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Abstract 
 

This research work proposes intensive study and mathematical modelling analysis of 

transformer-less quasi Z-source inverter (qZSI) based static synchronous compensator 

(STATCOM) system. Among the shunt-connected Flexible AC Transmission System 

(FACTS) controllers, STATCOM has shown extensive feasibility and effectiveness in 

solving a wide range of power quality problems. From the literature reviews, multilevel 

cascaded H-bridge inverter (MCHI) is undoubtedly the most adaptable power inverter 

topology in STATCOM application to produce high quality sinusoidal alternating current 

(AC) waveform with minimum harmonics. However, the direct current (DC) side of H-

bridge inverter requires an additional bidirectional DC-DC converter (i.e., resulting a two-

stage system) to achieve four quadrants of operations. This results in high cost and 

complicated control of the converter. A qZSI demonstrates the advantages of being able 

to perform power conversions from DC to AC, AC to DC, DC to DC and AC to AC 

through a single-stage topology when compare with the counterpart. This significantly 

enhances the inverter efficiency and reduces the overall construction cost. Moreover, each 

phase-leg of qZSI module (i.e., formed by two series-connected switches) can turn on 

simultaneously with no dead-time to improve the inverter reliability and the quality of the 

generated AC output waveform. In this work, a single-phase three-level qZSI is acted as 

a STATCOM system to compensate the grid reactive power (VAR) at the point of 

coupling (PCC) under different loading conditions. A new controller-based lead 

compensator is developed to achieve fast DC-link voltage balance across each quasi Z-

source (qZS) network, which is unachievable with the traditional proportional integral (PI) 

controller. To evaluate the superiority of the proposed system and control scheme, 

extensive simulation studies are conducted accordingly, where all the results are 

documented systematically. 
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Nomenclature 
 

BCM Boundary conduction mode 

CCM Continuous conduction mode 

CHB Cascaded H-bridge 

DCM Discontinuous conduction mode 

DFR Double-frequency ripple 

FET Field-effect transistors 

Gan Gallium nitride 

I&C Incremental and conductance 

MBC Maximum boost control 

MCBC Maximum constant boost control 

MCHI Multilevel Cascaded H-bridge Inverter 

MPP Maximum power point  

MPPT Maximum power point tracking 

P&O Perturb and observe 

PAM Pulse width amplitude modulation 

PCC Point of common coupling 

P Proportional 

PI Proportional integral 

PID Proportional integral derivative 

PLL Phase-lock loop 

PSA-PWM Phase-shifted amplitude PWM 

PS-SPWM Phase-shifted SPWM 

PV Photovoltaic 

PWM Pulse width modulation 

qSBI  Quasi switched boost H-bridge inverter 

qZCHI  Quasi Z-source cascaded multilevel inverter 

qZS Quasi Z-source 

qZSI  Quasi Z-source Inverter 

SBC Simple boost control 
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SPWM Sinusoidal pulse width modulation 

SRF Synchronous reference frame 

STATCOM Static synchronous compensator 

SVM Space vector modulation 

THD Total harmonic distortion 

VAR Reactive power 
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Chapter 1 : A Critical Review for the Open Literature  

 

Batteries have become one of the most promising energy resources in recent years 

and have increased enormously in the markets. DC/AC inverter is designed as the core of 

the battery system that inverts DC to AC supply waveform to suit remote stand-alone 

application or off-grid power system. In the past five years, numerous control schemes 

have been applied to battery qZSI based STATCOM system. Particularly, DC-link voltage 

control scheme has been developed to balance the DC-link voltage in qZS network. In 

most cases, proportional-integral (PI) controller has been the most popular method to 

perform control actions specifically in the STATCOM’s feedback loops [1-4]. However, 

PI controller shows some drawbacks which include slow response speed as well as poor 

robust performance against the system uncertainties and exogenous disturbances. Also, 

there are several existing works revealed that the use of PI controller will lead to poor 

transient and dynamic responses as well as causing instability to the system when the 

system parameters and operating points are varying [5, 6]. Another drawback of PI 

controller is that it could not provide precise tracking on the commanded values which is 

the main cause of poor transient response and instability in the STATCOM system [7]. 

Similarly, no research has been carried out to demonstrate the dynamic and transient 

performances of qZSI based STATCOM system under different loading condition. 

Besides, the mathematical derivation of STATCOM controller’s parameter (i.e., gain 

parameters) has not been specifically defined. Furthermore, details on the modulation 

techniques as well as the application of both the sampling and switching frequencies on 

the modulation techniques are not revealed. 

The aforementioned phenomena also apply to qZSI module itself, where the DC 

side impedance design and efficiency calculation methods are not established in any work. 

These include:  

i. The relationship between the generated line voltage total harmonic distortion 

(THD) and the shoot-through duty cycles.  

ii. The relationship between the generated line voltage THD and the modulation 

index.  
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iii. The relationship between the shoot-through duty cycles and the pulse width 

modulation (PWM) modulation index.  

iv. The control scheme to provide direct control of shoot-through duty ratio based on 

different loading conditions.  

v. The boundary condition at which the qZSI network will operate in continuous 

conduction mode (CCM) or discontinuous conduction mode (DCM).  

 

All these matters have direct effect on the cost, size, reliability, dynamic and 

transient performances of battery qZSI based STATCOM system. 
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1.1 Building the Justification 

1.1.1 The Research Field 

 

QZSI is one type of power inverter which can boost the DC input voltage and 

invert it to AC waveform in a single-stage topology. When compared with conventional 

DC-AC inverter which requires additional DC-DC converter to buck/boost the DC input 

voltage, the two series-connected switches from each phase-leg of qZSI can be turned on 

at the same time. This interval is referred to as the shoot-through state, which the inductors 

will be charged up. On the contrary, the inductors will release its stored energy and charge 

up the qZS network’s capacitors in active-state to achieve boosting effect. QZSI can 

operate in boundary, CCM and DCM. However, CCM mode is preferable because the 

input current will never fall to zero; hence, resulting in lower voltage stress and higher 

system efficiency.  

STATCOM is one of the inverter-based FACTS devices. It can be used as a shunt-

connected compensator to control the power flow, enhance the transient stability, and 

improve the power factor of the grid. To achieve that, STATCOM is connected at the PCC 

to inject or absorb active and reactive current. For instance, when inductive loading 

condition or low PCC voltage is detected, STATCOM will produce larger magnitude of 

AC voltage than the PCC voltage to inject the current at the PCC. In contrast, STATCOM 

can absorb reactive current from the PCC when PCC voltage is higher or capacitive 

loading condition is sensed.  
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1.1.2 Research Gap 

 

The selection of switching frequency has direct proportional relation with the 

active suppression of THD and the dynamic response of a qZSI. Since a single-stage qZSI 

topology can be operated with considerable high-equivalent switching frequency (i.e., 

from 5 kHz [8] to 100 kHz [4, 9]), the qZSI based STATCOM system will provide fast 

power compensation across the grid under different loading conditions. Nevertheless, the 

switching loss, conduction loss, and power handling of qZSI module should be taken into 

consideration in the design process. 

The cost and size of STATCOM system can be affected by the size of the DC-link 

passive components (i.e., capacitors and inductors). qZSI is no doubt the favourable 

inverter when compared with other DC-DC converters due to its smaller size of LC filters 

at high switching frequencies. Nevertheless, mathematical formulation to obtain the 

effective value of each passive component should be proposed to achieve a compromise 

between size, efficiency, switching frequency, and cost for a given power rating.  

There are two capacitors in a qZS network. Unlike inductor current, DC voltage 

of capacitors in qZS network will never fall to zero in any operating mode (i.e., boundary 

condition, CCM and DCM). Till present, there is no existing work has been done to 

investigate the fundamental mathematical derivation of the steady-state small-signal 

equivalent circuit of battery qZSI based STATCOM system. 
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1.1.3 Research Questions 

 

The research questions are listed as below:  

i. What are the relationships between the efficiency and power density of the battery 

qZSI based STATCOM system with  

a) Switching frequency  

b) qZS network parameters  

c) boundary condition, CCM and DCM operation  

ii. Do the shoot-through reference lines, which are used to control the shoot-through 

duty ratio via intersection of carrier waveform affect the THD of the generated 

PWM voltage, increase the output current ripple as well as influence the qZS 

network design and the system efficiency?  

iii. Is qZSI based STATCOM system able to provide fast acting dynamic power 

compensation for voltage support during fortuity events [10, 11] and then reach 

steady-state within 200ms according to the grid codes [12]? 
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1.2 Objectives 

 

The aim of this research work is to design transformer-less battery qZSI based 

STATCOM system for grid-tie application. The research objectives can be classified as:  

i. Derivation of mathematical equation to determine the boundary condition, CCM 

and DCM and validate the accuracy of the mathematical equation by examine the 

variation of simulation results from theoretical value (deviation within +/-10%).  

ii. Development of control scheme to achieve balanced DC-link voltage in qZSI to 

ensure the voltage deviated within +/- 10% from the pre-set DC voltage reference.  

iii. Design the battery qZSI STATCOM system that can provide reactive power 

compensation to the grid and achieve steady-state within 200𝑚𝑠  when a step 

change of loading condition is applied.  
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1.3 Novelty, outcomes and Significance  

 

The first novelty of this research work is the development of battery qZSI 

STATCOM system. In this research work, the proposed system is utilized to provide 

reactive current compensation to the grid. Furthermore, the fundamental mathematical 

equations of the steady-state small-signal equivalent circuit of the proposed system which 

has not been covered in any literature are derived.  

On the other hand, lead compensator is used to replace PI controller to achieve fast 

and stable DC-link voltage balance in qZS impedance network. According to literature 

review, lead compensator demonstrated better performance than PI and PID controller in 

controlling the speed of machine and robotic movement [13, 14]. Nevertheless, no 

research has been carried out to implement lead compensator in voltage or current control 

loop of a qZSI topology.  

Apart from that, several researchers have defined the boundary condition, CCM 

and DCM in qZSI [42, 43]. However, no existing work had been done to distinguish the 

operating mode between CCM and DCM in qZSI topology. In this work, mathematical 

equations are derived to distinguish the operating modes of qZSI in boundary condition, 

CCM and DCM. Noticed that DC-link output voltage generated by qZSI diverges to a 

larger value when the topology changes from CCM to DCM mode. Most research works 

only focused on CCM mode, but knowing that in real-life application, the qZSI topology 

has the contingency to go from CCM to DCM or vice versa due to the changes in loading 

condition. Therefore, it is important to derive a mathematical equation that define the DC-

link voltage of qZSI in DCM mode.  

The outcomes of this research work are summarized as follows:  

i. The derived mathematical equations (i.e., to distinguish between boundary 

condition, CCM and DCM) reflect the selection of the size of passive component 

(i.e., inductor) to construct qZS network. Designing a qZSI topology that operates 

in CCM mode reduces the voltage stress and thus increasing the overall efficiency. 

The selection of the size of passive components also provide direct influence on 

the dynamic and transient response of the qZS network. On the contrary, the 

operation mode of qZSI in DCM must be taken into consideration as well. When 
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the qZSI topology changes from CCM to DCM, the derived mathematical equation 

that characterized DC-link voltage in DCM is complied in the control system block 

diagram to avoid undesired deviation in output voltage.  

ii. The developed controller (indicated in second novelty) ensures stable and good 

dynamic responses in DC-link voltage which attain a maximum percentage 

overshoot of 10% and accomplish steady-state in 𝟐𝟎𝟎𝒎𝒔 when there is a step 

change in loading condition.  

iii. The proposed qZSI should be ensured to generate AC voltage with THD of 5% or 

less. A low THD output voltage indicates that the inverter topology produces a 

more accurate and undistorted voltage to the grid.  
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1.4 Significances 

 

The significances of this research work are listed as follows:  

i. The proposed system can improve the power quality as well as the system 

efficiency of battery-based electricity generation.  

ii. The proposed system provides power compensation to the grid.  

iii. This research project can be implemented in rural electrification projects 

especially in Sabah and Sarawak at where intensive solar energy is available and 

inland transportation is less developed. The coverage can be extended to remote 

and isolated areas with minimal cost as continuous grid connection from urban 

electricity generation source to remote area is limited.  

iv. The number of components used in the proposed system are reduced due to lower 

number of switching elements. The reduction in components used allows the cost 

of the inverter system to be reduced in proportional.  

v. This research project could improve and accelerate the contribution of solar energy 

in Malaysia electricity generation and it is expected to be able to reduce the non-

renewable energy consumption especially the use of fossil fuels. Hence, resulting 

in the reduction of harmful by-product and greenhouse gases emission which came 

from transportation and power generation sectors.  

vi. This research project can be upgraded and commercialize into electronic products 

in industry and household application.  
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1.5 Research Method 

 

The initial phase of this research work is to investigate the characteristics of battery 

resource and the operating characteristics of qZSI. Then, novel control scheme and 

modulation technique was explored and implemented for qZSI to operate in either 

boundary conduction mode (BCM), CCM or DCM. All previous efforts have been 

extended and acting as a STATCOM system. After verifying all theoretical analysis, 

further validation has been carried out via simulation results. The 1.5 years research 

activities are summarized in the Gant charts under Research Timeline section. This 

research work has been carried out according to the following stages:  

i. Design of qZSI’s DC-link controller:  

Several approaches have been carried out to design the controller for qZSI to 

ensure desired PWM duty ratio generation and stabilization of its DC-link voltage. 

These include:  

a) Mathematic derivation of small-signal model of qZSI (i.e., its state-space 

equations and transfer functions),  

b) Mathematic derivation of qZSI in boundary, CCM and DCM,  

c) Signal-flow graph of qZSI’s system variables (i.e., its dynamic modelling), and  

d) Design of DC-link controller (i.e., lead compensator).  

Besides that, proper selection of the size of passive components (i.e., capacitors 

and inductors) should be taken into consideration in the qZS impedance network 

design process. 

