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A B S T R A C T

Study region: In this study, three provinces in Northeast Vietnam including Bac Kan, Thai
Nguyen, and Tuyen Quang are examined to determine the precipitation variation characteristics.
Study focus: The average yearly temperature during the last two decades in Northeast Vietnam
has increased by 0.72 °C when compared to the period 1962–1990. The Clausius Clapeyron (CC)
relation indicates that a warmer atmosphere can result in higher moisture-holding capacity;
hence, there is the possibility of increased extreme rainfall with respect to the rise in temperature.
We evaluate the relationship between the average 24-hour temperature and rainfall extremes
using the binning method. The estimation of the 24-hour probable maximum precipitation (PMP)
is then implemented based on the moisture maximization and Hershfield statistical methods.
New hydrological insights for the region: The 99.9th percentiles of 24-hour precipitation are close to
the super CC scaling up to peak points of 22.6–25.6 °C and decrease at higher temperatures. The
Hershfield method produces 24-hour PMP results ranging from 232mm to 895mm. PMP outputs
using the moisture maximization method based on the 100-year dew point are higher than those
results generated from the statistical method except for Chiem Hoa station. Considering possible
changes in future relative humidity under a warming climate from GCMs and RCM projections for
two RCP scenarios, RCP 8.5 indicates the possible rise in probable extreme precipitation.

1. Introduction

Lying within the Southeast Asian typhoon belt, Vietnam experiences high frequencies of storms and heavy rainfall. Two obvious
consequences of such extreme rainfalls are floods and landslides. In Vietnam, the Northeast region is considered one of the areas that
is the most prone to such disasters and increases in frequency and intensity of heavy rainfall events in a warming climate (Le et al.,
2014). Climate change does have great impacts on extreme precipitation events and should be taken into consideration (Hardwick
Jones et al., 2010; Utsumi et al., 2011; Jakob and Walland, 2016). Within the context of global temperature change, extremely high
precipitation intensities have been observed, highlighting a relationship between extreme rainfall and air temperature (Berg and
Haerter, 2013; Panthou et al., 2014; Toure Halimatou et al., 2017; Herath et al., 2018). Such extreme rainfall events have also been
estimated using probable maximum precipitation (PMP) (Beauchamp et al., 2013; Rousseau et al., 2014; Lee et al., 2016, 2017;
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Rastogi et al., 2017).
Theoretically, PMP is defined by the World Meteorological Organization (WMO, 2009a) as “the greatest depth of precipitation for

a given duration meteorologically possible for a design watershed or given storm area at a particular location at a particular time of
year, with no allowance made for long-term climatic trends”. Normally, PMP is used to determine probable maximum flood (PMF) for
the design of hydraulic structures. The moisture maximization method (Beauchamp et al., 2013; Rousseau et al., 2014; Lee et al.,
2016, 2017) and the Hershfield method (Hershfield, 1961, 1965; Casas et al., 2011; Jothityangkoon et al., 2013; Alias et al., 2013)
represent two of the most widely used approaches in PMP estimation. The statistical method, which was developed by Hershfield,
focuses on the frequency analysis and the influence of outliers on the mean and standard deviation of observed series of annual
maxima at the location of interest (WMO, 2009; Micovic et al., 2015). The moisture maximization method considers the max-
imization ratio, which is the ratio between maximum precipitable water at a certain period of the year and actual precipitable water
during a storm of interest. Precipitable water means the total amount of vapor water in the atmospheric column. In the case of
unavailable radiosonde data, the surface dew point is used under the assumption of a saturated pseudo-adiabatic atmosphere. The
maximum precipitable water can be estimated from the 100-year value or maximum observed value at a certain time window (WMO,
2009; Beauchamp et al., 2013; Rousseau et al., 2014).

Under the influence of a changing climate, temperature increases are believed to drive the higher intensity of precipitation in
many areas in the world (Jones et al., 2010; Jakob and Walland, 2016; Herath et al., 2018). Such projection is mainly based on the
hypothesis that the increase in water holding capacity of the atmosphere is associated with the rise in air temperature as described by
the Clausius Clapeyron (CC) relationship (Utsumi et al., 2011). Assessments of temperature-precipitation scaling are often im-
plemented using a binning technique in order to determine precipitation event scale properties (Herath et al., 2018). Many studies
pointed out that the scaling between temperature and extreme precipitation has a close relationship with rainfall percentile, rain
duration, time scale, and geographic location (Jakob and Walland, 2016; Boessenkool et al., 2016; Herath et al., 2018). For example,
Hardwick Jones et al. (2010) concluded that the scaling relationship depends on rainfall percentile. In other words, the CC-scaling
theory is mainly based on extreme events rather than average ones. Studies about convective precipitation have shown a super-CC
scaling of about 14–15% per degree Celsius at higher temperatures (Berg et al., 2013; Berg and Haerter, 2013), while a CC-like scaling
(6–7% per degree Celsius) was found at lower temperatures. Similar findings were also illustrated for a daily resolution (Utsumi et al.,
2011; Berg and Haerter, 2013). In addition, based on geographic region, there are three major categories of the 99th percentile of 24-
hour precipitation changes with temperature, namely monotonic increase, monotonic decrease, and a peak-like structure (Utsumi
et al., 2011). The fifth IPCC report also showed that future air temperature and humidity are expected to gradually increase (IPCC,
2015; Jakob and Walland, 2016). Thus, climate change will have a strong impact on moisture maximization and PMP as a result.
Recent studies have suggested that PMP is likely to rise in most areas of the world under a warmer climate (Beauchamp et al., 2013;
Rousseau et al., 2014; Lee et al., 2016, 2017; Rastogi et al., 2017). Though most developed countries have well maintained long-term
hydro-climatic data, difficulties in data availability are always a major issue hindering many studies in developing nations such as
Vietnam.

Climate change is expected to increase the Northeast region’s vulnerability through increasing temperature and erratic pre-
cipitation; abnormal rain, which was difficult to anticipate in terms of intensity, time, and place, has occurred more frequently in
recent years (MONRE, 2016). In addition, the magnitudes of the maximum precipitable water could rise with increasing air tem-
perature and thus could magnify extreme rainfall in the future (Kunkel et al., 2013; Ishida et al., 2018). Therefore, it is important to
understand the precipitation variation characteristics in Northeast Vietnam, especially in a warming climate. Taking these facts into
account, the main aims of this paper are to (i) identify the relationship between extreme 24-hour precipitation and average 24-hour
temperature, (ii) estimate 24-hour PMPs in the study area, and (iii) evaluate the possible impacts of a warming climate on extreme
precipitation and PMP.

2. Study area and data

2.1. Study area

In this paper, we examine the precipitation characteristics of three provinces in Northeast Vietnam, namely Bac Kan (BK), Thai
Nguyen (TN), and Tuyen Quang (TQ) (Fig. 1). This area is covered by a mixture of mountainous and hilly terrain landscapes. During
the period of 1960 to 2016, the average annual rainfall in this area was 1380–1900mm. The rainy season often spans from May to
October, with average monthly rainfall and average monthly temperature of 108–317mm and 23.8–26.9 °C, respectively. The highest
24-hour precipitation in each month varies from 255mm (May) to 506mm (July) and from 375mm to 231mm in the remaining
three months.

