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Abstract

Introduction
Available and practical methods for privacy preserving linkage have shortcomings: methods utilising
anonymous linkage codes provide limited accuracy while methods based on Bloom filters have proven
vulnerable to frequency-based attacks.

Objectives
In this paper, we present and evaluate a novel protocol that aims to meld both the accuracy of the
Bloom filter method with the privacy achievable through the anonymous linkage code methodology.

Methods
The protocol involves creating multiple match-keys for each record, with the composition of each
match-key depending on attributes of the underlying datasets being compared. The protocol was
evaluated through de-duplication of four administrative datasets and two synthetic datasets; the
‘answers’ outlining which records belonged to the same individual were known for each dataset. The
results were compared against results achieved with un-encoded linkage and other privacy preserving
techniques on the same datasets.

Results
The multiple match-key protocol presented here achieved high quality across all datasets, performing
better than record-level Bloom filters and the SLK, but worse than field-level Bloom filters.

Conclusion
The presented method provides high linkage quality while avoiding the frequency based attacks that
have been demonstrated against the Bloom filter approach. The method appears promising for real
world use.

Introduction

Privacy preserving record linkage (PPRL) protocols involve
determining which records from data collections describe the
same individual where these records are encrypted or encoded
so as to protect privacy. The challenge for these protocols is
to allow for variations in data arising from missing, changed or
incorrect identifiers (vital for ensuring a high level of matching
accuracy) while at the same time ensuring that no information
about the individuals within the dataset is revealed.

PPRL techniques typically adopt a semi-honest (also
known as an honest-but-curious) model of security [1]. It
is assumed that individual parties in the protocol will encode
data as instructed and will not collude to leak information.
However, parties can record and infer any available informa-

tion, perform statistical frequency attacks on the data, use
brute force attack techniques (such as dictionary attacks) to
guess possible encoded values, or utilise other publicly avail-
able data to discover information about the encoded datasets
[2].

A range of techniques for PPRL have been proposed, uti-
lizing different methodologies, and providing different levels
of privacy [1]. An important distinction lies between those
protocols which utilise a party independent of the data own-
ers (three party protocols) to conduct the linkage and those
which rely solely on communications between data owners for
linkage to occur (two party protocols) [1]. In protocols which
utilise an independent third party, data is first encoded by the
data custodians before being passed to the linkage unit, who
determine which records belong to the same individual (see
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Figure 1). This differs from two-party protocols, where data
is transferred repeatedly between the two parties (the situa-
tion is more complex when involving more than two parties).
Two-party protocols are significantly more complex and require
greater expertise from data custodians.

Of the proposed protocols which utilise an independent
third party, two approaches are prominent in the literature,
each having several variants. The first involves combining par-
ticular subsets of identifiers into a hashed key which is then
used in matching (referred to as a match-key [3], linkage key
[4], an anonymous linkage code [5] or the minimum linkage in-
formation approach [6]). A second approach uses a structure
known as a Bloom filter to store encoded information, which
allows string similarity techniques to be used across encoded
data.

Anonymous linkage codes

The anonymous linkage code approach involves conducting an
exact match on a pre-processed subset of personal identifiers.
These identifiers are concatenated and encoded into a ‘key’
by which to identify an individual. Importantly, these meth-
ods use only a subset of identifiers. By creating a key using
all available identifiers, any variation in records belonging to
the same person (such as typographical errors) would result in
those records being identified as belonging to different individ-
uals. However, using too few identifiers can have the opposite
effect, namely that separate individuals would be identified as
the same person. This approach tries to use the optimum level
of identifying information, allowing some error tolerance while
correctly distinguishing between individuals [6].