For instance, the size of the inductor determines the qZSI operating mode (i.e., 

boundary condition, DCM or CCM) while the capacitor value has direct effect to the 

DC-link voltage ripple. In addition, the size of these passive components has a direct 

influence on the dynamic and transient response of a control scheme. 

ii. Simulation and Verification of Models:  

The works have been carried out using graphical programming tool (i.e., 

MATLAB/Simulink software package). This includes the implementation of grid-tie 

PV-battery qZCHI based STATCOM system, which aimed to achieve both grid-tie 

and reactive current compensation in qZS network. The performance of the proposed 
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system has been measured under all or either in boundary, CCM or DCM. The 

dynamic and transient responses of the proposed control scheme (i.e., STATCOM 

feed-forward and DC-link controllers) have been evaluated and discussed briefly. The 

in-depth research methodology of the qZSI model were explained in more details in 

their own sections (i.e., chapter 4 to chapter 6).  
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1.6 Thesis outline 

 

A brief description for each chapter is provided as follows, a more detail 

explanations for each chapter have been covered in the following section.   

 

Chapter 1: 

Provides a general introduction covering the power electronics technology. This chapter 

also covers the research background, research gap and relevant research questions, scope 

and objective, novelties, outcomes and significant of this project. Moreover, this chapter 

includes one section which describes a brief introduction on the research methods taken 

to achieve the aim of the project. The details methodology is included in of the following 

chapters (i.e., Chapter 3, Chapter 4 and Chapter 5). 

 

 

Chapter 2: 

This chapter describes the literature reviews which is relevant to this research topic. This 

chapter also provides the comprehensive investigation on the previous researchers’ 

finding in qZSI topology and its DC-link control system. In addition, this chapter provides 

a comparison of different type of existed controllers and its performance in maintaining 

the dynamic and transient response of inverter topology. Furthermore, the operating 

modes of the qZSI are also discussed and investigated including CCM and DCM. Using 

the literature reviews, able to provide with more research questions and solution finding.  

 

 

Chapter 3: 

This chapter covers the working principle of qZSI in both CCM and DCM. This includes 

the mathematical equations to distinguish between these modes. This chapter also 

discusses on the parameters that have a direct impact on the operating mode of qZSI. 

Simulation results have been included to verify the feasibility of the derived equations.  
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Chapter 4: 

This chapter covers the detail mathematical derivation of qZSI large and small-signal 

analysis. The working principle and the design procedure of the proposed controller (i.e., 

lead compensator) are explained in detail. Simulation results are presented at the end of 

this chapter to identify the performance of the proposed controller. The simulation results 

consist of two parts, first part includes the effectiveness of the controller in maintaining 

the DC-link voltage when a step change in reference DC-link voltage was applied. The 

second part shows the simulation results of the proposed lead compensator when different 

loading conditions were applied in the output load.  

 

Chapter 5: 

Chapter 5 presents different methods used to regulate the power quality of the qZSI 

module at the PCC and when qZSI is integrated with PV power system. This includes the 

used of maximum power point tracking (MPPT) algorithm to stabilize the fluctuation of 

the PV power. Meanwhile, STATCOM system is responsible to provide power factor 

correction for the grid to maximize power transmission efficiency. Then, it is followed by 

the modelling of two energy storing battery-based qZSI. This includes the derivation of 

the transfer function of the proposed model. This chapter is later extended with the 

modelling of PV-based qZSI model with STATCOM system. The chapter is ended with 

two simulation results; the first simulation covers the employment of MPPT algorithm 

into qZSI module to achieve maximum power tracking. Second simulation depicts the 𝒊𝒐𝒒 

algorithm in providing reactive power compensation to the grid.  

 

Chapter 6: 

Chapter 6 presents the conclusion remarks of the entire research project as well as the 

possible future works to be carried on.  
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Chapter 2 : Literature review 

2.1 Introduction  

 

Due to the fluctuation in fuel price which is a common circumstance in recent 

years, it has caused extensive growth in power electronics and battery industries. As a 

result, the demand for Electric Vehicles (EVs) has grown drastically over the past two 

years [15]. This lead to a lower equilibrium cost and hence, more consumers to purchase 

EVs since then. Therefore, power quality and efficiency issues have becoming a very 

important subject to be investigated. Moreover, most of the existing unidirectional EV’s 

battery chargers with conventional two-stage rectifier-inverter circuit cannot be used in 

smart grid for vehicle-to-grid purpose [16, 17]. To overcome the stated phenomena, the 

integration of power electronic and renewable energy generation systems promises 

alternatives to replace conventional generation units for electricity regeneration. 

Apart from that, the STATCOM system plays an important role in maintaining 

high system efficiency in converter topology. Reactive power is present in converter 

system due to the reactive components such as inductors and capacitors in an AC power 

system. High reactive power generated in the power grid will cause extensive power loss. 

To avoid power loss, the power factor must be kept as close to unity as possible. Therefore, 

STATCOM system plays the role in reactive power compensation by regulating the 

desired output AC voltages or current which is to be fed into the grid synchronously. The 

STATCOM system provide power compensation by either generating or absorbing 

reactive power.   
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2.2 qZSI topology 

 

The qZSI topology (see Figure 2.1(a)) was first emerged in 2008 as an improved 

version of Z-source inverter (see Figure 2.1(b)) which introduced back in 2003 [18]. The 

improvements of qZSI include constant DC current drawn from the source [19, 20], less 

switching pulses [21], lower passive component rating, and reduction of capacitor’s 

voltage stress in the qZS network [22]. Conventional H-bridge inverter requires an extra 

DC-DC boost converter (see Figure 2.2), which form a two-stage system, to achieve 

variable DC voltage levels across its DC-link. When compared with qZSI, the generated 

AC output waveform via the two-stage system is distorted due to the dead-time employed 

across each phase-leg to prevent short-circuit occurs through the series-connected upper 

and lower switches. Moreover, the integration of DC-DC converter with H-bridge inverter 

increases the construction cost and reduces the operating efficiency [23]. For qZSI, it 

provides boosting capability and voltage inversion in just a single-stage. It allows the 

series-connected active switches to be turned on simultaneously in shoot-through state and 

the DC voltage to be boosted in active-state. These aspects made qZSI an attractive 

topology for interfacing with renewable energy sources, especially wind and solar energy 

to the grid [23-28]. 

 

 

 

(a) (b) 

Figure 2.1: Single-phase (a) Z-source inverter and (b) qZSI 
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Figure 2.2: Traditional two-stage buck-boost inverter 

 

Figure 2.3 (a) depicts circuit diagrams of conventional MCHI and qZS cascaded 

H-bridge inverter (qZCHI) topologies. MCHI, which acts as voltage-source inverter 

(VSI), produces less THD of multilevel output voltage with low switching frequency 

and possibly, eliminate the needs of AC filters [24-26]. Those are achieved by stacking 

more H-bridge inverter in series to generate higher-level staircase sinusoidal voltage 

waveform. Nevertheless, even though MPPT has been employed in the module, MCHI 

is still suffered with extensive power loss and DC-link voltage unbalance across each 

unit which may cause instability. Then, qZCHI overcome the aforementioned 

disadvantages of conventional MCHI by combining the quasi impedance network (i.e., 

with 2 pairs of LC filters) and H-bridge inverter [2-4, 27, 28]. The network is shown in 

Figure 2.3(b). The bridge leg of qZSI allows shoot-through states to occur without extra 

switching element required on the DC side. These features made qZCHI competitive in 

the application of PV power system in terms of efficiency and reliability.  
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(a) (b) 

Figure 2.3: Single-phase circuit diagram of (a) MCHI and (b) Multilevel qZCHI 
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2.3 Pulse Width Modulation Techniques of qZSI 

 

During the past decade, qZSI topology had undergone fast development because 

of their promising characteristics. Like other power conversion topologies, the key 

elements of qZSI consist of the voltage/current control scheme, PWM technique, and the 

circuit structure itself. For instance, a semi-Z-source inverter with only two active 

switching devices was proposed in [1] to realize the same output voltage produced by 

qZSI. In addition, the introduction of shoot-through zero state to the modified sinusoidal 

PWM (SPWM) technique was not needed. Nevertheless, the efficiency of the proposed 

inverter was discontented due to the high switch voltage stress on the switches (i.e., 

switching frequency of 20 kHz).  

Carrier-based PWM was the commonly used PWM technique for qZSI to generate 

AC output voltage. To achieve shoot-through state, there are several existing carrier-based 

PWM technique, which known as simple boost control (SBC) [18], maximum boost 

control (MBC) [29] and maximum constant boost control (MCBC) [30]. Besides, space 

vector modulation (SVM) techniques were also investigated and provide different 

maximum shoot-through time intervals [31]. For instance, in 2014, a single-phase seven 

level qZCHI controlled with SVM was proposed in [2] and [32]. The results demonstrated 

the accomplishment of DC-link voltage balance among the cells and low THD of the grid-

tie output voltage and current. Later, the work was extended to three-phase system, where 

all the positive outcomes from [2] was achieved in [32]. Nevertheless, detail of associated 

switching frequency was not reveal. Pulse width amplitude modulation (PAM), which was 

proposed in [33], shows that a reduction of up to 87% switching loss can be achieved. 

Moreover, PAM-based inverter can achieve higher power density with smaller footprint 

when compared with the mentioned modulation techniques.  

In 2013, a comparison work between the phase-shifted amplitude PWM (PSA-

PWM) and phase-shifted sinusoidal pulse width modulation (PS-SPWM) was 

demonstrated in [12]. It was concluded that the proposed technique greatly reduced the 

number of switching actions with lower switching frequency (i.e., 5 kHz). Therefore, 

reducing the switching loss for more than 50%. Later, to prevent any solar energy 
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harvesting issue, a modified modulation technique incorporated with a double-frequency 

ripple (DFR) suppression controller was proposed to lower down the DC input voltage 

DFR without using large capacitance [9]. The capacitance used in the qZSI was 10 times 

smaller than the conventional application. Nevertheless, proposed topology experienced 

higher power loss and the voltage stress across the switches (i.e., at switching frequency 

of 100 kHz) was increased by 53% when compared with conventional design. 
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2.4 Integration of novel topology to qZS network   

 

Another novel topology of cascaded (two-stage) qZS network was proposed in [34, 

35] to achieve extended voltage boost. When compared with classical qZS network, this 

topology was constructed with additional diode, inductor and two capacitors, which 

capable to lower the shoot-through duty cycle by 30% with the same voltage boost factor. 

However, this topology required complex controlling technique due to the interactive 

influence of one cascaded module to another.  

In 2013, photovoltaic (PV) power generation based qZS cascaded H-bridge 

inverter (qZCHI) which utilized the enhancement mode gallium nitride (GaN) field effect 

transistors (FETs) was presented in [4] as an effort to enhance the efficiency and provide 

high power density at high switching frequency (i.e., 100 kHz). The outcome illustrated 

that a peak efficiency of 98.06% was able to attain with the modified sawtooth carrier 

modulation strategy, but with a drawback of requiring large inductor size to minimize the 

increased inductor current ripple due to the merged shoot-through period.  

A high voltage gained isolated multistage DC-DC converter was presented in 2014. 

The topology composed of a qZS network connected to a push-pull square-wave inverter 

[36]. The output was connected to a voltage-doubler rectifier. Through experimental 

verification, the converter was able to produce a wide range of voltage gain using small 

duty cycle. Therefore, the proposed topology was suitable to be used in application, where 

a wide range of voltage gain was required especially in renewable energy generation, 

transportation sectors and telecommunication. In the study, a small turn ratio of isolated 

transformer was used. This greatly minimized the conduction losses and the structure size 

of the converter. Nevertheless, since the topology consists of multi-stages, the control 

system requirement is becoming more complex.  

In 2015, a single-phase quasi switched boost H-bridge inverter (qSBI) which is 

suitable in low power renewable energy application was proposed [37]. The work 

illustrated a full comparison between qSBI and qZSI including the component selection 

(i.e., inductor and capacitor value), analyzation on the DC and AC component, current 
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and voltage stress on semiconductor, system efficiency and power loss calculation. The 

experiment results concluded that: 

i. The inductance in qSBI and qZSI were the same whereas the capacitance of qZSI 

was four times higher than qSBI.  

ii. qSBI had higher system efficiency than qZSI.  

iii. qSBI had one extra active switch and diode, but its current rating of the diode and 

both the active switches were smaller than qZSI.  

iv. The capacitor voltage stress of qSBI was higher than qZSI.  

v. Even with the same parasitic effect, the qSBI’s DC-link boost factor was higher 

than of qZSI.  
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2.5 DC-link voltage controller in qZSI 

 

The qZSI network generates a non-minimum phase due to the right-hand plane 

zero in the transfer function. Therefore, it is difficult for conventional PI or proportional 

integral derivative (PID) controller to achieve good dynamic performance. Moreover, PI 

controller is unable to remove low-order harmonics due to bandwidth limitation [38]. To 

fulfil voltage boost and voltage inversion capabilities as well as MPPT control, the closed 

loop control system has to be carefully designed. For instance, H2/H∞ based optimal 

controller was proposed in [39] and it demonstrates better performance in tracking the 

changes in reference currents of the AC and DC-link voltage distribution. The proposed 

controller offered lower overshoot and attained more promising transient performance 

than PI controller. However, it cannot evaluate the robustness under exogenous 

disturbance and system parameter perturbations.  

Proportional Resonant (PR) controller was proposed in several works as an 

alternative to replace PI controller in qZSI control system [38, 40]. PR-controller can 

provide high gain value for selected fundamental frequency and keeping other frequencies 

at low gain while conversely, the gain of the PI controller is limited by the gain at its 

resonant frequency and it introduces phase-shift to the output voltage. However, PR-

controller is particularly used in grid-tie based transfer function rather than in DC-link 

voltage loop transfer function.  

