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Abstract

In geothermal reservoirs, geological faults are known to play a major role affecting fluid
flow patterns. Creeping faults are generally regarded as static at engineering timescales
but can experience considerable deformation at geological timescales. Their frictional
resistance to motion generates shear heating, and its impact on the temperature-sensitive
fluid flow processes has not yet been fully understood. This thesis demonstrates the
influence of creeping faults on the onset and pattern of hydrothermal convection, applied
to geothermal reservoirs.

The effect of shear heating from creeping faults is shown to play a significant role
in lowering the critical permeability conditions required for the onset of convection,
suggesting that convection could be occurring in reservoirs containing such faults when
other parameters suggest a purely diffusive solution without taking these faults into
account. Shear heating is also found to play a role in altering steady state convective
patterns, as heat can localise along the fault in unexpected ways.

A mathematical formulation to couple mechanical deformation with the classical
formulation of hydrothermal convection is presented using the REDBACK geomechan-
ics simulator. This code is used to build a framework which combines the mathematical
rigour of analytical methods and the power of numerical simulators, through the im-
plementation of a numerical bifurcation analysis tool based on the pseudo-arclength
continuation method. The use of this workflow enables quantitative assessment of the
conditions required for the onset of convection, and can be extended to determine the
critical value governing the stability of any system of interest.

One particularly interesting result from this approach is the ambiguous definition
of the onset of convection in specific cases. This challenges the misleading but widely
accepted view that convection always starts at a precise threshold of parameter values.
Perfect bifurcation curves are obtained for scenarios of symmetrical geometry. However
in this thesis, it has been demonstrated that novel imperfect bifurcation curves are
derived from non-symmetrical geometries. The comparison between the perfect and
imperfect bifurcations shows that the onset of convection is subject to a visual analysis
for cases of non-symmetrical geometries, where the steady state solution transforms
asymptotically from convective to diffusive regimes.

Subsequently, the workflow presented above is applied to a specific fracture zone
at Soultz-sous-Forêts with the aim of characterising its behaviour and impact on the
surrounding fluid flow. It is established that purely hydrothermal (TH) processes are
inadequate to fully characterise the system. The coupling of mechanical deformation
with hydrothermal processes (THM) through shear heating is also found to be insuffi-
cient, which demonstrates the need to consider chemical processes and highlights the
necessity for a fully coupled multiphysics approach. This study will benefit current and
future considerations in the field of geothermal reservoir modelling.
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Chapter 1

Introduction

1.1 A Review of Hydrothermal Convection

Hydrothermal convection plays an essential role in geological settings, transporting
heated fluids at depth up to the surface. These fluids often contain precious metals
and minerals which can be precipitated along faults, and the heat from these fluids
could be used for energy generation. The phenomenon of hydrothermal convection has
been extensively studied since the early 1900’s and is driven by the changes of fluid
buoyancy with temperature. First observed and explained by Bénard (1901), Rayleigh
(1916), and Jeffreys (1926), the driving parameters of the system are expressed through
the Rayleigh number (Ra). The Rayleigh number is a dimensionless group which
contains information of the boundary conditions, coefficients of volume expansion,
thermal conductivity, kinematic viscosity, and the height (or depth) of the layer of
interest (Rayleigh, 1916). The onset of convection is predicted to occur past a critical
Rayleigh number (Rac), and has been investigated in diverse fields including linear and
non-linear problems, stability regimes dependent on material properties and boundary
conditions, and convection in varied geometrical environments (Elder, 1967; Horton
and Rogers, 1945; Lapwood, 1948; Morrison, 1947; Rayleigh, 1916), amongst others.
A comprehensive review can be found in Nield and Bejan (2013), for instance. This
onset of convection was identified as an instability arising from varying temperature
gradients; hence the evolution of convection can be studied using stability analyses. In
particular, linear stability analyses have been extensively used to analytically pinpoint
the critical Rayleigh numbers at which convection is predicted to occur for very specific
geometries and boundary conditions (eg Bories, 1987).

In the last century, the best approaches to investigate the onset and behaviour of
convection included comprehensive analytical equations and laboratory experiments
(Bénard, 1901; Elder, 1967; Horton and Rogers, 1945; Jeffreys, 1926; Lapwood, 1948;
Morrison, 1947; Rayleigh, 1916). However, due to mathematical limitations, such
investigations were mostly limited to simplified equations, simple geometries, and
uniform material properties, and were hence unable to account for the complexities of
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1.2 Hydrothermal Convection in Geothermal Settings

realistic geological systems (Horton and Rogers, 1945). Building on previous analytical
discoveries, the availability of increased computing power and in recent years and
exponential use of numerical methods have led to a shift in the way that convection is
investigated.

1.2 Hydrothermal Convection in Geothermal Settings

Advances in computer technologies and data collection techniques have allowed the
incorporation of more extensive and representative geological and geophysical data into
numerical models. The results of these simulations contribute to a better understanding
of the evolution of hydrothermal convection in the context of complex geological
systems. In particular, hydrothermal convection plays a significant role in geothermal
reservoirs as it can be one of the main drivers of heat and fluid flow under certain
conditions (eg Pribnow and Schellschmidt, 2000).

Whilst hydrothermal convection is preponderant in hot sedimentary aquifers (HSA),
it could also be present in other geothermal systems. Such systems can be classified
under three main categories: conventional geothermal (volcanic) systems, enhanced
geothermal systems (EGS), and hot sedimentary aquifers. Conventional geothermal
environments are usually located in volcanic, porous media. These systems often
experience high temperatures and rely on pre-existing permeable pathways which allow
easy access to hot fluid/steam for energy generation. Some examples of natural volcanic
geothermal sites include New Zealand, Iceland, and Hawaii.

Enhanced geothermal systems (EGS) are different to conventional geothermal sys-
tems as they rely on a mechanical interaction with the reservoir where permeability
pathways are engineered to access heat from the host rock. Permeability creation and
sustainability are often obtained by hydraulic stimulation, in contrast to the classical
reservoirs where heat and mass extraction rely primarily on pre-existing permeable
pathways. EGS can be found in most parts of the world including China, France, Ger-
many, Indonesia, Philippines, Switzerland, United States, and are presumably the most
common setting in geothermal systems worldwide. Unlike EGS and volcanic systems,
hot sedimentary aquifers are often located in naturally thick, porous sedimentary basins.
These systems rely mostly on natural fluid flow processes which carry heated fluids up
to the surface of the porous aquifer.

In all settings, geothermal reservoirs rely on pre-existing permeable pathways
which allow natural heat and mass transfer. Initially, convection studies started with
the approach of modelling a purely physical hydrothermal process. The increase of
information from geophysical surveys and geological field data resulted in the extension
of this approach to include more physical processes, for instance the phenomenon of
double diffusive convection. This form of convection is driven by different density
gradients and can be applied to the interaction between fresh and saline fluids, for
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example (Charrier-Mojtabi and Mojtabi, 2005; Elder, 1967; Huppert and Turner, 1981;
Stommel et al., 1956).

In addition to varying density gradients, chemical reactions have been observed
to play a vital role particularly in geothermal reservoirs. Such systems can often
experience high pressures and temperatures, resulting in the alteration of mechanical
properties of the reservoir. The extreme temperature and pressure conditions can cause
dissolution and precipitation of existing and new minerals, thus creating new porosity
and permeability channels in the host rock. Some example sites of highly altered
geothermal fields include Chile, Iceland, Italy, Japan, New Zealand, and California and
Wyoming in the United States (Browne, 1978).

Additional physical processes which could be considered to better explain the
geological and geophysical data, include: varying density gradients, chemical reactions,
and mechanical deformation. However, the incorporation of these physical processes
coupled with hydrothermal convection can be extremely complex and challenging
to solve using analytical methods. These difficulties have been party overcome by
advances in computing technologies.

1.2.1 Numerical Modelling Approaches

Technological advancements have led to the possible incorporation of more realistic
material properties and boundary conditions into numerical models. These data have
been able to provide more information of the in situ geological structures and conditions
over multiple length-scales, obtained from geological field data, geophysical surveys,
laboratory experiments, and micro-CT data. The exponential growth of data has led to
the simulation of multiscale multiphysics with more realistic geometry and material
properties.

To simulate such complex processes, many numerical simulators have been devel-
oped which incorporate multiphysical couplings, namely thermo-hydro-mechanical-
chemical (THMC) processes. These numerical simulators need to be calibrated and
validated against analytical solutions, field data, and laboratory experiments. As a
result, international initiatives such as DECOVALEX were formed to provide numerical
benchmarks for THMC processes in geological systems (Tsang et al., 2008). Based on
the corresponding advantages and limitations of various numerical implementations,
several THMC implementations have been developed. For example, hydrothermal
flow in porous media is commonly modelled using the finite difference/volume method
(e.g. TOUGH2, (Pruess, 1991; Pruess et al., 1999), ECLIPSE (Schlumberger, 2018)),
whilst mechanical deformation usually involves the finite element method (e.g. OPEN-
GEOSYS, (Kolditz et al., 2012)).

In particular, the widespread application of geothermal reservoir modelling has
contributed to the formation of the International Partnership for Geothermal Technolo-
gies (IPGT) in 2008, involving modelling teams from participating countries including
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Summary of Numerical Codes used in Geothermal Modelling
Name Author(s) Numerical

Method
Hydrothermal
Processes
(TH)

Mechanical
Deformation
(M)

Reactive
Transport
(C)

FEFLOW Diersch (2013) FE ✓ ✓

MODFLOW
Hughes et al.
(2017); McDonald
and Harbaugh
(1988)

IFD ✓

HYDROTHERM
Hayba and In-
gebritsen (1994);
Kipp et al. (2008)

FD ✓ ✓

SHEMAT
Bartels et al.
(2003); Clauser
and Bartels (2002)

FD ✓ ✓

FRACTURE Kohl et al. (1995b) FE ✓ ✓

FALCON
Podgorney et al.
(2010, 2011); Xia
et al. (2016)

FE-DEM ✓ ✓

FEHM

Bower and
Zyvoloski (1997);
Zyvoloski et al.
(1988, 1997)

FE ✓ ✓

TOUGH2 Pruess et al. (1999) IFD ✓ ✓
OPENGEOSYS Kolditz et al. (2012) FE ✓ ✓

Table 1.1 This table lists several numerical codes used in geothermal reservoir
modelling.

Australia, Iceland, New Zealand, Switzerland, and the United States. As a result of
this initiative, along with many others, various codes incorporating fluid flow processes
with mechanics and chemical reactions have already been developed or are under
development. A compilation is summarised in Table 1.1, modified after IPGT (2012).

The numerical simulators listed in Table 1.1 are state-of-the-art codes, often industry
standards. They are capable of incorporating realistic 3-dimensional (3D) geometries,
coupling multiple physical processes, and can be computationally efficient and scalable.
These codes were developed particularly to understand specific problems related to
geothermal reservoirs. For example, some codes focus on the reactive transport of
constituents coupled with fluid flow (SHEMAT, TOUGH2, TOUGHREACT), while
others investigate flow in predominantly fractured reservoirs (FRACTURE, FALCON),
and have all been invaluable in contributing to the understanding of multiphysics in
geothermal reservoirs.

The abundance of data, however, can cause challenges if only processed in a
retrospective manner. To resolve this, prospective studies can help understand the
underlying physics with the aim of identifying the driving parameters of the system.
Specifically, numerical simulators which couple chemical and mechanical processes
with hydrothermal fluid flow exist, but the full impact of multiphysics on hydrothermal
convection has yet to be fully understood.
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1.3 Thesis Motivation

The motivation of this research is to understand the fundamental processes that govern
multiphysics in geothermal settings by identifying and quantifying the critical parame-
ters characterising the reservoir towards extreme conditions (high ambient temperature,
high pressure, and chemical reactions).

Hydrothermal convection is an interesting example where multiphysical processes
interact in a complex manner. In particular, convection cells have been shown to be
constrained by geological features such as faults and fracture zones (Reid et al., 2012),
which are characteristic in HSA basins. These faults can also experience deformation
and could be seen as steadily creeping when considered at geological timescales. The
resistance to motion generates shear heating (Regenauer-Lieb and Yuen, 2003; Scholz,
1980; Yuen et al., 1978), and is expected to influence the overall heat equilibrium
of the system. However, the interaction between shear heating and other processes
(e.g. heat and mass transport) in the reservoir has not yet been studied in depth, and
could potentially provide interesting outcomes. In addition to mechanical deformation,
heated fluids can precipitate and/or dissolve minerals along faults, depending on the
composition of the fluid and ambient temperature conditions.
Hence, to understand the fundamental processes which govern THMC processes in
hot sedimentary aquifers, a workflow is required which incorporates geophysical and
geological field data into a numerical model and a fully coupled THMC solution must be
sought. This point has been identified in 2012, when the IPGT issued a report detailing
the research and development plans for the future of geothermal modelling by the year
2020: "to have a fully coupled THMC reservoir simulation code to describe the complex
non-linear interactions and feedbacks associated with multiphase fluid flow, energy
transport, regional- and local-scale geomechanical deformation (and fracturing), and
geochemical interactions between the working fluid and host reservoir rock; all at
highly variable timescales." (IPGT, 2012).

From this vision came an abundance of numerical simulators (see Section 1.2.1 with
the ability to couple physical processes not only in a sequential manner, but also in a
tightly coupled way. However, the mechanical and chemical processes in geothermal
settings are particularly complex and have not yet been fully understood. Readily
available information provided in various scales by geophysical and geological field
data, laboratory experiments and micro-CT scans have contributed to an abundance
of information ("Big Data"). The ability to determine the key driving parameters of a
system can be promoted by efficiently processing and analysing this wealth of data.
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1.4 Key Objectives

The main objective of this thesis is to understand the impact of creeping faults on
the onset and behaviour of hydrothermal convection, applied to geothermal settings.
In numerically coupled THMC systems, considerable ambiguities are present due to
subsurface heterogeneity, potentially stemming from geological conditions, the physics
of the processes considered, or numerical implementations. To date, the onset of
convection in realistic reservoirs is typically determined through a parameter sensitivity
analysis where different values of permeability are tested in a given reservoir, for a
given scenario. Uncertainty quantifications can reduce both computational and realistic
ambiguities by determining outcome probabilities. Techniques such as reduced-order
modelling for example, allow uncertainty models to be obtained in a small amount of
time whilst retaining accuracy (Degen et al., 2017). The issue with this methodology
is that it still takes a prolonged time for convection to establish and reach a steady
state, particularly when the system is close to criticality, as demonstrated in (Reid et al.,
2012, , Figure 5.10), for example. Thus it is impossible to determine if the parameters
chosen are below the convective threshold, or if the simulation suffered from insufficient
running time. However, this problem can be resolved using mathematically rigorous
methods through the use of analytical linear stability analyses (LSA). Nonetheless, these
analytical approaches have limitations and using such analyses on realistic geometries
and inhomogeneous material properties can be extremely laborious.

The second key objective is to develop a tool which harnesses the strengths of
both analytical and numerical methods, by integrating the mathematical rigour of
the analytical stability analysis with the power of multiscale, multiphysics numerical
simulators. This will allow the identification of key parameters which contribute to the
criticality of a given system, and can be extended to study more complex geometries
and material properties. In particular, the impact of creeping faults on the onset of
convection in faulted reservoirs is first investigated.

1.5 Approach

The approach of this thesis contributes to the goal of numerically fully coupled THMC
simulators to aid modelling and optimising geothermal reservoirs (IPGT, 2012).

When the processes occurring at long geodynamic timescales are coupled with the
short (engineering) timescale processes of the geothermal reservoir, explicit THMC-
feedback processes are considered in the evolution of material properties. The multiscale
feedbacks between chemistry, fluid flow, temperature, and mechanics can give rise to
different critical localisation phenomena and can be characterised by dimensionless
numbers expressing the ratios of the rates of competitive physical processes.
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In this thesis, the focus is particularly on the Lewis and Gruntfest numbers, which
describe the ratio of heat and mass transfer, and the mechanical dissipative work present
the system respectively. At critical conditions, mechanical localisation phenomena
can manifest themselves as shear and/or fracture zones, which can have a fundamental
influence on the fluid dynamics processes in the reservoir. In this thesis, I have chosen
to first understand the fundamental processes occurring at elevated temperatures and
pressures under specific tectonic stress regimes.

The numerical tool used in this thesis is REDBACK, a geomechanical simulator
specifically designed to study tightly coupled multiphysical effects in various geological
settings (Poulet et al., 2016; Poulet and Veveakis, 2016). Building on the flexibility
and power of numerical simulators, a bifurcation analysis using a pseudo-arclength
continuation method is implemented and benchmarked in REDBACK. This method
preserves the rigorous mathematical approach, and can be applied to determine the
stability of any given system.

1.6 Thesis Outline

This thesis is organised into seven chapters, graphically illustrated in Figure 1.1. It is
structured as follows:

Chapter 2 presents the theory and methods for the classical derivation and formu-
lation of equations for hydrothermal convection in porous media, along with the new
approach used in this thesis. The underlying theory and model assumptions used to
characterise the system for convection in mechanically-deforming porous media are dis-
cussed in this chapter, along with the derivation of equations, definition of dimensionless
groups, and the need for a numerical stability analysis.

Chapter 3 contains the implementation of the system of equations defined in Chapter
2 and the numerical bifurcation method into the geomechanical simulator, REDBACK.
To determine the stability of a system, a bifurcation analysis using a numerically-assisted
technique - a pseudo-arclength continuation method - is implemented and benchmarked.
Various sensitivity analyses exploring the effects of mesh discretisation and geometry
on the onset of convection are also discussed.

Chapter 4 utilises the equations described in Chapter 2 with the new numerical
bifurcation tool to derive results of hydrothermal convection in rigid porous media.
The methodology of the workflow is discussed, acknowledging potential non-unique
results which could be obtained. Furthermore, the effects non-homogeneous geometry,
material properties, and fluid compressibility are investigated with respect to the critical
value required for the onset of convection.

Chapter 5 highlights the effect of shear heating on the onset and pattern of convec-
tion, describing the physical model and assumptions used in this investigation. The
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results and proposals for future work are discussed with implications to geothermal
engineering operations.

Chapter 6 builds on the workflow and results of Chapter 5 and applies the current
approach to a case study of Soultz-sous-Forêts. The objective of this chapter is to
investigate a specific fracture zone and its influence on the surrounding fluid flow.

