. These findings can be used to develop policies that reduce

obesity levels.

Finally, the thesis proposes a new method of modelling population changes. It is based

on the cohort component model whereby the individuals in a given age group category

transition to the next age group category over time. Based on this, the change in popu-

lation for each age group is calculated and is modelled using a varying limit censoring

regression model. Prior to the modelling stage, the Kullback-Leibler (KL) divergence

measure is used to assess if there is difference in the population across two different time

periods. These methods are applied to model indigenous populations in regional and re-

mote Australia. The results indicate that the distributions differ significantly over time.

vii



Additionally, the model predicts an increase in the overall indigenous population by ap-

proximately 15% from 2011 to 2016. In the absence of population forecasts for regional

and remote communities in Australia, these results bring direct benefits to researchers and

planning agencies. The results also have important ramifications for services providers

such as housing, health, education and infrastructure.
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Chapter 1

Introduction

The seminal paper by Shannon (1948) introduced an information criterion known as En-

tropy which measures the degree of uncertainty or randomness in a probability distribution

function. Jaynes (1957) used this concept to develop the Principle of Maximum Entropy.

This method consists of maximizing an objective function (entropy) subject to a number

of constraints. These constraints attempt to capture some of the desired properties of the

probability distribution itself. Such as the fact that the distribution function has to inte-

grate to one. This also includes constraining the distribution to have a particular mean.

More generally, these constraints can specify all the raw moments (up to certain order)

that the distribution should contain. These moments are supplied by the modeller and as

such are inputs into the optimisation problem. Solving this problem yields a maximum

entropy density (MED). This is a method of estimating a probability distribution using

a set of moment conditions which represent the only relevant information the modeller

knows. According to Jaynes (1957), the resulting distribution is the most non-committal

among all other distributions i.e. it is the optimal distribution with contains the desired

properties as well as possesses the most amount of uncertainty. Given this property, the

principle of Maximum Entropy can be applied to many problems across various disci-

plines including Physics, Engineering, Chemistry, Biology, Ecology, Computer Science

and Economics.

This thesis attempts to apply the maximum entropy framework to problems in Eco-

nomics and Finance. In particular, the work presented here is related to a field known as

Information and Entropy Econometrics (IEE). Golan and Perloff (2002) states that this

field builds on the foundations of Information Theory and the Principle of Maximum

Entropy.
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CHAPTER 1. INTRODUCTION

Examples of papers in this field include Maasoumi (1993) which provides a detailed

introduction to the principle of maximum entropy as well as the applicability of the

method to problems in Economics and Econometrics. The main focus is on highlight-

ing the applicability of information theoretic measures in modelling economic inequality

and market concentration. Maasoumi and Racine (2002) studied stock returns by using

a entropy measure which captures dependence. Moreover, this entropy measure is able

to capture non-linear dependence unlike traditional measures. Rockinger and Jondeau

(2002) used the entropy principle to develop a method to model time varying conditional

moments. Using this idea, Chan (2009) proposed a more computationally efficient method

and modelled the structure of the moments in terms of the MED parameters. Wu (2003)

uses the maximum entropy density to approximate the distribution of income. Here the

moment constraints are introduced sequentially (rather than simultaneously) in order to

assess the changes the resulting distribution. This allows one to assess the impact of

each additional moment on the resulting distribution. Golan and Maasoumi (2008) pro-

vide an overview of information theoretic and entropy methods and their applicability

to problems in Portfolio Analysis and Finance, Empirical Likelihood estimation and the

non-parametric methods. For more recent developments, refer to Armstrong et al. (2019),

Gao and Han (2019) and Handley and Millea (2019).

This thesis attempts to continue this line of research given the challenging nature of

problems in Economics and Finance as well as the flexibility of the maximum entropy

framework. A brief summary and contribution for each chapter in this thesis is provided

in the paragraphs below.

Chapter 2 provides the necessary background to the main concepts/terms discussed

in the thesis. This includes the formulation of the principle of maximum entropy and

the derivation of the solution i.e. MED. The existence and uniqueness conditions for the

solution are discussed. Next, the techniques used to estimate the MED in subsequent

chapters are outlined. For the sake of completeness, the alternative formulations of the

maximum entropy problem are briefly discussed. The necessary background on Kullback-

Leibler Divergence is provided. This quantity is used to assess the divergence in two

distributions in chapter 6 of the thesis.

Chapter 3 introduces a novel approach to measure liquidation discount for a given

portfolio. In other words, what discount rate can one expect from a fire sale of a portfolio

of stocks? Does the discount rate depend on the time of the day? Does the size of the

portfolio to be liquidated affect the discount rate? These are some of the questions this
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study attempts to answer. In addition to answering these questions, prediction tools are

developed to assist prudent fund managers in the liquidation process. It is expected that

these will enable them to achieve optimal outcomes as well as comply with regulatory

standards. This approach takes advantage of the order book information to compute the

discount factor. This is done for a different sized (small,medium and large) portfolios over

a time period. The resulting series is known as a liquidation discount rate time series. An

important finding is that the log liquidation discount rate series has a long memory prop-

erty. This evidence implies that the current liquidation discount rates are affected by

discount rates from very early periods. Using this new finding, a forecasting framework

was constructed in order to predict future liquidation discount rates. Furthermore, a liq-

uidation discount-at-risk measure was formulated to measure the level of uncertainty of a

predicted discount rate. A MED was used to provide benchmark values for this risk mea-

sure. This is of direct benefit to fund managers who are able to budget for future discount

rates rather than simply accepting the rate provided by the market on the day of the sale.

Chapter 4 develops a novel method for detecting seasonality in financial returns.

Specifically, this involves comparing estimated MEDs across different time segments in

order to detect periodic changes. The proposed method provides a more richer/thorough

method of examining seasonality given that the comparison is done at a distribution/density

level. Existing studies have focused on singular measures such as mean or variance in or-

der to explain seasonal behaviour. Furthermore, this method becomes even more relevant

where the seasonal behaviour is also present in higher moments i.e. cannot be detected

using mean and/or variance. The results in this chapter indicate that this scenario occurs

in high frequency data. The findings from this chapter have implications for financial

trading and funds management.

Chapter 5 introduces the multivariate form of the maximum entropy problem. In

addition to that, the framework also allows for the MED parameters to be functions of

exogenous variables. As a result, the exogenous/independent variables affect the shape

and scale of the estimated MED. Both of these are relatively novel additions. To date, the

existing literature does not contain this exact formulation. Notable mentions are attempts

to model the joint distribution of the variables using Copulas. To ensure that the estimator

is unbiased and well behaved, consistency and asymptotic normality proofs are provided

for the multivariate framework. An empirical application of the proposed framework is

used to model the distribution of Body Mass Index (BMI) of an individual given their

socioeconomic attributes or risk factors. This is achieved by estimating a conditional
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maximum entropy density. The conditioning variables are the socioeconomic attributes

pertaining to the individual. Previous studies have attempted to model the average/mean

level of BMI for an individual given their risk factors. The advantage of the proposed

methodology is that the impact of risk factors can be studied on different aspects (mo-

ments) of the distribution in addition to the mean. This is an extension to the standard

models which estimate impact on BMI at the mean level. From this study, it is evident that

some risk factors affect higher moments (in addition to the mean) of an individual’s BMI

distribution. For example, under the proposed framework, the researcher can measure the

impact a risk factor has with regard to the variance of an individual’s BMI distribution. In

fact, this can be extended to higher moments such as the skewness and kurtosis. Changes

in risk factors are examined closely to assess the impact on the entire BMI distribution,

in particular the tail regions which corresponds to the probability of obesity. Given the

national as well as global movement to combat obesity levels, policy makers need to not

only identify the risk factors, but also measure their impact. The analysis illustrated in this

chapter measures the impact of risk factors with regard to obesity in a clear and concise

manner. It is expected this will lead to policies that tackle the burden of disease caused

by obesity.

Chapter 6 develops a novel method of modelling the change in population over time.

This consists of three stages. In the first stage, the Kullback-Leilber divergence measure

is used assess if the population distribution has changed over time. If this measure detects

a change, then the second stage involves modelling this change in for each age group in

the population. The approach used here is based on the cohort-component model where

individuals belonging to one age group transition to another next consecutive age group

over time. The change in population observed for each age group is modelled using a

varying limit censoring regression model. In the third stage, this model is used to produce

forecasts for the next time period. This methodology was applied to examine trends in

indigenous populations living in regional and remote Australia. The projections produced

by the model are of direct benefit to researchers as well as government agencies since

currently no projections are available below the state level. Given these forecasts, policy

makers and planners will now be able to properly gauge the level of services (housing,

health, education and infrastructure) required by each community. This will led to a

sustainable economic and social environment for all regional and remote communities.

Chapter 7 summarises the results of each chapter in the thesis. This chapter also lists

some potential future work to be carried out in this area.
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Chapter 2

Background

This chapter contains necessary background material required for the subsequent chap-

ters. This includes an introduction to the Principle of Maximum Entropy as presented by

Jaynes (1957). Solving this optimisation problem yields the Maximum Entropy Density.

A step by step solution of this problem is presented. Next, the conditions of existence

and uniqueness are outlined. A brief section on the estimation is also presented. Sec-

tion 2.0.4 outlines the flexibility of the Principle of Maximum Entropy. This is achieved

by modifying the moments constraints as well the objective function. This allows a va-

riety of different classes of MED distributions. Section 2.0.5 introduces a well known

entropy based measure - the Kullback-Leibler Divergence. The definition as well as some

properties of this measure are outlined. This divergence measure is applied to problems

discussed in Chapter 6. Lastly, the multivariate form of the principle of maximum entropy

is introduced.

2.0.1 Principle of Maximum Entropy

Shannon (1948) proposed the idea of entropy as a measure of the amount of uncertainty or

randomness. The continuous random variable version of the entropy presented in Shan-

non’s seminal paper is defined as

E = −

∫
A

f (y) log f (y) dy (2.1)

where f (y) denotes a probability density function and A is the region of integration.

Jaynes (1957) proposed the principle of Maximum Entropy. This consists of maximis-

ing the entropy functional subject to certain moment constraints. These constraints con-
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sist of the desired properties of the density function. This problem can be presented in a

non-linear optimisation framework:

max. E = −

∫
A

f (y) log f (y)dy. (2.2)

subject to

∫
A

f (y) dy = 1. (2.3)∫
A

y` f (y) dy = µ` where ` = 1, 2, ..., k. (2.4)

Here, µ` represents the `th raw moment of the density. The first constraint ensures that

the resulting density function integrates to 1 over a region A. The remaining k constraints

specify the raw moments of the density. The solution to this problem yields a density

that is known as the Maximum Entropy Density (MED). The resulting MED can be inter-

preted as the density that possesses the most amount of uncertainty1 compared to all other

densities that satisfy the given constraints.

Solving this problem using Lagrange’s method yields the Hamiltonian function:

M( f ) = −

∫
A

f (y) log f (y) dx + λ′0

[∫
A

f (y) dy − 1
]

+

k∑
`=1

λ`

[∫
A

y` f (y) dy − µ`

]
.

Maximising the function M( f ) yields

f (y) = exp(λ0) exp

 k∑
`=1

λ` y`


where λ0 = λ′0 − 1. Here exp(λ0) can be expressed as

exp(λ0) =

∫
A

exp

 k∑
`=1

λ` y`
 dy

−1

= Q.

The quantity Q denotes the normalising constant which ensures that the first constraint is

satisfied. Hence the MED can be expressed as

f (y) = Q−1exp

 k∑
`=1

λ` y`
 . (2.5)

1In Jaynes (1957) paper, the phrase most non-committal is used.
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From the above derivation, one can see that the MED is a Generalised Exponential

distribution (equation 2.5). The λ` values represent parameters of the MED. These pa-

rameters are responsible for controlling different aspects of the distribution such as shape,

scale and location of the distribution. Special cases of this family include the exponential

and normal distribution (See Proposition 1 in Chan (2009)). With the higher number of

parameters, this distribution allows a great deal of flexibility with regard to shape of the

distribution. This property is especially desirable from a modelling perspective.

Different values of µi will produce different λ` values and this will create distributions

which vary with respect to their mean, variance, skewness, kurtosis etc. Hence, the infor-

mation from raw moments is transformed into MED parameters. The MED parameters

(λ) are essentially non-linear functions of the raw moments that form the constraints (See

Proposition 2 of Chan (2009)). This following result captures the relationship between

the MED parameters and the raw moments:

∂λ`
∂µi

= (µ`+i − µ`µi)−1 ∀ `, i = 1, . . . , k. (2.6)

From the above expression, it is evident that higher moments must exist for the result to

hold. Even though the constraints consist of k moments, based on the result above the µ2k

must exist.

2.0.2 Existence and Uniqueness

Given the non-linear nature of the optimisation process, one is required to verify the

existence of solution i.e. the resulting MED. The MED problem is connected to the

classical moment problem in probability theory. For a given sequence of moments, does

there exist a probability measure which satisfies those moments and is it unique. Note,

that classical moment problem is divided into three problems - the Hamburger moment

problem, the Hausdorff moment problem and the Stieltjes moment problem. Each of these

problems are characterised by different support for the measure.

Frontini and Tagliani (1997) provides the existence conditions required for the MED.

This existence condition is related to the positivity of the Hankel determinants. A Hankel

matrix (Hk) is matrix that consists of moments as elements. A Hankel matrix of order ` is
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written as

H` =



µ0 µ1 . . . µ`

µ1 µ2 . . . µ`+1

...
...

. . .
...

µ` µ`+1 . . . µ`+`


. (2.7)

The necessary and sufficient condition for the existence of a maximum entropy solution

is that the determinants of the Hankel matrix is positive i.e. |H`| > 0 for ` = 0, 1, .. k
2 . Note

the k is the total number of moments considered in the optimisation This result is true for

the Hamburger case. For the Stieltjes case, the existence conditions are the same albeit

using a modified definition of the Hankel determinant. For further details, please refer

to Frontini and Tagliani (1997). There is an alternative proof for existence by Mead and

Papanicolaou (1984). It involves investigating the properties of a potential, Γ. This is a

Legendre transformation which expresses a function in terms of µ and λ.

Γ = ln Z +

N∑
n=1

µnλn

Here, Z denotes the normalising constant of the MED. Firstly, this potential is shown

to be convex everywhere and furthermore it has a unique absolute minimum if the finite

moment sequence is monotonic.

Given that a solution exists, there is a possibility that it may not be unique. In other

words, solving a non-linear optimisation problem could yield multiple solutions. The ex-

istence condition stated above do not guarantee uniqueness of the solution. The unique-

ness relies on the asymptotic behaviour of the ratio between a Hankel determinant and a

adjusted Hankel determinant 2. Frontini and Tagliani (1997) use the concept of entropy-

convergence to prove uniqueness of solution. Zellner and Highfield (1988) also showed

the uniqueness of the resulting MED (equation 2.5). This was done by relating the first

order conditions of both the optimisation problem (equation 2.2) and the maximum like-

lihood problem. The results relating existence and uniqueness of the MED are quite

important, especially with regard to empirical work.

Another aspect with regard to empirical work which needs to be considered is the ex-

istence of the moments itself. The constraints (equations 2.3 and 2.4) in the optimisation

problem require the existence of population moments (up to order k). In empirical stud-

ies, one only has the luxury of a sample. A natural question to ask is that can the sample

2This determinant is computed from a Hankel matrix where the first column and row are deleted
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provide any information about the existence of the population moments. Although a large

sample may help alleviate this issue, it still cannot guarantee the existence of population

moments. The result by Hill (1975) can be used to verify the existence of the highest

sample moment available for a given iid sample. This method estimates the tail index and

can be extended to include dependence within the sample. Subsequently, if the sample

moments do exist (up to a certain order) then one can argue that they are consistent es-

timators of the population moments i.e. µ̂` → µ`. Hence, under this condition sample

moments can be substituted in place of population moments.

2.0.3 Estimation

One possible method of estimating the MED parameters is via Maximum Likelihood

Estimation (MLE). The MLE procedure takes advantage of the fact that the structure of

the MED is known and as such one can write the log-likelihood of the MED and estimate

its parameters. The log-likelihood for the MED derived above (eq. 2.5) is given by

L(λ`; yi) =

n∑
i=1

log f (yi) = −n log Q +

n∑
i=1

k∑
`=1

λ` y`i

Here the aim is to find values of λ` that maximise L(λ`; yi). In order for such a solution

to exist, L must satisfy a set of regularity conditions. Given that the resulting MED is part

of the exponential family, such results have already been proven in the wider literature

(see Barndorff-Nielsen (2014)).

For computational convenience, the first order derivatives are computed. Given the es-

timation framework above, one can apply this data driven technique to estimate a MED. In

doing so, the estimated MED will closely match the characteristics of the sample that was

observed. This allows the researcher to estimate a density that can adapt/accommodate a

wide variety distributional aspects such as skewness, fat-tails and even multi-modality.

Another computational method which can be used to estimate the MED parameters

(λ`) involves solving a set of non-linear equations:
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∫
A

f (y) = 1∫
A

y f (y) = µ̂1∫
A

y2 f (y) = µ̂2

...∫
A

y` f (y) = µ̂`

...∫
A

yk f (y) = µ̂k

Here f (y) denotes the MED (eq. 2.5) and µ̂` denotes the estimated `th population

moment. Note that the integration bounds are specified by the user. This flexibility allows

the estimation to be carried out in the appropriate range as per the context. Solving the

set of above equations will yield λ` for ` = 1 . . . k. For k ≤ 2, it is possible to derive

the solution of the parameter analytically. However, no closed form expressions exist for

k > 2 (Rockinger and Jondeau (2002)). Hence, a numerical routine is required.

2.0.4 Alternative Distributions

The objective function i.e. Shannon Entropy can be replaced by an alternative entropy

such as the Renyi or Tsallis Entropy. As such the resulting MED would differ depending

on which objective function was used. The number of moment constraints (equations 2.3

and 2.4) used also affects the final form of the the resulting MED. For example, only using

the first constraint (density must integrate to 1) produces a uniform distribution as a MED.

This is expected since, in the absence of any other information (higher order moments),

the MED allocates an equal probability across all possible values of the random variable.

As additional information is added in the form of more moment constraint/s, the resulting

MED shifts away from the uniform distribution. Other modifications include changing

each of the moment constraints themselves. Instead of using the raw moment constraints,

one could use log moment constraints or absolute value moment constraints. In its most

general form, a constraint can be expressed as
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∫
A

g(y) f (y) dy = h(µ`) where ` = 1, 2, . . . k.

Different modifications of the constraints yield different MEDs. Park and Bera (2009)

provide a table containing the resulting MED for different moment conditions. Examples

of these MEDs include the Exponential, Normal, Log-Normal, Beta, Gamma, Wishart

and various other distributions. Given the variety of distributions that can be accommo-

dated in this framework, it provides the flexibility required for empirical work. However,

the existence and uniqueness of solution have only been proven for the raw moment con-

straints with Shannon’s Entropy as the objective function.

2.0.5 Kullback-Leibler Divergence

Suppose that one is attempting measure how to far apart or different two distributions

are from each other. Given two discrete distributions p(i) and q(i), this concept can be

expressed as the following hypothesis:

H0 : qi = pi

H1 : qi , pi

The Kullback-Leibler (KL) Divergence (Kullback and Leibler (1951)) measures the di-

vergence between two probability distributions. In other words, it measures how much

a given distribution diverges from a benchmark distribution. The KL divergence can be

expressed as

KL(p|q) = −
∑

i

pi log
pi

qi
(2.8)

If the two distributions are similar, then the KL divergence would be close to zero. As

they grow apart the divergence measure would significantly differ from zero. This critical

values of KL divergence can be obtained from the double F-distribution under normality.

The KL divergence measure is also closely linked to the chi-squared goodness of fit test

statistic.

If the benchmark distribution was a discrete uniform distribution, then the above ex-

pression is equivalent to the Shannon Entropy. The KL divergence presents a more general

case. This measure is always non-negative i.e. KL(p|q) ≤ 0. However, it does not sat-

isfy all the properties of a distance metric. For example, swapping the given distribution
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with the benchmark distribution will not yield the same result as the original metric i.e.

KL(p|q) , KL(q|p).
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Chapter 3

Time Series Properties of Liquidation

Discount

3.1 Introduction

Investors sell assets for two primary reasons. The first reason is purely utilitarian i.e. cash

flow from proceeds of the sales are required by the investor for personal/business reasons.

The second is speculation. Here, the investor does not require the cash, however may feel

that the price of asset may fall as such selling it may be pre-emptive. In the first case,

the investor may have to bear a small loss due to the urgent nature of the sale. As such,

accessing stock market liquidity entails a real cost for investors. This chapter presents a

practically-oriented ”liquidation discount” measure for the cost of stock market liquidity.

Our perspective is that of a stock market investor with a long spot position in a ”large”

portfolio who has concern for the possible need to liquidate the portfolio in the future.

Our liquidity cost measure, liquidation discount, is the market impact discount in value

yielded by the instantaneous sale of the portfolio in one parcel, relative to its in-hand

market value calculated from the prevailing pre-liquidation market prices of the portfo-

lio components. For a notional market order to sell a large portfolio in one parcel, this

study empirically identifies the instantaneous liquidation discount (due to market impact)

would have been each day of the sample period. By modelling the time series behaviour

of liquidation discount, this study is able to forecast the level and uncertainty of future

liquidation discount.

Executing a large market order sale in one parcel might entail considerable market im-

pact cost (representing an average price discount for immediate liquidity), but will benefit
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from a high degree of average price certainty and cash flow immediacy. To mitigate mar-

ket impact cost, but with some loss of price certainty and cash flow immediacy, a large

trade may be split up into smaller parcels and submitted to the market gradually over

some interval of time (Chan and Lakonishok (1993) and Chan and Lakonishok (1995)).

Bertsimas and Lo (1998) derive portfolio transaction strategies that optimise the trade-off

between market impact cost and the risk associated with price volatility over the execution

horizon. Engel et al. (2012) introduce ”liquidation value at risk” to assess the price risk

versus market impact cost trade-off for different order execution approaches. To ensure

the empirical credibility of the liquidation discount time series, this study disregards the

flexibility to split the notional sell order into multiple parcels and hence avoid the need

to assume any debatable theoretical extrapolation of the price and liquidity ripple effects

that would be transmitted from any one trade parcel to subsequent trade parcels.

A portfolio’s notional single-parcel liquidation discount is explicitly measurable in

an order driven market with an open limit order book, and is negatively indicative of

the instantaneously available stock (i.e., quantity or depth) of order book liquidity in the

form of bid-side limit orders. It is to be emphasised that this study is not presenting

or suggesting an optimal liquidation strategy. The objective to this study is to obtain a

meaningful and quantifiable measure of liquidity cost. Our liquidity cost measure and its

time series dynamics serve as an empirically verifiable benchmark for other liquidation

strategies that might have more opaque liquidity costs such as multi-parcel or private (e.g.,

dark pool) transactions.

The Australian Securities Exchange (ASX) is an order driven market with an open

limit order book. From 2006 to 2011, this study measures the daily morning and afternoon

liquidation discount for variously-sized value-weighted portfolios of the leading 10 stocks

listed on the ASX. The properties of the log transformations of these time series are mod-

elled with the Autoregressive Fractionally Integrated Moving Average-Generalized Au-

toregressive Conditional Heteroskedasticity (ARFIMA-GARCH) model first developed

by Baillie et al. (1996). That is, the mean component of each series is modelled using the

long-memory ARFIMA model (Granger and Joyeux (1980) and Hosking (1981)), includ-

ing ARMA and ARIMA as special cases (with d=0 and d=1 respectively); and the vari-

ance component of each series is modelled with the GARCH model (Bollerslev (1986)).

Model performance is assessed in terms of out-of-sample forecasting mean squared error

(MSE).

For the sake of model parsimony and generalisability across the various log liquidation
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discount time series, with only modest compromise in terms of forecasting MSE perfor-

mance, this study proposes a single parsimonious ARFIMA(1,d,0)-GARCH(1,1) model.

Using this model, a liquidation discount-at-risk measure is formulated using MED pro-

cedure mentioned in Chapter 2. The estimated MED provides critical values required in

the calculation of liquidation discount at risk. This metric could allow portfolio managers

to budget for the future cost of portfolio liquidity for a chosen liquidation horizon and

confidence level.

This is a step towards improved recognition of liquidity risk within analytical models

of general portfolio risk. The Bank for International Settlements (2001) (promotes such

development of ”risk assessments that take account of market liquidity” and consideration

of ”how such measures could be used in the disclosure of market risk”. For example, from

the sample, when the cost of liquidity was at its highest during the onset of the Global

Financial Crisis in late 2008, the manager of a value-weighted top-10 Australian stock

portfolio worth about $3 million would have been able to use the proposed model to

budget for a cost of liquidity less than or equal to 0.5% (i.e., about $15,000 or less) for a

five trading day liquidation horizon, with 99% confidence.

3.1.1 Practical measurement of stock market liquidity

In an order driven market such the way that is considered in this study, bid 1 and ask 2

limit orders (submitted to the limit order book 3) supply liquidity by offering the option

to transact at prices somewhat less favourable than the prevailing market price, and mar-

ket orders consume liquidity by exercising limit order options (thereby creating trading

volume). The cost for liquidity suffered by market orders, in terms of an unfavourable

transaction price, is compensation to limit orders for the risk of transacting with informed

market orders. See O’Hara (1997) for an overview of information-based models of market

microstructure.

Liquidity metrics determined from limit order book characteristics are variously re-

flective of the interconnected ”depth” and ”width” dimensions of liquidity as per the

nomenclature of Harris (1990): depth being indicative of the trade size that can be ac-

commodated at some degree of disadvantage to the market price; and width being in-

dicative of the price disadvantage against the market price (i.e., market impact) that must

1potential buyers bid price
2potential sellers asking price
3list of bid and ask prices listed in descending order
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be suffered for a given trade size. Sarr and Lybek (2002), Aitken and Comerton-Forde

(2003) and Goyenko et al. (2009), for example, provide summary and comparison of a

wide variety of approaches to measuring stock market liquidity. Aitken and Comerton-

Forde (2003) find that order-based measures of liquidity, which, to some extent, take into

account limit order book conditions, provide a better proxy for liquidity than trade-based

measures reflective of trading volume. Couched in this terminology, conditional on a no-

tional portfolio sell order size, the proposed liquidation discount measure is an average

width measure weighted with respect to both the portfolio composition and the limit or-

der depth stratification down through the price steps of the bid-side order books of each

portfolio component. More simply and practically stated, liquidation discount is the dis-

count in value yielded by the immediate sale of the portfolio relative to its pre-liquidation

market value.

The proposed liquidation discount measure and its time series are purposed to be an

unambiguous empirical reflection of the practical bid-side liquidity cost faced by investors

with long equity portfolios (such as mutual funds). In contrast, measures that aim to sum-

marise two-sided (bid and ask-side) market liquidity, while potentially useful as indicators

of market conditions, tend not to be directly representative of practical trading concerns.

For example, Aitken and Comerton-Forde (2003) review three order-based measures of

liquidity. The first, time-weighted relative bid-ask spread, only reliably reflects the rela-

tive liquidity cost that can be expected within some period of time for an instantaneous

round-trip trade in a small parcel of stock. The second, relative depth, is the maximum

proportion of a stock’s shares on issue that can be simultaneously both bought and sold

for an unknown net position and at an unknown disadvantage to the market price. The

third, ”new liquidity measure” (p56), uses historical limit order execution rates as weight-

ings in the averaging of the values of all standing bids and all standing asks separately,

and then combines the weighted bid and weighted ask values for a mid-point measure.

None of these measures are directly representative of the practical liquidity requirements

of market participants.

Cao et al. (2009) formulate a two-sided width measure built from bid and ask-side

measures that are directly comparable with the proposed liquidation discount concept.

Cao et al. (2009)’s demand side price impact measure, LD(q) (see their equation (14)),

formulates the average absolute (i.e., dollar) discount per share of a single-stock market

sell order for q shares; whereas the proposed liquidation discount specification is a relative

measure applied in a portfolio context. In similar fashion Cao et al. (2009) also specify a
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supply side price impact measure, which they combine with LD(q) to obtain ”the scaled

imbalance in price impact” (p32). Cao et al. (2009) do not concern themselves with

forecasting liquidity or liquidity risk as this study does, but instead they demonstrate the

role of the limit order book in price discovery.

Lillo and Farmer (2004) investigate the relationship between the flow of liquidity-

consuming market orders and the stock of liquidity at the best bid or best ask. They

specify ”relative liquidity” to be the ratio of market order size to the best-price limit order

volume available to fill the market order. That is, Lillo and Farmer (2004)’s relative liq-

uidity measure reflects demand for liquidity scaled by the best-price available supply of

liquidity; whereas the proposed liquidation discount measure reflects the cost of access-

ing the bid-side supply of liquidity, inclusive of and beyond the best-bid price. Lillo and

Farmer (2004) find that both the buy versus sell direction of market orders and relative

liquidity follow long-memory processes in an anti-correlated way that makes the identi-

fied predictability of market order direction difficult to exploit for profit. This study finds

that liquidation discount also demonstrates long-memory.

Demand for and supply of liquidity is often dependent on portfolio or market return

performance Hameed et al. (2010). The manager of a poorly performing portfolio may

be forced into a fire sale of the portfolio as a consequence of margin calls or capital

withdrawals (Brunnermeier and Pedersen (2009); Shleifer and Vishny (2011)), leading to

excess demand for liquidity feeding back into further downward price pressure and further

demand for liquidity. As per the price pressure hypothesis of Scholes (1972), market

prices can deviate from their information-efficient values as a consequence of imbalances

in the demand for and supply of liquidity. The large negative cumulative average abnormal

returns associated with mutual fund fire sales measured by Coval and Stafford (2007),

for example, superficially seem not to concur with this study’s comparatively modest

observations of liquidity cost: across the various portfolio scenarios this study measures

a maximum liquidation discount of only about 0.5%, whereas Coval and Stafford (2007)

report a fire sale cost of liquidity of the order of 14%. However, Coval and Stafford (2007)

measurement indicates the cumulative cost of liquidity over a period of time conditional

on (poor) portfolio performance, whereas the proposed liquidation discount time series

distill the instantaneous cost of liquidity through time regardless of portfolio or market

return performance.

