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ABSTRACT 

Analysing the response of past ecosystems to paleoclimate variations will help us gauge the 

effects of ongoing and long-term climate change on similar ecosystem in long term. Marine 

sediments provide ideal settings for such studies as they form an archive of changing benthic 

and pelagic ecosystem in the form of a deposited biomass. Traditional approaches employed 

in paleoecological studies rely heavily on the ability of plankton to form microsopic or 

chemical fossils (i.e. biomarkers). However, most plankton fail to produce or preserve any 

diagnostic features and/or molecules upon burial and hence provide incomplete picture of 

the past. Therefore, a more reliable method is required to include the majority of planktonic 

and benthic taxa in paleoenvironmental studies, and to elucidate a more complete picture of 

climate-driven paleoecological changes. DNA has been shown to be well-preserved in marine 

and lake sediments covering at least the last glacial interglacial cycle, and can be analysed in 

correlation with geochemical proxies to reveal the species-specific ecosystem responses to 

past climate. This emerging field of analysing sedimentary ancient DNA is called “sedimentary 

paleogenomics” and was employed in this thesis to investigate paleo-ecology-climate 

dynamics in three different oceanic settings. 

In chapter 2, these techniques were employed to investigate how past protist communities 

responded to alternating strong and weak oxygen minimum zones (OMZs) that occurred in 

the north-eastern (NE) Arabian Sea during last glacial interglacial cycle. Protists form the base 

of marine food chain and any change in protist community reflects itself in higher trophic 

levels. The NE Arabian Sea currently harbours the most extensive oxygen minimum zone and 

how oxygen stress affects the protist community is known from few modelling experiments. 

However, the long-term effects of oxygen stress on pelagic as well as benthic protist 

communities is not known. Prior geochemical proxy records revealed that the NE Arabian sea 

experienced alternate strengthening and weakening of the OMZ in response to north Atlantic 

climate oscillations known as Dansgaard–Oeschger (D/O) events and varying monsoon 

intensity during the last glacial-interglacial cycle. 18S rDNA sequencing of the protistal DNA 

isolated from sediment intervals spanning last 43 kyrs revealed that strong OMZ conditions 

shaped past protist communities by creating isolated habitats for those capable of sustaining 

oxygen depletion either by adapting a parasitic life cycle or by establishing mutualistic 

connections with others or by forming cysts. 

In chapter 3, a metagenomic approach was used to investigate if sedimentary microbial 

communities reflect the changes in paleodepositional conditions that occurred during known 
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climate stages and their transitions since the deglacial in the anoxic Black Sea. The Black Sea 

functioned as lake during last glacial lowstands and was reconnected to the Mediterranean 

Sea ~9.0 ka BP as a result of post-glacial sea level rise. Parallel analysis of geochemical proxies 

revealed the hydrological changes associated with known dry (younger-dryas, preboreal, 

subboreal) and wet (AllerØd, Holocene climate optimum, and Subatlantic) climate stages. 

Previous ancient DNA profiling revealed significant shifts in planktonic eukaryotic 

communities (e.g. photosynthetic plankton and zooplankton) with these paleoclimate stages 

and their transitions. Here, I investigated the downcore distribution of sedimentary bacteria 

in the Black Sea in the context of paleoenvironmental proxies. The metagenomic survey 

revealed that taxonomic as well as functional diversity of sedimentary microbiome changed 

in response to paleo-environmental changes associated with climate transitions in the Black 

Sea. Presumably active obligate anaerobes responded to the establishment of modern 

environmental conditions. In contrast, obligate aerobes, likely to be seeded from the past 

water column, showed a more direct response to paleo-depositional changes. 

Chapter 4 describes the use of 16S rDNA survey to analyse how sedimentary archaea reflect 

the changes in paleodepositional environment that occurred due to drastic variations in sea 

level and salinity during the last and the previous glacial-interglacial cycles in the Red Sea. 

Sea level lowstands and hypersaline conditions in the Red Sea occurred during the last and 

penultimate glacial maximum while sea level highstands and modern-day salinity occurred 

during the Holocene and the Eemian (i.e., the previous interglacial). These drastic changes 

were expected to have had a selective effect on the distribution of pelagic and/or benthic 

archaeal communities in the Red Sea. I used 16S rDNA sequencing to analyse how these 

variations were mirrored in the sub-seafloor archaeal composition. Sedimentary archaeal 

16S profiling revealed a strong significant response of subseafloor archaeal communities to 

changes in paleodepositional conditions associated with marine isotope stages and their 

transitions and only a moderately significant response to changes in sediment lithology. 

Along with an indigenous archaeal community, most likely actively involved in methane 

cycling and biodegradation of organic matter, the Red Sea sediments contained preserved 

DNA from taxa that were seeded from the past overlying water column and also of past 

terrestrial origin.  

These results demonstrate the importance of the ancient DNA approach in climate-driven 

paleoenvironmental reconstructions. Furthermore, the data generated through this study 

will be an invaluable asset to develop models for prediction of future climate-ecosystem 

dynamics. 
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INTRODUCTION 

1.1 PALEOCLIMATE AND PALEOECOLOGY 

A great majority of studies have concentrated on investigating the effects of climate change 

on the distribution, diversity, and abundance of different species. Due to spatial as well 

temporal overlap between species, such perturbations are spread and augmented 

throughout the food web (Walther, Post et al. 2002, Parmesan 2006, Walther 2010, Rammig 

and Mahecha 2015). Yet, long term effects of climate change on current ecosystem are not 

known. Understanding how past ecosystem responded to long-term paleoclimate variability 

will help to predict these effects in the near future in the context of ongoing climate change. 

Paleoecology applies geological and biological data to investigate the past occurrence, 

distribution, and abundance of different ecological units (species, populations, and 

communities) on a variety of timescales. Precisely dated marine settings provide ideal 

platform for palaeoecological studies since, upon death a fraction of pelagic as well as 

benthic biomass is buried in the underlying sediments. Therefore, marine sediments provide 

an archive of the relics from the past ecosystem as well as climatic or environmental 

conditions that prevailed at the time of deposition. Traditionally, fossil records of marine 

planktonic ecosystems have mainly been reconstructed through the microsocopic analysis of 

microfossils (micropalaeontology) or through lipid biomarkers and their isotopic signatures 

(organic and isotope geochemistry).  
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1.1.1 Micropaleontology 

Analysis of microfossils of pelagic and benthic taxa is the traditional approach employed to 

reconstruct the response of past aquatic ecosystems to paleoenvironmental conditions. For 

example, foraminiferal microfossils are being widely used as a proxy for variations in paleo-

oceanographic conditions. Past sea surface temperatures can be inferred from the oxygen 

isotopic composition of the planktonic foraminifera Orbulina universa and Globigerina 

bulloides (Bemis, Spero et al. 1998). Sea surface paleotemperatures throughout the 

Pleistocene (27–0 Ma) have been reconstructed using the the combined analysis of the 

oxygen isotopic composition and the Mg/Ca ratio  of foraminiferal fossils of Cibicidoides 

(Billups and Schrag 2002). Mg/Ca paleothermometry on multiple foraminiferal species was 

used to reconstruct deep-sea temperatures and global ice volumes during the Cenozoic (50 

ma) (Lear, Elderfield et al. 2000). A similar multispecies approach was also applied to 

reconstruct the sea surface temperatures during Last Glacial Maximum (LGM) in the North 

Atlantic Ocean (Elderfield and Ganssen 2000) and during late Oligocene warming event in the 

southern North Sea (De Man and Van Simaeys 2004). In addition, roughly 20% of known 

dinoflagellates also produce preservable calcareous or organic-walled hypnozygotic resting 

cysts (dinocysts) (William 1986). These cysts are usually associated with sexual reproduction 

of dinoflagellates and their formation is influenced by key surface water parameters such as 

seasonal pelagic nutrient depletion (Taylor 1987). Therefore, dinocycst fossils have been 

used to reconstruct Sea-surface productivity, temperature, salinity, stratification and paleo-

oxygenation in global oceans during the Paleogene have been reconstructed using dinocyst 

fossils (Sluijs, Pross et al. 2005). Furthermore, dinocyst assemblages of Thalassiphora 

pelagica have been employed as oxygenation proxy to reconstruct paleo-oxygenation status 

of the Mainz Embayment during Tertiary period (Pross 2001). In addition, a complex fossil 

dinocyst assemblage was used to reconstruct Holocene oxygenation conditions in the 

Madeira Abyssal Plain (Zonneveld, Versteegh et al. 1997). Furthermore, sedimentary 

siliceous diatom frustules are frequently being used to infer past sea surface salinities 

(Sancetta and Silvestri 1986, Bond, Heinrich et al. 1992, Jiang, Seidenkrantz et al. 2002, Yun, 

Lee et al. 2017). However, the paleontological approach is biased towards the identification 

and quantification of only fossilizing species whereas the majority of the marine plankton are 

soft bodied and hence don’t preserve microscopic diagnostic features upon burial. 

Furthermore, a variety of factors alter the chemical composition of fossils after deposition 

such as calcite dissolution, which affects the Mg/Ca ratios. The Mg-rich carbonate phase is 

more soluble than pure calcite and thus foraminiferal shells that are subject to dissolution 
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will appear to be depleted in Mg content (Brown and Elderfield 1996). Two or more different 

species can produce almost identical fossils and can be indistinguishable from one another. 

For example, fossilized marine resting eggs have been used for paleontological analysis, but 

many species produce similar looking resting stages (Marcus 1996). Hence even though 

elemental compositions in fossils can be studied to investigate the paleo-environmental 

conditions, they fail to help in paleoecological reconstruction. 

1.1.2 Organic and isotopic geochemistry 

Biomarkers are “molecular fossils” preserved in sediments or petroleum which originate 

from biolipids and pigments of once living organisms (Johns 1986, Simoneit 2004). The vast 

majority of biomass is generated by algae, cyanobacteria and terrestrial and aquatic plants 

via oxygenic photosynthesis. This biomass is deposited under various environments yielding 

different sedimentary rock types. After deposition biomass undergoes variety of different 

degradation and transformation processes such as eogenesis, diagenesis, catagenesis, and 

metagenesis, depending upon the paleodepositional conditions and type of organic matter. 

Different biolipids and pigments originating from variety of organisms, lose their functional 

groups and can become saturated during such processes, but still preserve the basic carbon 

skeleton and hence can be identified using traditional organic geochemical techniques like 

gas chromatography-mass spectrometry (GC-MS). These biomarkers can encode information 

about ancient biodiversity, food chain associations and environmental conditions. 

Biomarkers can either be species specific (e.g. botrycoccane is biomarker for freshwater alga 

Botryococcus braunii), group specific (e.g. isorenieratane as biomarkers green sulfur bacteria) 

(Summons and Powell 1986; Grice et al. 1996) or can be shared amongst a variety of different 

organisms (e.g. cholestane is a biomarker found in a wide range of animals and is derived 

from the diagenesis of cholesterol) (Volkman 1986). The identification and quantification of 

biomarkers in geological samples is of great significance for the reconstruction of recent and 

ancient environments since the biomarker composition may reflect the ecological 

communities and organic matter sources in the depositional environment e.g. specific 

maleimides (methyl iso-butyl maleimide) as molecular indicators of anoxygenic 

photosynthesis in the ancient water column (Grice et al. 1996; Grice et al. 2005; 

gammacerane as an indicator of water column stratification (Damsté, Kenig et al. 1995); 

diagenetic products of aromatic carotenoids of purple and/or green sulfur bacteria as an 

indicator of  permanently stratified waters and the development of photic zone euxinia 

(Summons and Powell 1986, Brocks, Love et al. 2005, Grice, Cao et al. 2005). Furthermore, 

isotopic composition of certain biomarkers if analysed can be used as paleo-environmental 
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proxy (Hayes, Freeman and Popp 1990). For example, Long-chain (C37-C39) unsaturated 

methyl and ethyl ketones (alkenones) are produced by Prymnesiophytic algae (Marlowe, 

Green et al. 1984). Variations in Deuterium to Hydrogen (D/H) ratio of these alkenones, 

known as δD index, reflect the changes in the paleohydrological conditions of the source 

water where these alkenones were biosynthesized (Van der Meer et al., 2008). In addition, 

the relative proportion of di-, tri-, and tetra- unsaturated C37 alkenones (UK
37 index) produced 

by these algae depends on the growth temperature and this relationship can be employed in 

reconstructing past sea surface temperatures from alkenones preserved in marine sediment 

cores (Brassell 1993).  

A detailed assessment of biomarkers and their elemental compositions assists in 

paleoecological as well as paleoclimate reconstructions especially in the absence of 

microfossils. However, the majority of plankton don’t produce species specific biolipids and 

hence escape paleo-ecological analysis. Furthermore, the same biomarker can be produced 

by a variety of unrelated groups. For example, dinosterane (the diagenic product of 

dinosterol) is generally used as an indicator for the presence of dinoflagellates, but some 

diatoms can also produce this biomarker, which adds to the ambiguity of its source (Volkman 

et.al. 1993).  

1.2 NEW APPROACH: ANCIENT DNA STRATIGRAPHY 

Since most species lack the capacity to fossilize or to produce specific biomarkers, neither 

approaches can provide a holistic overview of past ecosystems. Therefore, paleontological 

and biomarker-independent methods are required to include the majority of planktonic and 

benthic taxa in paleoecological studies to refine climate-driven paleoenvironmental 

reconstructions. Fortunately, the analysis of genetic signatures preserved in geological 

samples, defined as the paleome (Inagaki, Okada et al. 2005), are since recently increasingly 

being included in paleoenvironmental studies. Fully hydrated DNA spontaneously decays 

over hundreds of years, mainly through hydrolysis and oxidation (Lindahl 1993, Hofreiter, 

Serre et al. 2001). However, low temperatures, high ionic strength, and anoxic conditions in 

sediments can increase the half-life of intact DNA by orders of magnitude (Poinar, Hoss et al. 

1996, Willerslev, Hansen et al. 2004). In addition, adsorption of DNA to minerals and organic 

particles in the sediments increases the preservation potential of the extracellular DNA pool 

(Coolen and Overmann 2007). Increased longevity of DNA is exemplified by studies which 

involved analysis of ancient DNA from 560-780 kyrs old horse bone preserved in permafrost 

(Orlando, Ginolhac et al. 2013), mitochondrial DNA from 300 kyr old fossils of now extinct 
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mammal Ursus deningeri (Dabney, Knapp et al. 2013), and up to 1.4 Ma-old  chloroplast and 

diatom DNA from anoxic marine sediments (Kirkpatrick, Walsh et al. 2016).  

Analysis of ancient DNA can reveal genus specific information on the diversity and relative 

abundance of past biota. For example, the analysis of ancient copepod DNA from Antarctic 

lake sediments revealed the presence of a different species during early-mid Holocene that 

is no longer present in the isolated lakes today (Bissett, Gibson et al. 2005). Moreover, 

ancient DNA revealed a shift towards an increase in sea ice dinoflagellates (Polarella glacialis) 

during the late Holocene In Antarctic Ellis Fjord (Vestfold Hills), which could not be identified 

through traditional methods since their small cysts were not preserved and Polarella is not a 

source of the traditional lipid biomarker dinosterol (Boere, Abbas et al. 2009). Another 

example includes the analysis of sedimentary planktonic DNA that revealed shifts in 

planktonic community in response to paleoclimate variations that occurred during the 

Holocene in the Black Sea including the marine reconnection and establishment of the 

modern day salinity (Coolen, Orsi et al. 2013).  

This approach is known as sedimentary paleogenomics and involves extraction and 

purification of ancient DNA inside a clean lab facility, followed by library preparations for 

subsequent Next Generation Sequencing (NGS). NGS allows sequencing of up to 1 billion of 

small fragments of DNA in parallel. Bioinformatics analyses are used to piece together these 

fragments by mapping the individual reads to short sequences or full genomes in reference 

databases and hence to reveal the species-specific abundance. Two different types of library 

preparations are generally used for paleogenomic surveys: 

1. Target Amplicon sequencing 

2. Shotgun Metagenomics 

1.2.1 Target amplicon sequencing 

Amplicon sequencing refers to ultra-deep sequencing of PCR amplified barcoding genes for 

analysing taxonomic diversity. In this approach, the targeted gene is first amplified using 

selective primers through real time-polymerase chain reaction (RT-PCR), which is followed 

by attaching multiplexing identifiers (MIDs) or barcodes to the amplified gene (amplicon) via 

another round of PCR. These barcoded amplicons are then sequenced via next generation 

sequencing and thus obtained sequences are aligned with known reference sequence via 

alignment tools such as Basic Local Alignment Search Tool (BLAST). This approach can be used 

to analyse taxonomic variation at each level of hierarchy- from strain to phyla. For example, 

Cytochrome Oxidase subunit I (COI) gene of host Emiliania huxleyi and Major Capsid Protein 
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(MCP) gene of Coccolithovirus were used to track the strain level variations of this host-virus 

system in the Black Sea during last 7000 years (Coolen 2011). In contrast, 18S rDNA and 16S 

rDNA sequencing are used to analyse the taxonomic variation in entire eukaryotic vs 

prokaryotic communitues (Coolen, Orsi et al. 2013, Orsi, Coolen et al. 2017). 18S rRNA is the 

structural component of the small eukaryotic ribosomal subunit found in all eukaryotes and 

is transcribed from genomic 18S rDNA. Evolutionarily 18S rDNA gene is highly conserved 

compared to other genes in eukaryotes and hypervariable regions V1-V3 and the short 130 

base pair long V9 are generally used for eukaryotic taxonomic surveys (Fig 1.1). Most 

recently, sedimentary 18S-V9profiling was used to reconstruct multidecadal scale changes in 

the diversity and relative abundance of past planktonic communities in the Black Sea as a 

result of paleoenvironmental changes since the deglacial (Coolen et al. 2013).  

 

                                              Figure 1.1 16S and 18S rDNA survey  
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Bacteria and archaea contain ribosomes with 16S rRNA and genomic 16S rDNA profiling yields 

prokaryotic taxonomic distribution and abundance in environmental samples. Hypervariable 

regions V6 or V4 of the 16S rDNA are most frequently being used for bacterial and archaeal 

species level taxonomic diversity (Fig 1.1). For example, combined lipid and 16S rDNA 

stratigraphy of up to 10,400-yr-old sediments from Ace lake, Antarctica revealed a clear shift 

in the species composition of archaea and aerobic methanotrophic bacteria after freshwater 

lake’s transformation to open marine system at 9.4 ka BP (Coolen, Hopmans et al. 2004). 

Recent paired analyses of 16S rDNA surveys with paleoceanographic proxies revealed that 

paleodepositional selection plays a role in shaping the distribution and taxonomic 

composition of subsurface microbial communities. For example, it was observed that sub-

seafloor bacterial community compositions reflect the alternating strong and weak Oxygen 

Minimum Zones (OMZ) that occurred in the last glacial-interglacial cycle in the NE Arabian 

Sea sediments (Orsi et al., 2017).  

1.2.2 Shotgun metagenomics 

The taxonomic relationship with cultivated closest relatives based on amplicon sequencing 

of structural genes only provides indirect information about the potential functioning of the 

source organisms. This problem can be overcome by sequencing of functional metagenomes 

from complex communities in environmental samples, which is also referred to as 

environmental genomics or community genomics (Song, Jarvie et al. 2013).  

 

Figure 1.2 Metagenomics (modified from environmental genomics, ENVGEN at KTH. Source: 

https://envgen.github.io/metagenomics.html) 

https://envgen.github.io/metagenomics.html
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The sequencing analysis of functional genes provides information on metabolic pathways as 

well as taxonomic information of the source organisms. The experimental approach for 

shotgun metagenomics involves the extraction of total genomic DNA from environment 

samples followed by fragmentation, library preparation, and subsequent NGS (Fig. 1.2). 

Sequences are then processed using bioinformatic pipelines such as MGRAST to 

subsequently produce taxonomy x samples and function x samples abundance matrices. 

These matrices form the basis for subsequent biostatistical and ordination analyses in, for 

example, the R environment (https://www.r-project.org/). A highly resolved metagenomics 

survey recently revealed that in paleodepositionally selected subseafloor microbial 

communities, genomic potential for denitrification correlated with palaeo-OMZ proxies, 

irrespective of sediment depth and availability of nitrate and nitrite (Orsi, Coolen et al. 2017). 

Furthermore, metagenomes suggested the fermentation pathway as major subsistence 

mechanism for these communities (Orsi, Coolen et al. 2017) 

1.3 GEOLOGICAL SETTINGS 

Sediment samples analysed in this study came from three different marine settings. 

1. The north-eastern (NE) Arabian Sea 

2. The Black Sea 

3. The Red Sea 

1.3.1 The north-eastern (NE) Arabian Sea 

The Arabian Sea is the northernmost portion of the Indian Ocean bound on the north by 

Pakistan and Iran, on the west by the Gulf of Aden, Guardafui Channel and the Arabian 

Peninsula, and on the east by India. The northeast part of the Arabian Sea lies between south 

Pakistan and north-west India and harbors the Indus river delta. The physical effects of these 

adjacent land masses are expressed by the prevailing monsoon winds which reverse their 

directions seasonally, thereby causing drastic changes in the surface currents. The northeast 

monsoonal winds associated with NE monsoon develop during late October and continue 

through early March, gradually becoming more intermittent. Later in the year, typically in 

April, intermittent southwest monsoonal winds start to develop associated with the SW 

Monsoon and are at their maximum intensity from mid/late May through early October. 

Coastal and open ocean upwelling cells off Oman during SW monsoon increases the nutrient 

concentration in surface waters, which increases the surface water productivity, while sea-

surface cooling leads to convection processes and injection of nutrients into the subsurface 

waters, and promotes high biological productivity during NE monsoon (Madhupratap, Kumar 
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et al. 1996). High eolian and fluvial input from the surrounding continents further enrich the 

subsurface waters of NE Arabian Sea and make it one of the most productive oceanic areas 

in the world characterized by phytoplankton blooms (Banse 1987). Oxygen is consumed in 

the process of biodegradation of this sinking biomass, which leads to the rise of oxygen 

starved regions at mid-water depth, known as Oxygen Minimum Zones (OMZ) (Helm, Bindoff 

and Church 2011; Keeling, Kortzinger and Gruber 2010; Wright, Konwar and Hallam 2012). 

Thermal stratification of the water column further intensifies OMZ. NE Arabian Sea harbours 

one of the most pronounced and intense OMZs (Naqvi 1987).   

 

Figure 1.3 Sketch of the bathymetry and monsoonal wind patterns of the Arabian Sea 

modified after (Ansari and Vink, 2007). Inset shows the position of core 11C off the Indus 

Delta and in relation to the Indus Canyon and OMZ marked in light grey. 

Today, an expanded, persistent OMZ can be observed in the entire northern Arabian Sea at 

intermediate water depths. In the NE Arabian Sea, a marked OMZ impinges the continental 

slope near the Indus canyon between 250 and 1000 m water depth. The intensity of the OMZ 
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conditions in the Arabian Sea is mainly controlled by surface-water productivity, which in 

turn, is influenced by monsoonal climate variations and respond to the intensity of Northern 

Hemisphere summer insolation (Altabet, Francois et al. 1995, Reichart, Lourens et al. 1998). 

The sediment record of the Arabian Sea provides a long-term time-series of past changes in 

OMZ expansion as a result of natural climate variability (Vonrad, Schulz et al. 1995, Schulz, 

Von Rad et al. 1996, Schulz, von Rad et al. 1998, von Rad, Schulz et al. 1999, Schulte and 

Muller 2001, Altabet, Higginson et al. 2002, Schulz, von Rad et al. 2002). For example, 

geochemical, sedimentological, and (micro)paleontological analyses using sediment cores 

from the classical continental slope coring location NW of the Indus Canyon, have implied 

strong SW-monsoon-controlled biological productivity, enhanced organic matter 

preservation, and upwelling conditions during the last 7,000 years. Stable OMZ conditions, 

reflected by laminated sediments also prevailed during warm interstadial Preboreal (9-10.3 

ka BP) and Bølling/Allerød (B/A - ~13-14.5 ka BP) events, as well as during peak glacial times 

(17-22.5 ka cal BP) (von Rad et al, 1999). In contrast, the occurrence of bioturbated organic 

matter poor and carbonate-rich intervals representing the early Holocene (~7 to 10.5 ka), the 

cold Younger Dryas (YD) stadial (~11.7–13 ka), Heinrich events 1 (H1; 15-17 ka), and H2 (22.5-

25 ka) suggests oxygen-rich bottom waters, extremely low organic matter (OM) 

accumulation rates, a high-diversity benthic fauna, and therefore lowered surface-water 

productivity. Effects of the variable intensity of OMZ on the pelagic and benthic ecosystem is 

mostly available through recent modelling experiments (Blackford and Burkill 2002) and long-

term effects of OMZ variability on the past marine ecosystems are largely unknown.  

1.3.2 The Black Sea 

The Black Sea is an inland marine basin located north of Turkey. It is connected with the 

Mediterranean Sea by the Bosporus strait, the Sea of Marmara, and the Dardanelles. It is 

about 900 km long and 300 km wide with a 460 000 km2 surface area and 534000 km3 volume 

(Gross 1974). Tributary rivers such as Danube, Dnieper, Southern Bug, Dniester, Don, and the 

Rioni dilute salinity of surface waters of Black Sea to 17 ‰ which leads to low-salinity surface 

water export toward the Mediterranean (Aegean) through the narrow and shallow Straits of 

Bosporus, while denser water with salinity 38 ‰ from the Sea of Marmara flow as an 

undercurrent into the Black Sea. This process leads to the development of a halocline (Pross 

2001). Furthermore, the deep waters do not mix with the upper oxic layers, which makes the 

permanently stratified Black Sea the largest anoxic basin in the world where a ∼30-m-thick 

suboxic zone separates the sulfidic anoxic bottom waters from the upper ∼100 m of 

oxygenated surface waters (Murray and Yakushev 2006). The Black Sea has experienced at 
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least eight marine flooding events in its history of 3 million years. The last marine flooding 

event was of the highest magnitude and occurred during the Pleistocene/Holocene transition 

(Ryan, Major et al. 2003). During the Last Glacial Maximum (LGM/Neoeuxinian epoch) 

minimum water levels were between 20 and 110 m below the present sea level (Kaplin and 

Selivanov 2004) and the Black Sea functioned as a giant lake with air temperatures and sea 

surface salinity (SSS) lower than today (Degens and Ross 1972).   

