
1 
 

Department of Electrical and Computer Engineering 

 

 

 

 

On-Line Optimal Charging Coordination of Plug-In Electric Vehicles in 

Smart Grid Environment  

 

 

 

Somayeh Hajforoosh 

 

 

 

This Thesis is presented for the Degree of 

Doctor of Philosophy 

of 

Curtin University 

 

 

 

 

 

 

 

March 2019 

 

 

 



2 
 

DECLARATIONS 

 

 

According to my research and knowledge, there is no content previously published, in any format 

by anyone, except where references have been provided. 

There is no material in this thesis, which has been approved, for an award of a degree or certificate 

anywhere. 

 

Signature: Somayeh Hajforoosh 

Date: 15/11/2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

ABSTRACT 

 

Alternative pollution-free transportation technologies, including Plug-in Electric Vehicles (PEVs), 

their applications and performance in emerging smart grids, are becoming more popular. However, 

these relatively new electrical loads, with random plug-in time, location and charging rates, could 

have detrimental impacts on overloading of transformer and congestion in transmission lines.  

In this proposed solution to PEV charging coordination and considering the importance of 

customer satisfaction, some vehicle owners can submit requested plug-out times, along with an 

associated requested State Of Charges (SOCReq). Meeting these requirements is not a big problem 

when all of the vehicles plug-out, at their requested departure times. However, when unscheduled 

PEV departures occur, conventional schemes may not be able to provide acceptable levels of 

satisfaction amongst users. This problem can be resolved by using variable charging rates, as a 

strategy to adapt the power drawn by a charger from the grid to a load, in order to fully exploit 

grid capability and provide a high degree of user satisfaction. 

In the research conducted, an Online Coordinated Charging Genetic Algorithm (OL-CC-GA), 

using fixed charging in smart grid (SG) has been applied. The proposed method can also perform 

delayed (e.g., partial-overnight or full-overnight) vehicle charging, by reducing the distribution 

transformer loading, with uncoordinated and coordinated PEV charging activities. 

The Discrete Particle Swarm Optimization (DPSO) for PEV charging coordination, that considers 

residential distribution transformer life, has also been designed, coded and implemented.  

In addition, two more individual algorithms, referred to as the Fuzzy Genetic Algorithm (FGA) 

and Fuzzy Discrete Particle Swarm Optimisation (FDPSO), have been implemented, to reduce the 

costs related to the system losses and generated energy. The delivered power to PEVs, is also 
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maximised in the optimisation process, taking into account, the loading limits of the distribution 

transformer, the voltage boundaries, the State Of Charges (SOCs) for each battery at the start time 

(initial SOC) and the final SOC. 

Furthermore, this research proposes a new objective function, for the optimal on-line PEV 

charging coordination, taking into consideration the variable charge rates, generation costs and 

customer preferences.  A newly enhanced on-line, coordinated method of charging, using 

Coordinated Aggregated Particle Swarm Optimisation (OLCC-CAPSO), has been utilized to reach 

the PEV charging coordination objective within the associated constraints. The objective function 

provides an opportunity for all PEVs to start charging as quickly as possible, whilst the customer 

satisfaction function is optimised, subject to network criteria, including voltage profiles, generator 

and distribution transformer ratings. 

In this research, two different test systems, including 19-node (one of the branches of the second 

test system) and 449-node test systems, were used to examine the proposed algorithms, where the 

449-node test system, is based on a standard 23 kV IEEE 31-node distribution test system. This 

test system is a combination of 22×19 residential low voltage 415 V networks, which is dedicated 

to PEVs. 
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NOTATION 

       

       
Index: 

 i,j                 Counters 

m                     Node number 

n                      Total number of nodes 

Parameters: 

 

 

 

 

 

 

iT  Set of particles j with better achievements than the set of particles i 

 iP  Best position of the set of particle i 

 
)t(S),t(S ji
 Positions of the sets of particles i and j 

Nr  Selected number of the search intervals  

 
)S(f i
 The achievement of particle-i  

 )S(f j
 The better achievement by particle-j 

max_Nit  The maximum number of iterations 

 
Nit  The current number of iterations 

 minmax W,W  The upper and lower limits of the inertia weighting factor 

 
)i(SOCinitial
 State of charge of the ith PEV at plug-in time (%) 

 

 

 

 

 

 

)i(SOC qRe
 Requested SOC of the ith PEV (%)            

)t(N kPEV   Number of available PEVs for current time slot 

)i(T qRe
 Plug-out time of the ith PEV (hour) 

)i,t(Bid k        The price that the ith PEV owner is willing to pay at current time slot ($/kWh) 

)  
)t(Bid kmax   Maximum offered bid by all existing PEVs at current time slot ($/kWh)   

1m,mR 
 Resistance of the line segment between nodes m and m+1 (ohm) 

1m,mY 
 Admittance of the line segment between nodes m and m+1 (ohm) 

i,ocV  Open circuit voltage for ith node (V)    

iR  Battery equivalent internal resistance for the ith node (ohm)     

Rated

iI  Rated charger current for the ith PEV (A) 

iQ  Rated battery ampere hour for the ith PEV (Ah) 

max

iCR  Maximum charging rate for the ith PEV (A)  

))t(CR( k

best

ich     Charger efficiency for the ith PEV at the best charge-rate (%) 

minV and 
maxV  Lower and upper node voltage limits (per unit; p.u.) 

)t(D kmax   Maximum demand level that would normally occur without any PEVs during a day where selected 

to be 0.84 MW corresponding to the maximum load for the selected DLC (MW)  

C  Ratio of charging or discharging current in A to the capacity of battery in Ah 

jL  Trip path for jth PEV (km) 

max

iL                Rated length path that each type of PEVs can trip (km) 
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V1D , and 
V2  Coefficients used to adjust the slopes of the penalty functions 

321 k ,k ,k  

 

 

 

Coefficients used to adjust the objective function based on the priority 

 

 

 

 

 

 

 

 

 

 

 

 

 

i) ,tSOC( k  State of charge of the ith PEV at kth time slot (%)  

 
)tDt( k  Total load at current time slot (MW) 

)tDL( k  Daily load at current time slot (MW) 

axmSOC  The state of charge of each battery 

)t(P kLoad   Base-load power at current time slot (MW) 

a  The ambient temperature in [0C] 

rg  The gradient of the average winding temperature to average oil temperature at full load current 

  

Variables:  

)t(F kV            Penalty function for node voltage at current time slot 

)t(F kD   Penalty function for demand (distribution transformer loading) at current time slot 

 

 

i) ,t(T kRemain     The remaining available time for charging the ith  PEV at current time slot (hour) 

 

 

 

i) ,t(C kS   Customer satisfaction level for current time slot at ith node (%) 

i) ,t(C
1kS 

  Customer satisfaction level for next time slot at ith node (%)       

iV  Terminal voltage for ith node (per unit; p.u.)   

i) ,tI( k  Charging current for the ith PEV at current time slot (A) 

)t(CR k

best

i   Optimised charging rate for the ith PEV at current time slot (A) 

)t(P kiPEV,   Consumed power for the ith PEV (KW) 

 
)t(F kloss-cost       Total cost of system losses 

 

 

)t(F kgen-cost       Cost of generation 

)t(w ki   The weighting factor 

it

jpt,X  The position of the particle pt in the current generation for each generation 

1it

jpt,

  A random number between 0 and 1 for each generation 

j,ptpbest  The best point found by particle pt in its past life up to the current generation 

jgbest  The best overall point found by the swarm of particles in their past life 

it

jpt,V  The agent’s choice tendency 

RP  The total loss at rated load in [W] for each generation 

r,o  The top-oil temperature rise at rated load in [K] for each generation 

o  The top-oil temperature rise in [K] for each generation 

AAF  The transformer aging acceleration 

EQAF  The transformer equivalent aging 

21 rand,rand  The positive random numbers generated from a uniform distribution 

 

upper limit 

 

                                                                            



9 
 

ACRONYMS 

ADC Analogue to Digital Converter 

CAPSO Coordinated Aggregated Particle  Swarm Optimization 

DLC Daily load Curve 

DPSO Discrete Particle Swarm Optimization 

EV Electric Vehicle 

FCC Fixed Charge-rate Coordination 

FDPSO Fuzzy Discrete Particle Swarm Optimization 

FES Fuzzy Expert System 

FGA Fuzzy Genetic Algorithm 

GA Genetic Algorithm 

HST Hot Spot Temperature 

LOL Loss of Life 

LP Linear Programming 

LV Low Voltage 

MEP Market Energy Price 

MSS Maximum Sensitivity Selection 

OLCC Online Charging Coordination 

OL-CC-GA Online Charging Coordination - Genetic Algorithm 

PEV Plug-in Electric vehicle 

PHEV Plug-in Hybrid Electric Vehicle 

PSO Particle Swarm Optimization 

SG Smart Grid 

SOC State of Charge 

V2G Vehicle to Grid 

VCC Variable Charge-rate Coordination 
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CHAPTER ONE 

INTRODUCTION 

 

1.1.  Motivations and aims 

Plug-in Electric Vehicles (PEVs) are growing rapidly in popularity and interest. The PEVs’ 

Batteries should be charged using different methods [1-6]. Those PEVs that are connected to a 

home or car park outlet will have charged their battery by power from the grid. If there is an extra 

load, there may be impacts on the distribution system, including overloading, transformer current 

limits and power losses. If PEV charging remains uncoordinated, then local grid problems may 

occur [7-11]. In this case, the best way to decrease the influence of uncoordinated PEVs charging 

on a smart grid would be optimal charging. 

Here, some studies have been done on PEVs charging coordination [12-13]. If there is high PEV 

penetration, charging their batteries should be postponed to off-peak hours, so as to overcome the 

limits of the available generation capacity [13]. 

There are also other studies that have investigated the impact of PEVs on a grid.  In [14], an 

algorithm was proposed to solve the load flow calculations to examine the impact of Electric 

Vehicles (EVs) on the distribution system. The impact of high penetration PEVs, on a grid, was 

improved in Ref [15].  However, the energy prices were not dynamic, and there was no smart 

strategy. In [16], EV integration into the system and its impact on the electricity market was 

studied, but the transformer rating and variable charge of PEVs were not considered.  

In general, the choice of an optimisation algorithm depends on a variety of factors, such as, the 

required solution quality, the computing time and the selection of the objective functions, or the 

problem’s constraints. Several conventional optimization methods were used in different studies 
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to solve the PEV charging coordination problem including Linear Programming (LP), and 

Dynamic Programming (DP) [17-18]. However, if the problem becomes large, Linear 

Programming algorithm, cannot address the problem in a reasonable amount of time given the 

volume of computation.  

Additionally, when traditional optimization methods are employed to deal with complicated 

optimization problems, computational complexities become an issue. 

In recent decades, intelligent algorithms such as Genetic Algorithms (GAs) and Particle Swarm 

Optimization (PSO) have been applied to address complex, real-world power system optimization 

problems, which involves a large number of possible solutions [19-20].  

Many of these methods are based on a group of solutions categorized as population-based methods. 

Due to its higher efficiency and easier implementation, PSO is adopted for most applications.  

In this thesis, due to the discrete nature of the PEV charging coordination problem, the Discrete 

Particle Swarm Optimisation (DPSO) was implemented. To improve it further, the Coordinated 

Aggregated Particle Swarm Optimization (CAPSO) was applied to reduce the computation time 

burden, and improve efficiency. 

In this case, PEV penetration and the resulting impact on the electricity market, utilizing a time-

of-use scheme, are presented in Ref [21]. The used price was not dynamic and did not follow the 

real time price schedule. The load demand in relation to the EV battery charging, is modelled in 

Ref [22], however, the SOCReq, battery modelling, charger size and variable charging, are not 

considered. Refs [23]-[25] evaluates how the integration of PHEVs/PEVs, impact a grid, using 

different charging scenarios. Ref [26] investigates the impact of EV, on the power system. 

Moreover, a series of electric vehicle loads are used to investigate the energy usage in [27]. 
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In order to increase customer satisfaction, different objective functions can be formulated. It can 

be observed that the customer benefits are increased when considering the demand side 

management [28], [29].  Refs [30] and [31] use a specific formula to maximise the State of Charge 

(SOC), for all PEVs. However, neither customer interest, nor the power grid, is referred to.  Ref 

[32] presents a multiagent-based solution for high EV penetration in power systems. In [33], 

however, the variable charge of the battery, battery modelling and the requested SOC, are not 

studied. In [34] the objective is benefit maximisation for all customers. 

The main purpose of this thesis is to investigate the optimal charging coordination of PEVs within 

the Smart Grid (SG). The ultimate goal is to maximise customer satisfaction while reducing total 

power loss and voltage fluctuation, on on-line bases considering the variable charging profile. The 

proposed approaches are as follows: 

Step 1- Employs two online heuristic and dynamic algorithms based on fuzzy genetic algorithm 

(FGA) and Fuzzy Discrete PSO (FDPSO) to coordinate charging of PEVs. The costs for the 

generated energy and the grid losses are minimised whilst the power transferred to the PEVs is 

maximised, subject to the distribution transformer loading, voltage boundaries and SOCs for each 

battery, at the start time (plug-in time) and the requested final SOC. 

Step 2- Implements an online coordinated charging genetic algorithm (OL-CC-GA) using the PEV 

fixed charging in the SG, which can also perform delayed (e.g., partial-overnight or full-overnight) 

vehicle charging, by reducing the distribution transformer loading, with the uncoordinated and 

coordinated PEV charging activities. 

Step 3- Designs, codes, and implements a DPSO for PEV charging coordination, taking residential 

distribution transformer life into consideration.  
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Step 4- Uses Coordinated Aggregated Particle Swarm Optimisation (CAPSO) to obtain the optimal 

variable scheduling of the charge rate for PEVs to satisfy the PEV owners’ preferences. 