Cryptographic hash functions are used to convert the con-
catenated identifiers into a fixed length encoded form. These
hash functions have several important properties that make
them suitable for this purpose. They are deterministic, mean-
ing the same input will produce the same encoded output.
They have the property that a small change in the data input
will change the hash value extensively so that the new hash
value does not appear correlated with the old hash value. They
are also one-way functions, meaning that it is not feasible to
determine the original input data when given only the hash
value, other than by hashing guesses of the possible input and
checking these against the original hash value [6]. To ensure
adequate security, it is important that the hash function is
used in combination with a secret cryptographic key which is
sufficiently hard to guess [2]. The construction recommended
for this purpose is known as a keyed-hash message authentica-
tion code, or HMAC (in this paper we generally use the term
hash as shorthand for HMAC). This construction provides a
secure way to combine a hash function with a secret crypto-
graphic key [7]. This key should be shared amongst all data
custodians and kept hidden from the linkage unit (see Figure
1). The use of a secret key prevents brute force attack tech-
niques where an individual can guess values of concatenated
identifiers, hash them, and check to see if they exist within
the dataset.

There are several variants of the anonymous linkage code
approach. In Australia, the Statistical Linkage Key-581 (SLK)
[8] involves concatenating the second and third letters of an
individual’s first name, the second third and fifth letters of
their surname, and their full date of birth and sex, into a

single field. This method is regularly used to link a num-
ber of national datasets. However, in practice the SLK is
typically not hashed, greatly reducing its privacy protection.
The Swiss Anonymous Linkage Code involves creating a hash
from phonetically encoded first and last names, along with full
date of birth and sex [9]. Another variant proposed by We-
ber [10] concatenates and then hashes the first two letters of
first and last names with date of birth and sex. A method
proposed by the Office for National Statistics UK (ONS) [3]
extends the anonymous linkage code through the use of mul-
tiple match-keys, each made up of different combinations of
personal identifiers; a match on any match-key identifies two
records as belonging to the same individual.

Hashed anonymous linkage keys combined with a secret
key can provide strong privacy protection. Their weakness lies
in ensuring a high level of linkage quality [6]. Single linkage
keys cannot tolerate differences in the identifiers selected for
matching, nor can they handle missing identifiers or utilise ad-
ditional available information. A number of studies have doc-
umented the lower linkage quality found through this method
[11, 12], in particular the reduced sensitivity of these meth-
ods. Procedures to improve sensitivity when using the SLK
have been used in practical applications; these include the use
of additional variables such as address information and the
splitting of the SLK back into its component fields to carry
out more fine-grained matching [13]. Such procedures reduce
or remove the privacy protections provided by the method.

Privacy preserving linkage using Bloom filters

This approach involves adding encoded personal identifiers
into structures known as Bloom filters (a binary array); these
Bloom filters are then compared. The encoding process uses
a series of hash functions (again using the HMAC construc-
tion with a secret key) to map elements of the data field to
positions within the Bloom filter. The encoding process al-
lows string similarity metrics to be used, so that variations in
spelling or typographical errors can be accommodated [14].

There are two main variants of privacy preserving linkage
using Bloom filters. The first is field based Bloom filters where
every identifier (first name, surname etc.) is encoded into its
own Bloom filter. This allows the use of techniques typical
of un-encoded record linkage, such as the use of field spe-
cific weights, and the ability to appropriately handle missing
values, along with previously mentioned string similarity mea-
sures. Very high linkage quality has been achieved using this
method [15]. The second variant utilises a record-level Bloom
filter [16] where all fields are added to a single Bloom filter
which is then compared using string similarity measures. This
method does not satisfactorily handle missing values [17] and
uses a less sophisticated weighting approach. As such, it is
likely this method yields poorer linkage quality than the field
based approach, although comprehensive testing has yet to
appear in print.

While Bloom filter methods have a greater tolerance for
differences between records as compared to anonymous link-
age codes, they also have weaker privacy protection. Both the
field and record-level Bloom filter approaches have been shown
to be vulnerable to frequency attacks [18-21]. While potential
solutions to these attacks have been proposed [19, 22, 23], the
nature of the Bloom filter method makes it difficult to ensure
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Figure 1: Privacy preserving linkage using an independent third party
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that further attacks will not be found. Frequency based pat-
terns must exist within Bloom filters; these patterns are what
enables the approximate matching techniques used by these
methods. It is these frequency based patterns that also make
it vulnerable to attacks. While solutions to these attacks re-
move or hide some of these frequency patterns, such patterns
must always exist, and as such, it is difficult to provide any
surety regarding the existence of further attacks.