 

Figure 1.4 Bathymetry of Black Sea (Source: 

http://gotbooks.miracosta.edu/oceans/chapter9.html) 

The debate exists over the recent marine reconnection of the Black Sea and two contrasting 

scenarios have been put forth to explain that transition from lacustrine to marine 

environment: a “catastrophic” postglacial flooding with Mediterranean waters (Ryan, Major 

et al. 2003, Giosan, Filip et al. 2009) and “progressive” marine reconnection (Ross, Degens et 

al. 1970, Hiscott, Aksu et al. 2007). Another debate exists over the salinity of the lacustrine 

Black Sea. The stable oxygen isotope (δ18O) composition and chloride content of sediment 

interstitial water indicate that the Late Glacial Black Sea was a freshwater lake (Soulet, 

Delaygue et al. 2010), while presence of the fossil dinocyst assemblage suggest brackish 

conditions [i.e., a salinity of ∼7–12 parts per thousand (ppt)] (Marret, Mudie et al. 2009). 
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Furthermore, an increase in sea surface salinity during the Bølling-Allerød and Preboreal 

warm oscillations is implied by the oxygen isotopic composition of fossil Dreissena shells 

(Major, Ryan et al. 2002). During Holocene the Black Sea experienced four distinct climate 

stages: Preboreal (9 -11.5 ka BP), Holocene climate optimum (HCO, 5.4 to 9 ka BP), subboreal 

(2.5 to 5.2 ka BP) and subatlantic (2.5 ka BP onwards). The Preboreal was characterised by 

dry climate with sea level lowstands and the deposition of lacustrine sediments. The marine 

reconnection has been previously suggested to have occurred at the end of the Preboreal (~9 

ka BP) (Soulet, Menot et al. 2011), but a recent ancient DNA study of the Black Sea sediments 

showed the arrival of marine fungi and the coccolithophorid haptophyte alga Emiliania 

huxleyi at 9.6 ka BP (Coolen et al. 2013), which is 600 years earlier. Sea surface salinity (SSS) 

continued to increase during the warm mid Holocene climate optimum and stratified and 

anoxic conditions prevailed since the onset of the deposition of the organic-rich laminated 

sapropel 7.2 ka BP. The establishment of modern-day salinity and environmental conditions 

at the start of dry and cooler subboreal (∼5.2 ka BP) is indicated by the arrival of marine 

copepod. Most notably Calanus euxinus (Coolen, Orsi et al. 2013) with a known minimum 

salinity tolerance of ∼17 ppt (Svetlichny, Hubareva et al. 2010). The Black Sea experienced a 

steep increase in the SSS from ∼17 ppt to a maximum of ∼32 ppt during this interval (Coolen, 

Orsi et al. 2013). With the onset of the Subatlantic climate, the Black Sea experienced a 

dramatic freshening throughout the entire basin (van der Meer, Sangiorgi et al. 2008, Giosan, 

Coolen et al. 2012) during which coccolith marls were deposited (Coolen, Orsi et al. 2013). 

Since phytoplankton and zooplankton DNA was preserved in these sediments and microbial 

growth was stalled because the sediments were stored deeply frozen immediately after 

recovery, this Black Sea core was highly suitable to study to what extent the subseafloor 

microbiome also responded to above mentioned well-defined climate stages and their 

transitions. 

1.3.3 The Red Sea 

The Red Sea’s main water body (2000 x 335 km2) (Rasul, Stewart et al. 2015) is bordered by 

six countries – Saudi Arabia and Yemen on the east and Egypt, Sudan, Eritrea and Djibouti on 

the west. In the north, the Sinai Peninsula divides the Red Sea into the Gulf of Aqaba and the 

Gulf of Suez. The part of the Red Sea that forms the central narrow axial trough is over 1,000 

m deep and forms 15% of the total Red Sea, whereas 65 % of the Red Sea is shallow with 

depths less than 100 m. The Red Sea thanks its name to the release of the reddish brown 

pigment phycoerythrin during seasonal crashing of Trichodesmium erythraeum blooms. The 

Red Sea’s salinity is highest 41 ‰ in the northern part and surface water mixing with the Gulf 
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of Aden water reduces the salinity to ~36 ‰ at the southern end. The entire Red Sea basin is 

influenced by an arid climate with annual rainfall of less than 20 mm in the north and 50–100 

mm in the south (Pedgley 1974). Riverine input into the basin is negligible (Morcos 1970) 

with Baraka wadi in Sudan being the only major river delta, which is active only in autumn 

for a few months. Evaporation exceeds precipitation which results in a net annual water 

deficit of about 2m (Morcos 1970). Owing to its shallower depth profiles the Red Sea 

experienced dramatic changes in sea level throughout the global glacial-interglacial cycles 

and particularly in the last 500,000 yrs (Grant, Rohling et al. 2014). The Red Sea level was 80 

to 120 m lower than today during peak glacials and 10 m higher than today interglacials 

(Grant, Rohling et al. 2014). A reduction in exchange flow of the Red Sea through Bab-el-

Mandab led to extremely saline conditions (55‰) (Hemleben, Meischner et al. 1996) during 

times of sea level lowstands in the last and penultimate glacials (Rohling 1994, Fenton, 

Geiselhart et al. 2000). High salinity prevented benthic foraminifera from developing as 

evident from the absence of their microfossils which led to formation of a-planktonic 

intervals observed in the Red Sea sediments (Fenton, Geiselhart et al. 2000). One of the 

questions to be resolved is whether ancient DNA profiling could reveal past planktonic 

communities in this co-called a-planktonic interval. 

 

Figure 1.5 Topography and bathymetric map of the Red Sea. Bathymetric contours are at 

500 m interval (modified after Rasul et.al. 2015). 
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Archaea contribute more than a quarter to the total subseafloor microbiome and yet, their 

diversity, abundance and role of paleodepositional environment in shaping sedimentary 

archaeal community composition is not well understood as compared to sedimentary 

bacteria. The Red Sea core provided an excellent opportunity to analyse if and how salinity 

and water level affected the sedimentary archaeal composition in the Red Sea during key 

climate stages of the last glacial-interglacial cycle (last 139,000 years).  

1.4 AIMS 

Despite significant ongoing research devoted to reconstructing paleoclimate-paleoecology 

dynamics using traditional approaches, the lack of species-specific approach impedes the 

efficacy of this process. The primary aim of this dissertation is to explore the potential of 

preserved sedimentary DNA as a novel proxy for paleoenvironmental change in combination 

with other paleo-oceanographic proxies. The thesis focusses on prokaryotic as well as 

eukaryotic ancient DNA in marine sediments and employs different paleogenomic 

techniques. 

In Chapter 2, paired sedimentary 18S rDNA profiling and geochemical proxy analyses aimed 

to elucidate how long-term shifts in strong vs. weak OMZ conditions affected the distribution 

and relative abundance of protist communities and their survival strategies under low oxygen 

conditions in the Monsoon-impacted NE Arabian Sea during the last glacial-interglacial cycle. 

In Chapter 3 the overarching aim was to study the response of subseafloor microbial 

communities in the Black Sea to Holocene hydrological changes inferred from shotgun 

metagenomics paired with the analysis of paleoceanographic proxies.  

Chapter 4 uses 16S rDNA profiling paired with geochemical proxies to investigate how 

subseafloor archaeal communities were affected by dramatic changes in sea level and salinity 

during glacial lowstands vs. interglacial highstands in the Red Sea spanning the last 139,000 

years. 
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2.1 ABSTRACT 

An extensive oxygen minimum zone (OMZ) occurs in the northeastern (NE) Arabian Sea 

where sedimentary records show evidence of alternating strong and weak OMZs that 

correlate with North Atlantic climate variability during the last glacial-interglacial cycle. OMZs 

are expanding world-wide, but information on long-term OMZ-ecosystem interactions is 

mainly limited to fossilised species, notably foraminifera. This chapter provides a first 

comprehensive ancient sedimentary DNA record of both fossilizing and non-fossilizing 

protists and their response to OMZ variability in the NE Arabian Sea over the last 43 ka. Protist 

communities changed significantly during strong vs. weak OMZ conditions coincident with 

interstadials and stadials respectively. Dinoflagellates were identified as significant indicator 

taxa for strong OMZs during glacial as well as interglacial interstadials, whereas diatoms were 

significant indicators for strong OMZs only during glacial interstadials. The chlorophyte 

Chlorella was found to be the main phototrophic protist in nutrient-depleted surface waters 

during glacial stadials. Notably, strong OMZ conditions shaped past protist communities by 

creating isolated habitats for those capable of sustaining oxygen depletion either by adapting 

a parasitic life cycle (e.g. apicomplexans) or by establishing mutualistic connections with 

others (e.g. radiolarians and mixotrophic dinoflagellates) or by forming cysts (e.g. 

colpodeans). Notably, a long-term increase in eutrophication and a decrease in the 

diatom/dinoflagellate ratio was observed during the late Holocene favoring the pelagic 

component of the marine food web. A similar scenario could be expected in the context of 

predicted worldwide expansion of coastal OMZs associated with global climate change. 

  



25 
 

2.2 INTRODUCTION 

2.2.1 Oxygen minimum zone (OMZ) 

Over geological timescales, recurring changes in the ocean oxygenation have resulted in 

multiple biotic crises with concomitant changes in marine ecosystems and climate balance 

(Wright et al., 2012). Over the last few decades, decline in oxygen concentrations has been 

observed throughout much of the world ocean’s interior and is predicted to continue in the 

context of coastal eutrophication and global warming (Helm et al., 2011; Keeling et al., 2010). 

Upwelling of nutrients promote the formation of plankton blooms. Oxygen consumption 

through bacterial degradation of this sinking biomass and thermal stratification of the water 

column contribute to a decreased oxygen availability leading to the formation and expansion 

of oxygen minimum zones (OMZs) at mid-water depths (~150-1300m) (Schulz et al., 2002). 

Selective pressure under OMZ conditions has been observed in unicellular eukaryotes 

(protists), which are major components of the oceanic food chain and are important 

contributors to and consumers of pelagic productivity (Burkill et al., 1993; Strom and 

Welschmeyer, 1991; Worden et al., 2015). Photosynthetic protists are major primary 

producers inhabiting the photic zone, while bacterivorous and planktivorous heterotrophs 

bridge the prokaryotic component of the food web to higher trophic levels and follow the 

distribution of autotrophic protists. Mixotrophs being capable of autotrophy and 

phagotrophy, have a much wider distribution across the water column (Sherr and Sherr, 

1994) and can be directly exposed to oxygen stress at intermediate depth (Jing et al., 2015). 

Shoaling of the upper boundaries of the OMZs can affect protist habitats and vice versa, 

changes in the distribution of primary producers and consumers can affect the oxygen 

demand and, hence the distribution of OMZs.  

2.2.2 Modern observations: OMZ vs protists 

The north-eastern Arabian Sea experiences semi-annual monsoonal wind reversals 

contributing to two periods of heightened surface productivity: during the southwest (SW) 

monsoon (June–September) and during the northeast (NE) monsoon (November–February) 

(Parab et al., 2006). Strong SW monsoonal winds lead to north-eastward drift of nutrient-rich 

surface waters from Oman to the Pakistan margin causing high primary productivity 

(Andruleit et al., 2000; Schulte and Muller, 2001; Schulz et al., 1996). While during NE 

monsoon, sea surface cooling activates the convection processes causing deep mixing of 

subsurface waters. This process leads to injection of nutrients to surface waters bolstering 

high winter pelagic productivity (Madhupratap et al., 1996). Microscopic cell counts and 
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pigment analysis revealed that during the SW monsoon when nitrate concentrations are 

high, diatoms become dominant along with prymnesiophytes (Parab et al., 2006). By the end 

of the SW monsoon, sinking biomass of decaying diatom blooms provides substrate for 

microbial degradation, which causes rapid oxygen consumption at intermediate depth and 

intensification of the OMZ (Parab et al., 2006; Schulz et al., 2002). During this period, nitrate 

concentrations become undetectable and a shift from diatoms and prymnesiophytes to 

dinoflagellates below the shallow pycnocline is observed (Parab et al., 2006). In the 

oxygenated surface waters, where nitrate is below detection limits, pico-cyanobacterial 

populations then become dominant (Parab et al., 2006). During the NE monsoon, low nitrate 

concentration causes the replacement of a mixed diatom-dinoflagellate population by the 

nitrogen-fixing cyanobacterium Trichodesmium. A combination of low phytoplankton 

biomass and high ammonium concentrations further suggest that active grazers prevent the 

establishment of diatom-dinoflagellate blooms in the eastern Arabian Sea during the NE 

Monsoon. In May, just prior to the start of the SW Monsoon, nutrient enrichment associated 

with the demise and decay of Trichodesmium blooms along with coastal upwelling of nitrates 

stimulate the growth of both diatoms and dinoflagellates (Parab et al., 2006).  

Information on these OMZ-ecosystem interactions in the Arabian Sea and elsewhere is 

mainly based on such recent observations, modelling experiments, and fossilised 

foraminifera (Blackford and Burkill, 2002; Madhupratap et al., 1996; Parab et al., 2006; von 

Rad et al., 1999). A holistic overview of past OMZ-protist interactions is lacking world-wide 

since the majority of the above-mentioned protist taxa do not fossilize. However, even in the 

absence of microfossils, genetic signatures of past planktons were found to be preserved in 

the marine geological records and can be used to reconstruct marine ecosystem changes 

caused by environmental perturbations (Coolen et al., 2013; Inagaki et al., 2005; Lejzerowicz 

et al., 2013)  

2.2.3 Coring location in North-eastern (NE) Arabian Sea  

Records close to the Indus Canyon show that during the last glacial-interglacial cycle the NE 

Arabian Sea witnessed alternate strong and weak OMZs (Banakar et al., 2010; von Rad et al., 

1995), which makes it an ideal location to study long-term protist-OMZ interactions. For this 

study, a highly resolved profiling of sedimentary protist 18S ribosomal RNA genes at 

centennial-scale resolution was used to reconstruct the interplay between past OMZ 

variability and protist community structures over the last glacial-interglacial cycle in the NE-

Arabian Sea. The core used for this study was obtained from the centre of the OMZ on the 
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continental slope, NW of the Indus Canyon (Orsi et al., 2017). Geochemical analysis revealed 

a distinct pattern of laminated, organic carbon-rich intervals comparable to those present in 

previously studied cores, which were obtained in close vicinity and at comparable water 

depths within the OMZ (von Rad et al., 1995).   

Here, integrated analysis of the sedimentary DNA and paleoceanographic proxy data 

revealed unprecedented details about long-term effects of OMZ conditions on protist 

communities. Similar approaches could potentially reveal insights about long-term OMZ-

ecosystem interactions at important OMZ locations other than the Arabian Sea. 

2.3 MATERIALS AND METHODS 

2.3.1 Sample collection and storage  

For this study, a 13-m-long Piston core 11C spanning 43 kyr of deposition was obtained during 

R/V Pelagia cruise 64PE300 from the center of the OMZ (566 m depth) on the continental 

slope NW of the Indus Canyon (23° N; 66° E). Subsamples (214 two-cm-thick intervals) for 

DNA and geochemical analysis were taken aseptically inside the ancient DNA-dedicated clean 

lab at the Woods Hole Oceanographic Institution (WHOI) as described in detail recently (Orsi 

et al., 2017). In that study, the same intervals of this core have been used to reveal to what 

extent the sub-seafloor microbiome was shaped by past OMZ conditions (Orsi et al., 2017). 

2.3.2 Age model  

Radiocarbon dates were obtained for the Holocene interval from mixed planktonic 

foraminifera or monospecific Orbulina universa samples (Orsi et al., 2017). Calibration was 

performed using Calib 7.1 with a reservoir age of 565±35 radiocarbon years (Stuiver and 

Reimer, 1993). For pre-Holocene sediments, the age model is based on correlative tie points 

from XRF-derived Br record in core 64PE300-11C to the high-resolution total organic carbon 

records of nearby core SO90-136KL (Schulz et al., 1998). Linear interpolation was used to 

determine ages for each individual sample. 

2.3.3 Bulk Geochemistry   

The intact archived core sections were scanned for bulk elemental composition using an 

ITRAXTM micro-XRF scanner with a molybdenum x-ray tube with a step-size of 200 µm for an 

exposure time of 10 s-1.  Bromine variability was used as proxy for organic matter (Ziegler et 

al., 2008). Total organic carbon (TOC), δ13C, δ15N, and C/N were analyzed using a Delta Plus 
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stable light isotope mass spectrometer from 214 freeze-dried and carbonate-free sediment 

samples spanning the entire core as described in detail elsewhere (Orsi et al., 2017).  

2.3.4 Sedimentary DNA extraction and analysis   

Inside the ancient DNA-dedicated lab at WHOI, genomic DNA was extracted and purified 

from 5-10 grams of wet weight sediment after Direito et al., 2012; with modifications 

described for this core in detail recently (Orsi et al., 2017). This protocol was repeated 

without the addition of sediment and the resulting extract was used as a control for 

contamination during extraction and purification of the sedimentary DNA. The recovered 

purified sedimentary DNA was quantified fluorometrically using Quant-iT PicoGreen™ double 

stranded DNA (dsDNA) Reagent (Invitrogen) and ~20 nanograms of each extract was used as 

template for PCR amplification of preserved planktonic 18S rRNA genes. The short ~130 bp 

long 18S rDNA-V9 region was amplified using the domain-specific primer combination 1380F 

(5’-CCC TGC CHT TTG TAC ACA C-3’) and 1510R (5’CCT TCY GCA GGT TCA CCT AC-3’) (Amaral-

Zettler et al., 2009). Quantitative PCR (qPCR) was performed using a SYBR®Green I nucleic 

acid stain (Invitrogen) and using a Realplex qPCR system (Eppendorf, Hauppauge, NY). The 

annealing temperature was set to 66 °C and all reactions were stopped in the exponential 

phase after 35-42 cycles.  

To generate template for subsequent Illumina MiSeq sequencing of PCR-amplified 

sedimentary 18S rRNA genes, the same qPCR conditions and region-specific primers were 

used, except for that the primers included the Illumina flowcell adapter sequences as well as 

the pad regions (Caporaso et al., 2012). The reverse primer now also included a unique 12 

base Golay barcode sequence to support pooling of the samples. The quality of the PCR 

products was verified by agarose gel electrophoresis and equimolar amounts of the barcoded 

PCR products were pooled and purified using the AMPure®XP PCR purification kit (Agencourt 

Bioscience Corp., Beverly, MA). Four hundred nanograms of the mixed and purified barcoded 

amplicons were subjected to subsequent Illumina MiSeq sequencing using the facilities of 

the W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at 

Urbana-Champaign, IL, USA. The sequenced 18S libraries resulted in approximately 12 million 

reads. QIIME was used for further processing of rRNA gene sequences (Caporaso et al., 2010). 

Reads were organized into Operational Taxonomic Units (OTUs) after passing quality control 

(95% sequence identity with UCLUST) and assigned to taxonomic groups through BLASTn 

searches against the SILVA database (Pruesse et al., 2007).  OTU tables were rarified in QIIME 

using the single_rarefaction.py command to the sample and singletons as well as non-protist 
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reads were removed. Ecological statistics were calculated in R (https://www.r-project.org) 

using a Bray Curtis distance in the Vegan package (Oksanen, 2011). Analysis of Similarity 

(ANOSIM) was carried out using 999 permutations with a Bray Curtis distance (Clarke, 1993). 

Indicator Species Analysis (ISA) (Dufrene and Legendre, 1997) was performed in the Vegan 

package and significance was tested with a nonparametric procedure involving the Monte-

Carlo permutation procedure with 999 permutations.   

2.4. RESULTS 

2.4.1 Chronology of the core and paleo-environment 

The age model used to establish the timing of depositional and environmental changes is 

based on radiocarbon dating of foraminiferal carbonates and a comparison between XRF-

derived bromine (Br) (Orsi et al., 2017) and TOC content (Fig. 2.1) to highly resolved TOC data 

from well-dated comparable cores from the same location (Schulz et al., 1998). Bromine, a 

biophilic halogen that binds to allochthonous marine organic matter (Ziegler et al., 2008) and 

TOC values correlate significantly (r=0.65 P < 0.01), which suggests a marine origin of the 

majority of organic matter over the last 43 Kyr. This is consistent with invariably low 

contributions of terrigenous OM from the Indus basin (Clift et al., 2010). Bulk sedimentary 

stable N isotope (δ15N) compositions above ~6.5 ‰ are indicative of strong paleo-

denitrification and strong OMZ conditions. Since TOC preservation was enhanced when OMZ 

conditions penetrated the coring location, variations in sedimentary TOC content during 

enhanced preservation likely reflect changes in paleoproductivity. The TOC content 

correlates positively with bulk δ15N values (r = 0.37, P < 0.01) (Orsi et al., 2017). Based on 

δ15N and TOC content three depositional categories throughout the core were observed: 1) 

Sapropelic sediments (TOC>2 wt. %) with δ15N values > 6.5 ‰ indicative of respectively high 

primary productivity and strong OMZ conditions; 2) Non-sapropelic sediments (TOC < 2 wt. 

%) and δ15N values above 6.5 ‰ indicative of reduced primary productivity yet strong OMZ 

conditions; 3) non-sapropelic sediments with δ15N <6.5‰ representing weak or no OMZ 

conditions. Since the surface sediments were likely to be oxygenated during weak OMZ 

conditions, it cannot be concluded whether reduced productivity or low preservation 

contributed to the lower TOC content in category 3 sediments.  

During Oxygen Isotope stage (OIS) 2 and 3, the timing of deposition of Category 1 sapropelic 

sediments is coincident with North Atlantic millennial-scale Dansgaard-Oeschger (D/O) warm 

interstadials (Table 2.1). Category 1 sediments were also deposited during the Bølling/Allerød 

(BA) (~13-14.5 ka BP) and the Holocene (starting at ~ 10 Ka BP), when TOC content reached 
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a maximum of 4 wt%. Category 2 sediments were mainly deposited during the transitions 

between stadials and interstadials, while Category 3 bioturbated sediments coincided with 

the timing of stadials, notably Heinrich (H) events and the Younger Dryas (YD) (~ 11.4-13 ka 

BP) (Table 2.1).  

2.4.2 Past protist diversity 

The sequenced eukaryotic library resulted in 2863 OTUs in 13 protist phyla: Alveolata, 

Amoebozoa, Apuszoa, Centroheliozoa, Chlorophyta, Choanoflagellida, Cryptophyta, 

Euglenozoa, Haptophyta, Jakobida, Rhizaria, Rhodophyta and Stramenopiles. Changes in the 

relative abundance of the most abundant phyla and subgroups were compared with 

paleoenvironmental changes in the NE Arabian Sea during the last glacial interglacial cycle 

(Fig. 2.1 and Table 2.1) 

Rhizaria is a supergroup of pelagic as well as benthic protists and comprise (a) Radiolaria, 

which are particle feeding or predatory zooplankton that can also form symbiotic 

relationships with e.g. dinoflagellates, (b) Cercozoa comprising various amoebae and 

flagellates, and (c) Foraminifera (Cavalier-Smith, 2002). Rhizaria represented 50-100% of the 

protistal reads in the majority of sediments deposited during strong OMZ conditions, notably 

during IS8, 7, 6, 3, 2, B/A, and the Holocene (Fig. 2.1). In contrast, a low relative abundance 

was observed especially during H1, H3, H4 and S11 (Fig. 2.1). Furthermore, a sharp decline in 

Rhizaria reads occurred between 8 to 8.5 kyrs, coinciding with the timing of the 8.2 ka cold 

event (Kobashi et al., 2007). The majority of Rhizaria belonged to the class Polycystinea 

(fossilizing radiolarians with silicate exoskeletons) (Fig. 2.2). Their relative abundance 

gradually increased over the course of the Holocene to reach 100% of Rhizaria reads (Fig. 

2.2). Polycystines showed a sharp decline during H1 and H3. Polycystinea contains two major 

orders: Spumellaria and Nassellaria. Spumellarians were present during all climate stages 

(>25% of total Polycistinea reads) showing a general increasing trend after OIS2 (Fig. 2.3). 

Nassellarians were the most abundant Rhizaria during the LGM and H1 (Fig 2.3). Cercozoa 

were relatively abundant (up to 50% of total rhizarian reads) during late H4, IS6, IS4 and H1 

(Fig. 2.2 and 2.3).  

Alveolata comprised up to 50 to 90% of total reads after the OIS3 to OIS2 transition (Fig 2.1). 

This superphylum consist of protists with flattened vesicles known as alveoli and comprise 

dinoflagellates (Dinophyceae), ciliates (Ciliophora), and obligate parasites (Apicomplexa) 

(Cavalier-Smith, 1991) (Fig. 2.2). Dinoflagellate reads comprised more than 75% of the 

identified Alveolata during OIS2, except for a low relative abundance during H2 and YD-B/A 
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transition. They were furthermore consistently abundant during the Holocene, with the 

exception of a short decline at ~3.5 Ka BP (Fig. 2.2). The dinoflagellates identified in this core 

belonged to four major orders: (1) Blastodiniales, known parasites of zooplanktons (Coats, 

1999), represented 25-65% of dinoflagellate reads during most of OIS2 (Fig. 2.3). (2) 

Mixotrophic Gymnodiniales, which lack an armored exterior, were mostly present during 

interstadials of OIS3 where they represented 90-100% of dinoflagellate reads. (3) Syndiniales, 

known endosymbionts or parasites of other dinoflagellates and zooplankton (Coats, 1999), 

were also found mainly during OIS3 (Fig. 2.3). (4) The less well-described Lophodiniales were 

mostly present during stadials S7, S6 (OIS3) and S3, H2 (OIS2).  

A scattered predominance of ciliate reads was observed during OIS3 while they were 

consistently abundant alveolates during the B/A and YD (Fig. 2.2). They were dominated by 

the class Colpodea and Oligohymenophorea (Fig. 2.3). Colpodea, which are mainly 

freshwater ciliates, represented 80-95% of ciliate reads from H1 to Early Holocene. 

Oligohymenophorea (mostly microphagous ciliates) were the most abundant ciliate reads in 

interstadials like IS8, IS5, IS4, IS2 and Holocene with notable exception of the S6 stadial where 

they represented 90% of the ciliate reads (Fig. 2.3). Apicomplexa were sporadically present 

throughout the record (Fig. 2.2). More specifically, according to the detailed averaged 

dataset, reads related to the fish parasites Coccidia predominated the Apicomplexan reads 

during OIS2 and OIS1 (Fig. 2.3).  