 

1.2.  Objectives 

This research aims to implement a new OLCC-CAPSO algorithm to coordinate large PEV 

populations, taking into consideration variable vehicle charging rates to minimise the cost of 

generating electricity, whilst maximising customer preference. There are three different steps to 

achieve the objectives of this thesis:  

Step 1. Proposing an on-line, fast and reliable coordinated charging of particle swarm optimisation 

algorithm to reach a near optimal result for PEV scheduling within residential networks. 

Step 2. Performing variable charge rates and time-varying energy prices for PEVs to satisfy both 

consumers (PEV owners) preferences and the regulation of voltage profiles at all buses. It is used 

based on the designated upper and lower limits of node voltages, including current residential 

transformer limits. 

Step 3. Developing and undertaking PSO, DPSO, FGA and advanced online PSO (CAPSO) based 

maximisation of customer preferences, in smart grids populated with PEVs, whilst minimising the 

cost of generating energy, on a number of IEEE test networks. 

 

1.3.Contributions 

This research proposes a new OLCC-CAPSO algorithm to manage multiple PEV charging 

activities, within smart grids, taking into consideration the variable charging capabilities of PEVs. 

That may impact the grid voltage profile, power losses and the distributed transformers 

overloading levels, whilst, at the same time, reducing system stresses and increasing customer 
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satisfaction. The proposed algorithm starts PEV charging as soon as the vehicles are plugged-in, 

based on an on-line PSO (e.g., every 5 minutes) to maximise total system consumer satisfaction 

functions and enhance the voltage profile, whilst considering the variable charging capability and 

opportunity for the PEV owners. The 449-node test system will be simulated, to show the 

improvement gained by using OLCC-CAPSO. The outcomes of the simulations, such as the 

system power consumption, voltage profiles for the weakest node in the system at each interval, 

total system losses and customer satisfaction functions are presented. These findings will be 

compared and analysed for both uncoordinated and coordinated charging schemes, with 16, 32, 47 

and 63 percentage of PEV penetration. The main contributions to this research are: 

 On-line coordination of PEVs in the residential system with a random plug-in of 

vehicles. 

  Consideration of variable charge rates for PEVs to satisfy consumer (PEV owners) 

preferences. 

 PSO, GA and advanced PSO (CAPSO) based maximisation of customer preference in 

smart grids populated with PEVs, whilst minimising the cost of generating the energy 

required. 

 Regulation of voltage profiles at all buses based on designated upper and lower limits. 

 Consideration of current residential transformer current limits in the PEV charging 

coordination problem. 

 Consideration of the thermal impacts of using PEVs in a smart grid, distribution 

transformer loss of life and its acceleration aging. 

 Design and coding of OL-CC-GA for online and delayed (full-overnight and partial 

overnight) PEV charging for a 19-node test feeder. 
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  Design and coding of CAPSO, using a variable battery charge rate, applying the 

chargers’ efficiency factor, modeling the PEV’s batteries and satisfaction of customers. 

The CAPSO is used according to the requested plug-out time intervals, to the requested 

final SOC, to their willingness to be charged and pay more for the energy, and driving 

patterns. 

 

1.4. Thesis Organization 

The research carried out is presented in the following chapters: 

Chapter 2: On-Line, Full over-night and Partial over-night PEV charging Coordination 

This chapter shows an online coordinated charging strategy for PEV using genetic algorithm. 

This strategy considers partial-overnight and full-overnight charging to reduce distribution 

system overloading. The proposed coordinated charging strategy has been tested on a 19 node test 

feeders with a number of PEV units. 

 

Chapter 3: Hybrid Fuzzy Genetic and Particle Swarm Optimization for PEVs charging 

coordination in the smart grid 

This chapter proposes two heuristic based optimization techniques for optimising online charging 

of PEV units. The proposed techniques maximise the transferred energy while minimising the 

associated cost and total losses in the system. The techniques are tested on 449-node test system. 

The results are compared with other methods presented in literature. 

 

Chapter 4: PEVs Battery Fixed and Variable Charging Scheduling in the Smart Grid using 

Coordinated Aggregated Particle Swarm Optimization, considering Customer Satisfaction 
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Chapter 4 develops a dynamic online optimization algorithm to achieve an optimal variable 

charging of PEV units for a given time-slot. The algorithm is based on aggregated Particle Swarm 

Optimization which achieve the highest customer satisfaction considering customer preferences 

(e.g. disconnection time, desired state of charge). 

 

Chapter 5: Summary and Conclusions  

Chapter 5 concludes the research by highlighting major findings from this research. Major 

contributions and plenty of directions for future research in this subject are also covered in this 

chapter. 
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CHAPTER TWO  

ON-LINE, FULL OVER-NIGHT AND PARTIAL OVER-NIGHT  

PEV CHARGING COORDINATION  

 

Uncoordinated PEV charging has a significant impact on the power system. When charging is 

uncoordinated, huge amounts of power will be consumed if a large number of PEVs are connected 

to the grid at the same time. This, in turn, may cause power losses and overloading, especially 

during peak hours. PEV charging coordination and transformer capacity should therefore be 

upgraded [11, 35]. 

 The scheduling of PEV charging can be divided into different groups. The first is the offline 

pattern for PEV charging coordination, if there is some data available about the future charging 

demand of PEVs.  For online charging, there is no data about future charging demand. However, 

the advantage of an online mechanism for PEV charging coordination is that it can be made ready 

for unpredictable charging demand. 

 

2.1. Different Patterns of Charge for PEVs 

Charging large PEV fleets will require additional electric power that may lead to undesirable peaks 

in power consumption, transformer overloading and interruptions. A potential solution is to use 

appropriate PEV charging coordination strategies [35-38], [39]. 

The impact which PEVs has on power system losses is investigated in Ref [11], with the use of 

load modelling. The impact of uncoordinated PEVs charging, on power consumption, is 

investigated in [39]. In [40], probability density functions are used to identify the PEV charging 

load. In [41], the queuing theory has been applied to model the charging of PEVs, where Ref [42] 
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considered the uncertainties of charging the PEVs and used the Monte Carlo method to model the 

charging. Ref [43], introduced a smart charging pattern, in order to minimise the total charging 

cost of PEVs, the total energy consumed and the losses. Similar to Ref [42], an approach based on 

the Monte Carlo simulation, was used to evaluate a stochastic modelling of PEVs and their impact 

on the Dutch distribution system. There are various other studies that have introduced smart 

methods to charge PEVs, including Refs [44-47]. Ref [48] used deterministic and stochastic 

studies, to compare the impacts of added loads, due to PEVs within the distribution networks. 

Another formulation-based stochastic modelling was studied in Ref [49]. In Ref [50], the demand 

charging level has been predicted for future years, taking into account, the different levels of 

penetration and the types of PEVs. In Ref [51], a cost minimising strategy is proposed, but does 

not consider the issue of fairness in the charging of all PEVs. A multi-agent system is proposed in 

Ref [52], to undertake the PEV charging coordination, using a distributed control algorithm. Ref 

[53], also implemented a fuzzy method, to solve the multi-objective problem and Ref [54], used 

the population-based metaheuristic approach to solve the optimisation problems. Another study, 

Ref [55], also demonstrates that optimising the charging schedule can decrease the number of grid 

voltage drops and power losses as well as optimising the load profiles. 

There are some offline and online charging methods for the charging of PEVs that are based on 

the current information relating to the future of these vehicles, including the plug-in times and the 

battery SOCs, utilized to decide charging plans. For instance, in Ref [56], it is assumed that all 

PEVs must communicate their charging timetables to the charging station one day ahead. This 

coordination approach is not always practical, as it depends on the accuracy and the availability of 

the predicted PEV information. Furthermore, in many cases, the charging profile will reveal a time 

that the PEV can connect to the home/car-park outlet.  
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Ref [37] implements real-time PEV coordinated charging, within the residential distribution 

systems to reduce the costs of power generation and power losses. Ref [38] presents real-time PEV 

charging/discharging coordination, without considering customer preferences and variable charge 

rates. Ref [57] presents real-time charging coordination of PEVs, that is based on the hybrid fuzzy 

discrete Particle Swarm Optimisation (PSO).  In Ref [59] a real-time scheduling method of PEV 

charging loads is proposed as a way to increase the voltage security margin within an LV 

distribution system. 

There are also some studies conducted into the establishment of a fixed rate for PEV charging.  

Ref [59], implements an algorithm that considers owners bidding to charge their vehicles. 

However, all PEVs have a fixed charge rate, which is not usually the case for practical applications, 

as vehicles have different battery and charger types as well as ratings. Ref [60] presents the online 

coordination of PEV charging and the discharging methods based on the assumption that PEVs 

will not arrive when the charging schedule is closed.  Ref [32] analyses the performance of optimal 

PEV charging coordination including customer satisfaction. However, it does not consider the 

variable charge rates. Refs [61-62] focus on maximising the aggregator revenue without carefully 

addressing the customers’ preferences and thus may not necessarily lead to a maximum benefit for 

customers. Alonso et al. [63] used GA during on-peak hours to fill the valleys. In addition, Nguyen 

and Le [64] present an optimisation problem that aims to minimize the total cost of energy of each 

PEV user. Another method to decrease the impact of uncontrolled PEV charging is presented in 

Ref [68]. However, Ref [58-59, 63-64] does not include variable charging rates and ignore battery 

and charger efficiencies. Ref [65] assumes that electric vehicle drivers are insensitive to charging 

costs and discharging benefits. In addition, Ref [66] presents the integration of wind power and 

PEV charging.  
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In fact, the consideration of fixed charge rates for all PEVs is not usually the case for practical 

applications as vehicles have different battery and charger types as well as ratings. In addition, 

when the charging coordination takes customer’s satisfaction into consideration, some vehicles 

can request plug-out times and an associated state of charge (SOCReq). Meeting these requirements 

is not a big problem when all of the vehicles plug out at their requested departure times. However, 

when unexpected PEV departures occur, conventional schemes such as those proposed in Ref. [37-

38, 59-60], may not be able to provide acceptable levels of fairness amongst users. Moreover, there 

will be cases in which some vehicles may not get the full charge requested by the time of their 

departure. This problem can be resolved by using variable charging rates as a strategy to adapt the 

power drawn by the charger from the grid to the load, in order to fully exploit grid capability, and 

provide a high degree of user satisfaction. 

This chapter presents a heuristic-based Online Coordinated Charging Genetic Algorithm (OL-CC-

GA). The algorithm used for charging PEV batteries in the SG, which minimises the cost related 

to the energy generated and minimises the grid losses. It is also increasing the number of charged 

PEVs, regulating the node voltages and reducing the load of the distribution transformer. OL-CC-

GA also takes into consideration any changes to the distribution transformer loading for online 

and delayed (e.g., full-overnight and partial-overnight) PEV charging. Simulations are performed 

for a 19-node test feeder that is populated with PEVS using OL-CC-GA. This is then compared 

with uncoordinated and delayed charging strategies. 

 

2.2. PEV State of Charge (SOC) and battery capacity 
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The percentage of the available capacity of the vehicle battery is described as SOC in Ref [64] 

where it can be forecast in regard to the number and length of the PEV trips. In Ref [67-68] the 

range of battery SOC is identified as ranging between 20% and 90%.   

In different studies, the PEVs’ battery capacities have been considered in the range of 8kWh to 

16kWh. In details, the PEV battery capacities are 8kWh [106], 8.2 kWh [105], 11kWh [11] and 

16kWh in [71]. 

 

2.3. Vehicle Arrival Time 

The usual PEV charging time is a function of the energy cost in ¢/kWh [72], and it is from 21:00h 

to 07:00h, as owners are expected to park their vehicles at home during those hours. In Ref [73], 

the owners prefer to charge their vehicles during the night and their charging time will start from 

16:00h to 04:00h, while the charging peaks will be at 21:00h.  

In Ref [74], two different start times are considered for the PEV charging. The starting time for 

PEVs is also formulated using a normal probability distribution function (PDF) with a mean 

starting time of 18:00h and with a standard deviation of one hour. 

In this study, it is assumed that the vehicle arrival time is from 16:00h to 23:00h. 

 

2.4. Charging Profile 

PEVs can be connected/disconnected at any time according to the customer’s needs, and customers 

can input their preferred plug-out times and requested final SOC at the time of plug-in. PEV 

owners are also prepared to pay a higher energy price, than the short term market energy price 

(MEP, Fig.2.1) for their requested charging arrangements. Each hour is divided into 12 time slots 

of Δt=5 minutes.  
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In this study, different PEVs’ penetration levels are used, to show the ratio between the number of 

PEVs and the low-voltage residential nodes. 
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Fig. 2.1.  System characteristics: daily residential load curve (DLC) and short term market energy price 

(MEP) [37]         

 

 

2.5. Heuristic Algorithm to Solve Optimisation Problem 

 

2.5.1. Initial Population and Fitness Function 

In this chapter, if the PEV is being charged, then its status will be ‘1’, if not it is ‘0’, which shows 

that the charging has either not been started, or has already finished. Fig. 2.2(c) shows the proposed 

structure of the GA chromosome. 

 

2.5.2. GA Fitness Function  

The inverse algebraic product (Eq. 2.1) of the proposed penalty functions for voltage (Eqs. 2.2-

2.3) and demand (Eq. 2.4) is used as the fitness function to combine the PEV charging coordination 

objective function (Eq. 2.5) and constraints (Eqs. 2.6-2.7).  
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where FV(t), FD(t) and FF(t) are the bus voltage penalty function, the demand (distribution 

transformer loading) penalty function and the objective function at time t, respectively; αV1, αV2 

and αD are the coefficients used to adjust the slopes of the penalty functions.  