Other methods: hashing individual identifiers

Some of the earliest examples of privacy preserving record
linkage involve encoding individual identifiers separately us-
ing hash functions. These encoded identifiers are then sent to
the linkage unit who perform the linkage. Linkage can be car-
ried out using standard deterministic or probabilistic methods;
however, the encoding process does not allow string similarity
comparisons to occur. To account for possible misspellings,
techniques such as phonetic encoding can be used prior to the
encoding process [24, 25].

This method of linkage has been used in Germany and
France for the linkage of cancer registries. The method ap-
pears to provide high linkage quality [24, 25]; however, its
weakness lies in its vulnerability to frequency attacks. For in-
stance, it is trivial to determine the most common hash value
for the ‘surname’ field, which will correspond to the most com-
mon surname in the population. As such, the privacy protec-
tions provided by these techniques are minimal.

An alternate approach: privacy preserving
linkage using multiple match-keys

In this paper we present an alternate methodology to the ap-
proaches described above. The proposed method seeks to
combine the best features of both approaches: namely, the
privacy protection offered by the use of anonymous linkage
code along with the linkage quality offered by the Bloom filter
approach. An approach that could achieve linkage quality sim-
ilar to the Bloom filter method without the associated privacy

risks would be highly desirable [26].
Unlike the Bloom filter approach, our method does not

make use of approximate string matching. Rather it aims to
achieve high quality linkage through utilising other important
techniques from traditional (un-encoded) probabilistic linkage
including the use of weights and methods for managing miss-
ing values.

Methods

Overview of the protocol

Overview

The proposed method extends the anonymous linkage code
approach. For each record, a number of hashes are created,
each from different sets of concatenated personal identifiers;
we refer to these hashes as ‘match-keys’. Any pair of records
with the same value for any particular match-key are identified
as belonging to the same individual; that is, each match-key
will directly identify an individual. Rather than use a prede-
termined set of match-keys, match-keys are generated based
on parameters which describe the underlying characteristics of
the data. These parameters are shared between the data cus-
todians, and are used as input to the encoding process. Once
encoded, data is sent to the linkage unit for linkage.

The number of match-keys and the composition of each
match-key are all determined as part of this privacy preserving
approach. Importantly, this composition differs depending on
the characteristics of the dataset(s) in question. These param-
eters are identified through utilizing methods from probabilistic
record linkage.

Probabilistic linkage methods

Probabilistic linkage uses conditional probabilities to compute
the likelihood of two records belonging to the same person
[27]. Records are compared on a pairwise basis. A compari-
son of two records involves comparing each field. Each field
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comparison results in a score based on whether the fields do
or do not match (known as the agreement and disagreement
weight, respectively). The field scores are then summed; if the
summed score exceeds a specific threshold, the two records are
deemed a match [27]. Field scores are calculated using two
conditional probabilities, known as m and u probabilities. The
m-probability is the likelihood that two records belonging to
the same person have the same value for a particular field.
The u-probability is the likelihood that two records belonging
to different people have the same value for a particular field
[27]. These are converted into agreement and disagreement
weights using the following formulas:

Agreement Weight = log (
m

u
)

Disagreement Weight = log (
1−m

1− u
)

Numerous techniques exist for estimating m and u prob-
abilities for a particular dataset and for estimating the desig-
nated threshold [28]. These include Jaro’s method for esti-
mating u-probabilities, the expectation-maximisation estima-
tion algorithm [29] and the iterative refinement procedure first
described by Newcombe [30].

Methodology

From the basic probabilistic model, it is possible to iterate
through all possible combination of field state comparisons for
a pair of records [28]. We will consider a simplified model,
whereby a field comparison can either agree or disagree. The
total number of different combinations of field state compar-
isons is then two to the power of the number of fields (i.e.
the total number of field state comparisons doubles with the
introduction of another field).

Using estimated m and u probabilities and an estimated
threshold score, we can calculate the exact total score each
combination of field comparisons would receive, and deter-
mine which would score above the threshold (an example is
shown in Table 1) [28].

The proposed method replicates the combinations that oc-
cur above the threshold in a privacy preserved manner. The
encoding process is simple; for each field state comparison,
a match-key is created from hashing a concatenation of each
field comparison in agreement. These hashes use the HMAC
construction with a secret key shared between data providers,
as in Figure 1. If one of the component fields to be concate-
nated is missing, the match-key is left blank. An example of
this process, using example data and the combinations from
Table 1, is shown in Table 2. Any two records with the same
value for a particular match-key are designated a match.