Unicellular Stramenopiles, consisting mainly of photosynthetic diatoms, were relatively 

abundant protists mainly during interstadials in OIS3. They were most consistently present 

in OIS2 sediments (~20% of the total protist reads) and were generally below 5% of total 

protist reads during most of the Holocene (Fig 2.1). However, diatoms showed cyclicity in 

abundance compared to other stramenopiles and represented up to 100% of stramenopile 

reads during interstadials of OIS3 as well as OIS2 and the early Holocene, while their relative 

abundance dropped during all stadials in OIS2 and OIS3 and at ~8.2 ka BP (Fig. 2.2). At the 

genus level, the primarily marine Thalassiosira was the most prominent diatom throughout 

the core, while coastal Skeletonema was the only diatom present during S11 and represented 

up to 80% of diatom reads during S3 (Fig. 2.3). 

Green algae (Chlorophyta) identified in the Arabian Sea sediments comprised the unicellular 

pelagic families Trebouxiophyceae (exclusively the genus Chlorella in current record), 

Prasinophyceae, Chlorophyceae and Mamiellophyceae. Chlorophyta reads dominated the 

OIS 3 reaching up to 50% of total protists with a notable exception of their general absence 
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during long periods of strong denitrification and OMZ conditions such as during IS8 (Fig 2.1). 

Chlorella dominated the green algal population during stadials of OIS3 and H2 when 

denitrification and OMZ conditions were reduced (Fig. 2.2). Chlorella was also dominant 

during IS5 when denitrification was less extensive compared to other interstadials (Fig. 2.2). 

Chlorophyte DNA was no longer abundant after H2 (Fig. 2.1), but a sharp shift in the relative 

abundance towards eutrophic Prasinophyceae as the most abundant chlorophytes was 

observed mainly during interstadials of OIS2 and the Holocene (Figs. 2.2 and 2.3). 

Centroheliozoans (amoeboid protists) were sporadically abundant (up to 50%) in glacial OIS3 

sediments and generally below the detection limit in OIS2 and OIS1 (Fig 2.1). Reads of 

haptophyte algae were sporadically present throughout the core and comprised less than 5% 

of the reads notably during stadials such as H2 (Fig 2.1). Other protist groups (Amoebozoa, 

Apuszoa, Choanoflagellida, Cryptophyta, Euglenozoa, Jakobida and Rhodophyta) (Fig 2.1) 

were sporadically present and when combined, comprised less than 5% of the total protist 

sequences. The analysis below focusses exclusively on the most abundant protist groups that 

were not sporadically present and contributed more than 5% to the total protist reads. 

2.4.3 Correlation between change in paleoenvironment and protist community structure 

To investigate the effect of OMZ strength on protist community compositions, Non-Metric 

Multidimensional Scaling Analysis (NMDS; stress <0.05) was performed. Analysis of similarity 

(ANOSIM) revealed that the microbial communities were significantly different (P=0.001) in 

sediments of the three categories described above (Fig 2.4). In order to investigate which 

taxa were affected by strong vs. weak OMZ conditions and transitions, the indicator species 

analysis (ISA) was performed. 

2.4.3 Indicator species analysis  

ISA identified 52 significant (p<0.05) indicator taxa for category 1. Fig. 2.5 shows the 

specificity (A-value) vs. sensitivity (B-value) of each indicator species. In theory, an A-value of 

1 indicates that the species in question occurs in only one indicator group, while an optimal 

B-value of 1 means that this species occurs in all samples of that category. Alveolata with 24 

OTUs were the most abundant group of indicator species for Category 1. The majority of 

these indicator species were dinoflagellates (13 OTUs), followed by unnamed alveolata (4 

OTUs), marine alveolate group 1 (5 OTUs), and parasitic ciliates (Scuticoliliates, 2 OTUs). 

Syndiniales were among the most closely related dinoflagellates, whereas the majority of the 

indicator dinoflagellates were related to environmental clones. Interestingly, two of the 

unclassified dinoflagellates (OTUs 52191 and 93979) showed 99% sequence similarity to 
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clones isolated from anoxic waters of respectively Cariaco Basin (Genbank accession number 

GU820545.1) (Edgcomb et al., 2011), and the east Pacific rise (KJ761327) (Lie et al., 2014). 

The next important group indicative of this category were Rhizarians (i.e., cercozoans and 

polycystines). Indicator cercozoans belonged to Cercomonadida (2 OTUs: 11339 and 38346), 

Thecofilosea (4 OTUs) Silicofilosea (1 OTU) and un-named cercozoans (2OTUs: Cercozoa 1 

and Cercozoa 2). Polycystinea contained 2 nassellarian members and spumellarian families 

Actinommidae (1 OTU), Ethmosphaeridae (1 OTU), Sphaerozoidae (3 OTUs) and 

Spongodiscidae (1 OTU). Chlorophytes (Prasinophytes) with 4 OTUs were also important 

indicators for category 1 along with unnamed Stramenopiles and one Oomycete OTU.  

Thirty-two indicator species (16 Rhizaria, 12 Alveolata, and 4 Stramenopiles) were identified 

for category 2 (Fig 2.6). Rhizarians belonging to the same polycystine families were found to 

be indicative of both categories 1 and 2. These involve spumellarian families Sphaerozoidae 

(3 OTUs), Actinommidae (1 OTU) and Ethmosphaeridae (1 OTU) plus 1 OTU of the nassellarian 

family Theoperidae. However, members of these families showed a generally stronger 

significance for category 1 (Fig. 2.6). Cercozoans, which were indicative of strong OMZ 

conditions and higher productivity were not indicative of less productive conditions during 

category 2.   

Fewer and different dinoflagellates were found to be indicator species for category 2 (e.g. 

Blastodiniales) than for category 1. Category 2 also differed in the composition of indicator 

ciliates as it contained 4 OTUs of ciliates belonging to the class colpodea as opposed to 

scuticociliates indicative of category 1. Furthermore, apicomplexan parasites were indicators 

of category 2 as well as diatoms (Stramenopiles).  

Only four important indicator species were identified for category 3 “weak OMZ conditions”: 

Chlorophyta (Chlorella), Centroheliozoa, and Rhizaria (Silicofilosea and an unnamed 

rhizarian) (Fig. 2.6). 

2.5 DISCUSSION  

2.5.1 Interplay between past OMZ conditions and phototrophic protists 

In agreement with modern observations of plankton-OMZ interactions in the NE Arabian Sea 

(Parab et al., 2006), the paleogenomics record also revealed an increase in the relative 

abundance of diatoms and mixotrophic dinoflagellates during glacial interstadials when SW 

monsoon and OMZ conditions were strong. In contrast, a sharp decline in the relative 

abundance of diatom reads was observed during stadials including Heinrich events when SW 
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monsoon was weak (Deplazes et al., 2014). The data further showed a decline in the relative 

abundance of diatoms and a predominance of dinoflagellates during the mid to late 

Holocene, which is likely due to deepening of anoxia as this was reported to result in 

dinoflagellates replacing diatoms in the modern-day NE Arabian Sea (Parab et al., 2006). 

Indeed, the Diatom/Dinoflagellate ratio (Dia/Dino index) is being used as a proxy to assess 

the environmental status of oceans (e.g. Wasmund et al., 2017). When nutrients get 

depleted, rapid sinking of diatom blooms reduces the food stock for zooplankton (i.e., a high 

Dia/Dino Index), but avails food to zoobenthos. A high Dia/Dino index is typically considered 

an indicator of good environmental status. In contrast, a low Dia/Dino index is indicative of 

eutrophication since dinoflagellate blooms support pelagic components of the food web (e.g. 

Wasmund et al., 2017). Therefore, the lowering of the Dia/Dino index suggests an increase 

in eutrophication and stratified anoxic conditions during the late Holocene in the NE Arabian 

Sea. Similar long-term trends in eutrophication and a resulting lower Dia/Dino index may 

alter the higher trophic levels of the marine food web in the context of predicted expansion 

of costal OMZs associated with global climate change. 

Data further revealed that Chlorella (Trebouxiophyceae) was an indicator species for weak 

OMZ conditions. Chlorella was relatively abundant in interstadial IS5, but otherwise 

predominated during the frequently occurring stadials of OIS3 and the H2 event in OIS2 (Fig. 

2.2) when SW monsoon was weak and surface waters were likely to be depleted in key 

nutrients like nitrates (Deplazes et al., 2014). This abundance of Chlorella can be explained 

by the fact that under nitrogen stress it can survive by accumulation of fatty acids and 

carbohydrates in the cell membrane (Fan et al., 2014; Paes et al., 2016). Interestingly, 

Centroheliozoans also occurred during this period and were found to be a significant 

indicator species for weak OMZ conditions. Centroheliozoans as mentioned earlier are 

predatory amoeboid protists (Plotnikov and Ermolenko, 2015). However, they are also 

known to harbor endosymbiotic green algae such as Chlorella (Bubeck and Pfitzner, 2005), 

which would explain the co-occurrence of centroheliozoan reads with Chlorella in OIS3, and 

that both taxa were identified as significant indicator species for weak OMZs. Both Chlorella 

and Centroheliozoans were at or below detection limit during IS8 when according to the 

enriched δ15N values, maximum denitrification and OMZ strength occurred, and when 

diatoms were the predominant primary producers instead (Fig. 2.2).  

Chlorophytes as a group were no longer abundant protists after the OIS3-OIS2 transition, but 

Chlorella was succeeded by prasinophytes, which became the most abundant chlorophytes 

during the LGM and the Holocene (Figs. 2.1 and 2.2). Fossil pigments of prasinophytes 
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generally serve as a proxy for past stratified dysoxic to anoxic waters (Roncaglia and Kuijpers, 

2006). In the present sedimentary 18S rDNA survey, prasinophytes were identified as 

important indicator taxa of strong OMZ with higher surface productivity. Deep mixing of 

nutrient-rich subsurface waters during SW monsoon brings nitrate into NE Arabian Sea 

surface waters (Madhupratap et al., 1996), which is required for the proliferation of 

prasinophytes (Prauss, 2007). Strengthening of the SW monsoon throughout and after the 

LGM (Schulz et al., 2002; von Rad et al., 1999) may have triggered the increased relative 

abundance of prasinophytes. In addition, elevated glacial sea surface salinity may have 

hindered prasinophytes from flourishing as they generally prefer brackish waters. An 

increased fluvial input from the Indus River, resulting into a reduced salinity after the LGM 

(Deplazes et al., 2014), may also have contributed to the growth of prasinophytes. 

Prasinophytes were absent or low in relative abundance during the cold stadials and the 8.2 

ka event when weak monsoons resulted in reduced mixing (Singh et al., 2011; von Rad et al., 

1995) and a scarcity of nutrients including nitrate must have prevailed. Chlorella, as a 

potential indicator for nutrient-limited conditions did not return as an abundant chlorophyte 

during the H1 and YD stadials. These events also experienced the continuous presence of 

dinoflagellates, which are significant indicators of strong OMZ conditions, suggesting that 

OMZ conditions were not entirely absent during these events. 

2.5.2 Interplay between past OMZ conditions and non-phototrophic protists 

According to paleogenomics survey presented here, Alveolata (i.e., mixotrophic 

dinoflagellates, ciliates, and apicomplexans) represented a predominant group of protists 

during strong OMZ conditions (Fig 2.1, 2.2 and 2.3). This is in agreement with current 

observations showing that during strong SW monsoons, dinoflagellates replace diatom 

blooms once anoxia starts to develop (Parab et al., 2006). The most abundant dinoflagellates 

were represented by members of the orders Blastodiniales, Gymnodiniales, and Syndiniales 

(Fig. 2.3). Blastodiniales are strictly parasitic dinoflagellates of zooplanktons and fish, while 

Syndiniales are either endosymbionts or parasites. Gymnodiniales are the least known 

groups of marine phytoplankton, but have been reported from suboxic interfaces and are 

known to form cysts as an adaptive strategy to survive adverse conditions such as low 

dissolved oxygen concentrations (Morquecho and Lechuga-Deveze, 2003). They are known 

ecto-parasites of zooplanktons (Coats, 1999). These dinoflagellates likely competed with a 

relatively large abundance of unclassified dinoflagellates with unknown growth 

requirements, notably during the entire Holocene (Fig. 2.3). It has been shown that stronger 

OMZs mainly occurred during interstadials after OIS3 when SW Monsoon intensified 
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(Deplazes et al., 2014; Schulz et al., 2002). DNA record is in agreement with this scenario 

since dinoflagellates fluctuated greatly in abundance between frequently alternating periods 

of strong vs. weak OMZ conditions during OIS3, but they became more continuously 

abundant during OIS2 and the Holocene, which experienced relatively long stretches of 

interstadials with increased SW monsoon intensity. Similar results with increased 

accumulation of dinoflagellates cysts during warm events of increased paleo-productivity 

such as the Holocene, B/A event and D/O interstadials has been witnessed in the anoxic 

Santa-Barbara basin (Pospelova et al., 2006).  The second most abundant alveolates during 

strong OMZs were ciliates of the class Colpodea. Colpodeans are mostly freshwater ciliates 

that form cysts as a result of environmental stress. An increase in the relative abundance of 

Colpodea was observed during the B/A when high fluvial input from the Indus River was 

recorded in sediment cores obtained nearby (Deplazes et al., 2014). The next abundant 

ciliates were scuticociliates belonging to Oligohymenophorea, which contains endoparasites. 

Scuticociliates are obligate anaerobes that live in stratified low oxygen and anoxic marine 

waters in symbioses with sulfate reducing bacteria and methanogenic archaea and therefore 

serve as a proxy for OMZ conditions (Fenchel and Finlay, 1994). According to ISA, obligate 

endoparasitic pathogenic and spore-forming Apicomplexa (alveolata) were also significant 

indicators of strong OMZ conditions.  

In addition to alveolata, rhizarians mainly represented by polycistine radiolarians and 

cercozoans (Fig 2.4), also dominated during periods of stronger OMZs. Cercozoans, which 

mostly represent heterotrophic protists, were abundant and significant indicator species for 

strong OMZ with high surface productivity, while polycystine radiolarians were significant 

indicators of strong OMZ irrespective of productivity. Polycystine radiolarians often form 

symbiotic relationships with mainly dinoflagellates, prymnesiophytes and prasinophytes 

(Steineck and Casey, 1990). In this case dinoflagellates are enclosed in a thin envelope of 

cytoplasm produced by the radiolarian host's rhizopodial system. This provides ammonium 

and carbon dioxide for the dinoflagellate symbionts, and in return the dinoflagellates provide 

their radiolarian host with a jelly-like layer that serves for protection and to capture prey 

(Steineck and Casey, 1990). A co-existence of polycystine radiolarians, dinoflagellates and 

prasinophytes was indeed observed in current paleogenomic record. Combined, these 

results show that OMZ conditions shaped the past protist community by creating isolated 

habitats for those capable of sustaining oxygen depletion either by adapting a parasitic life 

cycle or by establishing mutualistic connections with others or by cyst formation, which is in 

accordance with recent observations from other OMZ impacted sites (Jing et al., 2015).  
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2.6 CONCLUSIONS 

Differences in genomic 18S rRNA gene copy numbers between eukaryotes (Hou and Lin, 

2009), prevents the ability to provide absolute quantitative data on the past plankton. In 

addition, environmental DNA is prone to degradation. Nevertheless, this study show that 

stratigraphic analysis of sedimentary protist DNA can provide a useful long-term record of 

ecosystem responses to OMZ conditions including non-fossilizing taxa that traditionally 

escape microscopic identification in micro-paleontological studies. It is predicted that OMZs 

will continue to expand world-wide as a result of global warming and eutrophication (Helm 

et al., 2011; Keeling et al., 2010). Notably, protistal paleogenomic record suggests that long-

term increase in eutrophication and a decrease in the Dia/Dino index, as has been the case 

in the NE Arabian Sea during the late Holocene, will likely favor the pelagic component of the 

marine food web in the context of predicted worldwide expansion of coastal OMZs 

associated with global climate change. Similar studies undertaken at other key locations with 

a history of persistent OMZs could provide a comprehensive window into past marine 

ecosystem changes and feedback mechanisms on OMZ expansion. If integrated with 

observations from modern time series, similar paleogenomic datasets could help towards 

forming a more comprehensive understanding and improved predictions of long-term OMZ 

expansion on coastal ecosystem interactions.   
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2.7 FIGURES 

 

Figure 2.1 Overview of protist group abundance throughout the core. (a) Bromine XRF profile 

(blue) correlated with TOC content (red). (b) δ15N record. Values above 6.5 (dotted line) 

represent higher denitrification rates. (c-i) Relative abundance (%) of key protist groups. (i) 

Includes the sum of Amoebozoa, Apusozoa, Choanoflagellida, Rhodophyta, Euglenozoa, 

Jakobida and Cryptophyta. Vertical black lines denote OIS transitions. Vertical pastel orange 

boxes indicate strong OMZ with high paleoproductivity, pastel blue boxes indicate weak OMZ 

and uncolored region indicates strong OMZ with low productivity. Interstadials are 

numbered on top of the TOC peaks while stadials are shown by arrows. Abbreviations: OIS 

(Oxygen Isotope Stage), YD (Younger Dryas), B/A (Bølling-Allerød), H (Heinrich event), IS 

(Interstadial), S (Stadial). 
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Figure 2.2 Relative abundance of protist subgroups. 

(The same color coding and abbreviations as in Fig. 2.1) 
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Figure 2.3 Detailed protist abundance overview. Averaged relative abundance of essential 

sub-groups within the most abundant supergroups in different climate intervals are 

represented in stacked histograms. The time span of each grouped climate stage is denoted 

below the figure. Abbreviations: OIS (Oxygen Isotope Stage), LH (Late Holocene), MH (Mid 

Holocene), EH (Early Holocene), YD (Younger Dryas), B/A (Bølling-Allerød), H (Heinrich event), 

IS (Interstadial), S (Stadial). 
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Figure 2.4 NMDS analysis of community composition using all protist OTUs (stress< 0.05). 

Analysis of similarity (ANOSIM) revealed that the overall protist community composition 

differed significantly between the three categories (P=0.001). Axes in NMDS are arbitrary. 
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Figure 2.5 Indicator species analysis. Horizontal bar diagrams of A and B values (X and Y axes 

respectively) of species indicative of Categories 1. “A” value denotes specificity (positive 

predictive value) while “B” value denotes the sensitivity (fidelity) of the species as indicator 

of the target site. Number of * indicate the significance value, 3 being the highest. Species 

names are written in the format “OTU number_Taxa; Subtaxa (r-value/ P-value and 

significance level*)” 
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Figure 2.6 Indicator species analysis. Horizontal bar diagrams of A and B values (X and Y axes 

respectively) of species indicative of Categories 2 and 3.   
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2.8 TABLES 

Table 2.1 Types of sediment categories deposited during different climate intervals. 

Period Age (Kyr) Sediment category 

Holocene 0.42-10 1 

Younger-Dryas 

10.2-11.3 2 

11.4-12.5 3 

12.6-13 2 

Bolling-Allerod 
13.1-13.5 2 

13.6-14.4 1 

H1 14.6-16.9 3 

IS2/LGM 

17-18.15 2 

18.7-19.8 3 

20-20.4 2 

20.5-21 3 

21.1-22.23 2 

22.23-22.5 3 

22.6-23.3 3 

H2 
23.4-25 3 

25.1-25.6 2 

IS3 25.9-28 1 

S3 
28-28.15 2 

28.15-28.5 3 

IS4 28.6-29 1 

H3 29-30.9 3 

IS5 
31-31.3 2 

31.1-32.4 1 

S5 32.6-32.9 3 

IS6 33-33.5 1 

S6 
33.6-34 3 

34.1-34.5 2 

IS7 34.6-35.4 1 

S7 35.5-36 2 

IS8 36.1-38 1 

H4 38.1-39.2 3 

H4 39.2-39-5 2 

H4 39.5-40 3 
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Period Age (Kyr) Sediment category 

IS9 40.3-40.5 1 

S9 40.6-40.8 2 

IS10 40.8-41.3 2 

S10 41.5-41.9 3 

IS11 41.9-42.3 1 

S11 42.4-43 3 
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3.1 ABSTRACT  

Subsurface microbial communities are generally thought to be structured through in situ 

environmental conditions such as the availability of electron acceptors and donors and 

porosity, but recent studies suggest that the vertical distribution of a subset of subseafloor 

microbial taxa, which were present at the time of deposition, were selected by the paleo-

depositional environment. However, additional highly resolved temporal records of 

subsurface microbiomes and paired paleoenvironmental reconstructions are needed to 

justify this claim. Here we performed a highly resolved shotgun metagenomics survey to 

study the taxonomic and functional diversity of the subsurface microbiome in Holocene 

sediments underlying the permanently stratified and anoxic Black Sea. Obligate aerobic 

bacteria made the largest contribution to the observed shifts in microbial communities 

associated with known Holocene climate stages and transitions. This suggests that the 

aerobic fraction of the subseafloor microbiome was seeded from the water column and did 

not undergo postdepositional selection. In contrast, obligate and facultative anaerobic 

bacteria showed the most significant response to the establishment of modern-day 

environmental conditions 5.2 ka ago that led to a major shift in planktonic communities and 

in the type of sequestered organic matter available for microbial degradation. No significant 

shift in the subseafloor microbiome was observed as a result of environmental changes that 

occurred shortly after the marine reconnection, 9 ka ago. This supports the general view that 

the marine reconnection was a gradual process. We conclude that a high-resolution analysis 

of downcore changes in the subseafloor microbiome can provide detailed insights into 

paleoenvironmental conditions and biogeochemical processes that occurred at the time of 

deposition. 
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3.2 INTRODUCTION 

The subseafloor marine biosphere is estimated to harbor more than 1029 microbial cells, 

approximately equal to the number of open Ocean and soil microbiota (Kallmeyer, Pockalny 

et al. 2012). These sedimentary microbial communities mediate the carbon storage and 

contribute heavily to nitrogen and sulfur cycling (Orcutt, Sylvan et al. 2011). Such deep sub-

surface microbial communities owe their genetic distinctness to selection faced after 

isolation from surface waters over long timescales (Starnawski, Bataillon et al. 2017). 

Subsurface microbial communities are generally thought to be structured through in situ 

environmental conditions such as the availability of electron acceptors and donors, porosity 

and sediment lithology (Parkes, Cragg et al. 2000, Rebata-Landa and Santamarina 2006, 

Kallmeyer, Pockalny et al. 2012, Orsi, Coolen et al. 2017). However, recent studies suggest 

that a subset of subseafloor microbial taxa were present at the time of deposition (Inagaki et 

al., 2015; Orsi et al., 2017) and form a genetic archive originally referred to as “the Paleome” 

(Inagaki, Okada et al. 2005). The paleoenvironmental conditions that prevailed at the time of 

deposition are partly reflected by concomitant shifts in the taxonomic and functional 

diversity of the subsurface microbial paleome (Inagaki, Hinrichs et al. 2015, Orsi, Coolen et 

al. 2017). For example, microbial life in 20 Ma-old coal-bearing sediments located up to 2.5 

km below the ocean floor was found to resemble organotrophic bacterial communities 

typically found in forest soils (Inagaki, Hinrichs et al. 2015). Similarly, microbial communities 

likely of terrestrial origin were recovered from Mediterranean turbidites (Ciobanu, Rabineau 

et al. 2012). Downcore changes in microbial communities in radiocarbon-dated Baltic Sea 

sediments were shown to mirror temporal changes in sea surface salinity (Lyra, Sinkko et al. 

2013). Most recently, highly resolved shotgun metagenomic profiling of  north-eastern 

Arabian Sea sediments showed that up to 15% of the subsurface microbiome was explained 

by variations in past oxygen minimum zone (OMZ) strength over the last glacial-interglacial 

cycle (Orsi, Coolen et al. 2017). More specifically, the genomic potential for denitrification 

correlated with (isotopic) geochemical paleo-OMZ proxies independent of sediment depth 

and availability of nitrate and nitrite. The metagenomes also revealed fermentation 

pathways encoded by many of the same denitrifier groups indicating that fermentation could 

explain their long-term post-depositional survival. Thus, subsistence of bacteria that were 

seeded from the overlying water column may provide a mechanism for subseafloor 

microorganisms to provide a much longer genomic record of paleoenvironmental changes 

than sedimentary DNA from photic zone derived dead eukaryotic plankton, which is likely to 

be more prone to post-depositional degradation. However, additional highly resolved 
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temporal records of subsurface microbiomes and paired paleoenvironmental conditions are 

needed to justify this claim.  

The Black Sea is the world’s largest permanently stratified anoxic basin. Organic matter 

including DNA stemming from past plankton species has been shown to be well preserved in 

the underlying sediments. The pool of preserved plankton DNA forms a long-term archive of 

past ecosystem dynamics (Coolen, Orsi et al. 2013) resulting from known changes in past 

continental climate and concurrent hydrological changes in the basin (Ross, Degens et al. 

1970, Major, Goldstein et al. 2006, Marret, Mudie et al. 2009, Soulet, Delaygue et al. 2010). 

For example, sedimentary ancient DNA recorded a major shift in the plankton composition 

to brackish taxa at 9 ka BP due to the postglacial reconnection of the lacustrine Black Sea 

with the Mediterranean Sea through the Bosphorus Strait. This timing agrees with strontium 

isotopic records (Major, Goldstein et al. 2006). In addition, sedimentary ancient DNA 

revealed the arrival of marine copepods at the onset of the dry Subboreal at ~5.2 ka BP, which 

marked the timing of the establishment of modern environmental conditions (Coolen et al., 

2013). Most notably, this community comprised of the only marine calanoid copepod found 

in the Black Sea today: Calanus euxinus which has a minimum salinity tolerance of 17 ppt 

(Svetlichny, Hubareva et al. 2010). Paired deuterium isotopic analysis of Emiliania huxleyi-

derived long chain alkenones also suggested that the sea surface salinity remained above the 

modern day 18 ppt since the last 5.2 kyrs (Coolen, Orsi et al. 2013). 

Considering that the Black Sea’s plankton paleome accurately reflected these 

paleoenvironmental changes, it is to be expected that a subset of the sedimentary microbial 

communities may also be seeded from the overlying water column and to mirror the 

variability of the paleodepositional conditions in the Black Sea. In order to test this 

hypothesis, we performed a metagenomic profiling of taxonomic and functional diversity of 

the subsurface bacteria in flash frozen intervals of the radiocarbon dated core GGC18. These 

intervals have been previously analysed for the above described ecosystem and 

environmental changes during key climate stages since the past 13,500 calendar years 

(Coolen, Saenz et al. 2009).  