In addition, the largest 24-hour precipitation at 14 out of 18 rain stations coincided with typhoon-related events. According to
historical typhoon data from NOAA (Chu et al., 2017), about 68 tropical cyclones in North Vietnam occurred from 1960 to 2016.
Heavy rainfall in this area is not only a result of troughs and tropical concentration lines across the delta, but typhoon-related events
that hit inland of Vietnam and South China as well. For example, due to the influence of Typhoon Bilis in 2006 in South China, the
greatest 24-hour precipitation (Rmax) occurred at Cho Ra (CR_ 211mm), Chiem Hoa (CH_506mm), Ham Yen (HY_ 338mm), and
Tuyen Quang (TQ_ 316mm). This typhoon also led to heavy rainfall (166–341mm/day) at five rain gauge stations in Bac Kan
province. Typhoons, which hit inland Vietnam, could lead to heavy rainfall in a larger region in each province of the study area. For
instance, Typhoon Durian in 2001 brought heavy precipitation to six rain stations in Thai Nguyen (208–349mm/day) and five rain
stations in Tuyen Quang (160–361mm/day). Typhoon Noname in 1986 also led to heavy precipitation (150–229mm/day) at five
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stations in Bac Kan. Troughs (low atmospheric pressure), or tropical concentration lines showed rare magnitudes of 24-hour pre-
cipitations (Rmax) at Dinh Hoa (DH_ 276mm), Thai Nguyen (TN_375mm), Bac Kan (BK_305mm), and Ngan Son (NS_260mm).

2.2. Hydro-meteorological data

In Bac Kan, Thai Nguyen and Tuyen Quang provinces, there are eight meteorological stations and 34 rain gauge stations, 21
stations of which were constructed before 2006. Many rain gauges have discontinuous data (meaning they record only some rainy
months of the year or have missing data for years or months), short length data (recent construction stations), or are manually
measured by local people. Stations including BK, CR, NS, DH, TN, CH, HY, and TQ have been measuring surface meteorological
parameters such as precipitation (R), temperature (t), and relative humidity (RH) since 1962 (Table 1). In this paper, we, therefore,
utilized the average 24-hour data of R, t, and RH from 1962 to 2016 from eight meteorological stations to evaluate the characteristics
of precipitation.

To evaluate the spatial distribution of storm rainfall as a function of storm duration, the Depth-Area-Duration (DAD) curve is often
established (WMO, 1969). In this study, we selected heavy storm events to envelop a depth-area curve of the 24-hour

rainstorm (WMO, 1969, 2009a) based on the Thiessen polygon weighting method in addition to Inverse Distance Weight (IDW)
interpolation (WMO, 1969; Shin et al., 2013), as represented in Fig. 2.

Climate data, that is, daily temperature data, were obtained from the World Climate Research Programme – CMIP5 (https://esgf-
node.llnl.gov/projects/cmip5/) for GCMs, and the Coordinated Regional Climate Downscaling Experiment – CORDEX in the East Asia
region for RCMs. The specification of each model is shown in Table 2. Using the Climate Data Operators (CDO) program
(Schulzweida, 2018), we evaluated two Global Climate Models from Japan, including MIROC 5 (MIR) (Watanabe et al., 2010) and
MRI-CGCM3 (MRI) (Yukimoto et al., 2012), and one Regional Climate Model, namely HadGEM3-RA (HaG) (Baek et al., 2013; Davies
et al., 2005). RCP4.5 (stabilization scenario) and RCP8.5 (pessimistic emission scenario) were considered regarding two time periods:
2050 (2021–2050) and 2080 (2051–2080).

3. Methodology

In order to evaluate the behavior of extreme precipitation in a changing climate, we analyzed the relationship between

Fig. 1. a) Elevation distribution in Vietnam; b) Typhoons, storms and tropical depressions in North Vietnam 1960–2016 (Chu et al., 2017); c)
Average annual rainfall in study area.1960–2016.
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temperature and extreme rainfall during the rainy season. The Probable Maximum Precipitation (PMP) was then estimated using
historical meteorological data. For simplification, we estimated the possible changes in relative humidity at high temperatures based
on historical data and considered the changes in projected temperature (Global Climate Models – GCMs and Regional Climate Model -
RCM) and relative humidity in order to evaluate the extent of changes in PMP under climate change condition. The method de-
veloped in the present study is described in Fig. 3.

3.1. Precipitation and temperature scaling analysis

It is important to understand the relationship between extreme precipitation and one of its related meteorological variable:
atmospheric temperature, especially under changing climate conditions. The binning technique has been widely applied to evaluate
such a relationship between temperature and precipitation (t-R) (Hardwick Jones et al., 2010; Lenderink et al., 2010; Utsumi et al.,
2011; Herath et al., 2018). Based on recent literature, two main approaches in the (t-R) analysis include the same bin width and the

Table 1
Main characteristics of weather stations in the study area.

No Province Station Elevation (m) Type of station Parameters Observation time steps Period of record

1 Bac Kan Bac Kan BK 145 MS2a R e, RH f, t g 6 h 1 h 1957-2016 1962-2016
2 Bac Kan Cho Ra CR 165 MS3b R, RH, t 6 h 1 h 1962-2016 1964-2016
3 Bac Kan Ngan Son NS 650 MS3 R, RH, t 6 h 1 h 1962-2016 2003-2016
4 Bac Kan Cho Don CD 503 RGc R 6 h 1961-2016
5 Bac Kan Phu Thong PT 202 RG R 6 h 1980-2016
6 Thai Nguyen Dinh Hoa DH 105 MS1d R, RH, t 6 h 1 h 1961-2016 1965-2016
7 Thai Nguyen Thai Nguyen TN 40 MS1 R, RH, t 6 h 1 h 1959-2016 1959-2016
8 Thai Nguyen Ky Phu KP 122 RG R 6 h 1961-2016
9 Thai Nguyen Dai Tu DT 70 RG R 6 h 1 h 1959-2016 1972-1982
10 Thai Nguyen Pho Yen PY 14 RG R 6 h 1997-2016
11 Tuyen Quang Chiem Hoa CH 60 MS3 R, RH, t 6 h 1 h 1962-2016 1962-2016
12 Tuyen Quang Ham Yen HY 50 MS3 R, RH, t 6 h 1 h 1962-2016 1973-2016
13 Tuyen Quang Tuyen Quang TQ 50 MS1 R, RH, t 6 h 1 h 1960-2016 1960-2016
14 Tuyen Quang Na Hang NH 70 RG R 6 h 1963-2016
15 Tuyen Quang Dao Vien DV 550 RG R 6 h 1997-2016

a Meteorological station – Class II.
b Meteorological station – Class III.
c Rain gauge station.
d Meteorological station – Class I.
e Rainfall.
f Relative humidity.
g Temperature.