The selected values for parameters αV1, αV2 and αD are 0.85, 0.8 and 0.75. 

The voltage and demand penalty functions are demonstrated in Figs. 2.2(a) and 2.2(b), 

respectively.  
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Fig. 2.2. Penalty functions to compute fitness (a)
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DF , and the proposed structure of the GA 

chromosome (c) [75] 
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2.6. Binary Genetic Algorithm Operators 

Genetic operators usually consist of three different parts, including crossover, mutation, and 

reproduction. In this chapter, these three parts will apply to the chromosomes in each stage of 

optimisation to produce a new enhanced population [76]. 

The mechanism used for reproduction in this study is a roulette wheel. In addition, there are some 

characters at the crossover points either left or right, and they will be swapped during the 

optimisation. A string position will be improved by changing 0 to 1 using a minor probability in 

the mutation section. 

 

2.7. Proposed GA at Each Time Slot (t) 

The proposed Online Coordinated Charging Genetic Algorithm (OL-CC-GA) for PEVs in SG 

consists of eight steps: 

Step 1: Enter all the parameters for the test system and the optimisation data. Read smart meters 

to check PEV entry time and location for newly connected PEVs.  

Step 2: Assume NCh_max and Nit_max. Establish required initial counters and set their values (e.g., 

NCh= Nit=1). Initialise the position and velocity vectors using a random generator. 

Step 3 (Fitness Evaluation Process): 

Step 3A: For each set of chromosomes, it is required to run a power flow and the objective function 

(Eq.2.5) should then be computed. 

Step 3B: Compute the proposed penalty functions (Eqs. 3.9-3.11). 

Step 3C: If Nch ≤ Nch-max, go to step 3A. 

Step 4 (Reproduction Process):  

Step 4A: Define total fitness as the product of all fitness values for all chromosomes. 
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Step 4B: Run a tournament for the selection process. Select a new combination of chromosomes. 

Step 5 (Crossover Process): 

Step 5A: Select a random number (R1) for mating two parent chromosomes. 

Step 5B: If R1 is less than the values of the crossover, then combine the two parents, generate two 

offspring and go to Step 5D. 

Step 5C: Otherwise, transfer the chromosome with no crossover. 

Step 5D: Repeat Steps 5A to 5D for all chromosomes. 

Step 6 (Mutation Process): 

Step 6A: Select a random number (R2) for the mutation of one chromosome. 

Step 6B: If R2 is less than the values of mutation, then apply the mutation process and go to Step 

6D. 

Step 6C: Otherwise, transfer the chromosome with no mutation. 

Step 6D: Repeat Steps 6A to 6C for all chromosomes. 

Step 7 (Updating Population): 

 Replace the old population with the improved population generated by Steps 2 to 6. Check all 

chromosomes. If there is any chromosome with FL=1, FG=1, FV=1, FD=1 and FF>Fmax, set Fmax 

= FF and save it. Set Nit=Nit+1. 

Step 8 (Stopping Decisive Factor):  

If the maximum number of iterations is achieved, then start PEV charging and go to the next time 

slot. 

 

2.8. Fitness Function 

Online coordination of PEV charging is a real-time optimisation problem that requires formulation 
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of a comprehensive objective function and a high-speed optimisation method to quickly capture 

the best solutions. In this chapter, the nonlinear objective function of Eq. 2.5 is defined for the 

PEV charging coordination problem to maximise the number of vehicles that are being charged 

(NPEV-ON) at each time slot ( min5t ), whilst also minimising the costs associated with energy 

generation (Fcost-gen(t)) and grid losses (Fcost-loss(t)) [37]: 

hours24..,t2,tt,
)t(DK)t(PK

)t(N1

)t(F)t(F

)t(N1
)t(F max

t totalG,tt lossE

ONPEV

losstcosgentcos

ONPEV



















                                                                       (2.5) 

where, 



 





 

1n

0k

2

1k,kk1k1k,kloss y)t(V)t(VR)t(P . 

Eq. 2.5 is subject to the following voltage and demand (transformer loading) constraints: 

n...,,1k  for  ,V)t(VV maxkmin                                                                                                  (2.6) 

,....2,

)()(()()( max

11

ttt

tDPtPtPtD
KK PEV

n

k

Load

n

k

ktotal



 


                                                                           (2.7) 

288,...,1

)}(),...,2(),({)(max





m

tmDLtDLtDLMaxtDwhere
 

In Eqs.2.5, min5t   is the time interval; KE=50$/MWh and Kt,G  are the costs per MWh of loss 

[37] and generation (Fig. 2.1) respectively; k and n are the node number and the total number of 

nodes; Rk,k+1 and yk,k+1 are the resistance and reactance of the line segment between nodes k and 

k+1, respectively;  Vmin  and Vmax are the lower and upper voltage limits, respectively; Dmax(t) is 

selected to be 0.84MW corresponding to the maximum load for the selected DLC.  PLoadk, is the 

base-load power, DL is the daily load at mth time slot, and PPEVk is the consumed power for the 

PEV at node k. The backward-forward sweep method is used to calculate load flows and bus 

voltages [77].  
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 The proposed OL-CC-GA is modified to allow for both online and delayed PEV charging 

coordination strategies: 

 Online Coordination — vehicles are charged as soon as possible as they are being plugged-

in. This will result in high customer satisfaction levels, at higher energy prices.  

 Delayed Full-Overnight Coordination — vehicle charging is delayed and performed during 

early morning hours to reduce the charging costs. This may result in less customer satisfaction as 

some PEVs may not be fully charged overnight for the next trip.  

 Delayed Partial-Overnight Coordination — Some PEVs (e.g. high priority vehicles) will 

get charged at the time of being plugged-in, while the rest will be postponed for overnight charging. 

 To allow for delayed PEV charging, the value of Dmax(t)  in Eq. 2.8 is modified. For delayed 

full-overnight charging Dmax (t) is a constant and is computed by trial and error; Dmax(t) =Dovrnight 

=31.1kW. For delayed partial-overnight charging, Dmax(t) is computed using the following linear 

equations [75]: 
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where the peak load for this test system is 43.73 kW. 

 

2.9. Simulation Results and Discussions 

The 19-bus 415V distribution test system of Fig. 2.3 populated with PEVs is used to evaluate the 

accuracy of the implemented algorithms (Figs. 2.4-2.5 and Table 2.1). 
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Fig. 2.3.  The 19-node 415V residential feeders with PEVs [75]. 

 

Case A. Uncoordinated PEV Charging 

The uncoordinated charging of PEVs causes increases in power usage, generated power, voltage 

violations and in total system losses. The results are shown in Figs. 2.4 (a-c) and Table 2.1. 

As expected, the network is facing overloading, voltage regulation and efficiency problems. As an 

example, for 100% PEV penetration, maximum power consumption and maximum system losses 

were recorded and the cost increased by about 89% (Fig. 2.4(a)), 247% (Fig. 2.4(c)) and 110% 

(Fig. 2.4(b)), respectively; compared to the nominal operation with no PEVs.  

 

Case B. Coordinated Online (OL-CC-GA) PEV Charging  

For further investigations into the performance and accuracy of uncoordinated charging, the online 

PEV charging coordination strategy, based on the GA is proposed. Simulation results are shown 

in Fig. 2.4 and Table 2.1 (rows 6-7). Compared to Case A, GA is offering a further reduction in 

transformer overloading (Fig. 2.4(a)), when the maximum generation cost level reduced from 

5.68$ (Fig.2.4 (b)) to 2.68$ (Fig. 2.4(b)). In addition, in this case, the maximum system losses and 

the total cost reduced from 3.27KW to 1.12KW, and 46.31$/day to 42.44$/day, respectively.  
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Case C. Coordinated Delayed Partial-Overnight PEV Charging  

The proposed OL-CC-GA is modified to allow for delayed partial-overnight PEV charging using 

Eq. 2.8. Simulation results are shown in Fig.2.5 and Table 2.1 (rows 8-9). The performance of 

partial-overnight PEV charging is different from the uncoordinated and online strategies. Total 

system losses are significantly reduced when compared to case B. However, there is a 10% voltage 

variation, and the total power consumption in the system is less than the allowable demand level. 

 

  
                                                                                                                       (a) 

 
                                                                                                                                (b) 
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                                                                                                                     (c) 

Fig. 2.4.  Simulation results for Cases A-B with 0% and 100% PEV penetrations: (a) system power 

consumption, (b) generation cost, (c) total system losses [75]. 

 

Table. 2.1. Impact of uncoordinated, online coordinated (OL-CC-GA) and delayed coordinated PEV charging, on the test 

feeder of Fig. 2.3. 

 

Case D. Coordinated Full-Overnight PEV Charging  

In this particular scenario, it is demonstrated that all PEVs will be queued, whilst the aggregators 

coordinate the overnight charging, resulting in all PEVs being fully charged by 08:00. To modify 

the OL-CC-GA for full-overnight PEV charging, Dmax(t) is a constant and its value is computed 

by trial and error to be Dovrnight = 31.1kW. 

The performance of full-overnight PEV charging is better than Cases A-C as the total system losses 

are significantly reduced and voltage fluctuations are still within the 10% limit. 

 
PEV 

[%] 

V* 

[%] 

I 

MAX** 

[%] 

Generation cost 

[$/day] Total cost  

[$/day] 

Increase in Total cost 

[%] 

Nominal Case: With no PEV (0% PEV  penetration) 

0 7.63 0 35.13 36.6 0 

Case A: Uncoordinated PEV Charging; Fig. 2.4 

100 16.10 89 46.31 49.75 26.53 

Case B: Online  PEV Charging (OL-CC-GA); Fig. 2.4 

100 9.89 0 42.44 44.93 15.95 

Case C: Partial-Overnight PEV Charging (Modified OL-CC-GA); Fig.2.5 

100 9.78 0 41.06 43.37 12.18 

Case D:  Full-Overnight PEV Charging (Modified OL-CC-GA); Fig. 2.5 

100 9.72 0 40.20 42.18 9.83 

*) Average voltage deviation over 24 hours (Eq. 2.2). 

**) Increase in transformer current compared with the nominal case. 
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                                                                                                                   (a) 

 

                                                                                                              (b) 

 

                                                                                                            (c) 

Fig. 2.5.  Simulation results for Cases C-D with 0% and 100% PEV penetration: (a) system power consumption, 

(b) generation cost, (c) total system losses [75]. 
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2.10. Summary 

 An Online Coordinated Charging Genetic Algorithm (OL-CC-GA) for PEVs in the SG was 

created so that it can also perform delayed (e.g., partial-overnight or full-overnight) vehicle 

charging by reducing the distribution transformer loading. Detailed simulation results for a 19-

node test feeder are presented and compared with uncoordinated, online, delayed partial-overnight 

and delayed full-overnight PEV charging. The main conclusions are: 

 The proposed OL-CC-GA schedules the charging activities of randomly arriving PEVs at 

each time slot, based on smart meter information using online cost minimisation. The modified 

OL-CC-GA takes advantage of this expert knowledge to vary the distribution transformer loading 

level (Dmax(t) in Eq. 2.7). It performs delayed PEV charging by postponing some vehicle charging 

such that the peak power consumption is shifted to the early morning hours to achieve further 

reductions in total costs. 

 In OL-CC-GA, the total system cost achieves maximum value in Cases B, C and D; 

however, all PEVs will be charged before 06:00. In addition, Case B has the maximum losses 

amongst the all of the coordinated cases, whilst the generation cost of Case D has the minimum 

losses, compared to the other cases. 

 In delayed partial-overnight PEV charging coordination, the generation cost is higher than 

Case D and lower than Case B. 
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CHAPTER THREE 

 

HYBRID FUZZY GENETIC AND PARTICLE SWARM OPTIMISATION FOR PEVS 

CHARGING COORDINATION IN A SMART GRID   

The interest of electric utilities and the public in a smart grid has increased in line with increasing 

concerns about the environment. If PEV charging is coordinated smartly, then this type of vehicle 

will be more beneficial and more cost-effective for the customer and for public utilities [78]. PEV 

charging in general can be categorised by centralised [11, 37, 44, 79-83] and/or decentralised 

coordination schemes [32, 84-87].  

Two dynamic centralised heuristic approaches that are based on hybrid FGA and FDPSO have 

been proposed to optimise the online charging of PEVs in a smart grid. The proposed algorithm 

maximises the transferred energy to the PEVs whilst also minimising the costs associated with the 

energy used and the total losses in the system.  This is while satisfying required voltage regulation 

for all nodes and reduce the load on the distribution transformer. 

 The simulation results of the test system (449-node) are illustrated and compared with MSS [16], 

GA, DPSO, FGA and FDPSO methods. 

 

3.1. Problem Formulation 

PEV charging coordination is a complex real-time and time-dependent problem. To achieve a 

speedy optimized solution, this chapter proposes a heuristic-based optimization technique with a 

comprehensive objective function.  

In this thesis, the charging status for the PEVs has been selected as the optimisation variable where 

it is assumed that charging rates are different and variable for each PEV. In details, a C-rate is a 

measurement of the rate, at which a battery is charged or discharged, relative to its maximum 
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capacity. A 1C rating means that the battery will fully charge/discharge in 1 hour. In this research, 

variable charging rates have been used, whereas for the fixed charging, it is the ratio of the power 

rating of the charger/the ampere-hour of the battery which is kW/kWh= 1/hour. 

In variable charging cases, it is assumed that the C is a variable between 0 to 2. 