Chapter 7 concludes the thesis with the key findings obtained from Chapters 4,
5, and 6. This chapter highlights new knowledge on the impact of creeping faults in
reservoirs where hydrothermal convection is present, as well as the implementation of a
numerical bifurcation method. Results and suggestions for future work are discussed in
the context of impacting geothermal energy production.
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Legend
introduction and overview

theory and model formulation

numerical aspects

results

discussion and conclusions

Fig. 1.1 Schematic flow chart of the thesis. The colours represent structural el-
ements of the thesis; purple = introduction and providing a general overview,
yellow = theory and model formulation, green = numerical aspects for code vali-
dation and implementation, blue = results and pilot case study of coupled multi-
physics processes, pink = discussion and conclusion, providing a summary of the
thesis.
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Chapter 2

Theory and Methods

The aim of this thesis is to investigate the behaviour and response of hydrothermal
convection in geological reservoirs hosting creeping faults. In geothermal settings, hy-
drothermal convection is a particularly important phenomena as it can be a major driver
of heat and fluid transport which can be utilised for energy generation. Geothermal
reservoirs often encompass highly fractured porous media, which allow heated fluid to
flow. At geological timescales, such reservoirs can be subjected to considerable defor-
mation, in which faults can deform at constant creep. The fault’s frictional resistance to
motion generates shear heating, which has been documented to play a significant role
in various geological settings, ranging from crustal faults (e.g. Lachenbruch and Sass,
1980; Leloup et al., 1999; Regenauer-Lieb and Yuen, 1998; Sibson, 1982) to Saturn’s
moon (Nimmo et al., 2007). However, the effects of shear heating has not yet been fully
investigated in geothermal environments. Heat generation from creeping faults can
potentially impact the heat equilibrium of the system (Tung et al., 2017). Specifically
of interest is the influence of shear heating on the onset of hydrothermal convection,
applied to geothermal reservoirs.

This chapter presents the physical and mathematical model used to simulate hy-
drothermal convection in deformable porous media. It then compares the classical
derivation of convection in porous media with the formulation used in this thesis.

2.1 Mathematical Model

The mathematical model describing the problem of hydrothermal convection in the
presence of faults comprises the standard governing laws of physics (momentum,
mass, energy and entropy balance), together with appropriate constitutive laws for
the materials involved. In order to derive the system of equations, a representative
elementary volume (REV) is defined of a fully saturated porous medium consisting of a
solid skeleton A, saturated by a single fluid phase B (see Figure 2.1).
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Solid
Phase
(A)

Fluid
Phase
(B)

Fig. 2.1 Schematic representative elementary volume of a fully saturated porous
medium, from a CT-scan sandpack (Imperial College Consortium On Pore-Scale
Modelling, 2014). The rigid solid grains (A) are indicated in white and a single
fluid phase (B) is in black.

Let the rock be subject to stress (σ ) and temperature (T ) conditions, where Terza-
ghi’s decomposition of the stress tensor σi j = σ ′

i j − p f δi j is introduced into an effective
stress part σ ′

i j and the pore fluid pressure p f (δi j being Kronecker’s delta). Neglecting
inertia terms at equilibrium, the momentum balance for the mixture reads where the
notation of implicit summation is used:

∂ jσ
′
ji −∂ j p f δ ji + ρ̄gi = 0 (2.1)

where ∂ jσ
′
ji is the divergence of effective stress, ρ̄ the density of the mixture, and gi the

acceleration of gravity vector.
In order to define the density of the mixture ρ̄ = ρ1+ρ2 in a porous medium, partial

densities are introduced for the solid (1) and fluid phase (2),

ρ1 = (1−φ)ρs

ρ2 = φρ f

where φ is the porosity, and ρs, f are the densities of the solid skeleton and fluid,
respectively. The mass balance equation per phase is expressed as

∂tρa +∂kρav(a)k = 0 (2.2)

where a = 1,2 for solid and fluid phase, respectively.
An equation of state is assumed relating the densities with the pore fluid pressure

p f and temperature T :
dρi

ρi
= βid p f −λidT (2.3)

where βi the compressibility, λi the thermal expansion, ρi the density of the constituent
i where i = f , s. It is acknowledged that the properties of water and steam are depen-
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dent on the conditions of temperature and pressure with more complex dependencies
(IAPWS, 2007), however within the scope of this thesis, scenarios are restricted to
simple cases thus adopting a linearised expression for the fluid density is sufficient
(Tung et al., 2017): ρ f =

(
1+β f (p f − p0)−λ f (T −T0)

)
.

A constitutive model is taken for the fluid migration written for the filtration velocity
using Darcy’s law Coussy (2003):

q f ilter
k = φ(v( f )

k − v(s)k ) =− kπ

µ f

(
∂k p f +ρ f giδi3

)
(2.4)

where v( f )
k is the fluid velocity, v(s)k the solid velocity, kπ the permeability and, µ f the

fluid viscosity.
Based on these assumptions, the mass balance equation for the mixture reads:

β̄ ∂t p f =−∂kq f ilter
k + λ̄ ∂tT −βcon∂k p f +λcon∂kT − ε̇kk (2.5)

where β̄ = (1−φ)βs+φβ f , is the compressibility of the mixture, λ̄ = (1−φ)λs+φλ f

the thermal expansion of the mixture, while βcon =
[
(1−φ)βsv

(s)
k −φβ f v( f )

k

]
and

λcon =
[
(1−φ)λsv

(s)
k +φλ f v( f )

k

]
are the expressions of compressibility and thermal

expansion coefficients respectively appearing in the convective terms of the equation.
The total volumetric strain rate of the solid phase is expressed by the term ε̇kk =

ε̇e
kk + ε̇

p
kk = ∂kv(1)k , which is decomposed into elastic (ε̇e) and plastic (ε̇ p) parts.

The derivation of the final governing law combines the energy-entropy balance
equation with Fourier’s law of thermal conduction to give:

ρCp (∂tT + v̄k∂iT ) = κ∂
2
ii T +χσ

′
i j ε̇

p
i j (2.6)

where x denotes the property x of the mixture, where in this case, ρCp is the mixture
average of the product of density and heat capacity, v̄k = [(1−φ)ρsv

(s)
k +φρ f v( f )

k ]ρ̄−1

the mixture’s barycentric velocity, and κ the mixture’s thermal conductivity. The last
term, χσ ′

i jε̇
p
i j, represents the mechanical dissipation with χ expressing the part of the

mechanical work which is converted into heat. As such, the Taylor-Quinney coefficient
χ lies between 0 (when none of the mechanical work is converted into heat) and 1 (when
all of the mechanical work is converted into heat) and represents the aforementioned
ratio. This source term in the energy equation is usually very low and can be neglected,
except in areas of localised deformation such as faults.

The final system of equations describing hydrothermal convection in faulted envi-
ronments consists of Equations (2.1, 2.5,2.6), together with appropriate constitutive
laws for the mechanical deformation relating the strain rate to the stress tensor. In
the following sections, two cases of hydrothermal convection will be explored, first
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(a)

(b)

Fig. 2.2 a) Rayleigh-Bénard convection cells obtained from experiments (van Dyke
and White, 1982), and b) Result of steady state convection cells with normalised
temperature values obtained from a numerical simulator, REDBACK.

retrieving the classical formulation in the absence of mechanical deformation, and later
introducing mechanical deformation in a given class of faulted environments.

2.2 Formulation for Classical Convection in Porous Media

Hydrothermal convection has been studied since the early 1900’s and is driven by the
change of buoyancy of fluid with temperature. The phenomenon was first observed and
explained by Bénard (1901), Rayleigh (1916), and Jeffreys (1926), and a comprehensive
review of the subject can be found in Nield and Bejan (2013) for instance. Figure 2.2
illustrates convection cells obtained in experiments and results from numerical mod-
elling. The critical value of the driving parameter for the system, known as the critical
Rayleigh number (Rac), contains information of the boundary conditions, coefficients of
volume expansion, thermal conductivity, kinematic viscosity, and the height (or depth)
of the layer (Rayleigh, 1916).

2.2.1 Horton-Rogers-Lapwood Equations

One of the best known models to describe hydrothermal convection in porous media is
the Horton-Rogers-Lapwood system of equations, where the Boussinesq approximation,
incompressible fluid and solid (β f = βs = β̄ = 0), and rigid solid skeleton (v(s)k = 0)
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are assumed (Horton and Rogers, 1945), for which β f is the fluid compressibility, βs

the solid compressibility, and β̄ the compressibility of the mixture. The Boussinesq
approximation assumes that density is only prevalent in the buoyancy term, therefore the
temperature- and pressure-dependent density is replaced by a constant density term. In
this case, Equations (2.1, 2.5,2.6, 2.4) reduce to the classical equations for hydrothermal
convection:

∂kv( f )
k = 0 (2.7)

v( f )
k =− kπ

φ µ f

[
∂k p f +ρ f giδi3 −ρ f λ f (T −T0)giδi3

]
ρCp (∂tT )+(ρCp) f

(
v( f )

k ∂kT
)
= κ∂

2
ii T

where T0 is a reference temperature.
In order to observe the behaviour of hydrothermal convection, the above equa-

tions can be normalised, leading to the introduction of the Rayleigh number (Ra), a
dimensionless number encompassing properties from the fluid, solid matrix, as well
as geometrical considerations and boundary conditions. This number, specific to the
system of equations solved, is typically used to determine the occurrence of convection
in a rigid porous media. Specifically, the definition of the Rayleigh number used to
describe a scenario consisting of a horizontal two-dimensional homogeneous block is:

Ra =
kπ∆T gHλ f ρ2

0Cm

αµ f
(2.8)

where kπ is the permeability, ∆T the temperature difference between the top and bottom
of the geometry considered, g the gravitational constant, H the thickness of the model,
λ f the thermal expansion of the pore fluid, ρ0 the reference fluid density, Cm the
specific heat capacity of the mixture, α the thermal conductivity of the fluid-saturated
medium, and µ f the viscosity of the fluid. Considering all the parameters defined in the
Rayleigh number, permeability is of particular interest as it can vary by several orders
of magnitude in a given system. It is the most poorly constrained parameter in reservoir
scale applications and as a result, could arguably be considered as the most influential
parameter in the Rayleigh number definition.

The value of Ra is dependent on the geometry and boundary conditions of the
problem considered, and the critical Rayleigh number (Rac) defines the value at which
convection is predicted to occur. The most famous value of Rac is perhaps Rac = 4π2,
obtained in the case of a horizontal aquifer under fixed temperature and impermeable
pressure boundary conditions at its top and bottom. Various other values of Rac were
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σhσh
θ

τn

σn

x

y

Fig. 2.3 Schematic diagram of fault, showing the definitions of stresses. In this
diagram, σh represents a horizontal, compressive stress, σn the normal stress, τn
the deviatoric (shear) stress, and θ the angle of dip.

derived analytically by Nield (1968) for other sets of boundary conditions and are listed
in Table 2.1.

Pb Pt Tb Tt Rac

IMP IMP CONST CONST 4π2 = 39.48
IMP IMP CONST CHF 27.10
IMP IMP CHF CHF 12
IMP FRE CHF CHF 3
FRE FRE CHF CHF 0

Table 2.1 The terms IMP and FRE for the pressure boundary conditions (BC)
correspond to impermeable (Neumann BC) and constant pressure (Dirichlet BC),
where CONST and CHF are constant temperature (Dirichlet BC) and constant
heat flux (Neumann BC) respectively. It can be observed that different Rac exist
from varying the BC of temperature and pressure.

2.3 Formulation for Convection in Faulted Reservoirs

In this thesis, the role of shear heating is investigated in a conceptual model, consisting
of a planar fault dipping at shallow angles in a reservoir experiencing constant far-field
stresses (see Fig 2.3). The assumption for the domain (reservoir) is to be rigid (infinite
elastic modulus), and the fault viscoplastic. The domain boundaries are subjected to a
horizontal, compressive (tectonic) stress, σh, which is transferred on the fault boundaries
due to the rigid body assumption. This assumption strongly relies on the fact that any
faults in the area will be creeping aseismically, as slip events will affect surrounding
stresses which therefore invalidates the rigid body assumption.

Considering that faults are usually thin compared to the over- and under-burden
structures, recent studies have shown that stresses across the fault can be considered
constant inside the fault and only varying along the fault Alevizos et al. (2014); Rice
(2006); Veveakis et al. (2010). In this case, the stress equilibrium in the momentum
balance equation (Equation 2.1) yields σxx = σh and σyy = −ρmg|y| = −ρgx tanθ .
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Therefore, the deviatoric stress τn varies with the dipping angle θ of the fault (see
Fig. 2.3) as follows:

τn =

√
1
2
(σxx −σyy)2 =

|σh +ρgx tanθ |√
2

(2.9)

Here σh is identified as the tectonic loading stress, and is usually of the order of several
hundred MPa (typically σh ∼ 200MPa in active tectonic environments). Hence, the
gravitational contribution ρgx tanθ can be considered negligible in the case of a fault
dipping at shallow angles.

The fault is also assumed to be past its yield threshold and steadily creeping at
critical state, i.e. without any volume changes (Alevizos et al., 2014). Therefore the
last term on the right side of Equation 2.5 is set to zero (ε̇kk = 0), due to the prolonged
shear state of the fault. With these assumptions, the set of equations for convection in
reservoirs including creeping faults can be reduced to the following:

β̄ ∂t p f = ∂k

[
kπ

µ f

(
∂k p f +ρ f giδi3

)]
+ λ̄ ∂tT −βcon∂k p f +λcon∂kT (2.10a)

ρCp (∂tT + v̄i∂iT ) = κ∂
2
ii T +χτnγ̇ (2.10b)

where γ̇ is the deviatoric plastic strain rate, assumed to obey a visco-plastic law of the
form:

γ̇ = γ̇0

〈
τn − τY

σre f

〉
exp

(
−Qmech

RT

)
(2.11)

In this expression γ̇0 is a reference strain rate, τn the fault shear stress, τY the deviatoric
yield stress, assumed to obey a pressure sensitive (Drucker-Prager) relationship τY =

c+ f σY , where c is the cohesion, f friction coefficient, and σY the mean stress at yield,
σre f a reference stress, and Qmech

R is the thermal sensitivity coefficient (activation enthalpy
over gas constant) of the plastic flow law. The symbol < . > denotes the MacAulay
brackets ensuring zero plastic strain before yield. With the above considerations, when
zero dilatancy is set to respect the requirement of the fault being at critical state (i.e.
no volume change) from prolonged creep, the flow law (Equation2.11) represents a
non-associative plastic law to the yield surface assumed.

In order to observe ratios of competitive processes in the system, dimensionless
parameters can be defined. The normalisation of parameters become important espe-
cially in multiphysics calculations where various physical processes can be occurring
simultaneously. Using a dimensionless formulation provides analytical formulae of
the parameters which characterise the competition of rates of all physical processes
involved. The formulation of a hydrothermal convection system by Rayleigh (1916) led
to the derivation of the Rayleigh number which proved such an important concept to
quantify in a single number the occurrence of convection. In the same way, the approach
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used in this Thesis is also using a dimensionless formulation to explicitly define the
relevant parameters that account for the multiphysics of the problem. Hence, working in
a dimensionless space enables the definition of an appropriate mathematical system of
equations, which can then be customised to any scenario. Specifically, when mechanics
is considered, the Lewis and Gruntfest numbers become the critical parameters and are
presented below in Section 2.3.1.

2.3.1 Normalisation of Parameters

In this thesis, normalised variables are defined using the following quantities:

p∗f =
p f

σre f

T ∗ =
T −Tre f

δTre f

x∗i =
x

xre f

t∗ =
cth,re f

x2
re f

t

τ
∗ =

τ

σre f

where δ a scaling factor, for example computed as δ =
Tbottom−Ttop

Tbottom
in the case of a

rectangular domain with top and bottom temperatures fixed, cth,re f =
α

(ρCp)m
the thermal

diffusivity of the mixture, and Tre f , xre f , σre f are reference quantities. Substituting
these dimensionless parameters into Equations 2.10 give the final system of equations
where the asterisks are dropped for convenience:

0 = ∂t p f −Λ∂tT + vp
i ∂i p f − vT

i ∂iT −∂i

[
1

Le
(∂i p f +ρ f giδi3)

]
(2.12a)

0 = ∂tT + v̄i∂iT −∂
2
ii T −Gr e

Ar δT
1+δT (2.12b)

where Λ is the thermal pressurisation coefficient, defined as the ratio of thermal expan-
sion to the compressibility of the mixture Λ = λm

βm
. The normalisation process results in

various dimensionless parameters (Le, Gr), present in Equations 2.12. The values of
these parameters are investigated to understand the physical processes occurring in the
system.
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2.3 Formulation for Convection in Faulted Reservoirs

2.3.2 Definition of Dimensionless Terms

Lewis Number

From a geological perspective, the parameter which governs the onset of convection
is often thought to be permeability, since it is the least constrained parameter. Tra-
ditionally, permeability is accounted for in the definition of the Rayleigh number, a
dimensionless term used to describe the evolution of classical hydrothermal convection.
However in this Thesis, a different approach is taken which supersedes the concept of
the Rayleigh number, and is presented in Section 2.3.4. In this approach, the effect of
permeability (kπ ) is accounted for through the definition of a different dimensionless
group: the Lewis number.

Le =
cth

chy
=

µ f cth β̄ ∗

kπ σre f
(2.13)

where β̄ ∗ = β̄ σre f is the normalised compressibility of the medium. Based on the
definition of the Rayleigh number (Equation 2.8), note that the Lewis and Rayleigh
numbers are inversely proportional to each other:

Le ∝
αβ̄ ∗

Ra
(2.14)

As such, compared to the classical formulation of the convection problem in terms of
Ra, the system of Eq. (2.12) convects when the Lewis number is below a critical value
Lec.

Gruntfest Number

The Gruntfest number (Gr) describes the ratio of the mechanical dissipative work
to the heat dissipated in the system, initially discovered by Gruntfest (1963). The
normalised thermal dissipation of the steady creep can be expressed as

Gr = Gr0 τn ⟨τn − τY ⟩e−Ar (2.15)

Gr0 =
χσre f ε̇re f x2

re f

κδTre f
(2.16)

Gr encompasses the model of plasticity used, hence the results presented as a
function of Gr are independent of the yield envelope or flow law assumed. The
only dependence on the mechanical model considered is through the Arrhenius-type
exponential dependence of the flow law (Equation 2.11) to temperature Paesold et al.
(2016). However it has been shown in previous studies that any non-linear dependence
of the flow law on temperature would have the same qualitative effects on the system’s
stability Veveakis et al. (2010).
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2.3 Formulation for Convection in Faulted Reservoirs

Nusselt Number

The Nusselt number Nu characterises the ratio of convective to conductive heat
transfer and therefore indicates whether a system is convecting or not. Various defini-
tions of the Nusselt number have been used over time and modified according to the
problem at hand (e.g. Christensen, 2002; Christensen and Aubert, 2006). Traditionally,
it is defined as the ratio of convective to conductive heat transfer across a boundary.
This definition is most appropriate in scenarios of simple geometry having a pure dif-
fusion temperature gradient within the boundaries of the convecting layer. However,
for scenarios encompassing various layers containing non-diffusive profiles as initial
conditions, the traditional definition of the Nusselt number is less meaningful in such
cases. For example, the initial non-convecting state may consist of various temperature
profiles corresponding to different geological units (e.g. a localised hot granite), and
convection could solely occur in a specific formation. For such scenarios, no analytical
solution exists for the diffusive (or non-convecting) temperature profile hence making it
difficult to determine the possibility and location of convection occurring in the model,
particularly if heat transfer is measured at a given point or boundary.