Fig. 2. Depth-area envelope of the 24-hour rainstorm at three regions (Bac Kan (BK), Thai Nguyen (TN), and Tuyen Quang (TQ)) based on heavy
storms data from 1962 to 2016.
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same number of samples in each temperature bin. In the former method, precipitation is paired with temperature with an equal width
such as 1 °C (Berg et al., 2013). Since the utilization of even-width bin sometimes leads to fewer samples in some bins, especially in
lower and upper-temperature ranges (Hardwick Jones et al., 2010), the equal-bin width method with adjustment to assure a given
minimum of samples in each bin offers an interesting alternative. For example, Utsumi et al. (2011) used the 2 °C bin with minimum
samples of 150 for the global study; Berg et al. (2009) defined the minimum samples of 300 for each bin width in their study of the
entire European domain. In the latter method, (t-R) pairs are placed in each bin in order to have the same sample size regardless of
the bin width (for example 233 events per one bin in a research of Hardwick Jones et al., 2010). However, it is sometimes difficult to
obtain the same sample size within each of the smallest temperature bins (e.g., 0.1 °C).

To determine the behavior of extreme precipitation, we set up a relationship between 24-hour rainfall and average 24-hour air
surface temperature for wet events, which have been defined differently in various studies. According to the World Meteorological
Organization guidelines (WMO, 2009b), precipitation depths with a threshold of 1mm, 10mm and 20mm are set for wet day events
(R1), heavy precipitation (R10), and very heavy precipitation (R20), respectively. For a given rainfall duration, wet day events were
also set as 0.3 mm (Herath et al., 2018), 0.1 mm (Hardwick Jones et al., 2010), 0.3mm/hour (Panthou et al., 2014), or 20mm (Toure
Halimatou et al., 2017). In the Vietnamese government standard (Vietnam Standard, 2015), the 24-hour rainfall amount from 51mm
and above (R51) is considered a rain-induced waterlogging event. In addition, the WMO guideline (WMO, 2009b) indicates that the
95th percentile of precipitation (P95) on wet days is used to determine a very wet day event, while an extremely wet day event is
calculated from the 99th percentile of precipitation (P99). Recent studies have applied the 50th (Hardwick Jones et al., 2010; Herath
et al., 2018), 75th (Berg and Haerter, 2013), 90th (Panthou et al., 2014), 99th (Utsumi et al., 2011), or 99.9th (Lenderink et al., 2011)
percentiles of precipitation for given rainfall duration in the (t-R) scaling analysis.

In this study, we evaluated the behavior of the 99.9th percentile precipitation (P99.9) on wet days (R1) and heavy rain days (R51) of
the rainy season (May – October) at eight meteorological stations from 1962 to 2016. During this period, the total number of wet days
(R1) and heavy rain days (R51) at eight stations were 32,243 and 2579 for temperature ranges of 13.8–38 °C and 16.6–30.7 °C,
respectively. Fig. 4. a) illustrates the number of days in each temperature bin width of 1 °C. Since there were great differences
between sample sizes in each bin width, pairs of average 24-hour temperature and rainfall were allocated in each bin width of 1 °C
more or less to ensure a given minimum number of samples in each bin, such as 150 (R1) and 50 (R51) for the whole study region. The
CC scaling was used to examine the possible changes in the precipitation as a function of changes in temperature. The exponential
regression was applied to determine precipitation (Pt+Δt) that related to changes in temperature (Δt) (Hardwick Jones et al., 2010), as
described in Eq. (1):

= ++P P (1 )t t t
t (1)

where t is air temperature (°C); Δt refers to the rise in temperature (°C); Pt and Pt+Δt denote rainfall at air temperature t and t+Δt,
respectively (mm); and α represents the rate at which precipitation changes with temperature. For example, α=0.07019 and
α=0.0607 are equivalent to CC scaling of 7.019% per degree Celsius at 4 °C and 6.007% per degree Celsius at 24 °C, respectively.

Fig. 3. Illustration of the proposed methodology in analysing rainfall-temperature scaling and computing PMPs relation to the statistical and
moisture maximization methods.
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3.2. Estimation of the PMP

3.2.1. The statistical method
This approach applies the Hershfield method (1961) to estimate the PMP (WMO, 2009a), as described in Eq.(2):

= + × = +PMP R S K R S R R
S

¯ ¯ ¯
n n m n n

max n

n

1

1 (2)

where PMP is probable maximum precipitation (mm); R̄ and S are in mm, representing mean and standard deviation. Sub-index (n)
and (n-1) refer to annual extreme series and annual extreme series excluding the largest value, respectively. Rmax is the maximum
rainfall in the series (mm); Km substitutes for the statistical variable, which represents the maximum value within the observed series
of storm events.

3.2.2. The maximization method
This method considers the maximization ratio between maximum precipitable water (Wmax) at a certain period of the year and

actual precipitable water (Ws) of the storm event associated with precipitation R (mm), as described in Eq.(3).

=PMP RW
W
max

s (3)

whereWs refers to precipitable water estimated for the storm (mm) and Wmax represents the maximum precipitation water indicated
for the storm reference location (mm). In addition to station elevation, dew point temperature the day of storm occurrence (td) is used
to determine Ws. Wmax is also computed regarding location of station and maximum dew point temperature (tdmax), which can be
taken as the 100-year return period (td_100) of maximum dew point in the month of the storm occurrence. It also can be maximum dew
point within 15 days (td_15d) (15 days after the storm event), within a 30-day window (td_30d) (15 days before and 15 days after the
storm), or the largest value of tdmax series in a month of the storm event (td_month) (WMO, 2009a; Lee et al., 2016).

In practice, after selecting extreme rainfall events, precipitable waters were determined using annex 1 of the WMO manual on the
estimation of PMP (WMO, 2009a), taking station elevation and surface dew point temperature (td) into consideration. Normally, a
persisting 12-hour dew point temperature is used for storm maximization. According to the WMO manual, a 24-hour interval can be
used for longer storm duration in some tropical areas to select historical maximum dew points and representative dew points of
storms (WMO, 2009a). The application of the 24-hour dewpoint for adjusting storm rainfall can be an alternative in PMP calculation
as it provides few differences from the application of the 12-hour representative storm dew point. In case the td record is unavailable,
an average 24- hour surface dew point temperature is estimated based on the average 24-hour relative humidity (RH) and surface
temperature (t), as described in Eq. (4) (Alduchov and Eskridge, 1996; Lawrence and Planck, 2005)

=
× + ×

+
×
+

( )
t

243.04 ln

17.625 ln
d

RH t
t

RH t
t

100
17.625
243.04

100
17.625
243.04 (4)

where td refers to dew point temperature (oC); RH represents relative humidity (%); and t is surface temperature (oC).