It is also considered that within the charging process, that the charge rate for each PEV will stay 

constant. E.q. 3.1 presents a nonlinear objective function for the charging coordination of PEVs to 

maximise the total power delivered to PEVs, at each time interval (Δt=5 minutes), whilst the cost 

of the generation (Fcost-gen(t)) and total system losses (Fcost-loss(t)) are minimised. The objective 

function in Eq. 3.1 is subject to the power required for each time slot (Eq. 2.7), SOC constraints 

(Eq. 3.2) and voltage deviations to secure the quality of the supplied power for the base load and 

the PEV loads.  

 

 







 

 t t totalloss

N

i

gentlosst

DCP

tDtPtFtF

tF
tFMax

PEV

)(K)(K

t)(i,PowerChargingDelivered

)()(

)(
)(

t,GE

1

coscos

                                (3.1) 

for t=∆t, 2∆t,…24 hours where Kt,G and KE are generation (Fig. 2.1) and the costs per MWh of 

losses [83], respectively. 

Re max( , ) ( ) , 1,...,q PEVSOC i t SOC i SOC i N                                                                            (3.2) 

In this thesis, SOC (i,t) presents the SOC for the ith PEV at t, SOCReq(i) is the required SOC for the 

ith PEV, 
maxSOC is the state of charge of each battery and SOCinitial at plug-in time is based on the 

driving scheme for each PEV [88]:  

PEV

i

ij

i

j

iii
Njifor

otherwise

LL
L

L

tF .....,,1,3,2,1
)(

)(

max

max 













                          (3.3) 

Where, i indicates the type of PEVs, j is the number of PEVs, Lj is the length of trip path for jth 

PEV and 
max

iL is the rated length path for each PEV [88].  
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The PEV models used in this thesis were a Volkswagen e-golf (Type 1), a Honda Fit (Type 2) and 

a Ford C-Max (Type 3). The charger ratings were 7.2, 6.6, and 3.3 kW respectively, correspond to 

battery sizes of 24, 20, and 7.6 kWh [57]. The selected values for parameters α1, α2 and α3 are 0.85, 

0.8 and 0.75 miles; for β1, β2 and β3 are 0.15, 0.2 and 0.25miles; and for L1, L2 and L3 are 40, 50 

and 60 miles, respectively. 

The information required for each PEV, such as charger type, battery capacities, SOCinitial, SOCReq 

and the location of each PEV was provided using the smart meters and sent to the aggregator. The 

scheduling horizon started at 16:00 (arrival time for most of the PEVs) for the next 24 hours, and 

each day was divided into 288 time intervals (Δt=5 minutes).  

The backward/forward sweep power flow method was used to calculate the voltage and load flows 

[11]. It was assumed that the amount of generation was sufficient to provide energy for the base 

load and for charging the PEVs. In a case where an owner would charge the PEV without requiring 

the schedule, that PEV would be assumed to be part of the daily load base. 

 

3.2. Proposed PEV Charging Method 

Two different approaches based on fuzzy rules, namely DPSO and GA, were deployed in this 

thesis to optimise Eqs.3.1-3.2, 2.6-2.7; this was because most of the practical optimisation 

problems, such as PEV charging coordination, required a discrete optimisation solution [89]. 

 

3.2.1. DPSO Formulation 

The DPSO and PSO algorithms are very similar except for the state equations presented in 

(Eqs.3.4- 3.6). Personal and social coefficients are the bases for the probability function in making 

decision such as ‘yes’ or ‘no’, ‘true’ or ‘false’ [90]: 
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where ,

it

pt jX is the position of the particle pt in the current generation, 
,pt jpbest is the best point 

found by particle pt in its past life up to the current generation, 
jgbest is the best overall point found 

by the swarm of particles in their past life and ,

it

pt jV is the agent’s choice tendency. The sigmoid 

function that achieves this threshold is: 
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To formulate the DPSO, Eqs. 3.6(a) and 3.6(b) were used [91]: 
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                                                                           (3.6b) 

where 
1rand  and 

2rand  were positive random numbers generated from a uniform distribution [89-

90] with a predefined upper limit, while 
1

,

it

pt j 
 was a random number between 0 and 1.  

Eqs. 3.4-3.6 were used in an iterative procedure over each j dimension of each particle to arrive at 

a near-global solution. The maximum value of ,

it

pt jV was often limited to [-4, +4] to ensure that 

,( )it

pt jsig V  did not get too close to the interval limits [0, 1]. 

 

3.2.2 Structure of Particles and initial population in DPSO 

In this thesis, each particle includes the status of all PEVs where the digit ‘1’ indicates that the 

PEV has been plugged in and ‘0’ indicates that the PEV has not been plugged in or has already 

finished charging.  The structure of the initial population is identified as follows: 
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3.2.3 DPSO Fitness Function  

Fuzzy fitness functions were applied to the objective function and the constraints (Eqs. 3.1- 3.2, 

2-6-2.7) to achieve a greater cost reduction and enhance the quality of the results. To mix the PEV 

charging coordination objective function and the constraints, the inverse algebraic product of the 

penalty functions for overloading the distribution transformer and voltage deviation was used.  

)(tF was the objective function, )(tFV  was the penalty function for the voltage deviation at each 

bus and FD (t) was the penalty function for the overloading distribution transformer at each time 

interval. The inverse algebraic product (Eq. 3.8) of the proposed penalty functions for voltage 

(Eqs. 3.9-3.10) and demand (Eq. 3.11) was used as the fitness function to combine the PEV 

charging coordination objective function (Eq. 3.1) and constraints (Eqs. 3.2, 2.6-2.7): 
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Dfuzzy(t) was the calculated and adjusted the maximum demand level according to the fuzzy rules 
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and membership function in Figs. 3.1; αV1, αV2 and αD were the factors used to adjust the gradient 

of the penalty functions. 

3.2.4 Adjusting Maximum Level of Loading Using Fuzzy Expert System (FES) 

In this thesis, the fuzzy expert system was used to reduce the cost associated with generation cost 

Fcost-gen(t) (Eq. 3.1) to calculate the allowable demand level for each time slot. This fuzzy system 

was also used to determine the demand in the penalty function of Eq. 3.11. There are three levels 

in the proposed FES of Fig. 2.1, (low (L), medium (M) and high (H)) for the membership functions 

of DLC, MEP, time and the number of PEVs as input variables. In Fig 3.1 (a), the load is presented 

in per-unit, and the low level (LV) is considered to be from zero to 0.67pu of the maximum load 

in a day. While the load increases from the minimum to its maximum, the weight of the medium 

membership function increases from 0 to 1. The high membership function will impact on the 

decision engine when the load is at least 0.67pu.  

Similar to the DLC, three membership functions have been defined for the market energy price 

which is from ($2.4)/ (5-min) to ($6.5)/ (5-min) (Fig 3.1(b)). The average price is also $4.4 for 

each 5 minutes.  

The third sets of the membership functions are defined to illustrate the impact of remaining time 

to charge all PEVs (Fig 3.1(c)). According to this figure, from midnight till 8:00AM is defined as 

“High”, as the PEV owners may need their EVs by 8:00AM. This will provide the highest priority 

to charge all the remaining PEVs using the proposed optimization algorithm.  

The fourth membership function sets (Fig 3.1(d)) consider the impact of Npev on the proposed 

algorithm. When the number of plugged-in EVs are more than 140, all remaining EVs within the 

time frame regardless of the time and the energy price will have the highest priority to get charged.  
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A nine-level output membership function, including extreme low (XL), very low (VL), medium 

low (ML), high low (HL), medium (M), low high (LH), medium high (MH), very high (VH) and 

extreme high (XH), were used to adjust Dfuzzy(t) at each time slot (Figs. 3.1(a-e). Figs. 3.1(f-h) 

illustrate the fuzzy surface for the variation of Dfuzzy(t) according to the changes on DLC- Npev, 

DLC-time, and Npev-time respectively. The graph of (MEP-DLC) is shown in Fig 3.1(f). 

According to this figure, the allocated value for the Dfuzzy(t) is changing from 0.1 to 0.5. The 

Dfuzzy(t) is set to 0.5 where the DLC and the MEP are at their minimum to provide a higher 

chance to the aggregator to charge the PEVs. It can also be seen that the variation of the Dfuzzy(t) 

is linear with the variation of the DLC and MEP.  

According to the figures (3.1(f-h)), it is shown that the lower demand level is assigned to Dfuzzy(t) 

for the early evening hours when the market energy price and daily load curve are at their 

maximum. Furthermore, it can be seen that for the early morning hours to increase the chance of 

fully charging the PEVs, the demand level assigned to Dfuzzy(t) would be higher and would take 

advantage of lower MEP and DLC (Fig. 3.1(f)).                           

Based on Fig. 3.1(h), it is shown that the aggregator may require charging more PEVs, when the 

number of PEVs increases during peak hours to prevent the chance of overloading the distribution 

transformer later on. Depending on the outcomes of the fuzzy method proposed in this thesis, the 

total charging cost for a day (24 hours) would be reduced.   
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(c)                                            (d) 

 

(e) 

 

Fig. 3.1. Proposed FES membership functions for: (a)-(e) the three-level inputs DLC, MEP (Fig. 2.1), time and 

Npev, (e) the nine-level output of  Dfuzzy,  fuzzy surfaces for Dfuzzy(t) variations based on: (f) DLC and MEP, (g) 

DLC and time, (h) Number of PEV and time [57]. 
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3.2.5 Flow Chart of Proposed FDPSO Algorithm 

A flowchart of the proposed FDPSO based optimisation using the objective function given in 

Eqs.3.1-3.2, 2.6-2.7, 3.8-3.11 and Figs. 3.1, is also presented. Npop and Nit in this flowchart 

represents the PSO population size and the number of maximum required iterations, respectively. 

 

3.2.6 Proposed Hybrid Fuzzy Genetic Algorithm (FGA) 

According to Fig. 3.1, the hybrid FGA is used to show the quality and performance (speed) of the 

proposed online FDPSO. The two-point crossover and a uniform mutation were used in this thesis 

to generate the next generation [35].  In addition, a tournament-based selection method was applied 

to select the paths. The probabilities for crossover and mutation were 0.9 and 0.05 respectively. 

The flowchart in Fig. 3.2(b) details the proposed FGA for PEV charging coordination according 

to Eqs. 3.1-3.2, 2.6-2.7 and 3.8-3.11. 
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Fig. 3.2. Flow charts of the proposed algorithms for the online PEV charging coordination, (a) FDPSO, (b) FGA 
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3.3. The 449-Node Test System Smart Grid 

To evaluate the quality and performance of the proposed methods, including FDPSO and FGA, 

the test system shown in Fig. 3.3 was used. This test system was the modified IEEE 31 bus 23 kV 

with 22 LV residential feeders. Each feeder included a 19 node test system which represented the 

customer households. All of the detail, such as line data and load information for all residential 

feeders can be found in Ref. [37]. 
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Fig. 3.3. The 449-node smart grid consisting of IEEE 31-node 23kV system and 22 low voltage 19-node 415V 

residential feeders populated with PEVs [37]. 

 

3.4. Simulation Results without considering Transformer Thermal Limits 

Simulations were done on SG of Fig. 3.3 for the six test cases in Table 3.1 for each time slot, 

αV1=αV2=0, αD=0.5 (Eqs. 3.10-3.11) assuming different levels of PEV penetration. 
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Table.3.1. PEV charging scenarios for the SG system of Fig. 3.3. 

 

 

Case A: Uncoordinated PEV Charging 

This case was selected to illustrate the impact of charging PEVs at the time of plug-in. Fig. 3.4 and 

rows 4-10 in Table 3.2 summarise the simulation outcomes, such as the cost of generation, the 

total power consumed and the losses. To calculate the generation cost for each day, Eq. 3.12 was 

used. 

Daily generation cost= 
288

1

Cos ( )

m

Generation t m t



                                                                        (3.12) 

According to the results, the distribution transformer was overloaded, and the voltages were no 

longer within the acceptable range.  

 

Case B: Online MSS Based PEV Charging Algorithm  

To compare the quality and accuracy of the results of the proposed algorithms, a sensitivity-based 

method, as shown in Ref. [37], was used. This case shows that the PEV penetration level was 63% 

and SOCinitial and SOCfinal were 0% and 100% respectively.  

 

 

 

Case Online Charging Approach Simulations 

A Uncoordinated Figs. 3.4, 3.8, Table 3.2 

B MSS Coordinated [11] Table 3.2 

C DPSO Coordinated: (Fig. 3.2(a) without fuzzification) Figs. 3.5, 3.8, Table 3.2 

D FDPSO Coordinated (Fig. 3.2(a)) Figs. 3.6, 3.8, Table 3.2 

E 
GA Coordinated  

(Fig. 3.2(b) without fuzzification and replacing DPSO with GA) 
Table 3.2, Figs. 3.8 

F FGA Coordinated (Fig. 3.2(b)) Table 3.2, Figs. 3.7, 3.8 
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Fig. 3.4. Case A (Table 3.1): simulation results for SG of Fig. 3.3; (a) generation cost, (b) total system losses, 

(c) system power consumption [57]. 
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In this case, a discrete PSO algorithm without using the fuzzy system was implemented for PEV 

charging coordination. Fig. 3.5 and rows 14-18 in Table 3.2 present the simulation results of this 

case. In this scenario, it can be seen that the overloading in the proposed DPSO, resulted in further 

losses than Case A and B. Specifically, the cost of generation fell from 100$/MWh (Fig.3.4 (a)) to 

69.21$/MWh (Fig. 3.5(a))). The system losses also fell, from 0.67MW in Case A, to 0.034MW. 

In addition, there was a significant improvement in the cost reduction, when using DPSO when 

the peak loss period, shifted from 19:00h-22:00h to 24:00h-2:00h. 