In order to track the effect of convection over the whole domain, a modified Nusselt
number is defined in this study to be

Nu = 1+
max ∥ k∇Tconv ∥Ω

max ∥ k∇Tdi f f ∥Ω

(2.17)

where max ∥ k∇T ∥Ω is the maximum over the entire domain Ω of the norm of the heat
flux, expressed as the product of the thermal conductivity and the temperature gradient.
Tconv = T −Tdi f f denotes the convective part of the temperature when convection is
modelled, while Tdi f f represents the temperature computed in a purely diffusive case.
Although this formulation requires the computation of two separate simulations (with
and without convection), it ensures Nu = 1 in the diffusive state, even when the solution
of diffusion cannot be computed analytically. This volumetric definition of the Nusselt
number allows the determination of the onset of convection in the domain, regardless of
the geometry or initial conditions considered.

In order to analyse the onset and behaviour of hydrothermal convection, stability
studies have been performed using results from both laboratory experiments and nu-
merical methods (Bories, 1987; Combarnous and Bories, 1975; Elder, 1967). It was
discovered that numerically solving the fluid flow equations took a prolonged time for
the solution to converge, especially when the system was close to criticality (Elder,
1967). Since the focus of this thesis is on the onset of convection, this makes the numer-
ical identification of the critical Rayleigh number Rac extremely difficult. Therefore,
stability analyses can be used to effectively track the evolution of convection from its
diffusive to convective state.
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Ra

Nu

1

Rac

Fig. 2.4 Conceptual evolution of the Nusselt number with respect to the Rayleigh
number in the case documented by Bories (1987), where the solid line indicates
the steady state solution of convection, and the dotted line is the unstable branch.
Convection occurs above the critical Rayleigh number Rac indicated by Nu > 1,
and increases in strength for values of Ra > Rac . Another mode of convection is
visible for larger values of Ra. The box highlights the focus of this study on the
onset of convection.

2.3.3 Linear Stability Analysis

When a physical problem is mathematically described by a set of differential equations,
its stability is usually analysed through a linear stability analysis (LSA) to identify
the parameter space leading to the various regimes of the system and their respective
stabilities. Linearising the problem by taking the first order of a Taylor expansion series
of the solution is the simplest way to provide a mathematical solution. Linear stability
analyses have therefore been proven extremely useful in systems which are simple
enough to remain mathematically tractable (Elder, 1967; Rayleigh, 1916). The main
advantage of using a LSA for hydrothermal convection in porous media is to accurately
determine the definition and critical value of the Rayleigh number, Rac, required for
the system to convect. Another advantage is the ability to not only track the steady
state behaviour of convection at lower [near-critical] Rayleigh numbers, but also the
behaviour of the system for higher values of Ra > Rac.

The stability of a convective system in a non-deformable porous medium is generally
studied with respect to the Rayleigh number. Conventionally, such stability analyses
were described by plotting the steady state solution of the problem in a 2D diagram rep-
resenting the Nusselt number (Nu) evolution against the Rayleigh number (Ra). Studies
have shown that convective systems can evolve into different modes with increasing Ra
numbers (e.g. Combarnous and Bories, 1975; Florio, 2013; Florio et al., 2015, 2017a,b),
marked by characteristic segments on the stability curve (see Figure 2.4).

Linear stability analyses have been successfully performed using analytical ap-
proaches (Elder, 1967; Rayleigh, 1916) but were restricted to homogeneous cases.
When confronted with complex geometries, distributions of material properties and
coupled physical processes, numerical simulators are often the more convenient choice.
However, running a direct sensitivity analysis using a numerical simulator is insufficient
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2.3 Formulation for Convection in Faulted Reservoirs

to accurately investigate the onset of convection. Compared to a LSA, direct sensitivity
analyses do not provide the same amount of information as they are unable to iden-
tify the critical parameters, nature of the solution, and the respective threshold values
of the critical parameters marking changes in behaviour. Numerical simulators have
limitations and results can be inconclusive for systems that are close to criticality, as
observed with recent numerical simulations by Schilling et al. (2013) for instance. This
point had been already established by Elder (1967), who showed it takes an increasingly
prolonged amount of time for the convection to establish in a transient simulation when
the system approaches criticality. As such, it is impossible to confidently determine
from a numerical simulation of a non-convective system if the Lewis number is above
the predicted critical value (Ra below Rac, conversely), or if the simulation suffered
from insufficient running time. For this reason, a numerical bifurcation analysis is much
more suitable and can also be extended to the case of numerical simulators.

2.3.4 Numerical Bifurcation Analysis

In this work, the stability and onset of convection in deformable media is studied using
a pseudo-arclength continuation method (Keller, 1979). The focus of this thesis is
purely on the onset of convection, and therefore only the response of the system close
to criticality will be investigated. This study is performed with respect to the Lewis
number Le (which accounts for permeability) and a modified Nusselt number Nu (see
Equation 2.17. The advantage of a numerical bifurcation analysis is the achievable
tracking of the evolution of convection in any domain despite varying material properties
and non-homogeneous geometries. The numerical implementation of the mathematical
model, equations used, and the pseudo-arclength continuation method are detailed in
the following chapter.
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Chapter 3

Numerical implementation

The abundance of numerical codes created to investigate fluid and mass transfer in
groundwater aquifers and geothermal settings have given users a large variety of choices.
These state-of-the-art codes are industry-standard and have the capability to solve
multi-phase flow with reactive transport in the context of a porous medium. Some
codes include FEFLOW, which is still being developed since 1979 (Diersch, 2013),
MODFLOW (McDonald and Harbaugh, 1988) which is also still in development
(Hughes et al., 2017), HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al.,
2008), or SHEMAT (Bartels et al., 2003). More recently, some codes used for fluid
flow in porous media have coupled mechanical processes, some of which include
FRACTURE (Kohl et al., 1995b), FALCON (Podgorney et al., 2010, 2011; Xia et al.,
2016), FEHM (Bower and Zyvoloski, 1997; Zyvoloski et al., 1988, 1997), TOUGH2
(Pruess et al., 1999) or OPENGEOSYS (Kolditz et al., 2012). Table 1.1 lists some of
the codes mentioned along with their capabilities in solving multiphysics.

At engineering timescales, the assumption of undeformable porous media can be
appropriate, however this can be a drastic simplification when geological timescales
are considered, as basins can deform quite considerably over time. Some numerical
simulators are able to account for deformation and are aiming at handling fully coupled
thermal-hydraulic-mechanical-chemical (THMC) processes. The numerical simulators
FEHM and OPENGEOSYS, for instance, have incredible capabilities to simulate
coupled THMC processes, but do not however accommodate a numerical bifurcation
analysis. As such, this functionality had to be enveloped, which prompted to the
selection of an open source platform.

One particularly suitable solution is the Multi-physics Object Oriented Simulation
Environment (Gaston et al., 2009). This open source finite element, parallel platform
was specifically developed to solve tightly-coupled systems of equations and provides
great flexibility in terms of programming modularity and functionalities, such as the
ability to run on unstructured meshes. By default, MOOSE also comes with a series of
physics modules which can be easily extend to model more complex behaviours. When
such irregular geometrical configurations are considered, the use of a finite element
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3.1 REDBACK

method (FEM) over the finite difference method (FDM) is preferred as it generally
results in minimized errors since FDM is an approximation of a Taylor series expansion,
whilst FEM performs integration in each element. Another advantage of MOOSE is that
it is specialised for tightly-coupled problems where all variables are highly dependent on
each other, as opposed to sequential or loose-coupling where the relationship between
variables are mostly independent.

3.1 REDBACK

One existing MOOSE module is REDBACK, targeted at Rock mEchanics with Dissipative
feedBACKs. This code was specifically designed as a geomechanics simulator to study
coupled multi physical effects (Poulet et al., 2016; Poulet and Veveakis, 2016) and in
particular, provides the ability to simulate elasto-visco-plastic deformation coupled with
advective flow and chemical reactions.

3.1.1 Code Structure

MOOSE is written in C++ making it extremely flexible and powerful, incorporating
various functionalities that can be applied to different applications. Its input files
are written in a hierarchical, block structured syntax, which provide users with the
flexibility to tackle their problem of interest, ranging from simple equations (e.g. solving
a diffusion equation with simple geometries), or having multiscale, fully coupled THMC
equations with realistic geometries. An example input file solving the simple diffusion
equation is displayed in Figure 3.1.

Since REDBACK is built on MOOSE, it inherits the MOOSE code architecture.
The flexibility of solving various problems often results in a customised input file with
varying input blocks. Listed below are the brief definitions of the main input blocks
used in this thesis, not necessarily used concurrently.

• Variables: Mathematical variables of interest which are solved across the entire
mesh, at nodes (quadrature points) (e.g. temperature, pore pressure, displacement,
etc.)

• Mesh: Mesh used for the simulation. For simple geometries (e.g. perfectly
homogeneous rectangular mesh), MOOSE provides the functionality to generate
such meshes. Users can also load their own meshes in a variety of file formats
(e.g. .msh), which can be created from external programs (e.g. gmsh)

• Mesh Modifiers: Various functionalities to modify the loaded mesh file, alleviat-
ing the need to re-mesh using an external program. Some functionalities include
naming/identifying particular nodes/elements, creating new boundaries/regions
within the same geometry, or splitting a surface/volume.
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3.1 REDBACK

• Kernels: Building blocks of the system of equations to be solved. Each kernel
represents "a piece of physics" and describes a term in the PDE. As an example,
if diffusion is desired to be solved in a particular block, a Diffusion Kernel will
be selected.

• Materials: Material properties representing a particular rock type, associated
with of a particular surface (2D) or volume (3D) in the mesh. In REDBACK,
input values for common parameters include (but are not limited to) fluid and
solid density, porosity, gravitational force, reference Lewis number, and thermal
expansion coefficient(s) of the solid and fluid.

• Executioner: The executioner has two functionalities; steady and transient.
Steady requests a steady state solution and solves the nonlinear system in just one
step, whereas transient solves it in multiple steps (used to observe the evolution of
the problem, or if the problem is just too hard). In the Executioner block, we are
able to fine-tune various parameters such as dt, the timestep size between solves;
the end time of the simulation, or the number of steps in the simulation. In this
block, the tolerance can also be specified, as well as more advanced options like
adaptive time stepper where timesteps can be increased when the solution
is converging, or decreased when it cannot converge.

• Boundary Conditions: Various boundary conditions available in MOOSE, most
commonly used are Dirichlet and Neumann boundary conditions, but other func-
tions (e.g. constant flux) are also available.

• Initial Conditions: Initial condition applied to the start of the simulation. Can
be expressed using a function, or taking value(s) from a previous result file, at a
specific time step for instance.

• Functions: Ability to input your own function with mathematical expressions
using the predefined keywords x, y, z, t, to represent space and time. Can
be used in other blocks such as boundary and initial conditions, and user objects
for instance.

• Post Processors: Explicit calculations performed based on the results obtained
from the simulation; for example, calculating the maximum fluid velocity at the
end of each time step.

• User Objects: Provide data and calculation results which can be used by other
MOOSE objects (e.g. function solution UO, to apply to IC).

• Aux Variables: Auxiliary variables that can be be solved at both nodes or ele-
ments, in addition to the system variables. Similar to variables, explicit calcula-
tions can be performed on auxiliary variables, and will also be displayed in the
result file.
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3.1 REDBACK

• Aux Kernels: Objects describing how to update the respective auxiliary variable.
The calculations performed by auxiliary kernels have the flexibility to be coupled
tightly or weakly, by defining the time of their computation (e.g. at linear/non-
linear iteration, beginning/end iteration, etc.).

• Outputs: Define all outputs required for visualisation, both for the data computed
over the whole mesh (exported natively in the Exodus file format (.e), or other
formats like .vtk) and for post processors (exported in .csv files).
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[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
xmax = 2
ymax = 2

[]

[Variables]
[./temp]
[../]

[]

[Kernels]
[./diff]

type = Diffusion
variable = temp

[../]
[]

[BCs]
[./temp_top]

type = DirichletBC
variable = temp
boundary = top
value = 0

[../]
[./temp_bott]

type = DirichletBC
variable = temp
boundary = bottom
value = 1

[../]
[]

[Executioner]
type = Steady
solve_type = PJFNK

[]

[Outputs]
execute_on = timestep_end
exodus = true

[]

Fig. 3.1 Example input file solving only the diffusion of temperature in a generated
square mesh. Input blocks can be added as the problem of interest increases in
complexity. 26



3.2 Implementation of the Pseudo-Arclength Continuation Method

3.2 Implementation of the Pseudo-Arclength Continuation Method

For a geothermal operation to have significant economic viability in the case of Hot
Sedimentary Aquifers (HSA), an ideal reservoir would potentially be large (thick) in
volume, unaltered, highly permeable, and free of any geometrical flow inhibitors. In
reality however, to encounter a reservoir with such ideal settings is rather uncommon
as most geological basins would have been subjected to deformation over time; what
would have been perfectly deposited horizontal layers could be folded, stretched, and/or
pinched out. The presence of faults could also contribute to another dimension of
complexity as they can act as permeability enhancers or blockers (Reid et al., 2012),
potentially decreasing the eceonomic viability of the reservoir. Therefore, it is crucial
to investigate and understand the hydrothermal processes and the potential presence
of convection in such realistic scenarios. Numerical simulations can easily provide
an approximation of the size and location of hot upwellings when simple idealistic
scenarios are considered. However, the incorporation of information provided from
realistic historical and existing field data, which can be expressed by irregular boundary
conditions and inhomogeneous material properties, can certainly increase complexity
and make numerical simulations more time consuming. This points to the necessity
of a parameter sensitivity analysis of convective systems to constrain the underlying
physical processes, particularly in geothermal settings. A pseudo-arclength continuation
method (Keller, 1979) is chosen as the numerical continuation method in this thesis,
leveraging the power of REDBACK through a Python wrapper. The purpose of this
method is to numerically track the stability of the solution with respect to a parameter.
This is done by considering the parameter itself as an extra variable in the system.

3.2.1 System of Equations

The numerical stability analysis presented here combines the pseudo-arclength continua-
tion method from Keller (1979) with the REDBACK finite element simulator. While the
aim of the study is to investigate the impact of permeability through the Lewis number
(Equation 2.13), the approach itself is generic and can be applied to any continuation
parameter (λ ) present in the system of equations. It is assumed that the solution of the
steady state problem follows a continuous curve with respect to λ , along the curve’s
length S (see also Figure 3.2). In this thesis, λ is specifically the Lewis number.

Let ui denote the solution vector where 0 ≤ i ≤ N, with N the number of degrees
of freedom of the problem at hand. In the case of this thesis, it is equal to the number
of temperature and pore pressure values at every node point of the entire mesh. Let
F be the discretised version over the finite element mesh of the differential operator
describing Equation2.12. In this form, the system reads u̇i = Fi(ui,λ ) where the dot
notation is used for the time derivative. Then, given a solution of the steady state problem
(u(n−1)

i ,λ (n−1)) at iteration step n−1, as well as the direction (du(n−1)
i /dS,dλ (n−1)/dS)
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λ

|| u ||
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Fig. 3.2 Schematic representation of the pseudo-arclength continuation scheme,
marching along the arc-length S of the curve. At every iteration step (n) of the
pseudo-arclength continuation algorithm (see Fig. 3.3), the initial guess (subscript
IG) is computed from the previous two solutions at steps (n−1) and (n−2).

of the solution at length S(n−1) we can compute the steady state solution at length
S(n) = S(n−1)+∆S as follows:

Fi(u
(n)
j ,λ (n)) = 0, (3.1a)

(u(n)i −u(n−1)
i )

du(n−1)
i
dS

+(λ
(n)
i −λ

(n−1)
i )

dλ (n−1)

dS
−∆S = 0, (3.1b)

where ∆S is the marching step size along the curve. Note that λ becomes a variable in
this formulation (Equation 3.1a), and its value is solved to track the stability curve of
the whole system. This is the main difference with a traditional sensitivity analysis for
which values of λ are selected as inputs and used to solve for the other variables (i.e.
temperatures and pore pressures).

3.2.2 MOOSE Scalar Kernel

At each iteration step n, the system of equations (3.1) has N +1 unknowns: (ui)0≤i≤N

and λ . The matrix of temperatures and pressures (u j) may often be large as it dependent
on mesh size; a mesh containing 1 million nodes will result in a matrix of size 2
million. In contrast, λ is a single unknown value being added to the system. The
system (3.1) is solved within REDBACK by using a MOOSE ScalarKernel to solve
Equation (3.1b), on top the normal implementation which solves Equation (3.1a). The
ScalarKernel defines the residual for the ScalarVariable defined as Equation 3.1b.
The ScalarKernel is expressed with respect to the variable λ . As such, the first term of
Equation 3.1b, which only includes the other variables, appears as a single term which
can be referred as a directional derivative.
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(
T1 ... Tn, p f1 ... p fn

)


dT1
dS
...
dTn
dS

d p f1
dS
...

d p fn
dS


which can also be written as:

∑
nbmesh

(
T1 −T n−1

1
) dT

dS
+
(

p f1 − pn−1
f1

) d p
dS︸ ︷︷ ︸

directional derivative

3.2.3 Initial Guess and Iterative Calculations

At each iteration of the pseudo-arclength continuation method, an initial guess φ0 is first
calculated in the prolongation of the previous two solution points (at iterations n−1
and n−2), see Figure 3.2.

φ0 = 2Tn−1 −Tn−2 (3.2)
−−−−−−−→
Mn−2Mn−1 =

−−−−−→
Mn−1Mn (3.3)

−→
Mn =

−−−→
Mn−1 +

−−−−−−−→
Mn−2Mn−1 (3.4)

xMn = xMn−1 +(xMn−1 − xMn−2) (3.5)

xMn = 2xMn−1 − xMn−2 (3.6)

where Mn = (uin,λn) are point locations on the stability curve and
−−−→
MiM j the vector

between two points at iteration steps i and j.
An external iterative algorithm, shown in Figure 3.3, is implemented in Python to

generate all corresponding input files for REDBACK at each step, run the simulations,
and extract all information needed for the following step. This algorithm is initialised
by running three simulations. Firstly, a reference simulation is performed with diffusion
only (where the advective terms of Eq. (2.12) are neglected) to obtain the reference
temperature Tdi f f needed to compute the Nusselt number as shown in Eq. (2.17). Next,
we perform two REDBACK simulations for two initial values of λ (Le) to compute the
initial direction of the solutions along the curve, using the secant method, which starts
the iterative continuation algorithm. The algorithm starts from a convective system and
moves towards a diffusive one, tracing the stable branch of the system. Currently, the
pseudo arclength method has the capability to trace a branch of the system but does
not yet have the functionality to identify branching points (e.g. the bifurcation point
shown in Figure 2.4 for which there exists the stable and unstable branch at Rac). As
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3.3 Benchmark for numerical bifurcation algorithm: The
Bratu Problem

Table 3.1 Mesh sensitivity analysis of the numerical continuation algorithm for the
1D Bratu problem (Korkine, 1869). The number N of mesh elements is varied and
the value of the critical turning point CN

c is compared with the reference solution
Cre f

c ≃ 3.513830719 (Mohsen, 2014).