3.3. PMP and climate change

As mentioned in Section 3.2.2, the determination of Wmax, which often depends on the elevation of observation location,
temperature, and relative humidity, has a critically important role in PMP calculation. Because raw climate model data often has a

Fig. 4. a) Temperature distribution curve in rainy season (May-October) at each station over 55 years (1962–2016) with regard to wet event (R1)
(solid lines) and rain-induce water logging events (R51) (dot lines); b) Relationship between Relative Humidity and temperature (RH- t) with respect
to extreme 24-hour rainfall classification at the study site.
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significant bias, correction for a specific study site is therefore necessary. The adjustment of climatic model simulations can be
implemented by bias correction methods, including linear scaling, local intensity scaling, variance scaling, distribution scaling, power
transformation, or distribution mapping (Terink et al., 2009, 2010; Teutschbein and Seibert, 2012; Chen et al., 2013; Fang et al.,
2015). While precipitation changes are often evaluated using a ratio of future to historical data, changes in temperature are often
estimated based on the difference between the future and historical data (Pierce et al., 2015). Being considered as an approximately
normally distributed variable, the temperature is often corrected through its mean and variance using the variance scaling method
(Terink et al., 2010; Teutschbein and Seibert, 2012; Hawkins et al., 2013; Fang et al., 2015). In this approach, it is assumed that bias
correction would be stationary. This means that the current correction parameters are valid in future cases (Teutschbein and Seibert,
2012; Pierce et al., 2015).

Using R package (Killick and Eckley, 2013, 2016), we implemented a change point analysis to identify changes in mean for
monthly temperature data in the rainy season at eight stations in regard to three methods: AMOC (at most one change), PELT (pruned
exact linear time), and BinSeg (binary segmentation). In general, the mean values of monthly temperature from May–October in this
study site experienced change points within a 10-year period (Fig. 5 & Table 3). In addition, according to the Guidelines on the
Calculation of Climate Normals (WMO, 2017), the standard normal can be applied to assess climatological surface parameters such as
air surface temperature. The basic assumption of a stationary climate assumes that the climate is variable; however, the variations
properties are considered to be constant with time (WMO, 2017). With respect to Teutschbein and Seibert (2012), the procedures of
bias correction utilized a transformation algorithm in order to adjust the output of GCMs and RCM and to identify possible biases
between observation and simulation data. In addition, the major contributor to differences between observed data and model output
are considered as a bias correction, rather than climatic differences between two time periods (Teutschbein and Seibert, 2012; Pierce
et al., 2015).

According to WMO guidelines (WMO, 2017), “normals” refer to an average computational time for “a uniform and relatively long
period” covering “at least three consecutive ten-year periods”. In this paper, we therefore apply the variance scaling method to
correct temperature series for 30-year periods including 1971–2000 for historical records (H) and 2021–2050 and 2051–2080 for
future (F) projections with respect to observations (O) and climate models output (M). The corrected daily future temperature (TF) on
a jth day (d) of an ith month (m) is calculated based on the relationship between mean (T̄ ) and standard deviation (S) of monthly
temperature from historical observation (O_H) and historical simulation (M_H), as indicated in Eq. (5).

= + ×T T
S
S

T T¯ _
_
_

( _ ¯ _ )F m d O H m
O H m

M H m
M F m d M H m, , ,

,

,
, , ,i j i

i

i
i j i (5)

where TF m d, ,i j represents the corrected daily future temperature (oC) on the jth day of the ith month; T̄ _O H m, i and T̄ _M H m, i denote mean
the monthly temperature (oC) in the ith month (mi) of historical observation data (O_H) and historical data of model output (M_H),
respectively. S _O H m, i and S _M H m, i illustrate the standard deviation of monthly temperature (oC) in the ith month of historical ob-
servation and historical model output, respectively. T _M F m d, ,i j refers to the future temperature (oC) obtained from the climate models
projection on the jth day of the ith month.

Regarding the projected temperature for each climate model, the maximum RH (RHmax) was estimated based on the analysis of
historical temperature and RH (t˜RH) using the binning method. Relative humidity was paired with temperature using the equal-bin
width of 0.1 °C. The largest value of RH within each bin was defined as the maximum magnitude of relative humidity (RHmax) at that
temperature. The upper boundary of RHmax at high temperature was then identified to evaluate possible maximum relative humidity

Fig. 5. Identifying changes in mean value for average monthly temperature data in the rainy season (May – October) at eight stations from
1962–2016 regard to three methods: At Most One Change (A), Pruned Exact Linear Time (P), and Binary Segmentation (B). Vertical black lines
represent changing points; the coloured bars (light grey, grey, and dark grey) indicate ranges of years obtaining relatively stable conditions in mean
value.
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based on projected temperature. The possible maximum dew points were then computed in accordance with future projected tem-
peratures for each GCM_RCP and RCM_RCP in order to determine the possible Wmax and PMP in a future month.

4. Result

4.1. Precipitation and temperature scaling analysis

In general, the 99.9th percentile of two datasets (R51 and R1) at all stations in the rainy season from May to October (MO) are
associated with a peak point temperature of about 26 °C, then they decrease at higher temperatures (Fig. 6). The CC-like relation with
the rate of 7% per degree Celsius almost fits the rise of P99.9_R51_MO between 20.8 °C and 22.6 °C. Significant increases in extreme
precipitation to the peak point temperature demonstrates super CC rates of 15–20% per degree Celsius between 22.6 °C and 25.6 °C
for P99_R51_MO, P99_R1_MO, and P50_R1_MO. The decrease of extreme precipitation intensities at high temperature would be associated
with the decline of relative humidity (Hardwick Jones et al., 2010; Utsumi et al., 2011).

Regarding (t-R) analysis at each station, the scaling rate of the 50th percentile of R51 agrees with CC-like scale from 7% per degree
Celsius (NS, DH, TN, and TQ) to 10% per degree Celsius (CR, CH), and 20% per degree Celsius (BK, HY). The super CC scaling rates of
more or less than 20% per degree Celsius are shown for the three lines: P99.9_R1, P99.9_R51, and P50_R1 (Fig. 7). Fig. 7 also indicates
that peak temperatures for P50_R1 and P50_R51 can occur at the ranges of 23.5–25.6 °C at station elevations below 110m (DH, CH, HY,
TQ, and TN), and 22.6–24.6 °C at stations with higher elevation (BK, CR, and NS). With regard to the behavior of extreme events
(P99.9) of heavy rain days (R51) at each station, the peak temperatures vary from 23.5 °C at Ngan Son (NS) to 26.5 °C at Tuyen Quang
(TQ). In addition, NS and Cho Ra (CR) stations, which are located at the same latitude, although NS differs in altitude (elevation of
650m), have higher values of peak precipitation P99.9_R51 (255mm at 23.5 °C) than CR (elevation of 165m) does (209mm at
24.6 °C). In general, higher-elevation stations have lower peak temperatures, except for Thai Nguyen (TN) station, which is located on
hilly terrain known as a transiting region between delta and mountainous areas. Additionally, apart from TN (a Midland station),
similar peak point temperatures and similar scaling trends are seen for both series P99.9_R1 and P50_R1 for the other stations.