 

Case D: FDPSO Coordinated PEV Charging  

In this case, the proposed fuzzy system was applied to the DPSO to reach a near global outcome 

with high performance of the system. Fig. 3.6 and rows 19-25 in Table 3.2 present these 

optimisation outcomes. It can be seen that the FDPSO prevented an overload of the distribution 

transformer more rigorously than in Case C.  The main reason for this prevention was that the 

fuzzy system adjusted (reduced) the allowable power transferred through the transformer. 

Specifically, for a 63% PEV penetration, the allowable power consumption level varied between 

0.67MW and 0.86MW, whereas in Case C it was 0.88MW throughout (Figs. 3.5(c) and 3.6(c)). 

It should be noted that Dfuzzy(t) was adjusted to higher values for early morning hours to make sure 

all the PEVs in the queue would be charged before 06:00. 

A comparison of Figs. 3.5 and 3.6 shows that the application of fuzzy rules offered more reduction 

in the maximum cost of generation from 69.21$/MWh to 63.18$/MWh. It can also be seen that the 

maximum total system losses dropped from 0.034MW to 0.032MW and the total daily generation 

costs reduced from 946.84$/MW to 917.55$/MW. 
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Fig. 3.5. Case C (Table 4.1): simulation results for SG of Fig. 3.3. (a) generation cost, (b) total system losses, 

(c) system power consumption [57]. 
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Cases E-F: GA and FGA Coordinated PEV Charging  

More investigation to justify the quality and accuracy of the FDPSO was done by implementing 

GA and FGA (Fig. 3.2(b)) instead of the PSO and the DPSO. These cases were tested on the same 

SG network. It can be seen that the results of these two optimisations were very close to those of 

Cases C and D, and they confirmed the accuracy of the DPSO results (Fig. 3.7 and Table 3.2, rows 

26-35). By comparison, the results of the PSO and GA optimisations demonstrate that DPSO and 

FDPSO are faster and more appropriate for the PEV charging coordination (Table 3.2, last 

column). The results for FDPSO and MSS charging coordination methods are compared in rows 

11-12 of Table 3.2. 
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Fig. 3.6. Case D (Table 3.1): simulation results for SG of Fig. 3.3: (a) generation cost, (b) total system losses, 

(c) system power consumption [57]. 
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Fig. 3.7. Case F (Table 3.1): simulation results for SG of Fig. 3.3: (a) generation cost, (b) total system losses, 

(c) system power consumption [57]. 
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Table 3.2.  Impact of (un)coordinated PEV charging on the SG of Fig. 3.3. 

Row 

No. 

PEV 

[%] 
V 

[%]* 

I MAX 

[%]** 

Total 

Generation  Cost 

[$/day] 

Average Generation 

Cost [$/MWh] *** 

Total Cost  

[$/day] 

Increase in 

Total Cost 

[%] 

Computing 

time**** 

(Sec) 

1 Nominal Case: With no PEV (0% PEV penetration) 

2 0 7.63 0 761.51 56.02 776.47 0 NA 

3 Case A: Uncoordinated PEV Charging; Figs.3.4, 3.8 

4 3 7.65 2.62 770.40 56.22 785.51 1.16 NA 

5 5 7.66 3.64 776.59 56.37 791.79 1.97 NA 

6 16 15.11 14.62 827.69 58.20 843.27 8.60 NA 

7 32 17.65 15.03 876.09 59.17 893.60 15.08 NA 

8 47 19.55 30.69 930.60 60.15 951.25 22.51 NA 

9 63 23.40 43.39 978.91 60.95 1004.04 29.31 NA 

10 Case B: Comparison between  FDPSO (row 11) and MSS (row 12) [11]***** 

11 63 9.86 0.2 859.66 56.11 879.39 11.70 0.033 

12 63 10.0 0.172 886 57.83 906 15.04 NA 

13 Case C: Online DPSO PEV Coordination; Figs. 3.5, 3.8 

14 16 9.32 0.82 826.06 56.43 841.22 8.34 0.026 

15 32 9.38 0.93 867.02 56.86 883.50 13.78 0.028 

16 47 9.90 0.99 900.18 58.12 918.59 18.30 0.031 

17 63 9.90 2.72 902.35 58.60 946.84 21.94 0.032 

18 Case D:  Online FDPSO PEV Coordination; Figs. 3.6, 3.8 

19 3 7.63 0.11 768.73 56.11 783.82 0.94 0.026 

20 5 7.63 0.12 775.39 56.31 790.55 1.81 0.026 

21 16 8.17 0.65 820.40 56.43 835.30 7.57 0.027 

22 32 8.42 0.67 851.10 56.59 867.52 11.72 0.029 

23 47 9.86 0.99 877.17 56.68 895.25 15.30 0.033 

24 63 9.86 1.70 897.88 56.87 917.55 18.17 0.034 

25 Case E:  Online GA PEV Coordination; Figs. 3.8 

26 16 9.88 0.83 826.16 56.83 841.32 8.35 0.045 

27 32 9.90 0.95 866.87 57.64 883.50 13.78 0.047 

28 47 10.00 0.99 900.91 58.21 919.41 18.41 0.050 

29 63 10.00 2.72 928.24 58.79 948.30 22.13 0.052 

30 Case F:  Online FGA PEV Coordination; Figs. 3.7, 3.8 

31 16 9.90 0.66 820.40 56.43 835.31 7.58 0.047 

32 32 9.90 0.68 851.11 56.59 867.67 11.74 0.048 

33 47 9.90 0.99 877.38 56.69 895.43 15.32 0.052 

34 63 10.0 1.70 901.57 57.10 921.09 18.62 0.054 

*)Average voltage deviation over 24 hours (Eq. 2.6). 

**) Increase in transformer current compared with nominal case (no PEVs). 

***) Calculated by dividing ‘Total Generation Cost in $/day (Table II, column 4)’ by ‘Total Daily Generation in MWh/day’. 

****) Intel Core i5-3570 3.40 GHz processor, 8 GB RAM, using MatLab ver. 8 

* ****) In this case, for each PEV, battery size is 8kW, SOCinitial= 0% and SOCinitial= 100%. 
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3.5. Simulation Results considering Transformer thermal Limits 

In this section, the objective function proposed above is optimised by taking into consideration 

the transformer thermal limits. 

 

3.5.1. Transformer Thermal and Aging Modelling 

There is a limit to heating in some active parts of transformers, and the greatest concern relates to 

Hot Spot Temperatures (HST). The HST and transformer life are calculated using IEEE 

C57.91.1995 [92-94]. To calculate the HST, a thermal model of the 1MVA transformer in Ref [95] 

is used in this study (Fig.3.8). There are also some details about the thermal model used in Ref 

[96]. In this chapter
h o h     , where 

h  belongs to the HST rises in [0C] and
o is used as a top-

oil temperature. The balance between the HST and the top-oil temperature was the HST rise found 

using the following equation: 

,h r rH g     

where H was the used factor for HST and gr presents the gradient of the average winding 

temperature to average oil temperature at full load current.  

The total transformer losses were equal to the top-oil temperature rise. The equation below was 

used to find the top-oil temperature rise [97]: 

2

, ,

1

1

x x

o o r o r

R

P R K

P R
  

    
         

  

                                                                                                    (3.13) 

 where 
RP was the total loss at rated load in [W], P was the total loss in [W], 

,o r was the top-oil 

temperature rise at rated load in [K], o  was the top-oil temperature rise in [K], and R was the 

ratio of load loss to no-load loss at rated load (K =1) where K is the current load in [per-unit] or 

[%]. 
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The following equation (3.14) shows the HST rise above the top-oil temperature (Fig. 3.8): 

,

y

h h r K                                                                                                                                   (3.14)                                                         

where “y” belongs to the winding exponent. Therefore, the HST will be calculated, as below [97], 

[98]:  

h a o h                                                                                                                                 (3.15) 

where 
a  is the ambient temperature in [0C], and the HST in steady state is found by replacing Eq. 

2.2 and 2.3 with Eq. 2.1. 

2

, ,

1

1

x

y

h a o r h r

R K
K

R
   

  
       

 

                                                                                               (3.16) 

 

3.5.2 Transformer Loss of Life Calculations 

The ‘per unit life’ (basis for calculating aging acceleration (FAA)) based on using the HST would 

be: 

Per unit life= 
15000

273189.80*10 he
                                                                                                          (3.17) 

The calculation for aging acceleration ( AAF ) is:  

 
15000 15000

( )
383 273h

AAF e





                                                                                                                           (3.18) 

The equivalent aging (FEQA) is also equal to the following equation: 






N

h

h

N

h

hhAAEQA ttFF

11

,
                                                                                                                 (3.19) 

where h is the time interval and N is the index for the total number of time intervals. The following 

is the percentage calculation of transformer LOL:  
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Fig. 3.8. Transformer, ambient, HST and top-oil temperatures 

%Loss of Life=  100

180000

EQAF t                                                                                                     (3.20) 

The normal transformer life in this study was 180000 hours. Thus, the simple calculation for LOL 

at 120^C for 24 hours, will be 0.1333. 

 

3.5.3. Constraints 

The proposed objective function (Eq. (3.1)) was optimised subject to Equations 2.6-2.7, 3.2 and 

3.21-3.22. 

max
hh                                                                                                                             (3.21) 

max
oo                                                                                                                               (3.22) 

In this thesis max
h =120 [0C], max

o =85 [0C] (Eqs 3.21-3.22).  

 

3.5.4. Simulation Results  

The optimisation for this part was done on a 449-node test system, taking into consideration, the 

fact that the thermal limit of the transformer was a new constraint. The results are shown in Fig. 

3.9. 
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(a) 

 

(b) 

 

 (c) 

Fig. 3.9.  Simulation results for transformer: (a) LOL variations in a 24 hour period (b) FAA variations in 24 

hours, (c) HST variations for four different cases. 

 

3.6. Analysis and Discussion 

3.6.1. Voltage Profiles Analysis at Worst Node 



63 
 

The average voltage and the worst node’s voltage profiles for 63% PEV penetration, within a 24-

hour period for all the cases (A to F) are presented in Fig. 3.10(a).  It can be seen that the 

uncoordinated PEV charging has the lowest voltage profile at the worst node. While, after applying 

the proposed optimization algorithms, the voltage profile has been very close to the case that there 

is no PEV in the network (0% PEV). In addition, the worst node voltage profile is less than 0.90pu 

for all timeslots that the PEVs are being charged. Furthermore, the worst node’s voltage is at least 

0.90pu in all proposed optimization algorithms and this will satisfy the network constrains. The 

worst node’s voltage profile is also capped at 0.90 when there are significant number of PEVs in 

the network. The voltage profile gets back to the base profile (0% PEV penetration) after 5:00AM 

when most of the PEVs have already been charged. 

 

3.6.2. Total Power Consumption for Charging PEVs  

The power consumption for implemented cases, including uncoordinated and coordinated PEV 

charging, is compared in Fig. 3.10(b).  

It can be seen that in Case C, based on using Eqs. 3.1-3.2, 2.6-2.7, the PEV charging took place 

by sending the cost information through the smart meter at each time interval. 

It is shown that all the PEVs are being charged by the time of plug-in with uncoordinated case 

while in the other cases the charging patterns have been postponed to the mid-night. 

The peak power consumption time is delayed from around 21:30h to 24:30h to reduce system 

loading during peak load hours, while its magnitude is increased from 0.34MW to 0.43MW to 

purchase cheaper energy and reduce Fcost-gen (t). [52-55].  
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Additionally, using the fuzzy expert system to solve the FGA and FDPSO algorithms to reach 

near-optimal solutions will cause more delays and change the time of the consumed power to 

02:30h. 

Moreover, Most PEVs will charge before 06:00h. The last one was at 4:45h, 04:45h, 05:30h and 

05:40h for Cases A, C, D and F respectively and there were more cost savings in D and F (Figs. 

3.10, Table 3.2). 

 

3.6.3. Random Plug-in Times and PEV Charging Schedules  

The number of plugged-in PEVs in all cases with 63% PEV penetration is presented in Fig. 3.10(c). 

In this figure, the first row is the number of PEVs for Case A (uncoordinated) and the other four 

rows present the number of PEVs being charged at each time slot for all PEV coordination 

methods. It can be seen that applying charging coordination methods shifted PEV charging loads 

to off-peak hours. The SOC variations within the 24 hours are presented in Figs. 4.6(a-d) for the 

best (DT-20) and the worst (DT-14) feeders. 

 

3.6.4. Computing Times of Proposed Coordination Algorithms  

According to Table 3.2, column 7, it can be seen that while the performance of the FDPSO and 

FGA solutions were close regarding total generation, cost minimisation and voltage profiles, 

FDPSO was significantly faster than FGA and required 50% less computing time.  

 

3.6.5. Grid performance analysis for low percentage PEV penetration 

To be realistic and bearing in mind that PEVs have not yet been fully implemented in public, two 

different scenarios, with 3 and 5 per cent PEV penetration, were studied. Rows (5-6, 20-21) in 
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Table 3.2 and Figs. 3.4 and 3.6 present the simulation results for these two scenarios. The results 

show that with 3% PEV penetration, the maximum power consumption increased to 0.86MW and 

with 5% PEV penetration to 0.87MW. Furthermore, in the case of the 5% PEV penetration, the 

maximum generation cost increased from 59$/MWh (no PEV charging) to 63$/MWh 

(uncoordinated PEV charging). Whereas implementation of the proposed FDPSO sets the 

maximum generation cost level to 59$/MWh.   
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(c) 

 

Fig. 3.10.  (a) System average voltage (AV) and node worst voltage (WV) profiles for Cases A, C, D and F for 

63% PEV penetration. (b) Total power consumption to charge PEVs for Cases A, C, D, E and F with 63% PEV 

penetration, (c) Random plug-in times (Case A) and coordinated charging schedules for Cases C, D, E and F 

with 63% PEV penetration [57]. 