For a given portfolio (which may in fact be a sub-portfolio/parcel of a larger portfo-

lio), the portfolio manager need only check the current and lagged liquidity conditions for
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that portfolio to then use the proposed method to forecast the cost of liquidity for a chosen

liquidation horizon. Despite the sample including the perturbation of the Global Financial

Crisis, the log liquidation discount time series are all found to be stationary.If liquidation

is actually exercised and a second portfolio is to then be considered for liquidation, the

effect of the first portfolio’s liquidation will be reflected in an updated observation of cur-

rent liquidity conditions. A series of portfolio sales concentrated in time during a period

of high liquidity cost (as would typically be the case for a fire sale) would entail a series of

positively correlated liquidation discounts that could easily amount to a cumulative cost

of liquidity of order to match Coval and Stafford (2007) measurement.

3.2 Liquidation discount

For a portfolio of N stocks, at time t for stock x ∈ {1, 2, ...,N}, sx
t is the number of shares

of stock x held in the portfolio. The bid-side limit order book for stock x is represented

by length-m vectors qx
t and bx

t :

qx
t =



qx
t,1

qx
t,2
...

qx
t,m


and bx

t =



bx
t,1

bx
t,2
...

bx
t,m


where qx

t,1 is the number of shares for limit order purchase at the highest (best) bid

price bx
t,1; qx

t,2 is the number of shares for limit order purchase at the second highest bid

price bx
t,2; . . . ; and qx

t,m is the number of shares for limit order purchase at the lowest

(mth-best) bid price bx
t,m. Additionally,

qx
t,0 = 0 and bx

t,0 = 0.

Liquidation of sx
t shares will “consume” the bid-side order book to depth dx

t ∈ {0, 1, ...,m−

1} such that:
dx

t∑
i=0

qx
t,i ≤ sx

t <

dx
t +1∑
i=1

qx
t,i.

Therefore the liquidated value of sx
t shares, lvx

t , is given by:

lvx
t =

dx
t∑

i=0

qx
t,ib

x
t,i +

sx
t −

dx
t∑

i=0

qx
t,i

 bx
t,dx

t +1 .
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The market value of sx
t shares, mvx

t , is to be determined from the highest bid price plus

a half-tick 4:

mvx
t = sx

t

(
bx

t,1 +
tickx

t

2

)
.

The portfolio liquidation discount, ldt, is therefore:

ldt = 1 −


N∑

x=1
lvx

t

N∑
x=1

mvx
t

 . (3.1)

The equation (3.1) formulation for portfolio liquidation discount can be more intuitively

summarised as the following ratio measure:

portfolio liquidation discount =
market value − instantaneous liquidation value

market value
.

Previously this has been described as a liquidity cost measure, however another interpre-

tation of liquidation discount is that it indicates the relative amount of a portfolio’s value

that is (instantaneously) illiquid. Compare this to a debt-to-assets corporate leverage ratio.

Just as a leverage ratio indicates the relative amount of a firm’s asset-value that is finan-

cially inflexible, liquidation discount indicates the relative amount of a portfolio’s value

that has redemption inflexibility. Hence, similar in context to the way a leverage ratio is

a measure of a firm’s financial risk, liquidation discount can be considered a measure of

a portfolio’s liquidity risk. For the purpose of analysis, a log transformation is applied to

portfolio liquidation discount ldt (equation (3.1)) i.e. let `t = log ldt.

Data for this study pertain to stocks listed on the Australian Securities Exchange

(ASX). The ASX is a purely order driven market with an open limit order book. In

January of each year from 2006 to 2011 this study identifies the top 10 (highest weighted)

stocks from the ASX/S&P200 index for inclusion in the notional portfolio. This 10-stock

portfolio is, over time, variously constituted by 14 unique stocks (see Table 3.1). For

these 14 different stocks daily time series of shares on issue are obtained from the Morn-

ingstar DatAnalysis database, and twice-daily (at 10:15, shortly after market open, and

15:45, shortly before market close) ”snap-shots” of the bid-side limit order book from

the Securities Industry Research Centre of Asia-Pacific (SIRCA) AusEquity database, for

the period October 2006 to October 2011. This is achieved by identifying the starting

4Tick size is the smallest increment/movement by which a stock price can move. For the ASX market,
this amount is $0.01.
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Table 3.1: Annual portfolio composition by company, in millions of shares, where
γ ∈{0.0001%, 0.0002%, . . . , 0.0008%} is the portfolio size factor.

Company
ticker

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Jan
2010

Jan
2011

BHP 3,590γ 3,496γ 3,356γ 3,356γ 3,356γ 3,356γ
CBA 1,289γ 1,290γ 1,316γ 1,471γ 1,534γ 1,549γ
WBC 1,831γ 1,851γ 1,878γ 2,880γ 2,974γ 3,005γ
ANZ 1,831γ 1,839γ 1,920γ 2,158γ 2,533γ 2,596γ
NAB 1,597γ 1,630γ 1,634γ 1,870γ 2,118γ 2,170γ
WOW 1,164γ 1,204γ 1,215γ 1,225γ 1,240γ 1,213γ
TLS 5,997γ 10,245γ 10,319γ 12,443γ 12,443γ 12,443γ
WDC 1,749γ 1,773γ 1,942γ 1,965γ 2,308γ
RIO 456.8γ 456.8γ 456.8γ 606.8γ 435.8γ
QBE 818.6γ 886.1γ 986.6γ
WES 1,005γ 1,005γ
WPL 666.7γ
CSL 603.0γ
NCM 765.2γ

portfolio of top-10 stocks in January 2006 update the portfolio each subsequent January.

In other words, in January of each year the portfolio is formed to hold proportion γ of

the total shares on issue of each of the top 10 (by weighting) ASX/S&P200 companies.

Although the companies in the portfolio are only updated annually, the quantity of shares

of each company in the portfolio is updated with any change in total shares on issue. The

proposed liquidation discount time series does not begin until October 2006 due to the

SIRCA data being especially ”patchy” prior to October 2006. With respect to the pro-

posed liquidation discount formulation: the number of stocks in the portfolio is N = 10;

the SIRCA database only records bid-side depth to 20 steps, therefore m = 20; and for all

the portfolio stocks a half-tick (tickx
t /2) is $0.005.

A top-10 ASX portfolio is constructed by specifying a portfolio size factor, 0 < γ ≤ 1,

to be the fraction of the total shares on issue of each stock actually held in the portfolio.

That is, defining S x
t to be the total shares on issue for stock x at time t, the number of

shares of stock x in the portfolio is given by sx
t = γS x

t (see Table 3.1). By this method

the portfolio will be value-weighted. The maximum choice for γ is limited to ensure the

notionally liquidated volume of each portfolio component never exceeds the 20-step depth

limitation of the SIRCA database. For this investigation, consider values of γ between

0.0001% and 0.0008% inclusive. Figure 3.1 and the summary data in Table 3.2 show that,

over the sample period, the smallest portfolio specification (γ = 0.0001%) has an average

value of about $0.5 million, and the largest portfolio specification (γ = 0.0008%) has an
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CHAPTER 3. TIME SERIES PROPERTIES OF LIQUIDATION DISCOUNT

Figure 3.1: Daily portfolio value for portfolio size factor γ ∈ {0.0001%, 0.0004%,
0.0008%}.

average value of about $4 million (all values are in Australian dollars).

Graphs and summary data for morning and afternoon daily liquidation discount and

log liquidation discount time series for different portfolio size specifications of the value-

weighted top-10 ASX portfolio are given by Figure 3.2 and Table 3.2. Figure 3.2 shows

the increased cost of liquidity (i.e., liquidation discount) associated with increased port-

folio size (represented by increased portfolio size factor, γ), and the comparatively high

cost of liquidity associated with the heights of the Global Financial Crisis around Octo-

ber 2008. Figure 3.2 also shows that liquidity cost is, on average, higher in the morning

at 10:15 than in the afternoon at 15:45. Table 3.3 presents Augmented Dickey-Fuller,

KPSS and Phillips-Perron unit root test statistics for the log transformation of the liq-

uidation discount time series: It is concluded that the time series are stationary and con-

tain no structural breaks (this conclusion is further supported by Elliot-Rothenberg-Stock,

Schmidt-Phillips and Zivot-Andrews unit root test statistics).
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Figure 3.2: Daily portfolio liquidation discount and log liquidation discount for portfolio
size factor γ ∈{0.0001%, 0.0004%, 0.0008%}.
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Table 3.3: Morning and afternoon log liquidation discount time series unit root test statis-
tics and autocorrelation for portfolio size factor γ ∈{0.0001%, 0.0004%, 0.0008%}. For
each of the tests, the null hypothesis states that a unit root exists.

Unit root test statistic
(* denotes rejection of null at 1%
significance level)

Portfolio detail Obs Augmented
Dickey-Fuller

KPSS Phillips-
Peron

γ= 0.0001%
morn 1,229 -12.36* 2.459 -974.7*
aftn 1,218 -11.73* 2.390 -656.5*

γ= 0.0004%
morn 1,229 -11.89* 2.632 -849.4*
aftn 1,218 -11.09* 3.035 -616.9*

γ= 0.0008%
morn 1,229 -11.48* 2.607 -712.0*
aftn 1,218 -10.31* 3.835 -507.9*

3.3 Modelling framework

Preliminary analysis of the log liquidation discount time series indicates the presence

of slow decaying autocorrelation. This may suggest that the series may be fractionally

integrated i.e., the series may have long-memory. Given this, the mean of the series is

estimated with an Autoregressive Fractionally Integrated Moving Average (ARFIMA)

model (Granger and Joyeux (1980); Hosking (1981)). This model seems to capture the

mean value reasonably well, however the residuals from this model appear to be het-

eroskesdatic. In order to address this, the Generalized Autoregressive Conditional Het-

eroskedasticity (GARCH) model (Bollerslev (1986)) was used to model the variance of

the residuals. Hence, as an overall model, consider the ARFIMA(r,d,s)-GARCH(p,q)

model first developed by Baillie (1996):5

φr(L)(1 − L)d(`γt − µ) = θs(L)εt , (3.2)

εt = ηt

√
ht, ηt ∼ iid(0, 1) , (3.3)

ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiht−i. (3.4)

From the ARFIMA specification (equation (3.2)), r and s respectively denote the orders of

the autoregressive and moving average parts of the model, and d represents the fractional

difference term. Note that ARMA and ARIMA models are ARFIMA special cases with d

5Also see Ling (2003) for another application of this model.

24



CHAPTER 3. TIME SERIES PROPERTIES OF LIQUIDATION DISCOUNT

equal to either 0 or 1 respectively. L is the lag operator where Lyt = yt−1 or more generally,

Liyt = yt−i. (3.5)

The auto-regressive operator is given by φr(L) where

φr(L) = 1 − φ1L − φ2L2 − ... − φrLr. (3.6)

The moving average operator is given by θs(L) where

θs(L) = 1 + θ1L + θ2L2 + ... + θsLs. (3.7)

The fractional differencing operator is (1 − L)d where

(1 − L)d = 1 − dL −
d(1 − d)

2!
L2 −

d(1 − d)(2 − d)
3!

L3 − ...

or as more frequently specified,

(1 − L)−d = 1 + dL +
d(1 + d)

2!
L2 +

d(1 + d)(2 + d)
3!

L3 + ...

From the GARCH specification (equations (3.3) and (3.4)), p and q respectively de-

note the orders of the autoregressive and moving average parts of the variance of the

overall process. Baillie et al. (2002) further extend this model to an ARFIMA-FIGARCH

approach which additionally allows for long-memory in the variance of the process. The

squared residuals of the time series ARFIMA estimation do not exhibit long-memory (as

evidenced by Ljung-Box test statistics for different autocorrelation lags), hence this study

does not incorporate fractional integration into the variance model.

For 16 log liquidation discount time series (separate morning and afternoon time series

with portfolio size factor, γ, equal to 0.0001%, 0.0002%, . . . , 0.0008%), the ARFIMA(r,d,s)-

GARCH(p,q) model is fitted for each lag structure combination of r ∈{0, 1, 2, 3}, s ∈{0,

1, 2, 3}, p ∈{1, 2, 3}, and q ∈{1, 2, 3}. Differencing parameter d is set either to 0 or 1, or is

estimated (d ∈ (−1, 0.5)). In total, 432 (=4×4×3×3×3) models are fitted to the first 1000

observations of each of the 16 time series, and then used to forecast the subsequent/final

200+ observations of each time series. The forecasts are then compared to the actual ob-

servations. Let dt,α denote the difference between the actual value and the forecast on tth
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day for a given α i.e.

dt,α = `t,α − ˆ̀t,α. (3.8)

The optimal model for each time series is determined to be that which minimises the

out-of-sample forecasting mean-squared-error (MSE). The MSE is defined as

MSEα =
1
f j

N j∑
t=N j− f j+1

dt,α
2 (3.9)

where f j is the forecast horizon and N j is the total number of observations for a given time

period j. Similarly, the mean absolute deviation (MAD) is also computed for comparison

purposes,

MADα =
1
f j

N j∑
t=N j− f j+1

|dt,α − d̄t,α|. (3.10)

where d̄t,α the mean value of the deviations for a given α. The models producing the

minimum MSEα across all α are selected. The results from both measures are consistent

for most values of α.

The models are estimated using the Ghalanos (2012) package in R. This package takes

into account user specification of the type and order of the mean and variance models, the

optimization routine, initial values, residual distribution, etc. (please refer to package

documentation for further details). The model estimation results are robust with respect

to a range of initial values. The identified optimal models are presented in Table 3.4.

Table 3.4 results indicate the ARIMA specification (d = 1) to be optimal for three

afternoon time series, and negative fractional differencing is identified for two morning

time series 6. The evidence indicates that the full-sample (1200+ observations) log liqui-

dation discount time series are stationary (e.g., see Table 3.3) and fractionally integrated.

Table 3.5 identifies out-of-sample forecast mean-squared-error minimising models opti-

mised with respect to only the final 200+ time series observations. Due to the potential for

small sample peculiarities, it is not surprising that a much reduced sample of only 200+

observations might be marginally better modelled with order 1 integration. However,

long-memory fractional differencing (d ∈ (0, 0.5)) is predominantly the optimal differ-

encing structure for the time series. Furthermore, the optimal autoregressive and moving

average lag structures are predominantly r = 1 and s = 0 respectively. A single optimal

lag structure for the variance of the process is not clearly evident, but lag orders greater

6Variance estimates for d parameter are available upon request.
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Table 3.4: Optimal (i.e., out-of-sample forecast mean-squared-error minimizing)
ARFIMA(r,d,s)-GARCH(p,q) lag and differencing structures for the morning and af-
ternoon log liquidation discount time series with portfolio size factor γ ∈{0.0001%,
0.0002%, . . . , 0.0008%}.

Portfolio
size (γ)

Morning (10:15) Afternoon (15:45)

r d s p q r d s p q
0.0001% 3 -0.101 0 2 1 0 0.479 1 2 1
0.0002% 1 0.388 0 2 3 1 1 2 2 2
0.0003% 3 -0.518 2 2 1 1 1 2 3 2
0.0004% 1 0.388 0 3 2 1 1 3 1 1
0.0005% 1 0.386 0 1 3 1 0.388 0 1 3
0.0006% 1 0.389 0 1 3 1 0.392 0 1 3
0.0007% 1 0.392 0 2 3 1 0.396 0 2 3
0.0008% 1 0.407 0 2 3 1 0.400 0 3 3

than 1 are generally favoured.

3.3.1 Proposed Model

For the sake of model parsimony and generalisability across all 16 log liquidation dis-

count time series, a single parsimonious ARFIMA(1,d,0)-GARCH(1,1) model is pro-

posed, which can be expanded as follows:

`t = Et[`t] + εt (3.11)

= µ + (φ1 + d)(`t−1 − µ)

−

(
φ1 −

(1 − d)
2

)
d
1!

(`t−2 − µ) −
(
φ1 −

(2 − d)
3

)
d(1 − d)

2!
(`t−3 − µ)

−

(
φ1 −

(3 − d)
4

)
d(1 − d)(2 − d)

3!
(`t−4 − µ) − ... + εt ,

where

εt = ηt

√
ht, ηt ∼ iid(0, 1) ,

and

ht = ω + α1ε
2
t−1 + β1ht−1 .

For each time series, Table 3.5 presents the parameter estimates and out-of-sample

forecast MSE associated with the proposed parsimonious model, and the MSE sacrifice

in comparison to the individual optimal model structure given by Table 3.4. The out-

of-sample forecast MSE for the proposed parsimonious model is generally about 5% for
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the morning log liquidation discount time series, and about 2% for the afternoon series.

Furthermore, the MSE sacrifice associated with the parsimonious model is a very mod-

est 8 basis points or less for every time series. Although adoption of the parsimonious

model entails only modest MSE sacrifice, it yields reasonably stable or steadily changing

parameter estimates across the time series.

Table 3.5 shows that the base level of log liquidation discount, µ, increases monotoni-

cally with the portfolio size factor, γ: in fact, the exponential of µ is an almost perfect lin-

ear function of γ such that µ = ln(104.3γ+0.00026) at 10:15, and µ = ln(44.41γ+0.00026)

at 15:45. Equation (3.11) shows how the level of persistence of lagged log liquidation

discount depends on both the autoregression parameter, φ1, and the fractional difference

parameter, d. The estimates for d are similar across all 16 time series, however the φ1

estimates vary.

Unit-root tests confirm the absence of non-stationarity, and existence of variance is

confirmed by α1 + β1 < 1. The values of α1 + β1 is close to 1, implying the rate of decay

of variance to its unconditional level is slow.

There is a clear distinction between the 10:15 and 15:45 log liquidation discount pro-

cesses. For a given portfolio size factor, the base level of log liquidation discount (µ) and

its base level variance (ω) are (almost always) higher at 10:15 – from an unconditional

perspective, liquidation at 15:45 is to be preferred. Further discernment of the intra-day

log liquidation discount pattern would be a useful extension of this study.
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CHAPTER 3. TIME SERIES PROPERTIES OF LIQUIDATION DISCOUNT

3.3.2 Future liquidation discount level and uncertainty

Portfolio managers face liquidation discount risk. The proposed parsimonious

ARFIMA(1,d,0)-GARCH(1,1) log liquidation discount model can combine the expected

future level and uncertainty of log liquidation discount into a single liquidation discount-

at-risk measure, ldaR1−c
t,n , where positive integer n specifies a liquidation horizon n trading

days into the future, and c specifies the confidence that the liquidation discount-at-risk

will not be breached.

Future log liquidation discount at any horizon is given by:

`t+n = Et[`t+n] + ηt+n

√
ht+n ηt+n ∼ iid(0, 1). (3.12)

Therefore liquidation discount-at-risk is given by:

ldaR1−c
t,n = exp

(
Et[`t+n] + Φ−1

η (c)
√

ht+n

)
. (3.13)

In equation (3.13), Φ−1
η (·) is the inverse cumulative distribution function for ηt+n. This

function may be estimated by a Maximum Entropy Density (MED). For further informa-

tion on this, please refer to Chapter 2.

The continuous version of the entropy presented in Shannon (1948) and Jaynes (1957)

is defined as

H = −

∫
A

f (y) log f (y)dy. (3.14)

where f (y) is the probability density function and A represents the region of integra-

tion. The principle of Maximum Entropy involves maximising H subject to some moment

condition. For example,

∫
A

f (y) dy = 1. (3.15)∫
A

y` f (y) dy = µ` where ` = 1, 2, ..., k.

In the above equations, µ` represents the ith moment of the distribution. Solving this

non-linear optimisation problem yields the following solution:
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f (y) = Q−1exp

 k∑
`=1

λ` y`
 . (3.16)

The quantity (Q) denotes the normalising constant which ensures that the first constraint is

satisfied. One can see that the resulting density is the generalised exponential distribution

where λ` value are the MED parameters.

Assuming that the distribution of ηt is time-invariant, one can use the model outputs

to generate this random variable for each portfolio size (γ) and time period (morning and

afternoon). Note that this variable is essentially the standardised residual, ηt = εt/
√

ht.

Next, the first four moments of each of these series are estimated and subsequently to

estimate the MED for each portfolio size across both time periods. The resulting MEDs

are numerically integrated to obtain the one sided tail probabilities (1% sig. level). By

comparison the resulting critical values are larger than those of the Normal distribution.

This is expected since the empirical value of the kurtosis for each portfolio size and time

period is greater than 3. For the purpose of facilitating convenient practical application,

the Student’s t distribution with 12 degrees of freedom is proposed as a familiar ”off-

the-shelf” distribution (for which critical values are readily available) that closely, but

conservatively, approximates the heavy right tails of the MED estimations. In this regard,

the 1% right tail critical value of the Student’s t distribution with 12 degrees of freedom

is 2.681, whereas the 1% right tail critical values obtained by numerical integration of the

MED estimations range from about 1.7 to 2.6.

The expectation of future log liquidation discount is an ARFIMA(1,d,0) process such

that:

Et[`t+n] = µ + φn
1(`t − µ) +

∞∑
i=0


(
`t−i − Et−i[`t−i]

) n∑
j=1

φn− j
1

(i+ j)−1∏
k=0

(k + d)

(i + j)!


 , (3.17)

where the formulation of Et−i[`t−i] can be determined from equation (3.11) as a function

of historic realised log liquidation discount.

The variance term, ht+n, is a GARCH(1,1) process determined according to Baillie

and Bollerslev (1992) such that:

Et[ht+n] =
ω

1 − α1 − β1
+ (α1 + β1)n−1

(
ω + α1ε

2
t + β1ht −

ω

1 − α1 − β1

)
. (3.18)
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For a liquidation horizon of 5 trading days and a 99% confidence level (with Φ−1
η (0.99)

conservatively approximated as 2.681 using the Student’s t distribution with 12 degrees

of freedom), Figure 3.3 displays the morning and afternoon time series of portfolio liq-

uidation discount-at-risk, ldaR1%
t,5 , and realised liquidation discount, ldt+5, for different

portfolio size factors and in accordance with the parsimonious model parameterisations

presented in Table 3.5. Bear in mind that, in the context of the time series, the realised

liquidation discount is the liquidity cost that would have been suffered if liquidation had

actually occurred after five days. It is assumed that the particular notional portfolio man-

ager never does liquidate, but the time series do reflect the impact of many ”real” portfolio

managers that did actually liquidate various portfolios at various times. If the notional

portfolio manager did actually join the fray and liquidate at some point in time, then the

time series would notionally deviate from the historic record; nevertheless the proposed

liquidation discount-at-risk model could still validly be applied with the input of the no-

tionally updated liquidity conditions.

Figure 3.3 shows that the proposed liquidation discount-at-risk model has success-

fully been able to forecast 99%-confidence upper-budgets for the future cost of liquidity

through time for variously-sized top-10 Australian stock portfolios. Generally the cost

of liquidity is low. However, during the Global Financial Crisis, for a portfolio with

0.0008% size factor (worth about $3 million at the time – see Figure 3.1), the five-day

99%-confidence upper-budget morning cost of liquidity forecast is of the order of a not

inconsequential 0.5%. Although this cost is not great on its own, multiple related portfo-

lio sales concentrated in time can obviously entail a significant accumulation of liquidity

cost.

3.4 Conclusion

As a measure for the cost of portfolio liquidity, the liquidation discount measure was

introduced, this being the market impact discount in value yielded by the immediate

sale of a portfolio relative to its in-hand market value calculated from prevailing mar-

ket prices. For any portfolio, the day-to-day liquidation discount that would be suffered

if liquidation were undertaken is variable, and thereby a source of risk for portfolio man-

agers. For variously-sized top-10 Australian stock portfolios this study finds that the

log-liquidation discount is best modelled with an Autoregressive Fractionally Integrated

Moving Average-Generalised Autoregressive Conditional Heteroskedasticity (ARFIMA-

32



CHAPTER 3. TIME SERIES PROPERTIES OF LIQUIDATION DISCOUNT

Figure 3.3: Daily portfolio 1%, 5-day liquidation discount-at-risk (ldaR1%
t,5 ) and 5-day

forward realized liquidation discount as per the parsimonious model parameterizations
presented in Table 3.5 for portfolio size factor γ ∈{0.0001%, 0.0004%, 0.0008%}.
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GARCH) process – in particular a parsimonious ARFIMA(1,d,0)-GARCH(1,1) model

was proposed. Using this model, the expected future level and uncertainty of log liquida-

tion discount is combined into a single liquidation discount-at-risk measure, with which

portfolio managers can budget for the future cost of portfolio liquidity for a chosen liqui-

dation horizon and confidence level.
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Chapter 4

Detecting Intra-Daily Seasonality in

Returns Data

4.1 Introduction

There is some evidence that financial returns contain repeated patterns over specific time

horizons. Traditionally, analysts have searched for these patterns over longer time hori-

zons such as yearly, bi-annually or quarterly time periods. However, there are cases where

these seasonal patterns exist over a much smaller time horizons such as daily or even

hourly time periods. This has been made possible due to the availability of ultra-high

frequency data (Engle (1996)). This type of seasonality is more commonly referred to as

intra-daily seasonality. Examples of intra-daily seasonality include the weekday effect,

time of the day effect and weekend effect. By identifying these patterns, investors attempt

to position themselves in order to gain from such effects.

This study attempts to generalise the method for detecting seasonal patterns in re-

turn data. Previous studies have traditionally focused on detecting changes in the av-

erage/mean component of seasonal behaviour of returns. Here, seasonality is captured

at a distributional level i.e. periodic changes in the distribution of returns across a time

segment. For example, if the time segment is weekdays and one could model the return

distribution for each one of the weekdays. If there are significant differences in the return

distribution across the weekdays then by construction there will be periodic changes in

return distribution over time. For the purposes of this study, this phenomenon is referred

to as intra-daily seasonality.

Intra-daily seasonality has generated interest amongst researchers. Traditionally, re-
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searchers have explored the changes in the mean and/or variance of returns across a given

time segment in order to detect seasonal patterns. French (1980) and Gibbons and Hess

(1981) showed that the average daily return for Monday was negative compared to the

positive returns for the rest of the weekdays. Rogalski (1984) investigated the behaviour

of returns over trading and non-trading periods. Smirlock and Starks (1986) conducted a

similar study replacing daily data with hourly data. Doyle and Chen (2009) introduced the

wandering weekday effect which states that the weekday effect is not fixed, but changes

over time. More recently, Hamid (2018) and Tse (2018) investigate seasonal behaviour of

returns across large and small stocks as well as currencies.

However, periodic changes in returns could be found in higher moments (beyond mean

and variance) for a given time segment. Given this hypothesis, the objective of this study

is to test for intra-daily seasonality using Maximum Entropy Density (MED). The MED

estimation is essentially a method which produces a density function. Comparing densi-

ties allows one to assess if there are periodic differences in higher moments. Specifically,

this study attempts to detect seasonal patterns over weekdays and through the hours of a

given trading day. A comparison of MEDs across these two time segments of the return

data allows one to test for the existence of intra-daily seasonality.

Section 4.2 provides some brief details about the MED. This section also outlines

the practical considerations of implementing this technique. Section 4.3 discusses the

properties of the data used in this study. Section 4.4 provide evidence whether or not

intra-daily seasonality exists over different time segments of the data. Finally, section 4.5

summarises the major findings of this study along with its limitations.

4.2 Methodology

Shannon (1948) proposed the idea of entropy as a measure of the amount of uncertainty or

randomness. Following that Jaynes (1957) proposed the principle of maximum entropy.

This allowed one to maximise Shannon’s entropy subject to certain moment conditions.

The continuous version of the entropy presented in Shannon (1948) and Jaynes (1957)

is defined as

E = −

∫
A

p(x) log p(x) dx (4.1)

where p(x) is a probability density function and A represents the set in which the integra-

tion occurs. The principle of Maximal Entropy (ME) involves maximizing E subject to
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various moment conditions. The moment conditions are as follows:

∫
A

p(x) dx = 1 (4.2)∫
A

xi p(x) dx = mi where i = 1, 2, ..., k. (4.3)

In the above equations, mi represents the ith raw moment of the distribution. Solving this

non-linear optimisation problem yields the following solution:

p(x) = Q−1exp

 k∑
i=1

λixi

 (4.4)

where Q is the normalising constant. Further details on derivation of the results as well

as other details on principle of ME can be found in chapter 2.

One can see that the resulting density is the generalised exponential distribution (equa-

tion (4.4)). The MED estimation produces estimates the parameters (λi) of this distribu-

tion function. Given that these estimates characterise the MED, comparing these esti-

mates allows one to compare different aspects of the distribution. In particular, higher

moments (beyond the mean and/or variance) of the distribution. Repeated patterns in one

or more moments between time segments over a period implies the presence of intra-daily

seasonality.

Straight forward computation of the MED for return data is problematic since the

MED estimation procedure assumes that a random variable is independent and identically

distributed (iid) 1. This condition ensures that consistent estimators are produced. How-

ever, return data has a correlation structure and as such the observations are not iid. This

correlation structure needs to filtered out prior to the MED estimation. The following

model is considered for this purpose:

φr(L)rt = µ + θs(L)εt (4.5)

εt = ηt

√
ht ηt ∼ iid(0, 1) (4.6)

ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiht−i (4.7)

Equation (4.5) represents the Autoregressive Moving Average (ARMA) model where r

and s denote the order of autoregressive and moving average parts of the model respec-

1Under certain mixing conditions, the weak law of large numbers may apply.
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tively. It attempts to capture the dynamics of the mean of the return data rt. Note that this

model is a special case of equation 3.2, where d = 0. In the above model, µ represents the

drift term and L is the lag operator as defined in equation 3.5. The autoregressive operator,

φr(L) and the moving average operator, θs(L) are defined in the same way as equations

3.6 and 3.7 respectively. Both these polynomials have their unit roots outside the unit

circle and share no common roots. This model assumes that the conditional variance of

residuals is constant over time. However, estimating the ARMA model for the return data

shows that the residuals are not constant over time. Furthermore, the ARCH test results

are significant for the first and second lags. This suggests evidence of GARCH effects.