Reducing the number of match-keys

The method as described creates match-keys for every field
combination above the threshold. This can result in a large
number of match-keys per record, creating large encoded
datasets and increasing computational load. However, a great
number of these created match-keys are redundant. For in-
stance, if a match-key made up of encoded first name, sur-
name and date of birth is considered identifying, then there is
no need to also compute a match-key for first name, surname,

date of birth and sex; no additional matches could possibly be
found. In this way we can remove a large number of field com-
binations without affecting results. To identify the redundant
field combinations is straightforward; given a field combina-
tion with a set of x fields marked as ‘Agree’ (see Table 1),
any other field combinations that also contains that same set
of x fields marked as ‘Agree’ are not required. This proce-
dure can be applied iteratively over all field combinations to
remove all redundant field comparisons (example code to en-
code match-keys from raw data is provided as supplementary
material).

Preliminary testing suggests this method can greatly re-
duce the number of match-keys required. A typical example of
a linkage involving nine fields produced 402 field state combi-
nations over the given threshold; after removal of unnecessary
combinations, only 41 match-keys were required.

In the next sections, we evaluate this simple method on
a range of synthetic and real administrative datasets. We
compare the results against those achieved with un-encoded
linkage and against other privacy preserving techniques.

Evaluation methodology

Evaluation strategy

De-duplication linkages were undertaken on a range of syn-
thetic and real administrative datasets. Each dataset had
either a truth-set available (for the synthetic datasets) or a
gold standard benchmark with which to compare results (for
real datasets). A range of different linkage methods were com-
pared, including both un-encoded and privacy preserving meth-
ods. The un-encoded methods included probabilistic record
linkage using approximate string matching and probabilistic
linkage using exact matching only. Privacy preserving methods
tested comprised field-level Bloom filters, record-level Bloom
filters, the SLK-581 and the multiple match-key methodol-
ogy. Parameters for each linkage method were calculated us-
ing the available truth-sets and gold standard benchmarks,
with results reported at the threshold providing the optimal
linkage quality (where F-measure was maximised). Parame-
ters were shared across methodologies where possible. Results
were compared using the precision and recall measures de-
scribed below. Algorithms were implemented in Python 2.7
[31]; linkage was conducted using the LinXmart linkage en-
gine [32], which implements the standard probabilistic linkage
methodology.

Datasets

Six separate datasets were included in the evaluation; two syn-
thetic datasets and four real-world administrative datasets.

The two synthetic datasets ‘FER12’ and ‘BRO17’ have
been used in previously published research, and detailed infor-
mation on the data generation process is available [28, 33].
The FER12 dataset contained 400,000 records, of which an
individual could at most have 6 duplicate records; fields in-
cluded first and last name, date of birth, sex, and postcode.
Each field had its own rate of errors and distribution of types
of errors. The BRO17 dataset contained 1,000,000 records;
the distribution of records per person was modelled on a hos-
pital morbidity data collection with a ‘long tail’ where a small
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Table 1: A list of field state combinations (16 different states are possible as there are four fields)

First Name Surname Sex Year of Birth Summed Score

1 Agree Agree Agree Agree 17
2 Agree Agree Disagree Agree 15.5
3 Disagree Agree Disagree Agree 10

. . . . . . . . . . . . . . .

Table 2: An example of the encoding process: two un-encoded records (top) are encoded (bottom) using the field state combinations
from Table 1

Original Data

Record ID First Name Surname Sex Year of Birth

Record1 Sean Randall M 1986
Record2 John Doe 1957

Encoded Data

Record ID Match-Key1 Match-Key2 Match-Key3

Record1 HMAC(SeanRandallM1986) HMAC(SeanRandall1986) HMAC(Randall1986)
Record2 HMAC(JohnDoe1957) HMAC(Doe1957)

number of individuals had hundreds of records per person.
The BRO17 dataset had exactly 10% of fields randomly set to
missing, and another 10% of fields modified in some way (by
truncation, misspellings, replacement of values, etc). Fields
included first name, middle name, last name, date of birth,
street address, and postcode. Each of these datasets con-
tained the ‘answers’, identifying which records did belong to
the same individual. Both datasets are available from the au-
thors on request.