N CN
c Error Accuracy

10 3.542501615 0.008159442 0.991840558
20 3.520943522 0.00202423 0.99797577
30 3.516977858 0.000895643 0.999104357
50 3.514945266 0.000317189 0.999682811
70 3.514403637 0.000163047 0.999836953
100 3.514115872 8.12E-05 0.999918848
200 3.513899356 1.95E-05 0.999980467
300 3.513861876 8.87E-06 0.999991133

such, if the first step of the continuation method is of a diffusive system (lower branch),
the bifurcation point may not be detected and the algorithm will continue tracing the
unstable branch for lower Lewis values. Therefore in this thesis, the first step of the
continuation will always be of a convective system. This will ensure the transition
from the convective steady state solution (higher branch) to a diffusive solution (lower
branch), thus pinpointing the critical value required for the onset of convection.

3.3 Benchmark for numerical bifurcation algorithm: The
Bratu Problem

A landmark boundary value problem for benchmarking numerical stability algorithms is
the Bratu problem (Korkine, 1869), which is expressed for an unknown u on a domain
Ω with boundary δΩ as

∂iiu+C eu = 0 on Ω (3.7a)

u = 0 on δΩ (3.7b)

where C > 0 is a parameter. In one dimension, this problem can be written as

∂ 2u
∂x2 +C eu = 0 for 0 ≤ x ≤ 1 (3.8a)

u(0) = u(1) = 0 (3.8b)

This one dimensional (1D) version of the problem has been studied extensively and
shows a critical value Cc ≃ 3.513830719 for the parameter C (e.g. Mohsen, 2014) such
that the problem admits two solutions if C <Cc, a single solution for C =Cc, and no
solution otherwise. We solve this problem using the numerical continuation algorithm
presented in Figure 3.3 and obtain the expected continuation curve shown in Figure 3.4.
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3.3 Benchmark for numerical bifurcation algorithm: The
Bratu Problem

input: �1, �2, �S0, Smax, REDBACK simulation file

1 Parse REDBACK input file and store simulation object sim to generate other input
files

2 Generate REDBACK input file for di↵usion-only
3 Run steady-state di↵usion-only simulation to get Tdiff (see Eq. (19))
4 S = 0 (pseudo arclength initialisation)
5 � = �1 (first initial guess)
6 Generate corresponding REDBACK input file
7 Run steady-state simulation to solve for pf , Tconv over the whole mesh
8 Extract Nusselt number from output postprocessor
9 � = �2 (second initial guess)

10 Generate corresponding REDBACK input file using previous values of pf , Tconv as
initial conditions

11 Run steady-state simulation to solve for pf , Tconv over the whole mesh
12 Extract Nusselt number from output postprocessor
13 Update S by computing pseudo arclength between first two initial solutions
14 while S  Smax do
15 �S = �S0

16 step success = False
17 while step success == False do

18 Compute the tangent vectors d�
dS

, dT
dS

,
dpf

dS
using secant method from the two

previous solutions (see Fig. 2)
19 �IG = �(n�1) + d�

dS
�S (initial guess)

20 TIG = T (n�1) + dT
dS

�S

21 pf(IG) = p
(n�1)
f

+
dpf

dS
�S

22 Generate REDBACK input file for iteration step simulation using pf(IG),
TIG, �IG as initial guesses for the pore pressure, temperature and
continuation parameter

23 Run extended steady-state simulation, Eq. (20), to solve for pf , T over the
whole mesh, as well as scalar value �

24 if simulation converged then
25 step success = True
26 �S = �S0

27 else
28 �S = �S ⇥ cutting step parameter
29 end

30 end
31 Extract � and Nusselt number from simulation output postprocessors
32 S = S + �S

33 end

1

Fig. 3.3 Summary of pseudo-arclength continuation algorithm (Keller, 1979) for
a continuation parameter λ . A Python wrapper is used to generate and run RED-
BACK simulations for all steady-state calculations.
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3.3 Benchmark for numerical bifurcation algorithm: The
Bratu Problem
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Fig. 3.4 Bifurcation analysis on 1D Bratu problem, highlighting the critical turn-
ing point Cc.

The accuracy of the numerical value obtained for the critical turning point value depends
on the mesh refinement and table 3.1 shows the results of a mesh sensitivity analysis.
These results validate the implementation of the continuation algorithm.

3.3.1 Scaling Factor

The numerical continuation presented above solves for N + 1 variables, with N (the
number of degrees of freedom of the initial problem) being linearly proportional to the
number of mesh nodes. In order to avoid a disproportional weight applied to the mesh
variables, a balance should be considered between the numerical tolerances used for
each of the variables and the scalar variable. As such, a scaling factor α is introduced to
multiply the residual of the scalar kernel, so that the global residual can be expressed as:

nvar

∑
k=1

nnodes

∑
i=1

Rk
i +αRλ < tol (3.9)

where nvar is the number of variables (in this case nvar = 2 for T, p f ), nnodes the number
of mesh nodes, Rk

i the residual at node i for variable k, and Rlambda the residual of the
scalar variable λ . The above equation highlights that α should scale with the mesh size
(∝ N), in order to respect the balance of residuals and preserve enough accuracy in the
calculation of the scalar variable λ .

In the context of this thesis, two variables are used (T, p f ), and a large error on the
computation of the λ (Le) term has been occasionally obtained for larger meshes, as
illustrated in Figure 3.5, which led to the introduction of this scaling factor. In this
instance, the identification of the curve as a nonsensical result is obvious as the solution
to this stability curve has been extensively studied and documented (Combarnous
and Bories, 1975). However for more complex systems with multiple variables, the
stability curve may not necessarily have been previously investigated, which points to
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3.4 Mesh Sensitivity Analysis
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Fig. 3.5 Stability plot displaying a result of high residual error of the λ -term,
resulting in a nonsensical result and negative Lewis numbers. This result can
be easily identified as unrealistic since theoretical solutions have been previously
obtained (see Figure 17 in (Combarnous and Bories, 1975), for instance).

the inherent challenge to validate such curves. To circumvent this issue, a sensitivity
analysis (detailed in Section 3.4) must always be performed to ensure the reproducibility
of results regardless of the number of elements in the mesh.

3.4 Mesh Sensitivity Analysis

Numerical results can be highly dependent on mesh geometry and the number of
elements in the mesh; users are forced to balance accuracy from finer meshes and
computational costs. To verify simulation results, mesh sensitivity analyses are al-
ways performed. This section presents some mesh sensitivity analyses performed to
understand the influence of mesh size when geometry is varied.

Two-dimensional (2D) examples are selected, based on the traditional example of
hydrothermal convection in a rectangular domain. Note that throughout this thesis,
different meshes are used in various simulations.

3.4.1 Homogeneous Mesh

In the scenario of the classical (Horton-Rogers-Lapwood) convection equations, a
homogeneous mesh is used. In this case, a single material property is assigned and
the sensitivity analysis is performed by running a simulation with identical parameters,
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3.5 Effect of Geometry on Stability

only varying the number of elements. For this analysis, transient simulations are
run until a steady state solution is reached. The steady state results are then visually
examined using a visualisation package (Paraview (Ahrens et al., 2005; Ayachit, 2015)),
comparing temperature isotherms and fluid velocities. The visual analyses confirm that
the characteristics of the flow and location of convection cells for all the steady state
results do not differ noticeably, instead only the resolution of temperature and flow
vectors are better defined. This is expected since the geometrical dimensions of the
mesh remain unchanged and only the number of elements is increased.

To quantify the numerical convergence, the Nusselt number is tracked as it describes
the existence and strength of convection in the system. In this thesis, a modified version
of the Nusselt number is used (see Equation 2.17), which is adapted to detect convection
occurring in any localised area across the entire domain. This enables the extension to
more realistic geometries where more than one inhomogeneous layer can be present.

Figure 3.6 displays the mesh and the results of the sensitivity analysis. Although
it is observed that numerical convergence occurs at approximately 1500 elements, the
number of elements chosen for simulations specifically using this mesh is 3000 to
guarantee reliable results.

3.4.2 Mesh with Curved Layer

To introduce slightly more complex geometry, a folded (or curvy) layer is considered
to observe the behaviour of the onset of convection in such cases. In the context of
instabilities, sensitivity analyses are of greater significance as the results should be
driven by the underlying physics and not numerical artefacts (e.g. corner effects). Thus,
the geometrical impact and number of mesh elements are investigated in this section.

In addition to the following workflow described for the homogeneous mesh, a
stability analysis is performed for this mesh and results are displayed in Figure 3.7. As
expected with increasing elements, the fluctuation of results around the critical Lewis
number predicted for the onset of convection is observed until convergence is reached
at approximately 11,000 elements.

Interestingly however, there is no clear indication of the onset of convection, opposed
to the theoretical curve derived by Combarnous and Bories (1975) for homogeneous
geometry. This signifies that the problem of varying geometry (this case being the
amplitude of the middle layer) is more complex and is further investigated in the
following section.

3.5 Effect of Geometry on Stability

This section investigates the impact of the amplitude of the layer curvature on the
resulting continuation curve, as shown in Figure 3.7b. The results for a mesh sensitivity
analysis for this mesh was shown in Section 3.4.2 and is representative of all the other
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3.5 Effect of Geometry on Stability

(a) Example of mesh used for the ’benchmark’ simulations. The number of elements for
this mesh is 1500.

(b) Graph of numerical convergence with increasing number of elements. The Nusselt
number from the steady state result is plotted against the number of elements. Conver-
gence is seen to occur approximately above 1500 elements.

Fig. 3.6 Geometry (a) and graph showing the minimum number of elements
needed for the mesh so that the solution does not vary (b).
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3.5 Effect of Geometry on Stability

(a) Geometry for mesh sensitivity analysis of 0.05 amplitude.

(b) Continuation curves for varying elements in the corresponding mesh in (a).

Fig. 3.7 Geometry (a) and graph showing the stability curves for varying mesh
elements. Numerical convergence is reached at approximately 11,000 elements
(b).
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3.5 Effect of Geometry on Stability

analyses performed for other meshes of varying amplitude(s). Figure 3.8 presents the
geometry of increasing amplitude for this particular layer.

Stability curves are produced using the workflow presented in Figure 3.3 for each
amplitude and results are displayed in Figure 3.9 which show an imperfect bifurcation on
the onset of convection. Unlike the intersection between stable and unstable branches in
the case of a perfect bifurcation (e.g. Figure 2.4), branches do not intersect in imperfect
bifurcations. This signifies that no critical value can be determined for the onset of
convection. In this case, the imperfect bifurcations are due to the geometrical break of
symmetry. Similar findings have been previously observed in laboratory experiments
(Hall and Walton, 1979; Schatz et al., 1995) where the imperfection (or perturbation)
was related to the boundary conditions of a finite box.

In Figure 3.9, a perfect bifurcation is observed for the layer of zero amplitude, where
Lewis values to the left of the bifurcation point (Lec = 9.785×10−08) represents the
unstable solution. Three behaviours are observed with increasing amplitudes. Firstly, is
it noted that no exact point of the onset of convection can be determined for non-zero
amplitudes. Secondly, the deviation away from the perfect bifurcation point (obtained
with symmetrical geometry) increases significantly, and lastly, the mathematical solution
for conduction is strictly Nu > 1.00 in these cases, compared to Nu = 1.00 in the case
of symmetrical geometry. This then suggests a problem in determining a single clear-cut
value for the onset of convection in non-symmetrical geometries.

Figure 3.10 compares the behaviour of perfect and imperfect bifurcation curves.
In the case of the 0.15 amplitude, the point P1 is located at the saddle-node of the
unstable branch, which corresponds to the stable steady state solution where a much
high Nusselt value is obtained at Nu = 1.13. Depending on the other parameters of the
system, convection might be already visually apparent in the system at this Nu and Le
value thus making this an unlikely candidate as the value at which convection could
occur. For the same P1 Nu value, point P3 is the corresponding steady solution at a
lower Nusselt of approximately Nu = 1.07. Coincidentally, this point shares the same
bifurcation point where Lec = 9.785×10−08 in the case of symmetrical geometry. This
points to an ambiguous zone for which the onset could occur, illustrated by the shaded
grey zone in Figure 3.10, where the highest probabilities are indicated by the darker
grey colours. A visual analysis of steady state results could be performed where the
accuracy of Nu is preserved, but at the expense of lower permeability values (e.g. point
P4) as the diffusive branch asymptotically tends to Nu = 1.00.

These interesting results demonstrate that there is no precise value for the onset
of convection in scenarios containing non-symmetrical geometries. It suggests that a
solution for the onset could be obtained by a visual analysis of the steady state solution,
which should be performed away from the imperfect bifurcation points. This affirms
the previously mentioned point of while it takes an increasingly prolonged amount of
time for convection to establish in systems close to criticality, a diffusive solution of
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3.5 Effect of Geometry on Stability

(a) 0 ampltitude

(b) 0.05 amplitude

(c) 0.10 amplitude

(d) 0.15 amplitude

Fig. 3.8 Geometry of varying amplitudes, ranging from a perfectly horizontal mid-
dle layer (a) to a larger amplitude of the middle layer (d).
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3.5 Effect of Geometry on Stability

Fig. 3.9 Stability curves for varying amplitudes in the middle layer. A perfect
bifurcation is observed for the layer of zero amplitude. However with increasing
amplitude, stability curves diverge further away from this point.

value Nu > 1.00 can be obtained for cases where geometry is not perfectly horizontal.
These results have substantial significance as they clearly demonstrate that the onset
of convection is ambiguous with non-symmetrical geometry, and that no exact critical
value can be determined at which convection is predicted to occur. Geometry and
boundary conditions can be controlled in laboratory environments for instance, however
are unconstrained when realistic conditions and geometries are taken into account.
Therefore, the classical derivation where convection is predicted to occur past the
critical Rayleigh number of Rac = 4π2, for instance, cannot be applied to realistic
geometries.
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3.5 Effect of Geometry on Stability

Onset of Convection for Varying Amplitudes
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Fig. 3.10 Stability curves displaying examples of perfect and imperfect bifurca-
tions, obtained from symmetrical and non-symmetrical geometries respectively.
The grey dotted lines indicate changes in the behaviour of bifurcation curves, at
which the onset could be identified. The location of point P1 is on the saddle-node
of the unstable bifurcation curve, which translates to a steady state solution indi-
cated by P2. The gradient grey region is indicative of the probability at which the
onset could be identified, with the darkest grey indicating the highest probability.
As such, the solution for the onset of convection is rendered to a visual analysis of
steady state results, and cannot be identified as a crisp value for non-symmetrical
geometries. Points P3 and P4 are indicative of such points at which a user-defined
onset could be resolved, noting the change in Lec.
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Chapter 4

TH: Classical Hydrothermal
Convection in Rigid Porous Media

This chapter presents an application to the workflow introduced in Chapter 2 to solve
the classical Horton-Rogers-Lapwood equations (Equation 2.7) in the classical case of
hydrothermal convection. In such a case, the Boussinesq approximation, Darcy’s Law,
incompressible solid and fluid, and rigid solid skeleton are assumed. The medium is
also considered to be homogeneous. The onset of convection is customarily governed
by a critical permeability (kc), corresponding to a critical Rayleigh number (Rac). In
the mathematical formulations for this thesis however, permeability is accounted for
through the Lewis number (Le) and is approximately inverse to the Rayleigh number
(see Chapter 2 for more details). Hence, the critical permeability required for the onset
of convection corresponds to a critical Lewis number (Lec), and the Lewis number will
be the dimensionless group used to characterise convection from here on forth.

In this thesis, the onset of convection is investigated for various cases using the
workflow described in Chapter 3, based on a pseudo-arclength continuation method.
Such scenarios include the classical case of homogeneous media, varying material
properties, and varying geometry. The advantage of using a numerical stability analysis
is to harnesses the power of a stability analysis with the capabilities of numerical
simulators. This enables the determination of critical points for the study of any
system which is extremely difficult to be considered analytically, such as scenarios
encompassing complex geometry and realistic material properties. While the focus of
this thesis highlights the potential of using a pseudo-arclength continuation method in
geothermal settings, this workflow is not limited to any geological setting. Indeed, it
can be used to investigate the critical parameters responsible for the manifestation of
physical phenomena in any geological system, thus opening doors to better understand
the governing physical processes in many other systems.
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4.1 The Horton-Rogers-Lapwood Model: Benchmark Studies

Input File Parameters for Hydrothermal Convection in Incompressible Media; Scenarios 1 and 2
Dimensionless Values Real Values

Geometry Height 0.5 500 (m)
Length 1 1000 (m)

Boundary Conditions

Temperature top 0.0 300 (K)
Temperature bottom 1.0 310 (K)

Pressure top (for Scenario 2 only) 2e-02 1e+05 (Pa)
Gravity -1.96 9.81 (ms−1)

Fluid Properties

Thermal expansion coefficient 7E-04 7E-05 (K−1)
Compressibility 2E-03 4E-10 (Pa−1)

Viscosity – 1.2E-04 (Pa · s)
Density 1.0 1000 (kgm−3)

Specific heat – 4186 (J · kg−1 ·K−1)

Solid Properties

Thermal expansion coefficient 1E-05 1E-06 (K−1)
Specific heat – 920 (J · kg−1 ·K−1)

Compressibility 1E-03 2E-10 (Pa−1)
Density 2.5 2500 (kgm−3)
Porosity 0.3 0.3

Table 4.1 Table of input parameters for Scenarios 1 and 2, solving the classi-
cal case of hydrothermal convection. Both scenarios have identical geometries,
fluid and solid properties. However, the boundary conditions for Scenario 2 vary
slightly; this is shown in blue. This table lists the dimensionless values used in
REDBACK, which are then converted to its corresponding real values. The fluid
viscosity and solid specific heat values are defined in the Lewis number and the
same real values are used in the simulations.