Therefore, the variance of the process is modelled using a GARCH(p, q) model (equa-

tion (4.7)) where p and q represent the order of the autoregressive and moving average

parts of the model respectively. Bollerslev (1986) introduced the GARCH model whilst

extending the work of Engle (1982) on ARCH models. This allows one to model a time

varying conditional variance. An ARMA(1,1) - GARCH(1,1) model is used to filter out

the time dynamics of the return data. Using higher orders did not result in a significantly

improved fit. The residuals of this model are standardised and checked to ensure that that

no autocorrelation is present in the first and second moment. Subsequently, the MED is

estimated from these residuals.

Additionally, MED estimation assumes the existence of moments. In practise, sample

moments are calculated and used in place of population moments and as such are always

finite quantities. However, depending on the population distribution, these moments may

not be finite. Using a large sample maybe helpful in alleviating some of this concern,

but this does not guarantee the existence of moments. One possible way to determine the

highest finite moment is to estimate the tail index. Hill (1975) introduced a method that

achieves this. The Hill tail index estimator assumes that a distribution can be approxi-

mated by slowly varying function (See chapter 2). Although as per its original derivation

the estimator requires iid random variable, this condition can be relaxed i.e. the sample

data can be a sequence of dependant random variables. In this study the exchange rate

return data does have a correlation structure and as such this condition will need to be

relaxed. The Hill estimator is given by

1
k

k∑
i=1

log
[

X(i)

X(k+1)

]
(4.8)

where X( j) represents the jth largest value out of n observations. In addition to the Hill

38



CHAPTER 4. DETECTING INTRA-DAILY SEASONALITY IN RETURNS DATA

estimator, this study also uses the method outlined in Berkes et al. (2003) to estimate

the tail index. Specifically, this method produces a maximal moment exponent for a

GARCH(1,1) process. This is considered suitable since the variance of the exchange rate

returns can be be modelled using this process. In order to prove that the 2kth moment is

finite, the following inequality must be satisfied.

E[αη2
t−1 + β]k < 1 (4.9)

By substituting sample estimates and solving for k allows one to verify the highest finite

moment available.
1
T

T∑
i=1

(α̂η̂2
t + β̂)k − 1 = 0. (4.10)

The overall methodology of this study is as follows. A data series consisting of re-

turns is segmented into weekdays. For example, all the Monday returns are extracted

from the data. Each Monday segment is referred to as a block. Note that there is a time

discontinuity between two consecutive Monday blocks. This has important implications

with regard to filtering the correlation structure. An ARMA(1,1) - GARCH(1,1) model is

only implemented at the block level since there are no time discontinuities within a block.

Prior to this implementation, standard tests are carried out to ensure that the data did not

contain unit roots.

The residuals for each block are standardised and checked to ensure that no auto-

correlation exists. Using these residuals from each block, the highest moment available

is estimated using the methods described above. This allows one to justify the use of

higher moments in order to estimate a MED. Next, the first four moment constraints are

used for the MED estimation. As such, there are four MED parameters i.e. λi where i

∈ 1, 2, 3, 4. Subsequently, the mean values for each parameter (λi) are computed from the

all the blocks corresponding to a given weekday. These values represent the final MED

parameters for a given weekday. For example, the λi values are averaged over all Monday

blocks to get the overall MED parameters for the Monday segment. The final result is the

distribution of exchange rate returns for all Mondays.

Testing for intra-daily seasonality is done in two parts. Firstly in order to verify the

structure of the resulting MED, tests are conducted to assess if the computed mean values

are significantly different from zero. Secondly, in order to check for intra-daily seasonal-

ity, t tests are conducted to assess if the mean values for a given parameter estimate are
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significantly different across the weekdays. Significant differences in the mean values of

λi across weekdays indicates that the distribution of returns changes during the week. This

pattern over a period of time corresponds to intra-daily seasonality. This entire process

is then repeated to check for intra-daily seasonality across different time intervals over a

trading day.

4.3 Data

The data used in this study consists of returns for nine foreign exchange (FX) rates. This

data is sourced from the SIRCA database. The recording period is from the 30th of May

2008 to the 1st of February 2012. The bid price of each exchange rate is captured at a tick

level (see chapter 2 for details). These prices are then translated to minute level data and

subsequently the returns are calculated. Observations that occur in non-trading hours2

are excluded from each of the return series. As mentioned in the previous section, this

introduces time discontinuities in the dataset. Each continuous period is referred to as a

block.

Figure 4.1 illustrates the returns for the Australian Dollar against the Japanese Yen

(AUD/JPY) exchange rate across all blocks.

Figure 4.1: FX Returns: AUD/JPY

Figures A.1 in the appendix illustrate the returns for the remaining eight exchange

rates. One common feature across all the plots is the impact of the global financial crisis

2Trading hours are assumed to be 10a.m. to 4p.m. weekdays
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(GFC). This occurs between the 0 and 500,000 minutes where the returns spike in both

directions before settling back into their normal behaviour.

In order to test for intra-daily seasonality across weekdays, each of the nine return se-

ries is segmented into weekdays. Each weekday consists of 192 blocks 3, each containing

360 observations (60 minutes × 6 hours per day). Table 4.1 shows the summary statistics

for each weekday for the AUD/JPY returns over all the weekday blocks. Here, one can

observe that the mean returns for Monday and Thursday are negative and that the median

return across all the weekdays are all equal to 0. The summary statistics for the remaining

eight return series are included in the appendix A.2.2.

Table 4.1: AUDJPY FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -1.1440000 -0.0230100 0.0000000 -0.0000435 0.0230900 1.0280000
Tuesday -0.8313000 -0.0241800 0.0000000 0.0003133 0.0244300 1.4760000
Wednesday -1.4870000 -0.0243800 0.0000000 0.0001161 0.0244100 0.9999000
Thursday -0.9309000 -0.0244900 0.0000000 -0.0000411 0.0246000 0.8752000
Friday -1.3060000 -0.0243800 0.0000000 0.0003706 0.0244400 1.6460000

In order to test for intra-daily seasonality within a trading day, three time slots/intervals

are introduced. These are 10:00 to 12:00 (noon), 12:00 to 14:00 and 14:00 to 16:00.

These partitions were determined in order to acquire adequate number of observations

within each time slot. Additionally, this also allows one to allocate a lunch hour in order

to determine if there is evidence of a lunch time effect on returns. Using this setup, each

time interval consists of 959 blocks, each containing 120 observations (two hour inter-

vals). Table 4.2 shows the summary statistics for each time slot of the AUD/JPY returns

over all the time slot blocks. Similar to the weekday results, the median return across all

time slots is the same. However, none of the time slots have a negative mean value. The

summary statistics for each time slot for the remaining return series are included in the

appendix A.2.2.

Table 4.2: AUDJPY FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
10-12 -0.6339000 -0.0231100 0.0000000 0.0002926 0.0232900 0.8594000
12-14 -1.4870000 -0.0241500 0.0000000 0.0001307 0.0243200 1.4760000
14-16 -1.1440000 -0.0248100 0.0000000 0.0000062 0.0248400 1.6460000

3number of times a specific weekday occurs over the period of study
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4.4 Results

4.4.1 Weekday Effect

As mentioned in previous sections, weekday effects have been defined as changes in the

return distribution across the weekdays. The return distribution for each weekday across

all blocks is modelled using a MED. In particular, given the existence of higher moments,

a four parameter MED is estimated.

Figure 4.2 shows the box plots or each of MED parameters (λ1 to λ4) across all week-

day blocks for AUD/JPY returns. These box plots illustrate the distribution of the MED

parameter estimates. The mean value of each MED parameter for all time slots and FX

returns has been added to the corresponding box plot. It is represented by a circle between

the first and third quartile. In the case of AUD/JPY returns, the mean value of the second

parameter λ2, is always negative, whereas the remaining parameters have both negative

and positive values across weekdays. There seems to be no discernible pattern with regard

to this.

Section A.2.2 contains box plots for each weekday across all MED parameter esti-

mates and the remaining FX returns. For a given FX return, these plots allow one to

compare the distribution across weekdays for a given MED parameter. From the plots,

there appears to be some difference across the weekdays. However, prior to assessing the

differences across weekdays, one needs to firstly assess if the estimated MED parameters

are indeed significant. This is achieved by testing the mean values of each of the estimated

MED parameters across all weekdays. The parameters with significant mean values will

form the MED for a given weekday i.e. this process allows one to estimate an MED for

each weekday. The hypothesis of this test is given by equation (4.11). Here λ̄i,w represents

the mean value of the λi over all blocks for given weekday w.

H0 : λ̄i,w = 0 (4.11)

H1 : λ̄i,w , 0

The test statistic for this hypothesis test is

t =
¯̀i,w − 0

s`i,w/
√

ni,w
(4.12)

where ¯̀i,w is the sample estimate of λ̄i,w. The standard deviation of `i over all blocks corre-
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Figure 4.2: Weekday: Box plot of MED parameter estimates

sponding to a given weekday w is given by s`i,w and ni,w denotes the number of blocks cor-

responding to `i for a given weekday w. This test statistic follows a Student’s t-distribution

if the null hypothesis is supported.

The results of these tests are shown in section A.2.2. The tables in this section show

the estimated mean values of the MED parameters along with their corresponding t test

statistic. This test is carried out for each MED parameter across all weekdays for each of

FX returns. The results indicate that the value of λ̄2 is significant for all weekdays. There

are mixed results for the remaining parameters. In the case of the AUD4 and EURAUD

returns, all values of λ̄4 are also significant. This is also almost the case for EURGBP

4This denotes the AUD/US FX return
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(except Thursday). Other FX return series have at least one weekday where the value of

λ̄4 is significant. Both λ̄1 and λ̄3 are significant for some cases albeit to a lesser extent.

From the above results, one is able to identify the significant parameters of the MED

for each weekday across all FX returns. These values form the final distribution for each

weekday for a given FX return. Hence, a natural question to ask is that, are there signif-

icant differences in the MED parameters across the weekdays for a given FX return. A

difference in parameters will suggest a difference in the structure of the underlying dis-

tribution. This allows one to test for weekday effects. Note that the test is being applied

to the same parameter across different weekdays. For example, given a FX return, the

first parameter for Monday is compared with the first parameter for Tuesday, Wednesday,

Thursday and Friday. All combinations across weekdays are considered. More formally,

test whether or not the λ̄i values differ across the weekdays for each FX return. Equation

(4.13) states the hypothesis of this test.

H0 : λ̄i,w = λ̄i,w∗ where w , w∗ (4.13)

H1 : λ̄i,w , λ̄i,w∗

The t-test statistic for the above test is

t =
¯̀i,w − ¯̀i,w∗√

s`i,w
ni,w

+
s`i,w∗
ni,w∗

. (4.14)

This test assumes that the population variances are not equal. The results of these tests

are shown in section A.2.2. The tables in this section contain test statistics for all possible

combinations.

Overall, the results indicate that there are some weekday effects. These appear in

five of the nine FX returns tested in this study. The results for AUDJPY, EURAUD and

EURGBP (to a lesser extent) indicate that Monday returns are significantly different from

the rest of the weekdays. Similarly, the results for EUR, EURAUD and EURGBP indicate

that Friday returns are significantly different compared to the other weekdays. There

are some sporadic differences amongst other weekdays, but Monday and Friday effects

are most prominent. These results is very much aligned to the Monday and weekend

effect in the intra daily seasonality literature. However, the contribution here is that the

comparison is done at a distributional level (comparing MEDs) rather than just comparing

means across weekdays. Because of this, the differences due to higher moments are also
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detected in the comparisons.

4.4.2 Time of the day Effect

The time of the day effect has been defined as a change in the return distribution across

different time slots throughout the trading period over time. The return distribution for

each time slot (for all blocks) is modelled using a MED. This is achieved by following

the steps outlined in the methodology section.

Figure 4.3 shows the box plots or each of MED parameters (λ1 to λ4) across all time

slot blocks for AUD/JPY returns. These box plots illustrate the distribution of MED

parameter estimates. The mean value for each MED parameter for all time slots been

included in the box plot. It is represented by a circle between the first and third quartile.

In the case of AUD/JPY returns, the mean value of the first and second parameter λ2, is

always negative across all time slots. The mean value of the third parameter λ3 is always

positive across the three time slots, whereas the mean value of the fourth parameter is

both negative and positive.

Section A.2.3 contains box plots for each weekday across all MED parameter esti-

mates and the remaining FX returns. For a given FX return, these plots allow one to

compare the distribution of a MED parameter across the three different time slots. From

the plots, it is evident that there may be differences between these distributions. However,

prior to assessing the differences across the time slots, one needs to firstly assess if the

mean of each of the estimated MED parameters (from each block) is indeed significant.

The hypothesis of this test is given by equation (4.15). Here λ̄i,t represents the mean value

of the λi over all blocks for given time slot t.

H0 : λ̄i,t = 0 (4.15)

H1 : λ̄i,t , 0

The corresponding test statistic for this hypothesis test is of the same form as equation

(4.12). Table 4.3 shows the mean MED parameter estimates and their corresponding test

statistic values for the AUD/JPY returns. In this case, λ̄2 is significant across all time slots

and more interestingly λ̄4 is significant for the 12-14 (lunch time) time slot. Additionally

both, λ̄1 and λ̄3 are significant for the 14-16 time slot.

The significance results for the remaining FX returns are shown in section A.2.3. The
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Figure 4.3: Time Slot: Box plot of MED parameter estimates

Table 4.3: Significance of MED parameters: AUD/JPY Returns
Time Slots 10-12 12-14 14-16
AUDJPY estimate t statistic estimate t statistic estimate t statistic
¯̀1 −0.0033 −0.6801 −0.0045 −0.7456 −0.0124 −2.3900
¯̀2 −0.8675 −198.1785 −0.8799 −110.6193 −0.8766 −197.7718
¯̀3 0.0048 1.6581 0.0020 0.5196 0.0069 2.2235
¯̀4 0.0001 0.5027 −0.0010 −4.4280 −0.0003 −1.8458

tables in this section provide the estimated values of the mean MED parameters together

with their corresponding t test statistic. Overall, the results indicate that the value of λ̄2

is significant for all time slots and FX returns. There are mixed results for the remaining
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parameters. In case of EUR5, EURAUD, EURGBP, GBP6 and JPY7 returns, all values of

λ̄4 are also significant. Both EURAUD and GBPAUD returns have significant λ̄3 values.

From the above results, one is able to identify the significant parameters of the MED

for each time slot across all FX returns. These values form the final distribution for each

weekday for a given FX return. Hence, a natural question to ask is that, are there signif-

icant differences in the MED parameters across the time slots for a given FX return. A

difference in parameters will suggest a difference in the shape of the underlying distribu-

tion. Using this, one can test for time of day effects. Note that the test is being applied to

the same parameter across different weekdays. For example, given a FX return, the first

parameter for 10-12 time slot is compared with the first parameter for the 12-14 time slot

and subsequently compared with the 14-16 time slot. All combinations across time slots

are considered. More formally, test whether or not the λ̄i values differ across the time

slots within a trading day for each FX return. Equation (4.16) states the hypothesis of this

test.

H0 : λ̄i,t = λ̄i,t∗ where t , t∗. (4.16)

H1 : λ̄i,t , λ̄i,t∗

The corresponding test statistic for this hypothesis test is of the same form as equation

(4.14).

Table 4.4 shows the comparison results for MED parameters across time slots for

AUD/JPY returns. This table contains the test statistic values resulting from the difference

in the mean values of the MED parameters across time slots. For a given FX return, there

are three time slots and four parameters resulting in 12 possible combinations/tests. Based

on the results below, the λ4 parameter corresponding to the lunch time slot (12-14) is

significantly different to λ4 values corresponding to the remaining time slots. This result

is consistent with the existing evidence of lunch time effects in stock returns. However,

this analysis allows one to detect these effects by observing differences in higher moments.

The time slot comparison results for the remaining FX returns are shown in section

A.2.3. The tables in this section provide the t test statistics resulting from the comparison

of mean values of the MED parameters across all time slot combinations. For a given

MED parameter and FX return, a significant difference between two time slots is signalled

5This denotes the EUR/US FX return
6This denotes the GBP/US FX return
7This denotes the JPY/US FX return
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Table 4.4: Comparing MED parameters across time slots: AUD/JPY
Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
AUDJPY t statistic t statistic t statistic
∆ ¯̀1 0.1543 1.2720 0.9845
∆ ¯̀2 1.3656 1.4630 −0.3607
∆ ¯̀3 0.5942 −0.4900 −1.0039
∆ ¯̀4 3.8102 1.6888 −2.2484

by a large t test statistic. Overall, the results suggest that there is evidence of time of the

day effects. These appear in seven of the nine returns tested. For instance, the results for

AUD, AUDJPY, EUR and EURJPY indicate that 12p.m. to 2p.m. timeslot is significantly

different from the rest of time slots. Similarly, the results for EURGBP and GBP indicate

that the 2p.m. to 4p.m. time slot is significantly different from the rest of time slots.

The results for JPY show that the 10a.m. to 12p.m. time slot is significantly different

from the rest of the timeslots. Lastly, EURAUD and GBPAUD results showed no time

of the day effects. These results are consistent with the existing literature on intra daily

seasonality. In addition to lunch time effects, there may morning effects (market open)

effects as well as afternoon effect (market close). The effects seem to be prevalent in

different markets. However, unlike previous studies, this study finds evidence of such

effects at a distributional level. In particular, such effects are present in higher moments.

4.5 Conclusion

This chapter has introduced a method for testing intra-daily seasonality using a MED.

The resulting density allows for a more richer comparison across different time segments

(weekdays or time intervals). Specifically, one is able to check for differences in higher

moments. This is especially important when differences in lower moments are not signif-

icant. This is precisely one of the results found in this study. It shows that the λ̄4 value

for Wednesday is significantly different from the rest of the weekdays. But the remaining

λ̄ values are not significantly different across the weekdays. Similarly, the λ̄4 value is

significant for the 12p.m. to 2p.m. interval. Lastly, the results are limited to properties of

the data used in this study.
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Chapter 5

Modelling the Distribution of Body

Mass Index

5.1 Introduction

The MED described in the previous sections is a univariate density. However, in many

scenarios, one is interested in modelling the joint distribution of two or more variables

i.e. in this case, estimating a multivariate distribution function. As motivated by Joe

(1997), multivariate models for non-normal variables is an important area to consider.

More specifically, understanding the dependence concepts across multiple variables is

necessary in order to develop a multivariate model. As such, the principle of maximum

entropy can be adapted to a multivariate setting. An entropy functional consisting of a

multivariate function can be maximized subject to constraints which specify the depen-

dence structure across the variables. The resulting density is known as a multivariate

MED. Compared to the literature on univariate functions, there appears to be relatively

little on estimating a multivariate MED. One possible reason for this may be the lack

of theoretical development for the multivariate setting. Unlike the univariate MED case,

where the uniqueness and existence conditions have been proven, currently no such con-

ditions exist for the multivariate MED case. However, from a practical viewpoint, the

need to model dependence across multiple variables has led a number of empirical devel-

opments. Based on a literature review, there appear to be two major approaches used.

The first approach is mentioned in Kapur (1989) (Chapters 4 and 5). Here the Shan-

non entropy is maximised subject to a number of constraints which specify the moments

for each variable as well as the correlations across all pairs of variables. This approach is
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demonstrated only for the bivariate case with second order moments. As the number of

variables increases and/or the order of the moments, the number of constraints in the op-

timisation problem increases rapidly. Thus, creating unnecessary complexity with regard

to parameter estimation.

The second approach consists of estimating entropy copula models. Here, the Shan-

non entropy of the copula density function is maximised subject to constraints satisfied by

the copula. These copula constraints include the integration to one constraint, conditions

on the marginal densities and specification of the dependence structure (joint behaviour)

of the variables. For further details refer to Piantadosi et al. (2012) and AghaKouchak

(2014). There are few limitations with this approach. As with most methods that use

copulas, the choice of an appropriate copula is ambiguous. Additionally, there appear to

be no analytical solutions for many types of entropy copula models.

The proposed approach in this chapter aims to address some of the issues with the

existing methods. The emphasis is on being able to adequately handle multiple variables

as well as higher order moment conditions (well beyond the bivariate cases mentioned in

most of the literature). This approach has the additional benefit of being able to select

conditions (constraints) prior to the optimisation process. The resulting density possess

an analytical form and is a natural extension of the univariate case.

The second contribution of this chapter is to allow the parameters of the multivariate

MED to be functions of conditioning variables or covariates. Specifically, the MED pa-

rameters are functions of exogenous variables and the resulting MED is conditional on

these variables i.e. the shape, scale and location of the MED is dependant on the ex-

ogenous variables. Based on this, the proposed model is quite different from the varying

parameter model developed by Chan (2009). Furthermore, there is an alternative way to

incorporate exogenous variables. This consists of including these variables in the mo-

ment constraints itself. Thus solving the optimisation problem will lead to the variables

being directly present in the density itself. However, there exists a non-linear relationship

between the parameters and the moment constraints (Chan (2009)). As such, it can be ar-

gued that allowing the parameters itself to be functions of exogenous variables produces

a similar effect compared to including them in the moment constraints.

Hence, these variables can affect the value of the MED parameter which further affects

the final structure of the resulting MED. Under this set up one is interested in the coeffi-

cients (marginal effects) of the covariates. The proposed framework provides considerable

flexibility with regard to allocating covariates to each of the MED parameters. The sta-
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tistical properties (consistency and asymptotic normality) are shown in this chapter. The

implicit relationship between the moments of the MED and the covariates is derived i.e.

the marginal change for a specified moment given a change in a covariate value. This

allows the modeller to assess the marginal change in the MED resulting from a marginal

change in one of the covariates. Finally, the conditioning framework is used to model

the distribution of body mass index of an individual given their social and demographic

characteristics (covariates).

In section 5.2 the proposed multivariate framework is presented along with the sta-

tistical properties of the resulting multivariate MED. Section 5.3 introduces the notion of

body mass index and relevant literature on modelling this measure. Subsequent sections

consist of applying a special case of the model developed in this chapter to the HILDA

data set. The results are discussed in detail for the benefit of health policy professionals.

5.2 Multivariate Framework

The entropy maximisation framework for a multivariate density f () can be written as:

max. −
∫

f (x) log f (x) dx (5.1)

subject to

∫
A

f (x) = 1∫
A

x⊗` f (x) dx = µ` for ` = 1, . . . , k.

Here x represents a vector of random variables and ⊗ denotes the Kronecker product.

This product is applied to the vector of random variables using an index. For example,

x⊗1 = x, x⊗2 = x⊗x, x⊗3 = x⊗x⊗x and so on. This allows the framework to generate all

the possible combinations of random variables so that the kth order moments (and cross

moments) can be defined.

The first constraint ensures that the multivariate density integrates to 1 over a specified

region i.e. set A. In the second constraint, the Kronecker product is applied to x in order

to compute the moment vector µ`, corresponding to each moment `. Note that these

vectors also contain cross moments which capture the dependence structure between the

variables.
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Next, the details of the above setup are presented. Starting with

x =



x1

x2

...

xn


,

the Kronecker product is applied in order to generate the kth order moments (and cross

moments). This can be represented in the following way.

x(k) =



x⊗1

x⊗2

...

x⊗k


Given that x is n × 1 and the dimension of x⊗` is n` × 1, the vector x(k) will contain

k∑
`=1

n` =
n

n − 1
(nk − 1) = Nk

elements. A closer look at x(k) indicates that it contains some duplicate elements. In order

decrease the computational burden, the duplicate entries need to be removed. In order to

do this, a selection1 matrix consisting of zeros and ones is used (Magnus and Neudecker

(1999)). This matrix selects unique entries (or removes duplicate entries).

Given the n variables and k moment conditions, the total number of unique moments

is given by
k∑
`=1

(
` + n − 1

n − 1

)
= Mk.

Hence, knowing the number of unique moments allows one to construct a suitable se-

lection matrix. Additionally, each unique moment corresponds to a MED parameter. As

such the dimension of the parameter vector is Mk × 1. Solving the optimisation problem

yields the following multivariate MED,

f (x) = Q−1exp
(
λ′Sx(k)

)
. (5.2)

Here λ denotes the parameter vector and S is the selection matrix of size Mk × Nk. As in
1also known as elimination matrix
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the univariate case, Q denotes the normalising constant given by

Q =

∫
A

exp (λ′Sx(k)) dx. (5.3)

The resulting density is a generalised multivariate exponential density. For a given

sample of data, it is possible to estimate the parameters (λ) of this density. As in the

univariate case, the parameters values control the shape, scale and location of the density.

Given this, it may useful to let λ be a function of one or more exogenous variables/

covariates. As such the resulting MED is a conditional density i.e. depends on the values

of these variables/ covariates. In addition to this, the proposed setup allows the modeller

to assign a variable to any of the parameters. This way the modeller can control (to an

extent) which of the variables control the different aspects (moments) of the resulting

MED. Let each parameter be a function of p covariates i.e.

λm = βm1z1 + βm2z2 + · · · + βmpzp.

Given k moments and p covariates,



λ1

λ2

...

λMk


=



β11 β12 . . . β1p

β21 β22 . . . β2p

...
...

. . .
...

βMk1 βMk2 . . . βMk p





z1

z2

...

zp


.

The above expression can be written using matrix notation as

λ = βz. (5.4)

Note that some of the values for β can be set to zero. This allows the modeller the flexi-

bility to allocate different covariates across MED parameters if required. The conditional

density can be expressed as

f (x|z) = Q−1
z exp

[
(βz)′ x(k)

]
(5.5)

where

Qz =

∫
A

exp
[
(βz)′ x(k)

]
dx. (5.6)

53



CHAPTER 5. MODELLING THE DISTRIBUTION OF BODY MASS INDEX

Note that the normalising constant is dependent on the covariate values. For a given set of

x(k) and covariates, one can use the method of maximum likelihood estimation to estimate

the values of β. Hence, the optimal parameter values are the ones which maximise the

log-likelihood function. The estimator is defined as

log LT (β̂T ) = max
β ∈ Θ

log LT (β) (5.7)

where LT denotes the likelihood function and Θ represent the parameter space.

Next, the properties of the above estimator are shown. Specifically, the focus is on

the consistency and asymptotic normality. Proving these conditions allows one to use this

framework in an empirical setting.

Proposition 1. The estimator as defined in equation 5.7 is consistent: β̂T
p
→ β0.

Proof. Refer to appendix section A.3.1. �

Proposition 2. The maximum likelihood estimator is asymptotically normal.
√

T
(
β̂T − β0

)
∼ N(0, B(β0)−1 C(β0) B(β0)−1) where B denotes the matrix of second order

derivative of the log likelihood function and C denotes a matrix of the product of first order

derivative of the log likelihood function.

Proof. Refer to appendix section A.3.1. �

This completes the presentation of the multivariate framework. In the next section,

this framework is applied to a well known problem in Health Economics.

5.3 Body Mass Index

The objective of this study is to model the distribution of Body Mass Index (BMI) using

a set of covariates. BMI is one of the leading indicators of an individual’s health. Specif-

ically, it estimates the amount of body fat of an individual. This is done by dividing an

individual’s mass (kilogram) by the square of their height (metre). Differences in BMI

across adults are generally due to the amount of body fat. As such, this metric is used

as a comparison tool across individuals. As per the Australian Institute of Health and

Welfare (AIHW), a BMI value under 18 is classified as underweight, values from 18 to

25 (inclusive) are considered normal, values from 25 to 30 are considered overweight and

values over 30 are classified obese. According to the AIHW in 2012, 63% of Australian
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adults and 25% of children were overweight or obese. The AIHW claimed that being

overweight and obese is the second highest contributor to the burden of disease2 and obe-

sity rates have doubled since the 1980’s in Australia. This is consistent with the other

developed nations around the globe according to the World Health Organisation (WHO).

Aside from the health implications of being obese, there are also economic consequences

such as loss of productivity arising due to employee absenteeism.

Given these reasons, it is not surprising that many researchers are investigating obe-

sity rates using measures such as BMI. As such, there exists a vast amount of academic

literature on BMI. However, for the purpose of this study, the focus is on a particular sub-

set of this literature. This study classifies BMI research into two board categories. The

first category consists of studies which attempt to fit a density function to an empirical

distribution of BMI. An example of this study is Flegal and Troiano (2000) which uses

graphical methods (mean difference plots) to describe changes in the distribution of BMI

for both adults and children in the US. Another paper by Penman and Johnson (2006)

proposes the log-normal distribution to estimate BMI for a given population. A compre-

hensive paper by Lin et al. (2007) estimates the BMI distribution using a finite mixture

model of Normal, skew Normal, Student t and skew Student t distributions as defined in

Azzalini (1985), Azzalini (1986) and Azzalini and Capitaino (2003). Lin et al. (2007)

found that a finite mixture of skew student t distribution provided a better fit compared

to normal mixtures. The paper by Contoyannis and Wildman (2007) estimates the BMI

distribution of two different countries using non-parametric techniques. Once these dis-

tributions are constructed, a range of measures are used to examine the differences in the

modelled distributions. Houle (2010) uses similar methods as Contoyannis and Wildman

(2007) to study differences in BMI distributions across gender and education. For more

recent study and review, refer to Bann et al. (2018) and Yu et al. (2018).

The second category consists of studies which attempt to model the conditional mean

or median of an individual’s BMI using a set of covariates. An example of this kind of

study is Beyerlein et al. (2008) where three different regression approaches- Generalized

Linear Models (GLMs), Quantile Regression and Generalized Additive Models for Lo-

cation, Scale and Shape (GAMLSS) were employed to model a child’s BMI. The major

finding of their paper was that GAMLSS and Quantile regression provided a much better

fit compared to GLMs for a given set of risk factors. Another more recent paper by Bottai

et al. (2014) examined associations among age, physical activity and birth cohort on BMI

2after dietary risks and before smoking
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percentiles in men using Quantile regression. The paper concluded that Quantile regres-

sion allow one to examine how various covariates affected BMI at different percentiles of

the estimated BMI distribution.