 

 

3.7. Summary 

According to the simulation results, it is shown that a high PEV penetration level could cause 

voltage violation and transformer overloading if there is no coordination method. 

This chapter proposed two heuristic-based optimisation methods and analysed the results for four 

different techniques. Detailed simulation outcomes for the test smart grid network are provided 

and compared with other techniques, including MSS, DPSO and GA for different PEV penetration 

levels. 

The main conclusions can be summarised as follows: 

  The proposed FDPSO approach is validated by comparing its solutions with DPSO, GA, FGA 

algorithms at different PEV penetration levels. It has a superior performance and offers better 

solutions regarding the total daily generation cost compared to the uncoordinated and the other 

four coordinated strategies.  This superior performance becomes evident when considering the 

impact of the MEP, the instantaneous DLC, and the number of PEVs in the charging queue.  
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  While the FDPSO and FGA simulation results are very close, FDPSO is fundamentally faster than 

GA, which makes it more comfortable for PEV coordination in cases where there is a high level 

of penetration (Table 3.2, column 7). 

  The FDPSO algorithms schedule the charging activities of randomly arriving PEVs at each 

time slot based on smart meter information.  This is done by using online cost minimisation, whilst 

also taking advantage of the expert knowledge, gained through fuzzy reasoning to postpone some 

vehicle charging such that the peak power consumption is shifted to the early morning hours to 

achieve further reductions in total costs and losses. 

 Figs. 3.9 shows the simulation results for Loss of Life (LOL) variations in 24-hour. It can 

be seen that by applying the proposed DPSO algorithm, the LOL drops from 0.062% to less than 

0.02%. In addition, the impact of applying DPSO to reduce the aging acceleration and HST, for 

different cases, is shown in Figs. 3.9 (b, c). The maximum aging acceleration has been changed 

from 0.22 to 0.051. 

  The transformer loss of life for uncoordinated PEV charging is almost three times more 

than the transformer loss of life resulting from PEV charging coordination (Fig. 3.9(a)). 

  The maximum transformer ageing acceleration is 0.22 however after applying DPSO, it is capped 

at 0.051. 

  Fig. 3.9(c) shows that applying DPSO limits the HST while there is 20% of overheating, without 

any coordination. 
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CHAPTER FOUR 

 

PEV BATTERY FIXED AND VARIABLE CHARGING SCHEDULING IN THE SMART 

GRID USING COORDINATED AGGREGATED PARTICLE SWARM OPTIMISATION 

CONSIDERING CUSTOMER SATISFACTION 

In this chapter, a dynamic, online optimisation algorithm using Aggregated Particle Swarm 

Optimisation (CAPSO) is implemented to achieve an optimal variable charge-rate for each time 

slot. To maximise and achieve the highest customer satisfaction factor, for each PEV, the proposed 

algorithm is updated for each time slot (Δt=5min), based on their desired disconnection times, 

desired state of charges for their batteries and also their acceptance of being charged with a higher 

electricity price rate.The presented algorithm is subject to the distribution transformers being 

loaded to their maximum rated capacity, whilst keeping the total grid losses and voltage violations 

to a minimum. 

 

4.1. Problem Formulation for PEV Charging Coordination 

The objective of this chapter is focused on a scenario whereby multiple PEV owners have different 

preferences and will schedule their charging profiles for time slots of Δt=5min, so as to maximise 

their customer satisfaction for all PEVs at the next time slot, whilst avoiding grid constraints. 

Furthermore, this optimisation problem allows for scenarios whereby if a PEV owner chooses to 

disconnect the PEV earlier than the initially requested departure interval, there will still be an 

opportunity for the vehicle to receive an acceptable level of state of charge. This is an 

improvement, compared to the fixed charging-based methods in Refs [32, 36-38, 59-60] where 

PEVs may not receive any charging services, if they are plugged-out before the designated times. 

Therefore, the comprehensive objective function of Eq.4.1 is expressed to maximise the total 
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customer satisfaction by optimising the PEVs’ charging rates at each time slot: 
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In Eq.4.2, )( ki tw   is the weighting factor, including the customers’ preferences and their 

enthusiasm to charge with a higher energy cost at the time slot ( kt ). For instance, there may be a 

case in which the PEV owner is willing to pay more than the normal price and the PEV has a low 

SOC and also needs to depart quickly. In this case, the above formulations provide a higher 

weighting factor in the optimisation problem.  

To calculate SOC for the next time slot ),( 1 itSOC k , there are different techniques presented in Refs 

[99-103].This thesis adopts the battery equivalent circuit model of Ref [99], consisting of a 

resistance, which is in series with a voltage source, as shown in Fig.4.1 (b). This model is 

represented as: 

),()( , itIRVtV kiiocki                                                                                                                      (4.4) 

( , ) ( , ) ( )best Rated
k i kI t i CR t i I i                                                                                                                 (4.5) 

The ),( 1 itSOC k  can be formulated based on the charging current as follows: 

1( , ) ( , ) ( ( , ) ) 100k k k

i

t
SOC t i SOC t i I t i

Q



      

                                                                                  (4.6) 

where,   is the status of each PEV where digits ‘1’ and ‘0’ correspond to the PEV being 

connected or not connected. The power delivered to PEV during the charging process is: 
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                                           (4.7A) 

Moreover, the power consumed by the ith PEV from the grid considering the impact of charger’s 

efficiency (Fig.4.1 (a)) is: 

))((),(),( kichk
Delivered
PEVk

Consumed
PEV tCRitPitP                                                                           (4.7B) 

2( , ) ( ( ) ( ) ( , ) ( ) ( ( , ) ( ))Consumed best Rated best Rated
PEV k ch i k oc i k i i kP t i CR t V i CR t i I i R CR t i I i                       (4.7C) 

The charging current can be calculated from (4.7A), as follows:          

2
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                                                             (4.8) 

Substituting Eq.4.8 into Eq.4.6 yields: 

2
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t t R P t i CR t V V
SOC t i SOC t ik k
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                           (4.9) 

A numerical example for the calculation of SOC (based on Eqs. 4.6-4.9) is provided in the 

Appendix A.  

Appendix A: Numerical Example for Calculation of SOC 

This appendix presents a numerical example for the calculation of SOC based on Eqs. 4.6-4.9. 

Assuming the battery bank voltage is 400V, the battery capacity is 10kWh, and the nominal cell 

voltage for lithium ion batteries is 3.2V, then the number of cells for the whole battery bank will 

be 125. It is also considered that the internal resistance for each cell is 2m and then the total 

battery bank resistance is Ri= 2m×125=250m. In this thesis, each time slot is assumed to be 5 

minutes; therefore t =1/12=0.0833 hours. To calculate Qi, the battery capacity (10KW) should be 

divided by its open circuit voltage (400V); therefore, Qi=10,000/400=25Ah.  Detailed calculations 

of SOC using Qi are presented in Table 4.1. 
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In the Coulomb counting technique, the charges flowing into and out of the battery are integrated 

so as to gain an accurate estimate of the remaining capacity and calculation of the SOC [105]. This 

technique uses a shunt to measure battery current, and a coulomb counting circuit which is 

effectively a very accurate current-integrating Analog to Digital Converter (ADC) technique. 

Following this, the measured battery voltage and current are sent to a microprocessor, whereby the 

microprocessor contains battery chemistry specific information, such as cell impedance, within its 

memory. To communicate with the rest of the system a standard protocol such as I2C 

communication can be used. Subsequently, the SOC is calculated using Eqs. 4.6-4.9.  

Practically, for the real-time calculation of the battery SOC, at each time slot ( t =5 minutes), the 

following steps, should be taken.   

1- The battery ampere hour rate is calculated as Qi= (Battery Capacity)/Voc.  

2- Measuring open circuit voltages of the PEV batteries (Voc). 

3- Measuring the battery current using a shunt.  

4- Sent the measured battery voltage and current to the microprocessor using a standard protocol 

such as I2C communication. 

5- Using Equation (4.7-4.9) to calculate SOC. 

Note that if the battery is connected to a charger with CR=0.3, then the required time (without 

considering losses) to fully charge the battery is 1/0.3=3.333 hours. If one considers the impacts 

of the losses, then the battery will only be charged to 86% of its rated capacity. Therefore, more 

time will be required to fully charge the battery if the losses are included. 
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Table 4.1. Calculation of SOC 

Input Data to Calculate SOC 

Voc for the battery bank (V) 400 

Ri for the battery bank (ohm) 125×0.002=0.25 

Charger efficiency at CRBest based on Fig 4.1(a) 0.93 

CRbest which is a sample of results for ith PEV achieved by 

CAPSO 0.30 

Nominal charger capacity Pconsumed  (W) 10000 

t  0.083 

SOCInitial (%) 
0 

Rated battery ampere hour  Qi  (Ah) 10000÷400=25 

                        Calculations  

Ii
Rated  (considering losses) (A) 6.450 

Ii
Rated  (not considering losses) (A) 7.5 

Increment of SOC for the Next 5 Minutes Using Eq.4.9 

Increment of SOC for the next 5 minutes (considering losses) (%) 2.150 

Increment of SOC for the next 5 minutes (not considering losses) 

(%) 2.5 

SOC After the Nominal Charge Time of 1/0.3=3.333 Hours with CR=0.3 

SOC after 3.333 hours (considering losses) (%) 86.0 

SOC after 3.333 hours (not considering losses) (%) 100 
 

 
 

4.2. Assumptions and Definitions 

 PEVs can be connected/disconnected at any time according to the customer’s needs. Customers 

will input their requested plug-out times and requested final SOCs, at the time of plug-in. In this 

thesis, it is considered that all the PEVs will be charged at PEV owners’ location. 

 Compared to the short term Market Energy Price (MEP, Fig 2.1), there will be some customers 

who will be prepared to pay a higher rate, for their special charging requirements. 

  Each hour is divided into 12 time slots of Δt=5 minutes. The reason to choose the 5-minute 

time interval is to provide acceptable time duration for the PEV chargers to transfer reasonable 

amount of energy to the batteries. For example, if a PEV charger is rated at 5kW, then the amount 

of power used in one minute is about 80W (=5000/60). If the battery size is 10kWh, then 80W/min 
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will increase the SOC by 0.83% per time slot (assuming that a PEV has been selected for charging). 

Even if we accept less than 1% charge per minute, in practice this is not realistic, as the number of 

switches for the chargers will be much higher than the acceptable range. 

 During each time slot, the aggregator is expected to have the existing charging power. Each 

PEV can be charged after plug-in, with a variable charge-rate at each time slot and is expected to 

reach the desired SOCReq, by the requested plug-out time. 

 The aggregator has access to the PEV information using smart metering technology including 

their locations, charger types, battery sizes, and plug-in time. 

 At each time slot, the status of each PEV will be updated. This is not a given parameter and 

each PEV will send a plug-in signal, when it is being randomly connected to the grid. 

 Fig. 4.2(a) shows the spectrums of the random plug-in times and requested plug-out times of 

the PEVs. 

 A PEV-Queue Table will be generated to keep track of the vehicles’ status including their 

plugged-in times; requested and actual plugged-out times; initial SOCs; requested and actual 

SOCs; charger type and battery sizes. As a result, after plugging a new PEV at Δtk, the Table will 

be updated, and the implemented CAPSO coordination algorithm will be executed to obtain a new 

optimal online charging schedule.  

 PEV chargers are controllable and have variable charging functions. During the charging 

process, each PEV is presumed to have a variable active load.  

 The requested time TReq(i), for each PEV must be greater than the minimum charging time 

Tmin(i), required to charge the battery which depends on the maximum charge-rate allowed. 

where,  
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SOC i SOC i

Charger i
                                                                                                      (4.10) 

 The proposed coordination process is updated when a new vehicle is plugged-in, or an existing 

one plugs out, or a time slot has passed periodically.  

 To improve customer satisfaction, PEVs are allowed to be disconnected before their requested 

plug-out times. This will considerably complicate the coordination algorithm.  

 

 

          (a) 

 

         (b) 

Fig.4.1. Modeling of PEV battery [38]; (a) typical charger efficiency (CR corresponds to charging efficiencies), 

(b) equivalent circuit [104]. 
 

 

4.3. Constraints 

In this chapter the following equations are used as constraints to supply the base and PEV loads:  

nodekj NjVtVV ...,,1for    ,)( maxmin                                                                                               (4.11) 
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288,...,1)},(),...,(),({)( 21max  Kkk tDLtDLtDLMaxtD                                                                         (4.13) 

To sustain battery health, its SOC level should be conserved to within the range recommended by 

the manufacturer. Therefore, the following SOC constraint is included: 

)(,...,1),(),()( Re kPEVqkinitial tNiforiSOCitSOCiSOC                                                                          (4.14)  

Once SOC ( kt , i) reaches SOCReq(i), the ith battery charger will be switched to  standby mode. 

C presents the rate of charge or discharge of the battery which is based the total size (capacity Ah) 

of the battery. In this thesis, the variable charging rates are considered to be from 0C to CCRi 1max 

whilst, 10% of vehicles are assumed to have fast charging facilities with charge rates of up to

.C2CRmax
i  A random generator is used to generate the charge-rates. The PEV charge-rates will be 

controlled as follows: 

)(,...,10
max

kPEViii tNiCRCRCR                                                                                 (4.15)  

 

4.4. Simulation input data  

The continuous uniform random number generator is used to simulate the random plug-in times 

and expected plug-out times (Fig. 5.2(a)), as well as the requested SOCs. The initial State Of 

Charge SOCinitial (%) for each PEV is calculated upon the basis of its trip length, as follows (Eq. 