On the contrary, type-II compensator was used in [41] which demonstrated that 

the controller is able to reduce overshoot of the buck converter PWM generated output 

voltage during transient time. Lead compensator is one of the most commonly used 

technique in control system. The results in [13, 14] showed that lead compensator has 

outperformed PI and PID controller in controlling the speed of machine and robotic 

movement. However, yet no research has been conducted to develop voltage or current 

control loop using a lead compensator for qZSI. In 2015, a control scheme for an energy 

stored PV-based multilevel qZCHI based grid-tie power system was proposed [3]. An 

energy storing battery was added in each qZSI module to balance the stochastic fluctuation 

of PV solar power injected to the grid. The combination of MPPT and energy storing 
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battery ensured the grid to operate at maximum power. The author incorporated the 

proposed control scheme with 10 kHz PS-SPWM modulation technique. The 

experimental results show that MPPT was distributed throughout the PV-panels and 

power balanced was achieved between different PV-panels. 

 

2.6 CCM and DCM of qZSI  

 

The qZS network has the input inductor that buffers the current source of the 

network. Therefore, the qZS network can operate in CCM when the input current never 

drops to zero during shoot-through state. With CCM operation, the input voltage stress 

can be minimized. However, only few existing works had been done to demonstrate 

comprehensive mathematical analysis between DCM and CCM operating mode of the 

qZSI only [42, 43]. In this work, the boundary condition between the CCM and DCM in 

qZSI has been derived and the methods to avoid undesired DCM operation will also be 

discussed. 

 

2.6 Active and reactive power compensation   

Power quality and efficiency issues has been the major issue in power systems, 

resulted by low power factor voltage collapse, excessive harmonics etc. Voltage 

imbalance problems are one of the major treats to power quality and efficiency issues. It 

could be caused by a poor DC-link control system or induced by unbalanced output load 

or any unsymmetrical faults through the transmission lines. High reactive power in the 

system can cause high 𝐼2𝑅  losses due to the high current presented in the circuit. 

Therefore, the incorporation of STATCOM system with DC-link voltage regulator is vital 

in providing a high efficiency output power. With VSC, the output voltage is increased, 

at the same time reducing the current level, therefore, reducing active power loss.  

STATCOM which is usually applied for reactive power compensation, can also 

provide harmonic compensation and voltage regulation (i.e. D-STATCOM) [44]. There 

are two types of control methods in STATCOM system, namely the direct and indirect 
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current control methods. The direct current control takes the STATCOM as a voltage 

source and output the desired AC voltage wave phase that will indirectly control the AC 

current [45]. This method is simple, but it is imprecise and require a very long response 

time.  

In a STATCOM system, PLL is commonly implemented in the system, which is 

based on positive-sequence bus voltage. PLL strategy obtained the phase angle from dq 

rotating coordinate by transforming the 𝛼𝛽 stationary coordinate system to the dq rotating 

coordinate system. In [44], the author proposed a STATCOM based five-level cascaded 

inverter controller and incorporated 𝑖𝑜𝑞 algorithm control scheme. The proposed control 

scheme is to provide indirect control to the AC current by obtaining the inner active and 

reactive currents from the 𝑎𝑏𝑐 -to-𝑑𝑞 transformation block. Then, the controller can 

provide reactive power compensation control for different loading conditions. From [44], 

the controller maintained a stable active source current while provides positive leading 

reactive current which is used to cancel out the negative reactive source current.  
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2.7 Summary 

 

To conclude this chapter, different type of qZS topology have been proposed by 

researchers, each consists of advantages and disadvantages. Besides, the performance of 

several modulation techniques was reviewed in this chapter. From the reviews, it has 

shown that PS-SPWM can greatly reduce the number of switching actions even with lower 

switching frequency. Moreover, PS-SPWM is the only sinusoidal based PWM method 

that can generate multilevel output voltage/current.  Moving on to the qZSI control system, 

knowing that qZS network generates a non-minimum phase due the existence of right-

hand plane zero; the controller is difficult to provide a superior transient response in the 

qZSI output voltage. Therefore, it is utmost important to select a controller that can 

provide excellent dynamic and transient response when the system is dominated with a 

non-minimum phase. The performance comparison between several controllers has been 

reviewed. This includes the comparison between the most commonly used controller (i.e., 

PI and PID controller) with different type of linear/non-linear controller (i.e., H2/H∞ 

controller, PR-controller, type-II controller and lead compensator). Lastly, attention has 

been paid to the operating mode of qZSI; with CCM and DCM. This part plays an 

important role when qZSI is subjected to major change in system parameters during 

contingency events (i.e., change in duty cycle, input voltage etc.).   
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Chapter 3 : CCM, boundary condition and DCM analysis of qZSI 

 

This chapter presents a working model of qZSI together with detail mathematical 

derivation of the transfer function that characterizes qZSI in both CCM and DCM. 

Furthermore, the mathematical equation to distinguish between boundary condition, CCM 

and DCM have been derived. The equations are used to determine the selection of the size 

of passive component (i.e., inductor) to construct the qZS network in the next chapter. 

Also, this chapter introduces the parameters that have a direct impact on the operating 

mode of qZSI.  

This chapter discusses the following: Section 3.1.1 describes the equations and 

characteristics of qZSI in CCM and DCM. This includes the analysis and derivation of the 

equation to characterize each voltage and current present in the network. Besides, this 

section also includes the derivation of qZSI input-output transfer function in CCM and 

DCM. Section 3.1.2 describes the impact of CCM and DCM on the input current and 

output voltage. The transition boundary condition of CCM to DCM also covered in this 

section. This includes the relationship between the operating mode of qZSI with inductor 

value, switching frequency and shoot-through duty ratio. Lastly, section 3.3 covers the 

simulation to verify the derived equations in section 3.1 and section 3.2.  
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3.1 Mathematical derivation of qZSI’s characteristic and transfer function 

 

QZSI was derived by adding two inductors, two capacitors and one diode to the 

traditional inverter topology to allow voltage boost functions in a single-stage. qZSI 

topology features advantages such as continuous input current, excellent reliability and 

most importantly, it allows low inrush start-up current. Figure 3.1 shows the qZS topology 

attached to H-bridge inverter that has been introduced to replace the traditional ZSI 

topology. By introducing a special shoot-through state, magnetic energy will be stored in 

the inductor 𝐿1 and 𝐿2 during this state without short-circuiting the DC capacitor 𝐶1 and 

𝐶2. If the input voltage of the qZSI is high enough, the topology starts to operate as 

traditional VSI. 

 

Figure 3.1: qZSI with H-bridge 

 

In Figure 3.2, 𝑉𝐿1 and 𝑉𝐿2 represent the voltage of inductor 𝐿1 and 𝐿2 respectively; 

𝐼𝐿1 and 𝐼𝐿2 represent the current that flow through inductor 𝐿1 and 𝐿2 respectively. 𝑉𝐶1 

and 𝑉𝐶2 represent the voltage across capacitor 𝐶1 and 𝐶2. 𝐼𝐶1 and 𝐼𝐶2 represent the current 

of capacitor 𝐶1 and 𝐶2. 𝑉𝐷𝐶 represents the DC-link voltage at the output side of the qZSI 

topology. 𝐼𝐷𝐶 represents the DC-link current generated at the output side of qZSI topology. 

Lastly, 𝐼𝑑𝑖𝑜𝑑𝑒 and 𝑉𝑑𝑖𝑜𝑑𝑒 represent the current and voltage of the diode respectively. 
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Figure 3.2: qZSI topology 

 

 

3.1.1 Mathematical deviation of qZSI in CCM 

 

qZSI topology can concurrently drive up the input voltage and invert the DC-

voltage into AC output voltage. In CCM, qZSI operates in three different operating modes 

which include shoot-through state, non-shoot-through state (consists of active-state and 

null state). Figure 3.3(a) and Figure 3.3(b) show the equivalent circuits of qZSI in shoot-

through and active-state respectively. To obtain a better view and understanding of qZSI 

operation in shoot-through and null state, the qZSI model in Figure 3.3 are redrawn and 

shown in Figure 3.4(a) and Figure 3.4(b) respectively.   

As seen in Figure 3.2, qZSI topology input side is connecting in series with an 

inductor. This inductor acts as buffer for the current source. In other words, in continuous 

conduction mode (CCM), the input current (i.e., 𝐼𝐿1) will never falls to zero, no matter in 

shoot-through or non-shoot-through state, featuring a reduce stress topology for converter 

application. However, in the case of large load, low boost factor, small inductor value and 

low switching frequency, qZSI could operates in the discontinuous conduction mode 

(DCM). When the qZSI operates in this mode, the input current falls to zero during the 

discontinuous conduction interval and resulting in increasing voltage and current stress.  
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(a) 

 

(b) 

Figure 3.3: Equivalent circuit of qZSI (a) shoot-through state (b) active-state 

 

Particularly, when qZSI topology operates in shoot-through state (i.e., Figure 

3.3(a)), either one or two phase-leg of the inverter are short-circuited to form two active 

loops. In conventional inverter, short-circuit will cause the output current of the inverter 

to become very large and destroy the components in the entire circuit. However, in qZSI, 

due to the presence of inductor and capacitor, the short-circuited event allows the current 

to remain low and prevent the current throughout the entire topology to turn into infinite 

value. In shoot-through state, one complete loop is attained through input voltage 𝑉𝑖𝑛, 

capacitor 𝐶2  and inductor 𝐿1 , and resulting in the charge up process of inductor 𝐿1 . 

Meanwhile, the other loop is formed through capacitor 𝐶1 and inductor 𝐿2 to charge up 

𝐿2.  
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During active-state, the high side and low side of the IGBT in the same phase-leg 

are switched on and off simultaneously; the diode forward biased. In this state, the 

capacitor 𝐶1 voltage discharge through inductor 𝐿2 and thus providing more current to 

flow through the output load. In other words, boosting mechanism occurs during active-

state and it works as conventional voltage-source inverter (VSI) without employing any 

dead-time.  

 

(a) 

 

(b) 

Figure 3.4: Equivalent operation modes for qZSI (a) shoot-through state (b) null state 

 

Null state happens when both the IGBT at the lower and upper phase-legs are 

turned on at the same time. During this state, the H-bridge inverter is disconnected from 

the qZSI impedance network; causing the current flows through inductor 𝐿2 to recharge 

capacitor 𝐶2  while the current flows through inductor 𝐿1  to charge capacitor 𝐶1 
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concurrently.  The mathematical equations of qZSI in shoot-through state can be defined 

as follows: 

 𝐼𝐶1 = −𝐼𝐿2 (3.1) 

 𝐼𝐶2 = −𝐼𝐿1 (3.2) 

 𝑉𝐿1 = 𝑉𝑖𝑛 + 𝑉𝐶2 (3.3) 

 𝑉𝐿2 = 𝑉𝐶1 (3.4) 

 𝐼𝐷𝐶 = 𝐼𝐿1 + 𝐼𝐿2 (3.5) 

 𝑉𝐷𝐶 = 0 (3.6) 

The state space equation of shoot-through state in steady-state of qZSI is derived as 

follows: 

 [

𝐿1 0 0 0
0 𝐿2 0 0
0 0 𝐶1 0
0 0 0 𝐶2

] [

𝑖𝐿1̇(𝑡)

𝑖𝐿2̇(𝑡)
𝑣𝐶1̇ (𝑡)

𝑣𝐶2̇ (𝑡)

] = [

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

] [

𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)
𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)

] + [

1 0
0 0
0 0
0 0

] [
𝑣𝑖𝑛(𝑡)
𝑖𝐷𝐶(𝑡)

] (3.7) 

The mathematical equations of qZSI in active-state can be defined as follows: 

 𝐼𝐶1 = 𝐼𝐿1 − 𝐼𝐷𝐶 (3.8) 

 𝐼𝐶2 = 𝐼𝐿2 − 𝐼𝐷𝐶 (3.9) 

 𝑉𝐿1 = 𝑉𝑖𝑛 − 𝑉𝐶1 (3.10) 

 𝑉𝐿2 = −𝑉𝐶2 (3.11) 

 𝐼𝑑𝑖𝑜𝑑𝑒 = 𝐼𝐶1 + 𝐼𝐿2 (3.12) 

 𝐼𝑑𝑖𝑜𝑑𝑒 = 𝐼𝐿1 + 𝐼𝐿2 − 𝐼𝐷𝐶 (3.13) 

 𝑉𝐷𝐶 = 𝑉𝐶1 + 𝑉𝐶2 (3.14) 

 𝐼𝐷𝐶 = 𝐼𝑜 (3.15) 
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The state space equation of active-state in steady-state of qZSI is derived as per (3.16): 

 

[

𝐿1 0 0 0
0 𝐿2 0 0
0 0 𝐶1 0
0 0 0 𝐶2

]

[
 
 
 
 𝑖𝐿1(𝑡)

𝑖𝐿2̇(𝑡)

𝑣𝐶1̇ (𝑡)

𝑣𝐶2̇ (𝑡)

̇

]
 
 
 
 

= [

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

]

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 
+ [

1 0
0 0
0 −1
0 −1

] [
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] 

(3.16) 

Throughout one switching cycle, the average equation of capacitor current (i.e., 𝐼𝐶1 and 

𝐼𝐶2) and inductor voltage (i.e., 𝑉𝐿1 and 𝑉𝐿2) are equate to zero. Solving the equation, we 

get: 

 𝐼𝐿1 = 𝐼𝐿2 (3.17) 

 𝑉𝑖𝑛 = 𝑉𝐶1 − 𝑉𝐶2 (3.18) 

 
𝑉𝐶1

𝑉𝑖𝑛𝑐𝑐𝑚

=
1 − 𝐷𝑆𝑇

1 − 2𝐷𝑆𝑇
 (3.19) 

 
𝑉𝐶2

𝑉𝑖𝑛𝐶𝐶𝑀

=
𝐷𝑆𝑇

1 − 2𝐷𝑆𝑇
 (3.20) 

 𝐵𝐶𝐶𝑀 =
𝑉𝐷𝐶

𝑉𝑖𝑛𝐶𝐶𝑀

=
1

1 − 2𝐷𝑆𝑇
 (3.21) 

 𝐵𝐶𝐶𝑀 =
𝑉𝐶1

𝑉𝑖𝑛 ∗ (1 − 𝐷𝑆𝑇)
 (3.22) 

 
𝑉𝐷𝐶

𝑉𝐶1𝐶𝐶𝑀

=
1

1 − 𝐷𝑆𝑇
 (3.23) 

Where 𝐵𝐶𝐶𝑀  represents the boost factor of qZSI in CCM. 𝐷𝑆𝑇  represents the shoot-

through duty ratio and its value should be smaller than 0.5 to prevent unpredictable output 

voltage generation. Equating shoot-through duty ratio to 0.5 will cause the denominator 

of equation (3.21) to become zero, resulting in an infinite boost factor of qZSI.  
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3.1.2 Mathematical deviation of qZSI in DCM 

 

Figure 3.5(a) shows the operating mode of qZSI in DCM mode. By rearranging 

the circuit for better view and understanding, the circuit is redrawn and shown in Figure 

3.5(b). During this state, there is a certain interval where the diode in qZSI topology stops 

to conduct. DCM takes place during non-shoot-through state. In DCM, non-shoot-through 

state can be split into three different operating states (i.e., active-state, null state and 

discontinuous conduction state). As discussed in section 3.1.1 above, similar to CCM 

mode, null state in DCM occurs when both the IGBT at the lower and upper phase-legs 

are turned on simultaneously. In active-state, the diode supposed to be forward biased, but 

when DCM occurs, the diode will be turned off during this entire interval. DCM occur 

when the inductor magnetic field (or current) has fully discharged before the next shoot-

through interval occurs.  