Four large-scale Australian health datasets were also used
in this evaluation; these were hospital admission records from
New South Wales (NSW) and South Australia (SA), and
emergency department presentations from NSW and SA. Each
dataset contained all records from the three years 2008-2010;
only public hospital data was available in the South Australian
datasets. Each dataset had previously been de-duplicated to
a high quality by jurisdictional linkage units (the Centre for
Health Record Linkage and SANT Data Link for NSW and SA
datasets respectively); the links created by these units were
used as the gold-standard benchmark against which our de-
duplication results were compared. These linkage units utilised
a variety of deduplication methods including intensive manual
review of created links along with quality assurance procedures
to analyse and review potential errors [34]. The links created
by these linkage units have been further validated through
their regular use in academic and government research. The
data (personal identifiers only) was made available as part of
a Proof of Concept project for the Population Health Research
Network [35]; ethics approvals were obtained from SA Health,
the Cancer Institute NSW and Curtin University.

Each dataset contained name information (first name, mid-
dle name and surname), sex, date of birth, and address infor-
mation (street address and postcode). Fields used for linkage
and the percentage of missing values within each dataset are

described in Table 3.

Linkage methods

Each dataset was de-duplicated using a range of linkage
techniques; no linkages were conducted between any of the
datasets. The same weights and blocking methods were used
across linkage techniques, and multiple threshold scores were
tested for each method (not all techniques required block-
ing, weights or thresholds). Agreement and disagreement
weights were calculated directly from the available gold stan-
dard benchmark/truth-set. Two sets of blocks were used;
Soundex of surname concatenated with sex, and full date of
birth. This linkage strategy was based on a previously pub-
lished ‘default’ strategy that has been regularly used in linkage
evaluations [36, 37].

Probabilistic linkage was carried out using un-encoded
identifiers. All available variables were used in comparisons.
Two probabilistic linkages were carried out; the first used the
Jaro-Winkler string similarity metric [38] for alphabetic vari-
ables (names and address) and exact matching for other vari-
ables; the second used exact matching for all variables.

Field based Bloom filters were created according to a previ-
ously published methodology [14, 15]. Bloom filters were 100
bits in length, with each variable split into bigrams that were
hashed and added to the Bloom filter; three hashes were cre-
ated for each bigram. The Sorenson-Dice coefficient [39] was
used to compare Bloom filters. Weights and blocking fields
were used as described above.

Record based Bloom filters were created based on the cryp-
tographic long-term key construction by Schnell [16], using
the weighting method described by Durham [40]. For each
record, a Bloom filter of 1000 bits was created. The number
of hashes computed for each bigram in each field depended
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Table 3: Number of records and percentages of missing values for each dataset

FER12 BRO17 SA Emergency NSW Emergency SA Hospital NSW Hospital

No. Records 400,000 1,000,000 813,839 4,304,459 1,007,242 6,658,380

Proportion of missing values
First Name 2.4% 10.0% 2.2% 0.1% 3.1% 33.2%
Middle Name - 10.0% 74.4% 83.4% 79.3% 66.9%
Surname 2.6% 10.0% 1.3% 0.0% 2.4% 33.3%
Date of Birth 11.8% 10.0% 0.0% 0.0% 0.0% 0.0%
Sex 5.2% 10.0% 0.0% 0.0% 0.0% 0.0%
Address - 10.0% 4.6% 4.2% 7.8% 10.4%
Postcode 1.1% 10.0% 7.5% 1.2% 9.4% 0.6%

on the weight of the field, as well as the average length of
the field. Address information was not added to record-level
Bloom filters as preliminary testing indicated reduced linkage
quality when these fields were included; previous research has
also noted this issue [17]. The middle name field was also ex-
cluded due to its high proportion of missing values. Separate
blocking fields were also created as described above.

The standard SLK-581 was also evaluated, created from
the second and third letters of the individual’s first name, the
second third and fifth letters of their surname, along with full
date of birth and sex [4].