3.3 MATERIAL AND METHODS 

3.3.1 Sampling 

The sedimentary metagenomic and geochemical datasets presented in this study were 

generated from the upper 341 cm of Giant Gravity Core GGC18 (Coolen, Saenz et al. 2009, 

Coolen, Orsi et al. 2013). Briefly, GGC18 was recovered from a water depth of 971m in the 
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western basin of the Black Sea (42˚46.569”N:28˚40.647”E) during cruise AK06 on the R/V 

Akademik (Institute of Oceanology, Bulgarian Academy of Sciences; IOBAS) in September 

2006. The obtained core was immediately split in half and subsamples were obtained 

aseptically at 1 cm resolution using sterile headless syringes. To prevent cross contamination, 

the upper 1 cm of exposed sediments was first scraped off with sterilized knives. Samples for 

DNA extraction were stored in liquid nitrogen during the cruise and shipped on dry ice to the 

Woods Hole Oceanographic Institution (WHOI). The remaining sampled and archived core 

halves were shipped refrigerated to WHOI and were used for organic and isotopic 

geochemical analysis. See Coolen et al. (2009) for more details.  

3.3.2 Organic geochemistry 

The weighted percentage of total organic carbon (TOC) was determined on acidified samples 

according to Eglinton et al. (2002) using a Carlo Erba EA 1108 elemental analyzer interfaced 

via a Finnigan-MAT Conflo-II open split device to a DeltaPlus isotope ratio monitoring mass 

spectrometer. Total lipids were extracted from ~ 2 g dry weight sediment by Accelerated 

Solvent Extraction (ASE) using 9:1 dichloromethane/methanol (100 °C, 1000 psi) and the 

neutral components including alkenones were further extracted as described in detail in 

Coolen et al. (2009). Alkenones were then analysed with GC-FID on a Hewlett Packard 5890 

using a CPSil5-CB column (Chrompack, 30 m × 0.32 mm I.D.). Sedimentary alkenone δD as a 

proxy for salinity in the Black Sea (Van der Meer et al., 2008), was measured using an Agilent 

6890 GC equipped with a DB-5MS column (60m length; 250 µm i.d.; 0.25µm film thickness; 

J&W, Folsom, CA, USA) coupled to a DeltaPlus XL (Bremen, Germany) isotope ratio mass 

spectrometer via a pyrolysis interface operated at 1440oC (Burgoyne and Hayes 1998). The 

GC oven was initially set at 90oC, held for 1 min, ramped at 15oC min-1 to 220oC, and finally 

ramped at 10oC min-1 to 320oC and held for 40 min. The H3
+ factor was determined daily and 

was always below 5.1 ppm mV-1 (Sessions, Burgoyne et al. 2001).  A suite of 16 normal alkanes 

was routinely analyzed to determine the normalization scale (Sessions et al., 2001) and to 

estimate instrument accuracy. The alkenones (an average of 37:2 and 37:3 due to 

chromatographic coelution) were compared to coinjected alkanes of known isotopic 

composition. All δD values are reported relative to V-SMOW in permil (‰) units and are 

normalized to the SMOW-SLAP scale. The precision of replicate analyses expressed as the 

pooled-standard-deviation was 2.9 ‰ for these data. The accuracy based on 14 external 

analyses of the suite of normal alkanes was 2.9 ‰. 
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3.3.3 Age model 

Thirteen one cm intervals were selected from the marine section of the core (<9 ka BP) for 

14C AMS dating of bulk organic carbon at the National Ocean Sciences Accelerator Mass 

Spectrometry (NOSAMS) Facility at WHOI. A detrital carbon correction of 580 years (Jones 

and Gagnon 1994, Coolen, Saenz et al. 2009) was applied to our radiocarbon dates (Coolen 

et al., 2009). An age model for the core was then developed by calibrating the corrected 

radiocarbon dates to calendar years B.P. with Calib 5.0.1 (Stuiver and Reimer 1993) using 

INTCAL04 (Reimer, Baillie et al. 2004). Sedimentation rates in the marine interval are low, 

and hence, interpolation between the calibrated radiocarbon dates corresponding to these 

depths was used to derive age of each sample from that section of the core (Giosan et al., 

2012). The age model was extended into the deglacial with two dates on micro-gastropod 

shells. These radiocarbon dates were calibrated using the marine reservoir age based on the 

latest information that between 8000 and 11,500 years BP the Black Sea-Lake reservoir age 

was between 300 and 500 years (Soulet et al., 2011). See Coolen et al., 2009; 2013; and 

Giosan et al., 2012 for further details. 

3.3.4 Sedimentary DNA extraction and sequencing 

For this study, total DNA was extracted from 8-10 gram of wet weight sediment from the 19 

one cm intervals using the PowerMax™ Soil DNA Isolation Kit (Mobio, Carlsbad, CA) in the 

clean lab dedicated to ancient DNA analysis at WHOI (Coolen, Saenz et al. 2009) (Table 3.1). 

As a control for contamination during DNA extraction, one reagent mixture without sediment 

was subjected to the entire extraction and purification procedure (extraction control). Co-

extracted PCR-inhibiting substances such as humic acids were efficiently removed using the 

OneStep PCR Inhibitor Removal Kit (Zymo Research, Irvine, CA, USA). See Coolen et al (2009) 

for further details. 

3.3.5 Metagenome preparation 

19 samples spanning 13.5 Ka of deposition were selected for metagenomic library 

preparations. Metagenomic libraries were prepared with 50 ng template DNA using the 

NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (New England BioLabs Inc.) according 

to manufacturer’s instructions. The amplification involved 13-15 cycles. The resulting 

barcoded libraries (200-500 bp) were gel purified with the Monarch DNA Gel Extraction Kit 

(New England BioLabs Inc) and sent to the Australian Genomic Research Facility (AGRF) in 

Perth for final quality control and sequencing. At AGRF, the Illumina HiSeq2500 platform was 

used to generate 2 × 100-bp pair-end sequencing reads.  
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3.3.6 Processing of sequence data and bioinformatics 

Approximately 200 million paired-end sequence reads were processed in CLC Genomics 

Workbench 7.0 (Qiagen, Hilden, Germany) which involved quality control using standard 

settings and de Novo paired-end assembly (Contig length = 200, Mismatch cost = 2, Insertion 

cost = 3, Deletion cost = 3). Assembled sequences were submitted to the MG-RAST server 

4.0.3 (Meyer et al., 2008) for automated high-quality annotation of microbial reads in the 

metagenome using the SEED database (Overbeek et al., 2014). Only hits to reference proteins 

with at least 50% amino acid similarity over an alignment length of more than 50 amino acids 

were considered to be homologs and used for downstream analysis. Metagenomes were also 

prepared without the addition of template and from an extraction blank and were sequenced 

and analysed in parallel to the samples. Open reading frames (ORFs) that occurred in both 

samples and these controls for contamination were removed. Ecological statistics were 

calculated in R using a Bray Curtis distance in the Vegan package (https://cran.r-

project.org/web/packages/vegan/index.html). Analysis of Similarity (ANOSIM) was carried 

out using 999 permutations using Bray Curtis dissimilarity. Indicator Species Analysis (ISA) 

(Dufrene & Legendre, 1997) was performed in the indicspecies package and significance was 

tested with a nonparametric procedure involving the Monte-Carlo permutation procedure 

with 999 permutations. 

3.4 RESULTS 

3.4.1 Downcore microbial distributions 

After stringent removal of ORFs that also occurred in the sequenced controls, the 

metagenomic libraries of the sampled sediment intervals revealed 189 bacterial genera. 

Based on known metabolic properties of cultivated relatives (Whitman, 2015), the identified 

microbial populations were grouped into aerobes (71 genera), anaerobes (71 genera), 

facultative anaerobes (29 genera) and unknown mode of respiration (18 genera). Facultative 

anaerobes comprised 10-25% of the microbial populations throughout the core except for 

the youngest sample where they comprised half of the total bacteria (Fig. 3.1). Obligate 

anaerobes comprised up to 75% of total bacteria in sediments deposited before late HCO (>6 

ka BP) after which obligate aerobes were found to dominate over anaerobes (Fig. 3.1 c). 

3.4.2 Distribution of aerobes 

Aerobes were further divided into photoautotrophs, those potentially involved in sulfur 

cycling and other chemo-organotrophs (Fig. 3.1d). Aerobic photoautotrophs showed highest 
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relative abundance (15-50% of total aerobic bacteria) in sediments deposited during the 

warmer deglacial and early Holocene climate stages (Allerød, Preboreal and HCO) and 

comprised up to 10% of aerobes in sediments younger than ~6 Kyr (Fig. 3.1d). Unicellular 

pelagic cyanobacteria (Cyanothece, Prochlorococcus, Microcystis, Acacyochloris and to a 

lesser extent Cyanobium and Raphidiopsis) comprised 60-75% of the aerobic photo-

autotrophic community until the HCO-Subboreal transition. (Fig. 3.2a). Since the last 5.2 ka 

BP (e.g. spanning the Subboreal and Subatlantic), marine anoxygenic phototrophs 

(Congregibacter, Dinoroseobacter, and Erythrobacter) predominated over cyanobacteria 

(Fig. 3.2a).  

Aerobic bacteria involved in sulfur cycling comprised up to 25 to 50 % of total aerobes during 

early and mid YD and up to 60% of total aerobes since 6 ka BP (Fig. 3.1d) The S oxidizer 

Thiomicrospira predominated this category with lower contributions of Arcobacter, 

Sulfitobacter and Sulphurosprilillum (Fig. 3.2b). Other aerobic chemoorganotrophs reads 

varied between 25 and 75% of total aerobic bacteria throughout the core. Blastopirellula 

represented a dominant chemo-organotrophic genus in all sediments deposited before the 

Subboreal (>5.2 Ka BP) where it co-occurred with the less abundant Alkaliphilus. In Subboreal 

and Subatlantic sediments, Hyphomonas along with Sachharophagus, Cellvibrio and putative 

manganese oxidizers (Aurantimonas, Geodermatophilus and Fulvimarina) predominated the 

chemo-organotrophic aerobic community (Fig. 3.2c). Other less abundant chemo-

organotrophs such as Bermanella and Idiomarina maintained sporadic abundance 

throughout the core (Fig. 3.2c). 

3.4.3 Distribution of anaerobic and facultative microbial communities 

Anaerobes were divided into three groups - those involved in sulfur cycling, autotrophs and 

other chemoorganotrophs (Fig. 3.1e). Unlike aerobic bacteria, the relative abundance of 

these major groups did not vary much with sediment depth and age. Autotrophic anaerobes 

comprised 15% of the total anaerobic bacterial reads in the youngest analysed interval and 

less than 5% throughout the rest of the core. Chemo-organotrophs and anaerobes involved 

in sulfur cycling were equally abundant throughout the core. (Fig. 3.1e). Within the latter 

group, members of the sulfate-reducing genera Desulfatibacillum, Desulfococcus, and 

Desulfatobacterium predominated until late HCO after which sulfur oxidising bacteria 

(Beggiatoa and Sulfurovum) became more abundant (Fig. 3.3a). Less predominant sulfate 

reducing bacteria, which occurred in the majority of samples, involved Desulfurivibrio, 

Dethiosulfovibrio, Desulfomicrobium, Desulfohalobium and Thermanaerovibrio (Fig. 3.3a). 
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The next most abundant anaerobes represented chemo-organotrophs (Fig. 3.1e). The 

anaerobic chemoorganic community composition remained fairly constant until the late HCO 

and comprised of many genera such as saccharolytic Alkaliphilus, Caldicellulosiruptor, and 

syntrophic Syntrophomonas and Syntrophothermus (Fig. 3.3b). This composition changed 

drastically with the onset of the Subboreal at 5.2 ka BP with more contribution from 

Puniceispirillum, Oceanicaulis and nitrate reducing genera such as Denitrivibrio. Other genera 

(e.g. Turicibacter, Trackia, Selenomas) combined contributed up to 40 % of chemo-

organotrophs in the majority of intervals (Fig. 3.3b). Autotrophic anaerobes were minor 

constituents of the total anaerobic community (Fig. 3.1e), but nevertheless revealed a shift 

in relative abundance at 5.2 ka BP from Oscillochloris to Nitratiruptor (Fig. 3.3c). 

Planctomyces and Lactobacillus were the most abundant facultative bacteria in sediments 

older than 5.2 ka BP after which Kangiella became more abundant (Fig. 3.3d). The sulfur 

oxidizing genera Sulfurimonas and Sulfuricurvum were abundant in the youngest analysed 

interval (Fig. 3.3d). 

3.4.4 Metabolic functions 

Functional metagenomic analysis revealed five major types of microbial energy metabolisms 

throughout the core (Fig. 3.1f). Glycolysis and fermentation contributed 50-60% of total 

energy yielding processes in all analysed intervals throughout the core. Methane metabolism 

was the second most dominant process in sediments older than 5.2 ka where it accounted 

for more than 25 to 40% of total metabolic processes. In contrast, nitrogen and sulfur 

metabolism combined accounted for respectively 25 to 40%% of the total energy metabolic 

processes in sediments younger than 5.2 ka. Dark carbon fixation accounted for 5-10% of 

total energy metabolism throughout the core.     

3.4.5 Correlation between the paleodepositional environment and microbial communities  

Changes in the subsurface microbial community composition associated with climate-

triggered changes in the paleodepositional environment were investigated using Non-Metric 

Multidimensional Scaling Analysis (NMDS) and Analysis of Similarity (ANOSIM) (Clarke, 1993). 

It was analyzed whether significant changes occurred in the community structure between 

total bacteria, aerobes, anaerobes and facultative bacteria before and after the 

establishment of modern-day salinity at 5.2 ka (Category A); between known climate stages 

in the Black Sea (Category B); and before and after the marine reconnection at ~ 9 ka 

(Category C) (Fig. 3.4). NMDS (stress < 0.05) revealed that anaerobic bacteria showed the 

best correlation (ANOSIM; R=0.98; P=0.001) to Category A, significant but weak community 
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changes associated with Category B (R=0.28; P=0.009), and no significant response to 

Category C (R=0.026; P=0.26). The same pattern was also observed for facultative microbial 

communities. Aerobic communities revealed a significant response to categories A and B but 

not to Category C.  

Total bacterial communities responded most significantly to depositional changes after the 

establishment of modern-day salinity (ANOSIM; R=0.88; P=0.001), (Fig. 3.4). NMDS and 

ANOSIM analysis using energy metabolism ORFs only showed the most significant response 

to Category A (R=0.8; P=0.001) followed by Category B (R=0.4, P=0.008) and the weakest 

response to Category C (R=0.181, P=0.05).  

3.4.6 Indicator species analysis (ISA)   

Since microbial communities were mostly affected by depositional changes before and after 

the establishment of modern-day salinity, ISA was only performed for Category A. In Category 

A, ISA based on the entire bacterial population (189 genera) revealed respectively 50 and 101 

genera indicative for sediments younger vs. older than 5.2 ka BP (Table 3.2 and 3.3). 

Kangiella, Hyphomonas, Puniceispirillum and Endoriftia were the best indicator genera for 

sediments < 5.2 ka (subatlantic-subboreal period) with A>0.75. Marine aerobic bacteria were 

also among the strong indicators for < 5.2 ka of Category A, notably aerobic Loktanella 

(A=0.695 and B=1.000), known to be associated with the outbreak of harmful algal blooms 

(Bloh et al., 2016) as well as aerobic anoxygenic phototrophic bacteria such as Erythrobacter, 

Congregibacter and Dinoroseobacter. Other aerobic indicator taxa for sediments < 5.2 ka in 

Category A involved Saccharophagus, Granulibacter, Maricaulis and Psychrobacter. Best 

indicator genera for sediments >5.2 ka BP included Pseudoramibacter, syntrophic bacteria 

(Syntrophomonas and Syntrophothermus), anaerobic S-reducing genera such as 

Dethiobacter, Dethiosulfovibrio, Desulfatibacillum, Desulfococcus, Desulfohalobium, and 

Desulfobacterium.  Anaerobic autotrophs Methylacidiphilum and Oscillochloris along with 

aerobic cyanobacteria Acarychloris, Cyanobium, Cyanothece, Microcystis and 

Prochlorococcus were also significant indicators of this group.  

3.5 DISCUSSION 

3.5.1 Putative indigenous vs. seeded subsurface microbial communities 

The sediments underlying the permanently anoxic and sulfidic bottom waters of the Black 

Sea are expected to provide conditions that only favor facultative and obligate anaerobic 

microbial communities. It was observed that obligate and facultative anaerobic microbial 
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communities showed the most significant groupings before and after 5.2 ka (resp. R=0.98 

and 0.91) (Fig. 3.4). The timing of this change in salinity was previously shown to have 

coincided with a major transition in the pelagic plankton community structure as the source 

of the sedimentary organic matter (Coolen et al., 2013). This would explain the concomitant 

shift in the diversity of the anaerobic bacterial communities, which are likely to be actively 

metabolizing the sedimentary organic matter as is further supported by the simultaneous 

shift in predominant energy metabolisms. Therefore, the indigenous anaerobic populations 

revealed an indirect response to environmental changes in the Black Sea. 

In contrast, obligate aerobic communities are likely to be seeded from the oxygenated 

surface waters in the past (Orsi et al., 2017) and no longer to be metabolically active in the 

sediments. As a result, they are more likely to reveal a direct response to paleoenvironmental 

changes, such as the case for the observed shift in the predominance from photic-zone 

derived cyanobacteria to AAnPs after the establishment of a stable sulfidic chemocline. 

Furthermore, while anaerobic bacteria (R=0.98; P=0.001) contributed more to the total 

bacterial response (R=0.88; P=0.001) than aerobic bacteria (R=0.56; P=0.002) to the changes 

in organic matter sources before and after 5.2 ka BP, aerobic bacteria (R=0.32; P=0.019) 

contributed more to the response of total bacteria (R=0.37; P=0.011) than anaerobic bacteria 

(R=0.28; P=0.009) to the key climate stages and their transitions since the deglacial (Fig. 3.4). 

Bacterial communities showed no significant response to the marine reconnection at 9 ka BP 

(Fig. 3.4). This finding adds to the growing body of evidence that environmental conditions 

only changed gradually after the marine reconnection (Marret et al., 2009) with ample time 

for microbial communities to adapt. 

3.5.2 Anaerobic communities and their putative functions 

The most abundant anaerobic bacteria in sediments older than 5.2 ka BP include Alkaliphilus, 

Heliobacterium, Caldicellulosiruptor, and Thermoanaerobacter (Fig. 3.3b). Alkaliphilus was 

initially isolated from mine water containment dam at 3.2 km below ground in an ultra-deep 

gold mine in South Africa (Takai et al., 2001). Several Alkaliphilus spp. were shown to ferment 

organic compounds including proteinaceous substances and their growth was promoted in 

the presence of elemental sulfur or thiosulphate (Takai et al., 2001), which would explain 

their ability to thrive in the organic and sulfidic sediments of the Black Sea. Heliobacterium is 

a strictly anaerobic photoheterotrophic firmicute that can also grow in the absence of light 

by fermentation of pyruvate (Tang et al., 2010). Caldicellulosiruptor is cellulolytic and xylolytic 

(Huang et al., 1998) while Thermoaenerobacter is saccharolytic (Xue et al., 2001). In the same 
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sediment section, facultative Spirochaeta and Planctomycetes also dominated (Fig. 3.3d), 

both of which have been isolated from aquatic sediments and are known to degrade 

carbohydrates (Subhash & Lee, 2017; Jasmin et al., 2017). Syntrophic bacteria 

(Syntrophomonas and Syntrophothermus) were also abundant (Fig. 3.3b). Syntrophic 

bacteria are evolutionarily adapted for syntrophic growth with methanogens and other 

hydrogen-consuming microorganisms. Syntrophomonas has been found in co-culture with 

sulfate-reducing, non-fatty acid degrading bacteria like Desulfovibrio (Mcinerney et al., 

1981). In the Black Sea sediments, syntrophic growth may exist between Syntrophomonas-

Syntrophothermus and Dethiosulfovibrio. This sulfate reducer ferments peptides to 

isobutyrate and methylbutyrate, which are known substrates for Syntrophomonas as well as 

Syntrophothermus. Butyryl-CoA dehydrogenase plays a key role in this process. Both genera 

were the source of an ORF encoding this enzyme in this section of the core. These bacterial 

genera were the source of ORFs encoding for butyryl and hydroxybutyryl CoA 

dehydrogenases respectively, which play a key role in this process (Fig. 3.6). 

In sediments younger than 5.2 ka BP, Puniceispirillum was a predominant anaerobe (Fig. 

3.3b). The only known species in this genus has been shown to possess genes for metabolism 

of C1 compounds such as methanol, formaldehyde, formate, formamide, and 

methanesulfonate along with genes for Entner-Doudoroff pathway used for Glucose 

metabolism (Oh et al. 2010). Facultative Kangiella with proteolytic metabolism was also 

dominant in this section of the core. This interval also revealed a relatively high abundance 

of ORFs derived from nitrate reducing Denitrivibrio and Nitratiruptor (Fig. 3.3c). Molecular 

hydrogen produced by syntrophic bacteria may be used by Nitratiruptor to reduce nitrate 

with H2 to molecular nitrogen (Nakagawa et al., 2005). Acetate and fumarate produced by 

chemoorganotrophy may be used by Denitrivibrio spp., which reduces nitrate to ammonia 

(Myhr & Torsvik, 2000). ORFs encoding periplasmic nitrate reductase and nitrate reductase 

from both species were found in the functional metagenomes in sediments younger than 5.2 

ka (Fig. 3.6). The verrucomicrobial methanotroph Methylacidiphilum is capable of using both 

dark carbon fixation and nitrogen fixation and can store glycogen as a reserved energy store 

when carbon is in excess and nitrogen supply is limited (Khadem et al., 2012).  

The metagenomic survey implies that anaerobic chemo-organotrophy is an important 

ongoing degradation process in the Holocene Black Sea sediments spanning the entire 

analyzed record. However, genes involved in methane metabolism predominated in 

sediments older than 5.2 ka BP (before the subboreal), while both nitrogen and sulfur 

metabolisms increased in relative abundance after 5.2 ka BP. These observation imply that 
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this depth marks the sulfate-methane transition zone (SMTZ) and that the concomitant shift 

in these microbial communities indirectly reflects paleoenvironmental changes that caused 

a shift in past plankton communities (Coolen et al., 2013) and thus changes in organic matter 

input that coincided with the establishment of modern environmental conditions (Coolen et 

al., 2013).  

3.5.3 Pelagic phototrophic bacteria  

The relative abundance of pelagic unicellular cyanobacteria (Prochlorococcus, Microcystis, 

and Cyanothece) was highest among the total phototrophic bacteria in sediments older than 

5.2 ka BP (Fig. 3.2a) when sea surface salinity was lower than in the Black Sea today (Coolen 

et al., 2013). They represent past photic zone dwelling photosynthetic communities since 

they are unlikely to currently thrive in the dark, anoxic sediments below. Namely, only low 

irradiance-adapted strains of Prochlorococcus have been shown to assimilate glucose, but 

only in the presence of oxygen (Gomez-Baena et al., 2008). Microcystis are nitrogen-fixing 

cyanobacteria found to form blooms in eutrophic (P and N-rich) freshwater environments 

and have also been reported to form blooms near river deltas in coastal waters (Atkins et al., 

2001). Microcystis can also ferment glycogen under anoxic dark conditions (Moezelaar & Stal, 

1997; Vanderoost et al., 1989). Cyanothece are marine nitrogen-fixing cyanobacteria, which 

are also capable of fermenting sugars anaerobically in the dark (van der Oost et al., 1989). 

However, if cyanobacterial anaerobic fermentation was an active ongoing sedimentary 

process, one would expect an increase in their relative abundance after 5.2 ka BP since 

younger sediments should have a higher content of easily degradable organic matter. Instead 

their higher relative abundances in the older sediments suggests that they were derived from 

the past photic zone and less capable to adapt in the Black Sea after salinity increased to 

modern levels or higher. The presence of cyanobacteria as main nitrogen-fixing 

phytoplankton in the Black sea during early to mid-Holocene has been also postulated based 

on δ15N signals (Fulton et al., 2012). 

After 5.2 ka BP, aerobic anoxygenic phototrophs (AAnP) Congregibacter, Dinoroseobacter 

and Erythrobacter became the most abundant aerobic phototrophic taxa (Fig. 3.2a). AAnP 

are photoheterotrophs that need oxygen for respiration and use their photosynthetic 

apparatus to generate energy in order to survive starvation when light is available (Hanada 

et al., 2016). Erythrobacter was the first AAnP to be discovered (Shiba & Simidu, 1982) and 

species of this genus are known to oxidize thiosulfate to tetrathionate in presence of an 

organic carbon source and oxygen. None of the Erythrobacter species were shown to be able 
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to use nitrate as an electron acceptor and are unable to live in anaerobic conditions 

(Okamura et al., 1985). Dinoroseobacter is capable of reducing nitrate and was isolated from 

marine dinoflagellates as an endosymbiont. Anaerobic growth is not observed, either on 

acetate in the light or by fermentation of glucose in the dark (Biebl et al., 2005). 

Congregibacter has recently been discovered and is a potential sulfur oxidizer based on the 

presence of sulfur-oxidizing (SoX) genes and has not been shown to survive under anaerobic 

conditions (Spring, 2014). AAnPs contain bacteriochlorophyll a (Bchl a) and typically occur at 

the oxic/anoxic interface of the upper sulfidic chemocline where both oxygen required for 

respiration and light for anoxic photosynthesis is available (Blankenship et al., 1995). The 

total amount of Bacteriochlorophyll in the sulfidic part of the photic chemocline of the 

modern Black Sea surpasses the amount of planktonic Chlorophyll a in the oxygenated 

surface waters (Repeta & Simpson, 1991). Anoxygenic photosynthesis, however, has been 

attributed to green sulfur bacteria (GSB) (Repeta et al., 1989) in spite of their low abundance 

in the deep sulfidic chemocline (Overmann & Manske, 2006). However, our sedimentary 

metagenome profiling suggests that the biomass of AAnPs may have exceeded that of GSB 

and that they possibly contributed substantially to anoxygenic photosynthesis in the 

stratified Black Sea especially since the last ~5200 years. 

3.5.4 Bacteria involved in sulfur cycling 

In the current Black Sea, microbial cycling of sulfur takes place at depths at and below the 

sulfidic chemocline (~100 m) (Neretin et al., 2006) (Pimenov & Neretin, 2006). In this core, 

ORFs of both aerobic and anaerobic bacteria involved in sulfur cycling were found (Fig. 3.2 

and 3.3). Aerobes involved in S cycling were present in all analysed intervals since the marine 

reconnection and were especially abundant since the last ~6 Ka BP. The aerobic S-oxidizing 

genera Thiomicrospira was most abundant, followed by Arcobacter and Sulfitobacter (Fig. 