Based on this classification, this study attempts to combine the objectives from both

categories. In other words, this study attempts to model the distribution of an individ-

ual’s BMI using covariates (risk factors, attributes). This framework will allow different

covariates to influence different aspects (moments) of the individual’s estimated BMI dis-

tribution. This is a point that studies based on Quantile regression do claim. However,

the impact of the covariate is usually measured at specific percentiles such as the 90% or

95% percentiles rather than the entire distribution.

Another paper which attempts to combine objectives from both categories is the paper

by Brown et al. (2014). It proposes a statistical model (Normal distribution) to model the

BMI distribution of an unobserved (latent) class of individuals within a population. It is

expected that a finite mixture of these models will provide a good fit for the overall BMI

distribution. The weight of the each model is determined using the covariates (individual

attributes) in the class and these covariates are same for each class. As a result of this

differing values of the same covariate determine the weights for distribution of each class.

Hence, the paper has been able to model the distribution of BMI for a given population

using information from the covariates.

There are however, a number of factors that one needs to consider when implementing

such an approach. One such factor is the number of distributions/classes one should

use. Especially since this choice affects the level of complexity in the estimation i.e. as

the number of distributions/classes increases the estimation procedure may result in non-

convergence. Secondly, each model (normal distribution) as well as the resulting final

mixture have infinite support. Whilst this may be desirable for certain applications, it is

not the case for BMI. Negative or zero BMI values are nonsensical. The interpretation of

the results can be complex. The weights for the each class specify the probability of an

individual (based on covariates) falling into a that class. Hence, the covariates affect the

weight assigned to the distribution rather than drive any changes in the distribution itself.

In comparison, using the MED approach with covariate information, a single density

is produced for a given set of covariate values. The estimated density is constructed over

a closed interval. In this case, a set of plausible BMI values. For a given set of optimal pa-

rameters, the covariate values determine different moments of the estimated density. This

provides a much more intuitive explanation. Although the idea of using measures pertain-
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ing to entropy is not entirely new to BMI studies (Contoyannis and Wildman (2007) and

Houle (2010)), the application of MED to model the distribution of BMI using covariates

is indeed novel.

Despite the vast amount of literature on BMI, it is important to address the limitations

that some health professionals have identified. Given the definition of BMI, it is easier

to interpret a change in BMI when only the mass of an individual changes. In most

cases, this is associated with an increase in body fat Ranasinghe et al. (2013). This is

generally the case with adults. However, with children both height and mass can vary

and as a result it is more difficult to interpret the change in BMI levels. This is also the

case in adults who may have increased their muscle mass i.e. the extra mass does not

consist entirely of body fat. Given both these cases, it is possible to exclude children

(under 16) from the study and if possible also athletes provided they can be identified.

There are nonetheless studies which solely focus on studying the BMI levels in both these

groups (Walsh et al. (2011), Ortlepp et al. (2003) and Beyerlein et al. (2008)). Lastly,

health professional have introduced a new measure in 2012 appropriately named Body

Shape Index (BSI). The definition of BSI contains the waist circumference, height and

BMI itself. It is claimed that this new measure can capture a wider array of health risks

compared to BMI. However, almost all national and global health institutions as well as

medical personnel continue to use and report BMI statistics for the general population.

The rest of the sections are organized as follows: Section 5.3.1 contains the details of

the model specification and estimation. Most importantly, it proposes a method of incor-

porating covariates into the MED framework and contains the estimation methodology

for the proposed model. Section 5.3.2 provides a brief introduction to the data set used in

this study. Section 5.3.3 contains the estimated model along with some discussion of the

results. Lastly, section 5.3.5 summarizes the major results of the paper with some points

on the future direction of the study.

5.3.1 Specification and Estimation

The random variable of interest in this study is BMI. This study aims to estimate the

distribution of BMI for an individual using their attributes/characteristics. These attributes

form the conditioning variables (covariates) used in the estimation procedure. Let y denote

the variable BMI and zi is a vector of covariates pertaining to individual i. The MED for
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this application can be expressed as

f (y|zi) = Q−1
i exp

[
(βzi)′ y

]
(5.8)

where

Qi =

∫
A

exp
[
(βzi)′ y

]
dy. (5.9)

The above specification is a special case (n = 1) of the multivariate framework with

conditioning presented in the previous section. Note that the normalizing constant is

dependent on a given individual’s covariate values and is calculated by integrating the

density over a set of all possible BMI values (set A).

The values of β and covariates govern the shape, scale and location of the BMI distri-

bution. More specifically for fixed β values, changing the covariates will result in changes

in the BMI distribution. This specification offers flexibility with regard to how the covari-

ates affect different moments of the BMI distribution. For example, covariates may be

transformed and/or combined with other covariates and/or with intercept terms to model

their impact. The resulting conditional density is a generalized exponential distribution

which has infinite support. One could rightly argue that BMI values are restricted to a

subset of positive values and hence this specification may not be accurate. However, the

normalizing constant (equation 5.9) is obtained by integrating the density over of a set of

plausible BMI values. As a result of this, there is a zero probability of obtaining a BMI

value outside this set of plausible BMI values.3

Given the specification for the conditional distribution of BMI, the next step is to

estimate the parameters of this distribution i.e. the values of β. The method of Maximum

Likelihood can be used to carry out this estimation. For a sample of size n individuals,

the log-likelihood function for equation 5.8 can be expressed as

log L(β; zi, yi) =

n∑
i=1

log f (yi|zi) = −

n∑
i=1

log Qi +

n∑
i=1

(βzi)′ yi (5.10)

Here yi is a vector containing individual i’s BMI raised to a power (1 to k) and zi is a

matrix consisting of an individual’s attributes (p covariates). Note that the normalizing

constant Qi (equation 5.9) differs across individuals. The values of parameters that max-

imize the above log likelihood function are considered to be optimal estimates. Hence,

one needs to maximize equation 5.10 over a set of all possible parameters values. Nu-

3Plausible BMI values for this study range from 9 to 100
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merical optimization and integration procedures are used to achieve this since no closed

form expressions exist when k > 2 (Rockinger and Jondeau (2002)). For computational

convenience, the first order derivatives are derived (section A.3.2) and included in the

optimization routine.

Prior to the estimating the parameters, it is desirable to ensure that the estimator is

consistent and asymptotically normal. These properties were proven for the multivariate

framework with conditioning in the previous section. Given that the proposed BMI model

is a special case (univariate framework with conditioning), the existing proofs ensure that

these properties are true for this case.

It is also worth investigating how the changes in covariate values affect the resulting

BMI distribution. More specifically, how changes in covariate values produce changes in

the moments of the distribution.

Proposition 3. The marginal change in a moment given a change in the value of a co-

variate can be expressed as
∂µ

∂z
= β′M (5.11)

where M = (Ω − µµ′) and is a symmetric matrix.

Proof. From equation A.8, focus on the derivative with respect to z. �

Remark 1. From Proposition 3, the marginal change in the `th moment with respect to

change in the jth variable can be written as

∂µ`
∂z j

= β1 j(µ`+1 − µ`µ1) + β2 j(µ`+2 − µ`µ2) + · · · + β` j(µ`+` − µ`µ`).

Using the above expression one can measure the change in the moment given the

change in the value of a covariate. Changes in moment will result in changes in the final

distribution. For demonstration purposes, the HILDA dataset (see section below) is used

to examine the changes in the BMI distribution given a change in the value of a covariate.

All other covariate values remain unchanged.

5.3.2 Data

The BMI data used in this study has been sourced from the Household, Income and

Labour Dynamics in Australia (HILDA) survey. This is a household based panel study

which began in 2001 and collects information about all individuals in a household. This
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includes family attributes, economic well being, labour market information, health and

subjective well-being, education status as well as a variety of other household and indi-

vidual variables. Physical attributes such as height and weight have been captured since

2006. This data set is particularly suited to this study because it is the only national level

household panel data set available in Australia. As such, it is representative of the Aus-

tralian population. This paper focuses on survey results for the year 2012. This survey

had approximately 25,000 individuals from 10,000 households.

Figure 5.1 contains the histogram of the BMI values for all individuals older than 16

years of age in the 2012 survey. This figure illustrates the stylized facts of BMI distribu-

tions. These include the fact that they are prominently uni-modal and are skewed to the

right. Table 5.1 provides the summary statistics for BMI values. Both the histogram as

well the summary statistic table show the range of BMI values in the survey. It is worth

noting that both the median and mean values are in the overweight category (greater than

25 and less then 30) as defined by AIHW.

Histogram of BMI values for HILDA 2012
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Figure 5.1: BMI Histogram
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Minimum 1st Quartile Median Mean 3rd Quartile Maximum
11.7 22.9 25.8 26.7 29.4 75.8

Table 5.1: Summary Statistics: BMI

5.3.3 Results

In order to estimate the MED, a value for k (equation 5.5) is required. This value along

with the number of covariates in the model specifies the number of MED parameters (β)

to be estimated. The value of k is chosen based on the existence of moments in the data.

Hence, the first step is to estimate the number of moments available in the data. The Hill

estimator (Hill (1975)) is used to estimate the tail index (α̂) of the BMI distribution. This

can then be used to estimate the highest moment available in the BMI distribution. The

results indicate that the sixth moment exists. Given this, this study conservatively sets

the value of k to 4 based on the paper by Wu (2003). The results in Wu (2003) provide

an insight on the effect of sequentially updating the moment conditions i.e. iteratively

including one moment condition at a time in the optimization process. The results show

that there is only a marginal improvement in AIC and BIC measures when increasing the

values of k from 4 to 12. Additionally, the interpretation could be an issue with moments

higher than 4. Next the conditions for the existence of the MED are verified (chapter 2).

This is done by computing the determinant of the Hankel matrix and ensuring that it is

positive.

Finally, covariates are selected from the survey data. This selection process takes into

account different type of covariates which may potentially impact BMI levels in individ-

uals. These covariates include examples of physical, economic and social attributes of

individuals. This consistent with the approach used in the literature. For instance, a study

by Zhang and Wang (2004) examines the relationship between BMI and Gender, Socio-

economic inequality, Age and Ethnicity. Similarly, Houle (2010) investigates the effect

of Gender, Ethnicity and Education on BMI. A study by Bottai et al. (2014) considers

the impact of physical activity on BMI. Section A.3.3 provides summary statistics for the

covariates considered in this study.

Next, a number of model specifications consisting of different covariates affecting

different parameters are attempted. Expert opinion is used to guide this process. The final
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model is selected based the BIC value. The resulting model specification is given by:

λ1 = β1z1 + β2z2 + β3z3

λ2 = β4z4 + β5z5 + β6z6

λ3 = β7z7

λ4 = β8z8.

Table 5.2 contains the final covariates and their corresponding estimates. The esti-

mates are significant at 5% level.

Covariate Estimate β̂
(Log of) Age (z1) 0.238735
Active (z2) 0.100000
Married (z3) 0.000012
Male (z4) -0.000036
(Log of) Household Income (z5) -0.001385
Number of Children (z6) -0.000557
Employment (z7) 0.000017
University Education (z8) -0.000003

Table 5.2: Final Model

Inputting these estimates along with a set of covariates pertaining to an individual into

equation 5.5 produces a BMI distribution for that individual. As expected the final model

does contain covariates which are significant in other BMI studies. For example, in the

study by Brown et al. (2014) all of above covariates were used in their analysis. However,

in their study the household income and number of children were not significant. One

possible reason for this may be that their approach tracks changes in the mean value of

BMI for a given covariate. On the other hand, the approach used in this paper is able

to track changes in moments other than the mean. Hence, the results in this paper show

that the household income affects more than just the mean value of the distribution i.e.

variance or higher moments. Similarly, the number of children may not impact the mean

value of BMI distribution as shown in Brown et al. (2014), but does affect higher moments

of the BMI distribution.

5.3.4 Discussion

Given the attributes of an individual (covariates), the proposed model can estimate the

BMI distribution for that individual. More specifically, this model can be used to deter-
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mine the marginal effect/ sensitivity that each covariate has on the distribution of BMI.

Furthermore, it can be shown how the broader BMI categories (as defined by AIHW)

change with respect changes in a given covariate. In order to clearly show the marginal

effect of a covariate, a base case BMI distribution is used to benchmark the change in

distribution. The base case is chosen to ensure that the distribution of the broad BMI

categories is consistent with the estimates produced by AIHW.

Figure 5.2 shows the marginal effect of age on the BMI distribution and table 5.3

translates this change in terms of the broader BMI categories. In this instance, the base

case age has been increased by 10 years with the remaining covariates left unchanged.

It can be seen that this change shifts the base case distribution to the right. Hence the

marginal effect of age results in a changing the mean of the BMI distribution. In terms

of the BMI categories, this marginal effect produces changes in all of the BMI categories.

These changes represent changes in probability of an individual belonging to a particular

category. For example, in the base case the probability of an individual being in the

underweight category is 6.66%. Increasing the age of the individual by 10 years (all other

covariate staying the same), the probability of the individual belonging to the underweight

category drops to 3.09%. A similar interpretation can be applied to movements in the

other categories. Note that the overweight category does not change much relative to the

other categories.

Underweight Normal Overweight Obese
Base Case 6.66% 32.56% 33.17% 27.62%
Age 3.09% 22.89% 32.82% 41.20%

Table 5.3: Age Effect - Change in BMI categories

Figure 5.3 shows the marginal effect of household income on the BMI distribution and

table 5.4 translates this change in terms of the broader BMI categories. In this instance,

the base case household income has been reduced by 50% with the remaining covariates

left unchanged. From figure 5.3, it can be seen that the resulting distribution differs from

the base case considerably. Not only does the mean of the modified distribution shift, the

variance and other moments also change. Hence the marginal effect of household income

results in changing more than the mean of the BMI distribution.

Figure 5.4 shows the marginal effect of employment on the BMI distribution and table

5.5 translates this change in terms of the broader BMI categories. In this instance, the

base case has been changed from an individual being employed to being unemployed
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Figure 5.2: Marginal Effect of Age

Marginal Effect − Household Income
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Figure 5.3: Marginal Effect of Household Income

with the remaining covariates left unchanged. It can be seen that the resulting distribution

producing a shift in the mean as well as a possible decrease in the overall variance. In
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Underweight Normal Overweight Obese
Base Case 6.66% 32.56% 33.17% 27.62%
Household Income 3.05% 20.96% 30.74% 45.25%

Table 5.4: Household Income: Change in BMI categories

this scenario, the individual’s BMI results shift towards a more healthier range. The

probabilities of falling in the overweight and obese category drop and as a result the

probability of falling in the normal and underweight categories increase.

Marginal Effect − Employment
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Figure 5.4: Marginal Effect of Employment

Underweight Normal Overweight Obese
Base Case 6.66% 32.56% 33.17% 27.62%
Employment 8.76% 38.02% 32.79% 20.43%

Table 5.5: Employment: Change in BMI categories

Figure 5.5 shows the marginal effect of employment on the BMI distribution and table

5.6 shows effects of this change in terms of the broader BMI categories. Here, the base

case is changed from an individual not having a university education to having one. All

other covariates remain unchanged. Similar to the employment effect, the resulting BMI

distribution has a slightly lower mean and notable difference in the variance. In particu-
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lar, the tail of the resulting distribution exhibits different behaviour. The changes in the

broader categories highlight the positive impact that a university education has on BMI.

Marginal Effect − University Education
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Figure 5.5: Marginal Effect of a University Education

Underweight Normal Overweight Obese
Base Case 6.66% 32.56% 33.17% 27.62%
University Education 7.87% 36.34% 33.47% 22.32%

Table 5.6: University Education: Change in BMI categories

5.3.5 Conclusion

This study has proposed a method to model the distribution of an individual’s BMI using

information from the covariates. The application of the MED framework as well the

incorporation of covariates into this framework presents a novel approach with regard to

BMI modelling. The results clearly show how different covariates affect different aspects

(moments) of the BMI distribution. Furthermore, the results also show the shift in the

broad BMI categories caused by the marginal changes in the covariates. Additionally,

the consistency and asymptotic normality of the estimator have been shown. In terms of

future direction, it is expected that this methodology can be extended to accommodate a
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panel data set up. This would allow one to assess changes in the distribution of BMI over

time.
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Chapter 6

Modelling Populations in Remote

Communities

6.1 Introduction

There is a substantial and well-documented disparity in outcomes for Aboriginal and Tor-

res Strait Islander and other Australians across virtually all mainstream indicators of social

and economic well-being. Closing the gap is the broad label for the Council of Australian

Governments’ National Indigenous Reform Agenda aiming to reduce this statistical in-

equity faced by Aboriginal and Torres Strait Islander Australians.

The role of remoteness in this narrative is both pivotal and controversial. Relative to

other Australians, a far higher proportion of Aboriginal and Torres Strait Islanders are

found in remote areas of the continent. Based on data from the 2011 Census, 21.4% of

Aboriginal and Torres Strait Islander Australians live in areas classified as ‘remote’ or

‘very remote’ compared to just 1.7% of other Australians. Only 34% of Aboriginal and

Torres Strait Islanders live in a major city, compared to 71% of other Australians. While

the large population centres generally offer greater access to services and infrastructure

and better labour market opportunities, for many Aboriginal and Torres Strait Islander

Australians those centres cannot offer the connections to homelands, culture and kinship

networks that are intrinsic to their well-being.

Australia’s current policy discourse expresses reservations over the viability, or sus-

tainability, of remote Aboriginal and Torres Strait Islander communities. Implicitly, and

in some cases explicitly, it seems governments would prefer a rationalisation of these

communities, such that there was a migration out of the smaller and more remote com-
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munities, and their eventual disappearance. Examples of this policy mindset can be

seen in the Northern Territory Government’s 2009 Working Future policy statement (NT-

Government, 2009), which identified 20 ‘Territory Growth Towns’ as part of a hub-and-

spoke model of service delivery; and more recently the Western Australian Government

foreshadowing the withdrawal of services to up to 150 of the smaller and more remote

communities in that state (WAToday, 2014a,b). The Western Australian Government’s

strategy set out in the recently formulated ‘roadmap’ for the reform of service delivery

in remote communities is to focus efforts and investment on communities that have ‘sig-

nificant educational and employment opportunities’, explicitly acknowledging that: In

concentrating on towns and larger communities, the State Government expects to sup-

port fewer communities over time, particularly as migration away from small outstations

continues. (Regional-Services-Reform-Unit, 2016) page 12’.

If some Aboriginal or Torres Strait Islander communities are seen to be unviable then,

broadly speaking, there are two policy approaches that could be taken. One is to pro-

mote economic development and employment in those communities, to make them more

self-sufficient. The second is to promote adjustment that would see people move out of

those communities. Such adjustment may be achieved by pull factors, which provide pos-

itive incentives for out-migration or reduce the cost associated with moving; push factors,

such as withdrawing services, activity testing and welfare quarantining that make life in

those communities more difficult; or some combination of the two. However, Australia’s

history is littered with examples of failed attempts to manipulate the geography and mo-

bility of Aboriginal and Torres Strait Islander people, stemming largely from the failure

to recognise the importance of cultural drivers to their well-being (Dockery, 2016).

Clearly the effectiveness of policy and service funding allocations for remote commu-

nities will be highly sensitive to the degree of consistency between assumed and actual

population trends. That is, there is a paramount need for separate estimates for Aboriginal

and Torres Strait Islander population projections, a result of the vastly differing demogra-

phies, service requirements and migration patterns from other populations (Taylor et al.,

2006; Wilson, 2009). In addition to the total population of remote communities, projec-

tions of the age structure of individual communities are extremely important in determin-

ing the likely mix of services required, such as the number of school places, available

health services and aged care facilities. Such forecasting exercises are inherently difficult

for Aboriginal and Torres Strait Islander populations in remote Australia. This study pro-

poses an empirical approach to dealing with these challenges and reports results from one
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of a suite of models being developed for forecasting Aboriginal and Torres Strait Islander

population changes at the community level by age group and gender. The focus here is

on broad population trends from 2011 to 2016 by remoteness and community size. The

forecasted release of the actual 2016 Census data (expected in late 2017, at the time of

writing), will not only provide actual data by which to evaluate our predictions, but will

also provide additional data which can be used to improve the models thus far developed.

This will also provide a basis to to extend detailed projections out to 2021 and 2026.

The following section provides background on existing approaches to projecting the

Aboriginal and Torres Strait Islander population. Sections 6.3 and 6.4 contain details

on the data set and the methodology used in the study. Section 6.5 reports the results

from the modelling of 2011 populations using the 2006 data, and Section 6.6 presents

the 2016 projections that are obtained by applying the modelling results to the 2011 data.

Projections by individual community are provided in the Appendix. The final section

discusses scope for further development and application of the method.

6.2 Background

The Census of Population and Housing, conducted every five years by the Australian Bu-

reau of Statistics (ABS), is the principal source of estimates of Australia’s population and

its demographic composition. It is also the main means by which the Aboriginal and Tor-

res Strait Islander population is counted and, since 1971, the intention has been for a full

enumeration of that population (Wilson, 2009). The ABS 2011 Census initially recorded

548,000 people of Aboriginal or Torres Strait Islander descent, representing 2.5% of the

total population. The ABS also produces estimates of the Aboriginal and Torres Strait

Islander resident population based on a post-enumeration survey and statistical methods

to adjust for the net undercount and the substantial number of people for whom Aborigi-

nal or Torres Strait Islander status is unknown. Table 6.1 shows how the Aboriginal and

Torres Strait Islander share of the population increases with remoteness according to the

original 2011 Census estimates. Only 34% of Aboriginal and Torres Strait Islander Aus-

tralians live in Major cities but 14% live in areas classified as Very remote; 71% of other

Australians live in Major cities and less than 1% live in areas classified as Very remote.

So while Aboriginal and Torres Strait Islander Australians make up around 2.5% of the

overall population, they represent almost 41% of people living in ‘very remote’ Australia.

One of the main approaches to population projection is the cohort-component method
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Table 6.1: Australian population estimates by Aboriginal and Torres Strait Islander status
and remoteness, 2011 Census

Aboriginal and Tor-
res Strait Islander

Non-Aboriginal
and Torres Strait
Islander

Total

Remoteness Area
(ARIA level)

People % People % People % Aboriginal and
Torres Strait
Islanders Share

Major cities (1) 188,537 34.4 14,094,903 70.8 15,006,519 69.8 1.3
Inner regional (2) 121,301 22.1 3,695,423 18.6 3,998,424 18.6 3
Outer regional (3) 118,491 21.6 1,735,627 8.7 1,963,404 9.1 6
Remote (4) 39,751 7.2 234,833 1.2 300,107 1.4 13.2
Very remote (5) 77,493 14.1 98,564 0.5 190,266 0.9 40.7
Total 548,366 100 19,900,767 100 21,507,719 100 2.5

Source: ABS CData online Table Builder facility. Note: columns sum to less than the total as the categories of ‘Migratory – offshore

– shipping’ and ‘No usual address’ have not been reported. Rows do not sum, as people for whom Aboriginal and Torres Strait

Islander status was ‘not stated’ have not been reported.

(see Booth (2006) for a review). For given age cohorts in a base year, assumptions regard-

ing deaths, births, immigration and emigration are applied to arrive at future projections

for that group at a given point in time. For a range of reasons, applying this method to

project populations of Aboriginal and Torres Strait Islander people living in remote com-

munities, which is done in this study is fraught with additional complications that are

likely to compound projection errors.

First, the accuracy of even the baseline data is questionable. The ABS post-enumeration

estimate of the total Aboriginal and Torres Strait Islander population was 21% higher

than the original census estimate as a result of both under-counting of people and non-

identification of people as being of Aboriginal or Torres Strait Islander descent. There is

evidence that earlier censuses under-counted young children and young to middle-aged

adults, with inaccuracies more pronounced in remote areas (Taylor, 1997). Despite con-

siderable efforts on the part of the ABS, such problems persisted for more recent censuses

(Wilson and Barnes, 2007). One issue is that kinship structures and mobility among Abo-

riginal and Torres Strait Islander families do not match assumptions underlying the enu-

meration strategies that individuals can be traced to a unique household and reported upon

by a unique reference person within that household. In the 2011 Census, there were twice

as many people for whom Aboriginal or Torres Strait Islander status was not stated as

there were people who identified as being of Aboriginal or Torres Strait Islander descent,

meaning error margins around those population estimates are very large.

In addition to its effect on baseline estimates, the issue of identification means there

is a further source of population change within a cohort in addition to the three stan-

dard components of mortality, fertility and migration. For cohort-component models that

attempt to derive separate projections of the Aboriginal and Torres Strait Islander and
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other populations, this can include the question of how children from mixed families are

likely to be identified, or identify themselves, in future censuses and the impact of policy

changes on the propensity to identify (Biddle and Wilson, 2013; Taylor, 1997; Wilson,

2009). These challenges are specific to the enumeration of Aboriginal and Torres Strait

Islander Australians. On top of these, Taylor (2014) notes general problems associated

with projecting populations for sparsely populated areas, including that they are more

vulnerable to vagaries of exogenous impacts that may impact upon them, such as weather

events and policy changes; data collection is more resource-intensive; and proportional

errors in projections tend to increase the smaller the population size of the units being

analysed and if there is rapid change occurring in the period in which the baseline data is

compiled.

Compounding the above issues, most projection methodologies are based on the as-

sumption of large population counts and cannot be applied to small populations. Taylor

et al. (2006) suggest a regional population size of around 10,000 people is required to

meaningfully apply age-conditional mortality analyses. Wilson (2011) suggests that ex-

ponential models have favourable properties over linear ones. However, if there are zero

counts in the component categories (such as in certain gender-by-age categories) expo-

nential models cannot be used, and inferences can be distorted by extreme values in terms

of percentage change where counts are small.

An example of how these difficulties impact upon population forecasts for sparsely

populated areas is provided by Taylor (2014) in the assessment of the accuracy of ABS

projections for the Northern Territory (from the 1970s through to 2012). Even at this

territory level, mean absolute percentage errors in the ABS projections are far higher than

for Australia as a whole. Several relatively naive models, based on simple extrapolation

of growth trends, out-performed the more sophisticated ABS cohort-replacement model.

Wilson (2009, p. 232) compiles a summary table of studies providing projections for

the Aboriginal and Torres Strait Islander population. Of the 13 publications included,

11 produced estimates at the national or state/territory level, with Taylor and Bell (2002)

and Taylor (2003) being the exceptions. Using a composite approach that combines ABS

census population estimates with other data sources, such as health clinic registrations and

school enrolments, Taylor and Bell (2002) produced projections to 2021 for Cape York

Peninsula (then the Peninsula ATSIC region), commencing from an adjusted baseline

population in 1986 of 6,500 Aboriginal and Torres Strait Islander people. Taylor (2003)

produced projections for 2006 to 2021 from the 2001 baseline of 37,000 Aboriginal and
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Torres Strait Islander people in the Australian desert region, which focused on the arid

zone covering much of Western Australia, the Northern Territory, South Australia and

parts of Queensland and New South Wales.

Following the same approach, Taylor et al. (2006) later generated separate projections

for the arid, semi-arid and savanna-biogeographical zones to 2021, with the 2001 baseline

Aboriginal and Torres Strait Islander populations in the semi-arid and savanna zones put

at 51,000 and 84,000, respectively. More recently, Biddle and Taylor (2009) applied the

cohort-component approach to generate projections of the Aboriginal and Torres Strait

Islander population from 2006 to 2031 for each of 37 ABS defined ‘Indigenous Regions’.

The smallest of those regions in terms of the Aboriginal and Torres Strait Islander popu-

lation was Ceduna, with 2,248 people.

Taylor et al. (2006, p. 3), nominate methodological developments in the treatment of

small areas and subsequent small number analysis as a key imperative to improving de-

mographic information for Aboriginal and Torres Strait Islanders in desert Australia. Of

the studies discussed above, only the Biddle and Taylor (2009) report, and possibly Tay-

lor and Bell (2002) projections for the Cape York Peninsula, commencing from a baseline

Aboriginal and Torres Strait Islander population of 6,500, could be considered as dealing

with a small area or small population. In contrast, this study produces projections for

communities with as few as nine Aboriginal and Torres Strait Islander inhabitants. In ad-

dition, existing exercises often attempt long projection horizons. While some projections

for Aboriginal and Torres Strait Islander populations are for five or 10 years beyond the

baseline, typically they are for 20, 30 or even 50 years forward, well beyond the planning

and policy cycles that Aboriginal and Torres Strait Islander communities are subject to.

6.3 Data

To explore demographic changes in remote Aboriginal and Torres Strait Islander com-

munities in more detail, this study models intercensal changes based on the ABS defined

geography of ‘Indigenous Locations’: Indigenous Locations (ILOCs) are aggregates of

one or more Statistical Areas (Level 1). ILOCs generally represent small Aboriginal and

Torres Strait Islander communities with a minimum population of 90 Aboriginal and Tor-

res Strait Islander usual residents. An ILOC is an area designed to allow the production

of census statistics relating to Aboriginal and Torres Strait Islander people with a high

level of spatial accuracy while maintaining the confidentiality of individuals. For the 2011
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Census, 1,116 ILOCs have been defined to cover the whole of geographic Australia.There

are non-spatial ILOCs for Migratory - Offshore - Shipping and No Usual Address in each

state and territory (S/T). (ABS, 2011).

The approach is to develop an empirical model of the 2011 Aboriginal and Torres

Strait Islander population counts for communities based on the 2006 Census counts and

selected characteristics of the communities. It utilises the fact that with the census un-

dertaken every five years, and the data being available in five-year ranges, population

changes for each community can be derived by age group. Treating those age-specific

changes as multiple observations for a community, this study adopts a multilevel mod-

elling approach. Using this framework, it is possible to estimate community-specific ef-

fects to identify growth communities from those in decline, conditional upon factors such

as their remoteness and initial size. Projections for the 2016 population are then generated

by applying the coefficients from the model to the 2011 data as the base year, under the

assumption that the 2006–2011 trends identified in the model continue. Potentially, pop-

ulation projections for 2021 and beyond could be generated treating the 2016 forecasts as

the base year, and so on.

