

Curtin University

Pressure drop prediction in horizontal natural gas-solid flow based on empirical equations

Background

- 70% of reserve located in poorly consolidated reservoirs
- Presence of fine sands increases the pressure drop and pipeline erosion.
- Softwares availables such as Flow Manager[™], OLGA or CFD: very accurate, in particular CFD, and expensive

Focus of this study

- predict the overall pressure drop in presence of solids particles:
 - Horizontal natural gas pipelines
 - Dilute solid loadings $\Phi = \frac{m_p}{m_p} \le 0.1$
- Pressure drop ΔF

$$P = \Delta P_f + \Delta P_p$$

$$\Delta P = \frac{(\lambda_{\rm L} \rho_{\rm f} \ {\rm LU}_{\rm f}^2)}{2D} + \frac{4 f_{\rm p} \ {\rm U}_{\rm p}^2}{D^2} L$$

Pressure drop

$$\Delta P = \frac{(\lambda_{\rm L} \rho_{\rm f} \, {\rm LU}_{\rm f}^2)}{2D} + \frac{4 f_{\rm p} \, {\rm U}_{\rm p}^2}{D^2} L$$

- Knowns:
 - Operating conditions (P, T, gas composition, flowrate)
 - Sand characteristics (diameter $d_{\rm p},$ density $\rho_{\rm p}$ and solid loading)
 - Pipeline characteristics (D, $\epsilon_{\text{roughness}}$)
- Unknowns:
 - Gas density and viscosity
 - Gas and particles velocities

Pressure drop

$$\Delta P = \frac{(\lambda_{\rm L} \rho_{\rm f} \, {\rm LU}_{\rm f}^2)}{2D} + \frac{4f_{\rm p} \, {\rm U}_{\rm p}^2}{D^2} L$$

- Knowns:
 - Operating conditions (P, T, gas composition, flowrate): $\!\rho_{f}\!, \mu_{f}$
 - Sand characteristics (diameter d_p, density ρ_p and solid
 - loading) – Pipeline characteristics (D, ε_{roughness})
- Unknowns:
 - Gas density and viscosity
 - Gas and particles velocities

Empirical equations used here

• Friction factor from Hinkle (1952):

Klinzing, G. E., F. Rizk, R. Marcus and L. S. Leung (2010). Pneumatic Conveying of Solids A theoretical and practical approach, Springer

$$\mathbf{f}_{\mathrm{p}} = \frac{3}{8} \frac{\rho_{f}}{\rho_{p}} \frac{D}{d} \quad \mathbf{C}_{\mathrm{D}} \left(\frac{\mathbf{U}_{\mathrm{f}} - \mathbf{U}_{\mathrm{p}}}{U_{p}} \right)^{2}$$

• Slip velocity (Hinkle's equation modified by the Institut of Gas Technology):

e flow, 1987, 13, 433-442

$$\frac{\mathrm{U}_{\mathrm{p}}}{\mathrm{U}_{\mathrm{f}}} = 1-0.068 \mathrm{d}^{0.92} \rho_{\mathrm{p}}^{0.5} \rho_{\mathrm{f}}^{(.0.2)} \mathrm{D}^{(.0.54)}$$

Gas and particle velocities

• Slip velocity (Hinkle's equation modified by the Institut of Gas Technology):

$$\frac{\mathrm{U_p}}{\mathrm{U_f}} = 1-0.068 \mathrm{d}^{0.92} \rho_p^{0.5} \rho_f^{(.02)} \mathrm{D}^{(.054)}$$

flow rate of the suspension Q_{susp}:

$$Q_{susp} = A[\varepsilon_{vf} U_f + (1 - \varepsilon_{vf})U_p]$$

• Solid loading ratio: $\Phi = \frac{\rho_p Q_p}{\rho_f Q_f} = \frac{\rho_p}{\rho_f} \frac{U_p}{U_f} \frac{1 - \varepsilon_{vf}}{\varepsilon_{vf}}$