3.2b). Previous 16S rRNA gene profiling revealed that Thiomicrospira is abundant at the 

oxic/anoxic interface of sulfidic chemocline in the modern Black Sea (Vetriani et al., 2003). 

The predominance of Thiomicrospira as along with the above discussed AAnPs suggests the 

presence of permanent stratified conditions and a persistent sulfidic chemocline after ~ 6 

Kcal BP. Thiomicrospira also dominated the aerobic bacterial fraction in the sediments 

deposited during the dry YD (Fig. 3.2b). At this time bottom waters were most likely 

oxygenated, while Thiomicrospira could have been part of a microbial mat overlying 

anaerobic sediments (Brinkhoff and Muyzer 1997). An increasing abundance of obligate 

aerobic Aurantimonas, Geodermatophilus and Fulvimarina was also observed in sediments 

younger than 5.2 ka (Fig. 3.2c). Species of these genera are known to oxidise Mn(II) to Mn(III) 
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(Anderson et al., 2009; Kang et al., 2010), which most likely took place in the upper 

boundaries of the suboxic zone, where manganese concentrations are found to be elevated 

in the modern Black Sea (Murray et al., 1999). Mn (III) has high oxidizing potential. According 

to the latter study, this microbially produced Mn (III) led to sulfide oxidation and sedimentary 

DNA of aerobic bacteria directly and indirectly involved in S-cycling was derived from cells 

that were seeded from the past water column (Orsi et al., 2017).  

                 Sulfate reducing bacteria (SRB) were the most abundant anaerobes throughout the 

core (Fig. 3.3a). Desulfatibacillum, Thermosipho and Thermanaerovibrio reduce elemental 

sulfur. Desulfococcus, Desulfotalea, Desulfomicrobium and Desulphohalobium reduce sulfate 

and Dethiosulfovibrio reduces thiosulphate to H2S. These SRB most likely represent 

indigenous and active sedimentary populations since their overall relative abundance did not 

vary substantially throughout the analysed record. This would explain why the highest 

concentrations of H2S is being observed in the surface sediments (Pimenov & Neretin, 2006). 

The sedimentary metagenomes revealed the presence of genes encoding for sulphate 

adenylyltransferase (ATP sulfurylase), adenyl-sulphate reductase (APS reductase) and 

dissimilatory sulfite reductase (Fig. 3.7), which are the enzymes involved in dissimilatory 

sulphate reduction (Bradley et al., 2011). Pyruvate ferredoxin oxidoreductase (PFOR), carbon 

monoxide dehydrogenase and acetyl-CoA synthase encoding genes, which are involved in 

acetogenesis through the Wood-Ljungdahl pathway were also detected (Fig. 3.7) (Ragsdale, 

2008). This suggests that acetone serves as one of the key electron donors for the reduction 

of sulfate to sulfide in the Black Sea sediments.    

Based on these observations, current study proposes the major players in the biological 

sulfur cycle in the Black Sea as shown in Fig. 3.5. In summary, in the anoxic sediments and 

bottom waters sulfate is reduced to sulfide by anaerobic sulfate reducers like 

Desulfatibacillum, Desulfomicrobium and Desulfococcus. This sulfide diffuses upwards to the 

sulfidic chemocline where obligate anaerobic photoautotrophic green sulfur bacteria oxidize 

sulfide back to sulfate. Low amounts of sulfide passing the sulfidic chemocline is then 

oxidized in the ~30 m thick suboxic zone by aerobes like Thiomicrospira, together with 

anoxygenic phototrophs like Congregibacter and Erythrobacter. Mn oxidizers located in the 

suboxic zone oxidize Mn (II) to Mn (III), which further contributes to oxidation of sulfide back 

to sulfate.  
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3.5.5 Aerobic chemo-organotrophs 

The majority of aerobic chemo organotrophs were indicator species of sediments younger 

than 5.2 ka. By way of exception, Blastopirellula is the dominant aerobic chemo-organotroph 

indicative of sediments older than 5.2 ka BP after which it was succeeded by mainly 

Hyphomonas, Saccharophagus, Idiomarina, Cellvibrio and Endoriftia (Fig. 3.2c). 

Blastopirellula grows optimally at neutral pH (Lee et al., 2013) while Hyphomonas is 

alkaliphilic (Weiner, 2015). The shift towards a predominance of akaliphilic Hyphomonas 

agrees with the timing of the Black Sea becoming more alkaline (Bahr et al., 2008). Endoriftia 

is predicted to perform sulfide oxidation via a reverse sulfate reduction pathway, involving 

the enzymes APS reductase and ATP sulfurylase (Robidart et al., 2008). Endoriftia, as for the 

source of these genes, was identified in metagenomes as old as 7,200 years when the Black 

Sea became stratified along with the deposition of the sapropel, but their relative abundance 

increased substantially after 5.2 ka (Fig. 2) when the Black Sea chemocline deepened (Huang 

et al., 2000). Furthermore, the presence of cellulolytic Cellvibrio at 8 ka BP and after 5.4 ka 

BP coincides with that of ancient DNA originating from terrestrial vegetation and fungi 

(Coolen et al., 2013), and therefore points towards an increased discharge and sedimentation 

of terrigenous cellulose. Several genera of aerobic chemo-organotrophic bacteria are only 

known from the marine environment such as Blastopirellula, Idiomarina. ORFs from these 

genera were present even in sediments deposited prior to the suggested marine 

reconnection at 9.0 ka BP. These results are in accordance with the fossil dinocyst assemblage 

implying non-fresh water conditions even before marine reconnection (Marret et al., 2009). 

3.6 Conclusion 

In summary, this study provides first insights into how marine microbial communities 

responded to changing oceanographic conditions at centennial timescale resolution in the 

Black Sea. Obligate anaerobic bacteria showed the most drastic response to the 

establishment of modern conditions at 5.2 ka BP, which coincides with a shift in the plankton 

community composition as the source of sedimentary organic matter. The functional 

metagenomic dataset suggests that these communities most likely are still actively involved 

in the sulfur and methane cycling as this timing also corresponds to the sediment depth 

where the SMTZ occurs. In contrast, aerobic microbial communities are likely to be seeded 

from the past water column with little to no postburial selection. This shows that a subset of 

past as well as potentially still active subseafloor microbial communities respectively provide 

direct and indirect insights into the paleodepositional environment.   
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3.7 FIGURES 

 

Figure 3.1 Geochemical proxies (Coolen et al., 2013) and downcore distributions of microbial 

communities (this work). (a) C/N ratio (blue) and TOC content (orange), (b) δD values of long-

chain alkenones (i.e., C37 mK and C36:2 eK), relative abundance of (c) major microbial 

categories, (d) major aerobic groups, (e) major anaerobic groups, and (f) total energy 

metabolisms.   
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Figure 3.2 Distribution of obligate aerobes. Averaged relative abundance of major groups in 

aerobes (a) photo-autotrophic aerobes, (b) aerobes involved in S-cycling and (c) other 

chemo-organotrophic aerobes.   
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Figure 3.3 Distribution of obligate anaerobes. Averaged relative abundance of major groups 

in anaerobes (a) anaerobes involved in S-cycling, (b) other chemo-organotrophic anaerobes 

and (c) autotrophic anaerobes.   
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Figure 3.4 NMDS analysis of community compositions of total microbes and energy 

metabolism in three categories. NMDS stress was < 0.05 in all the analyses. R value and P 

value of each NMDS analysis are indicated at upper right corner. P value indicates significance 
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levels, while R value denotes the strength of the analysed factors on the samples. R value 

close to 1 indicates high separation between treatment samples, while R value close to 0 

indicates no separation. Axes in NMDS are arbitrary. 

 

Figure 3.5 The Sulfur cycle in the Black Sea basin as inferred from the sedimentary 

metagenomic survey. Dotted line separates physical vs. microbial processes involved in S-

cycling. 
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Figure 3.6. Heat maps showing the abundance of ORFs encoding enzymes of interest from 

syntrophic and denitrifying bacterial genera. The color key shows the number of ORFs in each 

sample.  
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Figure 3.7. Heat map showing abundance of ORFs encoding key enzymes involved in sulphur 

metabolism from and their source bacterial genera. The color key shows the number of ORFs 

in each sample.  
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3.8 TABLES 

Table 3.1 General information of sediment intervals used for shotgun metagenomic analysis 

and metagenome accession numbers.  

Metagenome 

name 

Depth 

(mbsf) 

Age 

(yrs) 

Sediment Lithology 

(Coolen et al., 2013) 

Climate 

stage 

MG-RAST id 

BS19_R 8 329 Unit I subatlantic mgm4805918.3 

BS18_R 30 1296 Unit I subatlantic mgm4807276.3 

BS17_R 53.5 2515 Unit I subatlantic mgm4805917.3 

BS16_R 66.5 3271 Unit II subboreal mgm4805910.3 

BS15_R 79.5 4086 Unit II subboreal mgm4805896.3 

BS14_R 96.5 5241 Unit II subboreal mgm4805899.3 

BS13_R 99.5 5455 Unit II HCO mgm4805892.3 

BS12_R 107.5 6041 Unit II HCO mgm4805893.3 

BS11_R 121.5 7120 Unit II HCO mgm4805894.3 

BS10_R 125.5 7977 Unit III-T HCO mgm4805891.3 

BS9_R 128 9025 Unit III-T HCO mgm4805890.3 

BS8_R 129 9071 Unit III-T Preboreal mgm4805889.3 

BS7_R 137 9433 Unit III-C1 Preboreal mgm4805888.3 

BS6_R 195 11517 Unit III-C1 Preboreal mgm4810150.3 

BS5_R 200 11653 Glacial type YD mgm4805885.3 

BS4_R 230.5 12321 Glacial type YD mgm4805886.3 

BS3_R 274.5 12845 Glacial type YD mgm4805887.3 

BS2_R 295 12905 C2 Allerod mgm4807275.3 

BS1_R 349 13550 C2 Allerod mgm4805884.3 

Negative 

control 

_ _ _ _ mgm4805920.3 

Extraction 

control 

_ _ _ _ mgm4805919.3 
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Table 3.2 Indicator species for sediments deposited after the establishment of modern-day 

salinity at 5.2 ka with specificity (A-value) vs. sensitivity (B-value) of each indicator species.  

Genus (r-value) A B 

Acetobacter (0.791) 0.626 1 

Actinobacillus (0.748) 0.559 1 

Ahrensia (0.833) 0.694 1 

Aurantimonas (0.816) 0.666 1 

Basfia (0.761) 0.579 1 

Bermanella (0.84) 0.706 1 

Cardiobacterium (0.771) 0.594 1 

Cellvibrio (0.824) 0.679 1 

Citreicella (0.828) 0.686 1 

Congregibacter (0.79) 0.624 1 

Dinoroseobacter (0.839) 0.705 1 

Endoriftia (0.871) 0.758 1 

Erwinia (0.767) 0.589 1 

Erythrobacter (0.768) 0.589 1 

Ferrimonas (0.815) 0.664 1 

Francisella (0.753) 0.567 1 

Fulvimarina (0.806) 0.649 1 

Gluconobacter (0.81) 0.656 1 

Granulibacter (0.82) 0.673 1 

Hirschia (0.842) 0.710 1 

Hoeflea (0.827) 0.684 1 

Hyphomonas (0.883) 0.780 1 

Idiomarina (0.819) 0.670 1 

Kangiella (0.918) 0.842 1 

Ketogulonicigenium (0.769) 0.591 1 

Loktanella (0.834) 0.695 1 

Maricaulis (0.818) 0.669 1 
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Mariprofundus (0.815) 0.664 1 

Maritimibacter (0.801) 0.641 1 

Neptuniibacter (0.847) 0.717 1 

Novosphingobium (0.778) 0.605 1 

Oceanibulbus (0.863) 0.745 1 

Oceanicola (0.789) 0.622 1 

Octadecabacter (0.783) 0.612 1 

Parvularcula (0.8) 0.640 1 

Pelagibaca (0.797) 0.635 1 

Phaeobacter (0.822) 0.676 1 

Photobacterium (0.783) 0.613 1 

Photorhabdus (0.764) 0.583 1 

Pseudovibrio (0.827) 0.684 1 

Puniceispirillum (0.876) 0.767 1 

Reinekea (0.82) 0.672 1 

Roseibium (0.806) 0.649 1 

Saccharophagus (0.828) 0.685 1 

Sagittula (0.831) 0.690 1 

Sodalis (0.761) 0.579 1 

Sulfitobacter (0.805) 0.648 1 

Teredinibacter (0.825) 0.680 1 

Thalassobium (0.811) 0.658 1 

Oceanicaulis (0.811) 0.658 1 
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Table 3.3 Indicator species for sediments deposited before the establishment of modern-day 

salinity at 5.2 ka with specificity (A-value) vs. sensitivity (B-value) of each indicator species.  

Genus (r-value) A B 

Acaryochloris (0.778) 0.6057 1 

Acetivibrio (0.851) 0.7236 1 

Acetohalobium (0.899) 0.8074 1 

Acidaminococcus (0.878) 0.7706 1 

Acidimicrobium (0.859) 0.7372 1 

Actinosynnema (0.801) 0.641 1 

Aeromicrobium (0.818) 0.6685 1 

Akkermansia (0.81) 0.6562 1 

Alkaliphilus (0.852) 0.7251 1 

Aminobacterium (0.881) 0.7763 1 

Aminomonas (0.878) 0.7703 1 

Anaerococcus (0.854) 0.7293 1 

Anaerofustis (0.863) 0.745 1 

Anaerostipes (0.862) 0.7432 1 

Anaerotruncus (0.873) 0.7613 1 

Bdellovibrio (0.77) 0.5927 1 

Bifidobacterium (0.855) 0.7318 1 

Blastopirellula (0.874) 0.7642 1 

Brevibacterium (0.805) 0.6473 1 

Butyrivibrio (0.853) 0.7271 1 

Caldicellulosiruptor (0.884) 0.781 1 

Carnobacterium (0.835) 0.697 1 

Catenulispora (0.824) 0.6784 1 

Cellulomonas (0.814) 0.6618 1 

Cellulosilyticum (0.845) 0.7145 1 

Clavibacter (0.834) 0.6958 1 

Collinsella (0.859) 0.7371 1 
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Conexibacter (0.839) 0.7034 1 

Coprothermobacter (0.898) 0.8071 1 

Crocosphaera (0.799) 0.6378 1 

Cyanobium (0.78) 0.609 1 

Cyanothece (0.783) 0.6135 1 

Cylindrospermopsis (0.82) 0.6721 1 

Xylanimonas (0.817) 0.6674 1 

Denitrovibrio (0.824) 0.6794 1 

Dermacoccus (0.811) 0.657 1 

Desulfarculus (0.866) 0.7496 1 

Desulfatibacillum (0.861) 0.7421 1 

Desulfobacterium (0.827) 0.684 1 

Desulfococcus (0.853) 0.7279 1 

Desulfohalobium (0.836) 0.6987 1 

Desulfomicrobium (0.793) 0.6283 1 

Desulfuromonas (0.754) 0.5691 1 

Dethiobacter (0.89) 0.7923 1 

Dethiosulfovibrio (0.869) 0.7545 1 

Dorea (0.864) 0.7467 1 

Eggerthella (0.866) 0.7506 1 

Ethanoligenens (0.858) 0.7363 1 

Eubacterium (0.863) 0.7445 1 

Exiguobacterium (0.805) 0.6475 1 

Fervidobacterium (0.861) 0.7408 1 

Fusobacterium (0.865) 0.7482 1 

Geodermatophilus (0.794) 0.6303 1 

Heliobacterium (0.868) 0.7529 1 

Holdemania (0.854) 0.7301 1 

Ilyobacter (0.844) 0.712 1 

Janibacter (0.791) 0.6253 1 

Kineococcus (0.791) 0.6252 1 
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Kosmotoga (0.895) 0.8019 1 

Kribbella (0.8) 0.6407 1 

Lactobacillus (0.849) 0.7208 1 

Lactococcus (0.825) 0.6811 1 

Lawsonia (0.854) 0.7289 1 

Leptotrichia (0.849) 0.7211 1 

Megasphaera (0.892) 0.7962 1 

Methylacidiphilum (0.848) 0.7191 1 

Microcystis (0.828) 0.6851 1 

Victivallis (0.882) 0.7784 1 

Mitsuokella (0.878) 0.7717 1 

Mycoplasma (0.864) 0.7457 1 

Natranaerobius (0.873) 0.7625 1 

Nocardiopsis (0.779) 0.6066 1 

Oscillochloris (0.885) 0.7824 1 

Parachlamydia (0.872) 0.7595 1 

Peptoniphilus (0.88) 0.7746 1 

Planctomyces (0.853) 0.728 1 

Prochlorococcus (0.811) 0.6581 1 

Prosthecochloris (0.796) 0.6338 1 

Pseudoramibacter (0.903) 0.8153 1 

Raphidiopsis (0.792) 0.6272 1 

Ruminococcus (0.872) 0.7611 1 

Saccharomonospora (0.796) 0.633 1 

Sebaldella (0.841) 0.7066 1 

Selenomonas (0.864) 0.7464 1 

Slackia (0.866) 0.7491 1 

Spirochaeta (0.853) 0.727 1 

Stackebrandtia (0.798) 0.637 1 

Staphylococcus (0.825) 0.6809 1 

Streptococcus (0.845) 0.7144 1 
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Syntrophomonas (0.872) 0.7603 1 

Syntrophothermus (0.903) 0.8147 1 

Thermanaerovibrio (0.885) 0.7825 1 

Thermoanaerobacter (0.882) 0.778 1 

Thermobifida (0.811) 0.6573 1 

Thermobispora (0.826) 0.6815 1 

Thermomonospora (0.798) 0.6374 1 

Thermosediminibacter (0.886) 0.7856 1 

Thermosipho (0.871) 0.7589 1 

Turicibacter (0.83) 0.6894 1 

Veillonella (0.866) 0.75 1 

Verrucomicrobium (0.816) 0.6659 1 
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4.1 ABSTRACT 

The vertical zonation of subseafloor archaeal communities is thought to be primarily 

controlled by in situ environmental conditions such as the availability of electron donors and 

sediment lithology. Yet recent studies suggest that a subset of sedimentary archaea reflect 

changes in paleoenvironmental conditions. However, highly resolved temporal records of 

subsurface Archaea and paired paleoenvironmental reconstructions are needed to 

substantiate this claim. Here a highly resolved 16S profiling of subseafloor archaeal 

communities was performed in up to 139 kyr-old sediments of the northern Red Sea covering 

the last six Marine Isotope Stages (MIS) when alternating glacial low stands and interglacial 

highstands caused drastic changes in sea level and salinity in the Red Sea. The results 

revealed a strong significant response of subseafloor archaeal communities to changes in 

paleodepositional conditions associated with MIS stages and their transitions and only a 

moderately significant response to changes in sediment lithology. Even at phylum level it 

appeared that Crenarchaeota predominated in sediments deposited during glacial periods 

(MIS6, MIS4, MIS3 and MIS2) while Euryarchaeota predominated during major interglacials 

(Eemian and the Holocene). This shows that a substantial part of the subseafloor archaeal 

communities would have been present at the time of deposition and therefore their vertical 

distribution revealed a strong correlation with paleoceanographic changes.  
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4.2 INTRODUCTION 

Subseafloor sediments sediments host ~2.9 × 1029 prokaryotic cells, equivalent to 0.18–3.6% 

of the total living biomass on the planet (Kallmeyer, Pockalny et al. 2012) with Archaea 

accounting for 37.3% of that population (Hoshino and Inagaki 2018). These subsurface 

microbial communities are generally structured through in situ environmental conditions 

such as the availability of electron acceptors and donors, porosity and sediment lithology 

(Cragg et.al., 2000; Kallmeyer et al. 2012; Parkes et.al., 2014; Orsi et al. 2017). Archaea are 

considered active members of subseafloor communities and to play key roles in carbon 

assimilation, mineralization, and precipitation (Berg et al., 2010; Offre et al., 2013), as well as 

in nitrogen- (Cabello et al., 2004; Wuchter et al., 2006), and sulfur cycling (Offre et al., 2013). 

Yet, recent studies have shown that a subset of subseafloor microbial communities were 

present at the time of deposition and formed a genetic archive originally referred to as “the 

Paleome” and reflect the paleo-depositional environment (Inagaki et al. 2005). For example, 

two very different geohydrological settings (grayish pelagic clays and volcanic ash layers) in 

coastal sediments of the Sea of Okhotsk (Japan) contained drastically different archaeal 

communities and that the differences persisted through a series of layers spanning 

approximately 100,000 years. It was concluded that the coastal subseafloor sediments acted 

as a reservoir of microbial diversity and that these reservoirs maintain their genetic 

properties over long periods of time although it remained speculative if these communities 

were alive or represented dead relicts (Inagaki et al., 2003). A recent high sampling resolution 

metagenomic survey revealed that a fraction of subseafloor bacterial communities in the 

northeastern Arabian Sea subsisted through fermentation but originated from the overlying 

water column during the last glacial interglacial cycle where they were involved in 

denitrification during periods of strong oxygen minimum zone conditions (Orsi et al., 2017). 

It was concluded that this fraction of the subseafloor microbiome underwent weak postburial 

selection and therefore formed a living long-term genomic record of the paleodepositional 

environment. A similar scenario may explain why subseafloor archaeal communities may also 

form a long-term genomic record of past environmental changes. Other examples of archaeal 

paleomes include Holocene variations in archaeal community composition as a result of 

changes in lake water temperature and duration of lake ice cover in late glacial lake 

sediments of Hässeldala Port (Sweden) (Ahmed, Parducci et al. 2018), and sedimentary 

archaea from lacustrine deposits of Laguna Potrok Aike, Argentina reflecting 

paleoenvironmental changes during the last glacial-interglacial cycle since 51 ka BP 

(Vuillemin, Ariztegui et al. 2016). Furthermore, some of the sedimentary archaeal DNA can 
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be used to analyse for the indications of paleoenvironmental variations as demonstrated by 

the recent archaeal amoA gene survey that reflects historic nutrient level and salinity 

fluctuations in Qinghai Lake, Tibetan Plateau (Yang, Jiang et al. 2015) 

To further explore the global potential of sedimentary archaea to record changes in the 

paleodepositional environment, a highly-resolved 16S rDNA survey of subseafloor archaeal 

communities was performed in the northern the Red Sea sediments paired with 

paleoenvironmental proxies.  

The Red Sea is a semi-enclosed, elongated warm body of water. Its northern end is bifurcated 

into the Gulf of Aqaba and the Gulf of Suez while at southern end it is connected via the Bab-

el-Mandeb strait to the Gulf of Aden, which connects to the Indian Ocean (Rasul et al., 2015). 

Strong excess of evaporation over freshwater input into the Red Sea results in a net annual 

water deficit of ~2m (Morcos 1970). The Red Sea has experienced dramatic changes in sea 

level throughout the last and penultimate glacials. Sea level highstands occurred during the 

marine isotope stage 5 (MIS5e: last interglacial or Eemian), which started with the 

termination of the penultimate glacial maximum (MIS6) (Grant et al., 2014) and during the 

Holocene (MIS1). Limited exchange of the Red Sea with the open ocean led to extremely 

saline conditions during times of sea level lowstands in the last and penultimate glacials 

(Rohling, 1994; Fenton et al., 2000). During MIS6 and MIS2 (last glacial maximum; LGM) the 

Red Sea levels reached its minimum at 135 and 20 ka BP respectively (Grant et al., 2014), 

which caused the reduction in exchange flow through the Bab-el-Mandab strait raising 

salinities to 55 psu (Hemleben et al., 1996). This high salinity prevented foraminifera from 

growing and reproducing as evident from the absence of their microfossils in the so-called a-

planktonic intervals observed in the Red Sea sediments (Fenton et al., 2000). These drastic 

paleoceanographic changes make the Red Sea an ideal setting to study associated temporal 

changes in subseafloor archaeal communities.  

4.3 MATERIALS AND METHODS 

4.3.1 Sample collection and storage 

A 4.4-m-long gravity core spanning 139 kyr of deposition was obtained during the RV Aegaeo 

cruise in 2014 from the Northern Red Sea (26.96 N, 34.89 E) at 1200m depth. On board, the 

core sections were split in half and 91 one-cm-intervals were sub-sampled aseptically to 

prevent (cross) contamination with foreign DNA (Coolen, Saenz et al. 2009). Samples for DNA 

extraction were stored in liquid nitrogen during the cruise and shipped on dry ice to the 

Woods Hole Oceanographic Institution (WHOI). The remaining sampled and archived core 
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halves were shipped refrigerated to WHOI. From the sampled core the remainder of the 87 

corresponding intervals were sub-sampled and transferred into pre-combusted glass jars and 

freeze-dried for TEX86 paleothermometry, and for geochemical analysis on bulk organic 

matter and on foraminiferal microfossils. The intact archived half was used for XRF analysis. 

4.3.2 Age model  

Ten one-cm-intervals were selected for 14C AMS dating on foraminifera shells or from bulk 

organic matter from the a-planktonic intervals at the National Ocean Sciences Accelerator 

Mass Spectrometry (NOSAMS) Facility at WHOI. An age model for the core was then 

developed by calibrating the radiocarbon dates to calendar years B.P. (1950) with Calib 5.0.1 

(Stuiver and Reimer 1993) using the INTCAL04 calibration curve (Reimer, Baillie et al. 2004). 

4.3.3 Geochemistry 

Titanium and calcium content was measured with an ITRAXTM micro-XRF scanner, using a 

molybdenum x-ray tube at an exposure time of 10 s per measurement and a step-size of 200 

µm to allow for high resolution analysis of bulk chemistry (Coolen, Saenz et al. 2009). The 

downcore variability in Ti/Ca served as a proxy for terrestrial vs. marine input. Total organic 

carbon, δ13C, δ15N, and C/N were analyzed from freeze-dried subsamples from the same 91 

one-cm-thick sediment intervals used for DNA analysis using a Carlo Erba/Fisons 1108 flash 

elemental analyzer equipped with a Costech “ZeroBlank” air-excluding carousel and 

conditions described previously (Orsi, Coolen et al. 2017).  