The reason that cause DCM to occur is due to the inability of the inductor to stay 

charged during the entire non-shoot-through state. Normally, DCM occurs when the 

inductor value used is too small; small inductor can only store a limited amount of charge 

and it will be fully discharged before the next switching interval. Hence, in section 3.2, 

the mathematical equations to reflect the right inductor size for specific systems parameter 

are being derived.  
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(a) 

 

(b) 

Figure 3.5: Equivalent operation modes (a) DCM (b) rearrange view of DCM 

 

In shoot-through state, the mathematical equation of the qZSI operation can be defined 

as follows: 

 𝑉𝐿1 = 𝑉𝑖𝑛 + 𝑉𝐶2 (3.24) 

 𝑉𝐿2 = 𝑉𝐶1 (3.25) 
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In active-state, the mathematical equation of the qZSI operation can be defined as 

follows: 

 𝑉𝐿1 = 𝑉𝑖𝑛 − 𝑉𝐶1 (3.26) 

 𝑉𝐿2 = −𝑉𝐶2 (3.27) 

By using equation (3.26) and (3.27), the average equation of inductor voltage 𝑉𝐿1 is 

shown as follows: 

 〈𝑉𝐿1〉 = (𝑉𝑖𝑛 + 𝑉𝐶2)𝐷𝑆𝑇 + (𝑉𝑖𝑛 − 𝑉𝐶1)(1 − 𝐷𝑆𝑇 − 𝐷𝐷) + 0(𝐷𝐷) (3.28) 

𝐷𝐷 can be defined as the duty ratio of the DCM.  

Substitute: 𝑉𝑖𝑛 = 𝑉𝐶1 + 𝑉𝐶2 into the above equation. The average equation of 𝑉𝐿1 over 

on switching cycle is equal to zero. Thus, 

 〈𝑉𝐿1〉 = 0  

 0 = (𝑉𝑖𝑛 + 𝑉𝐶1)(𝐷𝑆𝑇) + (𝑉𝑖𝑛 − 𝑉𝐶1)(1 − 𝐷𝑆𝑇 − 𝐷𝐷)  

Solving the equation, get: 

 
𝑉𝐶1

𝑉𝐶2
=

1 − 𝐷𝑆𝑇 − 𝐷𝐷

𝐷𝑆𝑇
 (3.29) 

From (3.18), in active-state 

 𝑉𝑖𝑛 = 𝑉𝐶1 − 𝑉𝐶2  

 𝑉𝐶2 = 𝑉𝐶1 − 𝑉𝑖𝑛 (3.30) 

Substitute equation (3.18) into equation (3.29), we get, 

 
𝑉𝐶1

𝑉𝐶1 − 𝑉𝑖𝑛
=

1 − 𝐷𝑆𝑇 − 𝐷𝐷

𝐷𝑆𝑇
  

 𝑉𝐶1 =
1 − 𝐷𝑆𝑇 − 𝐷𝐷

𝐷𝑆𝑇
𝑉𝐶1 −

1 − 𝐷𝑆𝑇 − 𝐷𝐷

𝐷𝑆𝑇
𝑉𝑖𝑛  

 (
𝑉𝐶1

𝑉𝑖𝑛
)
𝐷𝐶𝑀

=
1 − 𝐷𝑆𝑇 − 𝐷𝐷

1 − (2𝐷𝑆𝑇 + 𝐷𝐷)
 (3.31) 
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Substitute equation (3.30) into equation (3.31), we get 

 
(1 − 𝐷𝑆𝑇 − 𝐷𝐷)𝑉𝐶2

𝑉𝑖𝑛
=

1 − 𝐷𝑆𝑇 − 𝐷𝐷

1 − (2𝐷𝑆𝑇 + 𝐷𝐷)
  

 
𝑉𝐶2

𝑉𝑖𝑛
=

𝐷𝑆𝑇

1 − (2𝐷𝑆𝑇 + 𝐷𝐷)
 (3.32) 

From equation (3.14), DC-link voltage in active-state can be written as: 

 𝑉𝐷𝐶 = 𝑉𝐶1 + 𝑉𝐶2  

Substituting equation (3.14) into equation (3.32) above, we get: 

 𝑉𝐷𝐶 = [
1 − (𝐷𝑆𝑇 − 𝐷𝐷)

1 − (2𝐷𝑆𝑇 + 𝐷𝐷)
+

𝐷𝑆𝑇

1 − (2𝐷𝑆𝑇 + 𝐷𝐷)
] 𝑉𝑖𝑛 (3.33) 

Therefore, in DCM mode, the DC-link to input voltage transfer function can be written 

as: 

 
𝑉𝐷𝐶

𝑉𝑖𝑛
=

1 − 𝐷𝐷

1 − (2𝐷𝑆𝑇 + 𝐷𝐷)
 (3.34) 

The boost factor of qZSI topology in DCM mode can be written as: 

 𝐵𝐷𝐶𝑀 =
𝑉𝐷𝐶

𝑉𝑖𝑛
=

𝑉𝐶1

𝑉𝑖𝑛
+

𝑉𝐶2

𝑉𝑖𝑛
 (3.35) 

By rearranging equation (3.31) the discontinuous conduction duty ratio equation is 

obtained via (3.36) below: 

 𝐷𝐷 =
(𝑉𝐶1 − 𝑉𝑖𝑛 + 𝐷𝑆𝑇(𝑉𝑖𝑛 − 2𝑉𝐶1))

𝑉𝐶1 − 𝑉𝑖𝑛
 (3.36) 
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3.2 Mathematical derivation to distinguish qZSI in boundary condition, CCM and 

DCM 

 

Figure 3.6 shows inductor voltage (𝑉𝐿1, 𝑉𝐿2)  and inductor current (𝐼𝐿1, 𝐼𝐿2) 

waveforms during CCM. Notice when the system is in CCM, the inductor current will 

never fall to zero. Based on inductor’s volt-second balance and capacitor’s ampere-second 

balance rules, the inductor current cannot change instantaneously in transition of shoot-

through state to non-shoot-through state. Therefore, the average value of inductor voltage 

in one switching cycle is equal to zero.  

The shoot-through characteristic of the qZSI will render a ripple effect on the 

inductor current because the inductor charges (during shoot-through state) and discharge 

(during non-shoot-through state) in one switching cycle. The ripple current amplitude 

flowing through the inductor 𝐿1  and 𝐿2  are denoted as ∆𝐼𝐿1  and ∆𝐼𝐿2  respectively, as 

shown in the Figure 3.6 below. 
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Figure 3.6: Inductor voltage and current waveform in CCM 

 

In CCM, the inductor current continuously forming an upward and downward 

adjoining line; seeming like a triangular shaped graph. The boundary condition formed 

when the system is about to turn into DCM; called it as BCM. In this transition state, the 

ripple inductor current falls upon touching the x-axis; the inductor waveform may touch 

the zero line for a short instance or slightly higher than zero line. The trailing statements 

are shown in Figure 3.7. 
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Figure 3.7: Inductor voltage and current waveform in BCM 

 

The equation for ∆𝐼𝐿1 and ∆𝐼𝐿2 are obtained as in equation (3.37) and (3.38), where 𝐿 

denotes the inductance and 𝑓𝑠 represents the switching frequency. 

 
∆𝐼𝐿1 =

1

𝐿
∫ 𝑉𝐿1 𝑑𝑡

𝑡=𝐷𝑆𝑇𝑇𝑠

𝑡=0

=
1

𝐿
∫ 𝑉𝐿1 𝑑𝑡

𝑇𝑠

𝐷𝑆𝑇𝑇𝑠

 
 

 ∆𝐼𝐿1 =
(𝑉𝑖𝑛 + 𝑉𝐶2)(𝐷𝑆𝑇)

𝐿𝑓𝑠
 (3.37) 

 ∆𝐼𝐿2 =
1

𝐿
∫ 𝑉𝐿2 𝑑𝑡

𝑡=𝐷𝑆𝑇𝑇𝑠

𝑡=0

=
1

𝐿
∫ 𝑉𝐿1 𝑑𝑡

𝑇𝑠

𝐷𝑆𝑇𝑇𝑠

  

 ∆𝐼𝐿2 =
(𝑉𝐶1)(𝐷𝑆𝑇)

𝐿𝑓𝑠
 (3.38) 
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Based on Figure 3.7 above, the boundary inductor current, 𝐼𝐿𝐵 is half the amplitude of the 

ripple current as the waveform formed is a triangular shaped. Therefore, the boundary 

current, 𝐼𝐿𝐵 can be written as follows: 

 𝐼𝐿𝐵 =
1

2
∆𝐼𝐿 (3.39) 

In section 3.1, it was proven that when the inductor value used in qZSI topology is the 

same, 𝐼𝐿1 = 𝐼𝐿2 in steady-state. Hence, by substituting equations (3.37) and (3.38) into 

equation (3.39), the boundary current of 𝐿1 and 𝐿2 can be derived as per equation (3.40) 

 𝐼𝐿𝐵1 = 𝐼𝐿𝐵2 =
(𝑉𝑖𝑛 + 𝑉𝐶2)(𝐷𝑆𝑇)

2𝐿𝑓𝑠
=

(𝑉𝐶1)(𝐷𝑆𝑇)

2𝐿𝑓𝑠
 (3.40) 

The power converter operates in CCM when 𝐼𝐿 ≥ 𝐼𝐿𝐵  and in DCM when  𝐼𝐿 < 𝐼𝐿𝐵 . 

Therefore, to ensure the qZSI to operate in CCM, the following equations must be fulfilled.  

 𝐼𝐿𝐵 ≥
(𝑉𝑖𝑛 + 𝑉𝐶2)(𝐷𝑆𝑇)

2𝐿𝑓𝑠
 𝑜𝑟 𝐼𝐿𝐵 ≥

(𝑉𝐶1)(𝐷𝑆𝑇)

2𝐿𝑓𝑠
 (3.41) 

Rearranging the equation, we get  

 𝐿 ≥
(𝑉𝑖𝑛 + 𝑉𝐶2)(𝐷𝑆𝑇)

2𝐼𝐿𝐵𝑓𝑠
 𝑜𝑟 𝐿 ≥

(𝑉𝐶1)(𝐷𝑆𝑇)

2𝐼𝐿𝐵𝑓𝑠
 (3.42) 

Equation (3.42) indicates the minimum inductor value to be selected to achieve CCM 

based on switching frequency, shoot-through duty ratio and the output load.  

Figure 3.8 shows the inductor voltage and current waveform when qZSI operating 

in DCM. 𝐷𝐷 represents the DCM duty ratio. Assuming 100% efficiency of qZSI topology, 

the input power would be equal to output power. 

 𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 (3.43) 

Where 𝑃𝑜𝑢𝑡 is the output voltage and 𝑃𝑖𝑛 is the input voltage. 

 𝑉𝑖𝑛𝐼𝐿1 = 𝑉𝑜𝑟𝑚𝑠
∗ 𝐼𝑜𝑟𝑚𝑠

=
𝑉𝐷𝐶

√2
∗

𝐼𝑜

√2
 (3.44) 
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Where 𝑉𝑜𝑟𝑚𝑠
 and 𝐼𝑜𝑟𝑚𝑠

 are the root mean square AC output voltage and current, 

respectively, and 𝐼𝑜 is the peak AC output current.  

Solving the equation, we get 

 𝐼𝑜 =
2𝑉𝑖𝑛𝐼𝐿

𝑉𝑜
 (3.45) 

The inductor current can be defined by the following equation (3.46), where the derivation 

can be found in Appendix A. 

 𝐼𝐿1 =
1 − 𝐷𝑆𝑇

1 − 2𝐷𝑆𝑇
𝐼𝑜 (3.46) 

 

Figure 3.8: Inductor voltage and current waveform in DCM 

 

Substitute equation (3.21) (i.e., 𝑉𝑜 = 𝑉𝐷𝐶 =
1

1−2𝐷𝑆𝑇
) and equation (3.46) into equation 

(3.45), we get 

 𝐼𝑜 =
𝐷𝑆𝑇(1 − 𝐷𝑆𝑇)𝑉𝑖𝑛

2𝐿𝑓𝑠
 (3.47) 

 𝐼𝑂𝐵 =
𝐷𝑆𝑇(1 − 𝐷𝑆𝑇)𝑉𝑖𝑛

2𝐿𝑓𝑠
 (3.48) 
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Where 𝐼𝑂𝐵 is the boundary output current at which qZSI starts to change from CCM to 

DCM. 

By rearranging equation (3.48), we get equation as per (3.49) to justify the graph shown 

in Figure 3.9. The blue line shown in Figure 3.9 is the CCM-DCM boundary transition for 

the qZSI topology in steady-state.  