4.1 The Horton-Rogers-Lapwood Model: Benchmark Studies

The onset of convection has been extensively studied through laboratory experiements
and characterised by linear stability analyses (e.g. Combarnous and Bories, 1975).
Such studies were commonly performed for a two-dimensional (2D) block subjected to
specific boundary conditions and under the assumption of incompressible media. Nield
and Bejan (2013) list various scenarios detailing the parameters required for convection
to occur (e.g. Rac), specific to various boundary conditions. Two cases are taken as
representative scenarios and listed in Table 4.2 together with their corresponding critical
Rayleigh numbers Rac, both based on the same geometry.

4.1.1 Methodology

The model considered is a 2D horizontal block with length and width of 1000m and
500m, respectively. The material properties for both Scenarios 1 and 2 are displayed in
Table 4.1. For Scenario 1, the boundary conditions for pressure are zero-flux (Neumann
BC) on the top and bottom of the model. The temperature boundary conditions are
fixed (Dirichlet BC) on both the bottom and top of the model. Scenario 2 has identical
material properties and boundary conditions as Scenario 1, except for the top pressure
boundary condition, for which a fixed value (Dirichlet BC) is assigned.
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4.1 The Horton-Rogers-Lapwood Model: Benchmark Studies

(a) Steady state convection result with a single upwelling in the centre of the model

(b) Steady state convection result with two upwellings at the sides of the model

Fig. 4.1 Steady state results illustrating non-uniqueness for the same value of
Lewis (Le = 3.14× 10−8), showing equivalent mathematical solutions. Temper-
ature isotherms are represented by the faint white lines.

4.1.2 Non-Uniqueness of Results

In solving simple generic geometries, variations of visual results can develop despite
a correct mathematical solution. This leads to the ambiguity of results and should be
noted for numerical results.

For the specific case of hydrothermal convection in a square geometry with homoge-
neous properties (Scenario 1, see parameters in Table 4.1), the mathematical solution is
not unique, as a horizontal translation of a solution by half the domain length provides
another solution for instance, as shown in Figure 4.1a. Note that both cases however,
are represented by the same value of the Nusselt number.

For a single material property representing a saturated porous medium in a homoge-
neous mesh, Figure 4.1a shows the steady state solution of the peak of the convection
cell in the centre of the mesh, while 4.1b is on the sides. Although both steady state
results share the same value of Nu, this leads to the fact that geometry can play a
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4.1 The Horton-Rogers-Lapwood Model: Benchmark Studies

role; the more generic the geometry, the more possible symmetries in the solution, and
therefore the more ambiguity involved in predicting the solution.

Studies by Florio et al. (2017b) illustrate this type of non-uniqueness of the solution
and show that four different modes of convection can be obtained in a 2D rectangular
geometry for the same critical parameter (Rayleigh number). They investigate the
influence of the dimensions of the box (i.e. 3D volume made up of 2D planes) and
conclude that the preferred mode for the onset of convection is sensitive to the geometry
of the box. Detailed perturbation studies have also been performed and discussed in
Florio (2013); Florio et al. (2015) and Florio et al. (2017a). While it is acknowledged
that the physical manifestation of convection cells are dependent on box geometry, the
focus of this Thesis is solely on determining the occurrence of convection for a given
geometry, specified for each scenario investigated.

The pseudo-arclength continuation method is documented to be particularly useful in
determining the onset and studying the evolution of convection, as shown in Combarnous
and Bories (1975), for example. Thus, the following section presents the results for the
onset of convection investigated using the implementation of this method in a numerical
simulator, REDBACK.

4.1.3 Results

The steady-state temperature profile for Scenarios 1 and 2 are displayed in Figures 4.2a
and 4.2b. For these results, the selected Lewis numbers are Le1 = 3 × 10−8 and
Le2 = 4×10−8, with corresponding permeability values of k1 = 9.0×10−13 and k2 =

6.8×10−13 for Scenarios 1 and 2, respectively. The corresponding stability analysis for
each case is run using the numerical continuation method presented in Chapter 3 and
results are displayed in Figure 4.2c and 4.2d. Since the Lewis and Rayleigh numbers
have an inverse relationship, increasing Rayleigh numbers/permeabilities correspond
to decreasing Lewis numbers, and the stability curves will be symmetrical around the
y-axis compared to the usual plots presented in traditional linear stability analyses. A
Nusselt number of Nu = 1 on the stability curve defines a steady state solution of pure
conduction and Nu > 1 indicates convection occurring in the system. The evolution
of Nu with respect to Le obtained (see Figure 4.2) matches the expected theoretical
behaviour (Combarnous and Bories, 1975), and the critical Lewis value (Lec) calculated
for the onset of convection is clearly determined in both cases.

For Scenario 1, the critical Lewis number required for convection is Lec = 3.66×
10−8. This translates to a critical Rayleigh number of Rac = 35.59, differing from
the documented value of Rac = 4π2 = 39.48 (Nield and Bejan, 2013). Similarly in
the second scenario, the critical Lewis number obtained translates to a lower critical
Rayleigh number Rac = 26.31 compared to the documented value of Rac = 27.10.
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4.1 The Horton-Rogers-Lapwood Model: Benchmark Studies

(a) Steady state temperature profile with
overlying streamlines for Case 1 with Le =
3×10−8

(b) Steady state temperature profile with
overlying streamlines for Case 2 with Le =
4×10−8
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(c) Stability analysis for first case, showing a
critical value Lec = 3.66×10−8.
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(d) Stability analysis for second case, show-
ing a critical value Lec = 4.95×10−8.

Fig. 4.2 Benchmark results showing the expected values for Lec in both scenar-
ios, as listed in Table 4.2. Note the mirrored plots of Nu against Le compared to
Fig 2.4.

Case studies
Scenario Pl Pu Tl Tu Incompress. Rac Lec compressible Rac

1 IMP IMP CON CON 39.48 = 4π2 3.66 ×10−8 35.59
2 IMP FRE CON CON 27.10 4.95×10−8 26.31

Table 4.2 Benchmark table, adapted from Nield and Bejan (2013), showing the
boundary conditions for temperature T and pore pressure P at the upper (sub-
script u) and lower (subscript l) boundaries, along with the corresponding criti-
cal values of Rac for the incompressible case. IMP = impermeable; FRE = free;
CON = conducting. The terms free and conducting are equivalent to constant
pressure and constant temperature (e.g. Dirichlet boundary conditions), respec-
tively. The critical Lewis values Lec for the compressible case can be translated
back to Rayleigh numbers, listed in the column ’compressible Rac’.
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4.2 Effect of Fluid Compressibility

This discrepancy is expected as the system of equations solved (Equations 2.12
accounts for fluid compressibility, whereas the documented values from Nield and
Bejan (2013) are taken for the incompressible case.

4.2 Effect of Fluid Compressibility

To investigate the role of fluid compressibility, varying compressibility values for Sce-
nario 2 are used in the numerical continuation method described in Chapter 3. The
relationship between the critical value of the critical Lewis number Lec and fluid com-
pressibility is shown in Figure 4.3, which illustrates the impact of fluid compressibility.

In Figure 4.3a, corresponding stability curves are plotted for increasing values of
normalised fluid compressibility (β ∗

f ). It is observed that increasing fluid compressibility
results in decreasing the critical Lewis number. With respect to the onset of convection,
the permeability expected for convection to occur is lowered with high values of
compressibility. A linear relationship is shown in Figure 4.3b where the data points of
each Lec and corresponding β ∗

f are plotted. In this graph, the data points fit a linear
relationship with a R-squared coefficient of R2 = 0.999. This highlights the fact that a
pseudo-analytical solution of Lec = 1.11e−05×β ∗

f −2.7e−08 (see Figure 4.3b) can
be obtained using numerical methods, where the onset of convection can be determined
using any normalised value of fluid compressibility for this specific scenario. Figure 4.3c
displays a semi-log plot of Lec and β ∗

f , where an exponential relationship is observed.
It is seen that lower fluid compressibility values (β ∗

f < 10−4) do not impact the critical
Lewis number, however there exists a critical value (β ∗

fc ≈ 10−4) at which Lec is affected
and increases exponentially.

4.2.1 Discussion

The fluid compressibility value selected in Scenarios 1 and 2 correspond to water and
is β f = 4× 10−10Pa−1, with its dimensionless form β ∗

f = 2× 10−3 (see Table 4.1).
Variations of this value can be expected in realistic geothermal settings however, due to
the effect of temperature, pressure, salinity, and chemical fluid composition in general.
It is interesting to note that the presence of species in solution can contribute to increase
the value of fluid compressibility. Thus, when simulating the occurrence of convection
in geothermal reservoirs, fluid compressibility values above that of pure water could
potentially cause convection to occur at lower permeabilities than previously established.

Building on the effects of fluid compressibility, slightly more complex geometry
and material properties can be introduced to simulate more realistic parameters for
geothermal reservoir modelling. The advancement of geophysical imaging techniques
and computerised mesh generation provide more realistic geometries which better
represent the problem at hand. In most modern fluid-flow software, additional material
properties (not limited to key parameters found in the Lewis and Rayleigh numbers)
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4.2 Effect of Fluid Compressibility
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(c) Critical Lewis number as a function of fluid
compressibility (semi-log plot)

Fig. 4.3 Effect of fluid compressibility on the critical Lewis number. In Figure (c),
an exponential relationship is identified for critical Lewis numbers with increas-
ing fluid compressibility values. Fluid compressibility is not recognised to influ-
ence the onset of convection until past a certain critical value, which lies within
the range of 10−4 < β ∗

f < 10−3.
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4.3 Effect of Non-Homogeneous Geometry and Material
Properties

obtained from geophysical and geological samples can also be included to observe
its effects with the evolution of convection. However, whilst the improvement of
geometrical data and additional material properties provide a better understanding
of reality, it also modifies the critical values traditionally derived from the analytical
solutions of simple geometries and material properties, as previously shown by the
effects of varying fluid compressibility (Section 4.2). Finding the analytical solution(s)
for scenarios containing such complex geometries and material properties can be
extremely tedious and nearly impossible with an analytical approach.

The pseudo-arclength continuation method has shown to be particularly useful in
determining the onset and studying the evolution of convection. The advantage to this
method is that it enables the study of convection in models which are not limited by
geometry and distribution of material properties. Thus, the onset of convection is inves-
tigated in a scenario containing non-homogeneous geometry and material properties.

4.3 Effect of Non-Homogeneous Geometry and Material
Properties

In this scenario, a 2D model containing three layers is assumed. The middle layer
is the aquifer of interest which is bounded by less permeable units above and below.
Specifically, the minimum permeability required for convection to occur in this target
aquifer is investigated.

To introduce geometrical heterogeneity, the middle layer is slightly folded and its
bounding layers consist of marginally different material properties. In addition, random
perturbations of permeability are applied over the entire model, using a log-normal
distribution of standard deviation 0.5 to simulate perturbations over a constant baseline.
The focus of this study is to show that this framework can handle any distribution (e.g.
a beta distribution studied by Ricciardi et al. (2005)), hence the choice of a log-normal
is purely illustrative. Figure 4.4a depicts the geometry and perturbed permeability
range for this scenario. The boundary conditions for temperature are fixed at the top
and bottom boundaries (Dirichlet BC), with a fixed pore pressure at the top, and an
impermeable boundary (Neumann BC) at the bottom, similar to the conditions of
Scenario 2 in Table 4.1. All values for the geometry, material properties, boundary
conditions, and fluid properties used in this model are listed in Table 4.3.

In this scenario, permeability of the middle layer is varied through the evolution of
a baseline Lewis number, starting with identical values in all three layers (Figure 4.4a).
Figure 4.4b shows the continuation curve for this system and highlights the onset
of convection, obtained for a base value permeability of 2.5 × 10−13 (m2) for the
top and bottom layers. The corresponding critical Lewis number is approximately
Lec = 1.1 × 10−7. This analysis shows the potential of this numerical method to
extend traditional linear stability analyses to scenarios which can handle more complex
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Fig. 4.4 a) Visualisation of the distribution of perturbed permeability in a model
with folded geometry. A and B represent the material properties of the layer,
which are listed in Table 4.3. b) Numerical stability analysis for the model, high-
lighting the critical Lewis number marking the onset of convection. In this par-
ticular case of a folded layer and small perturbations of permeability, the critical
Lewis value is 1.09×10−7.
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Input File Parameters for the example of Folded Geometry and Perturbed Permeability
Real Values Dimensionless Values

Geometry Height 500 (m) 1
Length 1250 (m) 2.5

Boundary Conditions

Temperature top 300 (K) 0.0
Temperature bottom 310 (K) 1.0

Pressure top 1E+05 (Pa) 2E-02
Gravity 9.8 (ms−1) -1.96

Fluid Properties

Thermal expansion coefficient 7E-05 (K−1) 7E-04
Compressibility 4E-10 (Pa−1) 2E-03

Viscosity 1.2E-04 (Pa · s) –
Density 1000 (kgm−3) 1.0

Specific heat 4186 (J · kg−1 ·K−1) –

Solid Properties

Thermal expansion coefficient 1E-06 (K−1) 1E-05
Specific heat 920 (J · kg−1 ·K−1) –

Compressibility 2E-10 (Pa−1) 1E-03
Density 2500 (kgm−3) 2.5
Porosity 0.3 0.3

Permeability A 2.72E-13 (m2) 1.0E-07
Perturbed permeability range 2.06E-11 - 2.83E-13 (m2) 9.45E+08 - 3.95E+05

Table 4.3 Table of input parameters for the example of varying permeability and
material properties. The solid properties are identical in all layers, except for
permeability. The permeability value of Layer A is converted from Lec.

geometries or distributions of material properties compared to the traditional analytical
approaches.

4.3.1 Discussion

The behaviour of the stability curve close to Lec reflects similar characteristics as the
study performed in Chapter 3 with non-symmetrical geometry. For this particular case
of a folded layer with perturbations of permeability, the response of the stability curve
around Lec does not show a clearly pronounced threshold, sharing similar characteristics
to that of the folded layer scenario (Figure 3.9). Indeed, the non-symmetry of the
geometry yields this result, as described in Section 3.5. It is anticipated that the
distribution of perturbed permeability could compound the results of non-symmetry,
therefore causing an asymptotic behaviour of the stability curve around Lec. Since no
single value of Lec can be determined in such cases, an effective Lec for the onset could
be obtained through a visual analysis of the steady state solution, and could could be
bounded by the maximum Le value of the unstable branch (e.g. point P2 in Figure 3.10).

This approach can be extended to investigate the extent of influence and the be-
haviour of varying permeability on the onset of convection in a specific geological
unit, as well as the coupled effects of increased amplitudes discussed in Section 3.5.
The methodology demonstrated in study has led to the discovery of the impact of
non-homogeneous geometry and material properties (See Section 4.3 and Figure 4.4b)
on the onset of convection. Subsequently, the flexibility of this method can promote
further research where specific questions regarding the behaviour of convection in
more realistic geometries and material properties can be explored, thus contributing to
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Properties

understanding underlying physical processes in geothermal settings. Such investigations
are outside the scope of this thesis but are within reach, accredited to the development
of this novel numerical stability analysis method.
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Chapter 5

THM: Effect of Creeping Faults on
Hydrothermal Convection

Having previously investigated various scenarios of classical hydrothermal convection
in the context of non-deformable porous media, these concepts are now extended
to include the effects of creeping faults in porous media. Geological reservoirs are
often characterised by fractures and faults, and can experience notable deformation
at geological timescales. Fault mechanical behaviour in such reservoirs can range
from one end member of seismic slip (e.g. stick slip) to the other with aseismic creep
(e.g. continuous creep), and could exhibit both behaviours. In stick slip environments,
fault movements are discrete and fast (m/yr) and can often have severe repercussions
in human society and engineering operations. Detailed studies have been performed
to understand such mechanisms (e.g. Dieterich, 1978b; Scholz, 1998) in order to
anticipate destructive earthquakes and prevent production well loss, for example. In
contrast, faults which exhibit steadily creeping behaviour are characterised by slow and
continuous movements (mm/yr), and are often thought to have less drastic repercussions
in engineering operations. These faults experience shear heating, defined as the frictional
heat generated from its resistance to shear. Shear heating effects of creeping faults
have been shown to play a critical role in various geological settings as they were
identified as triggers for earthquakes (e.g. Dieterich, 1978a), in the context of ice melt
in glaciers (Yuen et al., 1986) or lithospheric tectonic movement (Leloup et al., 1999;
Regenauer-Lieb and Yuen, 1998), for example. However, the effects of shear heating in
faults have not yet been fully understood in geothermal environments.

The impact of shear heating in creeping faults on hydrothermal convection is
investigated by initially studying the impact on convection of a single creeping fault.
This chapter presents the effects of shear heating on both the onset and pattern of
convection, investigated using REDBACK and the framework presented in Chapter 3.
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5.1 Model Construction
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Fig. 5.1 Modelling result of 3D faulted aquifer, showing the fault displacement
and shear heating effect. The fault is moving under constant velocity loading
with far-field isothermal boundaries at the top and bottom of the block, and a
10× exaggeration is applied to illustrate the displacement in the fault. The box
outlined in red is the representation of the 2D model used to study the onset of
convection (see Section 5.2).

5.1 Model Construction

Using the equations derived in Section 2.3, an end member scenario of an aquifer
containing a single creeping fault is considered. One of the major assumptions used
in this Thesis for underlying steady creep is that the fault displacement is negligible
compared to the length of the reservoir considered. This translates to the assumption
that a very large reservoir (e.g. kilometres in diameter) is considered and the total
distance in which the fault has steadily moved over time is minute (i.e. a few metres).
As such, the overall fault displacement is not as important as its thermal footprint, and
the mechanical deformation can be accounted for through the heat dissipated from
the mechanical work only. This can be illustrated in Figure 5.1, where the dissipation
of temperature is more prominent than the displacement of the fault (note the 10×
exaggeration to observe displacement). The heat generated from the constant shear
can be expressed using the Gruntfest number (encompassing the model of plasticity
used, velocity, etc., see Equation 2.16), which is the parameter used to characterise the
magnitude of deformation experienced by the fault. It is also assumed that the creeping
rate is slow enough as to not noticeably displace the mesh in the reservoir. Therefore the
effect of mechanical deformation is expressed as a heat source term in the temperature
equation, and its effects on the onset and pattern of convection are investigated in a
representative 2D space. The consideration of a 2D model is advantageous as similar
physical processes can be solved in less computational time.