5.16) [88]: 
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                                                                    (4.16)                 

where i indicates the type of PEVs, j is the number of PEVs.  
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One residential feeder with 63% PEV penetration 
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(c) 

Fig. 4.2. System characteristics: (a) spectrums of the random plug-in times and the requested plug-out times of 

the simulated PEVs, (b) the 449 node SG consisting of IEEE 31-node 23kV system and 22 low voltage 19-node 

415V residential feeders populated with PEVs [16], (c) detailed diagram of one residential feeder in Fig. 5.2(b) 

with 16%, 32%, 47% and 63% PEV penetration [104]. 
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4.5. Implemented Online PEV charging coordination Algorithm 

The CAPSO algorithm has been used to solve different optimisation problems [76]. In CAPSO, 

each particle updates its position, by considering the positions of particles that have performed 

better. Thus, this thesis applies the CAPSO algorithm to identify the best solutions to the PEV 

coordination problem (Eqs4.1-4.15). The established CAPSO algorithm, in this thesis, updates the 

velocity vector using the same technique presented in Ref [93].  

4.5.1. Proposed Initial Population and Structure of Particles: 

The selected particles for variable charge-rate online PEV coordination contain the charging rates 

)( ki tCR  for each PEV at kt , that are restricted to between 0 and 2C, as follows (Eq.4.17): 

                                                                                                (4.17) 

 

4.5.2. CAPSO Fitness Function 

To improve quality of CAPSO solutions, fitness functions are used to reach this objective within 

the identified constraints (Eqs.4.1-4.15). The inverse algebraic products (Eq.4.18), of the proposed 

penalty functions for voltage (Eqs.4.19-4.20) and demand (Eq.4.21) are used as the fitness 

function, to combine the PEV coordination objective function (Eq.4.1) and constraints (Eqs.4.11-

4.15): 
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                                                                                    (4.20)                                                      
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 4.5.3. Simulation Results 

To present the effectiveness of the proposed algorithm and the impacts of considering variable 

charging, simulations are accomplished on the SG of Fig. 4.2(b) for the three cases of 

uncoordinated and CAPSO-based coordinated PEV charging, with FCC and VCC, using a time 

interval of t =5 minutes; PEV penetration levels of 0% (no PEVs), 16%, 32%, 47% and 63% (Fig. 

4.2(c)) considering Nbus=449, Nline=448, W=0.73, C1=2.05, C2=2.05, and Npop = 100, αV1=αV2=0.3 

and αD=0.5 (Eqs.4.19-4.20). Simulation results are shown in Figs. 4.3-4.6 and Tables 4.2, 4.3.   

To compare the performance of FCC and VCC schemes, detailed simulations will also be 

presented for the three selected feeders in Fig. 4.2(b) with the best (DT-20), moderate (DT-12) and 

worst (DT-14) performances. The first feeder receives 100% of customer satisfaction, with both 

FCC and VCC; the second feeder receives 100% of customer satisfaction, with VCC and the third 

feeder doses not receive 100% customer satisfaction, regardless of the selected (FCC or VCC) 

coordination approach. It should be noted that DT-20 and DT-12 are not the only feeders that 

receive 100% of customer satisfaction with VCC. The complete lists of best feeders are DT-9, DT-

13, DT-20 and DT-22, whereas the complete lists of the moderate feeders are DT-3, DT-4, DT-5, 

DT-7, DT-11, DT-12, DT-18 and DT-21.  
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In this thesis, the backward-forward sweep method is used to calculate the power (load) flows and 

bus voltages. It is assumed that the generation capacity is large enough to supply both the base and 

the PEV charging loads in all time slots.  

At each time slot (t=5 minutes), the weakest bus is defined to be the bus with the lowest voltage 

magnitude. The locations and voltage magnitudes of the weak buses will change within the 24 

hours depending on the system base load the system configuration and the PEV loadings (numbers, 

locations, random plug-in times and charging rates of the activated PEVs). To identify the weakest 

bus at each time slot, the optimal PEV coordination is performed, the selected PEVs are activated, 

power flow calculation is performed, nodes are sorted based on their voltage magnitudes, and the 

weakest node is the one that has the minimum voltage amongst all other nodes. This process is 

repeated for 24-hours, to generate the weak voltage profiles of Figs. 4.3(c), 4.4(c) and 4.5(c). 

 

Case A: Uncoordinated PEV Charging 

The impact of Uncoordinated PEV Charging is investigated by starting the charging process as 

soon as vehicles are randomly plugged in. Simulation results are shown in Table 4.2 (rows 4-8) 

and Fig.4.3. As expected, the SG is facing overloading, voltage regulation and efficiency problems. 

For example, for 63% PEV penetration, maximum power consumption has increased by about 

45% (Fig.4.3 (b)) compared to the nominal operation with no vehicles. Also, the minimum voltage 

for 63% of PEVs penetration has decreased by 30%, compared to its nominal value, as shown in 

Fig.4.3(c). Moreover, in this case, there is about 10% voltage violation for 32% PEV 

penetration.  Furthermore, it has been demonstrated that the voltage drops to 0.7p.u. (Fig.4.3(c)), 

thus, in reality it may cause system collapse and should be limited by the system operator.  To 
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overcome problems associated with uncoordinated PEV charging, the CAPSO algorithm of 

Section IV is adopted.  

 

   (a) 

 

(b) 

 

(c) 

Fig. 4.3. Simulation results for Case A with 16, 32, 47 and 63 percent of PEV penetration: (a) loss of power, (b) 

system power consumption, (c) weak bus voltage [104]. 

 

 



81 
 

Case B: Coordinated PEV Charging using CAPSO with FCC 

In this approach, the charging process of each PEV is realised at a fixed charge rate, corresponding 

to the nominal charging rate of its charger. In detail, the charging process of each user starts by 

receiving a charging signal from the charging centre and will be connected until it receives its 

required State Of Charge.  The implemented CAPSO algorithm is used for optimal PEV charging 

coordination with a fixed nominal charging rate. While PEV will be automatically disconnected, 

when reaching their requested SOC levels, the consumers can also disconnect their vehicles prior 

to the requested plug-out times. Simulation results for FCC are presented in Fig.4.4 and Table 4.2 

(rows 9-13). Compared to Case A, FCC is offering further improvements in substation transformer 

loading, power losses and weak bus voltages. However, it is important to note   that,    the 

overloading, of the main substation transformer, still remains a concern. 

 

      (a) 

 

     (b) 
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(c) 

Fig. 4.4. Simulation results for Case B with 16, 32, 47 and 63 percent of PEV penetration: (a) loss of power, (b) 

system power consumption, (c) weak bus voltage [104]. 

 

 

Case C: Coordinated PEV Charging using CAPSO with VCC 

Simulation results including system power consumptions and loss using the CAPSO algorithm 

with the variable charge-rate strategy are shown in Fig.4.5 and Table 4.2 (rows 14-18). Compared 

to Case B, VCC, more strictly prevents system (transformer) overloading (Fig.4.5 (b)). It can be 

observed that for 63% PEV penetration, VCC has the advantage of completing the charging 

process for all vehicles sooner than the FCC. However, for lower PEV penetration levels of 47%, 

32% and 16%, the two charging strategies have similar characteristics. In addition, there is no 

overloading in the systems power consumption when using the VCC. This is because it is limited 

to the designated 0.84MW.  In comparison, there is about 2.72% overloading in the substation 

transformer using FCC (Fig.4.4 (b)). Moreover, the voltages are in their permissible limit, and 

there is no problem with the voltage profiles (Fig.4.5(c)). 

According to Fig. 4.4(a), it can be seen that applying CAPSO postpone the load to the off peak 

and the power losses will remain almost the same as base case (0% PEV penetration). However, 

if the PEV penetration is increased, then the power losses will also increase to 0.033MW. 
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Moreover, according to Fig. 4.4(b), the system power consumption is remained at 0.084MW, using 

CAPSO and there is no overload, even with 63% PEV penetration. 

Furthermore, almost all PEVs were charged before 05:00h and the rest received the required charge 

by 08:00h. 

Also in Fig. 4.4(c), the CAPSO had a significant impact on improving the weak bus voltage profile 

and the voltage for the weak bus is above 0.9pu, for all time slots. 

Comparing the results of the CAPSO, using FCC (Figs. 4.4) and VCC (Figs. 4.5) demonstrates 

that by applying CAPSO and using VCC: 

 The maximum loss of power has decreased from 0.033MW to 0.0315MW. 

 There is no overload in Fig 4.5. (b), However in Fig. 4.4(b), there is a slight overloading of the 

main transformer between the hours of 17:00h to 18:00h. 

 All the PEVs were charged before 06:00h, where in Fig. 4.5(b), there are few PEVS that 

received charge after 06:00h. 

 The average of the weak bus voltages, using VCC, is actually better than FCC.  
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Table 4.2. Impact of PEV charging on the SG of Fig. 4.2(b). 

 
 *) Average voltage deviation over 24 hours. 

**) Increase in transformer current compared with the nominal case (no PEVs). 

***) Intel Core i5-3570 3.40 GHz processor, 8 GB RAM, using MATLAB ver. 8 

 

 

4.6. Discussion and Analysis 

The SOC variations within the 24 hours are presented in Figs. 4.6(a-d) for the best (DT-20) and 

the worst (DT-14) feeders:   

 Figures 4.6(a) and 4.6(b) present the profiles for the state of charge variations for all the PEVs 

for two different charging coordination algorithms. It can be seen that in Fig 4.6(a) there is a 

significant difference between the starting times for the first and the last PEVs.  It is also shown 

that the first PEV starts charging at 20:15PM and the last one does not have a chance to start earlier 

than 3:45AM. To prevent this and optimize the customer satisfaction function, the proposed 

variable charging algorithm has been applied to charge all the PEVs as soon as the system 

constrains are satisfied. 

PEV 

[%] 
V* 

[%] 

IMAX 

[%]** 

Customer 

Satisfaction 

Computing 

time*** (Sec) 

Nominal Case: With no PEV 

0 7.63 0 NA NA 

Case A: Uncoordinated PEV Charging; Fig. 4.3 

16 10.08 18.42 NA NA 

32 12.60 19.58 NA NA 

47 25.10 37.62 NA NA 

63 31.00 45.27 NA NA 

Online PEV Coordination (DPSO) with FCC (Ref. [27]) 

16 9.32 0.82 NA 0.026 

32 9.38 0.93 NA 0.028 

47 9.90 0.99 NA 0.031 

63 9.90 2.72 NA 0.032 

Case B: Online PEV Coordination (CAPSO) with FCC; Fig.4.4 

16 9.42 1.39 98.37 0.027 

32 9.53 2.03 95.57 0.028 

47 9.91 2.09 90.54 0.032 

63 9.94 2.72 88.38 0.034 

Case C: Online PEV Coordination (CAPSO) with VCC; Fig.4.5 

16 9.06 0.00 99.09 0.028 

32 9.16 0.00 96.91 0.029 

47 9.58 0.00 94.47 0.034 

63 9.73 0.00 93.89 0.035 
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 The charging patterns for this case are shown in Fig 4.6(b). According to this figure, all the PEVs 

are being charged around 21:00PM and the charging process finishes at 3:05AM. 

 Comparing figures 4.6(a) and 4.6(b) shows that the PEVs with VCC received the required SOC 

one hour earlier than the case with FCC. If the PEV owners at nodes “l” and “j” unplug their PEVs 

earlier than mid-night, then there will be no charge for them using FCC. However, all the PEVs 

received minimum 40% of their required SOC using VCC method.  

 Figures 4.6(c) and 4.6(d) present the profiles for the state of charge variations for all the PEVs 

for two different charging coordination algorithms. In these figures, it is shown that some of the 

PEVs may not be charged at the worst branch using FCC method.  

 In Fig 4.6(c), similar to the figures 4.6(a) and 4.6(b), there is a significant difference between the 

starting times for the first and the last PEVs.  

 According to Fig.4.6(c) with FCC, at the worst feeder, there were 4 out of 12 PEVs, that were 

not charged at all, and their initial SOCs, were also not changed. Therefore, the customer 

satisfaction at these nodes, was zero, thus indicating a reduced overall, satisfaction level at this 

feeder (DT-14). The detailed results are presented in Figures 4.6(e) and 4.6(f). 

  The results of VCC pattern are shown in Fig 4.6(d). According to this figure, all the PEVs are 

being charged at 18:00PM and the charging process finishes at 2:20AM. It is shown that all PEVs 

received at least 20% of the required SOC and there is no PEV with no charge using variable 

charging method.  

It is depicted that with FCC the first and the last PEV start charging times in feeder DT-1, were at 

19:00  and 04:00, respectively; whilst with the VCC (Fig.4.6(d)), some of the PEVs had started 

charging as early as 17:50 , and the last vehicle had  been activated at 19:20  on node ‘s’. 
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  (a) 

 

(b) 

 

(c) 

Fig. 4.5.  Simulation results for Case C with 16, 32, 47 and 63 percent of PEV penetration: (a) loss of power, (b) 

system power consumption, (c) weak bus voltage [104]. 

 

 

 The VCC strategy is capable of fully or partially charging the PEVs that were not scheduled with 

FCC (e.g., were not allowed to start charging).  For example, with the FCC, the PEVs located on 

nodes b, d, f and h of feeder DT-14 had nil customer satisfaction levels (Fig.4.6(f)) whilst, with 
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the VCC their customer satisfaction rates improved by 100%, 23.85%, 35.94% and 23.70%, 

respectively. 

 Comparison between Figs.4.6(a, b) shows that all PEVs in the best feeder (DT-20) reach their 

requested SOCs before their requested plug-out times whilst using VCC and all vehicles are 

charged by 03:40.  