For the multiple match-key algorithm, weights were used to
generate field state combinations. Linkage quality was calcu-
lated on all generated match-keys over the chosen threshold.
The SHA-1 hash algorithm was used with output truncated
to 90 bits per hash; this provided adequate security against
collisions (for 100 million unique hash values there was ap-
proximately a 1 in a trillion chance of two hashes having the
same value) while reducing file sizes.

Measuring linkage quality

Linkage quality was measured using pairwise precision and re-
call, with the F-measure used as an overall metric of linkage
quality. Results were reported at the threshold which max-
imised the F-measure.

Results

Linkage quality results for each tested linkage method across
all six datasets are shown in Table 4; results are shown at the
threshold which optimised linkage quality.

As expected, un-encoded probabilistic record linkage us-
ing approximate string matching achieved the highest linkage
quality across all datasets. Generally, the use of approximate
string matching as compared to exact matching resulted in
minor decreases in linkage quality; this decrease was larger for
the synthetic datasets, likely due to their higher rates of error.

In regards to privacy preserving techniques, field-level
Bloom filters provided the highest linkage quality on all but
one of the tested datasets. The multiple match-key method
was the next best in terms of quality, with results only slightly
below those for the field-level Bloom filters on most datasets.
The record-level Bloom filters typically performed below that

of the multiple match-key method, except for the SA Hospital
dataset, where all three of these PPRL methods performed
equally. The SLK method performed adequately on three of
the four administrative datasets, however, results were lower
than for all other tested methods. This method performed no-
tably poorer for the NSW hospital dataset and both synthetic
datasets due to the preponderance of missing values in these
files.

One notable outlier was the results from the BRO17
dataset, where the multiple match-key method outperformed
all compared methods, including un-encoded methods. We at-
tributed this to the fact that the multiple match-key method
does not require blocking; the BRO17 dataset had high lev-
els of missing values in all fields and the standard blocking
strategy was likely not appropriate here.

The number of hashes created in the multiple match-key
method for each dataset varied from 14 (FER12 synthetic
data) to 83 (NSW hospital data). Time taken for data en-
coding and linkage, and encoded file sizes (not reported but
available from authors) were comparable to other evaluated
methods.

Discussion

In general, the privacy preserving linkage methods evaluated
here showed high linkage quality, providing continuing evidence
of the viability of this method of record linkage. This was par-
ticularly apparent in datasets with few missing values or errors
in identifiers, where all tested methods provided very high link-
age quality.

Based on these results, field-level Bloom filters are the
privacy preserving method which provides the greatest link-
age quality. The high quality returned from our linkages were
consistent with those achieved previously [15]. However as
previously mentioned this method is vulnerable to frequency
attacks [18-21] and so may not be suitable in situations where
privacy protection is paramount. As expected, record-level
Bloom filters performed poorly when compared against their
field-level equivalents, and also performed poorly relative to
the multiple match-key method introduced here.

In contrast, while the SLK method is simple to implement
and can provide strong privacy protection if used appropriately
(i.e. using the HMAC algorithm with a strong password), it
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Table 4: Results from linkage quality evaluation

Dataset 1: FER09 Precision Recall F-measure

New PPRL1 method Multiple match-key PPRL 0.928 0.788 0.856
PPRL SLK2 0.871 0.570 0.689
PPRL Record-level bloom filter 0.937 0.778 0.850
PPRL Field-level bloom filter 0.941 0.793 0.860
Un-encoded Probabilistic linkage using approximate string matching 0.986 0.805 0.886
Un-encoded Probabilistic linkage using exact matching only 0.940 0.777 0.851

Dataset 2: BRO17 Precision Recall F-measure

New PPRL method Multiple match-key PPRL 0.992 0.943 0.967
PPRL SLK 0.960 0.239 0.383
PPRL Record-level bloom filter 0.934 0.691 0.794
PPRL Field-level bloom filter 0.997 0.813 0.896
Un-encoded Probabilistic linkage using approximate string matching 0.996 0.815 0.897
Un-encoded Probabilistic linkage using exact matching only 0.993 0.810 0.892