Census population estimates were downloaded from the ABS Table Builder online fa-

cility for all 1,098 spatial ILOCs defined in 2011 (i.e., excluding the non-spatial ILOCs)

and for all 838 spatial ILOCs that were defined for 2006. The data extracted for each

ILOC include the population in five-year age groups by sex and Aboriginal or Torres

Strait Islander status. The status variable has five categories: non-Indigenous, Aboriginal,

Torres Strait Islander, both Aboriginal and Torres Strait Islander, and not stated. There

have been considerable changes to the ILOC geography since 2006. The ABS provided a

concordance of 838 2006 ILOCs to the 2011 ILOCs, which reports estimates of the per-

centage of the population within each 2006 ILOC that would correspond to a 2011 ILOC,

with the proportions weighted according to the respective Aboriginal and Torres Strait Is-

lander populations. These were used to generate 2006 population estimates corresponding

to the 2011 geography. For example, the 2011 ILOC of Amoonguna corresponds to the

2006 ILOCs of Amoonguna (100%) and some of Sandover and Outstations (10%). Hence

for each age group by gender by Indigenous status’ cell, 2006 estimates are computed as

a weighted sum: 1 times the Amoonguna estimate + 0.1 of the Sandover and Outstations

estimate. These concordances will be less appropriate for the non–Aboriginal and Torres

Strait Islander cells, but this will be of little consequence since the analyses concentrates

upon estimates of the Aboriginal and Torres Strait Islander population.
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The resulting data include 2006 and 2011 population estimates for 1,098 ILOCS that

are geographically comparable between the two years. As described below, a subset of

618 ILOCs in ‘outer regional’, ‘remote’ and ’very remote’ Australia was utilised in the

modelling.

The census counts of the number of Aboriginal, Torres Strait Islander and both Abo-

riginal and Torres Strait Islander people were aggregated to a single Aboriginal and Torres

Strait Islander population estimate. For each ILOC in each census year, population data

are available for 42 gender-by-age cohorts: 21 age groups (0–4, 5–9, 10–14 ... 90–94,

95–99, 100+) each for males and females. In the older cohorts, a large proportion of

these cells have either zero or very small population counts and this posed a problem for

a number of the models that were considered for this study. Consequently, the older age

cohorts were aggregrated as shown in Figure 6.1.

A key concern of the current paper is to generate projections for remote Aboriginal

and Torres Strait Islander communities and, given that population changes in the major

cities and regional centres are likely to be driven by markedly different processes, only

ILOCs in ’outer regional’, ’remote’ and ’very remote’ Australia were included in the

sample for estimation (corresponding to ARIA levels of 3, 4 and 5). A small number

of other ILOCS were excluded due to the fact that there were almost no Aboriginal and

Torres Strait Islanders present at the time of the census. These exclusions were:

• Lord Howe Island, off New South Wales. The 2006 Census recorded no Aboriginal

or Torres Strait Islander usual residents of Lord Howe Island

• The external territories of Christmas Island and the Cocos Islands (in part to enable

state dummies to be included among the dependent variables)

• The Northern Territory ILOCs of Apatula (Finke) Homelands and Walungurru Out-

stations. The data for these ILOCs had zero counts in the vast majority of age-by-

gender cells.

The final sample is based on data from 618 ILOCs, generating 19,776 observations for

the regression analysis (32 observed cohort changes per ILOC). Also included in the data

set is the natural logarithm of the total population of the ILOC (including non–Aboriginal

and Torres Strait Islander people) to capture differences by community size; dummy vari-

ables for cohort age, gender, ARIA and state/territory; the gender and age-specific five-

year survival rate for each cohort; and interaction terms between the age group and ILOC
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size, and between age group and ARIA. The interaction terms are included to allow for

possible differential effects of age in smaller versus larger communities and in less remote

versus more remote communities. For example, previous studies have identified trends in

which younger Aboriginal and Torres Strait Islander people tend to move away from

smaller and more remote communities into larger regional centres, while older people

tend to move back out into the country. A dummy variable was also included to indicate

whether the community was nominated as a Territory Growth Town under the Northern

Territory Government’s 2009 Working Future policy (see (Sanders, 2010)). Table 6.2

provides definitions of the variables in the data sets. Descriptive statistics for these, along

with the dependent variable, are provided in the section A.4.1 of the appendix.

6.4 Methods

In order to assess changes in the population of an ILOC across the two time periods, there

are two board approaches that this study employs. The first approach is an aggregated ap-

proach, whereby the change in the total population of an ILOC across the two time periods

is considered. The second approach considers these changes for each age group within an

ILOC across the two time periods. The methods for both approaches are discussed in this

section.

The data available provides the number of individuals in each age group (and gender)

across all ILOCs for the years 2006 and 2011. From this, one can build an age group dis-

tribution of the overall population by aggregating each age group category for all ILOCs.

This is carried out for both the 2006 and 2011 census years. This provides a reasonable

starting point for measuring the changes in the overall age group distribution between

2006 and 2011. Similarly, by aggregating all age groups for a each ILOC, an ILOC group

distribution can be constructed for each time period. As before, these distributions can be

compared across the two time periods in order to assess if there has been a change in the

overall population.

One measure that can be used to assess the change in such a distribution is the Kullback-

Leibler (KL) divergence measure, also known as relative entropy (Kullback and Leibler,

1951). This is a measure of how a proposed distribution diverges from a benchmark dis-

tribution. In this context, the benchmark distribution is the 2006 age group distribution

and the proposed distribution is the 2011 age group distribution. A significant advan-

tage of this measure is that it does not require any distributional assumptions. Belov and
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Table 6.2: Definitions of variables in the data set
Variable(s) Description
ILOC size The natural logarithm of the resident total population of the ILOC in

2006 (including Aboriginal and Torres Strait Islander people, other Aus-
tralians and those for whom Aboriginal or Torres Strait Islander status is
not stated).

remote, Very remote Two mutually exclusive dummy variables indicating whether the ILOC is
in ARIA level 4 (remote) or ARIA level 5 (Very remote). The omitted or
‘reference’ category is Outer regional (ARIA level 3).

Victoria, Queensland,
South Australia, West-
ern Australia, Tasma-
nia, Northern Territory

Six mutually exclusive dummy variables indicating the state or territory of
the ILOC. New South Wales is the omitted category. There are no Outer
regional, remote or Very remote ILOCs in the Australian Capital Territory.

Female Dummy variable equal to 1 if the observation is for a female cohort, and
equal to 0 if it relates to a male cohort.

Growth town Dummy variable taking on a value of 1 if the ILOC contains or corresponds
to one of the communities nominated as growth towns under the North-
ern Territory Government’s Working Future policy announced in 2009.
While the policy named 20 towns, one of these (Daguragu-Kalkarindji)
falls across two ILOCs (Daguragu and Kalkarindji), meaning there are 21
ILOCs coded with a value of 1.

Age 10–14; Age 15–
19, . . . Age 75–79,
Age 80+

Sixteen mutually exclusive dummy variables indicating the age of the co-
hort in 2011. The omitted category is Age 5–9.

Survival rate Based on ABS Catalogue 3238.0 – Estimated and projected Aboriginal
and Torres Strait Islander population Series B for Australia (ABS 2014).
The ratio of the estimated population in each age cohort i in 2011 to the
estimated population of age cohort i−1 in 2006. This gives an age-specific
apparent survival rate and is calculated separately for males and females.
The survival rates are close to unity for younger cohorts and decline to
under 0.7 for cohorts beyond the age of 70 years.

ILOC size*age interac-
tion terms

Fifteen separate variables are generated by interacting the continuous
ILOC size variable with the age group dummies. The omitted age category
is Age 5–9. The coefficients on these variables indicate whether, within
each specific age group, there is any further effect of community size in
addition to the average effect of community size observed across all age
cohorts.

Outer regional*age
and remote*age
interaction terms

Thirty separate dummy variables generated by interacting the Outer re-
gional dummy variable (ARIA level 3) with age cohort and the remote
dummy variable (ARIA level 4) with age cohort. The omitted categories
are Very remote (ARIA level 5) and Age 5–9. The coefficients on these
variables indicate whether, within each specific age group, there is any fur-
ther effect of remoteness in addition to the average effects observed across
all age cohorts.
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D Armstrong (2011) use this methodology to identify differences in performance across

a range of tests for a given individual.

Let pi,2006 be the probability of individuals in age group i for all ILOCs in 2006. Let

pi,2011 be the probability of individuals in age group i for all ILOCs in 2011. Then, the KL

divergence from pi,2006 to pi,2011 is given by

KL =

N∑
i=1

pi,2006 log
(

pi,2006

pi,2011

)
, (6.1)

where N is the total number of age-groups. From the equation above, it can see that

if the two distributions are similar, then the KL divergence would be close to zero. If

this is not the case, then the resulting divergence would be significantly different from

0.1. This measure allows to one to answer the question whether or not there has been

an overall change in the age group distribution across the five year period. This method

can be applied to various other distributions computed from the data. For example, one

can focus on the assessing the change in distribution for across all ILOCs conditioning on

gender or level of remoteness.

In order to compare the results produced by the KL divergence measure, one can

use the chi-squared statistic and the Kolmogrov-Smirnov (KS) statistic. The chi-squared

statistic is a second order accurate approximation of twice the KL divergence. This statis-

tic is given by:

χ2 =

∑N
i=1

(
pi,2011 − pi,2006

)2

pi,2006
(6.2)

Another measure to compare distributions is the two sample KS test statistic. This mea-

sure can be used to test if two samples are drawn from the same distribution. This is

achieved by computing the maximum distance between two the empirical cumulative dis-

tributions. Let Fi,2006 and Fi,2011 denote the empirical age group distributions for years

2006 and 2011 respectively. The KS test statistic is defined as

KS = supi |Fi,2006 − Fi,2011| (6.3)

This quantity is then compared against the critical values obtained from the KS distribu-

tion. If this quantity is significant, then the two samples are not drawn from the same

distribution. The KS test statistic is a non-parametric test and similar to the KL diver-

gence does not require any distributional assumptions. All of the above measures indicate
1Critical values for the KL divergence can be obtained from the double F-distribution under normality
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Census Age
j 1 2 . . . 15 16 17
2006 0–4↘ 5–9↘ . . . 70–74↘ 75+↘

2011 0–4 5–9 . . . 70–74 75–79 80+

Figure 6.1: Cohort Structure of the Census population data

whether or not there has been a change in the age group distribution across both years.

Furthermore, these measures are also applied to other distributions based on gender and

remoteness.

Thus, this first approach allows one to test whether the overall distribution has changed

over time. Changes in the overall distribution would imply that some aspect of the pop-

ulation has indeed changed over time. However, in order to assess what is happening

within the ILOC, a different approach is required. This second approach aims to study

the changes in population for each of the age groups within a given ILOC. This approach

is more widely known as the cohort-component model. Using this approach, the number

of Aboriginal and Torres Strait Islanders aged 5–9 in a given ILOC in 2011 will be the

number who were aged 0–4 in 2006 minus deaths, net migration and net changes associ-

ated with identification of Aboriginal or Torres Strait Islander status. The data set-up is

demonstrated in Figure 6.1, where the arrows trace the cohort movement through time.

Using j to index the age group categories, it can be seen that there are 16 such co-

hort progressions or flows in which the population (P) in 2011 (t) can be related to the

population in the earlier age category in 2006(t − 1):

P j−1,t−1 → P jt. (6.4)

That is, ignoring extraneous factors, the age group in say 0-4 simply ages to that in 5-9,

between censuses.

With population data for males and females, this gives 32 flows observed for each

ILOC. This can be treated as a multi-level model framework in which there are 32 ob-

servations for each ILOC. Following the convention in the econometric multi-level mod-

elling literature (Rabe-Hesketh and Skrondal, 2008, p. 65), the entity or the ‘cluster’ is

denoted by subscript i and the ‘occasions’ providing repeat observations for that clus-

ter by subscript j. Hence, in this case communities are denoted by subscript i (i = 1 to

1,098) and the 2011 age groups by subscript j ( j = 2 to 17). For convenience, the gender

distinction is ignored for the purposes of setting out the model. From 6.4, a modelling
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framework can be developed which incorporates clustering at the ILOC level,

Pi jt = f (Pi, j−1,t−1). (6.5)

This study does not impose estimates of the components of migration, deaths or

changes in identification. Rather, the functional relationship between Pi jt and Pi, j−1,t−1 is

estimated by taking account of observable ILOC characteristics and unobservable ILOC-

specific effects. A range of options are available for modelling the changes in cohort pop-

ulations between 2006 and 2011. Exploration with these options indicated that it is prefer-

able to model the change in population in linear terms (or ‘levels’) rather than in growth

terms. Models based on the proportionate change, such as the growth rate, are highly

sensitive to extreme values that mostly arise where cell counts are small. For example,

percentage changes in some age categories in smaller communities were in the thousands,

and are likely to be affected by concordance and enumeration issues. Modelling changes

in growth rates also means omitting observations for which the base number is zero, even

though that is a legitimate value (that is, a gender/age cohort/ILOC observation with a

currently zero population, in this context ‘could not’ be allowed to grow). Indeed, these

issues are certainly all very pertinent when dealing with small area counts of Aboriginal

and Torres Strait Islander people by gender and age.

An alternative approach is to model the population in 2011 as a direct function of

the corresponding lagged (2006) population values. Explaining current population levels

with past ones, especially over a short number of time observations, raises several econo-

metric concerns, such as endogeneity, non-stationarity and the strong possibility of being

adversely affected by the spurious regression problem. Indeed, in a simple regression,

the lagged dependent variable clearly exhibited signs of these issues, with the estimated

coefficient being very close to unity in value and with an extremely high t-statistic. Fur-

ther, cells with zero counts and very small counts continue to pose a problem. Thus the

preferred strategy adopted here is to model the change in population for each cohort. That

is, the dependent variable becomes:

ci jt = Pi jt − Pi, j−1,t−1. (6.6)

As such there are 32 observations of ci jt for each ILOC (i = 2 to 17 for males and females).

Referring back to Figure 6.1 above, the model estimates changes in the population of
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people aged 5-9 in 2011 from the number aged 0-4 in 2006; of people aged 10-14 in

2011 from the number aged 5-9 in 2006; and so on. However, it cannot provide estimates

for the population aged 0-4 in 2011, as there is no younger cohort in 2006 to use as the

baseline. To enable projections for the total populations by ILOC, a separate fertility

model is developed to generate estimates of the number of males and females aged 0-4 in

2016 (see 6.5).

Stochastically then, population changes can be modelled as:

ci jt = αi + x
′

i, j,t−1β + εi jt where εi jt ∼ N(0, σ2) (6.7)

and xi, j,t−1 represents a vector containing the independent variables (all defined in the

base year 2006; β is a vector of coefficients to be estimated; αi consists of unobserv-

able community-level (ILOC) effects and εi jt denotes the errors in the model. For most

applied work, there are two major approaches to estimating unobserved effects: fixed

and random-effects. The primary consideration in choosing between them involves the

assumption regarding the relationship between the αi’s and the x’s. Unlike the random-

effects approach, the fixed-effects one assumes an arbitrary correlation between these.

The above model (equation 6.7) can be estimated by simple linear regression. How-

ever, this is not appropriate for the ’small numbers’ model we are dealing with here, as

the date will be necessary truncated in many instances as the dependent variable has an

effective lower bound. That is, any population cannot decrease by more than the start-

ing value. For example, consider an ILOC with five male Aboriginal and Torres Strait

Islander people aged 20–24 in 2006. The change in the population from 2006 to 2011

can only range from -5 upwards, and hence the population of males aged 25–29 in 2011

cannot be less than zero.

Note also that if the population of males aged 25–29 in 2011 is also five, then there

has been no change and the dependent variable ci jt equals zero. This zero is a legitimate

value indicating no change in the population, and indeed any estimation the expected

value of ci jt would (should) accordingly be close to zero. However, consider the case

in which there are no individuals in a particular age-by-gender category in 2006, as is

common for older age cohorts. In this case the population can increase (ci jt > 0), but

has a lower bound of zero, and the probability of observing zero change is much higher

than for observations with a positive initial population. In such situations where there is a

‘latent’ potential change in the population that cannot be observed because of the effective
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lower bound, linear regression models will produce biased and inconsistent results, which

will worsen with the extent of such censoring/boundary observations (Amemiya, 1984;

Greene, 2003).

To alleviate any such potential issues in estimation, a preferable approach is to imple-

ment a Tobit model with varying censoring limits. As noted above, in the current context

the limit is equal to the 2006 population for a specific gender-by-age group at a given

ILOC. This differs from the usual Tobit model set-up, where lower (and/or upper) limits

are usually fixed (for example, commonly at zero) and the same for all observations in the

sample.

The previous model (equation 6.7) can be updated to reflect this possible truncation

as

c∗i jt = αi + x
′

i, j,t−1β + εi jt where εi jt ∼ N
(
0, σ2

)
(6.8)

and c∗i jt now denotes the latent underlying change in ILOC i for age group j at time t

(2011). However, this cannot be fully observed due to the fact that the change cannot be

less than the current population. In other words, there is lower tail censoring such that

only ci jt is observed. Hence

if c∗i jt < −Pi, j−1,t−1 then ci jt = −Pi, j−1,t−1. (6.9)

Thus, as noted, in contrast to the standard Tobit model in which the lower (and/or upper)

limit is assumed to be a fixed value(s) for all i and j, the proposed framework contains

the 2006 population as a varying lower limit for each observation. Like the linear model,

the Tobit model can be estimated assuming either random or fixed effects, although the

latter will suffer from the well-known incidental parameters problem, if the dimension

over which these are constant is ‘small’ (Greene, 2012). However, as robustness checks,

extensive modelling was undertaken using both the linear regression and Tobit models,

both of which with fixed and random unobserved effects. In light of these, it was found

that the Tobit Model with random effects provided a superior fit compared to other models.

Currently the data contains only one observation on each ci jt i.e. namely the change

from 2006 (t − 1) to 2011 (t). In this sense, the model is cross-sectional rather than lon-

gitudinal and as such the time subscript can be omitted. The release of 2016 Census data

will provide a second observation, which will result in a true multi-level panel structure.

Observations on changes across multiple time periods will provide more rigorous esti-
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mation of community-level unobserved effects plus scope for further development. As a

result, the random-effects Tobit model can be expressed as

c∗i j = x
′

i jβ + εi j + ui, (6.10)

where εi j and ui are both normally distributed, with zero means and variances of σ2 and

ω2, respectively. The data is observed as ci j = max(Li j, c∗i j) where Li j = −Pi, j−1. In this

context, this is an example of lower tail censoring: the change in population in the next

time period cannot be less than the number of people (in an age group) currently residing

in the ILOC. As per usual, the random effect is assumed to be the same for each time

period and the εi j is uncorrelated across all ILOCS. To derive the log likelihood function,

the focus here is on the conditional distribution of f (ci j|ui) (Greene, 2012).

Let the dummy variable, di j = 1 indicate that ci j > Li j. This is the uncensored case

and di j = 0 for censored cases. The conditional density of ci j can then be expressed as

f (ci j|ui, di j = 0) = P(c∗i j ≤ Li j|ui) = Φ

Li j − x′i jβ − ui

σ


for censored cases and

f (ci j|ui, di j = 1) =
1
σ
φ

ci j − x′i jβ − ui

σ


for uncensored cases; where Φ and φ, respectively denote the c.d.f and p.d.f of the stan-

dardised normal distribution. Combining the two cases above

f (ci j|ui) = [ f (ci j|ui, di j = 0)]1−di j x [ f (ci j|ui, di j = 1)]di j .

Assuming independence, the joint density of all observations in a group can be expressed

as

f (ci1, ci2, . . . , ciT j |ui) =

T j∏
j=1

f (ci j|ui).

Based on the results above, the log likelihood function of this model can be written as

log L =

n∑
i=1

log


∫ ∞

−∞

1

ω
√

2π
exp

(
−

ui

2ω2

) T j∏
j=1

Φ Li j − x′i jβ − ui

σ

1−di j  1
σ
φ

ci j − x′i jβ − ui

σ

di j

dui


Lastly, find values of β, σ and ω such that this function is maximised. The integrals can

be computed using Gauss-Hermite quadrature (or by simulation) and the function can be
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maximised using standard non-linear optimisation methods.

6.5 Results

As mentioned above, we first compare age group and ILOC group distributions across

the two time periods. In addition to this, distributional comparisons are also carried out

for these distributions conditioned on gender and remoteness (ARIA level). Table 6.3

shows the results of this analysis. The KL divergence measure indicates that the ILOC

group distribution has not changed over time. Although the divergence measure increases

marginally for ILOC distributions conditioned on gender, it is still a relatively low value

and as such indicates that the distribution has not changed over time. The divergence

measure drops further for ILOC distributions conditioned on remoteness. Similarly, the

KL divergence is quite low for the age group distribution. This indicates there is no

significant change in these distributions across the two time periods. This is also true age

group distributions conditioned of gender and remoteness.

The results for the KL divergence are consistent with both the Chi-squared and KS

test statistic. Hence, at an aggregate level, there seems to be no change in both ILOC and

age group distributions across the two periods. This is to be expected, since significant

changes in population do not typically occur in such a short time frame (one census pe-

riod). From a policy standpoint, this does not support the idea of removing services to

regional and remote areas due to declining populations.

Thus, although at an aggregate level there appears to be no significant change in distri-

butionS across the two time periods, there are instances where the changes in population

haVE been quite extreme at the ILOC level. This may be due factors specific to the

ILOC. For example, the community of Kargaru (ILOC number 1095) decreased by 83%

from 2006 to 2011. Similarly, the communities of Umoona (ILOC Number 640) and Coo-

nana (ILOC number 693) decreased by 69% and 62% respectively. On the other hand,

there were communities such as Tiwi Islands (a 8 fold increase) and Broome (Surrounds)

(a four fold increase) which experienced significant growth in population.

As per the methodology described above, population change is defined using the

cohort-component approach. The objective here is then to model this change (using us-

ing ILOC specific factors. Initially linear regression models with both random and fixed

effects were fitted 2. At first impression, these models seems to be performing reasonably

2The results for these models are available upon request
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Table 6.3: Measuring change in distribution
Group KL Divergence 1

2 Chi Sq KS Statistic KS p-val
ILOC group 0.023 0.024 0.065 0.15
ILOC group males 0.027 0.027 0.065 0.149
ILOC group females 0.024 0.025 0.063 0.17
ILOC group aria3 0.014 0.015 0.102 0.156
ILOC group aria4 0.014 0.015 0.074 0.959
ILOC group aria5 0.035 0.036 0.076 0.406
age group 0.003 0.003 0.143 0.987
age group males 0.003 0.003 0.15 0.983
age group females 0.003 0.003 0.19 0.853
age group aria3 0.004 0.004 0.2 0.832
age group aria4 0.005 0.005 0.15 0.983
age group aria5 0.002 0.002 0.05 1.000

well with the fixed effect model performing marginally better than the random effects

model. However for some of the observations, the predicted change value is much smaller

than the initial (2006) population value itself. For example, the predicted change for age

group 9 for a given ILOC is -10 when the initial (2006) population for that age group is 8.

This is clearly nonsensical given that the final projected population value is negative (-2).

To rectify this issue the Tobit model with varying lower limits was proposed (Section

6.4). The introduction of this censoring point ensures that the expected values of the age

group/ gender/ILOC population change observation cannot breach their respective lower

limit (and hence eliminates the possibility of a negative population projections). The

results (model coefficients and significance) of the Tobit model are provided in Table 6.4.

Note that these results pertain to the pooled version of the model. Having conditioned on

all the available information (independent variables) no residual unobserved heterogeneity

remains and as such a pooled version of the Tobit model is suitable, and statistically

preferable.

Comparing the fitted values of the Tobit model with the linear regression model, the

correlation measure (fitted versus actual values) improves significantly from 23% (linear

regression model) to 33% (Tobit). It appears that the linear regression model underesti-

mates change for 15% of the observations. Approximately 29% of the observations are

censored cases i.e., cases where the value of change is equal to the lower limit (Li, j). The

linear regression model under-predicts change for 42% of these censored cases. Further-

more, the correlation between actual change and predicted change is approximately 3%

for the linear regression model compared to 61% for the Tobit model for these cases.

Based on these metrics, the Tobit model clearly provides a significantly better fit.
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The projected population numbers can be computed by simply summing the fitted

values from the model to the initial (2006) population values. This produces a final esti-

mate for each age group category across all ILOCs. Figure 6.2 shows the actual versus

predicted values produced by the Tobit model.
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Figure 6.2: Actual 2011 values versus Predicted 2011 Values

Apparent Fertility Rates

To develop a model to predict the Aboriginal and Torres Strait Islander population aged

0–4 in each ILOC, a linear regression model was estimated across ILOCs with the 2011

Aboriginal and Torres Strait Islander population aged 0–4 as the dependent variable.

Models were tested with a variety of specifications that included summations of the male

and female Aboriginal and Torres Strait Islander populations in the ILOC in 2006, ini-

tially focusing on what were considered to be adults of child-bearing age. However,

experimenting with which age groups to include and allowing differential effects by age

and by region to maximise the model fit returned the relatively simple model set out in

equation (6.11) below. A model that included the number of Aboriginal and Torres Strait

Islander children aged 0–14 in the ILOC in 2006 interacted with ARIA dummies was

found to have the best predictive capability. For the full sample of ILOCs across all of
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Table 6.4: Model Coefficients and Significance
Variable Coefficient Standard Error
ILOC Size 2.313*** 0.45

ARIA
Outer Regional —
Remote 0.062 1.03
Very Remote 3.209*** 1.02

State/Territory
New South Wales —
Victoria -0.786 0.75
Queensland 0.102 0.39
South Australia -0.602 0.42
Western Australia 0.266 0.36
Tasmania -0.587 0.42
Northern Territory -0.052 0.35
Female 0.044 0.17
Growth Town -0.685 0.91

Cohort age (2011)
Age 5-9 —
Age 10-14 4.851*** 1.66
Age 15-19 10.965*** 2.23
Age 19-24 13.38*** 2.70
Age 25-29 7.256*** 2.63
Age 30-34 5.931** 2.58
Age 35-39 6.318** 2.46
Age 40-44 6.566** 2.62
Age 45-49 4.513* 2.31
Age 50-54 5.695** 2.39
Age 55-59 4.764* 2.68
Age 60-64 1.303 2.69
Age 65-69 -2.835 2.59
Age 70-74 -1.526 2.95
Age 75-79 -5.648* 3.06
Age 80+ -5.262 3.69
Survival Rate 8.972* 5.26

ILOC size by Age Interaction terms
ILOC Size*Age 10-14 -1.409*** 0.32
ILOC Size*Age 15-19 -2.382*** 0.39
ILOC Size*Age 19-24 -2.623*** 0.47
ILOC Size*Age 25-29 -1.642*** 0.46
ILOC Size*Age 30-34 -1.449*** 0.45
ILOC Size*Age 35-39 -1.532*** 0.43
ILOC Size*Age 40-44 -1.537*** 0.46
ILOC Size*Age 45-49 -1.248*** 0.40
ILOC Size*Age 50-54 -1.437*** 0.42
ILOC Size*Age 55-59 -1.434*** 0.47
ILOC Size*Age 60-64 -0.859* 0.46
ILOC Size*Age 65-69 -0.418 0.43
ILOC Size*Age 70-74 -0.744 0.47
ILOC Size*Age 75-79 -0.296 0.45
ILOC Size*Age 80+ -0.640 0.58
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Variable Coefficient Standard Error
ARIA by Age interaction terms

Outer Regional*Age 10-14 6.272*** 1.18
Outer Regional*Age 15-19 3.621*** 1.03
Outer Regional*Age 19-24 1.532 1.10
Outer Regional*Age 25-29 3.266*** 1.01
Outer Regional*Age 30-34 3.007*** 0.97
Outer Regional*Age 35-39 3.746*** 1.04
Outer Regional*Age 40-44 3.270*** 1.03
Outer Regional*Age 45-49 2.901*** 0.97
Outer Regional*Age 50-54 3.458*** 1.01
Outer Regional*Age 55-59 3.443*** 1.14
Outer Regional*Age 60-64 1.420 1.13
Outer Regional*Age 65-69 1.113 1.18
Outer Regional*Age 70-74 1.324 1.24
Outer Regional*Age 75-79 0.878 1.33
Outer Regional*Age 80+ 0.128 1.56
Remote*Age 10-14 3.119*** 1.08
Remote*Age 15-19 2.572** 1.10
Remote*Age 19-24 1.653 1.14
Remote*Age 25-29 2.324** 0.98
Remote*Age 30-34 2.318** 0.95
Remote*Age 35-39 3.075*** 1.02
Remote*Age 40-44 3.508*** 0.97
Remote*Age 45-49 2.917*** 0.95
Remote*Age 50-54 2.953*** 0.97
Remote*Age 55-59 2.913*** 1.08
Remote*Age 60-64 1.717 1.08
Remote*Age 65-69 2.405** 1.12
Remote*Age 70-74 2.544** 1.19
Remote*Age 75-79 1.440 1.30
Remote*Age 80+ 2.177 1.48
Constant -24.267*** 6.2

88



CHAPTER 6. MODELLING POPULATIONS IN REMOTE COMMUNITIES

Australia, the model returned an R-squared of 0.96.