With FCC the PEV on node ‘l’ is not activated and has not received the charging service until 

03:35.  However with the VCC strategy, the same vehicle at the same time will be fully satisfied 

and receive 100% of its requested SOC. The bar charts of Fig.4.6 (e, f) and Table 4.3 show the 

level of customer satisfaction for the best and worst feeders: 

 Using FCC, the customer satisfaction for four of the PEVs was nil, whereas when using VCC all 

vehicles received full or partial charging; Table 4.3 (rows 9-10, 18-19, and 27-28). Figs.4.6 (g, h) 

indicate the customer satisfaction profiles for all feeders (DT-1 to DT-22) using VCC and FCC 

strategies: 

 The numbers of feeders that reached 100% customer satisfaction using VCC and FCC 

approaches, were 12 and 4, whilst according to Table 4.3 (rows 9-10) the minimum levels of 

customer satisfactions in the worst feeder (DT-14) are 78% and 64%, respectively.  

 The feeders had reached their requested SOC at the same time as the VCC (Fig. 4.6(h)).  

However with the FCC, there was a significant time difference in obtaining the requested SOC, 

even for the fully satisfied customers (Fig. 4.6(g)). For instance, feeder DT-12,   reached 100% 

customer satisfaction at time slot 110, whilst feeders DT-8 and DT-9 received 100% of customer 

satisfaction at time slot 130.  
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(a)                                                                           (b) 

  

                                                         (c)                                                                                    (d) 
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 (g)                                                                                (h) 

Fig.4.6. (a) Sample battery SOCs of feeders in Fig.4.2(c) for best feeder (DT-20) using FCC, Fig.4.6. (b) Sample 

battery SOCs of feeders in Fig.4.2(c) for best feeder (DT-20) using VCC, Fig.4.6. (c) Sample battery SOCs of 

feeders in Fig.4.2(c) for worst feeder (DT-14) using FCC, Fig.4.6. (d) Sample battery SOCs of feeders in 

Fig.4.2(c) for worst feeder (DT-14) using VCC, Fig.4.6. (e) Customer satisfaction of few feeders in Fig.4.2(c) 

using FCC and VCC for best feeder (DT-20), Fig.4.6. (f) Customer satisfaction of few feeders in Fig.4.2(c) using 

FCC and VCC for worst feeder (DT-14), Fig.4.6. (g) Customer satisfaction profiles for all feeders (DT-1 to DT-

22) in Fig.4.2(c) using FCC, Fig.4.6. (h) Customer satisfaction profiles for all feeders (DT-1 to DT-22) in 

Fig.4.2(c) using VCC [104]. 

 

4.7. Summary 

This thesis has implemented an online variable charge-rate PEV coordination approach, using 

CAPSO, to maximise the total level of customer satisfaction. The proposed VCC approach will 

also minimise the grid losses without exceeding the grid constraints. This is subject to the 

requested plug-out times form the customers, desired state of charges (SOCReq) for each PEV and 

the PEV owners’ willingness to be charged   a higher rate at each time slot, so as to receive more 

power. 

Detailed simulation results for a 449-node SG network have been presented, compared and 

analysed for uncoordinated PEV charging and coordinated PEV charging using FCC and VCC 

strategies. The main conclusions are:  

 The proposed coordinated charging algorithm takes into consideration the random plug-in times, 

initial SOCs, requested plug-out times and the requested final SOCs, as well as the maximum 

battery charging rates, battery and charger efficiencies.  

 With the VCC, customer’s satisfaction level was high.  In comparison, when using FCC, some 

vehicles may not even start charging before their requested plug-out times.  

 The substation transformer is not overloaded when utilising the VCC option, whilst overloading 

conditions are noticed with the FCC even at low levels of PEV penetrations of 16% and 32%. 
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 The VCC strategy is capable of fully or partially charging the PEVs.  In comparison that were 

not scheduled with the FCC.   

 There was no overload in system power consumption when using the VCC, as it is limited to the 

designated 0.84MW, however there was about 2.72% overloading, in the substation transformer 

whilst using the FCC .   

 

Table.4.3. Detailed simulation results for coordinated (CAPSO) PEV charging of Fig. 4.2(b) for worst, moderate and 

best feeders using FCC and VCC. 

       

 

 

Node Number b D f g h j l M o q r s Ave. 

For the Worst Feeder (DT-14) 

Plug-in Time Slot 21 14 20 15 19 24 25 21 21 23 28 36 22 

Initial SOC [%] 9 12 5 8 2 19 11 9 19 5 22 20 11 

Requested Plug-Out Time Slot 103 58 84 62 77 151 157 104 112 145 167 175 116 

 Request SOC [%] 62 92 99 89 82 72 70 83 61 68 80 67 77 

Actual SOC at  TReq for VCC [%] 62 22 36 42 19 72 70 83 61 68 80 67 57 

Actual SOC at  TReq for FCC [%] 0 0 0 89 0 52 70 83 61 68 80 67 487 

Consumer Satisfaction  (Eq.4.3) [%] 
VCC 100 24 36 48 24 100 100 100 100 100 100 100 78 

FCC 0 0 0 100 0 72 100 100 100 100 100 100 64 

For the Moderate Feeder (DT-12) 

Plug-in Time Slot 73 83 46 42 55 54 63 42 61 68 51 50 57 

Initial SOC [%] 26 7 12 23 18 28 4 28 7 17 27 20 18 

Requested Plug-Out Time Slot 198 205 184 181 189 188 192 181 192 194 187 186 189 

Request SOC [%] 84 59 73 94 97 64 93 65 68 66 53 57 72 

Actual SOC at  TReq for VCC [%] 84 59 73 94 97 64 93 65 68 66 53 57 72 

Actual SOC at  TReq for FCC [%] 84 59 73 94 97 29 93 65 68 66 53 57 69 

Consumer Satisfaction  (Eq.4.3) [%] 
VCC 100 100 100 100 100 100 100 100 100 100 100 100 100 

FCC 100 100 100 100 100 0 100 100 100 100 100 100 91 

For the Best Feeder (DT-20) 

Plug-in Time Slot 76 61 36 51 64 83 38 85 114 49 68 46 64 

Initial SOC [%] 9 24 7 3 28 26 16 12 8 21 21 28 16 

 Requested Plug-Out Time Slot 201 192 176 188 193 205 178 207 216 185 195 184 193 

 Request SOC [%] 58 84 74 76 76 57 55 60 52 74 58 56 65 

Actual SOC at  TReq for VCC [%] 58 84 74 76 76 57 55 60 52 74 58 56 65 

Actual SOC at  TReq for FCC [%] 58 84 74 76 76 57 55 60 52 74 58 56 65 

Consumer Satisfaction  (Eq.4.3) [%] 
VCC 100 100 100 100 100 100 100 100 100 100 100 100 100 

FCC 100 100 100 100 100 100 100 100 100 100 100 100 100 
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CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

In the research for this thesis, the optimal PEV charging coordination to maximise all customers’ 

satisfaction without exceeding grid constraints was performed. For the FCC, the VCC and the 

uncoordinated charging of PEVs, the simulation results were compared on a 449-node test system 

using CAPSO. The proposed algorithms take into consideration the random plug-in times, initial 

SOCs, requested plug-out times, requested final SOCs and the maximum charging rates of the 

PEV batteries.  

To compare the performance of the proposed optimization methods, four algorithms are tested and 

implemented: 

 A heuristic-based Online Coordinated Charging Genetic Algorithm (OL-CC-GA) 

is implemented for the charging of PEV batteries in the SG. This minimises the 

cost related to the system losses and the generated energy. It also increases the 

number of charged PEVs, adjusting the node voltage and diminishes the load for 

the distributed transformer. OL-CC-GA, also considers the changing of the 

distribution transformer loading for online and delayed (e.g., full-overnight and 

partial-overnight) PEV charging.  

 Implementation of two different algorithms (FGA and FDPSO) for PEV charging 

coordination. These two decreases the cost related to the generated energy and 

system losses. They also increase the amount of delivered power to PEVs and 

regulate the node voltages. 

 The proposed and optimised algorithm uses CAPSO to solve the variable PEVs 

charging problem. The time interval used for this algorithm is Δt=5min. It is used 
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to maximise the customers’ satisfaction levels for all PEV owners,   based on their 

requested plug-out times, requested battery state of charges (SOCReq) and 

willingness to pay the higher charging energy prices. The algorithm also ensures 

that the distribution transformer is not overloaded whilst grid losses and node 

voltage deviations are minimised over the 24 hour period. 

In summary, the presented methods for PEV charging coordination are based on the below steps:  

Step 1: Predication and forecasting the based DLC for all of the feeders 

It is assumed that there is no PEV load on the DLC, and the information in DLC includes active 

and reactive powers for all of the feeders. It should be noted that if daily forecasted data without 

PEV penetrations are available, there is no need to perform this step. 

Step 2: Load Modelling 

Each load at each feeder is being modelled as a variable PQ load and changes according to the 

forecasted LDC of the first step. 

Step 3: Reading information for each PEV 

In this step, information such as location, state of charge and requested charged time should be 

provided to the algorithm as an input data. 

Step 4: Fuzzy technique implementation 

According to the above information, as well as the forecasted energy price for each interval, fuzzy 

output (Transformer limit) should be extracted. 

Step 5: Optimisation technique execution 

To apply any of the proposed optimisation methods, a random generator should be used to generate 

an initial population based on the available data for each PEV. Next, all of the constraints should 

be implemented and the fitness function(s), evaluated. Subsequently, the optimisation operators 
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should be applied to generate a new population, unless the stopping criteria have been reached. It 

should be noted that Step 5 should be conducted at each new time interval. 

Step 6: Update the DLC and repeat Step 5 

The current DLC is to be updated according to the optimal charging rates for the PEVs, and then 

the Step 5 will apply. This process is online and dynamic, and is to be repeated for all 288 (5-

minute) time intervals throughout the day. 

 

5.1. Research Conclusions 

The main conclusions of this research are as follows: 

 Customers received higher levels of satisfaction while using the VCC strategy.  

Comparatively, when using the FCC, some vehicles may not even start charging before 

their requested plug-out times. 

 The substation transformer is not overloaded when using the VCC option, whilst 

overloading conditions are noticed with the FCC strategy, even with low levels of PEV 

penetrations of 16% and 32%. 

 The VCC strategy is capable of fully or partial charging the PEVs that were not even 

scheduled with the FCC option. 

 Equality in the SOC distribution is ensured in the proposed charging pattern (VCC) at each 

time slot for all PEVs. Then, there will be a reasonable state of charge, in case the PEV 

owner leaves before his/her initially scheduled departure time. 

 Amongst the implemented GA, FGA, DPSO and FDPSO optimisation methods, for 

different PEV penetration levels, the FDPSO offers the best solution among the other used 

algorithms according to the total daily generation cost. 
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 Two implemented algorithms (FDPSO and FGA) are very similar, but the optimisation 

speed for FDPSO is faster than FGA. Therefore, it is more suitable to use in online PEV 

scheduling (Table 4.3, column 7), and also more suitable for online PEV coordination of 

large SG configurations. 

 The FDPSO scheme used the FES to postpone some of the PEVs’ charging and shift their 

charging time to the early morning hours, due to having fewer total losses and costs. 

 The implemented OL-CC-GA schedules the charging activities of randomly arriving PEVs 

at each time slot based on smart meter information using online cost minimisation. The 

modified OL-CC-GA, takes advantage of the expert knowledge, to vary the distribution 

transformer loading level (Dmax(t) in Eq.2.12) and perform delayed PEV charging.  It does 

so by postponing some vehicle charging, such that the peak power consumption is shifted 

to the early morning hours to achieve further reductions in the total costs as compared to 

the online coordination strategy. 

 In OL-CC-GA, the total system cost has the maximum value amongst the three cases B, C 

and D; however, all PEVs will be charged before 06:00. Also, case B has the maximum 

losses amongst all coordinated cases, whilst the generation cost has the minimum value in 

case D compared with the other cases. 

 In delayed partial-overnight PEV charging coordination, the generation cost is higher than 

case D and less than case B. 

 

5.2. Future Work 

Future works, which are related to this study, will be considered as follows: 

1- Implementation parallel optimisation tools: 
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The charging coordination problem is an online optimisation problem and the calculation time is 

an important factor. Applying parallel optimisation tools may reduce the computation burden and 

achieve better results. 

2- Dynamic load modelling: 

As the behaviour of the loads depends on various parameters and the value of the DLC for each 

time interval, is a crucial factor in these optimisation approaches, dynamic modelling of the load 

may provide precise results.  

3- Unbalanced variable PEV charging coordination: 

In the real world, most of the distribution systems are unbalanced, and each PEV has a chance to 

connect to any of the phases, which may cause more problems within the system. 

4- Dynamic load forecasting: 

In this thesis, it is assumed that the DLC has been forecasted one day ahead, where if dynamic 

load forecasting techniques apply; there will be a chance to get better results. 

5- Using decentralised charging coordination methods 

To reduce the communication burden, optimal decentralised control approaches are suggested. 

6- Optimal locating and sizing D-FACTS 

Recently the Distributed flexible AC transmission devices have become more popular. It is 

suggested that the PEV charging coordination problem, be solved simultaneously with optimal 

locating and sizing of the D-FACTS. 

7- Incorporation of Wind and Solar generation systems 

These days, wind farm and PV systems are connected to most of the distribution systems. 

Therefore, the PEV charging coordination problems will provide more realistic outcomes. It would 
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be more convincing, if an online forecasting tool applies to have an accurate prediction of the 

output of the wind/solar system. 

8- Charging Coordination considering G2V, V2G and V2V simultaneously 

In this thesis, it is only considered that the PEVs are being charged from the grid, whereas there is 

some research performed on V2G. The optimisation which considering the combination of G2V, 

V2G and V2V in a system, is another area that requires more research.  
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