4.2. PMP determination

4.2.1. Statistical method
In the Hershfield method, we selected the largest value of 24-hour precipitation for each year from 1962 to 2016 to obtain a series

of annual extreme 24- hour rainfall at each station; the average value in each series (R̄n) varies from 94.3mm at Cho Ra (CR) to
152.7mm at Thai Nguyen (TN). The highest magnitude of 24-hour rainfall within each series (Rmax) at seven stations fluctuated
from 211mm (CR) to 375mm (TN); the greatest value of Rmax was seen at Chiem Hoa station (506.1mm). PMP determination
results at eight meteorological stations are illustrated in Table 4 and Fig. 8. PMP, which was determined by the statistical method
(PMP_statistic), varies from 232mm (CR) to 895mm (CH) with ratios between PMP and Rmax of less than 1.8 (from 1.07 at NS to 1.77
at CH); almost all stations obtain Km values that are less than 5.7, apart from Chiem Hoa (CH – 12.78). The differences between Rmax
and R̄n at four stations (CR, NS, DH, and TN) range from 116.6mm (124%) at Cho Ra (CR) to 223.4mm (145%) at Thai Nguyen (TN).
The outputs agree with the (t-R) relationship (Section 4.1), in which the scaling analysis of the 99.9th percentile for two datasets (R1

and R51) illustrates similar trends at those four stations (Fig. 7). It is in favor of the fact that among 36 events of 24-hour rainfall above
200mm at the study site, there were 15 events at TN – a station with the highest value of R̄n (152.7mm). In addition, magnitudes of
the largest rainfall (Rmax) at three stations (TQ, HY, and BK) are 191–211mm (161–168%) higher than the average values of the data
series R̄n ; the difference between the apexes of the P99.9_R51 and P99.9_R1 scaling is 47–86mm at the three aforementioned stations, at

Fig. 6. Rainfall and temperature scaling analysis at study region (all 8 stations) for 99.9th (P99.9) and 50th (P50) percentiles of wet events (R1), heavy
precipitation (R10), very heavy precipitation (R20), and rain-induced waterlogging event (R51) from May – October (P99.9_R1_MO, P50_R1_MO,
P99.9_R51_MO and P50_R51_MO), and from April – October ((P99.9_R1_AO, P50_R1_AO, P99.9_R51_AO and P50_R51_AO). The linear regressions within tem-
perature ranges are shown in solid lines; the scaling rates are represented by dot black lines.
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which the Km ranges from 4.58 to 5.63. Interestingly, the peak value in the P99.9_R51 scaling is 195mm higher than the peak value in
the P99.9_R1 scaling at Chiem Hoa; this station also shows the greatest differences of 385mm (318%) between Rmax and R̄n. It reveals
that the most extreme precipitation Rmax of 506.1mm at CH is significantly larger than values of the remaining data in the series of
annual extreme 24-hour rainfall, in which the second highest rain amount at this station is 195.9mm.

4.2.2. Moisture maximization method
PMPs are computed using precipitation, temperature, and relative humidity data associated with some of the largest rain events at

eight meteorological stations over 55 years. From 1962–2016, the average number of days with rainfall amount above 200mm at the
study sites was 4.5 days (16 events at TN, 1 event at CR & CH, and 3–4 events at other stations). The computation of PMPs is thus
implemented based on the five storm events, which were selected from the top five highest 24-hour precipitation amounts at each
station. The maximum result at each station was selected as the PMP at that rain gauge.

In practice, precipitable water Ws was determined using temperature and relative humidity of the day of occurrence of extreme
events and related to the station elevation. We calculated Wmax using to four options of dew point maximization using historical
data, including tdmax corresponding to the 100-year dew point (td_100), the largest value of tdmax in a month (td_month), and maximum
value within a window of 15 and 30 days (td_15d & td_30d) of a storm event. To evaluate the 100-year dew point temperatures (td_100) for
each selected month, in which the top five highest 24-hour precipitation events occurred, we tested five distributions, namely the
Gumbel (G), Normal (N), LogNormal (LN), Generalized Extreme Value (GEV) including maximum likelihood estimates (GEV1), and
probability–weighted moment (GEV2) (Rousseau et al., 2014; Clavet-Gaumont et al., 2017). In order to determine the best fit, we
conducted four goodness-of-fit (GOF) tests: the Chi-square test (χ2), Root mean square error (RMSE), Anderson-Darling test (A–D),
and Kolmogorov-Smirnov test (K–S), with the support of the Comprehensive R Archive Network (CRAN) statistical packages

Fig. 7. The relationship between average 24-hour temperature and the 50th (P50) and 99.9th (P99.9) percentiles of 24-hour precipitation with the
threshold of 1mm (R1), 10mm (R10), 20mm (R20), and 51mm (R51). The scaling rates are represented by dot black lines; the linear regressions
within temperature ranges are shown in solid lines.

Table 4
PMP computation (mm).

Station Elevation (m) Rmax

(mm)
Statistical method Moisture maximization method (PMP in mm using 4 options of tdmax)

Km PMP (mm) td_100 td_15d td_30d td_month

BK 145 305 4.60 341 477 393 370 477
CR 165 211 4.48 232 301 237 260 281
NS 650 260 3.75 279 380 282 282 418
DH 105 276 3.78 296 407 340 342 407
TN 40 375 4.30 412 547 487 487 539
CH 60 506 12.78 895 682 571 645 694
HY 50 338 5.61 393 447 399 423 465
TQ 50 316 5.16 360 426 345 365 426

Fig. 8. Rainfall distribution regarding: a) Typhoon Bilis 2006; b) PMP_statistical method; c) PMP_moisture maximization method_td_100.
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(Gilleland and Katz, 2016; Scholz and Zhu, 2018). The GOF results are listed in Table 5. The best distribution for each month of each
station was obtained from the smallest GOF result among the aforementioned distributions. Additionally, the lowest ranking score,
which referred to the summary of each distribution’s ranking results regarding each GOF, was represented as the selected distribution
for each month at each station. In summary, the GEV2 (probability-weighted moment estimator) fits BK and TQ; the Normal dis-
tribution performed well at four stations (NS, DH, CH, and HY); Cho Ra station data is represented with the Gumbel distribution.
However, at the Thai Nguyen station, a transition location between delta and mountain region, each month has a specific dis-
tribution. The selected distribution at each station (except TN) and selected distribution of each month at TN station were used to
evaluate the 100-year dew point temperature for moisture maximization. Among the four approaches used to determine tdmax, the
td_100 and td_month produce large PMPs compared to the other two options, i.e., td_15d and td_30d (Table 4). PMP values using the 100-year
dew point option for moisture maximization at the study site are introduced in Fig. 8b) & Fig. 8c).

The distributions of PMPs in the study area based on the two calculation methods have similar overall trends, especially in the
western region including the Tuyen Quang province and CR station in the Bac Kan province. The statistical and moisture max-
imization methods both produced decreased PMPs towards the southwest–northeast direction in the upper part of the study site. In
addition, Fig. 8. a) illustrates the distribution of heavy rain in the study area given the influence of typhoon Bilis (2006), which
resulted in the most extreme 24-hour precipitation (Rmax) at CR, CH, HY, and TQ stations (Section 2.1). Because the Bilis typhoon
had direct impacts on the South China region, at the study site, the rainfall intensity from this typhoon reduced that of the northwest
(CH) to the southeast (TN) regions. However, the PMP magnitudes obtained from two methods show the decrease in distribution
towards the southeast–northwest direction in the lower part of the study area (Thai Nguyen province and the south region of Bac Kan
province). The result, therefore, depicts the great influence of terrain condition and typhoons direction or local atmospheric con-
ditions on the distribution of extreme precipitation.