The number of Aboriginal and Torres Strait Islander males aged 15–34 marginally

added to the predictive power, but this component of the model applied only to projections

for ILOCs in the major cities (i.e., ARIA level 1). For ILOCs in outer regional, remote

and very remote Australia, the predicted number of Aboriginal and Torres Strait Islander

people aged 0–4 years is given by:

P1, j,t = −2.37 + 0.42 ∗ OREG j

3∑
i=1

Pi, j,t−1 + 0.35 ∗ REM j

3∑
i=1

Pi, j,t−1 + 0.35 ∗ VREM j

3∑
i=1

Pi, j,t−1

(6.11)

where P1, P2 and P3 denote the Aboriginal and Torres Strait Islander population aged

0 − 4, 5 − 9 and 10 − 14 respectively. OREG, REM and VREM are dummy variables

indicating that the ILOC is in outer regional, remote and very remote Australia. In the

estimated model of the 2011 population on 2006 values, each of the estimated coefficients

(including the intercept term) was significant at the 1% level.

The coefficients were applied to the 2011 data to obtain projections for the population

aged 0 − 4 in 2016 for each ILOC in our analysis sample. The projected population was

allocated as 50% boys and 50% girls. The cases where the predicted population was

negative, the projection was set to zero.

6.6 Projections

By applying the estimated coefficients from the cohort and fertility models to the 2011

data, including the estimated ILOC-specific effect (where appropriate), projections of the

2016 populations for each ILOC by gender and five-year age group were generated. In

absolute terms, projected indigenous population changes range from an increase of 888

individuals for Thuringowa in Queensland to a decline of 38 individuals in the remote

community of Miali Brumby – Warlpiri, a town camp on the outskirts of Katherine in

the Northern Territory. Outer regional Davenport, suburb on the north eastern outskirts

of Port Augusta, is projected to experience the most rapid decline in terms of percentage

change (-15.7%), relating to a fall in population of around 27. The neighbouring ILOC

of Port Augusta – Surrounds, in South Australia, is projected to have the highest growth

rate (364%), albeit from a population base of just 14 in 2011. A map of the percentage

changes by ILOC is shown in Figure 6.3, where the dots indicate the centroid of the ILOC

region. Section A.4.2 of the appendix contains the projections (and percentage change)
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for all the ILOCs.

Figure 6.3: Projected changes in Aboriginal and Torres Strait Islander populations by
ILOC: 2011–2016

For the many reasons stressed above, estimates for individual communities should

be treated with caution. Certainly the use of projections based on modelling results for

individual communities in any decision-making – particularly where they indicate un-

usually high or low growth – should only be undertaken following robust verification of

trends through alternative data sources, local knowledge and local consultation. More

confidence can be placed in results pertaining to trends at more aggregated spatial and de-

mographic levels, as these will be less subject to idiosyncratic factors relating to a specific

community and point in time. Selected aggregated results of potential policy relevance

are presented below, commencing with projected changes in the Aboriginal and Torres

Strait Islander population by remoteness.

Overall, the Aboriginal and Torres Strait Islander population living in Outer regional,

remote and Very remote Australia is projected to increase by 34,400 people between 2011

and 2016, or growth of 14.8%. This represents a larger increase than that recorded by

the census between 2006 and 2011 in both absolute terms (27,476 persons) and growth

(13.4%). As shown in Table 6.5, populations in each of the three ARIA categories are

projected to increase, but with growth strongest in Outer regional Australia (21.4%).

The projections suggest increases in the Aboriginal and Torres Strait Islander popu-
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Table 6.5: Aboriginal and Torres Strait Islander populations: 2006 and 2011 census esti-
mates and 2016 projections, by remoteness

Population Percent Change
ARIA Number of ILOCs 2006 2011 2016 2006–2011 2011–2016
3 – Outer regional 245 97929 116891 139953 19.4 19.7
4 - Remote 95 35537 38930 43073 9.5 10.6
5 – Very remote 278 72067 77188 84384 7.1 9.3
Total 618 205533 233009 267409 13.4 14.8

Figure 6.4: Age structure of the Aboriginal and Torres Strait Islander population in outer
regional, remote and very remote Australia: 2011 (actual) and 2016 (projected)
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Table 6.6: Projected Aboriginal and Torres Strait Islander population growth rates, by age
and remoteness (per cent change from 2011 to 2016)

Age (years)
ARIA 0–19 20–59 60 Total
3 – Outer regional 15 21.7 40.5 19.7
4 – Remote 3.1 13.9 35.3 10.6
5 – Very remote 4 12.4 22.5 9.3
Total 9.6 17.1 34 14.8

Table 6.7: Projected Aboriginal and Torres Strait Islander population growth rates, by age
and remoteness (per cent change from 2011 to 2016)

Population Per cent change
ARIA/ILOC size in 2011 Number of ILOCs 2011 2016 2006-2011 2011-2016
Outer Regional
Small (0–2,750 people) 75 16306 19131 0.7 17.3
Medium (2,751–6,500 people) 75 26453 32109 18.9 21.4
Large (6,501+ people) 95 74132 88713 24.6 19.7
Remote
Small (0–700 people) 35 5438 5495 -3.8 1.1
Medium (701–2,000 people) 21 8046 8626 12.2 7.2
Large (2,001+ people) 39 25446 28951 12 13.8
Very Remote
Small (0–200 people) 99 10319 11703 0.3 13.4
Medium (201–500 people) 94 23975 25196 7.7 5.1
Large (501+ people) 85 42894 47485 8.5 10.7
Total 618 233009 267409 13.4 14.8

lation in all five-year age groups for both males and females. The detailed comparative

population pyramids for the 2011 population as recorded by the census and the projected

2016 population are shown in Figure 6.4.

This cohort analysis suggests a rapid ageing of the regional Aboriginal and Torres

Strait Islander population, with the number of people aged 60 and over projected to in-

crease by 34% between 2011 and 2016 (Table 6.7). This is on top of a 28% increase

in the previous intercensal period. Within each ARIA region, ILOCs were classified as

relatively small, medium or large on the basis of their 2011 Census total population esti-

mates (that is, including the non–Aboriginal and Torres Strait Islander population), with

the bands chosen such that roughly one-third of ILOCs are in each category. Growth

in the Aboriginal and Torres Strait Islander population is projected to be relatively even

across communities of different size in Outer regional Australia (Table 6.7). In remote

Australia, population growth between 2011 and 2016 is projected to be markedly lower

in the smaller communities, almost stagnant in communities that had overall populations

of less than 700. Contrary to assumptions underpinning a range of government policies,

Indigenous populations are projected to grow substantially in small, very remote commu-

nities.
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Finally, Table 6.8 shows projected changes in the regional Aboriginal and Torres Strait

Islander populations by state and territory. The growth rate of the Aboriginal and Torres

Strait Islander population is projected to be lowest in the Northern Territory, at just 9.5%

between 2011 and 2016. With this exception, projected growth rates are relatively uniform

across jurisdictions, ranging from 15.0% for Western Australia to 21.1% for Victoria.

Projected growth rates are also quite uniform in Outer regional areas across the states and

territories. The projections for remote and very remote areas are more variable. In terms

of the absolute number of Aboriginal and Torres Islander people, the largest increase

is projected to occur in Queensland with an additional 12,101 people, well above New

South Wales (6,327 additional Aboriginal and Torres Strait Islander people) and Western

Australia (up by 3,135 people).

An important policy variable that was included in the analysis was that indicating

whether the ILOC included a town that had been nominated as a Northern Territory

Growth Town. As reported in Table 6.4, the coefficient on this variable was negative and

highly significant, meaning that these towns were in fact associated with lower population

increases between 2006 and 2011 than would have been expected given their character-

istics. All the Growth Towns are in ILOCs classified as very remote. The projections to

2016 are for the populations of those ILOCs to increase by 6.4%, marginally below the

7.2% overall growth projected for the Aboriginal and Torres Strait Islander population in

very remote Northern Territory.

Robustness checks

As noted previously, a range of specifications were experimented with regard to estima-

tion techniques. The preferred specification was the pooled Tobit model with varying

lower limits, with robust standard errors, clustered at the ILOC level. There was little

evidence of unobserved heterogeneity, such that the pooled version was statistically pre-

ferred. Convergence issues were encountered with the fixed effects Tobit specification

(and moreover, there are few a priori reasons to expect correlations with observed and

unobserved heterogeneity terms here, as this is not individual-level data). There was little

scope in experimenting with the set of explanatory variables, due to data limitations. How-

ever, all variants of linear regression models (pooled and fixed and random effects) yielded

essentially similar results to those presented above, although would not be preferred for

reasons previously discussed (such as potentially forecasting negative population levels).
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Table 6.8: Projected Aboriginal and Torres Strait Islander populations by state/territory
and remoteness

Outer regional Remote Very Remote Total
(a) Projected 2016 population

New South Wales 35853 4828 2936 43616
Victoria 6149 n.a. n.a. 6149
Queensland 54515 12061 21194 87771
South Australia 8718 1344 4289 14352
Western Australia 12287 12238 19084 43609
Tasmania 9146 539 134 9820
Northern Territory 13285 12062 36746 62093
Total 139953 43073 84384 267409

(b) Projected change from 2011 (people)
New South Wales 5681 417 230 6327
Victoria 1070 n.a. n.a. 1070
Queensland 8801 1377 1922 12101
South Australia 1440 228 205 1874
Western Australia 2427 1343 2365 6135
Tasmania 1443 72 9 1525
Northern Territory 2200 705 2464 5369
hline Total 23062 4143 7196 34400

(c) Per cent change 2011–2016
New South Wales 18.8 9.5 8.5 17
Victoria 21.1 n.a. n.a. 21.1
Queensland 19.3 12.9 10 16
South Australia 19.8 20.4 5 15
Western Australia 24.6 12.3 14.1 16.4
Tasmania 18.7 15.5 7.3 18.4
Northern Territory 19.8 6.2 7.2 9.5
Total 19.7 10.6 9.3 14.8
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A further interesting feature of the data set are instances where there are no individuals

for an observation across both time periods. These zero-zero cases are a still classified

as censored cases with the censoring point being zero. These cases do deserve special

attention since predicting a zero change given that the censoring point is also zero would

be challenging. These cases form approximately 10% of the data and 36% of all censored

cases. That is, a zero change observation, where there were zero observations in both

time-periods could be considered distinctly different from an observationally equivalent

outcome where all of the existing population left (and there were no net gains from other

sources).

Since the zero-zero values do not affect the absolute size of the population, removing

them does not change the population values. Superficially, this would appear to be sen-

sible. Hence, if the model is re-estimated excluding these observations, and the results

remain relatively unchanged. However, it should be noted that selecting a sample on the

basis of the dependent variable can cause sample selection biases, and is therefore not

advocated.

Thus although these particular observations did not appear to be adversely affecting

our results, given their particularly unusual status, it may be beneficial to understand the

factors that drive them. A probit model can be used for this purpose. Based on the

results of this model, it appears that the older age groups and remoteness levels, as well as

interactions between these two variables, are the main factors that determine these zero-

zero cases. This is to be expected as mortality rates for older age groups start to fall and

this seems to be more prevalent in remote/regional areas where the number of individuals

in these age groups is relatively small.

6.7 Conclusion

This study has attempted to generate projections of Aboriginal and Torres Strait Islander

populations in remote communities. There is an extremely pressing need for reliable

estimates of such. Existing projections of the Aboriginal and Torres Strait Islander pop-

ulation disaggregated by detailed age group are available on a regular basis only at the

state/territory level. As noted, the literature has stressed the need for such small area

estimates for practical purposes of policy and planning for remote Aboriginal communi-

ties and the more general need for methodological advances in small number analysis to

meet the demographic informational needs of Aboriginal and Torres Strait Islanders in
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desert Australia ((Taylor et al., 2006)). As noted by (Wilson, 2011): Probably the log-

ical starting point in the design of any projection system is to consider its purpose . . .

what question or problems does it need to solve? What projections are required to solve

these problems? And of the required outputs, what is the most important and should be

prioritised given the resources available?

The approach taken here has been specifically designed for handling small population

numbers while still providing projections by age categories that are critical for decisions

relating to service demand, such as education and health. As such the model focuses on

changes in population levels by cohort, thereby negating the difficulties associated with

models based on growth rates when handling small populations. A second motivation is

to generate policy-relevant information on what communities are shrinking and growing,

and moreover what are the characteristics that distinguish these. Here the multi-level mod-

elling approach allows estimation of unobservable community-specific effects, as well as

statistical estimates of effects such as remoteness, community size and state/territory.

Another critical difference is with respect to the projection horizon. While demo-

graphic projections are often prepared with projections 20, 30 or even 50 years into the

future, this paper has focused on generating projections five years ahead of a baseline

census: namely projecting the 2016 populations based on 2011 data. With the release of

the 2016 Census data by ILOC, expected early in latter part of 2017, it will be possible to

generate projections to 2021. It is relatively straightforward to use the method to project

further ahead; however, projection errors will increase, and a projection horizon of around

five years seems more in line with the typical policy cycles impacting upon Aboriginal

and Torres Strait Islanders in remote Australia. The approach is very economical in its

resource requirements, with almost all input data coming from the ABS census and being

publicly accessible from the ABS website. Neither of the two variables used that were not

derived from census data were significant. These are the age-specific survival rate (also

readily accessible from the ABS) and our one experiment with a policy variable capturing

Northern Territory Growth Town status.

The need for caution in the use of estimates must be reiterated, particularly with re-

spect to estimates for individual communities. They should be considered experimental

given that the model fit has only been tested ‘within sample’. The real test of such models

is their ability to predict out of sample, and it will only be possible to assess the perfor-

mance of the models out of sample when the 2016 Census data become available. With

these reservations in mind, it would be unwise to dwell on the implications of the projec-
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tions for policy and planning. It is to be noted that at a broad level, the Aboriginal and

Torres Strait Islander populations in both remote and very remote Australia are projected

to increase substantially. However, there is variation across communities by size. The

Aboriginal and Torres Strait Islander population in Very remote Australia is projected to

grow in small communities (populations of less than 200 people), and considerably faster

in medium-sized communities (201−500 people) and larger communities. Hence the pro-

jections do not suggest that Aboriginal and Torres Strait Islander people are moving out

of smaller communities in very remote Australia. Only in remote Australia do the projec-

tions imply some rationalisation of smaller communities. Strong growth in Outer regional

Australia of around 18% between 2011 and 2016 is projected irrespective of community

size. Given limitations of the census estimates that form our baseline data, it could be

said that in effect we are projecting census estimates of the population, rather than actual

populations. Be that as it may, this is still important information as those census estimates

are used extensively in decision-making.

Only a very limited range of explanatory variables have been tested in the model, and

this could be expanded considerably, even with the existing census data. For example,

information on the number of people for whom Aboriginal or Torres Strait Islander status

is not stated could be incorporated to capture identification effects. The proportion of

each ILOC’s population that are identified as Aboriginal and Torres Strait Islander could

be added as a further community-level characteristic.

Deviations of the age structure from that for the total Aboriginal and Torres Strait

Islander population could be added as an ILOC and cohort-specific variable that might

also partially capture identification effects.

The analysis here has included only ILOCs in outer regional, remote and very remote

Australia due to our focus on regional and remote communities and likely differences

in trends influencing demographic change in remote and non-remote Australia. However,

ILOCs are defined to spatially cover all of Australia, and those in inner regional and major

capital cities can be included in the sample. Using the full sample would mean that the

sum of projections would constitute a projection of the total Aboriginal and Torres Strait

Islander population for Australia. This would allow for ‘top down’ adjustment of the

estimates to match existing projections of the total Aboriginal and Torres Strait Islander

population if that was considered desirable.

The release of the 2016 Census data will mean there will be observations on popula-

tion changes for each ILOC-by-gender-by-age cohort for two time periods, providing a
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true multi-level, panel structure for the modelling. The availability of repeat observations

should improve capacity of the modelling to identify unobserved community-specific ef-

fects; the effects of observable community characteristics, such as remoteness and size;

and to uncover various time trends in the population data. It is hoped that the ABS’ area

definitions under the ‘Indigenous location’ geography will be more stable between 2011

and 2016, so that fewer baseline observations need to be imputed by a concordance matrix

than was the case in the current sample.

Upon release of the 2016 data, there is a plan to re-assess the preferred specification

for modelling population changes and then apply the coefficients from that model to fore-

cast populations for 2021. The process can readily be repeated using the 2021 projections

as baseline data to generate projections for 2026. The projections will be used in a range

of exercises for the CRC-REP’s Population Mobility and Labour Markets project, such as

mapping labour supply, for forecasting service demand within remote communities and

modelling traffic volumes for the road network in remote Australia.
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Chapter 7

Conclusion

This thesis has applied the principle of maximum entropy to selected problems in Eco-

nomics and Finance. In doing so, it has attempted to address some of the challenging

issues/problems in both these disciplines as well as demonstrate the applicability of the

maximum entropy method.

In chapter 3, a method for forecasting liquidation discount rate was introduced. This

process consisted of constructing a time series of liquidation discount rate for two time

segments (morning and afternoon) and three portfolio sizes (small, medium and large)

using real market data. Analysing the properties of these time series revealed that they

possessed a long memory property. This finding implies that current liquidation rates are

affected by past liquidation discount rates. More specifically, the influence of previous

discount rates decayed slowly over time. Hence, an ARFIMA-GARCH method was used

to model the time series across both time segments and the three portfolio sizes. An

exhaustive list of different lag combinations and specifications were considered in the

estimation process prior to settling on a parsimonious model. The MED was used to

construct a liquidation discount-at-risk measure. This measure provided the likelihood

of expected future level of discount. This allowed portfolio managers to budget for the

future cost of liquidity for a chosen liquidation horizon and confidence level. The results

for the 5-day liquidation horizon with a 99% confidence level were provided across both

time periods and all portfolio sizes.

Chapter 4 introduced a method for detecting seasonal patterns in financial returns.

This was achieved by estimating a MED for different time segments (weekdays and time

of the day) extracted from the returns data. The estimated MEDs were compared pairwise

within each time segment. Differences in the MEDs (parameters) indicated the presence
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of seasonal behaviour. This approach of comparing densities (parameters) allows for a

richer comparison relative to traditional measures such as mean and/or variance. Based

on this approach, one can check for differences in higher moments. This is especially

relevant when seasonality only exists in higher moments i.e. differences in lower mo-

ments are not significant. This is precisely one of the results found in this chapter. This

methodology was applied to detect seasonality in returns of foreign exchange rates. The

final results indicate that returns for Wednesday are significantly different from the rest

of the weekdays. In other words, some of the parameters of the MED estimated for the

Wednesday segment are significantly different from the rest of the weekdays. Similarly,

the returns pertaining to 12 p.m. to 2 p.m. interval were significantly different from the

rest of the time of day intervals. This difference corresponded to a difference in higher

moments. This result strengthens the evidence of the lunch time effect in the greater

finance literature.

Chapter 5 formulated the principle of maximum entropy for a multivariate distribution.

The proposed formulation is intuitive and can accommodate large number of variables as

well as constraints with relative ease compared to the approaches used in the existing

literature. Furthermore, the parameters of the resulting multivariate MED were allowed

to be functions of the exogenous variables. Hence, these variables can affect the shape,

scale and location of the multivariate density. This proposed framework provides ample

flexibility to the modeller. Finally, the estimation framework for the resulting multivariate

MED was provided. This consisted of proving the consistency and asymptotic normality

of the estimator. An empirical example was used to demonstrate the applicability of

the proposed framework. This consisted of modelling the distribution of BMI for an

individual given their socioeconomic attributes or risk factors. Here, these risk factors

were the exogenous variables present the framework. The resulting density was affected

by the values of these risk factors. In fact, the results indicated that different factors affect

different moments of the resulting BMI distribution. Of particular importance were the

risk factors that greatly affect the right hand tail probabilities of the distribution since

these indicate the likelihood of obesity. The results illustrate the changes in distribution

produced by changes in selected risk factors. This allows policy makers to measure the

impact a risk factor has on the likelihood of obesity.

Chapter 6 developed a method of modelling change in an age group for given pop-

ulation over time. It was based on the cohort-component model whereby individuals in

a given age group transition to the next age group. The variable of interest, change is
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CHAPTER 7. CONCLUSION

defined as the change in number of individuals in a given age group across two time peri-

ods. The proposed methodology consisted of three stages. In the first stage, the Kullback-

Leibler divergence measure was used to assess if the overall population distribution had

changed over time. Given that it had changed, the second stage involved modelling this

change. This was done by using a varying limit censoring regression model. This was a

notable contribution. To date, there appears to be no application of censoring models to

examine population changes. Finally, the resulting model is used to produce population

forecasts. This method was applied to model indigenous populations/communities in re-

gional and remote Australia. The results indicate that the overall population distribution

had changed over time. The model predicted an increase of approximately 15% in the

overall indigenous population from 2011 to 2016 in regional and remote Australia. The

population forecast for each location/community are shown in the thesis. In absence of

population forecasts for regional and remote locations, these results bring direct benefits

to researchers and planning agencies. It is expected that these forecasts will aid to allo-

cating resources/services such as housing, health and infrastructure for each community.

With regard to future direction, there are couple of technical developments which

would make the application of maximum entropy even more attractive. One such pos-

sibility is to address the issue of moment selection. Given a set of moment constraints,

which of these constraints would be most suitable? In other words, since the resulting

density is affected by the choice of constraints, how does one go about choosing the op-

timal ones? Another technical development which greatly assist in the applicability of

this method would be derive the existence and uniqueness of solution for the multivariate

MED case. Currently, most researchers are using the bivariate maximum entropy den-

sity for a number of applications even though there are no results on the existence and/or

uniqueness of the solution.
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A.2 Appendix - Detecting Intra-Daily Seasonality in Re-

turns Data

A.2.1 Plots - Foreign Exchange (FX) Returns

A.2.2 Summary Statistics

Weekdays

Table A.2: AUD FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.966500 -0.019700 0.000000 0.000024 0.019640 0.612200
Tuesday -0.6609000 -0.0204200 0.0000000 0.0002009 0.0209800 1.1370000
Wednesday -0.818700 -0.020880 0.000000 -0.000001 0.020840 2.550000
Thursday -0.8401000 -0.0214500 0.0000000 -0.0001516 0.0210000 0.7477000
Friday -0.6655000 -0.0205800 0.0000000 0.0001821 0.0208400 0.8563000

Table A.3: EUR FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -2.327e-01 -1.440e-02 0.000e+00 -4.928e-05 1.437e-02 2.215e-01
Tuesday -0.2157000 -0.0148500 0.0000000 -0.0000206 0.0148200 0.3376000
Wednesday -0.4500000 -0.0149800 0.0000000 -0.0001411 0.0148300 0.5997000
Thursday -0.4442000 -0.0152000 0.0000000 -0.0001736 0.0150200 0.5462000
Friday -0.4832000 -0.0150200 0.0000000 -0.0002144 0.0149000 0.4479000

Table A.4: EURAUD FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -11.430000 -0.022410 0.000000 -0.000076 0.022440 11.690000
Tuesday -0.7921000 -0.0229400 0.0000000 -0.0002248 0.0228200 0.8273000
Wednesday -2.7380000 -0.0231800 0.0000000 -0.0001352 0.0230200 0.8866000
Thursday -0.8159000 -0.0232800 0.0000000 -0.0000178 0.0233900 0.8547000
Friday -0.736600 -0.023010 0.000000 -0.000393 0.022810 0.655100

Table A.5: EURGBP FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.3213000 -0.0120300 0.0000000 0.0000003 0.0120300 0.5239000
Tuesday -0.2642000 -0.0121100 0.0000000 -0.0000862 0.0120900 0.3290000
Wednesday -0.3251000 -0.0122200 0.0000000 -0.0001346 0.0121500 0.3027000
Thursday -0.8214000 -0.0125600 0.0000000 -0.0000446 0.0125300 0.8764000
Friday -0.4571000 -0.0125500 0.0000000 -0.0003128 0.0123500 0.3018000
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Figure A.1: Plots - FX Returns
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Table A.6: EURJPY FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.8802000 -0.0174400 0.0000000 -0.0001467 0.0173800 0.4718000
Tuesday -0.4036000 -0.0178900 0.0000000 0.0000498 0.0179000 1.0850000
Wednesday -0.9489000 -0.0179400 0.0000000 -0.0000487 0.0178500 1.6850000
Thursday -0.6270000 -0.0181500 0.0000000 -0.0000979 0.0182100 0.6491000
Friday -0.9254000 -0.0180700 0.0000000 -0.0000682 0.0180800 0.8425000

Table A.7: GBP FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.5934000 -0.0126400 0.0000000 -0.0000461 0.0126900 0.2868000
Tuesday -0.3666000 -0.0131700 0.0000000 0.0000731 0.0130200 0.2941000
Wednesday -0.5037000 -0.0131900 0.0000000 -0.0000021 0.0130500 0.3549000
Thursday -0.9772000 -0.0135800 0.0000000 -0.0001181 0.0132500 0.4874000
Friday -0.3542000 -0.0131700 0.0000000 0.0001044 0.0132100 0.5857000

Table A.8: GBPAUD FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.6635000 -0.0196300 0.0000000 -0.0000422 0.0196100 0.7731000
Tuesday -0.9633000 -0.0198000 0.0000000 -0.0001005 0.0196700 0.9405000
Wednesday -1.4070000 -0.0202200 0.0000000 0.0000219 0.0202800 0.9026000
Thursday -1.3400000 -0.0207000 0.0000000 0.0000558 0.0219900 0.8063000
Friday -0.8588000 -0.0213300 0.0000000 -0.0000545 0.0203500 0.7890000

Table A.9: JPY FX weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.7946000 -0.0128300 0.0000000 -0.0000933 0.0128300 0.4062000
Tuesday -0.3270000 -0.0130100 0.0000000 0.0000686 0.0130300 0.7538000
Wednesday -0.7171000 -0.0130200 0.0000000 0.0000924 0.0130400 1.2580000
Thursday -0.4688000 -0.0130200 0.0000000 0.0000651 0.0130600 0.4399000
Friday -0.8275000 -0.0130200 0.0000000 0.0001411 0.0130300 0.6794000
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Timeslots

Table A.10: AUD FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -0.8401000 -0.0190800 0.0000000 0.0001493 0.0192300 2.5500000
3.12-14 -0.8187000 -0.0208400 0.0000000 0.0000855 0.0208300 1.1380000
4.14-16 -0.9665000 -0.0220100 0.0000000 -0.0000811 0.0220800 0.6122000

Table A.11: EUR FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -0.2776000 -0.0143100 0.0000000 -0.0001569 0.0142000 0.5462000
3.12-14 -0.4832000 -0.0151000 0.0000000 -0.0000902 0.0150100 0.5997000
4.14-16 -0.4500000 -0.0154000 0.0000000 -0.0001112 0.0153100 0.3476000

Table A.12: EURAUD FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -2.7380000 -0.0224300 0.0000000 -0.0003006 0.0222000 0.8866000
3.12-14 -1.1200000 -0.0229400 0.0000000 -0.0001608 0.0230600 1.0660000
4.14-16 -11.430000 -0.023700 0.000000 -0.000047 0.023690 11.690000

Table A.13: EURGBP FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -0.4571000 -0.0120900 0.0000000 -0.0001978 0.0120300 0.8764000
3.12-14 -0.8214000 -0.0123300 0.0000000 -0.0000789 0.0123100 0.3837000
4.14-16 -0.3213000 -0.0124100 0.0000000 -0.0000695 0.0122300 0.3027000

Table A.14: EURJPY FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -0.948900 -0.017250 0.000000 -0.000034 0.017090 1.685000
3.12-14 -0.9254000 -0.0180600 0.0000000 -0.0000629 0.0180600 1.0850000
4.14-16 -0.8802000 -0.0185000 0.0000000 -0.0000896 0.0185700 0.4718000

Table A.15: GBP FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -0.9772000 -0.0127200 0.0000000 0.0000558 0.0126700 0.5857000
3.12-14 -0.5583000 -0.0132500 0.0000000 -0.0000099 0.0131900 0.3992000
4.14-16 -0.5037000 -0.0137100 0.0000000 -0.0000387 0.0135400 0.3217000

Table A.16: GBPAUD FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -1.4070000 -0.0197800 0.0000000 -0.0000386 0.0197800 0.9405000
3.12-14 -1.3400000 -0.0199600 0.0000000 -0.0000821 0.0199900 0.9026000
4.14-16 -0.6635000 -0.0208800 0.0000000 0.0000484 0.0206400 0.7731000
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Table A.17: JPY FX timeslot summary statistics
Timeslot Minimum Q1 Median Mean Q3 Maximum
2.10-12 -0.7171000 -0.0124700 0.0000000 0.0001108 0.0126600 1.2580000
3.12-14 -0.8275000 -0.0130400 0.0000000 0.0000194 0.0130500 0.7538000
4.14-16 -0.7946000 -0.0131100 0.0000000 0.0000334 0.0182300 0.4294000
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A.2.3 Results - Time of Day Effect
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Significance of Means - MED Parameters

TimeSlots 10-12 12-14 14-16
AUD estimate t statistic estimate t statistic estimate t statistic
¯̀1 −0.0003 −0.0699 0.0029 0.5723 −0.0015 −0.3204
¯̀2 −0.8673 −221.5744 −0.8677 −198.1286 −0.8629 −214.5959
¯̀3 −0.0001 −0.0230 −0.0010 −0.3281 0.0019 0.6897
¯̀4 0.0004 2.9996 −0.0002 −1.0884 0.0003 1.7276

TimeSlots 10-12 12-14 14-16
AUDJPY estimate t statistic estimate t statistic estimate t statistic
¯̀1 −0.0033 −0.6801 −0.0045 −0.7456 −0.0124 −2.3900
¯̀2 −0.8675 −198.1785 −0.8799 −110.6193 −0.8766 −197.7718
¯̀3 0.0048 1.6581 0.0020 0.5196 0.0069 2.2235
¯̀4 0.0001 0.5027 −0.0010 −4.4280 −0.0003 −1.8458

TimeSlots 10-12 12-14 14-16
EUR estimate t statistic estimate t statistic estimate t statistic
¯̀1 −0.0032 −0.5999 −0.0061 −1.1796 0.0027 0.5061
¯̀2 −0.8638 −196.7022 −0.8178 −161.3425 −0.8697 −202.9937
¯̀3 0.0030 0.9368 0.0019 0.6587 −0.0016 −0.5079
¯̀4 −0.0007 −3.8580 −0.0008 −5.2821 −0.0008 −4.1254