4.3.4 TEX86 paleothermometry 

Total lipids were extracted using a Dionex Accelerated Solvent Extractor (ASE 350) in 9:1 

(dichloromethane: methanol, v/v) and then separated into neutral (eluent: 2:1 

dichloromethane: isopropanol, v/v) and acid (eluent: 4% acetic acid in DCM) fractions over 

NH2 gel. The neutral fraction was further partitioned into hydrocarbon (eluent: hexane), 

ketone (eluent: dichloromethane), and polar (eluent: methanol) fractions over silica gel. The 

polar fractions containing the GDGTs were then analyzed by high performance liquid 

chromatography-mass spectroscopy (HPLC-MS) on an Agilent 1260 HPLC/6120 MSD at the 

Woods Hole Oceanographic Institution (WHOI) according to the method of Schouten et al., 

(2007), which uses a Prevail Cyano column (150 x 2.1 mm, 3 um) to separate the GDGTs and 

analyzes the compounds in single ion monitoring mode. A synthetic C46 GDGT standard 

(Huguet et al., 2006) was added to each sample in order to quantify the concentrations of 

GDGTs. All samples were analyzed in duplicate and average laboratory precision was 0.002 
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TEX86 units (1δ). TEX86 values were converted to SST using the BAYSPAR SST calibration 

(Tierney and Tingley 2014; Tierney and Tingley 2015). 

4.3.5 DNA extraction 

Sediment samples 2 cm thick were sampled aseptically and DNA was extracted inside the 

clean lab at WHOI as described previously (Coolen, Orsi et al. 2013). Co-extracted PCR-

inhibiting humic acids and other contaminants were efficiently removed from the 

concentrated extract using the PowerClean® Pro DNA Clean-up Kit (MoBio). Genomic DNA 

extracted from all 100 sediment intervals spanning the last 139,000 years of deposition 

served as template for subsequent PCR amplification of archaeal 16S rDNA and Illumina 

MiSeq sequencing. The exact same procedures were performed in triplicate without the 

addition of sediment as a control for contamination during extraction and purification of the 

sedimentary DNA. Aliquots of these “extraction blanks” were treated the same way as 

samples in further processes. 

4.3.6 rRNA gene amplification, quantification, and bioinformatic analysis 

DNA was quantified fluorometrically using Quant-iT PicoGreen dsDNA Reagent (Invitrogen). 

Archaeal 16S rRNA genes were amplified using the Domain-specific primers Arch21F (5′-TTC 

CGG TTG ATC CYG CC-3′) (Delong 1992) and Arch915r (5′-GTG CTC CCC CGC CAA TTC-3′) (Stahl 

1991) and then re-amplified (nested PCR) prior to sequencing using the universal primers for 

the V4 region after (Caporaso, Lauber et al. 2012). qPCR was performed using a SYBR®Green 

I nucleic acid stain (Invitrogen) and using a Realplex quantitative PCR system (Eppendorf, 

Hauppauge, NY). The annealing temperature was set to 63.5 °C and reactions were stopped 

in the exponential phase. These libraries were sequenced on an Illumina MiSeq sequencing 

using the facilities of the W.M. Keck Center for Comparative and Functional Genomics, 

University of Illinois at Urbana-Champaign, IL, USA. Archaeal libraries resulted in 30 million 

OTUs. These sequences were processed in QIIME (Caporaso, Kuczynski et al. 2010, Orsi, 

Coolen et al. 2017) and a resulting OTU table was obtained using settings as described 

elsewhere (Orsi, Coolen et al. 2017). Singletons were removed from the dataset. Ecological 

statistics were calculated in R using a Bray Curtis distance in the Vegan package 

(https://cran.r-project.org/web/packages/vegan/index.html). Analysis of Similarity 

(ANOSIM) was carried out using 999 permutations with a Bray Curtis distance (Clarke 1993). 

Indicator Species Analysis (ISA) (Dufrene & Legendre 1997) was performed in the indicspecies 

package (De Caceres, Legendre et al. 2012) and significance was tested with a nonparametric 

procedure involving the Monte-Carlo permutation procedure with 999 permutations. 
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4.4 RESULTS 

4.4.1 Chronology of the core and paleo-environment 

The age model used to establish the timing of depositional and environmental changes is 

based on radiocarbon dating of foraminiferal carbonates. The core spans 139 kyr of 

deposition spanning the Holocene (MIS1; last 10 ka), the deglacial and last glacial maximum 

(LGM) (MIS2; ~10-29 ka), the glacial MIS3 (~29-53 ka BP) and MIS4 (~53-72 ka BP), the 

alternate warmer and cooler climates of MIS5 (~72-127 ka BP) including the previous 

interglacial  MIS5e (Eemian; 120-127 ka BP), and part of the previous glacial (MIS6; ~127-139 

ka BP)(Fig. 1). XRF-Ca counts/s were above 40000 throughout the core except during the 

most recent a-planktonic phase that started during mid-MIS3 at 40 ka BP and lasted until the 

onset of the Holocene at 10 ka BP (Fig. 4.1). Foraminifera tests were absent from this a-

planktonic phases as well as during the previous a-planktonic interval at the end of MIS6, 

which explains the absence of δ18O data from foraminifera. Foraminiferal δ18O values were 

most depleted during the Holocene and most enriched during MIS6 (Fig. 4.1). XRF Titanium 

used as a proxy for terrestrial input reached its maxima (3000 counts/s) during the recent a-

planktonic phase but remained below 1000 counts/s in the remainder of the core. The total 

organic carbon (TOC) content and %N co-varied throughout the core with maximum values 

during the most recent a-planktonic (%TOC=1.5, %N = 0.15) and the short a-planktonic 

interval during MIS 6 (TOC=0.7, %N = 0.07) (Fig. 4.1). TOC and %N values were only ~0.15% 

and 0.01% in the remainder of the record. TEX86 derived SST were lowest (below 16OC) during 

the glacial maxima of MIS2 and MIS6. SST increased to 22 OC with the onset of the Eemian 

(MIS5e- penultimate interglacial) at 130 kaBP and reached modern day levels (~26OC) during 

the peak Eemian at 123 to 119 kaBP. SST were also elevated (respectively 24 OC and 26 OC) 

during MIS5c (~96 ka BP) and MIS5a (~82 ka BP) and remained above 20 OC until MIS3 with 

the exception of short-term temperature declines to 18 OC and 17 OC at ~ 64 and 49 kaBP 

which correspond to the timing of Heinrich events H6 and H5a (Rashid, Hesse et al. 2003). 

During MIS3 a temperature drop occurred at ~38 kaBP which coincides with the timing of the 

H4 event (Schulz, von Rad et al. 1998). SST increased to 25 OC at ~ 31 kaBP and dropped 

drastically with onset of MIS2 to 16 OC and remained below 20 OC until ~17 kaBP, which marks 

the last glacial maximum (LGM). SST reached modern day levels with the onset of the 

Holocene at ~ 10 ka BP. δ13C values of bulk organic matter were most depleted (~21 ‰) 

during the a-planktonic intervals. Total DNA content is expressed as pg (g sediment)-1 and ng 

(g TOC)-1) showing an exponential decline of over four orders of magnitude during the first 

40 kyrs but remained relatively constant in sediments older than 40 ka (Fig. 4.1). 
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4.4.2 Down-core archaeal distribution 

After stringent removal of OTUs that also occurred in the sequenced controls, the genomic 

libraries of the sampled sediment intervals revealed a total of 4675 archaeal OTUs, mostly 

belonging to Crenarchaeota (3867 OTUs) and to a lesser extent Euryarchaeota (808 OTUs). 

Crenarchaeota comprised less than 40% of the total archaeal OTUs in sediments deposited 

during warm climate stages (Eemian, MIS5C, MIS5C, and the entire Holocene) and reached 

90-100% of total archaeal OTUs in glacial sediments. Crenarchaeotal OTUs belonged to 6 

main classes: Marine Benthic Group A (MBGA, 98 OTUs), Marine Benthic Group B (MBGB, 

607 OTUs), Miscellaneous Crenarchaeota group (MCG, 2633 OTUs), Marine Hydrothermal 

Vent Group (MHVG, 14 OTUs), Thaumarchaeota (452 OTUs) and Terrestrial Hot Spring 

Crenarchaeota Group (THSCG, 3 OTUs). MBGA contributed up to 4% to total crenarchaeotal 

abundance mainly in the Holocene sediments (Fig. 4.2). MBGB comprised >70% of 

Crenarchaeota during MIS6, MIS4, most of MIS3 and early MIS2 and less than 30% in MIS5. 

MBGB showed a distinct drop in abundance during H4 event at 39 ka BP. Their contribution 

was lowest in sediments spanning the LGM and deglacial and were not detected in the 

Holocene sediments (Fig. 4.2). The relative abundance of MCG followed the opposite trend 

of MBGB except for the early MIS5 including the Eemian and the Holocene where total 

crenarchaeota remained low. The majority of MCG were unclassified, except those belonging 

to the uncultivated orders B10 and pGrf_C26, which were especially abundant during glacial 

maxima (respectively up to 40% of MCG during MIS2 and up to 10% of MCG during MIS6) 

(Fig. 4.2). MHVG OTUs were only present during peak LGM at 24 ka BP and contributed up to 

2% to the total crenarchaeotal OTUs. Marine Thaumarchaeota were sporadically relatively 

abundant in sediments younger than 80 kyr (Fig. 4.2).  

Euryarchaeota represented 90 to 100% of total archaeal OTUs in sediments deposited during 

the warm intervals of MIS5 (Eemian, MIS5c, MIS5a) as well as in Holocene sediments. 

Euryarchaeotal OTUs belonged to mainly three classes – Thermoplasmata (465 OTUs), 

Methanobacteria (280 OTUs) and Deep Sea Euryarchaeotal Group (DSEG, 44 OTUs). 

Methanobacteria and Thermoplasmata were the most abundant Euryarchaeota in MIS5 

substages and the Holocene respectively. DSEG OTUs were only present during MIS2 and 

contributed less than 10% to total Euryarchaeota (Fig. 4.2).  

Figure 4.3 shows the relative abundance of classified Thermoplasmata at the family level. 

Methanomassilicoccaceae comprised between 70 to 100% of total Thermoplasmata in 

Holocene sediments. Deep Hydrothermal Vent Euryarchaeota Group 1 (DHVEG1) were the 
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most abundant classified Thermoplamata in MIS2 and with sporadic high relative abundance 

in MIS5 sediments. The Terrestrial Miscellaneous Euryarchaeota Group (TMEG) and 20c-4 

were only detected in MIS2 sediments where they comprised less than 0.2% of the total 

Thermoplasmata. Surface water Marine Group II OTUs were only detected (less than 0.3% of 

total Thermoplasmata) in Holocene sediments, while deep water Marine Group III OTUs 

maintained very low but continuous presence (max 0.01% of the total Thermoplasmata) 

throughout the core.  

4.4.3 Correlation between the paleodepositional environment and archaeal communities 

To characterize which factors influenced the changes in the subsurface archaeal community 

composition Non-Metric Multidimensional Scaling Analysis (NMDS) and Analysis of Similarity 

(ANOSIM) (Clarke 1993) was performed (Fig. 4.4). This analysis showed a moderate, but 

significant response of the sedimentary archaeal communities to changes in sediment 

lithology (R=0.48; P=0.001) and a strong significant response to changes in paleodepositional 

conditions associated with MIS stages and their transitions (ANOSIM; R=0.73; P=0.001) (Fig. 

4). Based on this outcome, an indicator species analysis (ISA) was then performed to identify 

which OTUs were significant indicators of individual MIS.  

Canonical Correspondence Analysis (CCA) (Fig. 4.5) further revealed that variations in 

archaeal species abundance in sediments deposited during the Holocene was influenced 

strongly with SST and δ13C. In sediments deposited during the aplanktonic interval-2 (12 - 27 

ka BP), nitrogen and TOC contents revealed a strong correlation while terrigenous titanium 

content revealed a weaker but significant (p<0.05) correlation with archaeal species 

abundance. Calcium content was the key influential factor in Eemian sediments.  

4.4.4 Indicator species analysis (ISA) 

ISA revealed a total of 278 indicator species for all MIS combined. These OTU indicators are 

enlisted in tables 4.1 to 4.6 along with their specificity (A) and sensitivity (B) values. A-value 

of 1 implies that the indicator species occurs in only one sample category, while a B-value of 

1 indicates that this species occurs in all samples of that category. The Holocene (MIS1) 

yielded total of 85 indicator OTUs with 44 crenarchaeotal OTUs and 41 euryarchaeotal OTUs. 

These mainly comprised of MBGA and Thaumarchaeota (Crenarchaeota with A values > 0.9 

and B values > 0.5) and euryarchaeotal Thermoplasmata (37 OTUs with A and B >0.9) and 

methanobacteria (4 OTUs with A values > 0.9 and B=1) (Table 4.1). The largest number of 

indicator species were identified in MIS2 sediments: 129 crenarchaeotal OTUs 
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(predominantly MCG) and 18 euryarchaeotal OTUs (predominantly Thermoplasmata). All 

indicator OTUs of MIS2 had A values > 0.65 and B values > 0.5 (Table 4.2).  

MIS3 and MIS4 revealed 3 and 10 indicator OTUS respectively all belonging to crenarchaeotal 

MBGB group with A values > 0.8 and B values > 0.55 (Table 4.3, 4.4). 23 OTUs with A and B 

values > 0.6 were indicative of MIS5. Methanobacteria solely dominated these indicator 

OTUs with 18 OTUs, followed by 3 OTUs of MBGB and 2 OTUs of MCG (Table 4.5). MIS6 

revealed 10 indicator OTUs belonging mainly to MBGB (8 OTUs) (Table 4.6).  

4.5 DISCUSSION 

4.5.1 Archaeal distribution pattern 

MCG were among the most abundant group of Archaea in the sapropel interval deposited 

during MIS2. This interval differs from the carbon-lean MCG-rich deeper sediments by the 

relatively high abundance of the uncultivated B10 group. Inferring metabolic properties 

based on 16S-inferred taxonomic relationships is highly speculative, but it is possible that 

these MCG are involved in the degradation of labile organic matter in the MIS2 sapropelic 

interval. For example, single cell sequencing of MCG in marine sediments revealed the 

presence of genes encoding extracellular protein-degrading enzymes such as gingipain and 

clostripain (Lloyd, Schreiber et al. 2013). The Thermoplasmata group DHVEG-1, commonly 

found in hydrothermal vent systems, was also abundant in the MIS2 sapropel. Members of 

this group are known to be able to degrade detrital proteins in marine sediments using 

extracellular protein degrading enzymes (Lloyd, Schreiber et al. 2013). The presence of easily 

biodegradable organic matter has previously been reported from late-Pleistocene 

Mediterranean sapropels (Coolen et al., 2002). The timing of the sapropel coincides with the 

glacial lowstand, and the subsequent increased salinity that resulted in the deposition of the 

a-planktonic interval. The simultaneous increase in Titanium indicates an increased 

terrigenous input at that time, which is also reflected by the distinct presence of the 

terrestrial miscellaneous Euryarchaeota group (TMEG).  

MBGB followed the opposite trend of MCG except for the sediments deposited early during 

MIS5 including the Eemian and the Holocene. MBGB have been found to be abundant at the 

Sulfate Methane Transition Zone (SMTZ) in other sediment records (Sorensen and Teske 

2006), but in the Red Sea sediments this group shows multiple relative abundance maxima 

in intervals older than MIS2. They have been shown to prefer eutrophic subsurface sediments 

(Durbin and Teske 2012) whereas in our core, their abundance does not correlate with TOC 

content (R= 0.17; P= 0.145). Furthermore, MCG and MBGB deposited during the aplanktonic 
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interval (12.3-27.8ka) were influenced by nitrogen content and increased total organic 

carbon as shown in Fig. 4.5 which is explained by organic matter degrading activity of both 

these groups as described above. Crenarchaeotal MBGA have been found in oxygen 

minimum zone (OMZ) located sediments (Xia, Guo et al. 2017). In the Red Sea core they 

comprised up to 4% of total archaea and only occurred in the Holocene interval. The 

continuous dominant co-presence of strictly anaerobic methanogenic archaea 

(Thermoplasmata; Methanomassiliicoccaceae) in the Holocene sediments suggests a 

completely anaerobic lifestyle of the MBGA. Members of Methanomassiliicoccaceae produce 

methane in a distinct way: They use H2 as electron donor but are not able to reduce CO2 

directly to CH4 (Dridi, Fardeau et al. 2012). Instead, H2 is used to reduce methanol and 

methylamines for methanogenesis (Lang, Schuldes et al. 2015) and they may form a 

syntrophic relation with bacteria (Offre, Spang et al. 2013) in the Red Sea subsurface 

sediments that produce molecular hydrogen and fermentative by-products. MBGA could be 

essential partners in this syntrophic relationship. Hydrogenotrophic methanogenic 

Methanobacteria prevailed in the majority of MIS5 sediments. These methanogens are likely 

to be vertically separated from Methanomassiliicoccaceae since Methanobacteria can 

reduce CO2 directly to methane or reduce formate in the absence of CO2 to methane. The 

MCG that prevailed in this organic-lean section of the core are likely to differ in their 

metabolic capabilities from the phylogenetically different MCG counterparts in the MIS2 

sapropel. In the carbon-lean interval, MCG may be incorporating CO2 into bicarbonates as a 

part of dark carbon fixation. This ability was shown in lab experiments through cloning of the 

functional gene acetyl-CoA carboxylase (accC) from MCG and isotopic labelling experiments 

with 14C-bicarbonate (Lliros, Alonso-Saez et al. 2011).Methanobacterial abundance is 

influenced by calcium content in the sediments (Fig. 4.5) which needs more investigation. 

4.5.2 Role of paleodepositional environment in shaping the subseafloor archaeal 

microbiome. 

The downcore variations in relative abundance and diversity of the different archaeal taxa 

cannot entirely be explained by the metabolic potential of the presumable living and active 

archaeal groups as described above. If this was the case, one would expect to find a strong 

correlation with the downcore distribution of archaeal communities and lithology type. 

While this correlation was moderately strong (ANOSIM; P<0.05; R=0.48), a strong correlation 

(R=0.73) was observed between the downcore distribution of archaeal communities and the 

marine isotope stages and their transitions since the last 140 kyr when lithologies did not 

necessarily co-vary. This implies that a larger fraction of the subseafloor archaeal 
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communities was selected by changes in paleoenvironmental conditions that prevailed in the 

overlying water column at the time of deposition. Even at phylum level, Crenarchaeota were 

shown to predominate in sediments deposited during glacial periods (MIS6, MIS4, MIS3 and 

MIS2) while Euryarchaeota predominated during major interglacials (Eemian and the 

Holocene). A paleodepositional selection of subseafloor archaeal communities has also been 

reported from other oceanic settings. For example, archaeal communities were found to 

differ significantly in coastal sediments of the Sea of Okhotsk (Japan) that harboured different 

geohydrothermal horizons (Inagaki, Suzuki et al. 2003), and archaeal communities in late 

glacial lake sediments of Hässeldala Port (Sweden) correlated with past changes in lake water 

temperature and duration of lake ice cover rather than with sediment lithology (Ahmed, 

Parducci et al. 2018).  

In addition, strong correlations were also observed between the vertical distribution of 

subseafloor archaea and quantitative paleoenvironmental proxy measurements. Notably, 

past SST played a significant role in shaping Holocene communities which were mainly 

represented by Thermoplasmata. An increased abundance of Thermoplasmata with with 

elevated SST is also evident from elevated 16S rRNA gene copy numbers during peak MIS5c 

at 100ka. Total DNA content declined two orders of magnitude in the first 30,000 year and 

then remained constant for the rest of the core. A similar trend was observed for the number 

of archaeal 16S copies per gram of sediment with lowest copy numbers during the early stage 

of the a-planktonic interval just prior to MIS2. The fact that irrespective of TOC content, both 

total DNA content and archaeal copy numbers did not decrease exponentially with depth and 

age of the sediments, indicates that a substantial fraction of archaea may be seeded from 

the overlying water column and that archaeal activities in sediments older than 30 kyrs are 

growth limited undergoing weak postburial selection (Orsi et al., 2017). This could explain 

their strong correlation with the different marine isotope stages and their transitions. 

Archaeal groups identified through sedimentary 16S profiling that are likely not to be 

indigenous to the sediments include the dominant crenarchaeotal class Thaumarchaeaota, 

which comprises known ammonia oxidizing archaea (AOA) and are important primary 

producers in the ocean (Wuchter et al., 2006) as well as in oxygenated marine surface 

sediments (Orsi, 2018). These are strictly aerobic archaea and have never been observed 

living under anaerobic conditions and hence should represent a signal from the past. Other 

groups normally found in marine waters include the Marine Group II Euryarchaeota, which 

are the the most abundant archaea in surface waters (Zhang and Rodriquez-Valera, 2015), 

were recovered at low abundance only in the Holocene sediments. One could argue that the 
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absence of their DNA in the older sediments is a result of DNA degradation, but increased 

DNA degradation with sediment depth would not have resulted in a continuous low relative 

abundance of Marine Group III Euryarchaeota, normally found in low abundance in mid to 

deep oceanic waters (Zhang and Rodriquez-Valera, 2015), throughout the sediments record. 

In addition, the co-occurrence of TMEG during increased terrestrial input during MIS2 

indicates a paleoenvironmental selection from distant sources. 

4.6 CONCLUSIONS 

In summary, a highly resolved 16S survey combined with paleo-oceanographic proxy data 

using well dated sediments from the norther Red Sea suggest that sedimentary DNA 

originates from both active archaeal communities especially in sediments younger than 30 

kyrs and a greater contribution of communities that underwent weak postburial selection in 

older sediments. Active processes may include methylotrophic methanogenesis by 

Methanomassiliicoccaceae in the Holocene Sahara dust sediments, proteolytic degradation 

in the MIS2 sapropel possibly by MCG and MHVG, dark carbon fixation in MIS3, MIS4 and late 

MIS5 carbonate oozes by different MCG, and formatotrophic methanogensis in MIS5 by 

Methanobacteria. Evidence that not all DNA was derived from indigenous sedimentary 

Archaea was provided by the presence of ancient DNA from allochthonous sources – 

Thaumarchaeota, MGII and MGIII stemming from the overlying water column at the time of 

deposition as well as terrestrial derived TMEG. Since many of the archaeal groups represent 

uncultivated groups, future single-cell genomics as well as metatranscriptomic surveys will 

be required to better elucidate the activity and origin of subseafloor archaea and to increase 

our understanding of their possible relation to the paleodepositional environment and their 

suitability as a proxy for past environmental conditions and biogeochemical cycling 

processes. 
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4.7 FIGURES 

 

Figure 4.1 Geochemical proxies (a) Calcium and (b) Titanium XRF profiles, (c) TOC content in 

Black vs %N record in grey (d) foraminiferal δ18O record (e) TEX86 derived SST profile  (f) 

δ13C content (g) Total DNA content obtained per gram of sediment (black) vs per gram of TOC 

(red).  
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Figure 4.2 Total archaeal distribution throughout the core. (a) Archaeal 16SV4 copies per 

gram of sediment (black) vs per gram of TOC (grey), (b) Total crenarchaeota. Relative 

abundance of crenarachaeotal groups (c) Marine Benthic Group A (d) Marine Benthic Group 

B (e) Marine Crenarchaeota Group (f) Marine Hydrothermal Vent Group (g) Thaumarchaeota 

(h) Terrestrial Hot Spring Crenarchaeota Group, (i) distribution of total Eukaryota, relative 

abundance of Euryarchaeotal groups (j) Thermoplasmata (k) Mathanobacteria and (l) Deep 

Sea Euryarchaeota group. 
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Figure 4.3 Relative abundance of Thermoplasmata groups (a) Methanomassilicoccaceae (b) 

Deep Hydrothermal Vent Euryarchaeotal Group-1 (c) uncultured group 20c-4 (d) Terrestrial 

Miscellaneous Euryarchaeota group (e) Marine group II and (f) Marine group III. 
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Figure 4.4 NMDS analysis of community compositions of total archaea in two categories. 

NMDS stress was < 0.05 in all the analyses. R value and P value of each NMDS analysis are 

indicated at upper right corner. P value indicates significance levels, while R value denotes 

the strength of the analysed factors on the samples. R value close to 1 indicates high 

separation between treatment samples, while R value close to 0 indicates no separation. 

Axes in NMDS are arbitrary. 
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Figure 4.5 Canonical Correspondence Analysis (CCA) plot showing the relationship between 

archaeal abundance and environmental proxies. Green lables indicate stronger correlation 

while red lables indicate weak correlation. Axes in CCA are arbitrary. 

 

 

 

 

 

 

 

 

 

 



107 
 

4.8 TABLES 

Indicator species analysis for sediments deposited during different MIS with specificity (A-

value) vs. sensitivity (B-value) of each indicator species. A-value of 1 indicates that the 

indicator species occurs in only one indicator category tested, while a B-value of 1 indicates 

that this species occurs in all samples of that category. Species names are written in the 

format “Taxa (r-value)”. 