 
𝐿𝑓𝑠𝐼𝑂𝐵

𝑉𝑖𝑛
= 𝐷𝑆𝑇 − 𝐷𝑆𝑇

2  (3.49) 

 

Figure 3.9: DCM and CCM Boundary Transition for qZSI 

 

Based on equation (3.41), equation (3.48) and Figure 3.9, other than the inductor 

value, qZSI also shows direct impact to the duty ratio and the switching frequency of the 

system. When the switching frequency is increasing, the interval between each 

consecutive cycle decreases, the inductor will not likely to be fully discharged before end 

of one switching cycle. On the other hand, higher duty ratio indicates that the inductors 

are charged for a longer period and hence it can store more charges. Moreover, the shoot-

through time interval increases as duty cycle increases, non-shoot-through state interval 

will be reduced in proportional. Hence, the time taken for the inductor to discharge reduces, 

preventing the qZSI to strike into DCM. 

DCM CCM 
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Figure 3.10 shows the typical comparison waveform of 𝑉𝐷𝐶 in CCM and DCM. 

From previous session, we know that the DC-link voltage in shoot-through state is zero 

when the upper IGBT of each phase-leg is turned on. In active-state, the DC-link voltage 

in CCM can be determined using equation (3.21).  

 

Figure 3.10: Comparison between DC-link voltage in (a) CCM and (b) DCM 

 

In DCM, there are three sub-operating state occurred during the non-shoot-through 

state interval (i.e., active-state, null state and discontinuous conduction state). However, 

the null state does no impact to 𝑉𝐷𝐶 in both CCM and DCM. During active-state, 𝑉𝐷𝐶 can 

be calculated using equation (3.34). By referring to Figure 3.5, the output IGBT and load 

circuit are disconnected from the input qZS circuit. Hence, during DCM, DC-link voltage 

will reduce to capacitor 1’s voltage, 𝑉𝐶1, as shown in Figure 3.10. Note that 𝐷𝐷 depends 

on the amount of time the inductor left uncharged (i.e., inductor current remains zero) 

before the next shoot-through state. Equation (3.34) shows that as the time taken for 

discontinuous conduction state increases, the output voltage will increase in proportional. 

Therefore, when the inductor remains discharged for longer period, the DC-link voltage 

will become higher during the next active-state.   



44 
 

3.3 Simulation results to verify the derived equation in CCM, BCM and DCM 

 

This section discusses the Matlab/Simulink simulation results to verify the 

mathematical equation that distinguish the boundary condition between CCM and DCM 

derived in section 3.1 and section 3.2. Section 3.3 can be categorized into 2 parts; section 

3.3.1 consists of the simulation model to determine the inductor value used in qZSI to 

achieve CCM, BCM and DCM follow by section 3.3.2 which demonstrates the 

relationship between load and the operating mode of qZSI. 

 

3.3.1 Selection of passive component (inductor) 

 

In this simulation model, several inductor values have been tested to verify the 

mathematical equation being derived. This section was developed to determine the 

minimum inductor value required to achieve CCM. The IGBT switching method was 

performed using SPWM. The system parameters used for simulations are listed in Table 

3.1. The fundamental period of this simulation model was selected as 0.02𝑠. The inductors 

and capacitors used in qZSI are assumed to be equal value. (i.e., 𝐿1 = 𝐿2 and 𝐶1 = 𝐶2).  

In this work, 𝑉𝑖𝑛 is arbitrarily chosen as 12𝑉 and the shoot-through duty ratio was 

chosen to be 0.4 to yield an output DC-link voltage of 60𝑉. The minimum inductor value 

to allow the system to stay in CCM was calculated based on equation (3.42). Based on the 

equation and the system parameters listed in Table 3.1, the theoretical inductor value for 

the qZSI system to achieve CCM was calculated to be 2𝑒−4𝐻. In other words, to achieve 

CCM, the minimum inductor value must be greater or equal to the theoretical value 

calculated. Please note that there is a ±5%  deviation of the simulation result as the 

equations are derived based on ideal cases.  
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Table 3.1: System parameters to verify minimum inductor value used to achieve CCM 

Input voltage, 𝑉𝑖𝑛 12𝑉 

Desired DC-link output voltage, 𝑉𝐷𝐶 60𝑉 

Capacitor 𝐶1 and 𝐶2 value 1000𝜇𝐹 

Switching frequency, 𝑓𝑠 10𝑘𝐻𝑧 

Shoot-through duty ratio, 𝐷𝑠𝑡 0.4 

Modulation index, 𝑀 0.5 

Load resistance, Ω 50Ω 

System AC output frequency, 𝑓𝐴𝐶  50𝐻𝑧 

 

The capacitor value is determined by using a second harmonic (2𝑤) suppression 

formula, indicates in equation (3.50). 𝑎  represents the DC-link voltage peak-to-peak 

ripple ratio and b represents the inductor current ripple.  

 𝐶 =
𝑀𝐼𝑎(1 − 2𝐷𝑆𝑇)

𝑎𝑤𝑉𝑖𝑛

[𝑏𝑐𝑜𝑠∅ + 1] (3.50) 

Figure 3.11(a) and (b) show the inductor current (IL1) and DC-link voltage (VDC) 

waveform in DCM respectively. The inductance value of the inductor used in this case is 

0.5𝑒−4𝐻. As can be seen from the graph, both 𝑉𝐷𝐶 and 𝐼𝐿1 values are higher than expected 

value in CCM. When DCM occurs, the output DC-link voltage will be deviated from the 

theoretical value. However, the peak value of DC-link voltage can be verified using 

equation (3.34). And noticed that there is a slight delayed when DC-link voltage reacts to 

discontinuous conduction state compare to inductor current. It is because the operating 

mode of qZSI solely depends on the charging and discharging capacity of the inductor 

itself. DCM occurs when the inductor has fully discharged before the end of each 

switching cycle. In Figure 3.11(b), when qZSI turns into DCM, the inductor current drop 

to zero and remains zero until the next shoot-through state happens. On the other hand, 

the DC-link voltage drops from 80𝑉to 43𝑉 during this interval.  



46 
 

Figure 3.12 and Figure 3.13 show 𝐼𝐿1  and 𝑉𝐷𝐶  waveform in BCM and CCM 

respectively. The inductor value used in Figure 3.12 is 2𝑒−4𝐻, while the inductor value 

used in Figure 3.13  is 3𝑒−4𝐻. By comparing Figure 3.11, Figure 3.12 and Figure 3.13, 

noticed that the peak inductor current, 𝐼𝐿 become lower as the qZSI topology transformed 

from DCM to BCM to CCM. Besides, the minimum inductor current is further away from 

zero as the qZSI switch from DCM to BCM and to CCM. In other words, as the inductor 

value increases, the inductor tends to carry on with more charges. Hence, large inductor 

values tend to stay charged for a longer period, preventing qZSI to turn into DCM. On the 

other hand, since the difference between the maximum and minimum inductor current 

become smaller with increasingly inductor value, the current stress for the qZSI topology 

can be reduced in proportional.  

 

 

Figure 3.11: (a) IL1 and (b) VDC in DCM 
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Figure 3.12: (a) IL1 and (b) VDC in BCM 

 

 

Figure 3.13: (a) IL1 and (b) VDC in CCM 
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Figure 3.14 and Figure 3.15 show the DC-link output current (𝐼𝐷𝐶) waveform and 

inductor voltage (𝑉𝐿) waveform in DCM, BCM and CCM, respectively. As predicted 

from the previous results, DC-link current and the inductor voltage value is expected to 

be highest when the qZSI is operating in DCM.  

 

 

Figure 3.14: IDC in (a) DCM (b) Boundary condition (c) CCM 
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Figure 3.15: VL1 in (a) DCM (b) Boundary condition (c) CCM 
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3.3.2 Verification of boundary condition through varied load 

 

The simulation model has been done to investigate the relationship between the 

output load with the operating mode of qZSI. This simulation model has been conducted 

to verify the equation (3.48). From the previous section (i.e., section 3.3.1), the minimum 

inductor value to achieve CCM is calculated to be 2𝑒−4𝐻. Therefore, in this simulation 

model, the minimum inductor value has been taken as a benchmark and was set to be the 

inductance of qZSI. The selected parameters used in this simulation model are listed in 

Table 3.2 below. Three different simulation setups with varied load has been conducted 

to verify the equation (i.e., R=100Ω, 50Ω and 20Ω).  

 

Table 3.2: System parameters to verify the boundary condition with varied load 

Input voltage, 𝑉𝑖𝑛 12𝑉 

Desired DC-link output voltage, 𝑉𝐷𝐶 60𝑉 

Capacitor 𝐶1 and 𝐶2 value 1000𝜇𝐹 

Switching frequency, 𝑓𝑠 10𝑘𝐻𝑧 

Shoot-through duty ratio, 𝐷𝑠𝑡 0.4 

Modulation index, 𝑀 0.5 

System AC output frequency, 𝑓𝐴𝐶  50𝐻𝑧 

 

Table 3.3 shows the theoretical calculated results to classify DCM, BCM and CCM 

with varied load. Notice that for 𝑅 = 100Ω, 𝐼𝐿 < 𝐼𝐿𝐵, the qZSI supposed to operate in 

DCM. For 𝑅 = 50Ω, 𝐼𝐿 value is close to 𝐼𝐿𝐵, the qZSI supposed to operate at the boundary 

condition between CCM and DCM. Lastly, for 𝑅 = 20Ω, notice that 𝐼𝐿 has a value which 

is greatly larger than the 𝐼𝐿𝐵, therefore, the qZSI topology is expected to operate in CCM. 

Figure 3.16 shows the results of 𝐼𝐿1 and 𝑉𝐷𝐶  obtained from MATLAB/Simulink.  
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Table 3.3: Theoretical calculated results to classify DCM, BCM and CCM 

Time interval 
Resistance 

(Ω) 

Parameters Theoretical result Expected 

operating 

mode L (𝝁H) 𝑪 (𝝁𝑭) 𝑽𝑫𝑪 (𝑽) 𝑰𝑳𝑩 (𝑨) 𝑰𝑳 (𝑨) 

𝟎 − 𝟏. 𝟎𝒔 100 300 1000 60 3.3488 1.80 DCM 

𝟏. 𝟎 − 𝟐. 𝟎𝒔 50 300 1000 60 3.3488 3.60 BCM 

𝟐. 𝟎 − 𝟑. 𝟎𝒔 20 300 1000 60 3.3488 9.00 CCM 

 

 

Figure 3.16: Simulated waveform of (a) IL1 (b) VDC with varied loads 

 

Simulation results shown in Figure 3.17 are taken when qZSI is operating with 

load resistance, 𝑅 = 100Ω in the time span of 0 ≤ 𝑡 ≤ 1.0𝑠. From the graph, clearly the 

system is operating in DCM as depicted from the expected outcome in Table 3.3. Zooming 

into the DC-link voltage, there’s a voltage drop when qZSI turn into DCM. In DCM, the 

obtained simulated results show that qZSI is operating in the region where the CCM 

steady-state formulae no longer hold. This operating mode causes an over boost effect of 
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the DC-link and output voltage. To calculate the theoretical output DC-link voltage, 

equation (3.34) should be used.  

Simulation results shown in Figure 3.18 are taken when qZSI is operating with 

load resistance, 𝑅 = 50Ω in the time span of 1.0𝑠 ≤ 𝑡 ≤ 2.0𝑠. In Figure 3.18, we can see 

that inductor current, 𝐼𝐿  does not drop to zero, which means that the system is still 

operating in CCM. However, the inductor current is close to the boundary condition 

between DCM and CCM, (i.e., its value is close to the zero line).  In Figure 3.18(b), the 

DC-link voltage consists of some incomplete square-shaped waveform which shows that 

the system is close to the boundary condition. 

Simulation results shown in Figure 3.19 were taken when qZSI is operating with 

load resistance, 𝑅 = 20Ω in the time span of 2.0𝑠 ≤ 𝑡 ≤ 3.0𝑠. Notice that the lowest 

point of the current is further away from the y-axis zero line, indicates that the qZSI system 

is far away from the boundary condition. The results in this simulation model has clearly 

shown that equation (3.41) is being verified. Both 𝐼𝐿1 and 𝑉𝐷𝐶 shown in the simulation 

results are closely coincide with the calculated theoretical values when qZSI operates in 

CCM and BCM. However, when qZSI is operating in DCM, the equations are not valid 

as the inductor current and DC-link voltage values have shown major divergent to the 

theoretical value. Therefore, the derivation of qZSI transfer function in DCM has been 

performed and shown in section 3.1.2. 

However, the only downside when qZSI operates in CCM (i.e., when qZSI 

operating mode is further away from boundary condition), the DC-link votage, 𝑉𝐷𝐶 ripples 

amplitude is becoming higher and higher. To summarize, DCM offers lowest ripples 

amplitude on the inductor current and DC-link voltage. The ripples amplitude increases 

as qZSI goes from DCM to BCM to CCM.  
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Figure 3.17: Simulated waveform of (a) IL1 in DCM (b) VDC in DCM when R=100Ω 

 

 

Figure 3.18: Simulated waveform of (a) IL1 in BCM (b) VDC in BCM when R=50Ω 
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Figure 3.19: Simulated waveform of (a) IL1 in CCM (b) VDC in CCM when R=20Ω 

 

3.4 Summary 

 

To conclude this chapter, the simulation results have shown that the derived 

equations are accurate with the accomplishment of first objective of this research work. 

There are few parameters that have direct effects on the operating mode of qZSI. These 

parameters include the inductor value, switching frequency and the duty cycle. Knowing 

the correlation between these parameters can provide researchers solution to prevent qZSI 

from turning into DCM, avoiding large voltage stress to the system components. Also, the 

equations that represents the transfer function of qZSI in DCM have been derived in 

section 3.2. With these equations, even when the qZSI is operating in DCM, the controller 

can track the DC-link voltage without significant discrepancies.
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Chapter 4 : Proposed Controller Design for qZSI 

 

This chapter presents the detail mathematical derivation of the qZSI small-signal 

transfer function (i.e., section 4.1.1) and controller design (i.e., section 4.1.2) to achieve a 

balanced generated output voltage. In this chapter, lead controller is proposed as DC-link 

controller to realize fast and stable dynamic transient response in qZSI. The derived small-

signal transfer function is complied with the proposed controller and merged it into a 

control system block diagram shown in section 4.1.2. Section 4.1.3 demonstrates the 

PWM method used to control the switching pulses in qZSI’s IGBTs. Using the presented 

SPWM technique, the shoot-through duty ratio is sent to the modulator system to perform 

switching in IGBT.  