This problem can be solved in a 2D space using REDBACK, which has been devel-
oped specifically as a geomechanics simulator (described in Chapter 3) and has recently
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5.2 Shear Heating Changes the Onset of Convection

Input File Parameters for Observing the Effects of Shear Heating in a Horizontal Fault
Real Values Dimensionless Values

Geometry
Height 500 (m) 0.5
Length 1000 (m) 1.0

Fault thickness 20 (m) 2e-02

Boundary Conditions

Temperature top 300 (K) 0.0
Temperature bottom 310 (K) 1.0

Pressure top 1e+05 (Pa) 2e-02
Gravity 9.81 (m · s−1) 1.96

Fluid Properties

Thermal expansion coefficient 7e-05 (K−1) 7e-04
Compressibility 4e-10 (Pa−1) 2e-03

Viscosity 1.2e-04 (Pa · s) –
Density 1000 (kg ·m−3) 1.0

Specific heat 4186 (J · kg−1 ·K−1) –

Solid Properties

Thermal expansion coefficient 1e-06 (K−1) 1e-05
Specific heat 920 (J · kg−1 ·K−1) –

Compressibility 2e-10 (Pa−1) 1e-03
Density 2500 (kg ·m−3) 2.5
Porosity 0.3 0.3

Table 5.1 Table of input parameters for the example of observing the effect of
shear heating in a horizontal fault, listing the real values which correspond to the
dimensionless values used in REDBACK. The real values for the viscosity of the
fluid and specific heat values of both the fluid and solid materials are used in the
simulations. The solid properties are identical in all layers, except for permeabil-
ity which is varied in the study.

been used to investigate fault mechanics (Poulet et al., 2016). REDBACK is capable
of solving fully coupled thermo-hydro-mechanical-chemical (THMC) processes in a
3D space. Figure5.1 demonstrates a THM-simulation solved in 3D space which high-
lights the localised thermal contribution of a fault under far-field isothermal conditions.
Despite REDBACK’s capabilities, a 2D space is sufficient to represent the problem at
hand as the focus of this study is purely to investigate the thermal effects of the fault
to its surroundings. It is acknowledged that further studies could be performed with
more realistic geometries and fault material properties, but lie outside the scope of this
Thesis.

5.2 Shear Heating Changes the Onset of Convection

To study the impact of such a creeping fault on the onset of convection, one scenario of
the cases described in Section 2.3 is first considered. In this scenario, a 2D model is
considered which contains a single horizontal fault (i.e. zero dipping angle), 20m thick,
present in the centre of the aquifer. The entire model is considered to be homogeneous,
having a length and depth of 1000m and 500m respectively. The boundary conditions
are prescribed for temperature and pressure on the top and bottom boundaries. The
values for geometry, material properties, boundary conditions, and fluid properties can
be found in Table 5.1.
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5.2 Shear Heating Changes the Onset of Convection

The heat impact of creeping faults is represented by the numerical value of the
Gruntfest number Gr uniformly across the entire fault, and in order to observe the effect
of varying Gr values on the onset of convection, the numerical continuation method
presented in Section 3 is applied to scenarios where Le is taken as the continuation
parameter to investigate its effect on convection. Results presented in Figure 5.2a
demonstrate that this continuation method is able to effectively identify the critical
Lewis numbers Lec predicted for each of the Gr values chosen.

For the reference case of Gr = 0, the critical Lewis number Lec is approximately
Lec = 4.9×10−8, and represents the scenario where the fault is inactive. For increasing
Gr values, it can be observed that Lec required for the onset of convection is signifi-
cantly lowered. Since permeability is approximately inverse to the Lewis number, this
translates to a lower critical permeability needed for increasing values of Gr. A visual
example is shown in Figure 5.3, where two steady state results are obtained for the
same Lewis number (Le = 5.5× 10−8). The first result obtained for Gr = 0 is of a
non-convective solution, situated on the lower (diffusive) branch. The second result is
of a slightly convective solution, for Gr > 0 and is located on the upper (convective)
branch of the continuation curve. This indicates that convection in a reservoir containing
creeping faults could be occurring for values of Le, which would otherwise only induce
a purely diffusive pattern without the consideration of such creeping faults.
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Fig. 5.2 Impact of the Gruntfest number on onset of convection. a) Continuation
curves for various Gr values. The critical permeability required for the onset of
convection is lowered with increasing Gr values. b) Exponential fit of Lec with Gr,
providing an analytical solution where the Lec can be obtained for any Gr value.
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Fig. 5.3 Simulation results showing the effect of shear heating in a conceptual
reservoir with model dimensions x=1000m, y=500m containing a horizontal fault
20m thick in the centre of the model (outlined in white). At the same critical
Lewis number, a purely diffusive scenario becomes convective when shear heating
is present (Gr = 3e-03) in the fault. The fluid and material properties used in this
simulation can be found in Table 5.1.
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5.2 Shear Heating Changes the Onset of Convection

An exponential relationship between the critical value of Lec with respect to Gr can
be obtained from the various values of Gruntfest tested (Figure 5.2b):

Lec = 4.86×10−08 × e(57.8×Gr) (5.1)

This pseudo-analytical solution provies the critical Lewis number for any value of
Gruntfest, specific to the material properties and parameters (e.g. boundary condition,
geometry, etc.) of this problem. This relationship can additionally be expressed as:

Lec = Lec0 eωGr (5.2)

where ω is a constant and Lec0 = 4.9×10−8 is the reference value at Gr = 0. For the
values used in this example, in the case of a fault with Gr = 0.1 (i.e. under relatively fast
tectonic loading of the order of 10−10 s−1), the permeability required for convection can
be extrapolated and will be two times lower than without the shear heating contribution
of the fault (when Gr = 0). This indicates that the introduction of a heat source from
active faults can have a tremendous impact on the critical conditions required for the
onset of convection, namely permeability. Shear heating increases the critical Lewis,
which correspondingly decreases the permeability at which convection is predicted to
occur. This renders settings that are considered stable and purely diffusive as potentially
convective. Such an effect is expected to be of profound interest for geothermal
applications, particularly in natural convection settings where active faults are usually
present.

Numerical values of Gr for specific geological scenarios can only be derived through
Equation 2.16 when all parameters are known. As an example, consider a shallow sand-
stone geothermal reservoir approximately 500m deep measured from the surface. For
this scenario, a map of Gr values as a function of the shear stress on the fault (τn) and
the yield stress (τY ) is plotted for a reference strain rate value of ε̇0 = 10−16 s−1 (see
Figure5.4). The values of yield stress used includes materials ranging from unconsoli-
dated sand (kPa) to intact sandstone (MPa). The following indicative values are used:
χ = 1, H = 500m, L = xre f = 1000m, Tre f = 300K, δ = 1/30, κ = 2.5W.m−1.K−1,
ρ0 = 1000kg.m−3, Ar = 10, g = 9.81m.s−2 and σre f = ρ0 gH, and all other parameters
are detailed in Table 5.2. This map visually highlights increasing Gr for higher values
of τn (larger tectonic stresses) and lower values of τY (softer rocks). It also shows that
Gr can actually become larger than 1×10−2 in active environments.
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5.2 Shear Heating Changes the Onset of Convection

Indicative Parameters Gruntfest Map
Parameter Values

Geometry
Height 500 (m)

Length (σre f ) 1000 (m)
Fault thickness 20 (m)

Boundary Conditions

Temperature top (Tre f ) 300 (K)
Temperature bottom 310 (K)

Pressure top 1e+05 (Pa)
Gravity 9.81 (m · s−1)

Ar (Arrhenuis constant) 10
χ (Taylor-Quinney coefficient) 1

Fluid Properties

Thermal expansion coefficient 7e-05 (K−1)
Compressibility 4e-10 (Pa−1)

Viscosity 1.2e-04 (Pa · s)
Density 1000 (kg ·m−3)

Specific heat 4186 (J · kg−1 ·K−1)

Solid Properties

Thermal expansion coefficient 1e-06 (K−1)
Thermal conductivity 2.5 (W ·m−1K−1)

Specific heat 920 (J · kg−1 ·K−1)
Compressibility 2e-10 (Pa−1)

Density 2500 (kg ·m−3)
Porosity 0.3

Table 5.2 Table of indicative parameters for the scenario produced in the map of
Gruntfest with a reference strain rate of γ̇0 = 10−16 s−1 (see Figure 5.4).
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Fig. 5.4 Map of Gruntfest number as a function of the fault shear stress τn and
yield stress for a reference strain rate of γ̇0 = 10−16 s−1. Indicative values for
this scenario are described in the text. Note that the range of yield stress values
encompasses reservoir rocks as hard as consolidated sandstone (usually having
a yield in shear of around 60− 100 MPa) down to unconsolidated sand having a
yield value of around 0.1− 1 MPa. The white zone denotes the parameter space
where Gr = 0, and the dotted line highlights the specific value Gr = 1×10−2, the
maximum Gr used in Figure 5.2.

In addition to changing the critical value predicted for convection, is it postulated if
shear heating can also alter convection patterns due to the break in symmetry introduced
by the fault.

5.3 Shear Heating Changes the Pattern of Convection

To investigate the impact of shear heating on convection patterns, the spatial profile of
temperature for the case of a horizontal fault is first discussed. This scenario presents the
same problem described in the section above, and steady state results for four increasing
Gr values are displayed in Figure 5.5. In this scenario, the fault has identical material
properties as the reservoir, and it is noted that a calibration exercise could be performed
to obtain the applicability of this workflow in specific scenarios, but lies beyond the
scope of this Thesis. The aim of this investigation is to focus on the thermal effect of
the fault, and this is characterised by a single Gruntfest number, for which a reference
scenario of Gr = 0 represents the case where the fault is inactive. It can be observed
that up to a certain value of Gr = 1×10−3 (which corresponds to a tectonic loading
rate of 10−12 s−1 in this scenario), shear heating does not have any appreciable effect
on the convection pattern.

For larger values of Gr (Gr > 1×10−3), Figure 5.5 shows the interaction between
the heat generated from the fault and the overall convection pattern. For the case of
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(a) Gr = 0

(b) Gr = 1×10−3

(c) Gr = 5×10−3

(d) Gr = 1×10−2

Fig. 5.5 Convection patterns for a horizontal fault in the middle of the reservoir
for Gruntfest values of 0,1×10−3,5×10−3, and 1×10−2 respectively. The fault is
outlined in white. Shear heating is seen to change steady state convection patterns,
where the heat generated exceeds the given temperature boundary conditions and
localises around the fault for higher Gr values.
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Input File Parameters for Observing the Effects of Shear Heating in a Dipping Fault
Real Values Dimensionless Values

Geometry

Height 1000 (m) 1.0
Length 2000 (m) 2.0

Fault thickness 10 (m) 1e-02
Dipping Angle 10◦ –

Boundary Conditions

Temperature top 300 (K) 0.0
Temperature bottom 310 (K) 1.0

Pressure top 1e+05 (Pa) 2e-02
Gravity 9.81 (m · s−1) 1.96

Fluid Properties

Thermal expansion coefficient 7e-05 (K−1) 7e-04
Compressibility 4e-10 (Pa−1) 2e-03

Viscosity 1.2e-04 (Pa · s) –
Density 1000 (kg ·m−3) 1.0

Specific heat 4186 (J · kg−1 ·K−1) –

Solid Properties

Thermal expansion coefficient 1e-06 (K−1) 1e-05
Specific heat 920 (J · kg−1 ·K−1) –

Compressibility 2e-10 (Pa−1) 1e-03
Density 2500 (kg ·m−3) 2.5
Porosity 0.3 0.3

Table 5.3 Table of input parameters for the example of observing the effect of
shear heating in a reservoir containing a dipping fault, listing the real values
which correspond to the dimensionless values used in REDBACK.

Gr = 1×10−2, the heat is localised inside the fault, causing the upwelling plume to be
slightly wider than the cases where Gr < 1×10−3. Shear heating significantly alters
the convection patterns especially for Gr = 1×10−2, where the maximum temperature
exceeds the given temperature boundary conditions and is localised around the fault.
In this case, the peak of the convection cell has also moved closer to the extents of the
model. This result is not particularly intuitive and could have significant implications in
geothermal applications, as such effects could drastically influence drilling decisions
and production operations.

Another question arises as to the role of fault orientation in the reservoir. It was
previously discussed that the contribution of the geometry on the stresses in Equation 2.9
can be considered negligible. The bifurcation curves are not expected to differ even
with the inclusion of a dipping fault, and would follow those in Figure 5.2a. Following
this analysis, steady state convection patterns would not be expected to differ from
the cases where horizontal faults are considered. However with the discovery of heat
localisation at higher Gruntfest numbers in the previous section, it is observed that
shear heating dramatically affects the steady state convective patterns in the system.
The results are not mesh-sensitive and has been proven in mesh sensitivity analyses
presented in earlier chapters (see Figure 3.6). In this analysis, a near-surface reservoir
with dimensions 1000m and 2000m (width and length, respectively) containing a single
fault dipping at shallow angles (10◦) is considered. Table 5.3 details the parameters
used in this scenario.
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(a)

(b)

Fig. 5.6 Temperature profiles illustrating different convection patterns and nor-
malised temperature isotherms with and without the presence of shear heating.
The white gap between the reservoirs outline the fault of thickness 10m, and
isotherms follow the temperature profiles. a) Convection profile for the case of
no shear heating (i.e. Gr = 0). In this solution, the geometry of the fault is not
acknowledged. b) Steady state temperature for Gr = 1 × 10−2. Note the non-
symmetrical convection cells due to heat localising along the fault, as well as the
upwelling plumes rising closer to the surface of the model.
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5.4 Discussion

The steady state temperature profiles obtained for this problem are shown in Fig-
ure 5.6, highlighting the obvious differences with and without the consideration of
shear heating. In the first example devoid of mechanical dissipation, the expected
convective pattern is obtained. The presence and geometry of the fault is not seen to
affect the steady state solution (Figure 5.6a). The second scenario is of Gr = 1×10−2,
and this result shows that shear heating has dramatically changed the expected steady
state convective patterns of the system. In particular, this specific example displays a
localised hot zone where the temperature in the fault has exceeded the given boundary
condition (T > 1), displayed in Figure 5.6b. The convective flow strongly affects the
heat signature of the fault and does not lead to the expected hot zone around the fault,
but rather concentrates the heat in a particular area. Such a temperature profile, if it had
been inferred from geophysical data, could have been easily interpreted as an indication
of a radiogenic heat source at that particular location. This interesting finding draws
attention to the importance of understanding the impact of creeping faults in reservoirs.

5.4 Discussion

Shear heating has been shown to exceed the given temperature boundary conditions at
given Gr values (see Figure 5.6b and 5.5). It is postulated if the fault could become
the primary heat source for convection in a reservoir, instead of the classical scenario
where heat from basement rocks are taken as boundary conditions? If so, what are the
velocities, geological conditions, and material properties required for such systems?
The ability to constrain such questions and the identification of key parameters have
been made possible with the development and use of this novel stability analysis method,
detailed in Section 3.2.

In this section, the results for the effect of shear heating from a steadily creeping
fault are presented, on both the onset and pattern of convection. Firstly, shear heating
is found to lower the critical permeability needed for convection to occur. This new
finding has significant implications, especially in geological reservoirs where creeping
faults may be present. Secondly, the coupling of advective and diffusive processes can
cause heat to localise along the fault. These results differ from the traditional patterns
expected around the critical permeability values of the system for systems where shear
heating is not considered.

This fundamental study has opened the door to many potential future investigations.
In particular is the consideration of multiple faults. In this study, only a single fault
is considered for both the horizontal and dipping cases, but the the role of multiple
faults in a reservoir is speculated. It was observed that heat localisation could occur
in the scenario of both a horizontal fault (Figure 5.5) and dipping fault (Figure 5.6).
Whilst the boundary conditions and material properties (i.e. fluid and solid properties)
were identical to each other (see Table 5.1 and Table 5.3 for comparison), slightly
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5.4 Discussion

varying geometrical conditions drastically changed the expected steady state solution
(see Section 5.3). Following this outcome, it would be valuable to investigate the
scenario where multiple creeping faults are present, and their relationship to the diffu-
sive and advective processes in the reservoir. These results could have considerable
significance for geothermal settings located in a graben, for instance, where the system
is characterised by actively creeping faults. Building on these findings could lay the
foundation for more questions and the possibility of future work to investigate the short
term effects at engineering timescales. For example, what would be the response of
the reservoir when production and injection wells are introduced into the system, if
production wells are located close to the localised heat source from creeping faults?
If heat rejection wells are placed in convective downwellings, how sustainable would
the system be? Understanding such relationships in complex reservoirs can greatly
contribute to optimising injection/extraction protocols in geothermal operations, for
which the methodology now exists to investigate such questions.

In this thesis, one of the major assumptions is that the fault’s total displacement is
considered to be negligible compared to the overall length of the reservoir, but moving
at a sufficient velocity to generate enough heat (see Section 5.1). The question then
arises as to the behaviour of convection when the rate of creep becomes significant, and
convection cells are displaced by the moving fault. It would be interesting to investigate
if this problem has a steady state solution, and what key parameters govern the fault
in such a case. Such findings could be meaningful especially when the location of the
convective upwellings is desired, as it could influence the placement of injection and
extraction wells.

This chapter demonstrates that the consideration of shear heating could have sig-
nificant implications for geothermal operations as the evidence of preexisting physical
processes could optimise energy production. The understanding of past physical pro-
cesses provide information of in-situ conditions, and this knowledge coupled with the
physical processes occurring at engineering timescales, can facilitate efficient energy
extraction and production in geothermal reservoirs.
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Chapter 6

Towards THMC: A Soultz-sous-Forêts
Case Study

Faults have been shown to geometrically play a role in pinning convection cells (Reid
et al., 2012), and steadily creeping faults have a considerable impact in altering the
onset and pattern of convection (see Chapter5). These two aspects can fundamentally
influence the modelling of faulted geothermal reservoirs. In this chapter, such a case is
investigated in a realistic geological setting at Soultz sous Forêts from a coupled thermo-
hydro-mechanical (THM) perspective. This chapter focuses on a specific fracture zone
and its effects on the heat and fluid flow processes in the reservoir.

6.1 Geological Setting and Geothermal Observations

The Soultz-sous-Forêts geothermal resource is located in the Rhine Graben in Europe,
and represents the target of the European Hot Dry Rock project. The Graben was
formed as a result of alpine orogeny in the European Cenozoic rift system (Ziegler,
1992). Mesozoic and Cenozoic sediments overlay the top 1400m of a Paleozoic granitic
basement, which extends down to 5000m (Cautru, 1988; Pribnow and Schellschmidt,
2000). Prominent large-scale north-south striking faults are identified to originate in
the granitic basement and extend up through the sedimentary cover (Rousset et al.,
1993). The large quantity of temperature data, fracture networks, seismic activity, and
chemical alteration history obtained from geophysical data and borehole logs indicate
that coupled thermo-hydro-mechanical-chemical (THMC) processes are present in such
a setting. Field evidence of these processes have been thoroughly analysed and a brief
summary is presented below.