Table 4.1 Indicator species for sediments deposited during MIS1 

Phylum; class; OTUs (stat value) A value B value 

Crenarchaeota; Aigarchaeota; 20338 (0.707) 1 0.5 

Crenarchaeota; MBGA; 11007 (0.707) 1 0.5 

Crenarchaeota; MBGA; 12510 (0.816) 1 0.6667 

Crenarchaeota; MBGA; 12960 (0.913) 1 0.8333 

Crenarchaeota; MBGA; 1385 (0.803) 0.9665 0.6667 

Crenarchaeota; MBGA; 14555 (0.871) 0.9103 0.8333 

Crenarchaeota; MBGA; 18143 (0.913) 0.9994 0.8333 

Crenarchaeota; MBGA; 2000 (0.707) 1 0.5 

Crenarchaeota; MBGA; 20466 (0.707) 1 0.5 

Crenarchaeota; MBGA; 2805 (0.707) 1 0.5 

Crenarchaeota; MBGA; 3203 (0.999) 0.9984 1 

Crenarchaeota; MBGA; 4357 (0.993) 0.9854 1 

Crenarchaeota; MBGA; 4598 (1) 0.9992 1 

Crenarchaeota; MBGA; 591 (0.707) 1 0.5 

Crenarchaeota; MBGA; 7635 (0.996) 0.9929 1 

Crenarchaeota; MBGA; 7886 (0.707) 1 0.5 

Crenarchaeota; MBGA; 8346 (0.816) 1 0.6667 

Crenarchaeota; MBGA; 8918 (0.694) 0.962 0.5 

Crenarchaeota; MBGA; 9069 (0.7) 0.9808 0.5 

Crenarchaeota; MBGA; 9243 (0.882) 0.933 0.8333 

Crenarchaeota; MCG; 11472 (0.816) 0.9995 0.6667 

Crenarchaeota; MCG; 11969 (0.707) 1 0.5 

Crenarchaeota; MCG; 12538 (0.993) 0.9869 1 

Crenarchaeota; MCG; 1439 (0.913) 1 0.8333 

Crenarchaeota; MCG; 14633 (0.991) 0.9818 1 
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Crenarchaeota; MCG; 16372 (0.793) 0.9424 0.6667 

Crenarchaeota; MCG; 17420 (0.707) 1 0.5 

Crenarchaeota; MCG; 17707 (1) 1 1 

Crenarchaeota; MCG; 4052 (0.913) 1 0.8333 

Crenarchaeota; MCG; 8018 (1) 1 1 

Crenarchaeota; MCG; 8117 (0.996) 0.9913 1 

Crenarchaeota; Thaumarchaeota; 10305 (0.816) 0.998 0.6667 

Crenarchaeota; Thaumarchaeota; 1066 (0.707) 1 0.5 

Crenarchaeota; Thaumarchaeota; 12819 (0.816) 1 0.6667 

Crenarchaeota; Thaumarchaeota; 13065 (0.805) 0.9717 0.6667 

Crenarchaeota; Thaumarchaeota; 17683 (0.707) 1 0.5 

Crenarchaeota; Thaumarchaeota; 2449 (0.91) 0.9942 0.8333 

Crenarchaeota; Thaumarchaeota; 4102 (0.707) 1 0.5 

Crenarchaeota; Thaumarchaeota; 4173 (0.707) 1 0.5 

Crenarchaeota; Thaumarchaeota; 5041 (0.816) 1 0.6667 

Crenarchaeota; Thaumarchaeota; 5083 (0.806) 0.9754 0.6667 

Crenarchaeota; Thaumarchaeota; 5791 (0.707) 1 0.5 

Crenarchaeota; Thaumarchaeota; 6550 (0.851) 0.8689 0.8333 

Crenarchaeota; Thaumarchaeota; 8760 (0.707) 1 0.5 

Euryarchaeota; Methanobacteria; 13084 (0.707) 1 0.5 

Euryarchaeota; Methanobacteria; 2355 (0.707) 1 0.5 

Euryarchaeota; Methanobacteria; 5923 (0.707) 1 0.5 

Euryarchaeota; Methanobacteria; 893 (0.999) 0.9977 1 

Euryarchaeota; Thermoplasmata; 10668 (0.995) 0.9905 1 

Euryarchaeota; Thermoplasmata; 11010 (1) 1 1 

Euryarchaeota; Thermoplasmata; 11591 (0.913) 1 0.8333 

Euryarchaeota; Thermoplasmata; 11771 (1) 1 1 

Euryarchaeota; Thermoplasmata; 13201 (0.99) 0.9808 1 

Euryarchaeota; Thermoplasmata; 13547 (0.79) 0.9371 0.6667 

Euryarchaeota; Thermoplasmata; 14030 (0.987) 0.974 1 

Euryarchaeota; Thermoplasmata; 1485 (0.913) 1 0.8333 

Euryarchaeota; Thermoplasmata; 1516 (0.794) 0.9459 0.6667 

Euryarchaeota; Thermoplasmata; 16188 (0.904) 0.9808 0.8333 



109 
 

Euryarchaeota; Thermoplasmata; 16689 (0.891) 0.9534 0.8333 

Euryarchaeota; Thermoplasmata; 17052 (0.967) 0.9346 1 

Euryarchaeota; Thermoplasmata; 17201 (0.913) 1 0.8333 

Euryarchaeota; Thermoplasmata; 1789 (0.889) 0.9478 0.8333 

Euryarchaeota; Thermoplasmata; 18051 (0.913) 1 0.8333 

Euryarchaeota; Thermoplasmata; 18385 (0.994) 0.9875 1 

Euryarchaeota; Thermoplasmata; 18506 (1) 1 1 

Euryarchaeota; Thermoplasmata; 19677 (0.999) 0.9985 1 

Euryarchaeota; Thermoplasmata; 19801 (0.802) 0.9639 0.6667 

Euryarchaeota; Thermoplasmata; 20792 (0.953) 0.9076 1 

Euryarchaeota; Thermoplasmata; 20876 (0.749) 0.8416 0.6667 

Euryarchaeota; Thermoplasmata; 21320 (0.994) 0.9876 1 

Euryarchaeota; Thermoplasmata; 2876 (0.707) 1 0.5 

Euryarchaeota; Thermoplasmata; 2925 (0.816) 1 0.6667 

Euryarchaeota; Thermoplasmata; 3258 (0.981) 0.9626 1 

Euryarchaeota; Thermoplasmata; 326 (0.816) 1 0.6667 

Euryarchaeota; Thermoplasmata; 3814 (0.999) 0.9983 1 

Euryarchaeota; Thermoplasmata; 4541 (0.996) 0.992 1 

Euryarchaeota; Thermoplasmata; 4884 (0.816) 1 0.6667 

Euryarchaeota; Thermoplasmata; 6814 (1) 1 1 

Euryarchaeota; Thermoplasmata; 7587 (0.97) 0.9407 1 

Euryarchaeota; Thermoplasmata; 7723 (0.988) 0.9756 1 

Euryarchaeota; Thermoplasmata; 889 (0.773) 0.7166 0.8333 

Euryarchaeota; Thermoplasmata; 9015 (0.913) 1 0.8333 

Euryarchaeota; Thermoplasmata; 9126 (1) 1 1 

Euryarchaeota; Thermoplasmata; 9225 (0.841) 0.8487 0.8333 

Euryarchaeota; Thermoplasmata; 9797 (0.99) 0.9808 1 
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Table 4.2 Indicator species for sediments deposited during MIS2 

Phylum; class; OTUs (stat value) A value B value 

Crenarchaeota; MBGA; 8378 (0.707) 1 0.5 

Crenarchaeota; MBGA; 21083 (0.75) 1 0.5625 

Crenarchaeota; MBGB; 2287 (0.707) 1 0.5 

Crenarchaeota; MBGB; 2379 (0.702) 0.7163 0.6875 

Crenarchaeota; MBGB; 4684 (0.8) 0.9302 0.6875 

Crenarchaeota; MBGB; 11844 (0.785) 0.8952 0.6875 

Crenarchaeota; MBGB; 14072 (0.829) 1 0.6875 

Crenarchaeota; MBGB; 20930 (0.661) 1 0.4375 

Crenarchaeota; MCG; 200 (0.831) 0.9212 0.75 

Crenarchaeota; MCG; 869 (0.707) 1 0.5 

Crenarchaeota; MCG; 1008 (0.778) 0.9686 0.625 

Crenarchaeota; MCG; 1083 (0.718) 0.825 0.625 

Crenarchaeota; MCG; 1097 (0.829) 1 0.6875 

Crenarchaeota; MCG; 1229 (0.866) 1 0.75 

Crenarchaeota; MCG; 1308 (0.789) 0.9048 0.6875 

Crenarchaeota; MCG; 1571 (0.707) 1 0.5 

Crenarchaeota; MCG; 2006 (0.753) 0.8251 0.6875 

Crenarchaeota; MCG; 2443 (0.791) 1 0.625 

Crenarchaeota; MCG; 2520 (0.707) 1 0.5 

Crenarchaeota; MCG; 2944 (0.694) 0.9638 0.5 

Crenarchaeota; MCG; 3127 (0.661) 1 0.4375 

Crenarchaeota; MCG; 3305 (0.75) 0.9 0.625 

Crenarchaeota; MCG; 3712 (0.824) 0.9058 0.75 

Crenarchaeota; MCG; 3719 (0.891) 0.793 1 

Crenarchaeota; MCG; 3825 (0.741) 0.977 0.5625 

Crenarchaeota; MCG; 3973 (0.798) 0.849 0.75 

Crenarchaeota; MCG; 3977 (0.791) 1 0.625 

Crenarchaeota; MCG; 4077 (0.707) 1 0.5 

Crenarchaeota; MCG; 4094 (0.845) 0.9525 0.75 

Crenarchaeota; MCG; 4488 (0.8) 0.932 0.6875 

Crenarchaeota; MCG; 4787 (0.825) 0.9083 0.75 
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Crenarchaeota; MCG; 4864 (0.75) 1 0.5625 

Crenarchaeota; MCG; 4988 (0.786) 0.9883 0.625 

Crenarchaeota; MCG; 5008 (0.75) 1 0.5625 

Crenarchaeota; MCG; 5137 (0.865) 0.9972 0.75 

Crenarchaeota; MCG; 5465 (0.791) 1 0.625 

Crenarchaeota; MCG; 5778 (0.791) 1 0.625 

Crenarchaeota; MCG; 6022 (0.829) 0.9989 0.6875 

Crenarchaeota; MCG; 6462 (0.823) 0.9859 0.6875 

Crenarchaeota; MCG; 6588 (0.789) 0.6642 0.9375 

Crenarchaeota; MCG; 6626 (0.71) 0.8077 0.625 

Crenarchaeota; MCG; 6862 (0.968) 0.9997 0.9375 

Crenarchaeota; MCG; 7026 (0.661) 1 0.4375 

Crenarchaeota; MCG; 7070 (0.739) 0.9701 0.5625 

Crenarchaeota; MCG; 7134 (0.804) 0.9398 0.6875 

Crenarchaeota; MCG; 7469 (0.707) 1 0.5 

Crenarchaeota; MCG; 7597 (0.75) 1 0.5625 

Crenarchaeota; MCG; 7729 (0.791) 1 0.625 

Crenarchaeota; MCG; 8110 (0.699) 0.9762 0.5 

Crenarchaeota; MCG; 8204 (0.661) 1 0.4375 

Crenarchaeota; MCG; 8652 (0.829) 1 0.6875 

Crenarchaeota; MCG; 8685 (0.75) 1 0.5625 

Crenarchaeota; MCG; 9012 (0.794) 0.916 0.6875 

Crenarchaeota; MCG; 9283 (0.791) 0.9093 0.6875 

Crenarchaeota; MCG; 9378 (0.791) 1 0.625 

Crenarchaeota; MCG; 9609 (0.707) 1 0.5 

Crenarchaeota; MCG; 9646 (0.857) 0.9799 0.75 

Crenarchaeota; MCG; 9736 (0.791) 1 0.625 

Crenarchaeota; MCG; 10265 (0.924) 0.9116 0.9375 

Crenarchaeota; MCG; 10346 (0.75) 1 0.5625 

Crenarchaeota; MCG; 10513 (0.661) 1 0.4375 

Crenarchaeota; MCG; 10688 (0.952) 0.9067 1 

Crenarchaeota; MCG; 11243 (0.788) 0.9946 0.625 

Crenarchaeota; MCG; 11352 (0.829) 1 0.6875 
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Crenarchaeota; MCG; 11429 (0.791) 1 0.625 

Crenarchaeota; MCG; 11705 (0.785) 0.8958 0.6875 

Crenarchaeota; MCG; 11766 (0.684) 0.7496 0.625 

Crenarchaeota; MCG; 11984 (0.856) 0.9768 0.75 

Crenarchaeota; MCG; 12078 (0.75) 1 0.5625 

Crenarchaeota; MCG; 12268 (0.777) 0.9658 0.625 

Crenarchaeota; MCG; 12327 (0.866) 1 0.75 

Crenarchaeota; MCG; 12576 (0.739) 0.7936 0.6875 

Crenarchaeota; MCG; 12810 (0.75) 1 0.5625 

Crenarchaeota; MCG; 12847 (0.791) 1 0.625 

Crenarchaeota; MCG; 12861 (0.829) 1 0.6875 

Crenarchaeota; MCG; 13236 (0.723) 0.643 0.8125 

Crenarchaeota; MCG; 13238 (0.661) 1 0.4375 

Crenarchaeota; MCG; 13358 (0.776) 0.8753 0.6875 

Crenarchaeota; MCG; 13476 (0.705) 0.9945 0.5 

Crenarchaeota; MCG; 13612 (0.781) 0.976 0.625 

Crenarchaeota; MCG; 13639 (0.707) 1 0.5 

Crenarchaeota; MCG; 13737 (0.866) 1 0.75 

Crenarchaeota; MCG; 13853 (0.761) 0.8423 0.6875 

Crenarchaeota; MCG; 14194 (0.707) 1 0.5 

Crenarchaeota; MCG; 14252 (0.859) 0.9845 0.75 

Crenarchaeota; MCG; 15190 (0.785) 0.8207 0.75 

Crenarchaeota; MCG; 15237 (0.849) 0.9614 0.75 

Crenarchaeota; MCG; 15508 (0.791) 1 0.625 

Crenarchaeota; MCG; 15560 (0.829) 1 0.6875 

Crenarchaeota; MCG; 15796 (0.776) 0.8755 0.6875 

Crenarchaeota; MCG; 15844 (0.822) 0.9828 0.6875 

Crenarchaeota; MCG; 15911 (0.96) 0.9207 1 

Crenarchaeota; MCG; 15948 (0.75) 1 0.5625 

Crenarchaeota; MCG; 16108 (0.748) 0.9936 0.5625 

Crenarchaeota; MCG; 16422 (0.822) 0.9828 0.6875 

Crenarchaeota; MCG; 16551 (0.707) 1 0.5 

Crenarchaeota; MCG; 17029 (0.791) 1 0.625 
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Crenarchaeota; MCG; 17243 (0.772) 0.9542 0.625 

Crenarchaeota; MCG; 17256 (0.707) 1 0.5 

Crenarchaeota; MCG; 17515 (0.76) 0.8392 0.6875 

Crenarchaeota; MCG; 17527 (0.775) 0.9612 0.625 

Crenarchaeota; MCG; 17639 (0.776) 0.9629 0.625 

Crenarchaeota; MCG; 17724 (0.661) 1 0.4375 

Crenarchaeota; MCG; 17733 (0.829) 0.9161 0.75 

Crenarchaeota; MCG; 17766 (0.865) 0.9974 0.75 

Euryarchaeota; Thermoplasmata; 20359 (0.661) 1 0.4375 

Crenarchaeota; MCG; 17876 (0.791) 1 0.625 

Crenarchaeota; MCG; 17968 (0.791) 1 0.625 

Crenarchaeota; MCG; 18063 (0.96) 0.9209 1 

Crenarchaeota; MCG; 18245 (0.661) 1 0.4375 

Crenarchaeota; MCG; 18461 (0.707) 1 0.5 

Crenarchaeota; MCG; 18562 (0.817) 0.9707 0.6875 

Crenarchaeota; MCG; 18920 (0.791) 1 0.625 

Crenarchaeota; MCG; 18966 (0.815) 0.9663 0.6875 

Crenarchaeota; MCG; 18983 (0.762) 0.9301 0.625 

Crenarchaeota; MCG; 19316 (0.829) 1 0.6875 

Crenarchaeota; MCG; 19590 (0.805) 0.943 0.6875 

Crenarchaeota; MCG; 19610 (0.841) 0.8705 0.8125 

Crenarchaeota; MCG; 19852 (0.767) 0.6725 0.875 

Crenarchaeota; MCG; 19913 (0.817) 0.9703 0.6875 

Crenarchaeota; MCG; 20013 (0.862) 0.8492 0.875 

Crenarchaeota; MCG; 20465 (0.75) 1 0.5625 

Crenarchaeota; MCG; 20471 (0.808) 0.9488 0.6875 

Crenarchaeota; MCG; 21066 (0.75) 1 0.5625 

Crenarchaeota; MHVG; 4062 (0.75) 1 0.5625 

Crenarchaeota; Thaumarchaeota; 509 (0.724) 0.839 0.625 

Crenarchaeota; Thaumarchaeota; 14667 (0.729) 0.9447 0.5625 

Crenarchaeota; Unclassified; 227 (0.784) 0.8952 0.6875 

Crenarchaeota; Unclassified; 4969 (0.75) 1 0.5625 

Crenarchaeota; Unclassified; 19235 (0.912) 0.8881 0.9375 
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Euryarchaeota; DSEG; 3601 (0.75) 1 0.5625 

Euryarchaeota; DSEG; 8304 (0.866) 1 0.75 

Euryarchaeota; DSEG; 9040 (0.79) 0.999 0.625 

Euryarchaeota; DSEG; 13672 (1) 0.9997 1 

Euryarchaeota; Methanomicrobia; 5471 (0.791) 1 0.625 

Euryarchaeota; Methanomicrobia; 18560 (0.791) 1 0.625 

Euryarchaeota; Thermoplasmata; 1700 (0.75) 1 0.5625 

Euryarchaeota; Thermoplasmata; 2867 (0.707) 1 0.5 

Euryarchaeota; Thermoplasmata; 11298 (0.9) 0.9964 0.8125 

Euryarchaeota; Thermoplasmata; 12376 (0.707) 0.9995 0.5 

Euryarchaeota; Thermoplasmata; 12471 (0.791) 1 0.625 

Euryarchaeota; Thermoplasmata; 13528 (0.966) 0.9963 0.9375 

Euryarchaeota; Thermoplasmata; 14404 (0.998) 0.9964 1 

Euryarchaeota; Thermoplasmata; 18405 (0.968) 0.9991 0.9375 

Euryarchaeota; Thermoplasmata; 18440 (0.791) 1 0.625 

Euryarchaeota; Thermoplasmata; 19337 (0.707) 1 0.5 

Euryarchaeota; Thermoplasmata; 20242 (0.79) 0.9973 0.625 

 

 

 

 

 

Table 4.3 Indicator species for sediments deposited during MIS3 

Phylum; class; OTUs (stat value) A value B value 

Crenarchaeota; MBGB; 10477 (0.689) 0.8387 0.5652 

Crenarchaeota; MBGB; 15772 (0.775) 0.922 0.6522 

Crenarchaeota; MBGB; 18764 (0.734) 0.8855 0.6087 
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Table 4.4 Indicator species for sediments deposited during MIS4 

Phylum; class; OTUs (stat value) A value B value 

Crenarchaeota; MBGB; 4334 (0.696) 0.7273 0.6667 

Crenarchaeota; MBGB; 4838 (0.763) 0.5826 1 

Crenarchaeota; MBGB; 5244 (0.711) 0.6074 0.8333 

Crenarchaeota; MBGB; 5931 (0.726) 0.6326 0.8333 

Crenarchaeota; MBGB; 7865 (0.728) 0.6363 0.8333 

Crenarchaeota; MBGB; 9903 (0.76) 0.5772 1 

Crenarchaeota; MBGB; 15191 (0.708) 0.751 0.6667 

Crenarchaeota; MBGB; 16680 (0.709) 0.7549 0.6667 

Crenarchaeota; MBGB; 18073 (0.781) 0.7312 0.8333 

Crenarchaeota; MBGB; 18271 (0.687) 0.4724 1 
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Table 4.5 Indicator species for sediments deposited during MIS5 

Phylum; class; OTUs (stat value) A value B value 

Crenarchaeota; MBGB; 13003 (0.799) 0.911 0.7 

Crenarchaeota; MBGB; 16430 (0.749) 0.7651 0.7333 

Crenarchaeota; MBGB; 17644 (0.805) 0.8839 0.7333 

Crenarchaeota; MCG; 810 (0.768) 0.737 0.8 

Crenarchaeota; MCG; 3896 (0.781) 0.6098 1 

Euryarchaeota; Methanobacteria; 1285 (0.73) 0.6942 0.7667 

Euryarchaeota; Methanobacteria; 2439 (0.734) 0.7027 0.7667 

Euryarchaeota; Methanobacteria; 4950 (0.709) 0.7928 0.6333 

Euryarchaeota; Methanobacteria; 5528 (0.769) 0.7716 0.7667 

Euryarchaeota; Methanobacteria; 6013 (0.785) 0.8047 0.7667 

Euryarchaeota; Methanobacteria; 8232 (0.877) 0.7688 1 

Euryarchaeota; Methanobacteria; 8358 (0.741) 0.7164 0.7667 

Euryarchaeota; Methanobacteria; 8754 (0.755) 0.8541 0.6667 

Euryarchaeota; Methanobacteria; 10421 (0.73) 1 0.5333 

Euryarchaeota; Methanobacteria; 11375 (0.682) 0.8219 0.5667 

Euryarchaeota; Methanobacteria; 12464 (0.775) 0.721 0.8333 

Euryarchaeota; Methanobacteria; 15180 (0.741) 0.7483 0.7333 

Euryarchaeota; Methanobacteria; 15680 (0.741) 0.8229 0.6667 

Euryarchaeota; Methanobacteria; 15944 (0.828) 0.8933 0.7667 

Euryarchaeota; Methanobacteria; 16226 (0.754) 0.7422 0.7667 

Euryarchaeota; Methanobacteria; 18670 (0.785) 0.8799 0.7 

Euryarchaeota; Methanobacteria; 19671 (0.696) 0.6927 0.7 

Euryarchaeota; Methanobacteria; 20236 (0.762) 0.7566 0.7667 
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Table 4.6 Indicator species for sediments deposited during MIS6 

Phylum; class; OTUs (stat value) A value B value 

Crenarchaeota; Unclassified; 2483 (0.821) 0.843 0.8 

Crenarchaeota; MBGB; 8 (0.828) 0.6857 1 

Crenarchaeota; MBGB; 1154 (0.863) 0.9305 0.8 

Crenarchaeota; MBGB; 5704 (0.663) 0.4398 1 

Crenarchaeota; MBGB; 7427 (0.668) 0.4458 1 

Crenarchaeota; MBGB; 8535 (0.695) 0.4828 1 

Crenarchaeota; MBGB; 10673 (0.721) 0.8655 0.6 

Crenarchaeota; MBGB; 13455 (0.738) 0.9079 0.6 

Crenarchaeota; MBGB; 19931 (0.797) 0.7947 0.8 

Crenarchaeota; MCG; 19867 (0.73) 0.6658 0.8 
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CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

5.1 Ancient DNA archives in marine sediments: A key approach 

The primary aim of this dissertation was to explore the potential of the paleogenomic 

analyses of marine sedimentary DNA as a novel approach to reconstruct the response of past 

ecosystems to the paleoclimate variations when paired with paleoceanographical proxies. 

This study provided ample evidence for the efficiency of this approach. Most of the taxa 

(protists, bacteria and archaea) from which the sedimentary DNA originated are not known 

to produce either fossil or specific biomarkers and, hence, stratigraphic aDNA analysis is the 

only approach that surpasses the dependence on these more traditional paleobiological 

proxies. Paleogenomic surveys presented in this dissertation revealed how past OMZ 

variations affected protist communities in the NE Arabian Sea, how Holocene climate stages 

shaped the composition of sub-surface bacterial communities in the Black Sea and how 

different MIS and their transitions affected the sedimentary archaeal distribution of the Red 

Sea.  

5.2 Chapter 2: Past protist response to paleo-OMZ variability 

OMZs are increasing worldwide with increase in global temperature (Helm et al., 2011; 

Keeling et al., 2010) and eutrophication and are affecting the habitat of a variety of marine 

life ranging from planktonic communities to fish and in turn are disturbing the marine food 

web. On this prospect, it is critical to know how past OMZ expansions affected the organisms 

which are directly affected by the OMZ i.e. protists. This study demonstrated that 18S rDNA 

sequencing of sedimentary protist DNA yields a useful long-term record of ecosystem 

responses to dynamic OMZ conditions including non-fossilizing taxa that traditionally escape 

microscopic identification in micro-paleontological studies. Results showed that strong OMZ 

conditions select only those protist communities that are capable of sustaining oxygen 

depletion either by adapting a parasitic life cycle or by establishing mutualistic relationships 
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with others or by forming dormant resting stages. This study also revealed that the steady 

increase in eutrophication triggers decline in the Dia/Dino index, as has been evident in the 

NE Arabian Sea during the late Holocene. This will likely favour the pelagic component of the 

marine food web in the context of predicted worldwide expansion of coastal OMZs 

associated with global climate change. However, this research and these data also show that 

the marine ecosystem is resilient enough to return to healthy conditions soon after the OMZs 

cease to exist. If we can stop OMZ spread by controlling the eutrophication levels, there is a 

chance that the marine ecosystem will recover. 

5.3 Chapter 3: Variability in paleodepositional environments reflected in the sedimentary 

microbiome of the Black Sea 

It was recently shown that a subset of subseafloor bacteria originating from surface waters 

at the time of deposition formed a genetic archive known as “the Paleome” which underwent 

weak or no post-burial selection and hence directly mirror the variations in the 

paleodepositional environment. However, additional highly resolved temporal records of 

such paleomes paired with geochemical proxies were needed to justify this claim. In this 

study a shotgun metagenomics approach was used to investigate the subseafloor microbial 

paleome that preserved the signature of changing oceanographic conditions at centennial 

timescale resolution in up to 13-ka-old Black Sea sediments. This revealed that obligate 

anaerobic bacteria closely follow the distribution of deposited organic matter. Obligate 

anaerobic bacterial community changed drastically after the establishment of modern-day 

conditions at 5.2 ka BP, which coincided with a change in the pelagic plankton community 

composition as the source of sedimentary organic matter. The functional metagenomic 

dataset further helped to locate the depth interval where SMTZ occurs in the sediment, 

based on the activity of anaerobes involved in sulfur and methane cycling. Obligate aerobic 

bacteria were likely to be seeded from the water column and made the largest contribution 

to the observed shifts in microbial communities in response to Holocene climate stages. 

Furthermore, the lack of a significant shift in microbial communities following the marine 

reconnection at 9 ka BP hints towards a gradual nature of the marine reconnection as 

opposed to catastrophic flooding. Data generated through this study not only supported the 

hypothesis that microbes that were present at the time of deposition and are now part of 

deep subsurface biosphere, capture the response to the changing paleo-depositional 

conditions but also helped to construct the microbial component of the sulfur cycle in the 

Black Sea.  
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5.4 Chapter 4: MIS transitions reflected in the sedimentary archaeal microbiome of the Red 

Sea 

Limited information is available on archaeal responses to long-term environmental changes 

despite the fact that Archaea contribute on average 35% to the total sub-surface 

microbiome. This study investigated the potential of archaeal communities to mirror 

variations in paleodepositional changes during the last six marine isotope stages (i.e., 

spanning the penultimate and the last glacial cycles) in the Red Sea. The results revealed a 

strong significant response of subseafloor archaeal communities to changes in 

paleodepositional conditions associated with MIS stages and their transitions and only a 

moderately significant response to changes in sediment lithology. The sediments contained 

a mix of DNA from archaea indigenous to the sediment and were likely involved in 

biodegradation of labile organic matter and methane cycling as well as ancient DNA 

originating from from allochthonous sources: Thaumarchaeota, MGII and MGIII stemming 

from the overlying water column at the time of deposition and terrestrial derived TMEG.  