Simulation has been conducted to investigate the proposed design using 

MATLAB/SIMULINK software. Section 4.2 presents the simulation results conducted to 

investigate the superiority and the effectiveness of the proposed controller. Section 4.2.1 

shows the simulation results when a step change of DC-link voltage reference is applied 

to the system. The simulation was conducted when qZSI is operating in DCM. On the 

other hand, section 4.2.2 presents the simulation results when qZSI is operating in CCM. 

In this section, different loading condition has been applied to qZSI in a specific interval. 

Lastly, the multilevel output voltage and current were generated based on the PWM 

method listed in section 4.1.3. 
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4.1 qZSI Control Scheme 

4.1.1 Small-Signal Analysis and Derivation of qZSI Transfer Function 

 

Figure 4.1 shows the small-signal model of qZSI to derive its transfer function. In 

small-signal analysis of converter topology, the stray resistance (i.e., 𝑟1  and 𝑟2 ) are 

included in inductors 𝐿1 and 𝐿2 and the equivalent series resistance (i.e., 𝑅1 and 𝑅2) are 

included in the capacitors 𝐶1 and 𝐶2.  

 

Figure 4.1: Small-signal model of qZSI 

 

Assume that 𝑟 = 𝑟1 = 𝑟2 and 𝑅 = 𝑅1 = 𝑅2, the mathematical equation of small-

signal model in shoot-through state can be defined as per equation (4.1) to equation (4.4).  

 
𝑑𝑖𝐿2

𝑑𝑡
= −

𝑅 + 𝑟

𝐿
𝑖𝐿2 +

1

𝐿
𝑣𝐶1 (4.1) 

 
𝑑𝑖𝐿1

𝑑𝑡
= −

𝑅 + 𝑟

𝐿
𝑖𝐿1 +

𝑣𝐶2

𝐿
+

𝑣𝑖𝑛

𝐿
 (4.2) 

 
𝑑𝑣𝐶1

𝑑𝑡
= −

𝑖𝐿2

𝐶
 (4.3) 

 
𝑑𝑣𝐶2

𝑑𝑡
= −

𝑖𝐿1

𝐶
 (4.4) 
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Where 𝑖𝐿1 represents the inductor current of 𝐿1. 𝑖𝐿2 represents the inductor current of 𝐿2. 

𝑣𝐶1 and 𝑣𝐶2 defines the capacitor voltage for 𝐶1 and 𝐶2 respectively. 𝑉𝑖𝑛 defines the DC 

input voltage and 𝑖𝐷𝐶 represents the DC-link output current. Note that the assumption of 

𝐿1 = 𝐿2 = 𝐿 and 𝐶1 = 𝐶2 = 𝐶 has been made to simplify the derivation of equation.  

Hence, the dynamic state equation of qZSI small-signal analysis in shoot-through state 

can be written as: 

 

[
 
 
 
 
 
 
 
 
𝑑𝑖𝐿1(𝑡)

𝑑𝑡
𝑑𝑖𝐿2(𝑡)

𝑑𝑡
𝑑𝑣𝐶1(𝑡)

𝑑𝑡
𝑑𝑣𝐶2(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 0

1

𝐿

0 −
𝑟 + 𝑅

𝐿

1

𝐿
0

0 −
1

𝐶
0 0

−
1

𝐶
0 0 0]

 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 

+

[
 
 
 
 
1

𝐿
0

0 0
0 0
0 0]

 
 
 
 

[
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] (4.5) 

Equation (4.5) can be represented with the following simplified equation. 

 
𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢 (4.6) 

Where 

 𝑥 =

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 
 (4.7) 

 𝐴1 =

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 0

1

𝐿

0 −
𝑟 + 𝑅

𝐿

1

𝐿
0

0 −
1

𝐶
0 0

−
1

𝐶
0 0 0]

 
 
 
 
 
 
 

 (4.8) 

 𝐵1 =

[
 
 
 
 
1

𝐿
0

0 0
0 0
0 0]

 
 
 
 

 (4.9) 

 𝑢 = [
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] (4.10) 



58 
 

 In non-shoot-through state, the relationship between capacitors current and 

inductor current, the relationship between capacitor voltage, inductor voltage, DC-link 

voltage and current can be summarized as follows: 

 
𝑑𝑣𝐶1

𝑑𝑡
=

𝑖𝐿1

𝐶
−

𝑖𝐷𝐶

𝐶
 (4.11) 

 
𝑑𝑣𝐶2

𝑑𝑡
=

𝑖𝐿2

𝐶
−

𝑖𝐷𝐶

𝐶
 (4.12) 

 
𝑑𝑖𝐿1

𝑑𝑡
= −

𝑟 + 𝑅

𝐿
𝑖𝐿1 −

𝑣𝐶1

𝐿
+

𝑅

𝐿
𝑖𝐷𝐶 +

𝑣𝑖𝑛

𝐿
 (4.13) 

 
𝑑𝑖𝐿2

𝑑𝑡
= −

𝑟 + 𝑅

𝐿
𝑖𝐿2 −

𝑣𝐶2

𝐿
+

𝑅

𝐿
𝑖𝐷𝐶 (4.14) 

Hence, the dynamic state equation of qZSI small-signal analysis in non-shoot-through 

state can be written as: 

 [
 
 
 
 
 
 
 
 
𝑑𝑖𝐿1(𝑡)

𝑑𝑡
𝑑𝑖𝐿2(𝑡)

𝑑𝑡
𝑑𝑣𝐶1(𝑡)

𝑑𝑡
𝑑𝑣𝐶2(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 −

1

𝐿
0

0 −
𝑟 + 𝑅

𝐿
0 −

1

𝐿
1

𝐶
0 0 0

0
1

𝐶
0 0 ]

 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 

+

[
 
 
 
 
 
 
 
1

𝐿

𝑅

𝐿

0
𝑅

𝐿

0 −
1

𝐶

0 −
1

𝐶]
 
 
 
 
 
 
 

[
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] 

(4.15) 

Equation (4.15) can be represented with the following simplified equation. 

 
𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢 (4.16) 
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Where 

 𝐴2 =

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 −

1

𝐿
0

0 −
𝑟 + 𝑅

𝐿
0 −

1

𝐿
1

𝐶
0 0 0

0
1

𝐶
0 0 ]

 
 
 
 
 
 
 

 (4.17) 

 𝐵2 =

[
 
 
 
 
 
 
 
1

𝐿

𝑅

𝐿

0
𝑅

𝐿

0 −
1

𝐶

0 −
1

𝐶]
 
 
 
 
 
 
 

 (4.18) 

By using equations (4.8), (4.9), (4.17) and (4.18), the dynamic state average equation can 

be obtained as follows: 

 𝐴 = 𝑑𝑆𝑇𝐴1 + (1 − 𝑑𝑆𝑇)𝐴2 (4.19) 

Substitute equation (4.8) and equation (4.17) into equation (4.19), we get 

 𝐴 =

[
 
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0

(𝑑𝑆𝑇 − 1)

𝐿

𝑑𝑆𝑇

𝐿

0 −
𝑟 + 𝑅

𝐿

𝑑𝑆𝑇

𝐿

(𝑑𝑆𝑇 − 1)

𝐿
(1 − 𝑑𝑆𝑇)

𝐶
−

𝑑𝑆𝑇

𝐶
0 0

−
𝑑𝑆𝑇

𝐶

(1 − 𝑑𝑆𝑇)

𝐶
0 0 ]

 
 
 
 
 
 
 
 

 (4.20) 

 

 𝐵 = 𝑑𝑆𝑇𝐵1 + (1 − 𝑑𝑆𝑇)𝐵2 (4.21) 
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Substitute equation (4.9) and equation (4.18) into equation (4.21), we get 

 𝐵 =

[
 
 
 
 
 
 
 
 
1

𝐿

𝑅(1 − 𝑑𝑆𝑇)

𝐿

0
𝑅(1 − 𝑑𝑆𝑇)

𝐿

0 −
1 − 𝑑𝑆𝑇

𝐶

0 −
1 − 𝑑𝑆𝑇

𝐶 ]
 
 
 
 
 
 
 
 

 (4.22) 

Hence, the dynamic state average equation can be written as per equation (4.23). 

 

[
 
 
 
 
 
 
 
 
𝑑𝑖𝐿1(𝑡)

𝑑𝑡
𝑑𝑖𝐿2(𝑡)

𝑑𝑡
𝑑𝑣𝐶1(𝑡)

𝑑𝑡
𝑑𝑣𝐶2(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0

(𝑑𝑆𝑇 − 1)

𝐿

𝑑𝑆𝑇

𝐿

0 −
𝑟 + 𝑅

𝐿

𝑑𝑆𝑇

𝐿

(𝑑𝑆𝑇 − 1)

𝐿
(1 − 𝑑𝑆𝑇)

𝐶
−

𝑑𝑆𝑇

𝐶
0 0

−
𝑑𝑆𝑇

𝐶

(1 − 𝑑𝑆𝑇)

𝐶
0 0 ]

 
 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 
+

[
 
 
 
 
 
 
 
 
1

𝐿

𝑅(1 − 𝑑𝑆𝑇)

𝐿

0
𝑅(1 − 𝑑𝑆𝑇)

𝐿

0 −
1 − 𝑑𝑆𝑇

𝐶

0 −
1 − 𝑑𝑆𝑇

𝐶 ]
 
 
 
 
 
 
 
 

[
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] (4.23) 

In small-signal analysis of qZSI topology, the perturbations of small-signal include 𝑣𝑖𝑛, 

𝑖𝐷𝐶, 𝑑𝑆𝑇, 𝑣𝐶1, 𝑣𝐶2, 𝑖𝐿1 and 𝑖𝐿2 as shown in equation (4.24) to equation (4.30) 

 𝑣𝑖𝑛 = 𝑉𝑖𝑛 + 𝑣𝑖�̂� (4.24) 

 𝑖𝐷𝐶 = 𝐼𝐷𝐶 + 𝑖𝐷�̂� (4.25) 

 𝑑𝑆𝑇 = 𝐷𝑆𝑇 + 𝑑𝑆�̂� (4.26) 

 𝑣𝐶1 = 𝑉𝐶1 + 𝑣𝐶1̂ (4.27) 

 𝑣𝐶2 = 𝑉𝐶2 + 𝑣𝐶2̂ (4.28) 

 𝑖𝐿1 = 𝐼𝐿1 + 𝑖𝐿1̂ (4.29) 

 𝑖𝐿2 = 𝐼𝐿2 + 𝑖𝐿2̂ (4.30) 

Where 𝑣𝑖�̂� represents the DC-input voltage perturbation, 𝑖𝐷�̂�  represents the DC-link 

current perturbation, 𝑑�̂�represents the small-signal duty ratio perturbation, 𝑣𝐶1̂ and 𝑣𝐶2̂ 

represents the small-signal perturbation of capacitor voltage across 𝐶1 and 𝐶2 respectively, 

𝑖𝐿1̂ and 𝑖𝐿2̂ represents the small-signal perturbation of inductor current flowing through of 

𝐿1 and 𝐿2 respectively. On the other hand, 𝑉𝑖𝑛 represents the peak DC-input voltage, 𝐼𝐷𝐶 

represents the peak DC-link current, 𝐷𝑜  represents the peak duty ratio, 𝑉𝐶1  and 𝑉𝐶2 
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represents the peak capacitor voltage of 𝐶1 and 𝐶2 respectively, 𝐼𝐿1 and 𝐼𝐿2 represents the 

peak inductor current flowing through of 𝐿1 and 𝐿2 respectively.  

Substituting equation (4.24) to equation (4.30) into equation (4.23), the dynamic 

state average equation with small-signal perturbations can be written as 

 

[
 
 
 
 
 
 
 
 
𝑑(𝐼𝐿1(𝑡) + 𝑖𝐿1̂(𝑡))

𝑑𝑡
𝑑(𝐼𝐿2(𝑡) + 𝑖𝐿2̂(𝑡))

𝑑𝑡
𝑑(𝑉𝐶1(𝑡) + 𝑣𝐶1̂(𝑡))

𝑑𝑡
𝑑(𝑉𝐶2(𝑡) + 𝑣𝐶2̂(𝑡))

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0

(𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1)

𝐿

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐿

0 −
𝑟 + 𝑅

𝐿

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐿

(𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1)

𝐿
(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐶
−

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶
0 0

−
𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶

(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐶
0 0 ]

 
 
 
 
 
 
 
 

[

𝐼𝐿1(𝑡) + 𝑖𝐿1̂(𝑡)

𝐼𝐿2(𝑡) + 𝑖𝐿2̂(𝑡)
𝑉𝐶1(𝑡) + 𝑣𝐶1̂(𝑡)
𝑉𝐶2(𝑡) + 𝑣𝐶2̂(𝑡)

]

+

[
 
 
 
 
 
 
 
 
1

𝐿

𝑅(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐿

0
𝑅(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐿

0 −
1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�

𝐶

0 −
1 − 𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶 ]
 
 
 
 
 
 
 
 

[
𝑉𝑖𝑛(𝑡) + 𝑣𝑖�̂�(𝑡)
𝐼𝐷𝐶(𝑡) + 𝑖𝐷�̂�(𝑡)

] 

(4.31) 

By doing linearization and Laplace transform on equation (4.31), the following 

equations can be established. 