6.1.1 Evidence of Mechanical Deformation

Since the formation of the Rhine Graben, various rift segments have experienced
changes in the stress field and still remain tectonically active today (Ziegler, 1992).
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Recent seismic data indicate that vertical movement in the graben is attributed to
ongoing subcrustal upwelling, supported by the presence of geothermal anomalies,
seismic activity, and recent neotectonic movements (Buchmann and Connolly, 2007;
Illies, 1972). The four major stress field re-orientations which alternated between the
compressional and extensional regime could have triggered the reactivation of prior
fault margins (Bergerat, 1987; Larroque and Laurent, 1988), and active faults appear to
creep at a continuous rate without any major seismic activity (Illies, 1972; Illies and
Greiner, 1978). Albeit the many stress re-orientations since the creation of the graben,
the southern Rhine Graben area is currently characterised by normal and strike-slip
faulting movements (Plenefisch and Bonjer, 1997).

Various scales of deformation are present at Soultz, ranging from large scale faults
(e.g. Soultz and Kutzenhausen) to small scale fractures observed in borehole imaging
techniques. The aperture and orientations of fracture clusters found in boreholes indicate
complex deformation history and stress fields (Sausse et al., 2010). Although major
large scale faults play a role in enhancing heat and fluid flow in the Graben, of particular
interest are the small scale fractures in the granitic basement. Structural and geometrical
data of these fractures obtained from well log analyses, microseismicity interpretation
and hydraulic well stimulation (Dezayes et al., 2010; Sausse et al., 2010) confirm the
presence of fluid flow circulating within faults and fracture zones, interpreted from a
temperature profile obtained from well GPK2 (Figure 8 of Genter et al. (2010)). Due
to the focus on hydrothermal flow, the terms ’fracture zone’ and ’fault’ are often used
interchangeably. This points to the need to investigate the role of faults on hydrothermal
convection.

6.1.2 Evidence of Hydrothermal Convection

At Soultz, prominent hot and cold upwellings are found at both regional and local
scales. Homogeneously paired hot-cold patterns at depths of 800m are approximately
20km apart on a regional scale (Pribnow and Schellschmidt, 2000), but exhibit different
characteristics on a local scale. A non-homonegeous distribution of convective up- and
down-wellings are found at a scale of a few kilometres (see Figure 6.1), where hot
upwellings are seen to concentrate around fault zones (Bächler et al., 2003).

Temperature information obtained from well data (GPK2) confirms the presence of
hydrothermal convection and asserts the influential role of faults acting as pathways
for heat and fluid transport. Heated fluid travels upwards through sub-vertical fracture
networks and is circulated in the sediments (Pribnow and Schellschmidt, 2000). In
Figure 6.2, temperature gradients are approximated at three instances along the profile.
The highest branch (closest to the surface) has the highest thermal gradient, which
has been interpreted as the diffusion of heat from a high convective heat source below
(Vidal et al., 2015). The middle branch has an extremely low thermal gradient, implying
the vertical flow of fluid up to the sediments, and the lower branch has a gradient
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Fig. 6.1 Local temperature scale of Soultz; 1km scale, 500m depth. (Coloured
version from (Bächler et al., 2003), personal communication.)

Fig. 6.2 Temperature profile obtained from well GPK2, data source from Genter
et al. (2010).
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similar to the normal geothermal gradient. The backflow of temperature located at
depths of approximately 2100m and 3500m are thermal signature of fault zones (Vidal
et al., 2015). The change in geothermal gradient at approximately 1400m depth could
most probably be attributed to the contrast in permeability and thermal conductivity of
the sediment-basement interface, where a highly altered granitic basement is overlaid
by clay sediments (Pribnow and Clauser, 2000; Pribnow and Schellschmidt, 2000;
Schellschmidt and Clauser, 1996).

Of particular interest is the fault located at 3500m depth. It is coincidentally located
at the interface between two changing geothermal gradients, without any major changes
in geological units or material properties (Hooijkaas et al., 2006). It is investigated
whether this fault could be the key parameter that governs the existence of convection.

6.1.3 Convection in the Upper Reservoir

Vidal et al. (2015) proposes a conceptual model of a local convective cell with a
sub-vertical fracture network controlling fluid circulation, especially between 1400m
and 3500m depth in the granite, termed as the ’upper reservoir’. This corresponds
to the upflow of hot fluid through the granite and its diffusion into the sediments,
seen in Figure 6.2. The lithology of these upper-lying sediments, sediment-granite
interface at 1400m, and granitic host rock have been studied extensively through
petrographical sections of lithology, fracture orientation, aperture, and hydrothermal
alterations (Dezayes et al., 1995; Hooijkaas et al., 2006; Sausse, 2002; Sausse et al.,
2006; Vidal et al., 2017, 2015). Additionally, considerable information is present and
various models have been analysed to understand physical processes occurring in the
lower reservoir (Dezayes et al., 2004, 2010; Ledésert et al., 2010; Sausse et al., 2010).
However, the interface between the upper and lower reservoir has not yet been fully
understood, particularly the fault at 3500m depth.

The fracture conditions at this interface documented by Sausse et al. (2010) and
Dezayes et al. (2010) indicate a contrast in hydrothermally altered granite, where
the upper boundary predominantly consists of abundant vein alterations while biotite-
amphibole rich granite dominates the lower boundary.

6.2 Compilation of Previous Models

Extensive studies have investigated the behaviour of convection on both regional and
local scales using numerical models (Benderitter and Elsass, 1996; Bächler et al.,
2003; Carlier et al., 1994; Clauser and Villinger, 1990; Kohl et al., 2000; Pribnow
and Schellschmidt, 2000).) In these studies, there have been two main approaches: a
homogeneous approach in which convection is dependent on the average permeability
of geological units (e.g. Carlier et al., 1994; Magnenet et al., 2014), and a fractured
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approach in which fault permeability is taken into account (e.g. Bächler et al., 2003).
This section presents an overview and highlights the results of the two approaches.

6.2.1 Homogeneous vs. Fractured Approaches

Numerical studies have been performed to understand the effect of convection in large-
scale geometries, where homogeneous (i.e. single) permeability values were assigned
to a single strata to represent various geological lithologies. Carlier et al. (1994)
investigated the permeability required for convection to occur in the reservoir was in the
order of k = 10−14m2, with the reservoir dimensions measuring approximately 60km in
length and 5km in depth.

At Soultz, Magnenet et al. (2014) examined a steady state solution of a convective
system from a simplified two-dimensional numerical model, with dimensions 10km
in length and 5.3km in depth. Focusing on the rich rheologies of rocks and brine, the
model assumed homogenized horizontal layers. For natural convection to occur in this
reservoir, the minimum permeability required was also in the order of k = 10−14m2,
where a periodic pair of convection cells measured approximately 2.6km in width.
Whilst this approach captures the essential mode of heat transfer in the Rhine Graben on
a regional scale, it is at odds with the observation on the smaller scales where localised
upwellings and downwellings can be identified at much shorter wavelengths (Bächler
et al., 2003). This is particularly obvious around fault zones and their intersections
(Figure 6.1).

In the fractured modelling approach, numerical models considering fault geometry
and material properties were included in order to observe its effects on convection
in the reservoir. The work of Bächler et al. (2003) highlights the importance of fault
permeability at Soultz, particularly in subvertical faults which facilitate natural up- and
down-welling flow in the Rhine Graben. In this study, convection was found to occur
at values of k = 4.8×10−14m2 for a fault width of 200m. Geophysical evidence from
gravity data also support fractures controlling fluid flow (Baillieux et al., 2014), and
large-scale temperature anomalies can be attributed to the intersection of several highly
permeable sub-vertical faults, notably the Kutzenhausen and Soultz Fault Systems, for
instance.

6.3 Motivation and Aim for This Study

Figure 6.2 indicates temperature deviations at depths of approximately 3242m and
3514m from the GPK2 wellbore. These correspond to major fracture zones which,
interestingly, exhibited low permeability during low-pressure hydraulic tests (Jung et al.,
1995). Information from the GPK1 wellbore identifies a fracture zone at 3492m which
was a dominant permeable structure (Evans et al., 2005). Although this fracture zone
is not recorded in GPK2 logs, its location at the intersection of changing temperature
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gradients is notable.
The aim for this study is to investigate how this fracture zone may or may not control
the character of convection in the upper-lying strata.

6.4 Materials and Methods

The numerical tool used in this study is REDBACK (Poulet et al., 2016), following the
workflow described in Chapters 4 and 5. This study investigates the physical processes
responsible for the convection pattern observed, trying to first explain it from a simple
hydrothermal perspective, and with the consideration of more processes as required.
All equations solved (i.e. mass and energy balance) are detailed in Section 2.3.

6.4.1 Model Parameterisation

In order to to investigate the effects of THM couplings without the additional complexity
and drivers from the geometry and boundary conditions of the real geological scenario,
this modelling study is based on a representative but simplified convection cell pinned
by sub-vertical fracture zones. As such, the geological drivers are parameterised by the
homogeneous material properties of these fracture zones, mainly by their dimensionless
numbers (Le,Gr). The sub-vertical faults in the model are assumed to be made up of
multi-scale fracture networks which connect the overlying sediments and permeate the
granitic basement rock. For simplicity, a representative 2D vertical cross-section is
taken through the faults, which are assumed to extend infinitely in the third dimension
so any end-effects of the faults are ignored. In order to close the fault network, these
sub-vertical faults are assumed to be connected horizontally at depths of 1400m and
3500m, respectively representing the interface between overlying sediment and granitic
rock (1400m), and the fault of interest (3492m). In addition, the fracture network is
homogenised by an effective permeability which is assumed to be isotropic.

Three rock lithologies are represented in the model; the granitic host rock and
upper-lying sediments, the fracture network, and the granitic basement. In order to
understand the role of the fracture network affecting fluid flow processes, the study
focuses on a conceptualised zone of interest of 5km depth, including the representative
convection cell described above (see model geometry in Figure 6.3).

At this depth, it is acknowledged that bottom boundary conditions are extremely
complex and characterised by contrasting mineral assemblages and fracture clusters.
However the primary focus is of the characteristics of the fracture zone located at
3492m depth and its influence on the convection processes above this depth, therefore a
bottom temperature boundary condition generalised from the bottom hole temperature
of GPK2 (Figure 6.2) is adequate. Material properties are chosen based on previous
modelling studies (e.g. Bächler et al., 2003; Carlier et al., 1994; Magnenet et al., 2014),
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Fig. 6.3 Conceptual mesh geometry used in this study. Three rock lithologies
represented in the model are: the granitic host rock (A), fault network (B) with
the centre of the fault zone marked in red, and granitic basement (C). Model
dimensions are 5km in depth and 5.2km in length, indicated by dimensionless
values.
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Table of Parameters for matching the Temperature Profile of GPK2
Real Values Dimensionless Values

Geometry
Height 5000 (m) 5
Length 5200 (m) 5.2

Fault width 370 (m) –

Boundary Conditions

Temperature top 293 (K) 0.0
Temperature bottom 473 (K) 1.0

Pressure top 1E+05 (Pa) 2.04E-03
Gravity 9.8 (m · s−1) -1.03

Fluid Properties

Thermal expansion coefficient 7E-05 (K−1) 1.26E-02
Compressibility 4E-10 (Pa−1) 1.96E-02

Viscosity 1.2E-04 (Pa · s) –
Density 1000 (kg ·m−3) 1.0

Specific heat 1000 (J · kg−1 ·K−1) –
Permeability (A) 1.84E-17 (m2) 1E-03
Permeability (B) 2.30E-15 (m2) 1e-05
Permeability (C) 3.68E-16 (m2) 5e-05

Solid Properties

Thermal expansion coefficient 1E-06 (K−1) 1.80E-04
Specific heat 1000 (J · kg−1 ·K−1) –

Compressibility 2E-10 (Pa−1) 9.82E-03
Density 2650 (kg ·m−3) 2.5
Porosity 0.01 0.01

Thermal conductivity (A) 2 (W ·m ·K) –
Thermal conductivity (B) 2 (W ·m ·K) –
Thermal conductivity (C) 6 (W ·m ·K) –

Table 6.1 Table of parameters used for the best fitting temperature profile, match-
ing that of GPK2 (see Figure 6.5).

where permeability and thermal conductivity values are generalised over each rock type.
Table 6.1 details the parameters used in this study.

This study follows the approach of Vidal et al. (2015), who showed that such
parameterised models are well suited to understand the driving phenomena at play.
This prominent fracture zone at 3492m depth has been identified to have a thickness
of 8m (Dezayes et al., 2010). No direct permeability values have been derived for this
fracture zone, but an equivalent porous medium (EPM) permeability was obtained from
spinner log analyses, performed in the open hole section containing this fault Evans
et al. (2005). The EPM permeability of this section was 3×10−16m2, and decreased
to 1.5× 10−17m2 when the fault was excluded from hydraulic testing. Spinner logs
indicate that almost all of the flow occurred at this fracture zone, therefore in this study,
an end-member upper limit scenario is assumed where all the flow is entirely governed
by this fault at 3492m. Following this, the permeability of this zone can be inferred
from the difference between the inclusion and exclusion tests Evans et al. (2005), where
the value of 2.85×10−16m2 can be taken as a reasonable estimate for this fracture zone.

6.4.2 Mesh Sensitivity Analysis

In order to trust the simulation results, a mesh sensitivity analysis for the geometry
described (Figure 6.3) is performed beforehand in order to determine the number of
elements in the mesh that should be used in this study. Of particular interest are the
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Fig. 6.4 Mesh sensitivity analyses performed on the mesh with geometrical di-
mensions listed in Table 6.1, plotted against the recorded temperature profile of
GPK2. Numerical convergence of the solution is reached at approximately 11,000
elements.

fluid and heat flow processes within the fault, pointing to the necessity to sufficiently
characterise this feature. For this sensitivity analysis, mesh geometry and values of
material properties are kept constant while the number of elements in the mesh are
varied, with extra focus on the fault.

In this model, the temperature profile of GPK2 is used to quantify numerical
convergence. Steady state temperature results varying the number of mesh elements are
plotted against GPK2 data and a slight oscillation of results is observed (see Figure 6.4).
Numerical convergence is seen to occur with approximately 11,000 elements, however
a value of 15,000 is used to ensure reliable results.

6.5 Results

This section presents the results of this study, first by matching the temperature profile
of GPK2 using the traditional hydrothermal convection equations.

6.5.1 TH Model

In this fundamental analysis, the aim is to reconcile the permeability values used in
previous studies (1×10−14m2) to the inferred realistic value of 2.85×10−16m2, whilst
fitting the temperature profile of GPK2 as closely as possible. An average value of the
order of 10−15 is chosen as an initial attempt. In this scenario, temperature boundary
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conditions at the top and bottom of the model are imposed from GPK2 data, and
a minimum width of 370m is derived by trial and error to sustain the temperature
profile obtained in Figure 6.5. With these conditions, the temperature profile obtained
sufficiently matches that of GPK2. Given the inverse relationship between fault width
and permeability, the unrealistically large value of 370m was expected. Bächler et al.
(2003) used a higher value for permeability, but still obtained a fault width of 200m.
Clearly, some inconsistencies remain between the observations and the numerical
models used to model hydrothermal convection.

Recent information of fracture aperture and thickness show that some of the model
assumptions are not in agreement with the observed values. Firstly, fracture zone thick-
ness derived from borehole images in Soultz have been averaged to be approximately
12m (Dezayes et al., 2010). Genter et al. (2000) illustrates a conceptual lithofacies of the
granite, spanning approximately 10m in width, consisting of a quartz-filled fault core
surrounded by cataclased brecciated granite. Particularly for the fracture zone at 3492m
depth, the thickness is found to be 8m (Dezayes et al., 2010). This value is a stark
contrast to the 370m fault width used in the numerical model, which should therefore
be reduced considerably. This would naturally require using higher permeabilities to
compensate and still match the observed temperature profile. However, the permeability
values used for the model are also relatively high (2.30×10−15m2), and already fall
outside the natural permeability estimated (2.85×10−16m2) by one order of magnitude,
even in the end-member scenario.

Another limitation to this approach is that the best fit for the temperature profile was
obtained by directly plotting the temperature in the centre of the fault. This strongly
idealised scenario remains an end-member case where the large vertical temperature
gradient should be easily matched for realistic values of geometry and material proper-
ties. Realistic evidence suggests there is no ’single’ fault zone, instead small fracture
zones are interconnected to each other in small distances (e.g. Dezayes et al., 2010;
Ledésert et al., 1993, 2010). Smaller widths however, will result in the localisation of
fluid flow to thinner pathways. This decreased interaction with the rock mass/host rock
will require higher temperatures and faster velocities to produce the same effect.

To address these issues, the permeability values required to produce the same
temperature for decreasing fault widths are examined. The following section discusses
the implementation and results of the analysis.

6.5.2 Fault Width and Permeability Analysis

Effect of Decreasing Permeability

As an initial study, the fault width of 370m is maintained whilst decreasing perme-
ability values to observe its effect on the temperature profile. Figure 6.6 displays the
temperature profiles taken at the core of the fault for decreasing permeability values.
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(a)

(b)

Fig. 6.5 Temperature profiles obtained using values provided in Table 6.1. a)
Steady state simulation result using designated mesh geometry, displaying nor-
malised temperature values and isotherms in the entire domain. Temperature
values are taken along a digitised well bore, represented by the black line. b)
Temperature profile of (a) plotted against GPK2 showing an adequate fit.
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Fig. 6.6 Temperature profiles of decreasing permeability are plotted against the
original well data of GPK2 (in black). In this scenario, the fault width is fixed
at 370m and temperature data points are taken at the centre of the fault (see
Figure 6.5a). With decreasing permeability, it can be observed that the behaviour
of temperature tends towards the standard geothermal gradient, matching that
of the [black] lower branch.

The best fitting temperature profile is the one presented in Section 6.5.1, obtained with
a permeability value to the order of 10−15m2. Although the temperature boundary
conditions are fixed at the top and bottom of the model, the behaviour of the temperature
profile significantly deteriorates with decreasing permeability, especially at depths be-
tween 1km and 3.5km. In these profiles, the gradient eventually diffuses to the standard
geothermal gradient of approximately 30◦C/km, matching that of the lower branch.

The permeability of the fracture at 3492m depth is approximated to be around the
order of 10−16m2, inferred in Section 6.5.1. Using this value, the temperature profile
matches the lower branch but falls short of the profile obtained from GPK2 by almost
20◦ in other parts (see Figure 6.6). The next section presents the investigation of the
permeabilities required for decreasing fault widths, with the consideration of only
thermal and hydraulic (TH) processes.

Fault Width vs. Permeability Values

To perform such an analysis, a zone of ’diffused permeability’ is first defined around
the fault zone to match geological observations of damage zones around faults (e.g.
Mitchell et al., 2011). This is represented using a bell-curve profile within the fault,
where the largest value of permeability is in the centre and values gradually diffuse
into the background value of the host rock. This portrayal of permeability allows the
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narrowing of fault widths without excessively refining the mesh, as well as accounting
for the damage zone and/or hydrothermally altered permeabilities, following Mitchell
et al. (2011) and Genter et al. (2000).