4.3. Future PMP estimation

Regarding WMO guideline (WMO, 2009a), PMP is defined as “the theoretical maximum precipitation for a given duration under

Table 5
GOF test of the best fit distribution.

Month Best fit distribution (best scored result) Highest-ranked distribution (sum of ranks)

K-S test A-D test RMSE test χ2
test

Bac Kan station (BK)
9 N (0.033) N (0.013) GEV1 (0.974) GEV2 (0.735) GEV1&GEV2 (10)
8 N (0.019) N (0.005) GEV1 (0.962) GEV2 (0.565) LN (10)
7 N (0.019) N (0.004) GEV1 (3.123) G (2.282) GEV2 (8)
6 N (0.057) N (0.017) GEV1 (0.521) GEV1 (0.631) GEV2 (7)
Cho Ra station (CR)
9 GEV1 (0.453) GEV1 (0.520) N (0.06) N (0.008) G (9)
7 GEV2 (0.323) GEV2 (0.487) GEV1 (0.073) N (0.025) G (8)
Ngan Son station (NS)
9 GEV1 (0.453) GEV1 (0.312) N (0.079) N (0.015) G (9)
7 GEV1 (0.146) GEV1 (0.313) G (0.128) G (0.035) N (7)
6 GEV2 (0.765) GEV2 (0.629) G (0.155) G (0.052) N (7)
5 GEV2 (0.453) GEV2 (0.488) G (0.119) G (0.032) N&LN (11)
Dinh Hoa station (DH)
10 G (0.765) GEV1 (0.499) LN (0.126) GEV2 (0.032) N (9)
8 GEV2 (0.765) GEV1 (0.812) LN (0.116) LN (0.027) N (8)
7 GEV2 (0.093) N (0.253) GEV2 (1.926) G (0.273) G&GEV1 (9)
Thai Nguyen station (TN)
9 GEV2 (0.606) GEV2 (0.579) N (0.077) LN (0.013) G (10)
8 GEV1 (0.453) GEV1 (0.466) LN (0.097) GEV1 (0.014) N (9)
7 GEV2 (0.453) GEV2 (0.265) G (0.088) G (0.015) LN (10)
6 GEV1 (0.087) GEV1 (0.094) G (0.19) G (0.074) GEV2 (11)
Chiem Hoa station (CH)
10 G (0.453) G (0.374) LN (0.13) LN (0.037) N (9)
9 GEV2 (0.221) GEV2 (0.243) LN (0.109) GEV2 (0.024) G&N (9)
7 GEV1 (0.323) GEV1 (0.452) LN (0.081) LN (0.013) N&GEV2 (11)
6 G (0.323) G (0.307) N (0.123) N (0.031) GEV1&GEV2 (9)
5 G (0.221) G (0.274) GEV1 (0.2) GEV1 (0.162) N&LN (10)
Ham Yen station (HY)
7 GEV1 (0.606) GEV2 (0.508) LN (0.079) LN (0.012) N (10)
6 GEV2 (0.606) GEV2 (0.4) LN (0.062) LN (0.008) N (10)
5 GEV1 (0.453) GEV2 (0.586) N (0.097) N (0.019) G (8)
Tuyen Quang station (TQ)
7 N (0.221) N (0.133) G (0.341) G (0.224) GEV1&GEV2 (8)
6 N (0.429) N (0.281) G (0.184) G (0.065) GEV1&GEV2 (8)
5 GEV1 (0.61) N (0.502) G (0.199) G (0.079) GEV2 (9)
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modern meteorological conditions … with no allowance made for long-term climatic trends”. However, in Section 1.8, WMO also
points out that in the 21st century it is likely to obtain the increase in the most extreme rainfall events as a result of the overall rise of
moisture availability in a warming climate. Depth-area curves, moisture availability, storm efficiency, storm types, and generalized
rainfall depths are therefore considered important factors in assessing the possible influence of climate change on PMP.

According to two GCM models and an RCM, we computed the average differences between corrected temperature using the
variance scaling method T( )model i

correct
, and observation data (Tobs) within the baseline 1971–2000 using RMSE, as illustrated in Eq.(6).

=
=

RMSE
N

T T1 ( )i
i

N

model i j
correct

obs i j
1

, , , ,
2

(6)

where RMSEi refers to Root Mean Square error of daily temperature in the ith month (°C).Tmodel i j
correct

, , represents the corrected temperature
of the model on the jth day of the ith month (°C).Tobs i j, , illustrates observed temperature on the jth day of the ith month (°C). The average
value of RMSE within 12 months for corrected MIROC 5, MRI, and HaG at eight stations is (3.24–3.47) °C, (3.29–3.54) °C, and
(3.20–3.45) °C, respectively. The projection temperatures in each target year (2050 and 2080) for representative concentration
pathways (RCP4.5 and RCP8.5) corrected by the variance scaling method are illustrated in Fig. 9. Comparing to historical data
(1971–2000), an average monthly temperature at the study site regarding the GCM data is predicted to rise by (0.82–1.38) °C and
(1.16–2.86) °C by the years 2050 and 2080, respectively; RCM data generates an increase of (1.41–1.63) °C in 2050 and (1.96–3.22)
°C in 2080. In addition, HaG model produces higher projected temperatures than those of MIROC 5 in July and August by the year
2050 (1.05 °C) and 2080 (1.72 °C), respectively; similar trends are illustrated in the remaining 10 months.

The series of 24-hour precipitation of above 200mm at the study site illustrates that the temperature varies from 21.5 °C to
28.5 °C, and relative humidity ranges from 85% to 99% (Fig. 4. b). The most extreme rainfall event at CR (506.1mm) occurred at
considerably high RH (98%) and temperature (25.9 °C) when compared to other precipitation events (from 250mm to 400mm). It is
also predicted that there will be a rise in air moisture availability at high temperature, which can lead to a higher probability of more
extreme precipitation events (Fig. 4. b).