 

𝑖�̂�(𝑠)(𝐿𝑠 + (𝑟 + 𝑅))

= 𝑑𝑆�̂�(𝑠)(𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶) + 𝑣�̂�(𝑠)(2𝐷𝑆𝑇 − 1)

+ 𝑖𝐷�̂�(𝑠)(𝑅 − 𝑅𝐷𝑆𝑇) + 𝑣𝑖�̂�(𝑠) 

(4.32) 

 𝑖�̂�(𝑠) =
𝐶𝑠𝑣�̂�(𝑠) + 𝑑𝑆�̂�(𝑠)(𝐼𝐿1 + 𝐼𝐿2 − 𝐼𝐷𝐶) + 𝑖𝐷�̂�(𝑠)(1 − 𝐷𝑆𝑇)

1 − 2𝐷𝑆𝑇
 (4.33) 

 

𝑣�̂�(𝑠)[(𝐿𝐶𝑠2 + 𝐶(𝑟 + 𝑅)𝑠) + (1 − 2𝐷𝑆𝑇)2]

= 𝑑𝑆�̂�(𝑠)[(𝐼𝐷𝐶 − 𝐼𝐿1 − 𝐼𝐿2)(𝐿𝑠 + (𝑟 + 𝑅))

+ (𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶)(1 − 2𝐷𝑆𝑇)]

+ 𝑖𝐷�̂�(𝑠)[(𝐷𝑆𝑇 − 1)(𝐿𝑠 + (𝑟 + 𝑅))

+ (𝑅 − 𝑅𝐷𝑆𝑇)(1 − 2𝐷𝑆𝑇)] + 𝑣𝑖�̂�(𝑠)(1 − 2𝐷𝑆𝑇) 

(4.34) 
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From equation (4.34), the capacitor voltage to duty cycle transfer function can be 

expressed as: 

 𝐺𝑣�̂�𝑑𝑆�̂�
=

𝑣�̂�(𝑠)

𝑑𝑆�̂�(𝑠)
 (4.35) 

 𝐺𝑣�̂�𝑑𝑆�̂�
=

[(𝐼𝐷𝐶 − 𝐼𝐿1 − 𝐼𝐿2)(𝐿𝑠 + (𝑟 + 𝑅)) + (𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶)(1 − 2𝐷𝑆𝑇)]

[𝐿𝐶𝑠2 + 𝐶(𝑅 + 𝑟)𝑠 + (1 − 2𝐷𝑆𝑇)
2]

 (4.36) 

Using equation (4.32) and equation (4.33) The open-loop transfer function for current 

inner loop of qZSI topology (i.e., the inductor current to duty cycle transfer function) can 

be derived as: 

 𝐺𝑖�̂�𝑑𝑆�̂�
=

𝐶𝑠(𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝑜) + (𝐼𝐿1 + 𝐼𝐿2 − 𝐼𝑜)(1 − 2𝐷𝑆𝑇)

[(𝐿𝑠 + 𝑅 + 𝑟)[𝐿𝐶𝑠2 + (𝑅 + 𝑟)𝐶𝑠 + (1 − 2𝐷𝑆𝑇)2]]
 (4.37) 

The transfer function of the DC-link voltage to inductor current is derived as: 

 𝐺𝑖�̂�𝑣𝐷�̂�
= (

𝐷𝑆𝑇

𝐿
)(

1

𝑠
) (4.38) 

All the components stated in equation (4.36) to equation (4.38) are DC components.  

During DCM mode, an extra interval of discontinuous current in qZSI circuit is 

formed. The inductor current falls to zero causing distortion to the DC-link output voltage. 

DCM occurs after the completion of discharging of the inductor current (i.e., active-state). 

With the present of DCM, the following equation can be established. 

 𝑑𝑁𝑆𝑇 = 𝑑𝐷 + 𝑑𝑎𝑐𝑡𝑖𝑣𝑒 (4.39) 

Where 𝑑𝑁𝑆𝑇 is the duty ratio for non-shoot-through state, 𝑑𝐷 is the duty ratio for DCM, 

𝑑𝑎𝑐𝑡𝑖𝑣𝑒 is the duty ratio for active-state.  

Over a switching cycle, the summation of shoot-through duty ratio and the non-

shoot-through duty ratio will equal to zero. Therefore, 

 1 − 𝑑𝑁𝑆𝑇 − 𝑑𝑆𝑇 = 0 (4.40) 

Substitute equation (4.39) into equation (4.40), obtained equation (4.41) as follows: 

 𝑑𝑎𝑐𝑡𝑖𝑣𝑒 = 1 − 𝑑𝐷 − 𝑑𝑆𝑇 (4.41) 
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Referring to equation (4.23) and by substituting equation (4.41) into equation 

(4.23), the dynamic state space equation of qZSI in active-state of a discontinuous 

conduction system can be written as per equation (4.42). 

 
[
 
 
 
 
 
 
 
 
𝑑𝑖𝐿1(𝑡)

𝑑𝑡
𝑑𝑖𝐿2(𝑡)

𝑑𝑡
𝑑𝑣𝐶1(𝑡)

𝑑𝑡
𝑑𝑣𝐶2(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
(𝑟 + 𝑅)(−1 + 𝑑𝐷)

𝐿
0

−1 + 𝑑𝑆𝑇 + 𝑑𝐷

𝐿

𝑑𝑆𝑇

𝐿

0
(𝑟 + 𝑅)(−1 + 𝑑𝐷)

𝐿

𝑑𝑆𝑇

𝐿

−1 + 𝑑𝑆𝑇 + 𝑑𝐷

𝐿
(1 − 𝑑𝑆𝑇 − 𝑑𝐷)

𝐶
−

𝑑𝑆𝑇

𝐶
0 0

−
𝑑𝑆𝑇

𝐶

(1 − 𝑑𝑆𝑇 − 𝑑𝐷)

𝐶
0 0 ]

 
 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 

+

[
 
 
 
 
 
 
 
 
1

𝐿

𝑅(1 − 𝑑𝑆𝑇 − 𝑑𝐷)

𝐿

0
𝑅(1 − 𝑑𝑆𝑇 − 𝑑𝐷)

𝐿

0 −
1 − 𝑑𝑆𝑇 − 𝑑𝐷

𝐶

0 −
1 − 𝑑𝑆𝑇 − 𝑑𝐷

𝐶 ]
 
 
 
 
 
 
 
 

[
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] 

(4.42) 

Substituting equation (4.24) to equation (4.30) into equation (4.42), and by doing 

linearization, the following equations are established: 

 
[
 
 
 
 
 
 
 
 
𝑑𝑖𝐿1̂(𝑡)

𝑑𝑡
𝑑𝑖𝐿2̂(𝑡)

𝑑𝑡
𝑑𝑣𝐶1̂(𝑡)

𝑑𝑡
𝑑𝑣𝐶2̂(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
(𝑟 + 𝑅)(−1 + 𝑑𝐷)

𝐿
𝑖𝐿1̂ +

𝑉𝐶1 + 𝑉𝐶2 − 𝐼𝐷𝐶𝑅

𝐿
𝑑𝑆�̂� +

−1 + 𝐷𝑆𝑇 + 𝑑𝐷

𝐿
𝑣𝐶1̂ +

𝐷𝑆𝑇

𝐿
𝑣𝐶2̂ +

𝑅(1 − 𝐷𝑆𝑇 − 𝑑𝐷)

𝐿
𝑖𝐷�̂� +

1 − 𝑑𝐷

𝐿
𝑣𝑖�̂�

(𝑟 + 𝑅)(−1 + 𝑑𝐷)

𝐿
𝑖𝐿2̂ +

𝑉𝐶1 + 𝑉𝐶2 − 𝐼𝐷𝐶𝑅

𝐿
𝑑𝑆�̂� +

−1 + 𝐷𝑆𝑇 + 𝑑𝐷

𝐿
𝑣𝐶2̂ +

𝐷𝑆𝑇

𝐿
𝑣𝐶1̂ +

𝑅(1 − 𝐷𝑆𝑇 − 𝑑𝐷)

𝐿
𝑖𝐷�̂�

1 − 𝐷𝑆𝑇 − 𝑑𝐷

𝐶
𝑖𝐿1̂ −

𝐷𝑆𝑇

𝐶
𝑖𝐿2̂ +

−𝐼𝐿1 − 𝐼𝐿2 + 𝐼𝐷𝐶

𝐶
𝑑𝑆�̂� +

−1 + 𝐷𝑆𝑇 + 𝑑𝐷

𝐶
𝑖𝐷�̂�

−
𝐷𝑆𝑇

𝐶
𝑖𝐿1̂ +

1 − 𝐷𝑆𝑡 − 𝑑𝐷

𝐶
𝑖𝐿2̂ +

−𝐼𝐿1 − 𝐼𝐿2 + 𝐼𝐷𝐶

𝐶
𝑑𝑆�̂� +

−1 + 𝐷𝑆𝑇 + 𝑑𝐷

𝐶
𝑖𝐷�̂� ]

 
 
 
 
 
 
 
 

 

(4.43) 

By taking Laplace transform to equation (4.43), the following transfer function that 

indicates the relationship between capacitor voltage and duty cycle in DCM can be derived 

as: 

 

𝐺𝑣�̂�𝑑𝑆�̂�

=
[(𝑠𝐿 + (𝑅 + 𝑟)(1 − 𝑑𝐷))(−𝐼𝐿1 − 𝐼𝐿2 + 𝐼𝐷𝐶) + (𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶)(1 − (2𝐷𝑆𝑇 + 𝑑𝐷))]

[𝐿𝐶𝑠2 + 𝐶(𝑅 + 𝑟)(1 − 𝑑𝐷)𝑠 + (1 − 2𝐷𝑆𝑇 − 𝑑𝐷)2]
 

(4.44) 
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4.1.2 The Design of DC-link Voltage Controller (Lead Compensator) 

 

The transfer function derived in section 4.1.1 above can be drawn into signal-flow 

graph as shown in Figure 4.2 below. The signal-flow graph is drawn to eliminate some of 

the external disturbances that can be ignored and simplified it into control system block 

diagram as shown in Figure 4.3.  

 

Figure 4.2: Signal-flow graph of qZSI transfer function 

 

Lead compensator can effectively reduce the overshoot percentage and increase 

the gain crossover frequency of a system to realize fast transient response. In other words, 

with lead compensator, the bandwidth of the system’s frequency response can be 

increased in proportional with the increased of gain crossover frequency. On the other 

hand, reduction of overshoot percentage can also be attained by increasing the phase 

stability margin at the crossover frequency. Figure 4.3 illustrates the proposed voltage-

current closed-loop control system that generates the shoot-through duty ratio to acquire 

the desire buck and boost capabilities of qZSI. It is designed based on qZSI small-signal 

equivalent circuit and the signal-flow graph shown in Figure 4.2. To achieve DC-link 

voltage control, the difference between the DC-link voltage reference value, 𝑉𝐷𝐶
∗  will pass 

through a lead compensator with transfer function 𝐺𝐶(𝑠) to generate a corresponding 

shoot-through duty ratio, 𝑑𝑆𝑇 towards the unipolar sinusoidal PWM technique. 
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Figure 4.3: Voltage-current closed-loop control strategy using lead compensator 

 

Figure 4.4 shows the conventional PI controller voltage-current closed-loop 

control strategy. Notice that in the lead compensator control strategy diagram, equation 

(4.38) is derived as a transfer function of the DC-link voltage to inductor current and it is 

used to replace the integral terms in PI controller. As a result, it provides more flexibility 

to the design process of the DC-link control system. 

 

Figure 4.4: Voltage-current closed-loop control strategy using PI controller 

Both the control strategy in Figure 4.3 and Figure 4.4 consists of a voltage loop 

and a current inner loop. The proportional control (i.e., 𝐾𝑝) regulates the difference 

between the current reference with the actual inductor current. The two-control loop 

strategy is employed to handle the presence of non-minimum phase. The main purpose 

of inner current control is to regulates the dynamic response speed and at the same time 

reducing the overshoot percentage. Desired shoot-through duty cycle (i.e., 𝑑𝑠𝑡 ) is 

generated according to the DC-link voltage reference. The shoot-through duty cycle 

then passes through a control strategy block (i.e.,  to calculate the capacitor voltage.)  
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The lead compensator general equation is defined as: 

 𝐺𝐶(𝑠) =

1
𝛾

(𝑠 +
1
𝑇
)

𝑠 +
1
𝛾𝑇

 (4.45) 

The following summarized are the sequences to obtain all the parameters in equation (4.45) 

Step 1: Determine the system type of a unity feedback system to calculate the steady-state 

error from its closed-loop or the open-loop transfer function. 

Step 2: Determine the closed-loop bandwidth to meet peak time and settling time 

requirement. By setting a desired overshoot percentage, the damping ratio of the system 

is calculated by equation (4.46). 

 𝜉 =
− ln (

%𝑂𝑆
100 )

√π2 + ln2 (
%𝑂𝑆
100 )

 (4.46) 

Where ξ is the damping ratio and %OS is the overshoot percentage of the uncompensated 

system.  

The bandwidth of the system is defined as: 

 𝜔𝐵𝑊 =
𝜋

𝑇𝑝√1 − 𝜉2
√(1 − 2𝜉2) + √4𝜉4 − 4𝜉2 + 2 (4.47) 

Where Tp is the peak time of the uncompensated system. 

Step 3: Increase the low frequency magnitude responses to reduce the steady-state error. 

In other words, the gain K should be varied to attain the desired steady-state error.  

Step 4: Plot a bode plot and determine the uncompensated system’s phase margin. 

Step 5: Choose the phase margin which can meet the required damping ratio and overshoot 

percentage via equation (4.48) as follows: 

 
∅𝑃𝑀 = tan−1

2𝜉

√−2𝜉2 + √1 + 4𝜉4

 (4.48) 
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Step 6: Calculate the desired phase contribution of the lead compensator by adding a 

correction factor to compensate for the lower uncompensated system’s phase angle.  

Step 7: Determine 𝛾  from the lead compensator’s required phase contribution and 

determine the magnitude of the compensator at the peak of the phase curve. 𝛾 can be 

determined using equation as follows: 

 𝛾 =
1 − 𝑠𝑖𝑛 ∅𝑚𝑎𝑥

1 + 𝑠𝑖𝑛 ∅𝑚𝑎𝑥
 (4.49) 

Where Ф𝑚𝑎𝑥  is the total phase contribution required from the lead compensator. The 

magnitude of the compensator is derived as: 

 |𝐺𝑐(𝑗𝜔𝑚𝑎𝑥)| =
1

√𝛾
 (4.50) 

Step 8: From the bode plot, the new phase margin frequency, 𝑤𝑚𝑎𝑥 can be determined by 

selecting the frequency at which the uncompensated system’s magnitude is the negative 

of the magnitude of the compensator; the magnitude is in logarithm scale.   