Friction factor $\lambda_{\!\scriptscriptstyle L}$ due to the gas

- Reynolds number Re
- Darcy friction factor λ_L : Buzzeli approximation of the White-Colebrook equation (0.13%):

$$\sqrt{\frac{1}{\lambda_L}} = \frac{A + 2\log_{10}\left(\frac{B}{\text{Re}}\right)}{1 + \frac{2.18}{B}}$$

with $A = \frac{0.774 \ln(\text{Re})}{1+1.32\sqrt{\frac{\varepsilon_{r}}{2}}}$

$$B = \frac{\varepsilon_{roughness}}{3.7D} \text{Re} + 2.51A$$

Friction factor due to sand particles

• Hinkle's empirical equation:
$$f_p = \frac{3}{8} \frac{\rho_f}{\rho_p} \frac{D}{d} C_D \left(\frac{U_f - U_p}{U_p} \right)^2$$

• Drag coefficient C_D:

$$C_{\rm D} = \frac{24}{\text{Re}_p} (1+0.15\text{Re}_p^{0.687}) + \frac{0.42}{1+4.25.10^4 \,\text{Re}_p^{-1.16}}$$

• Reynolds number for a particle: $\operatorname{Re}_{p} = \frac{\rho_{f} (U_{f} - U_{p}) d_{p}}{\mu_{f}}$

Application to a Nigerian gas field

- Operating conditions:
 - Pressure: 0.1 to 25 Mpa
 - Temperature: -20 to + 90°C
 - Gas composition: CH₄: 90.2%, C₂H₆: 6.9%, C₃H₈: 2.1% and C₄H₁₀: 0.8%.
- Critical pressure P_{pc}: 673.249 psia
- Critical temperature T_{pc}: 367.77 °R
- Gas density: maximum at 400 kg/m³ for conditions studied here

Chacykowski, M. (2009). "Sensitivity of pipeline gas flow model to the selection of the equation of state." Chemical Engineering Research and Design 87(12): 1596-1603 Ahmed, T. (2006). Reservoir Engineering Handbook, Guf Professional Publishing, Elsevier.

Overall pressure drop: case of a Nigerian gas field

• Influence of Pressure and temperature

• Similar effect of P and T on Pressure drop than on gas density

Application to a Nigerian gas field

· Gas velocity: increase with Q, and decrease with D

Conditions: $d_{\rho}{=}1~mm$, $\rho_{g}{=}~300~kg/m^{3},$ $\rho_{\rho}{=}~2400~kg/m^{3},$ $\Phi{=}~0.1$

Application to a Nigerian gas field

• Ratio of gas and particle velocities

$$\frac{\mathrm{U_p}}{\mathrm{U_f}} = 1-0.068 \mathrm{d}^{0.92} \rho_{\mathrm{p}}^{0.5} \ \rho_{\mathrm{f}}^{(.0.2)} \ \mathrm{D}^{(.0.54)}$$

Application to a Nigerian gas field

Saltation velocity

$$U_{salt} = \sqrt{gD} \sqrt{(1.1d+2.5)} \sqrt{\Phi 10^{(1.44d+1.96)}}$$

Difference gas velocity_saltation velocity

• With diameter starting from 48 in., flow rate insufficient

Overall pressure drop: case of a Nigerian gas field

• Flow rate

Below D=24 in. : very high pressure drop at high flow rate For a solid loading of 10%.

Overall pressure drop: case of a Nigerian gas field

· Sand loading and sand density

increase with sand loading, decrease with sand density

Overall pressure drop: case of a Nigerian gas field

· Sand loading and particle diameter

 Increase of pressure drop at low particle diameter reflects the effect of d on the drag coefficient C_D

Conclusions

- Analytical model based on empirical equations successfully developed here
- Model underlines where mitigation measures have to be taken when different conditions are met such as
 - high particle diameter and high pipeline diameter and high solid loadings
 - High flow rate with a potential presence of sand particles

Curtin University

Curtin University

Acknowledgements

- Dr Emmanuel Obanijesu
- Dr Milinkumar Shah
- Prof Moses Tade

Thank you !

Gas properties

- Knowing operating conditions of pressure and temperature, and the natural gas composition, determine:
 - critical pressure (p_c) and temperature (T_c)
 - pseudo reduced pressure (p_{pr}) and temperature (T_{pr})
 - Compressibility factor Z (Heidaryan-Moghasasi-Rahimi for initial value for the iteration method of Dranchuk-Abou-Kassem)
 - Gas density
 - Gas viscosity (Lee-Gonzalez-Eakin)
 - Reynolds number Re: need of gas velocity!

Model Validation

- Use of fortran 90 to build the model
- · Validation of each step using appropriate data from the litterature