Dataset 3: SA Emergency Precision Recall F-measure

New PPRL method Multiple match-key PPRL 0.967 0.990 0.978
PPRL SLK 0.995 0.945 0.969
PPRL Record-level bloom filter 0.992 0.956 0.974
PPRL Field-level bloom filter 0.984 0.978 0.981
Un-encoded Probabilistic linkage using approximate string matching 0.985 0.980 0.982
Un-encoded Probabilistic linkage using exact matching only 0.969 0.990 0.979

Dataset 4: NSW Emergency Precision Recall F-measure

New PPRL method Multiple match-key PPRL 0.997 0.983 0.990
PPRL SLK 0.999 0.966 0.982
PPRL Record-level bloom filter 0.989 0.978 0.983
PPRL Field-level bloom filter 0.995 0.987 0.991
Un-encoded Probabilistic linkage using approximate string matching 0.995 0.990 0.993
Un-encoded Probabilistic linkage using exact matching only 0.995 0.985 0.990

Dataset 5: SA Hospital Precision Recall F-measure

New PPRL method Multiple match-key PPRL 0.993 0.991 0.992
PPRL SLK 0.975 0.988 0.981
PPRL Record-level bloom filter 0.991 0.992 0.992
PPRL Field-level bloom filter 0.995 0.989 0.992
Un-encoded Probabilistic linkage using approximate string matching 0.996 0.987 0.992
Un-encoded Probabilistic linkage using exact matching only 0.995 0.988 0.991

Dataset 6: NSW Hospital Precision Recall F-measure

New PPRL method Multiple match-key PPRL 0.983 0.991 0.987
PPRL SLK 0.072 0.920 0.134
PPRL Record-level bloom filter 0.754 0.921 0.829
PPRL Field-level bloom filter 0.992 0.989 0.990
Un-encoded Probabilistic linkage using approximate string matching 0.992 0.989 0.991
Un-encoded Probabilistic linkage using exact matching only 0.988 0.991 0.990

1 Privacy preserving record linkage
2 Statistical linkage key
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does not appear suitable as an all-purpose privacy preserving
linkage method, given the very poor linkage quality seen with
some of the datasets. Although not tested here, we expect
other anonymous linkage code methods to perform similarly
to the SLK.

The multiple match-key method introduced in this paper
provided admirably high linkage quality. It was superior to the
SLK method, which was the only evaluated privacy preserving
method with similar privacy protections. The field level Bloom
filter was the only privacy preserving method to produce higher
linkage quality; this method has known deficits in terms of
its privacy protections [18-21]. It was not unexpected that
field-level Bloom filters provided higher quality results, given
their additional use of approximate string matching to identify
matches; however, the associated increase was typically small
in magnitude.

A key consideration in assessing the viability of the multi-
ple match-key privacy preserving method was determining the
extent to which string similarity matching (which this method
does not use) contributes to high linkage quality. Previous
studies comparing results using string similarity matching to
those without have found large decreases in error rates for
some datasets [38]. A number of publications (including those
of the authors [6]) have stressed the importance of approx-
imate matching methods for ensuring accurate privacy pre-
serving record linkage. However, this study has found the
difference between un-encoded linkages utilising approximate
matching and those using only exact matching to be small,
suggesting the importance of string similarity matching in en-
suring quality may be overstated. The extent to which string
similarity metrics improve results will clearly depend on the
characteristics of the dataset in question; in an extreme ex-
ample, Winkler reports a linkage in which among true-matches
20% of last-names and 25% of first names contained spelling
differences [41]. Such a dataset clearly would require approxi-
mate matching techniques, and we would expect our multiple
match-key method to perform poorly here. It is an open ques-
tion as to what proportion of administrative datasets fall into
this category.

Privacy of the multiple match-key PPRL
method

The multiple match-key method presented here appears highly
resistant to both dictionary and frequency attacks. Dictionary
attacks are not possible through the use of a secret key in
hashing (the HMAC construction) which is shared amongst
data custodians and kept from the linkage unit. Frequency
attacks also do not appear possible. Each particular match-
key generated by this protocol is made up of a combination of
fields that directly identifies an individual. If the same value
of a match-key exists in two or more records, this means these
records belong to the same person. As such any frequency
analysis of match-keys will simply provide a list of which indi-
viduals who are found in the datasets most often, rather than
provide any information on their identifiers.