In order to evaluate future scenarios of moisture maximization, the possible maximum dew point temperature in the future was
determined based on the rise in air temperature and relative humidity. Future dew point determination can be computed based on
future daily average air temperature and relative humidity (Lee et al., 2016), or scenarios of a future rise in air temperature and sea
surface temperature and maximum relative humidity of 100% (Lee et al., 2017). Despite a fact that the Northern region is located in a
humid subtropical climate, the monsoon system in relation to the variety of topographical relief results in the variation of climate
from place to place. During the rainy season, southwesterly summer monsoon, tropical cyclones from the East Sea and tropical
disturbances are some contributors to copious rains (Nguyen-Le et al., 2014; Do et al., 2016). The Asian summer monsoon performs a
critically important role in precipitation supply and moisture transport from the Indian Ocean to the Indochina peninsula; while the
western Pacific sub-tropical ridge fully dominates, this area often has hot, dry, and sunny weather (Nguyen-Le et al., 2014). It is also
noted that the increase in air temperature itself could lead to a decrease in relative humidity. To evaluate the relationship between
relative humidity and temperature (RH˜t), we applied the binning method with the same-bin width approach. The highest value of RH
within each bin width of 0.1 °C in the (RH˜t) analysis was selected to evaluate the maximum relative humidity (RHmax) at that
temperature bin (Fig. 10. a)). Regarding Fig. 10. a), the RHmax at eight stations experienced declining trends associated with the rise
in temperature at a threshold range of 23–26 °C– a peak temperature in scaling analysis of extreme precipitation. Therefore, in this
paper, a larger value of RHmax at higher temperature was selected as an upper boundary of RH at that temperature (points in Fig. 10.
b)). The impact of station elevation on the (RHmax˜t) is also indicated in Fig. 10. b). The upper boundary of (RHmax ˜t) is therefore
divided into three main types based on station elevations (z): i) z< 100m (TN, HY, TQ, CH), ii) 100m≤ z<150m (DH, BK), and
iii) z≥150m (CR, NS). For the relative humidity future scenario, the possible value of RH is determined based on projected tem-
perature and upper boundary RHmax (RHmax˜t) regarding the three main above elevation classes.

RCP scenarios are described in Fig. 11. There is a rise in projected temperature regarding two GCMs and one RCM for two RCPs at
the study site. In addition to the critical condition of relative humidity at high temperature (RHmax˜t), PMP would, therefore,
increase in the future.

5. Discussion

5.1. Precipitation and temperature scaling analysis

The peak structure of scaling analysis in the study area (21°–22 °N) is suitable for the condition of mid-latitude regions (from
20°–55° S and N) (Utsumi et al., 2011). The differences between R51 and R1 lines can show the role of extreme events in a dataset. The
extreme precipitation analysis depends on the rainfall threshold because small intensities of precipitation strongly affect the per-
centile computation. As illustrated in Figs. 6 and 7, the P99.9_R51, which is not influenced by the small magnitude of precipitation,
presents greater values of extreme events than the P99.9_R1 does. It is also noted that seasonal selection may affect the scaling trend. At
this study site, heavy rain events are often associated with the occurrences of tropical typhoons and storms during the rainy season
from May to October (MO), though downpour sometimes occurs in April due to troughs. According to P99.9_R1 analysis (Fig. 6), a
temperature of 18.6 °C experiences the second hump in the April to October (AO) dataset; a slightly stable trend is illustrated within a
temperature range of 17.6–19.6 °C in the MO dataset. When excluding April data, P99.9_R1_MO (from May to October) is lower than
P99.9_R1_AO (from April to October) at the temperature below 19.5 °C. In both cases, 19.5 °C can be considered a transition temperature
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when it provides a starting point for the second rise of the trend lines. Comparatively similar tendencies are seen at higher tem-
peratures at the two datasets: including and excluding April.

For further evaluation of scaling analysis, we also set up the relationship between average 24-hour temperature and heavy
precipitation (R10) and very heavy precipitation (R20) (WMO, 2009b). With regards to the 99.9th percentile (P99.9) of selected events
(R1, R10, R20, and R51), when the rainfall thresholds increase from 1mm (R1) to 51mm (R51) peak temperature at each station is
stable at 23.5–25.6 °C, except for BK and TQ stations. There was a rise by 2 °C in peak temperature at BK (23.5–25.5 °C) and TQ
(24.5–26.5 °C) (Fig. 7). Interestingly, with respect to the 50th percentile determination for four options of rainfall thresholds (R1, R10,
R20, and R51), when the magnitudes rise from R1 to R51, peak temperatures decline by 1 °C at three stations in the mountainous region
(NS, CR, and BK) and at TN station, and 2 °C at two midland stations (CH and HY). A stable temperature of 24.6 °C is seen at TQ; DH is
the only station that experiences an increase of 0.9 °C (24.6–25.5 °C). In addition, the scaling rates of 10% per degree Celsius for
P50_R20 and P50_R10 are shown at two stations, namely CR and CH, while the six remaining stations experienced a rate of from 15 to
20% per degree Celsius. According to Fig. 7, the 50th percentile rainfall temperature scale values are lower than the 99.9th percentile
scaling values. The rise of scaling analysis associated with the rise of percentile may reveal that the temperature sensitivity for more
extreme precipitation (99.9th percentile of 24-hour rainfall) is higher than that for average extreme rainfall events (50th percentile of
24-hour rainfall). It also implies that fully saturated conditions are likely to be present at more extreme precipitation events
(Lenderink et al., 2010; Herath et al., 2018).

Fig. 9. Monthly temperature: Points refer to historical output (1971–2000) from MIROC5 (MIR), MRI-CGCM3 (MRI), and HadGEM3-RA (HaG).
Projected monthly temperature after correction by variance scaling method in RCP4.5_2050 and RCP8.5_2080 are represented in dash lines and dot
lines, respectively; monthly observation temperature is shown in black solid line.

Fig. 10. Characteristic of Relative Humidity a) Maximum of average 24-hour relative humidity (RHmax) within each temperature bin width at each
station; b) Points illustrate observed RHmax at high temperatures at each station, lines represent upper boundary of RHmax at the group of stations
with respect to elevations.

Fig. 11. PMP calculation with respect to historical data as well as GCM_RCP and RCM_RCP approaches.
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In addition, we also evaluated the relationship between the logarithm of 24-hour precipitation (log(R)) and temperature (t) using
linear regression in regard to the 99.9th (P99.9) and 50th (P50) percentiles of rainfall events (R1, R10, R20, and R51). In general, the
P99.9_R51 has peak slope values (from 0.038 (TQ) to 0.218 (DH)) within 24–27 °C; a range of regression slope from 0.059 (CH) to
0.139 (HY) is generated at 22–24 °C relation to P99_R1. With regard to the 50th percentile, when the rainfall thresholds increase from
1mm to 51mm, there is a decrease in the temperature range, which experiences a higher magnitude of linear slopes (Table 6a). For
example, regarding to P50_R1, a maximum slope of 0.193 [(log mm) /°C] is shown at 22–26 °C; P50_R51 has the largest slope of 0.091
[(log mm) /°C] at temperature from 20 to 24 °C. With respect to the 50th percentile at each station, the largest slope values also
decrease when rainfall threshold varies from R1 to R51 (Table 6b).

5.2. PMP and climate change

In general, the PMP computation corresponding to the 100-year maximum td in a storm event month are in good agreement with
PMP_RCP4.5 in 2050 and 2080. Compared to historical data calculations, the projected computations of PMP of GCMs and RCM
provide larger magnitudes of PMPs for RCP8.5, especially in 2080. Such rises occur at DH for RCM in 2050 (24.5%), GCM in 2080
(21.7%), and at NS in 2080 (8.4% for GCM and 7.7% for RCM). In the future climate model approach, regarding stabilization scenario
(RCP4.5), PMP calculations at all stations are relatively stable for the two target years 2050 and 2080. There are moderate differences
between historical data calculations and projected computation of PMP for RCP8.5 scenarios in the two target years, especially in
2080.