TimeSlots 10-12 12-14 14-16
EURAUD estimate t statistic estimate t statistic estimate t statistic
¯̀1 0.0076 1.8690 0.0107 2.3813 0.0080 1.9244
¯̀2 −0.8686 −238.2774 −0.8671 −206.8385 −0.8666 −249.2099
¯̀3 −0.0105 −4.5045 −0.0125 −4.7193 −0.0101 −4.2007
¯̀4 0.0009 6.5590 0.0005 3.1221 0.0008 5.2369

TimeSlots 10-12 12-14 14-16
EURGBP estimate t statistic estimate t statistic estimate t statistic
¯̀1 0.0152 2.7762 0.0052 1.0263 −0.0033 −0.7357
¯̀2 −0.8617 −175.7317 −0.8677 −201.8855 −0.8612 −215.8698
¯̀3 −0.0117 −3.5371 −0.0066 −2.1804 −0.0002 −0.0817
¯̀4 −0.0008 −3.7943 −0.0004 −2.2772 0.0003 2.0525
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TimeSlots 10-12 12-14 14-16
EURJPY estimate t statistic estimate t statistic estimate t statistic
¯̀1 0.0032 0.6851 −0.0056 −0.9758 0.0064 1.2944
¯̀2 −0.8629 −209.7009 −0.8781 −154.0951 −0.8614 −191.8692
¯̀3 −0.0006 −0.2168 0.0024 0.6758 −0.0038 −1.2641
¯̀4 0.0001 0.6199 −0.0010 −4.7570 −0.0002 −1.1816

TimeSlots 10-12 12-14 14-16
GBP estimate t statistic estimate t statistic estimate t statistic
¯̀1 −0.0194 −3.4804 −0.0125 −2.3752 0.0029 0.5658
¯̀2 −0.8661 −130.8422 −0.8632 −183.9386 −0.8586 −195.5184
¯̀3 0.0158 4.7073 0.0081 2.5823 0.0015 0.4872
¯̀4 −0.0007 −3.6455 −0.0006 −3.1346 −0.0004 −2.0890

TimeSlots 10-12 12-14 14-16
GBPAUD estimate t statistic estimate t statistic estimate t statistic
¯̀1 0.0108 2.1769 0.0127 2.5539 0.0064 1.2805
¯̀2 −0.8685 −198.8939 −0.8658 −189.2006 −0.8650 −198.4785
¯̀3 −0.0089 −2.9321 −0.0122 −4.0670 −0.0097 −3.3107
¯̀4 0.0001 0.6277 −0.0002 −0.9271 −0.0001 −0.5400

TimeSlots 10-12 12-14 14-16
JPY estimate t statistic estimate t statistic estimate t statistic
¯̀1 0.0027 0.6092 0.0048 0.8272 0.0059 1.0949
¯̀2 −0.8599 −219.9647 −0.8729 −116.2722 −0.8624 −179.1072
¯̀3 −0.0042 −1.6322 −0.0032 −0.8711 −0.0047 −1.4440
¯̀4 0.0004 2.9790 −0.0009 −4.4864 −0.0006 −2.7026
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Differences in Means - MED Parameters

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
AUD t statistic t statistic t statistic
∆ ¯̀1 −0.4774 0.1834 0.6388
∆ ¯̀2 0.0814 −0.7725 −0.8096
∆ ¯̀3 0.2346 −0.5170 −0.7057
∆ ¯̀4 2.7337 0.5765 −1.9869

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
AUDJPY t statistic t statistic t statistic
∆ ¯̀1 0.1543 1.2720 0.9845
∆ ¯̀2 1.3656 1.4630 −0.3607
∆ ¯̀3 0.5942 −0.4900 −1.0039
∆ ¯̀4 3.8102 1.6888 −2.2484

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
EUR t statistic t statistic t statistic
∆ ¯̀1 0.3860 −0.7816 −1.1791
∆ ¯̀2 −6.8668 0.9501 7.8174
∆ ¯̀3 0.2704 1.0210 0.8158
∆ ¯̀4 0.3539 0.1013 −0.2492

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
EURAUD t statistic t statistic t statistic
∆ ¯̀1 −0.5188 −0.0760 0.4404
∆ ¯̀2 −0.2756 −0.3848 −0.0749
∆ ¯̀3 0.5655 −0.1220 −0.6723
∆ ¯̀4 1.9079 0.8188 −1.1287

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
EURGBP t statistic t statistic t statistic
∆ ¯̀1 1.3444 2.6189 1.2565
∆ ¯̀2 0.9103 −0.0888 −1.1080
∆ ¯̀3 −1.1365 −2.7100 −1.5875
∆ ¯̀4 −1.4543 −4.2630 −3.0657
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Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
EURJPY t statistic t statistic t statistic
∆ ¯̀1 1.1893 −0.4730 −1.5847
∆ ¯̀2 2.1601 −0.2430 −2.2969
∆ ¯̀3 −0.6650 0.7776 1.3326
∆ ¯̀4 4.1301 1.2928 −2.8195

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
GBP t statistic t statistic t statistic
∆ ¯̀1 −0.8970 −2.9479 −2.0992
∆ ¯̀2 −0.3572 −0.9522 −0.7259
∆ ¯̀3 1.6637 3.1725 1.5269
∆ ¯̀4 −0.5631 −1.3088 −0.7747

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
GBPAUD t statistic t statistic t statistic
∆ ¯̀1 −0.2763 0.6177 0.8904
∆ ¯̀2 −0.4371 −0.5678 −0.1168
∆ ¯̀3 0.7801 0.2024 −0.5883
∆ ¯̀4 1.0911 0.8273 −0.3571

Comparisons 1012 vs 1214 1012 vs 1416 1214 vs 1416
JPY t statistic t statistic t statistic
∆ ¯̀1 −0.2901 −0.4550 −0.1310
∆ ¯̀2 1.5308 0.3957 −1.1776
∆ ¯̀3 −0.2297 0.1106 0.3044
∆ ¯̀4 5.3833 3.9340 −1.3166

142



APPENDIX A. APPENDIX

A.3 Appendix - Modelling the distribution of Body Mass

Index

A.3.1 Proving consistency and asymptotic normality of the estimator

In order to prove that estimator is consistent and asymptotically normal, it is neccessary

to make some assumptions:

Assumption 1. Existence of moments

Each of the n random variables in the multivariate framework have finite moments up the

2kth order i.e. E(x2k
i ) < ∞.

All associated cross moments are finite i.e. E(xp1
1 xp2

2 . . . xpn
n ) where

∑n
i=1 pi = 2k.

Assumption 2. The second order moment of every conditioning variable/covariate exits

i.e. E(zz′) < ∞.

Assumption 3. Sample moments (and cross moments) for all n variables converge in

probability to their corresponding population moments.

Proposition 4. The estimator as defined in equation 5.7 is consistent: β̂T
p
→ β0.

The outline of the proof is as follows:

1. First, the relationship between µ and β is derived. Specifically, how the moments

(and cross moments) change with respect to the parameters i.e. a derivative. This

is done using the differentiating µ which is a vector that contains the moments (and

cross moments). Matrix calculus methods are used to carry this out. For further

details see Magnus and Neudecker (1999).

2. Based on assumptions 1 and 2, the resulting derivative exists. Hence, by the implicit

function theorem the function β(µ) also exists.

3. Based on assumption 3, µ̂T
p
→ µ as T → ∞. Given that this occurs, then by the

continuous mapping theorem (Amemiya (1985)), β̂T (µ̂T )
p
→ β0(µ) as T → ∞.

Proof. Let

µ = E
(
Sx(k)

)
=

∫
Sx(k) f (x) dx (A.1)

and
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Ω = E
(
Sx(k)(Sx(k))′

)
=

∫
Sx(k)

(
Sx(k)

)′
f (x) dx. (A.2)

where f (x) denotes the multivariate MED. Note that Ω is a symmetric matrix of dimen-

sion Mk × Mk.

Next, differentiating the equation A.1 gives

µ = Q−1
∫

Sx(k) exp
(
λ′Sx(k)

)
dx

dµ = dQ−1
∫

Sx(k) exp
(
λ′Sx(k)

)
dx + Q−1

∫
d
[
Sx(k) exp

(
λ′Sx(k)

)]
dx

dµ = −Q−2dQ
∫

Sx(k) exp
(
λ′Sx(k)

)
dx +

∫
Q−1S dx(k) exp

(
λ′Sx(k)

)
dx

+

∫
Q−1Sx(k) exp

(
λ′Sx(k)

)
dλ′ Sx(k) dx

+

∫
Q−1Sx(k) exp (λ′Sx(k)) λ′ S dx(k) dx

dµ = −Q−1 µ dQ + S dx(k) +

∫
Sx(k)

(
Sx(k)

)′
Q−1 exp

(
λ′Sx(k)

)
dx dλ

+

∫
Sx(k)Q−1 exp

(
λ′Sx(k)

)
dx λ′ S dx(k)

dµ = −Q−1 µ dQ + S dx(k) +Ω dλ + µ λ′S dx(k). (A.3)

Now, differentiate equation 5.3 in order to derive dQ in the above equation.

dQ =

∫
d
[
exp

(
λ′Sx(k)

)]
dx

dQ =

∫ [
exp

(
λ′Sx(k)

)
d
(
λ′Sx(k)

)]
dx

dQ =

∫ [
exp

(
λ′Sx(k)

) (
dλ′Sx(k)

+ λ′S dx(k)
)]

dx

dQ =

∫ (
Sx(k)

)′
exp

(
λ′Sx(k)

)
dx dλ +

∫
exp

(
λ′Sx(k)

)
dx λ′ S dx(k)

dQ = Q µ′ dλ + Q λ′ S dx(k) (A.4)

Substitute dQ back into equation A.3

dµ = −Q−1 µ
(
Q µ′ dλ + Q λ′ S dx(k)

)
+ S dx(k) +Ω dλ + µ λ′S dx(k)

dµ = −µµ′ dλ − µλ′S dx(k) + S dx(k) +Ω dλ + µ λ′S dx(k)

dµ =
(
Ω − µµ′

)
dλ + S dx(k) (A.5)
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Let M = (Ω − µµ′) and hence,

dµ = M dλ + S dx(k). (A.6)

Note that M is a symmetric matrix of dimension Mk × Mk. Since λ is a function of z

(equation 5.4), the differential dλ is equal to

dλ = d(βz) = dβ z + βdz. (A.7)

Next, substituting equation A.7 into A.6 gives

dµ = M (dβ z + βdz) + S dx(k)

dµ = Mdβ z + Mβdz + S dx(k). (A.8)

Focusing on the derivative with respect to β,

dµ = Mdβ z

dµ = vec (Mdβ z)

dµ = (z′ ⊗ M) vec dβ.

Hence, the partial derivative of µ with respect to β can be written as

∂µ

∂ vec β
= (z ⊗ M) .

Given the assumptions, this derivative exists and based on the implicit function theo-

rem the function β(µ) also exists. Therefore, for a given sample of T observations, β̂T (µ̂T )

exists. Based on the law of large numbers (µ̂T
p
→ µ as T → ∞) and the continuous map-

ping theorem (Amemiya (1985)), β̂T (µ̂T )
p
→ β0(µ) as T → ∞. This completes the proof

for consistency of the parameters. �

Proposition 5. The maximum likelihood estimator is asymptotically normal.
√

T
(
β̂T − β0

)
∼ N(0, B(β0)−1 C(β0) B(β0)−1) where B denotes the matrix of second order

derivative of the log likelihood function and C denotes a matrix of the product of first order

derivative of the log likelihood function.

Proof. Given that the estimator is consistent, in order to show asymptotic normality the
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first and second partial derivatives of the log likelihood function must satisfy the following

conditions (Amemiya (1985)):

1. ∂2log L
∂ vecβ ∂ vecβ′ exists and is continuous in an open, convex neighbourhood of β0.

2. 1
T

∂2log L
∂ vecβ ∂ vecβ′

∣∣∣∣∣∣
β̂T

converges to a finite non-singular matrix

B(β0) = lim E
[

1
T

∂2log L
∂ vecβ ∂ vecβ′

]
β0

in probability for any sequence β̂T such that plim β̂T =

β0.

3. 1
√

T

[
∂ log L
∂ vecβ

]
β0
→ N(0,C(β0)) where C(β0) = lim E

[
1
T

[
∂ log L
∂ vecβ

]
β0

[
∂ log L
∂ vecβ′

]
β0

]
Given the density function

f (x) = Q−1exp
(
λ′Sx(k)

)
,

the log likelihood function can be written as

log L(λ|x(k)
t ) =

T∑
t=1

`(λ|x(k)
t )

where `(λ|x(k)
t ) = −log Q + λ′Sx(k)

t . Using differentials, the derivative of `t with respect to

the parameters can be derived.

d`t = d[−log Q] + d
[
λ′Sx(k)

t

]
d`t = −

1
Q

dQ + dλ′Sx(k)
t + λ′S dx(k)

t

d`t = −
1
Q

(
Q µ′ dλ + Q λ′ S dx(k)

t

)
+ dλ′Sx(k)

t + λ′S dx(k)
t

d`t = dλ′
(
Sx(k)

t − µ
)
. (A.9)

Apply the differential operator again in order to derive the second order derivatives,

d2`t = d2λ′
(
Sx(k)

t − µ
)

+ dλ′ d
(
Sx(k)

t − µ
)
.

Note that the d2λ′ is equal to zero and hence,

d2`t = dλ′
(
Sdx(k)

t − dµ
)
.
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Substituting equation A.8 yields

d2`t = dλ′Sdx(k)
t − dλ′Mdβ zt − dλ′Mβdzt − dλ′Sdx(k)

t (A.10)

As per the specification, the covariate values are given as zt = [z1,t, z2,t . . . , zp,t]′. From

equation A.10, focus on the derivative with respect to β (second term) and vectorize it,

d2`t = −dλ′(z′t ⊗ M) vec dβ.

Next, substitute the transpose of dλ (equation A.7) into the above

d2`t = −
[
(dβ zt)

′ + (β dzt)′
]

(z′t ⊗ M) vec dβ

d2`t = −(dβ zt)
′ (z′t ⊗ M) vec dβ + (β dzt)′ (z′t ⊗ M) vec dβ

Focus on the derivative with respect to β i.e. the first term

d2`t = −(dβ zt)
′ (z′t ⊗ M) vec dβ (A.11)

Note that

(dβ zt)
′ = ((z′t ⊗ I) vec dβ)′ = vec dβ′ (zt ⊗ I). (A.12)

Substituting equation A.12 into A.11 yields

d2`t = −vec dβ′ (zt ⊗ I)(z′t ⊗ M) vec dβ = −vec dβ′(zt z′t ⊗ M) vec dβ.

Hence the second order partial derivative with respect to β is equal to

∂2log `t

∂ vecβ ∂ vecβ′
= −(zt z′t ⊗ M).

In terms of the log likelihood function,

∂2log L
∂ vecβ ∂ vecβ′

=

T∑
t=1

∂2log `t

∂ vecβ ∂ vecβ′
= −

T∑
t=1

(zt z′t ⊗ M).

Given assumptions 1 and 3 the second order partial derivative with respect to β exits i.e.
∂2log L

∂ vecβ ∂ vecβ′ < ∞. As such, the first condition is satisfied.
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The second condition can be rewritten as

1
T

∂2log L
∂ vecβ ∂ vecβ′

∣∣∣∣∣∣
β̂T

− B(β0) = 0

1
T

∂2log L
∂ vecβ ∂ vecβ′

∣∣∣∣∣∣
β̂T

− E

[
1
T

∂2log L
∂ vecβ ∂ vecβ′

]
β0

= 0

−
1
T

T∑
t=1

(zt z′t ⊗ M)

∣∣∣∣∣∣
β̂T

+ E

 1
T

T∑
t=1

(zt z′t ⊗ M)


β0

= 0

−

∑T
t=1(zt z′t)

T
⊗ M

∣∣∣∣∣∣
β̂T

+

[
E(zt z′t) ⊗ M

]
β0

= 0 (A.13)

Based on the assumption of the law of large numbers
∑T

t=1(zt z′t )
T → E(zt z′t) as T → ∞ and it

is assumed that E(zt z′t) exists (assumption 3). Since M = (Ω − µµ′) is a function of β and

given that the parameters are consistent (proposition 1), then by the continuous mapping

theorem, M(β0) − M(β̂T)→ 0 as T → ∞. This proves the second condition.

In order to prove the third condition, start with equation A.9

d`t = dλ′
(
Sx(k)

t − µ
)
.

Next, substitute the transpose of dλ (equation A.7) into the above

d`t = (dzt
′β′ + zt

′dβ′)
(
Sx(k)

t − µ
)
.

Focus on the derivative with respect to β

d`t =
(
(Sx(k)

t − µ) ⊗ zt

)′
vec dβ′.

Hence, the partial derivative with respect to β is equal to

∂`

∂ vecβ
= (Sx(k)

t − µ) ⊗ zt.

Based on this,
∂ log L
∂ vecβ

=

T∑
t=1

∂`

∂ vecβ
=

T∑
t=1

(
(Sx(k)

t − µ) ⊗ zt

)
. (A.14)

The above equation represents a sum of random variables. The expected value of this
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random variable is equal to 0 i.e.

E
(
(Sx(k)

t − µ) ⊗ zt

)
= 0

since by definition E
(
Sx(k)

t

)
= µ. Let D = (Sx(k)

t − µ) then the variance of this random

variable is given by

Var
(
(Sx(k)

t − µ) ⊗ zt

)
= E

(
(D ⊗ zt)(D ⊗ zt)′

)
= E

(
DD′ ⊗ zt zt

′) . (A.15)

Here E (DD′) is equal to

= E
(
Sx(k)

t − µ
) (

Sx(k)
t − µ

)′
= E

(
Sx(k)

t x(k)′
t S′ + µµ′ − 2Sx(k)

t µ
′
)

=
(
Ω − µµ′

)
= M.

Substituting this result into equation A.15,

Var
(
(Sx(k)

t − µ) ⊗ zt

)
= M ⊗ E(zt zt

′).

Based on assumptions 1 and 3, the resulting variance is finite i.e. M ⊗ E(zt zt
′) < ∞.

Given these results the Lindeberg-Feller central limit theorem states that

∂ log L
∂ vecβ

∼ N(0,T
(
M ⊗ E(zt zt

′)
)
)

Multiplying by 1
√

T
yields,

1
√

T

∂ log L
∂ vecβ

∼ N(0,
(
M ⊗ E(zt zt

′)
)
)

where C(β0) = (M ⊗ E(zt zt
′)) = lim E

[
1
T

[
∂ log L
∂ vecβ

]
β0

[
∂ log L
∂ vecβ′

]
β0

]
. This proves the third and

final condition.

As stated in the proposition,
√

T
(
β̂T − β0

)
∼ N(0, B(β0)−1 C(β0) B(β0)−1). By apply-

ing the Moore-Penrose inverse, this simplifies to
√

T
(
β̂T − β0

)
∼ N(0, B(β0)−1) where

B(β0) = E(zt z′t) ⊗ M. Hence, the maximum likelihood estimator is asymptotically nor-

mal. �
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A.3.2 Analytical derivatives of the log-likelihood function

The conditional distribution of BMI for an individual i is expressed as

f (y|zi) = Q−1
i exp

[
(βzi)′ y

]
where

Qi =

∫
A

exp
[
(βzi)′ y

]
dy.

For a sample of n individuals, the log-likelihood function for the conditional distribution

is

log L(β; zi, yi) =

n∑
i=1

log f (yi|zi)

=

n∑
i=1

log
[
Q−1

i exp
(
(βzi)′ yi

)]
=

n∑
i=1

[
−log Qi + (βzi)′ yi

]
= −

n∑
i=1

log Qi +

n∑
i=1

(βzi)′ yi

Given zi and yi, find β such that log L(β; zi, yi) is maximized. It is often useful to

incorporate derivatives in the optimization routine. The first order partial derivative of the

log likelihood function with respect to β is given equation A.14. The elements of this
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derivative matrix can be written as

∂ log L
∂β` j

= −

n∑
i=1

∂ log L
∂Qi

∂Qi

∂β` j
+

n∑
i=1

z ji y`i

= −

n∑
i=1

1
Qi

∂

∂β` j

∫
A

exp
[
(βzi)′ y

]
dy +

n∑
i=1

z ji y`i

= −

n∑
i=1

1
Qi

∫
A

∂

∂β` j
exp

(
(βzi)′ y

)
dy +

n∑
i=1

z ji y`i

= −

n∑
i=1

1
Qi

∫
A

z ji y j exp
(
(βzi)T y

)
dy +

n∑
i=1

z ji y`i

= −

n∑
i=1

z ji

Qi

∫
A

y j exp
(
(βzi)T y

)
dy +

n∑
i=1

z ji y`i

= −

n∑
i=1

z ji

Qi
µ`i Qi +

n∑
i=1

z ji y`i

= −

n∑
i=1

z ji µ`i +

n∑
i=1

z ji y`i .

Note that there are k moments (` = 1, 2, . . . , k) and p covariates ( j = 1, 2, . . . , p).
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A.3.3 Summary Statistics - Covariates
male

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.4726 1.0000 1.0000

university education

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.2488 0.0000 1.0000

certificate or diploma

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.3045 1.0000 1.0000

employed

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.6422 1.0000 1.0000

not in labour force

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.3214 1.0000 1.0000

unemployed

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.03635 0.00000 1.00000

married

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.6419 1.0000 1.0000

separate

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.0865 0.0000 1.0000

widow

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.04615 0.00000 1.00000

single

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.2255 0.0000 1.0000

smoker

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.1806 0.0000 1.0000

non-smoker

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.5473 1.0000 1.0000

non-drinker

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.1846 0.0000 1.0000

inactive

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.1112 0.0000 1.0000

household income

Min. 1st Qu. Median Mean 3rd Qu. Max.

52 51690 94260 110300 144300 1079000

age

Min. 1st Qu. Median Mean 3rd Qu. Max.

15.00 29.00 44.00 44.97 59.00 100.00

number of children

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.000 2.000 1.637 3.000 14.000
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A.4 Appendix - Modelling Populations in Remote Com-

munities

A.4.1 Descriptive statistics for variables included in the regression

model

Variable Mean Std.Dev. Minimum Maximum

Population change (depen-

dent variable)

-0.0295 6.0961 -79.71 100.78

ILOC size (log) 6.9704 1.6393 2.17 11.36

Remote 0.1537 0.3607 0 1

Very remote 0.4498 0.4975 0 1

Victoria 0.0162 0.1262 0 1

Queensland 0.2104 0.4076 0 1

South Australia 0.0744 0.2625 0 1

Western Australia 0.2120 0.4087 0 1

Tasmania 0.0356 0.1853 0 1

Northern Territory 0.2961 0.4566 0 1

Female 0.5000 0.5000 0 1

Growth town 0.0340 0.1812 0 1

Cohort age (2011)

Age 10–14 0.0625 0.2421 0 1

Age 15–19 0.0625 0.2421 0 1

Age 19–24 0.0625 0.2421 0 1

Age 25–29 0.0625 0.2421 0 1

Age 30–34 0.0625 0.2421 0 1

Age 35–39 0.0625 0.2421 0 1

Age 40–44 0.0625 0.2421 0 1

Age 45–49 0.0625 0.2421 0 1

Age 50–54 0.0625 0.2421 0 1

Age 55–59 0.0625 0.2421 0 1

Age 60–64 0.0625 0.2421 0 1

Age 65–69 0.0625 0.2421 0 1

Age 70–74 0.0625 0.2421 0 1

Age 75–79 0.0625 0.2421 0 1
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Age 80+ 0.0625 0.2421 0 1

Survival rate 0.9012 0.1252 0.60 1.00

ILOC Size*Age 10–14 0.4356 1.7364 0 11.36

ILOC Size*Age 15–19 0.4356 1.7364 0 11.36

ILOC Size*Age 19–24 0.4356 1.7364 0 11.36

ILOC Size*Age 25–29 0.4356 1.7364 0 11.36

ILOC Size*Age 30–34 0.4356 1.7364 0 11.36

ILOC Size*Age 35–39 0.4356 1.7364 0 11.36

ILOC Size*Age 40–44 0.4356 1.7364 0 11.36

ILOC Size*Age 45–49 0.4356 1.7364 0 11.36

ILOC Size*Age 50–54 0.4356 1.7364 0 11.36

ILOC Size*Age 55–59 0.4356 1.7364 0 11.36

ILOC Size*Age 60–64 0.4356 1.7364 0 11.36

ILOC Size*Age 65–69 0.4356 1.7364 0 11.36

ILOC Size*Age 70–74 0.4356 1.7364 0 11.36

ILOC Size*Age 75–79 0.4356 1.7364 0 11.36

ILOC Size*Age 80+ 0.4356 1.7364 0 11.36

Outer Reg*Age 10–14 0.0248 0.1555 0 1

Outer Reg*Age 15–19 0.0248 0.1555 0 1

Outer Reg*Age 19–24 0.0248 0.1555 0 1

Outer Reg*Age 25–29 0.0248 0.1555 0 1

Outer Reg*Age 30–34 0.0248 0.1555 0 1

Outer Reg*Age 35–39 0.0248 0.1555 0 1

Outer Reg*Age 40–44 0.0248 0.1555 0 1

Outer Reg*Age 45–49 0.0248 0.1555 0 1

Outer Reg*Age 50–54 0.0248 0.1555 0 1

Outer Reg*Age 55–59 0.0248 0.1555 0 1

Outer Reg*Age 60–64 0.0248 0.1555 0 1

Outer Reg*Age 65–69 0.0248 0.1555 0 1

Outer Reg*Age 70–74 0.0248 0.1555 0 1

Outer Reg*Age 75–79 0.0248 0.1555 0 1

Outer Reg*Age 80+ 0.0248 0.1555 0 1

Remote*Age 10–14 0.0096 0.0975 0 1

Remote*Age 15–19 0.0096 0.0975 0 1
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Remote*Age 19–24 0.0096 0.0975 0 1

Remote*Age 25–29 0.0096 0.0975 0 1

Remote*Age 30–34 0.0096 0.0975 0 1

Remote*Age 35–39 0.0096 0.0975 0 1

Remote*Age 40–44 0.0096 0.0975 0 1

Remote*Age 45–49 0.0096 0.0975 0 1

Remote*Age 50–54 0.0096 0.0975 0 1

Remote*Age 55–59 0.0096 0.0975 0 1

Remote*Age 60–64 0.0096 0.0975 0 1

Remote*Age 65–69 0.0096 0.0975 0 1

Remote*Age 70–74 0.0096 0.0975 0 1

Remote*Age 75–79 0.0096 0.0975 0 1

Remote*Age 80+ 0.0096 0.0975 0 1

Table A.18:

A.4.2 Aboriginal and Torres Strait Islander populations by ILOC:

2011 Census estimates and 2016 projections

Indigenous Location (ILOC) State ARIA Population2011 Population2016 % change

Balranald NSW 3 93 103 11.2

Balranald - Wentworth - Sur-

rounds

NSW 3 279 331 18.8

Baryulgil - Malabugilmah NSW 3 107 115 7.9

Bega NSW 3 233 286 22.8

Bega - Surrounds NSW 3 430 520 20.9

Bellingen NSW 3 375 443 18.1

Bodalla NSW 3 77 77 0.3

Bogan NSW 4 415 450 8.5

Boggabilla NSW 3 369 422 14.4

Bourke NSW 5 760 831 9.3

Bourke - Surrounds NSW 5 105 104 -1.2

Bowraville NSW 3 259 298 14.9

Brewarrina NSW 5 607 650 7.1

Brewarrina - Surrounds NSW 5 259 263 1.5
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Broken Hill NSW 3 1398 1630 16.6

Broken Hill - Surrounds NSW 5 151 146 -3.4

Carrathool - Murrumbidgee -

Surrounds

NSW 3 111 141 27.3

Central Murray NSW 3 494 593 20.1

Clarence Valley NSW 3 286 349 22.1

Cobar NSW 4 505 548 8.4

Collarenebri NSW 4 188 185 -1.6

Condobolin NSW 3 710 829 16.7

Coolamon - Temora - West Wya-

long

NSW 3 510 606 18.9

Coomealla NSW 3 130 137 5.4

Coonabarabran NSW 3 430 501 16.6

Coonabarabran - Surrounds NSW 3 377 457 21.2

Coonamble NSW 4 903 992 9.9

Coonamble - Surrounds NSW 4 102 99 -2.7

Dareton NSW 3 184 203 10.2

Darlington Point NSW 3 190 215 13.1

Dubbo - Surrounds NSW 3 345 410 18.9

Eden NSW 3 226 263 16.2

Eurobodalla NSW 3 481 563 17.1

Forbes NSW 3 884 1038 17.4

Gilgandra NSW 3 533 621 16.5

Gingie Reserve NSW 4 64 54 -16.2

Glen Innes NSW 3 496 571 15.2

Goodooga NSW 5 178 173 -2.9

Griffith NSW 3 998 1154 15.7

Gulargambone NSW 3 170 185 9.0

Gunnedah NSW 3 1099 1293 17.7

Gunnedah - Surrounds NSW 3 245 284 16.0

Guyra NSW 3 272 318 17.1

Gwydir NSW 3 190 228 20.0

Hillston NSW 4 100 91 -9.2

Inverell NSW 3 1059 1243 17.4
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Jubullum Village NSW 3 137 148 8.4