The hash-based encoding process used in this protocol
means that similar input values do not result in similar match-
keys, a feature of the Bloom filter approach which has allowed
frequency attacks to occur. As the protocol does not cre-
ate match-keys if one of their component fields is a missing

value, it is also not possible to perform frequency attacks of
match-keys on the subset of records where particular fields are
missing. The use of inappropriate match-keys (for instance,
the use of the single surname field as a match-key) would al-
low frequency attacks to occur. This could potentially occur
through human or other error. Such a match-key is not advis-
able not just on privacy grounds but also on quality grounds,
as it would of course also result in extremely poor linkage
quality (all records with the same surname would be matched
together). In practice, this type of error would be easy to
identify before data is encoded and sent to the linkage unit,
and so is unlikely to occur.

The use of more than one match-key provides one vector
by which information about the individuals can be learnt. In-
formation is leaked when comparing two records with some
match-keys matching and others not-matching. For instance,
if two records have the same match-keys for combinations that
do not include surname, but different match-keys for combi-
nations that do include surname, it is likely that the surnames
differ between these matching records. This can reveal in-
formation about the record in question; for instance, as it is
more common for women than men to change surname in their
lifetime, we could guess that this record is more likely to be
female than male. While the use of multiple match-keys can
leak information, it does not appear able to re-identify an in-
dividual; rather, it suggests broad demographic groupings of
which a record may be part. This privacy issue is not unique
to the multiple match-key method but is inherent in all pri-
vacy preserving methods which use multiple encoded values.
In situations where greater privacy considerations are required
such that no information about an individual can be inferred, a
single match-key (i.e. the SLK approach but using the HMAC
construction) is the most viable option, despite its associated
reduction in linkage quality.

Strengths and limitations

The privacy preserving method presented here achieves both
high accuracy and appears to provide strong privacy protec-
tion. While the absence of approximate string matching in the
method may present as a limitation, our results suggest that,
in general, approximate string matching provides limited qual-
ity improvement. However, for certain datasets, approximate
matching will be of greater importance, such as those with
very few identifiers or large numbers of typographical errors,
and in these situations, we expect the multiple match-key pro-
tocol will likely perform worse than other techniques such as
record-level Bloom filters.

The method proposed here is an extension of the anony-
mous linkage code concept to utilise more than one match-key.
A similar method has been proposed by the ONS [3], although
it has yet to be evaluated. A key difference is that in our
method, the generation of match-keys is based on underlying
characteristics of the datasets while the ONS approach uses
a set of predetermined match-keys for all datasets. By gen-
erating match-keys in this way, our method will be applicable
to a wider range of datasets, including those containing fields
with large proportions of missing values and those with addi-
tional or alternate fields to the ones specified in the hard-coded
method.

Further research is needed to investigate the performance
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of the multiple match-key method (as well as the other meth-
ods) in a real-world setting, where parameters must be es-
timated rather than calculated. Techniques for estimating
weights and thresholds necessary for the multiple match-key
methodology exist and have received evaluation in privacy pre-
serving contexts [28]. It should be noted that such parameters
are normally estimated by the linkage unit at time of linkage;
however, the proposed protocol requires estimation prior to
data transfer, as estimated parameters are used in data en-
coding. A simple method to generate these parameters would
be for each data custodian to compute parameters for their
datasets and provide these to the linkage unit, who can then
calculate a set of global parameters to be used for encoding
all datasets, based on these local parameters. Additional work
is required to validate such a procedure.

Conclusion

In this paper we describe and evaluate a new approach to
PPRL. The results of our evaluation suggest this method can
achieve very high quality results, while at the same time pro-
viding strong privacy protection.

The differing privacy preserving protocols evaluated in this
paper each have their own strengths and weaknesses, and will
each be suitable in particular scenarios. The multiple match-
key protocol does not achieve as high a quality as field-level
Bloom filters but offers greater privacy protection. It provides
slightly better linkage quality in most scenarios as compared
with the record-level Bloom filter approach, while providing
greater certainty regarding privacy. Finally, it provides greater
linkage quality than that offered by a solitary match-key such
as the SLK method. As such, we feel this protocol is an im-
portant and timely contribution to the current state of the
art.
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