6. Conclusion

This study aims to assess the precipitation variation characteristics in northeast Vietnam by identifying the relationship between
extreme 24-hour rainfall and average 24-hour temperature. The study also estimated the 24-hour probable maximum precipitation in
the study area highlighting the possible impacts of warming climate on extreme rain and PMP.

Results from scaling analysis of precipitation and temperature are suitable according to recent analysis (Berg et al., 2009;
Hardwick Jones et al., 2010; Utsumi et al., 2011; Rousseau et al., 2014) such as the CC-like rate at low temperature, super CC-rate at
high temperature, and the peak-like structure at mid-latitudes. It also presents the effect of a time scale as well as the sensitive
behavior of extreme rainfall towards temperatures when compared to the average approach. The relationship between relative
humidity and temperature reflects a similar trend in the scaling analysis (same peak temperature of 25–26 °C).

While the statistical method focuses only on the behavior of extreme rainfall events in historical data, PMP results from the
moisture maximization method, which is based on the relationship with other meteorological parameters such as humidity and
temperature and can be utilized in the further study, especially in the context of a warming climate. With a projected rise in
temperature, especially for RCP8.5, PMP is predicted to increase by the years 2050 and 2080. Additionally, the spatial distribution of

Table 6a
The range of slope between the logarithm of rainfall and average 24-hour temperature using linear regression in regard to temperature ranges for the
99.9th (P99.9) and 50 th (P50) percentiles of rainfall events (R1, R10, R20, and R51). Values in brackets illustrate the lowest and highest magnitudes of
minimum and maximum slope values [(log mm) /°C] within the temperature ranges at 8 stations.

Temperature range (°C)

17.5 ÷ 20 °C 20 ÷ 22 °C 22 ÷ 24 °C 24 ÷ 27 °C

P99.9_R1 [0.086, 0.107] [0.059, 0.138] [0.059, 0.139] [0.037, 0.139]
P99.9_R51 [0.064, 0.064] [0.033, 0.123] [0.033, 0.147] [0.038, 0.218]
P50_R1 [0.024, 0.067] [0.024, 0.175] [0.057, 0.193] [0.088, 0.193]
P50_R10 [0.024, 0.024] [0.003, 0.105] [0.038, 0.105] [0.038, 0.104]
P50_R20 [0.082, 0.082] [0.006, 0.095] [0.026, 0.170] [0.026, 0.039]
P50_R51 [0.025, 0.025] [0.004, 0.091] [0.004, 0.091] [0.007, 0.038]

Table 6b
Maximum values of slope between logarithm of rainfall and average 24-hour temperature using linear regression at each station regard to the 99.9th

(P99.9) and 50th (P50) percentiles of rainfall events (R1, R10, R20, and R51).

Station

BK CR NS DH TN CH HY TQ

P99.9_R1 0.102 0.089 0.086 0.138 0.112 0.121 0.139 0.107
P99.9_R51 0.114 0.060 0.108 0.218 0.084 0.213 0.147 0.077
P50_R1 0.092 0.159 0.175 0.088 0.128 0.109 0.193 0.132
P50_R10 0.062 0.044 0.080 0.072 0.104 0.038 0.105 0.086
P50_R20 0.085 0.026 0.082 0.051 0.133 0.039 0.170 0.095
P50_R51 0.077 0.038 0.025 0.019 0.039 0.052 0.091 0.038
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PMPs based on moisture maximization using 100-year dew point, which refers to the most extreme rainfall events that possibly occur
at a study area, can be used in evaluating rain-induce problems, such as floods or landslide.

Since statistical records are not available for public access, lacking historical data has become one of the biggest difficulties for
researchers in Vietnam. Findings from this paper thus provide as an initial approach in evaluating extreme precipitation in this
northeast region in cases where full meteorological data records arelacking. Nevertheless, there are limitations in this study, such as
the sole application of 24-hour precipitation and air surface temperature to evaluate the CC scaling. Whilst the hypothesis of this
scaling analysis only considers the intensity of rain events as a conditional factor for rainfall occurrence (Hardwick Jones et al.,
2010), other governing factors such as sources of moisture regarding shorter durations like 1 to 6 h should be taken into further
studies.

According to the PMP determination methods, the occurrence of extreme precipitation often depends on many factors, including
moisture availability, wind speed and direction, temperature, and topography condition; the statistical method, which only focuses
on the variation of extreme precipitation, reveals shortcomings. PMPs derived from the Hershfield method tend to vary with changes
in the size of annual extreme precipitation. For example, compared to the outputs resulting from 55-year data (1962–2016), the
application of rain records from 1961 to 2016 at TQ brings about a rise of 1.11 and 0.33mm in the average and standard deviation
values, respectively. The statistical variable Km (frequency factor) declines by 0.13; the PMP also decreases from 363.34mm (55-year
data) to 360.38mm (56-year data). In addition, it is a fact that the spatial distribution of extreme rainfall is strongly affected by the
orographic condition of the basin. However, the terrain features were neglected in the computation of moisture maximization ap-
proach in this paper. The moisture maximization method, which considers significant roles of available moisture in the occurrence of
extreme rainfall, also reveals some uncertainties, such as in the procedure of determining maximum precipitable water (Wmax)
concerning the maximum dewpoint temperature tdmax. In cases retrieving tdmax within a 15-day and 30-day windows regarding the
date of a storm (td_15d and td_30d), the vapor water holding capacity of the atmosphere would decline when the condensation formation
often leads to a decrease in the air temperature. When the maximum dewpoint temperature is selected from the time series of annual
maximum dewpoint (td_100 and td_month) in the month that a storm occurs, it is likely to obtain the series in a period that is warmer than
that during the storm occurrence date. Since the precipitable water tends to rise with air temperature as described in the Clausius-
Clapeyron equation, large maximization ratios would lead to higher PMPs (as discussed in Section 4.2.2). Moreover, the paper
utilized the average dewpoint temperature rather than 12-hour persisting values to represent the storm moisture; it, therefore, would
lead to the uncertainty of exaggeration in PMP values. This article also based on the recommendations of the WMO guideline (WMO,
2017) in applying the 30-year standard normal to assess climatological surface parameters such as air surface temperature. The basic
assumption of stationary climate assumes that the climate is variable; however, the variations’ properties are considered to be
constant with time (WMO, 2009b). This application of a stationary climate would disregard climate change, which can alter the
variability and extremes of weather variables (Nathan et al., 2016). Comparisons with non-stationary analyses of extreme weather
variables are therefore necessary for future researches. Significant errors in the climate models in addition to the downscale method
also would lead to uncertainties in the evaluation of future temperature at the study site. Whilst the PMP determination focused on
the high magnitude of daily projected temperature, the predicted trend of PMPs under the rise of air temperature was evaluated to a
certain extent.
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