Kempsey - Surrounds NSW 3 878 1010 15.0

Lachlan NSW 4 135 137 1.5

Lake Cargelligo NSW 4 229 225 -1.5

Leeton NSW 3 650 783 20.4

Lightning Ridge NSW 4 426 455 6.8

Liverpool Plains NSW 3 145 176 21.4

Macksville NSW 3 215 256 18.9

Menindee NSW 5 180 172 -4.4

Mirriwinni Gardens - Bellbrook NSW 3 152 175 15.1

Moree - North NSW 3 338 379 12.2

Moree - South NSW 3 969 1105 14.0

Moree - West NSW 3 194 220 13.5

Moree Plains NSW 3 219 262 19.8

Mudgee NSW 3 963 1127 17.1

Muli Muli - Woodenbong NSW 3 201 226 12.3

Mungindi NSW 4 127 123 -3.2

Murrin Bridge NSW 4 99 81 -18.1

Nambucca - Surrounds NSW 3 295 351 19.1

Nambucca Heads NSW 3 578 683 18.1

Namoi Reserve NSW 4 91 71 -22.0

Narooma NSW 3 128 153 19.4

Narrabri NSW 3 634 738 16.4

Narrabri - Surrounds NSW 3 403 481 19.4

Narrandera NSW 3 582 687 18.1

Narromine NSW 3 916 1092 19.3

Narromine - Surrounds NSW 3 166 195 17.5

Parkes NSW 3 751 890 18.5

Parkes - Surrounds NSW 3 220 261 18.7

Peak Hill NSW 3 205 227 10.8

Quirindi NSW 3 334 386 15.5

South West Rocks NSW 3 262 320 22.1

Stanley Village NSW 3 319 358 12.1

Tamworth - Surrounds NSW 3 1006 1193 18.5
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Tenterfield NSW 3 310 372 20.1

Tingha NSW 3 175 204 16.3

Toomelah NSW 3 230 259 12.8

Trangie NSW 3 224 256 14.3

Uralla NSW 3 330 381 15.6

Walcha NSW 3 225 265 17.9

Walgett NSW 4 819 885 8.1

Walgett - Surrounds NSW 4 208 206 -0.9

Walhallow Reserve (Carooma) NSW 3 87 91 4.3

Wallaga Lake NSW 3 118 126 6.7

Warren NSW 3 360 414 15.1

Wee Waa NSW 3 340 394 15.8

Wellington NSW 3 1135 1321 16.4

Wellington - Surrounds NSW 3 600 654 8.9

Wentworth NSW 3 138 151 9.5

Wilcannia NSW 5 466 499 7.1

Bairnsdale Vic 3 538 650 20.9

East Gippsland Vic 3 677 797 17.8

Glenelg North - Heywood Vic 3 211 262 24.2

Lake Tyers Vic 3 124 127 2.2

Mildura Vic 3 1843 2197 19.2

Portland Vic 3 184 229 24.2

Swan Hill Vic 3 432 529 22.5

Swan Hill - Robinvale Vic 3 293 352 20.1

Swan Hill - Surrounds Vic 3 155 196 26.1

Wimmera Vic 3 622 730 17.3

Atherton Qld 3 763 913 19.6

Aurukun Qld 5 1201 1325 10.3

Ayr Qld 3 601 721 19.9

Badu Island Qld 5 708 797 12.5

Balonne exc. St George and

Dirranbandi

Qld 4 131 142 8.4

Bamaga and Surrounds Qld 5 860 962 11.9

Banana - North Qld 3 297 367 23.4
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Banana - South Qld 4 43 53 23.0

Barcaldine Qld 5 200 229 14.3

Barron Qld 3 1021 1205 18.0

Biloela Qld 3 227 289 27.3

Blackall - Tambo Qld 5 88 99 12.3

Blackwater Qld 3 238 303 27.2

Boigu Island Qld 5 189 198 4.6

Boulia Qld 5 185 202 9.4

Bowen (Qld) Qld 3 873 1023 17.1

Bulloo - Quilpie - Barcoo Qld 5 185 207 11.7

Burdekin Qld 3 309 380 23.0

Cairns - City Qld 3 700 785 12.1

Cairns - North Qld 3 539 657 21.9

Cairns - Southern Hinterlands Qld 3 424 504 18.8

Cairns - West Qld 3 839 986 17.5

Cairns - White Rock - Mt Sheri-

dan

Qld 3 1471 1748 18.8

Camooweal Qld 5 105 111 5.6

Cape Tribulation - China Camp -

Zig Zag

Qld 4 42 40 -4.1

Cape York Wilderness Qld 4 150 159 6.2

Cardwell Qld 3 349 422 20.9

Carpentaria exc. Doomadgee Qld 5 257 285 10.9

Central Highlands Qld 4 340 396 16.3

Charters Towers Qld 3 834 988 18.4

Cherbourg Qld 3 1199 1397 16.5

Chinchilla Qld 3 238 293 23.0

Cloncurry - McKinlay Qld 4 744 822 10.5

Coen Qld 5 271 286 5.5

Cooktown Qld 4 370 410 10.8

Dauan Island Qld 5 133 134 0.6

Diamantina Qld 5 73 70 -4.8

Dirranbandi Qld 5 111 119 7.0

Doomadgee Qld 5 1168 1320 13.0

159



APPENDIX A. APPENDIX

Dysart Qld 3 80 110 37.0

Eacham Qld 3 301 376 24.8

Edmonton Qld 3 2060 2507 21.7

Eidsvold Qld 3 188 219 16.7

Emerald Qld 3 448 533 19.0

Erub (Darnley) Island Qld 5 360 385 7.0

Etheridge Tablelands Qld 3 1325 1481 11.8

Flinders - Richmond - Dalrymple Qld 5 290 328 13.0

Gayndah Qld 3 143 192 34.3

Gladstone - South Coast Qld 3 141 180 28.0

Goondiwindi Qld 3 323 404 25.0

Goondiwindi - Surrounds Qld 3 194 245 26.0

Gordonvale Qld 3 758 906 19.6

Hammond Island Qld 5 222 235 5.7

Herberton Qld 3 200 252 26.0

Herberton Tablelands Qld 3 344 415 20.6

Hinchinbrook Qld 4 247 278 12.6

Hope Vale Qld 4 927 1015 9.5

Horn Island Qld 5 333 367 10.1

Iama (Yam) Island Qld 5 305 335 9.8

Ingham Qld 3 408 483 18.4

Injinoo Qld 5 461 518 12.3

Innisfail Qld 3 1348 1560 15.7

Johnstone Qld 3 540 657 21.7

Jumbun Qld 4 101 94 -7.0

Kowanyama Qld 5 940 1028 9.4

Kowrowa - Mantaka - Mona

Mona

Qld 3 222 260 17.3

Kubin (Moa Island) Qld 5 164 171 4.3

Laura Qld 5 53 47 -11.4

Lockhart River Qld 5 439 472 7.6

Longreach Qld 5 283 333 17.7

Mabuiag Island Qld 5 257 288 11.9

Mackay - Surrounds Qld 3 422 520 23.3
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Manunda - Portsmith Qld 3 4241 4904 15.6

Mapoon Qld 5 237 244 2.9

Maranoa exc. Roma and

Mitchell

Qld 4 193 215 11.2

Mareeba Qld 3 1249 1451 16.1

Mer (Murray) Island Qld 5 356 385 8.2

Millmerran Qld 3 95 128 35.2

Mirani Qld 3 237 303 27.7

Mitchell Qld 5 158 176 11.2

Moranbah Qld 3 233 293 25.6

Mornington Qld 5 1002 1132 13.0

Mossman Qld 3 325 391 20.4

Mossman - Surrounds Qld 3 453 546 20.4

Mossman Gorge Qld 3 96 103 7.2

Mount Garnet Qld 4 87 81 -7.3

Mount Isa exc. Camooweal Qld 4 3110 3524 13.3

Mount Whitfield Qld 3 638 760 19.1

Muralag and Inner Islands Qld 5 50 45 -10.7

Murgon Qld 3 417 503 20.7

Murilla - Wandoan Qld 3 115 158 37.3

Murweh Qld 5 531 604 13.7

Napranum Qld 5 820 907 10.6

Nebo - Clermont Qld 4 293 337 14.9

New Mapoon Qld 5 276 292 5.7

Normanton Qld 5 670 734 9.6

North Burnett - Rural Qld 3 275 341 24.0

Palm Island Qld 4 2209 2451 10.9

Paroo Qld 5 573 648 13.2

Pormpuraaw Qld 5 606 653 7.7

Port Kennedy (Thursday Island) Qld 5 889 987 11.1

Poruma (Coconut) Island Qld 5 150 152 1.3

Proserpine - Whitsunday Qld 3 475 584 22.9

Ravenshoe Qld 3 165 205 24.2

Roma Qld 3 592 704 18.9
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Saibai Island Qld 5 359 396 10.4

Sarina Qld 3 645 780 21.0

Seisia Qld 5 149 146 -2.0

St George Qld 4 564 641 13.7

St Pauls (Moa Island) Qld 5 251 260 3.4

Stanthorpe Qld 3 248 313 26.1

Tara (Qld) Qld 3 236 288 22.1

Thuringowa Qld 3 4524 5388 19.1

Townsville Qld 3 5391 6232 15.6

Townsville - Northern Beaches Qld 3 203 257 26.4

Townsville - Southern Range-

lands

Qld 3 601 651 8.3

TRAWQ (Thursday Island) Qld 5 817 901 10.3

Trinity Qld 3 868 1021 17.7

Tully Qld 3 280 345 23.4

Ugar (Stephens) Island Qld 5 50 48 -3.8

Umagico Qld 5 270 292 8.1

Wambo Qld 3 155 208 34.1

Warraber Island Qld 5 223 237 6.5

Weipa Qld 5 630 719 14.1

Winton Qld 5 123 132 7.1

Wondai Qld 3 242 307 26.8

Woorabinda Qld 4 880 979 11.3

Wujal Wujal Qld 4 253 251 -1.0

Yarrabah Qld 3 2348 2707 15.3

Yorke Island Qld 5 241 255 5.8

Amata - Tjurma Homelands SA 5 451 479 6.2

Anilalya Homelands SA 5 123 120 -2.1

Barmera SA 3 203 250 23.2

Berri SA 3 287 352 22.7

Ceduna SA 5 473 522 10.4

Coober Pedy SA 5 254 275 8.4

Copper Coast - Barunga West SA 3 314 395 26.0

Davenport SA 3 174 190 9.4
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Dunjiba (Oodnadatta) SA 5 116 114 -1.4

Eyre Peninsula SA 4 260 300 15.5

Flinders Ranges SA 3 884 1053 19.1

Iga Warta Homeland SA 5 61 52 -15.2

Indulkana and Indulkana Home-

lands

SA 5 299 317 5.9

Kalka and Homelands SA 5 70 64 -8.7

Kaltjiti (Fregon) and Irintata

Homelands

SA 5 240 246 2.4

Kanpi - Nyapari - Angatja SA 5 110 104 -5.1

Koonibba SA 5 137 141 3.1

Lake Eyre - Lake Torrens SA 5 213 228 6.8

Leigh Creek - Copley SA 5 64 67 4.8

Limestone Coast SA 3 514 615 19.6

Loxton - Waikerie SA 3 214 280 30.7

Maralinga Tjarutja SA 5 67 63 -6.6

Meningie SA 3 82 106 29.0

Mimili and Mimili Homelands SA 5 248 257 3.6

Mount Gambier SA 3 577 710 23.1

Murray Mallee SA 3 197 252 27.7

Pipalyatjara SA 5 90 85 -5.3

Point Pearce SA 3 127 151 19.0

Port Augusta - Central SA 3 1374 1571 14.3

Port Augusta - Surrounds SA 3 14 27 92.0

Port Augusta - West SA 3 611 731 19.6

Port Lincoln SA 4 781 882 12.9

Pukatja (Ernabella) SA 5 440 476 8.2

Quorn SA 3 132 160 21.1

Raukkan SA 3 95 111 16.9

Renmark Paringa SA 3 163 218 33.4

Roxby Downs SA 4 75 83 10.8

South-West Coast SA 5 53 52 -1.2

Stirling North SA 3 174 209 20.0
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Tjutjunaku Worka Tjuta - Inner

Homelands

SA 5 174 184 5.9

Tjutjunaku Worka Tjuta - Outer

Homelands

SA 5 74 80 7.5

Umoona SA 5 22 22 1.1

Watarru and Outstations SA 5 42 38 -10.5

Whyalla SA 3 932 1104 18.5

Yalata SA 5 263 281 7.0

Yorke Peninsula SA 3 210 270 28.7

Albany - Central WA 3 597 723 21.0

Albany - Surrounds WA 3 475 573 20.6

Argyle WA 5 132 148 12.5

Balgo WA 5 459 505 10.0

Bardi (One Arm Point) WA 5 310 351 13.1

Bayulu WA 5 316 358 13.2

Beagle Bay WA 5 255 284 11.3

Beverley WA 3 71 105 47.5

Bidyadanga WA 5 530 596 12.5

Bridgetown - Scott River East WA 3 92 135 47.2

Brookton WA 3 121 163 34.7

Broome - Central WA 4 1359 1487 9.4

Broome - North WA 4 312 351 12.7

Broome - Surrounds WA 5 163 180 10.1

Broome Town Camps WA 4 240 251 4.6

Burringurrah WA 5 104 111 6.7

Carnarvon Town exc. Mungullah WA 4 917 1041 13.6

Carnegie South exc. Mount

Magnet

WA 5 202 233 15.6

Cheeditha - Mingullatharndo WA 4 298 309 3.7

Coolgardie WA 5 200 223 11.5

Coonana WA 5 43 43 0.9

Cosmo Newberry WA 5 66 65 -2.0

Dampier WA 5 55 74 33.7

Denmark - Plantagenet WA 3 202 271 34.0
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Derby WA 5 810 911 12.5

Djarindjin - Lombadina WA 5 208 232 11.4

Djugerari WA 5 79 81 2.5

Doon Doon WA 5 89 93 3.9

East Pilbara - Surrounds WA 5 212 234 10.3

Esperance WA 4 442 514 16.3

Esperance - Ravensthorpe - Sur-

rounds

WA 4 154 175 13.3

Exmouth - Ashburton - Sur-

rounds

WA 5 360 408 13.3

Fitzroy Crossing WA 5 212 235 10.9

Fitzroy Crossing - Surrounds WA 5 50 49 -1.6

Fitzroy River - Surrounds WA 5 138 144 4.1

Geraldton - Central WA 3 1409 1676 18.9

Geraldton - North WA 3 766 920 20.1

Geraldton - Surrounds WA 3 683 789 15.6

Gnowangerup WA 4 144 172 19.7

Great Sandy Desert WA 5 89 92 3.5

Greenough - Chapman Valley WA 3 42 75 79.0

Halls Creek - Surrounds WA 5 380 427 12.5

Halls Creek exc.Town Camps WA 5 613 692 12.9

Injudunna WA 4 159 161 1.3

Irrunuytju WA 5 131 135 2.9

Irwin - Morawa WA 3 337 419 24.3

Jameson WA 5 111 116 4.8

Jarlmadangah Burru WA 5 66 69 5.2

Jigalong WA 5 329 364 10.6

Joy Springs WA 5 53 53 -0.6

Junjuwa WA 5 355 394 11.0

Kalgoorlie WA 3 1995 2342 17.4

Kalgoorlie - Dundas WA 5 54 65 20.2

Kalumburu WA 5 408 459 12.5

Kambalda WA 3 98 143 46.0

Karalundi WA 5 44 55 25.2
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Karmarlinunga - Djimu Nguda -

Budulah

WA 5 110 108 -1.9

Karratha WA 4 874 992 13.5

Katanning WA 3 384 475 23.8

Kellerberrin WA 3 115 151 31.1

Kiwirrkurra WA 5 201 213 5.9

Kojonup WA 3 278 355 27.6

Kooraby WA 5 54 57 5.9

Kulin WA 4 171 203 18.9

Kunawarritji WA 5 73 73 0.0

Kundat Djaru WA 5 178 198 11.3

Kununurra exc. Town Camps WA 4 1048 1194 13.9

Kupungarri WA 5 57 65 13.7

Kurrawang WA 5 77 85 10.2

Laverton - Ngaanyatjarraku -

Surrounds

WA 5 332 371 11.7

Leonora WA 5 190 215 12.9

Looma WA 5 371 405 9.2

Manjimup WA 3 244 328 34.5

Marble Bar - Mirtunkarra (Good-

abinya)

WA 5 126 140 10.8

Mardiwah Loop - Lundja WA 5 355 393 10.7

Meekatharra exc. Karalundi WA 5 405 450 11.0

Menzies - Leonora - Surrounds WA 5 120 140 16.6

Merredin WA 3 252 328 30.3

Mindi Rardi - Kurnangki WA 5 184 196 6.3

Mindibungu WA 5 248 284 14.6

Minyirr - Cable Beach WA 4 1000 1139 13.9

Mirima WA 4 156 161 3.0

Moora WA 3 306 379 23.9

Mount Magnet WA 5 232 259 11.6

Mount Margaret WA 5 88 94 6.6

Mowanjum WA 5 301 331 10.0

Mugarinya (Yandeyarra) WA 5 97 97 0.4
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Mukinbudin WA 4 92 109 18.4

Mulan WA 5 137 146 6.7

Mullewa WA 4 160 173 8.1

Muludja WA 5 127 133 4.5

Mungullah WA 4 185 195 5.6

Narrogin - Wagin WA 3 502 617 23.0

Newman WA 5 550 639 16.1

Ningia Mia WA 3 104 122 17.6

Norseman WA 5 104 120 15.1

Northampton WA 4 182 210 15.2

North-East Kimberley WA 4 189 202 7.0

North-West Kimberley WA 5 157 171 9.2

Nullagine WA 5 117 128 9.0

Nulleywah WA 4 130 132 1.9

Onslow WA 5 176 196 11.3

Outer Derby - West Kimberley WA 5 131 154 17.5

Pandanus Park WA 5 129 135 4.7

Papulankutja WA 5 165 178 8.0

Paraburdoo WA 5 139 166 19.5

Parnngurr WA 5 120 126 4.8

Pingelly WA 3 130 166 27.8

Port Hedland - Surrounds WA 5 90 106 17.3

Port Hedland exc. Tjalka Brooda WA 4 192 215 11.9

Punmu WA 5 141 148 4.9

Quairading WA 3 136 174 27.8

Roebourne WA 4 334 352 5.3

Shark Bay - Coral Bay - Upper

Gascoyne

WA 5 117 130 11.0

South Hedland WA 4 1767 1965 11.2

Southern Beaches WA 3 521 639 22.7

Tjalka Boorda WA 4 88 83 -5.8

Tjuntjuntjarra WA 5 181 186 2.6

Tom Price WA 5 294 348 18.4

Wanarn WA 5 135 141 4.5
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Wangkatjungka WA 5 172 182 5.6

Warakurna WA 5 154 166 7.8

Warburton WA 5 395 433 9.7

Warmun WA 5 227 248 9.5

Warralong WA 5 167 178 6.8

Wickham WA 4 302 346 14.4

Wiluna WA 5 284 317 11.4

Wyndham WA 5 411 455 10.7

Yakanarra WA 5 100 107 6.7

Yardgee - Nicholson Town

Camps

WA 5 115 119 3.1

Yungngora WA 5 259 285 10.0

Break O’Day Tas 3 232 290 25.0

Burnie Tas 3 1110 1297 16.9

Campbell Town Tas 3 105 135 28.9

Central Highlands (Tas.) Tas 3 110 141 27.8

Circular Head - King Island Tas 3 968 1126 16.3

Cygnet Tas 3 183 199 8.6

Dorset Tas 3 220 269 22.1

Flinders Tas 5 125 115 -7.8

Geeveston Tas 3 67 77 15.4

George Town Tas 3 288 361 25.4

Glamorgan - Spring Day Tas 4 160 165 3.1

Huonville - South Cape Tas 3 1055 1226 16.2

Kentish Tas 3 240 282 17.4

Latrobe - Hawley Beach Tas 3 397 457 15.1

Meander Valley Tas 3 261 325 24.7

Southern Midlands Tas 3 260 311 19.6

Tasman Tas 3 111 134 21.0

Ulverstone - Penguin Tas 3 1111 1278 15.0

Ulverstone - Penguin - Surrounds Tas 3 139 168 21.1

Waratah Tas 3 211 259 22.6

Wynyard Tas 3 635 736 15.9

Zeehan - Franklin Tas 4 307 335 9.2
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Acacia-Larrakia NT 3 83 103 24.5

Adelaide River - Coomalie NT 4 155 162 4.2

Alawa NT 3 187 224 19.7

Ali Curung NT 5 487 481 -1.2

Alpurrurulam NT 5 416 442 6.2

Alyangula NT 5 88 100 13.9

Amanbidji (Mialuni) NT 5 83 79 -4.9

Amoonguna NT 4 272 278 2.2

Ampilatwatja and Outstations NT 5 370 402 8.8

Angurugu NT 5 792 829 4.7

Angurugu Outstations NT 5 93 87 -6.7

Anmatjere - Surrounds NT 5 108 98 -9.1

Anmatjere - Ti Tree NT 5 62 55 -11.4

Anthelk Ewlpaye NT 4 81 65 -19.4

Anthepe - New Llparpa - Tyew-

eretye

NT 4 176 170 -3.4

Anula NT 3 320 385 20.3

Apatula (Finke) NT 5 145 146 0.6

Areyonga NT 5 220 220 -0.1

Atitjere NT 5 167 170 2.1

Atitjere - Akarnenehe Outsta-

tions

NT 5 107 103 -3.8

Atneltyey NT 5 23 18 -22.3

Bagot Community NT 3 196 216 10.4

Bakewell - Rosebery - Mitchell NT 3 729 878 20.4

Barkly Tablelands - Outstations NT 5 109 113 3.9

Barunga NT 5 291 312 7.1

Batchelor NT 4 71 64 -10.2

Bees Creek - Virginia NT 3 139 178 28.1

Belyuen NT 4 175 171 -2.3

Binjari NT 4 228 235 3.1

Borroloola exc. Mara - Yanyula NT 5 359 349 -2.7

Brinkin - Nakara NT 3 127 158 24.8

Bulla NT 5 130 130 -0.3
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Bulman - Weemol NT 5 279 296 6.2

Canteen Creek NT 5 199 210 5.7

Charles NT 4 709 789 11.2

Cobourg Peninsula - Demed

Homelands

NT 5 103 97 -5.5

Coconut Grove - Ludmilla NT 3 249 291 16.8

Cox - Finniss NT 4 119 116 -2.9

Daguragu NT 5 191 167 -12.8

Daguragu Outstations NT 5 18 17 -6.6

Darwin - Central NT 3 202 225 11.3

Darwin River - Berry Springs -

Southport

NT 3 149 189 26.9

Dhalinybuy NT 5 115 111 -3.5

Douglas-Daly NT 5 117 116 -1.2

Driver NT 3 321 398 24.1

Elliott NT 5 290 262 -9.5

Elliott Surrounds - Outstations NT 5 60 57 -5.5

Elsey Roper - Surrounds NT 5 43 40 -8.1

Emu Point NT 5 93 94 1.0

Engawala NT 5 135 129 -4.3

Ewyenper - Ilpeye - Irklancha NT 4 208 204 -2.0

Fannie Bay - Parap NT 3 286 314 9.6

Farrar - Durack - Marlow Lagoon NT 3 340 404 19.0

Flynn NT 4 697 777 11.4

Galiwinku NT 5 1895 2091 10.3

Gan Gan NT 5 69 67 -2.4

Gapuwiyak NT 5 819 849 3.6

Gapuwiyak Outstations NT 5 172 173 0.7

Gray NT 3 520 609 17.2

Gumatj - Surrounds NT 5 9 11 18.8

Gunbalanya NT 5 1038 1101 6.1

Gunyangara NT 5 142 141 -0.6

Haasts Bluff and Outstations NT 5 148 149 0.7

Heavitree NT 4 179 173 -3.3
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Hermannsburg NT 5 538 546 1.5

Howard Springs - Gunn Point NT 3 266 319 19.8

Humpty Doo - Elizabeth Valley NT 3 613 727 18.6

Illeuwurru - Inkawenyerre NT 5 68 57 -16.5

Ilparpa community NT 4 19 15 -21.4

Ilperle-Tyathe - Mt Nancy -

Aper-Alwerr

NT 4 172 169 -1.7

Imangara NT 5 91 88 -3.3

Imanpa (Mount Ebenezer ) NT 5 175 175 0.1

Inarlenge NT 4 41 31 -24.1

Ingkerreke Outstations NT 5 68 58 -14.3

Irrultja NT 5 87 84 -3.4

Jabiru NT 4 212 222 4.8

Jilkminggan NT 5 276 303 9.6

Jingili NT 3 208 253 21.5

Julalikari - Outstations NT 5 194 197 1.8

Kakadu - Marrakai - Surrounds NT 4 226 237 5.0

Kalkarindji NT 5 276 243 -12.0

Kaltukatjara (Docker River) NT 5 262 267 1.8

Kaltukatjara Outstations NT 5 69 65 -5.7

Karama NT 3 790 949 20.1

Kargaru NT 5 19 16 -14.9

Katherine exc. Town Camps NT 4 1738 1949 12.1

Knuckey Lagoon NT 3 91 107 17.7

Kulaluk NT 3 36 31 -13.5

Lajamanu NT 5 587 610 3.9

Laramba NT 5 234 237 1.4

Larapinta NT 4 957 1078 12.6

Larrakeyah - The Gardens NT 3 234 283 20.8

Laynhapuy NT 5 311 332 6.8

Lyons - Lee Point - Leanyer NT 3 393 475 20.9

Mabunji - Mungoorbada Outsta-

tions

NT 5 283 301 6.5

Malak NT 3 544 654 20.3
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Mamadawerre NT 5 56 49 -12.7

Maningrida NT 5 2038 2211 8.5

Maningrida Outstations NT 5 270 284 5.3

Manmoyi NT 5 61 53 -13.3

Manyallaluk NT 5 105 101 -4.1

Mara NT 5 192 199 3.5

Marla Marla - Village Camp NT 5 127 123 -3.4

Marrara - Winnellie - Berrimah NT 3 893 952 6.6

Marthakal Homelands exc. Gali-

winku

NT 5 404 445 10.1

Mataranka - Mulggan NT 5 91 86 -5.4

Miali Brumby - Warlpiri NT 4 290 282 -2.8

Milikapiti NT 5 406 439 8.1

Milingimbi NT 5 1020 1082 6.1

Millner NT 3 228 260 13.9

Milyakburra and Outstations NT 5 156 150 -3.9

Minjilang NT 5 270 286 5.8

Minmarama Park NT 3 139 154 10.9

Minyerri NT 5 444 496 11.8

Moil NT 3 237 286 20.8

Moulden NT 3 675 808 19.7

Mount Johns NT 4 350 374 7.0

Mount Liebig and Outstations NT 5 169 170 0.6

Mudginberri NT 4 60 48 -19.9

Mutitjulu - Uluru NT 5 249 262 5.3

Nauiyu Nambiyu NT 5 391 424 8.5

Ngalpa Ngalpa - Wuppa NT 5 396 416 5.0

Nganmarriyanga (Palumpa) NT 5 343 381 11.0

Ngukurr NT 5 973 1036 6.5

Nhulunbuy NT 5 374 425 13.5

Nightcliff NT 3 185 221 19.4

Nturiya NT 5 97 92 -5.2

Numbulwar and Outstations NT 5 627 632 0.7
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Nyewente - Akngwertnarre - Na-

matjira

NT 4 123 108 -12.2

Nyirripi NT 5 187 191 2.4

Palmerston Indigenous Village NT 3 80 79 -1.8

Papunya NT 5 381 360 -5.4

Papunya Outstations NT 5 77 73 -5.5

Peppimenarti NT 5 165 168 1.7

Pigeon Hole NT 5 120 124 3.1

Pine Creek NT 4 150 153 1.9

Pirlangimpi NT 5 333 351 5.3

Pmara Jutunta NT 5 193 201 4.3

Ramingining NT 5 775 795 2.5

Ramingining - Milingimbi Out-

stations

NT 5 219 225 2.8

Rapid Creek NT 3 185 224 21.2

Rittarangu NT 5 93 93 0.5

Robinson River (Mungoorbada) NT 5 243 262 8.0

Rockhole NT 4 125 122 -2.5

Ross NT 4 742 815 9.8

Santa Teresa (Ltyentye Purte) NT 4 504 548 8.7

South MacDonnell Ranges NT 4 821 835 1.7

Stuart Park - Bayview - Woolner NT 3 198 237 19.9

Tanami Outstations NT 5 23 23 -0.2

Tara NT 5 54 50 -6.7

Tennant Creek exc. Town Camps NT 5 1040 1144 10.0

Thamarrurr exc. Wadeye NT 5 189 196 3.9

Timber Creek NT 5 154 163 5.7

Timber Creek - Surrounds NT 5 61 55 -10.1

Titjikala NT 4 189 185 -2.1

Tiwi NT 3 238 280 17.6

Tiwi Islands - Wilderness NT 5 180 189 5.2

Tjuwanpa Outstations NT 5 205 209 1.8

Umbakumba and Outstations NT 5 429 463 8.0

Utopia - Arawerr - Arlparra NT 5 483 523 8.3
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Wadeye NT 5 1929 2139 10.9

Wagaman NT 3 145 179 23.4

Walangeri Outstations NT 5 48 46 -4.6

Wallace Rockhole NT 5 65 58 -11.5

Walungurru (Kintore) NT 5 415 446 7.6

Wanguri NT 3 155 191 23.4

Warruwi NT 5 395 439 11.0

Willowra NT 5 204 214 5.0

Wilora NT 5 111 105 -5.8

Woodroffe NT 3 438 532 21.4

Wugular (Beswick) NT 5 500 540 8.1

Wulagi NT 3 266 326 22.4

Wurrumiyanga (Nguiu) NT 4 1358 1435 5.7

Wutunugurra NT 5 200 214 6.8

Yanyula NT 5 187 195 4.4

Yarralin NT 5 252 260 3.2

Yarrenyty-Arltere NT 4 90 75 -17.0

Yilpara NT 5 125 119 -4.5

Yirara College and Surrounds NT 4 120 140 16.4

Yirrkala NT 5 652 651 -0.2

Yuelamu NT 5 197 202 2.6

Yuendumu and Outstations NT 5 587 585 -0.4

Yugul Mangi Outstations NT 5 29 26 -9.3
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