To obtain such a permeability profile, normalised permeability boundary conditions
are first assigned to the background (k = 0) and centre of the fault (k = 1), outlined in
red in Figure 6.3. The diffusion equation is then solved for the permeability variable
over a transient simulation, where a fixed value of permeability is imposed as a boundary
condition at the center of the bell-curve. The desired width can then be extracted by
hand-picking a given timestep, and be read as an initial solution for a transient simulation.
Real values of permeability can be computed by using the [real] permeabilities assigned
to the fault and basement:

kreal =
k f ault − kbasement

α

where k is the permeability and α the constant of the Lewis number,

α =
µ f o × cth ×β ∗

m

σre f

Single simulations are then run for each value of maximum permeability assigned to
the centre of the fault. The methodology described allows the definition of a fracture
zone with varying permeability (using a bell shaped distribution) over any desired total
width. The value of the maximum permeability at the center of that fracture zone can
then be selected independently.
This process is used to determine the total width W required for a given value of
maximum permeability (kc assigned to the center) to match the temperature profile at
GPK2. In this analysis, three data points are obtained. For decreasing values of W
from 370m, 309m and 275m, the permeability kc is found to increase from 2×10−15m2

to 8 × 10−15m2 and 2 × 10−14m2 respectively (see Table 6.2). The high value of
permeability for W = 275m points to the futility of continuing this matching exercise
for narrower values of W . Instead, the existing data points are then used to infer a power
law relationship between kc and W of the form kc = 163939W−7.754 (see Figure 6.7).
In turn, this relationship indicates the incredibly high ranges of numerical values likely
to be required for smaller values of W .

From this analysis, it can be seen that unrealistically high permeabilities are obtained
for widths below 100m, which exceeds the derived value of the order 10−16m2 by several
orders of magnitude.

Therefore, the question remains unanswered: how is it possible to match the current
temperature profile of GPK2 with a fracture zone of 8m, especially if the permeability
of best case scenario is inferred permeability is at best in the order of 10−16m2. The
consideration of purely TH-processes is insufficient to explain such a phenomenon
and obviously points to the presence of other physical processes that have been so far
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Fig. 6.7 Relationship of varying fault width to required permeability for sustain-
able convection. Data points obtained from simulations are indicated in dark blue
and approximated permeability values are displayed in light blue, obtained using
a power law relationship. Trendline and R-squared coefficient are displayed on
the graph.

Width (m) Permeability (m2)
370 2.00×10−15

309 8.00×10−15

275 2.00×10−14

200 12.36×10−13

100 5.08×10−11

80 2.87×10−10

50 1.10×10−08

10 2.89×10−03

8 1.63×10−02

Table 6.2 Table displaying data points obtained from simulations (black) and cal-
culated permeability values (grey) using a power law fit. Fault width values range
from what was used in the model (370m) to realistic values observed in well logs
(8m). Permeability values obtained for widths below 100m are unrealistic.
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Table of Averaged Mechanical Values
Values Used
in This Study

Documented
Values

References

Frictional
Coefficient 0.5 0.10 - 0.64 Plenefisch and Bonjer

(1997)

Angle of Fault
(◦) 63 63 Dezayes et al. (2010)

Slip Rates
(mm · yr−1)

0.5 0.1 - 0.7 Ahorner (1975),
Buchmann and Connolly
(2007)

Table 6.3 Table of mechanical parameters used to calculate values for Gruntfest.
Values used in this study are representative and an averaged from those docu-
mented in literature.

neglected. The next step in this study is to consider mechanical deformation through
the presence of creeping faults.

6.5.3 THM Model

Soultz is located in an active graben setting (Evans et al., 2005) and subsidence and
slip rates of the Rhine Graben have been calculated to be in the order of 0.1mm/yr to a
maximum of 0.5mm/yr, with observed rates between 0.2mm/yr−0.7mm/yr (Ahorner,
1975; Buchmann and Connolly, 2007). Well log data also identifies clusters of cataclas-
tic shear structures around fracture zones in the reservoir (Evans, 2005). Following the
study and results from Chapter 5, it was observed that the steady creep of active faults
could trigger convection at lower permeabilities. This section investigates the effect of
heat generated from realistic slip rate velocities and its effect on the overall convection
behaviour in the model.

The introduction of mechanical deformation is expressed using the Gruntfest number
Gr, defined in Equation 2.16. Following the assumptions for a fault experiencing steady
creep described in Section 2.3, realistic slip rates can be expressed using Gr values (see
map of Gruntfest numbers in Figure 5.4 documented in Chapter 5).

For this model, a reference slip rate of 10−16 is assumed, calculated from the
averaged slip velocities Ahorner (1975) and lithospheric thickness (Geissler et al.,
2010). Values for fault shear stress were calculated from averaged literature values
(see Table 6.3), resulting in τn = 76.26MPa. The yield stress can be determined using
τy = C0 + µ(τn −P0), where C0 is the cohesive strength, µ the frictional coefficient,
and P0 the pore pressure. Following the assumptions of (Plenefisch and Bonjer, 1997),
the cohesive strength is assumed to be zero, thereby obtaining τy = 45.75MPa. From
these parameters, a Gruntfest number of Gr = 6.84 × 10−10 is determined (using
Equation 2.16) for averaged values documented in literature.
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Fig. 6.8 Temperature profiles of varying fault widths and permeabilities. GPK2
temperature profile is displayed in black, and it is noted that the higher perme-
abilities required for narrower fault zones are numerically impossible to attain
without upwinding schemes.

The results are displayed in Figure 6.8, where temperature profiles are plotted for
some varying fault widths and permeabilities. In this figure, it is obvious that the
temperature profiles are lacking in similarity compared to well data. Temperature
discrepancies vary up to 20◦C in some areas, especially in the vertical upflow. With
the introduction of shear heating from averaged realistic parameters (Table 6.3), the
temperature profile improves marginally but is still inadequate to suitably match the
well data. Note the contrast in the orders of magnitude simulated for Gr values,
where averaged realistic parameters give Gr ∼ 10−10 while values of Gr ∼ 10−06

and Gr ∼ 10−07 were used in the simulations. Attempts were made to run narrower
widths, higher permeabilities and higher Gruntfest numbers, but could not match the
temperature profile adequately with realistic values of material properties. This however,
is not the focus of the study as the goal is to investigate and identify the key parameters
of the driving processes in a system.

From this analysis of THM processes, it is apparent that shear heating is not the
main driver characterising the heat and fluid flow processes in the reservoir. Rather,
more complex processes are at play and the next step would be to consider chemical
processes. It has been observed that chemistry plays an influential role in these settings,
as hydrothermally altered zones are most prevalently found in and around fault zones
(Ledésert et al., 1999, 2010; Schleicher et al., 2006).
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6.6 Discussion

The aim of this study is to identify the driving parameters of the fracture zone at
approximately 3500m depth. The exclusive simulation of TH processes in the reservoir
was insufficient to adequately characterise the heat and fluid flow observations. It
was observed that unrealistic high permeability values were required for sustaining
convection in the reservoir when realistic fault widths were considered (see Table 6.2).
Mechanical deformation was then included into the model, expressed by steadily
creeping faults. Using values of slip rates documented in literature, the temperature
profile was marginally improved but still failed to match the well data, differing by 20◦

particularly in the up-flow of fluid in the sub-vertical fault network. This study affirms
the lack of physics represented by purely THM processes, and indicates the need of a
THMC approach to describe such complex geothermal settings.

6.6.1 Evidence of Hydrothermal Alterations

Thorough analysis of macroscopic fractures at Soultz-sous-Forêts suggests that the
granitic basement has experienced three hydrothermal alteration events (Genter and
Traineau, 1996). Of particular interest is the alteration sequence which produced
localised fractures. These organised clusters of fractures collectively characterises a
structural trend which is evidence of extensive shear and have also been reactivated since
the Tertiary (Dezayes et al., 1995; Genter et al., 1996). Controlled by such dynamic
tectonism, these extensive fractured clusters have been identified as the main pathways
through which fluid flows and circulation in the granitic basement is promoted (Evans,
2005; Kohl et al., 1995a; Lampe and Person, 2000).

Major pathways of fluid flow in the Soultz reservoir at have been identified to be
through hydrothermally altered granite, localised around fracture zones. (Dezayes
et al., 1995; Genter et al., 1996; Ledésert et al., 1999; Schleicher et al., 2006). Fluid
circulation in these fracture zones have resulted in strong dissolution of primary minerals
and precipitation/deposition of some altered minerals (Genter et al., 2010). Surprisingly,
the most efficient fractures are characterised by a wide halo of alteration on either side
of the fracture, even though poor connectivity exists between such fractures (Ledésert
et al., 1993). The core of these fractures have been found to be filled with various
hydrothermal minerals, consisting predominantly quartz, carbonates, clay minerals, and
chlorite (Genter and Traineau, 1996).

6.6.2 Towards a THMC-Coupled Approach in Geothermal
Settings

The identification of key parameters which govern the chemical processes in a tightly
coupled system can be challenging. Lampe and Person (2000) suggest a fully-coupled
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THMC system where frequent reactivation of faults assists fluid flow, while the episodic
mineralisation along and within faults obstructs flow through the reservoir. This concept
is further investigated in this section. The use of a stability analysis such as the pseudo-
arclength continuation method presented in Chapter 3 can help determine the critical
value of key parameters once they are identified.

Shear heating and pore fluid pressurisation have been documented to be primary
mechanisms resulting in fault slip (e.g. Garagash, 2012; Garagash and Rudnicki, 2003;
Rice, 2006). Following this, in addition to the THM processes considered so far
in this study, the idea of a mechanical-chemical oscillator (Alevizos et al., 2014) is
proposed for the chemical process governing the fracture zone at 3492m. In this model,
a fluid-saturated, steadily creeping fault under shear experiences fluid-release reactions
triggered by the shear heating generated from the creeping faults. The theoretical
conditions which govern this model are the dehydration of minerals and an endothermic
chemical reaction, which could be found in realistic conditions at Soultz. At Soultz,
strong dissolution and precipitation of minerals have indeed been found around fracture
zones. Specifically, the fracture zone at 3492m depth contains precipitated clays
and has been found to have experienced shear deformation, from the presence of
illite and the evidence of cataclastic fragments, respectively (Evans, 2005; Genter and
Traineau, 1996). Many geochemical studies have been performed to investigate the main
chemical reactions occurring, and in particular the reaction K-feldspar + Al-clays
→ illite + quartz has been previously indicated as predominant in this particular
fracture zone (Ledésert et al., 1999) in order to apply this oscillatory model. The
presence of illite can be expected to contribute to lowering the frictional coefficient of the
fault, which could cause more slip on the fracture zone, which suggests an application of
the chemo-mechanical oscillator. Higher shear heating temperatures could result from
this slip, therefore triggering the K-feldspar + Al-clays → illite + quartz
reaction.

The model in (Alevizos et al., 2014) describes a system where the fault movement
and chemical reactions occur periodically due to the chemical and thermal feedback
loops. From the evidence of cataclastic sheared features, episodic fault reactivation
is proposed for the fracture zone located at 3492m depth. In such a model, the fault
is stationary for most of the time which results in ambient low permeability. During
its reactivation however, permeability could temporarily increase by several orders
of magnitude, and fluid is driven through the fault. The presence of illite suggests
a dissolution/precipitation reaction where more illite would contribute to more slip,
until the heat from the reaction is depleted and the fault enters a stationary regime.
Some of the compulsory conditions for the chemo-mechanical oscillator are deep,
tectonically active environments (e.g. subduction zones), and despite the publications on
the applications of this oscillator, none have been applied to such shallow environments.
As such, the investigation of this fault in Soultz could be challenging as the environment
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is too shallow for the phenomenon to be confidently identified, and would have subtle
signature should it be present. Although the use of a numerical stability analysis can
assist to identify the key driving processes, the full study of such chemical processes is
extremely complex and hence lies outside the scope of this thesis, but is proposed as
future work. This study could be extended to simulating and evaluating the behaviour of
the vertical fault network, to investigate if the temperature profile obtained from GPK2
is reproducible with a fully coupled THMC modelling approach. Such studies could
greatly contribute to the understanding of a time-dependent permeability structure of
the processes occurring at Soultz.
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Chapter 7

Conclusions and Future Outlook

This thesis demonstrates the impact of active faults in geothermal environments, specifi-
cally on of hydrothermal convection. The shear heating effect from a creeping fault’s
frictional resistance to movement is shown to play a significant role in changing the
conditions for the onset of hydrothermal convection. The mechanical deformation of
a creeping fault can be expressed as a heat source term in the temperature equation,
characterised by the Gruntfest number Gr (Equation 2.16), defined as the ratio of heat
generated from mechanical deformation to its thermal dissipation in the system. An ex-
ponential relationship is derived between Gr and the convection criterion (Equation 5.2),
even for inappreciable deformation rates which are sufficient to lower the permeabilities
at which convection is predicted to occur (Figure 5.2). This novel finding suggests that
convection could be occurring in reservoirs where creeping faults are present, where for
the same conditions the system would otherwise present a purely conductive pattern
without the presence of such faults.
In addition to lowering the critical permeability predicted for the occurrence of convec-
tion, shear heating also changes the steady state pattern of convection (Figures 5.5 and
5.6). The coupling of advective and diffusive processes can result in the localisation of
heat along the fault, which is particularly non-intuitive for a constant heat source. This
can lead to a non-symmetrical solution of paired convective cells, where the extents of
the convective upwelling shifts closer to the surface of the model at higher Gr values,
with temperatures at the fault even exceeding given boundary conditions (Figures 5.5d
and 5.6b). These results introduce a new possible interpretation for localised heat
sources found in geophysical data. Instead of the classical interpretation of a radioactive
heat source, such anomalies could be attributed to the coupled effects of creeping faults
in hydrothermally active convective systems. These findings could be extended to
investigate the competitive rates of heat generation, diffusion, and convective flow dom-
inating heat localisation. In addition, further studies could be performed to investigate
the behaviour of the pattern and onset of convection using more realistic geometries
and material properties, to better understand the driving parameters behind extremely
complex physical processes in realistic geothermal environments.
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Quantitative assessments of the conditions required for the onset of hydrothermal
convection were achieved using a numerical bifurcation analysis, with the implemen-
tation of a pseudo-arclength continuation method into a finite element geomechanics
simulator, REDBACK, as discussed in Chapter 3. In harnessing both a mathematically-
rigorous method and numerical capabilities of current simulators, the critical value
required for the onset of convection can be identified (see Chapter 4), additionally
tracing the evolution of the system from its diffusive to convective state. This method
alleviates the issue of traditional numerical sensitivity analyses which are unable to
accurately pinpoint the onset of convection, as a non-convecting transient simulation can
be inconclusive especially when the system is close to criticality. The stability curves in
Chapter 5 presented cases of perfect bifurcation which were in agreement with those
previously derived using analytical methods (e.g. Combarnous and Bories, 1975), and
furthermore showed a dependency on fluid compressibility where a pseudo-analytical
solution (Figure 4.3b) was obtained (see Section 4.2). This workflow highlights the
capability to identify the specific value of a critical parameter governing the instability
of a system, and can be applied to a variety of other systems of interest.
The behaviour of convection investigated in non-symmetrical geometries showed that
the onset of convection is not necessarily a single value, but is instead a transitional
zone in the case of imperfect bifurcations (Section 3.5). In such cases, three behaviours
were observed in the bifurcation curves with increasing amplitudes for non-symmetrical
geometry (Figure 3.9). Firstly, no definite value can be determined for the onset of
convection. Secondly, the curves diverge farther from the perfect bifurcation point
(obtained with symmetrical geometry), and lastly, the mathematical solution along
the supposedly diffusive branch is strictly Nu > 1.00 in such cases, as opposed to
Nu = 1.00 for symmetrical geometries. This suggests that the solution for the onset
of convection has to be arbitrarily defined through a visual analysis of the stability
curves (see Figure 3.10). Indeed, there is no clear-cut mathematical value for the onset
of convection in scenarios of non-symmetrical geometries, rather it is user-defined
where the accuracy of Nu can be preserved (reducing decimals to Nu = 1.00) at the
expense of lower permeability values (i.e. larger Le values), since the diffusive branch
asymptotically tends to Nu = 1.00. These results imply that the classical solution of
Rac = 4π2, for example, is not valid when applied to realistic geometries.

This theoretical study of creeping faults was extended to a realistic geothermal
setting at Soultz-sous-Forêts, where the influence of hydrothermal (TH) and hydro-
thermal-mechanical (THM) processes was investigated in the reservoir. In a conceptual
case study, a specific fracture zone was investigated to determine the driving factors of
convection occurring in the above reservoir (Chapter 6). Temperature profiles obtained
from well data indicate the presence of hydrothermal convection from extremely high
geothermal gradients (Figure 6.2), and the aim was to reconcile inferred numerical
values of permeabilities (in the order of 10−14m2) with those derived from hydraulic
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tests (10−16m2) while producing the same temperature profile. The realistic profile was
adequately matched (Figure 6.5) albeit with unrealistic fault widths. A permeability
analysis suggests extremely high permeability values for convection to be sustainable at
realistic fault widths (Table 6.7), which indicates that purely TH processes are insuffi-
cient to characterise the processes occurring in the reservoir. The inclusion of mechanics
into the model was expressed by the constant heat source of creeping faults (Gr), but
nevertheless could not reproduce the realistic temperature profile, falling short by 20◦C
in some areas (Figure 6.8). Despite Soultz being in an active graben (Evans, 2005), this
study indicates that shear heating is not the main driver in that reservoir. Finally, the
contribution of chemical processes is investigated through the potential presence of a
chemo-mechanical oscillator Alevizos et al. (2014), activated by fluid-release reactions
within faults in the reservoir. A time-dependent permeability structure is proposed,
which could be the driving mechanism at Soultz, where the heat generated from steadily
creeping faults trigger chemical reactions. The dissolution of minerals significantly
increases permeability for a limited time, which could explain the high permeabilities
needed for convection to be sustainable in the reservoir at geological timescales.

This thesis has unravelled new understandings regarding the impact of creeping
faults in geothermal reservoirs, the concept of the onset of convection, and also presented
a numerical framework capable of quantitatively investigating the key parameters
which govern instabilities in any given system. A preliminary case study of Soultz-
sous-Forêts using such a tool proposed a novel concept in characterising the driving
processes governing the reservoir. Such detailed understanding of complex THMC
processes can be utilised to optimise injection and extraction protocols for geothermal
energy production, and the methodology to tackle such questions now exists with
the development of the workflow described in this thesis. In the future these tools
can be used to provide insightful conclusions for currently poorly constrained field
applications.
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