5.5 Future work 

OMZs are thought to be expanding in coastal environments world-wide and a similar 

approach as used in the OMZ of the NE Arabian Sea could be employed at other critical 

locations which harbour persistent OMZs. Such studies would provide detailed information 

on how local marine ecosystem have responded to past OMZ expansion. If integrated with 

observations from modern time series, similar paleogenomic datasets will form the strong 

feed for models built to study the climate-ecosystem dynamics and will improve the 

predictions of how long-term OMZ expansion in the future will shape the marine planktonic 

communities. 16S rDNA profiling and metagenomic surveys paired with paleoceanographic 

proxies in other anoxic and oxygenated sediments will provide a holistic picture of factors 

contributing to distribution and abundance of subsurface microbial taxa in the majority of 

currently unexplored geological settings. This will also help to understand the role of 

paleodepositional environments in selecting the subsurface microbiome along with other 

factors such as nutrient availability and sediment lithology. In the Red Sea sediments, many 

of the archaeal groups detected represented uncultivated groups. Single-cell genomics as 

well as metatranscriptomic surveys are required to substantially improve our understanding 

of their role in past and present biogeochemical cycling processes that will help to 

understand their possible relation to the paleodepositional environment and their suitability 

as a past climate proxy. In addition, it has been shown that subseafloor microbes subsisting 
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with extremely low activity actively repair their DNA and can persist to great depths via 

fermentation. These mechanisms of subsistence coupled with weak selection after burial 

make these paleodepositionally selected bacterial as well as archaeal communities important 

indicators of paleoclimate variations. Similarly, the rapidly recurring climate-controlled 

selection of microbial communities in other marine settings that have likely been impacted 

by past ocean biogeochemistry can serve as climatic feedback mechanisms. However, deeper 

sediment records are needed to validate if similar approach can be applied for deep 

biosphere samples to analyse whether deep biosphere micro-organisms also undergo paleo-

depositional selection.  



126 
 

Bibliography 

“Every reasonable effort has been made to acknowledge the owners of copyright material. I 

would be please to hear from the copyright owner who has been omitted or incorrectly 

acknowledged.” 

Ahmed, E., Parducci, L., Unneberg, P., Agren, R., Schenk, F., Rattray, J.E., Han, L., Muschitiello, 

F., Pedersen, M.W., Smittenberg, R.H., Yamoah, K.A., Slotte, T., Wohlfarth, B., 2018. 

Archaeal community changes in Lateglacial lake sediments: Evidence from ancient 

DNA. Quaternary Sci Rev 181, 19-29. 

Altabet, M. A., et al. (1995). "Climate-Related Variations in Denitrification in the Arabian Sea 

from Sediment N-15/N-14 Ratios." Nature 373(6514): 506-509. 

Altabet, M. A., et al. (2002). "The effect of millennial-scale changes in Arabian Sea 

denitrification on atmospheric CO2." Nature 415(6868): 159-162. 

Banse, K. (1987). "Seasonality of Phytoplankton Chlorophyll in the Central and Northern 

Arabian Sea." Deep-Sea Research Part a-Oceanographic Research Papers 34(5-6): 713-

723. 

Bemis, B. E., et al. (1998). "Reevaluation of the oxygen isotopic composition of planktonic 

foraminifera: Experimental results and revised paleotemperature equations." 

Paleoceanography 13(2): 150-160. 

Billups, K. and D. P. Schrag (2002). "Paleotemperatures and ice volume of the past 27 Myr 

revisited with paired Mg/Ca and O-18/O-16 measurements on benthic foraminifera." 

Paleoceanography 17(1). 

Bissett, A., et al. (2005). "Isolation, amplification, and identification of ancient copepod DNA 

from lake sediments." Limnology and Oceanography-Methods 3: 533-542. 

Blackford, J. C. and P. H. Burkill (2002). "Planktonic community structure and carbon cycling 

in the Arabian Sea as a result of monsoonal forcing: the application of a generic 

model." Journal of Marine Systems 36(3-4): 239-267. 

Boere, A. C., et al. (2009). "Late-Holocene succession of dinoflagellates in an Antarctic fjord 

using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and 

palynomorphs." Geobiology 7(3): 265-281. 

Bond, G., et al. (1992). "Evidence for Massive Discharges of Icebergs into the North-Atlantic 

Ocean during the Last Glacial Period." Nature 360(6401): 245-249. 

Brassell, S. C. (1993). Applications of Biomarkers for Delineating Marine Paleoclimatic 

Fluctuations during the Pleistocene. Organic Geochemistry: Principles and 

Applications. M. H. Engel and S. A. Macko. Boston, MA, Springer US: 699-738. 



127 
 

Brinkhoff, T. and G. Muyzer (1997). "Increased species diversity and extended habitat range 

of sulfur-oxidizing Thiomicrospira spp." Applied and Environmental Microbiology 

63(10): 3789-3796. 

Brocks, J. J., et al. (2005). "Biomarker evidence for green and purple sulphur bacteria in a 

stratified Palaeoproterozoic sea." Nature 437(7060): 866-870. 

Burgoyne, T. W. and J. M. Hayes (1998). "Quantitative production of H-2 by pyrolysis of gas 

chromatographic effluents." Analytical Chemistry 70(24): 5136-5141. 

Caporaso, J. G., et al. (2010). "QIIME allows analysis of high-throughput community 

sequencing data." Nature Methods 7(5): 335-336. 

Caporaso, J. G., et al. (2012). "Ultra-high-throughput microbial community analysis on the 

Illumina HiSeq and MiSeq platforms." Isme Journal 6(8): 1621-1624. 

Ciobanu, M. C., et al. (2012). "Sedimentological imprint on subseafloor microbial 

communities in Western Mediterranean Sea Quaternary sediments." Biogeosciences 

9(9): 3491-3512. 

Clarke, K. R. (1993). "Non‐parametric multivariate analyses of changes in community 

structure." Australian Journal of Ecology 18(1): 117-143. 

Coolen, M. J. L. (2011). "7000 Years of Emiliania huxleyi Viruses in the Black Sea." Science 

333(6041): 451-452. 

Coolen, M. J. L., et al. (2004). "Evolution of the methane cycle in Ace Lake (Antarctica) during 

the Holocene: Response of methanogens and methanotrophs to environmental 

change." Organic Geochemistry 35(10): 1151-1167. 

Coolen, M.J.L., Cypionka, H., Sass, A.M., Sass, H., Overmann, J. 2002. Ongoing modification 

of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science. 2002 Jun 

28;296(5577):2407-10. 

Coolen, M. J. L., et al. (2013). "Evolution of the plankton paleome in the Black Sea from the 

Deglacial to Anthropocene." Proceedings of the National Academy of Sciences of the 

United States of America 110(21): 8609-8614. 

Coolen, M. J. L. and J. Overmann (2007). "217 000-year-old DNA sequences of green sulfur 

bacteria in Mediterranean sapropels and their implications for the reconstruction of 

the paleoenvironment (vol 9, pg 238, 2007)." Environmental Microbiology 9(4): 1099-

1099. 

Coolen, M. J. L., et al. (2009). "DNA and lipid molecular stratigraphic records of haptophyte 

succession in the Black Sea during the Holocene." Earth and Planetary Science Letters 

284(3-4): 610-621. 



128 
 

Dabney, J., et al. (2013). "Complete mitochondrial genome sequence of a Middle 

Pleistocene cave bear reconstructed from ultrashort DNA fragments." Proceedings of 

the National Academy of Sciences of the United States of America 110(39): 15758-

15763. 

Damste, J. S. S., et al. (1995). "Evidence for Gammacerane as an Indicator of Water Column 

Stratification." Geochimica Et Cosmochimica Acta 59(9): 1895-1900. 

De Caceres, M., et al. (2012). "Using species combinations in indicator value analyses." 

Methods in Ecology and Evolution 3(6): 973-982. 

De Man, E. and S. Van Simaeys (2004). "Late Oligocene Warming Event in the southern 

North Sea Basin: benthic foraminifera as paleotemperature proxies." Netherlands 

Journal of Geosciences-Geologie En Mijnbouw 83(3): 227-239. 

Degens, E. T. and D. A. Ross (1972). "Chronology of the Black Sea over the last 25,000 

years." Chemical Geology 10(1): 1-16. 

Delong, E. F. (1992). "Archaea in Coastal Marine Environments." Proceedings of the 

National Academy of Sciences of the United States of America 89(12): 5685-5689. 

Dridi, B., et al. (2012). "Methanomassiliicoccus luminyensis gen. nov., sp nov., a 

methanogenic archaeon isolated from human faeces." International Journal of 

Systematic and Evolutionary Microbiology 62: 1902-1907. 

Dufrene M, Legendre P (1997) Species assemblages and indicator species: The need for a 

flexible asymmetrical approach. Ecol Monogr, 67, 345-366. 

Durbin, A. M. and A. Teske (2012). "Archaea in organic-lean and organic-rich marine 

subsurface sediments: an environmental gradient reflected in distinct phylogenetic 

lineages." Frontiers in Microbiology 3. 

Elderfield, H. and G. Ganssen (2000). "Past temperature and delta O-18 of surface ocean 

waters inferred from foraminiferal Mg/Ca ratios." Nature 405(6785): 442-445. 

Fenton, M., et al. (2000). "Aplanktonic zones in the Red Sea." Marine Micropaleontology 

40(3): 277-294. 

Giosan, L., et al. (2012). "Early Anthropogenic Transformation of the Danube-Black Sea 

System." Scientific Reports 2. 



129 
 

Giosan, L., et al. (2009). "Was the Black Sea catastrophically flooded in the early Holocene?" 

Quaternary Science Reviews 28(1-2): 1-6. 

Grant, K. M., et al. (2014). "Sea-level variability over five glacial cycles." Nature 

Communications 5. 

Grice, K., et al. (2005). "Photic zone euxinia during the Permian-Triassic superanoxic event." 

Science 307(5710): 706-709. 

Gross, M. G. (1974). "DEGENS, E. T., AND D. A. ROSS [EDS.]. 1974. The Black Sea—Geology, 

chemistry, and biology. American Association of Petroleum Geologists, Tulsa, 

Oklahoma, ix + 633 p. $33.00." Limnology and Oceanography 19(6): 1016-1017. 

Hemleben, C., et al. (1996). "Three hundred eighty thousand year long stable isotope and 

faunal records from the Red Sea: Influence of global sea level change on 

hydrography." Paleoceanography 11(2): 147-156. 

Hiscott, R. N., et al. (2007). "A gradual drowning of the southwestern Black Sea shelf: 

Evidence for a progressive rather than abrupt Holocene reconnection with the 

eastern Mediterranean Sea through the Marmara Sea Gateway." Quaternary 

International 167: 19-34. 

Hofreiter, M., et al. (2001). "Ancient DNA." Nature Reviews Genetics 2(5): 353-359. 

Hoshino, T. and F. Inagaki (2018). "Abundance and distribution of Archaea in the 

subseafloor sedimentary biosphere." The ISME Journal. 

Inagaki, F., et al. (2015). "Exploring deep microbial life in coal-bearing sediment down to 

similar to 2.5 km below the ocean floor." Science 349(6246): 420-424. 

Inagaki, F., et al. (2005). "Microbial survival - The paleome: A sedimentary genetic record of 

past microbial communities." Astrobiology 5(2): 141-153. 

Inagaki, F., et al. (2003). "Microbial communities associated with geological horizons in 

coastal subseafloor sediments from the Sea of Okhotsk." Applied and Environmental 

Microbiology 69(12): 7224-7235. 

Jiang, H., et al. (2002). "Late-Holocene summer sea-surface temperatures based on a 

diatom record from the north Icelandic shelf." Holocene 12(2): 137-147. 



130 
 

Johns, R. B. (1986). Biological markers in the sedimentary record. Amsterdam ; New York : 

New York, NY, Elsevier ; Distributors for the United States and Canada, Elsevier 

Science Pub. Co. 

Jones, G. A. and A. R. Gagnon (1994). "Radiocarbon Chronology of Black-Sea Sediments." 

Deep-Sea Research Part I-Oceanographic Research Papers 41(3): 531-557. 

Kallmeyer, J., et al. (2012). "Global distribution of microbial abundance and biomass in 

subseafloor sediment." Proceedings of the National Academy of Sciences of the 

United States of America 109(40): 16213-16216. 

Kaplin, P. A. and A. O. Selivanov (2004). "Lateglacial and Holocene sea level changes in 

semi-enclosed seas of North Eurasia: examples from the contrasting Black and White 

Seas." Palaeogeography, Palaeoclimatology, Palaeoecology 209(1): 19-36. 

Kirkpatrick, J. B., et al. (2016). "Fossil DNA persistence and decay in marine sediment over 

hundred-thousand-year to million-year time scales." Geology 44(8): 615-618. 

Lang, K., et al. (2015). "New Mode of Energy Metabolism in the Seventh Order of 

Methanogens as Revealed by Comparative Genome Analysis of "Candidatus 

Methanoplasma termitum"." Applied and Environmental Microbiology 81(4): 1338-

1352. 

Lear, C. H., et al. (2000). "Cenozoic deep-sea temperatures and global ice volumes from 

Mg/Ca in benthic foraminiferal calcite." Science 287(5451): 269-272. 

Lindahl, T. (1993). "Instability and Decay of the Primary Structure of DNA." Nature 

362(6422): 709-715. 

Lliros, M., et al. (2011). "Active bacteria and archaea cells fixing bicarbonate in the dark 

along the water column of a stratified eutrophic lagoon." Fems Microbiology Ecology 

77(2): 370-384. 

Lloyd, K. G., et al. (2013). "Predominant archaea in marine sediments degrade detrital 

proteins." Nature 496(7444): 215-+. 

Lyra, C., et al. (2013). "Sediment Bacterial Communities Reflect the History of a Sea Basin." 

Plos One 8(1). 

Madhupratap, M., et al. (1996). "Mechanism of the biological response to winter cooling in 

the northeastern Arabian Sea." Nature 384(6609): 549-552. 



131 
 

Major, C., et al. (2002). "Constraints on Black Sea outflow to the Sea of Marmara during the 

last glacial-interglacial transition." Marine Geology 190(1-2): 19-34. 

Major, C. O., et al. (2006). "The co-evolution of Black Sea level and composition through the 

last deglaciation and its paleoclimatic significance." Quaternary Science Reviews 

25(17-18): 2031-2047. 

Marcus, N. H. (1996). "Ecological and evolutionary significance of resting eggs in marine 

copepods: Past, present, and future studies." Hydrobiologia 320(1-3): 141-152. 

Marlowe, I. T., et al. (1984). "Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. 

Distribution of alkenones and other lipids and their taxonomic significance." British 

Phycological Journal 19(3): 203-216. 

Marret, F., et al. (2009). "A Holocene dinocyst record of a two-step transformation of the 

Neoeuxinian brackish water lake into the Black Sea." Quaternary International 197: 

72-86. 

Morcos, S. A. (1970). "Physical and chemical oceanography of the Red Sea." Oceanography 

and Marine Biology 8: 73-202. 

Murray, J. W. and E. Yakushev (2006). THE SUBOXIC TRANSITION ZONE IN THE BLACK SEA. 

Past and Present Water Column Anoxia, Dordrecht, Springer Netherlands. 

Offre, P., et al. (2013). "Archaea in Biogeochemical Cycles." Annual Review of Microbiology, 

Vol 67 67: 437-457. 

Orcutt, B. N., et al. (2011). "Microbial Ecology of the Dark Ocean above, at, and below the 

Seafloor." Microbiology and Molecular Biology Reviews 75(2): 361-+. 

Orlando, L., et al. (2013). "Recalibrating Equus evolution using the genome sequence of an 

early Middle Pleistocene horse." Nature 499(7456): 74-+. 

Orsi, W. D., et al. (2017). "Climate oscillations reflected within the microbiome of Arabian 

Sea sediments." Scientific Reports 7(1): 6040. 

Parkes, R. J., et al. (2000). "Recent studies on bacterial populations and processes in 

subseafloor sediments: A review." Hydrogeology Journal 8(1): 11-28. 

Parmesan, C. (2006). "Ecological and evolutionary responses to recent climate change." 

Annual Review of Ecology Evolution and Systematics 37: 637-669. 



132 
 

Pedgley, D. E. (1974). An outline of the weather and climate of the Red Sea. Actes du 

Colloques, Publications Centre National pour l’Exploitation des Oceans 

 

Poinar, H. N., et al. (1996). "Amino acid racemization and the preservation of ancient DNA." 

Science 272(5263): 864-866. 

Pross, J. (2001). "Paleo-oxygenation in Tertiary epeiric seas: evidence from dinoflagellate 

cysts." Palaeogeography Palaeoclimatology Palaeoecology 166(3-4): 369-381. 

Rammig, A. and M. D. Mahecha (2015). "ECOLOGY Ecosystem responses to climate 

extremes." Nature 527(7578): 315-+. 

Rashid, H., et al. (2003). "Evidence for an additional Heinrich event between H5 and H6 in 

the Labrador Sea." Paleoceanography 18(4). 

Rasul, N. M. A., et al. (2015). Introduction to the Red Sea: Its Origin, Structure, and 

Environment. The Red Sea: The Formation, Morphology, Oceanography and 

Environment of a Young Ocean Basin. N. M. A. Rasul and I. C. F. Stewart. Berlin, 

Heidelberg, Springer Berlin Heidelberg: 1-28. 

Rebata-Landa, V. and J. C. Santamarina (2006). "Mechanical limits to microbial activity in 

deep sediments." Geochemistry Geophysics Geosystems 7. 

Reichart, G. J., et al. (1998). "Temporal variability in the northern Arabian Sea Oxygen 

Minimum Zone (OMZ) during the last 225,000 years." Paleoceanography 13(6): 607-

621. 

Reimer, P. J., et al. (2004). "IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP." 

Radiocarbon 46(3): 1029-1058. 

Rohling, E. J. (1994). "Glacial Conditions in the Red-Sea." Paleoceanography 9(5): 653-660. 

Ross, D. A., et al. (1970). "Black Sea: Recent Sedimentary History." Science 170(3954): 163-

165. 

Ryan, W. B. F., et al. (2003). "Catastrophic flooding of the Black Sea." Annual Review of 

Earth and Planetary Sciences 31: 525-554. 

Sancetta, C. and S. Silvestri (1986). "Pliocene-Pleistocene Evolution of the North Pacific 

Ocean-Atmosphere System, Interpreted from Fossil Diatoms." Paleoceanography 

1(2): 163-180. 



133 
 

Schulte, S. and P. J. Muller (2001). "Variations of sea surface temperature and primary 

productivity during Heinrich and Dansgaard-Oeschger events in the northeastern 

Arabian Sea." Geo-Marine Letters 21(3): 168-175. 

Schulz, H., et al. (1998). "Correlation between Arabian Sea and Greenland climate 

oscillations of the past 110,000 years." Nature 393(6680): 54-57. 

Schulz, H., et al. (2002). "Planktic foraminifera, particle flux and oceanic productivity off 

Pakistan, NE Arabian Sea: modern analogues and application to the palaeoclimatic 

record." Geological Society, London, Special Publications 195(1): 499-516. 

Schulz, H., et al. (1996). "Laminated sediments from the oxygen-minimum zone of the 

northeastern Arabian Sea." Geological Society, London, Special Publications 116(1): 

185-207. 

Sessions, A. L., et al. (2001). "Correction of H-3(+) contributions in hydrogen isotope ratio 

monitoring mass spectrometry." Analytical Chemistry 73(2): 192-199. 

Simoneit, B. R. T. (2004). "Biomarkers (molecular fossils) as geochemical indicators of life." 

Space Life Sciences: Search for Signatures of Life, and Space Flight Environmental 

Effects on the Nervous System 33(8): 1255-1261. 

Sluijs, A., et al. (2005). "From greenhouse to icehouse; organic-walled dinoflagellate cysts as 

paleoenvironmental indicators in the Paleogene." Earth-Science Reviews 68(3-4): 

281-315. 

Song, S., et al. (2013). Chapter Three - Our Second Genome—Human Metagenome: How 

Next-Generation Sequencer Changes our Life Through Microbiology. Advances in 

Microbial Physiology. R. K. Poole, Academic Press. 62: 119-144. 

Sorensen, K. B. and A. Teske (2006). "Stratified communities of active archaea in deep 

marine subsurface sediments." Applied and Environmental Microbiology 72(7): 4596-

4603. 

Soulet, G., et al. (2010). "Glacial hydrologic conditions in the Black Sea reconstructed using 

geochemical pore water profiles." Earth and Planetary Science Letters 296(1-2): 57-

66. 

Soulet, G., et al. (2011). "A revised calendar age for the last reconnection of the Black Sea to 

the global ocean." Quaternary Science Reviews 30(9-10): 1019-1026. 



134 
 

Stahl, D. A., Amann, R. (1991). Development and Application of Nucleic Acid Probes in 

Bacterial Systematics. 

Nucleic Acid Techniques in Bacterial Systematics. E. Stackebrandt, Goodfellow, M. 

Chichester, John Wiley & Sons Ltd.: 205-248. 

Starnawski, P., et al. (2017). "Microbial community assembly and evolution in subseafloor 

sediment." Proceedings of the National Academy of Sciences of the United States of 

America 114(11): 2940-2945. 

Stuiver, M. and P. J. Reimer (1993). "Extended C-14 Data-Base and Revised Calib 3.0 C-14 

Age Calibration Program." Radiocarbon 35(1): 215-230. 

Summons, R. E. and T. G. Powell (1986). "Chlorobiaceae in Palaeozoic seas revealed by 

biological markers, isotopes and geology." Nature 319: 763. 

Svetlichny, L., et al. (2010). "Salinity tolerance of Calanus euxinus in the Black and Marmara 

Seas." Marine Ecology Progress Series 404: 127-138. 

Taylor, F. J. R. (1987). The Biology of dinoflagellates. Oxford, Blackwell Scientific. 

van der Meer, M. T. J., et al. (2008). "Molecular isotopic and dinoflagellate evidence for 

Late Holocene freshening of the Black Sea." Earth and Planetary Science Letters 

267(3-4): 426-434. 

Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W. 1993. Geochemical significance of 

the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Organic 

Geochemistry 20(1): 7-15. 

von Rad, U., et al. (1999). "Multiple monsoon-controlled breakdown of oxygen-minimum 

conditions during the past 30,000 years documented in laminated sediments off 

Pakistan." Palaeogeography, Palaeoclimatology, Palaeoecology 152(1–2): 129-161. 

Vonrad, U., et al. (1995). "Sampling the Oxygen Minimum Zone Off Pakistan - Glacial 

Interglacial Variations of Anoxia and Productivity (Preliminary-Results, Sonne-90 

Cruise)." Marine Geology 125(1-2): 7-19. 

Vuillemin, A., et al. (2016). "Recording of climate and diagenesis through sedimentary DNA 

and fossil pigments at Laguna Potrok Aike, Argentina." Biogeosciences 13(8): 2475-

2492. 



135 
 

Walther, G. R. (2010). "Community and ecosystem responses to recent climate change." 

Philosophical Transactions of the Royal Society B-Biological Sciences 365(1549): 

2019-2024. 

Walther, G. R., et al. (2002). "Ecological responses to recent climate change." Nature 

416(6879): 389-395. 

Willerslev, E., et al. (2004). "Isolation of nucleic acids and cultures from fossil ice and 

permafrost." Trends in Ecology & Evolution 19(3): 141-147. 

William, A. S. S. (1986). "Sporopollenin Dinoflagellate Cysts. Their Morphology and 

Interpretation " Micropaleontology 32(3): 282-285. 

Xia, X. M., et al. (2017). "Basin Scale Variation on the Composition and Diversity of Archaea 

in the Pacific Ocean." Frontiers in Microbiology 8. 

Yang, J., et al. (2015). "Sedimentary archaeal amoA gene abundance reflects historic 

nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau." Scientific 

Reports 5. 

Yun, S. M., et al. (2017). "Fossil Diatom Assemblages as Paleoecological Indicators of Paleo-

water Environmental Change in the Ulleung Basin, East Sea, Republic of Korea." 

Ocean Science Journal 52(3): 345-357. 

Zhang, C.L., Xie, W., Martin-Cuadrado, A., Rodriguez-Valera, F., 2015. Marine Group II 

Archaea, potentially important players in the global ocean carbon cycle. Front 

Microbiol 6, 1108.  

Zonneveld, K. A. F., et al. (1997). "Preservation of organic-walled dinoflagellate cysts in 

different oxygen regimes: A 10,000 year natural experiment." Marine 

Micropaleontology 29(3-4): 393-405. 

 

 

 

 

 

 



136 
 

Appendix 

Following pages contain documents stating the rights, granted by Elsevier and Wiley 

publishing groups to the first author of the publications that forms the chapter 2 and 3 of this 

thesis respectively, to reproduce their articles in full or in part, for a wide range of scholarly, 

non-commercial purposes, including in a thesis (provided that this is not to be published 

commercially). 

 



5/13/2019 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 1/4

JOHN WILEY AND SONS LICENSE
 TERMS AND CONDITIONS

May 13, 2019

 
This Agreement between Kuldeep More ("You") and John Wiley and Sons ("John Wiley and
Sons") consists of your license details and the terms and conditions provided by John Wiley
and Sons and Copyright Clearance Center.

License Number 4586880746915

License date May 13, 2019

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Geobiology

Licensed Content Title Holocene paleodepositional changes reflected in the sedimentary
microbiome of the Black Sea

Licensed Content Author Kuldeep D. More, Liviu Giosan, Kliti Grice, et al

Licensed Content Date Mar 6, 2019

Licensed Content Volume 0

Licensed Content Issue 0

Licensed Content Pages 13

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be translating? No

Title of your thesis /
dissertation

Ancient DNA archives in marine sediments

Expected completion date May 2019

Expected size (number of
pages)

150

Requestor Location Kuldeep More
 8

 Tarun Court
  

Cannington, WA 6107
 Australia

 Attn: Kuldeep More

Publisher Tax ID EU826007151

Total 0.00 AUD

Terms and Conditions

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).

http://myaccount.copyright.com/


5/13/2019 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 2/4

 
Terms and Conditions

 
The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 
 
You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license.
The first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

  
With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

  
The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

  
NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED

http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
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BY YOU. 
  

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

  
You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

  
IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

  
Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

  
The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

  
This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

  
Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

  
These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

  
In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.
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WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

  
This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

  
This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

  

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

  
Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html
 
 
Other Terms and Conditions:

  
 
 
v1.10 Last updated September 2015
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://olabout.wiley.com/WileyCDA/Section/id-410895.html
mailto:customercare@copyright.com
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