Step 9: Determine the value T of the compensator. 

 𝑇 =
1

𝑤𝑚𝑎𝑥√𝛾
 (4.51) 

Step 10: Redesign of the compensator by repeating the procedure using different 

correction factor if the requirement is not met. 

Once the controller can achieve encouraging performance in theoretical simulation model, 

a real-time simulation model will be carried on by feeding the DC-link voltage and 

inductor current values from qZSI into the controller block diagram.  

 Figure 4.5 illustrates the real-time control system block diagram. During real-time 

simulation, two qZSI parameters will be obtained and to be fed into the controller (i.e., 

𝑉𝐷𝐶 and 𝐼𝐿1). The controller then calculates the difference between the reference DC-link 

voltage (i.e., 𝑉𝐷𝐶
∗ ) and the actual DC-link voltage (i.e., 𝑉𝐷𝐶). These differences are then 

compensated by using lead compensator. Through equation (4.38), the compensated 

signal will be transformed to the inductor current reference signal and it is used to compare 
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with the actual inductor current value. Lastly, passing the signal through the proportional 

gain in the inner current loop, the desired shoot-through duty ratio is obtained.  

 

Figure 4.5: Real-time controller block diagram (Lead Compensator) 
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4.1.3 Sinusoidal Pulse Width Modulation Technique 

 

Different type of PWM method has been proposed for qZSI to achieve wider 

modulation range and provide lower voltage stress on the semiconductor switches, include 

SPWM and SVM technique. Three traditional SPWM method were introduced for qZSI 

which include simple boost control, maximum boost control and maximum constant boost 

control. The difference between these SPWM techniques are the voltage gain and the 

frequency ripples.  

The principle of the SPWM for the two-level qZSI is illustrated in Figure 4.6. The 

fundamental frequency component in the qZSI output can be controlled by the amplitude 

modulation index: 

 𝑚𝑎 =
𝑉𝑚

𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟
 (4.52) 

Where 𝑉𝑚 is the sinusoidal modulating waves and 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟 is the triangular carrier wave. 

 

Figure 4.6: Simple Boost Control SPWM 

   

Figure 4.7 shows the block diagram to generate SPWM waveform. The blue 

straight line in Figure 4.6 represents the shoot-through duty ratio reference generated by 
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the DC-link voltage controller. There are two different type of carrier wave used for 

SPWM (i.e., sawtooth or triangle waveform); each generating slightly different output 

voltage. The sinusoidal waveforms represent the modulation signal. Noticed in simple 

boost SPWM, two modulating signals are required. The shoot-through reference of simple 

boost control is a straight line equal or higher than the top envelope of modulation waves, 

or equal to or lower than the bottom envelope of the modulation waves. When the carrier 

signal is greater than the positive shoot-through reference line or smaller than the negative 

shoot-through reference line, the switching signal for shoot-through state will be generated. 

Therefore, 𝐼𝐺𝐵𝑇1 and 𝐼𝐺𝐵𝑇2 are switched ON (as shown in Figure 4.7). In active-state, 

when the sinusoidal signal is greater than the carrier signal, 𝐼𝐺𝐵𝑇1 and 𝐼𝐺𝐵𝑇4 will be 

turned on. When the carrier signal is larger than the carrier signal, 𝐼𝐺𝐵𝑇2 and 𝐼𝐺𝐵𝑇3 will 

be switched on.   

 

Figure 4.7: Block diagram of  SPWM 

 

Conventional SPWM technique is unable to generate multilevel output waveform. 

To generate multilevel output voltage,  PS-SPWM (shown in Figure 4.8) is introduced. In 

general, a multilevel inverter with n voltage levels requires (n-1) triangular carrier. In PS-

SPWM, all the triangular carriers have the same frequency and the same peak-to-peak 

amplitude. However, there is a phase-shift between any two adjacent carrier waves, which 

can be calculated by using the formula: 

 ∅𝑐𝑎𝑟𝑟𝑖𝑒𝑟 =
360°

𝑛 − 1
 (4.53) 
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Figure 4.8: Phase-shifted SPWM 

 

The sinusoidal waveform in the Figure 4.8 represents the modulating signal, which 

is the same as conventional SPWM. However, in PS-SPWM, only requires one sinusoidal 

waveform. To generate multilevel stepped voltage waveform, the carriers of different H-

bridge modules are shifted 60° to each other. 
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4.2 Simulation Results 

 

Intensive simulation works are performed using MATLAB/SIMULINK for the 

proposed qZSI and its associated control scheme in both CCM and DCM. This section 

can be categorized into 2 parts:  

 Section 4.2.1: Simulation results of DC-link control scheme in DCM with step 

changes in DC-link voltage reference. 

 Section 4.2.2: Simulation results of DC-link control scheme with varied loading 

condition in CCM. 

 

4.2.1 Step Change of DC-link Voltage Reference in DCM 

 

In this section, the simulation model is conducted when the qZSI is operating in 

DCM. To demonstrate the effectiveness and feasibility of the proposed controller with 

constant modulation index, qZSI topology was tested in response to a step change of DC-

link reference voltage (i.e., 35𝑉 to 50𝑉). The equations (3.21) does not hold as the qZSI 

is operating in DCM. Therefore, in this simulation model, the equation that govern the 

DC-link voltage in DCM can be referred to equation (3.34). Table 4.1 below shows the 

system parameters used in this simulation model. From simulation results shown in 

section 3.3.1, the minimum inductor value to achieve CCM is roughly calculated to be 

around 200𝜇𝐻. Therefore, in this simulation model, to achieve DCM, an inductor which 

is smaller than that value is chosen (i.e., 100𝜇𝐻) to achieve DCM for all time interval. 

The proposed controller’s steady-state error, dynamic and transient responses were 

analysed with different DC voltage references. This section also demonstrates the 

controller performance comparison between lead compensator and PI controller. 
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Table 4.1: System parameters for qZSI topology with step-change in DC-link reference 

voltage 

Input voltage 12V 

Switching frequency, 𝑓𝑠 10𝑘𝐻𝑧 

Step up voltage 35V to 50V 

Capacitor 𝐶1 and 𝐶2 value 1000𝜇𝐹 

Inductance 𝐿1 and 𝐿2 value 100𝜇𝐻 

Load resistance, Ω 30Ω 

System AC output frequency, 𝑓𝐴𝐶  50𝐻𝑧 

Modulation index, 𝑀 0.5 

 

The proposed lead controller can reach a step change of 35𝑉 to 50𝑉 with very fast 

and stable dynamic response. The design of DC-link voltage loop and inner current loop 

transfer function can be found in Appendix B. Few parameters have been chosen when 

designing the controller, the desired percentage overshoot value to design lead 

compensator is set to be less than 5% and the peak time was set to be less than 0.1𝑠. Table 

4.2 shows the controller parameters for both lead compensator and PI controller. Also, the 

current inner loop proportional gain for both designs were included. The parameter of the 

PI controller used in control loop and P controller in the current inner loop were obtained 

by tuning the response speed for P controller and both response speed and transient 

behaviour for PI controller. The tuning procedure of the controller can be found in 

Appendix C. 
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Table 4.2: Lead compensator and PI controller parameters 

Lead compensator 
PI controller (𝑃 + 𝐼 (

1

𝑠
)) 

Lead compensator 

gain 

19.9785 Proportional 

gain 

46.462 

Current inner 

loop proportional 

gain 

7.79𝑥10−4 Integral 

Coefficient 

30756.516 

Transfer function 

of lead 

compensator 

19.9785 ∗
𝑠 + 13334.15

𝑠 + 266395.76
 

Current inner 

loop 

proportional 

gain 

1.519 

 

Figure 4.9 shows the dynamic response of capacitors’ voltage (𝑉𝐶1 𝑎𝑛𝑑 𝑉𝐶2). It 

proved that the equation derived in section 4.1.1 is accurate; showing that the magnitude 

of capacitor 𝐶1 voltage (i.e., 𝑉𝐶1) is larger when compared to capacitor 𝐶2 voltage (i.e., 

𝑉𝐶2) in equation (3.19) and (3.20). By using the derived equation (3.19) and (3.20), 𝑉𝐶1 

and 𝑉𝐶2 are calculated to be 12V and 23V respectively, to generate a 35V output DC-link 

voltage.  

From Figure 4.10, equation (3.34) was realized to describe the relationship 

between the shoot-through duty ratio 𝐷𝑆𝑇 and the DC-link voltage, 𝑉𝐷𝐶 as shown in Figure 

4.11. Figure 4.11 indicates the dynamic response of the DC-link voltage and its average 

value in real-time simulation (i.e., 𝑉𝑚𝑒𝑎𝑛 stated in Figure 4.11). For instance, large shoot-

through duty ratio was required to achieve higher DC-link voltage and vice versa. Notice 

that in DCM, the DC-link voltage transfer function listed in equation (3.21) no longer 

holds; as depicted from section 3.3.1 and section 3.3.2. The discontinuous conduction duty 

cycle (i.e., 𝐷𝐷 ) can be calculated using the following formula (i.e., 𝐷𝐷 =

𝑉𝐶1−𝑉𝑖𝑛+𝐷𝑆𝑇(𝑉𝑖𝑛−2𝑉𝐶1)

𝑉𝐶1−𝑉𝑖𝑛
) listed in equation (3.36). 
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Figure 4.9: qZS DC capacitors’ voltages VC1 and VC2 

 

Figure 4.9 and Figure 4.11 show how the proposed controller responded to a step 

change of voltage reference with a very fast dynamic response (i.e., within 50𝑚𝑠), which 

has met the expectation of our research objective (i.e., dynamic response within 200𝑚𝑠). 

The relationship between DC-link voltage 𝑉𝐷𝐶 and capacitor voltage (i.e., 𝑉𝐶1 and 𝑉𝐶2) 

shown in Figure 4.11 and Figure 4.9 can be proven using equation (3.14) in active-state. 

By examining the percentage overshoot of Figure 4.11, notice that the proposed controller 

can maintain a very a low percentage overshoot at the beginning of the simulation and 

during the step change interval. The first overshoot has accounted for approximately 3% 

while the second overshoot that occured when the step change in the DC-link reference 

voltage is applied has accounted for a value less than 1%.  

Figure 4.12 (a) and (b) demonstrates AC output voltage, 𝑉𝐴𝐶  and current, 𝐼𝑜 

waveform respectively. The voltage and current distortion in DCM would be higher 

comparing to when it operates in CCM. By having a closer look at the generated output 

voltage waveform, observed that there are some incomplete wave patterns occurred which 

indicates that the system is operating in DCM. Also, the inductor current value falls to 
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zero during some interval in non-shoot-through state. Figure 4.13 shows the zoomed-in 

version of AC output voltage and current (i.e., 𝑉𝐴𝐶 and 𝐼𝑜).  

 

 

Figure 4.10: Shoot-through duty cycle with modulation signal waveform 

 

 

Figure 4.11: DC-link output voltage (VDC) waveform  

 



77 
 

 

Figure 4.12: (a) AC output voltage, VAC (b) AC output current, Io 

 

 

Figure 4.13: Zoomed in of (a) AC output voltage, VAC (b) AC output current, Io 
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Figure 4.14(a) shows the theoretical DC-link voltage control using lead 

compensator without the current inner loop. The waveform is generated based on the 

derived small-signal transfer function. A closer “zoomed-in” look of Figure 4.14(a) was 

presented clearly to analyse system damping and steady-state error. The step change for 

theoretical analysis was performed when the time reach the interval of 0.05𝑠 to show a 

closer and clearer view. Notice that when current inner loop is absent, the theoretical DC-

link voltage has a very high percentage overshoot and damping ratio. Also, it shows a 

steady-state error of about 1% as depicted in Figure 4.14(b). 

To resolve the steady-state error and reduce the overshoot in DC-link voltage, 

current inner loop is added to the DC-link control system. The theoretical simulation result 

was presented in Figure 4.15. With the proportional gain in the current inner loop, it allows 

the system damping ratio to be reduced and so its percentage overshoot. However, since 

the damping ratio has been reduced, the setting time has been increased in proportional. 

Nevertheless, the dynamic response is still within a very good and fast manner.  
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(a) 

 

(b) 

Figure 4.14: (a) DC-link control system without current inner loop (b) Closer view 

(steady-state error) 
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Figure 4.15: Step change of DC-link voltage based on mathematical model with 

current inner loop 

 

Figure 4.16 shows the frequency response of the original system and the 

compensated system. The phase margin and gain margin of the uncompensated and 

compensated system was listed in Table 4.3. From the bode plot, the phase margin and 

gain margin of the original system were −26.6° and −16.6dB respectively. Negative gain 

and phase margin indicates that the system is unstable. However, after the system has been 

compensated by using lead compensator, the phase margin and the gain margin can be 

improved and increased to 10.7° and 5.74𝑑𝐵 respectively. The positive gain indicated in 

the lead compensator transfer function (i.e., 19.9785), shifted the crossover frequency of 

both magnitude and phase waveform to the right, improving the gain and phase margin. 

Adding the current inner loop to the compensated system further improve the frequency 

response. The phase margin and gain margin were further improved to 62.3°  and 

12.74𝑑𝐵 respectively. The phase margin improvement reduces the overshoot percentage, 

which is corresponding to the desired phase margin calculated during the design of the 

lead compensator. However, after inserting current inner loop, the gain crossover 
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frequency has been greatly reduced. Despite, from Figure 4.15, the peak time and settling 

time obtained from the system is still encouraging. The reduction of the gain crossover 

frequency might due to the gain of the proportional (P) controller in the inner current loop, 

which is incredibly small.  

 

Figure 4.16: Bode plot 

 

Table 4.3: Stability Margin 

 Original 

system 

Compensated 

system 

(without 

current inner 

loop) 

Compensated 

system (with 

current inner 

loop) 

Gain margin 

(𝑑𝐵) 

-16.6 5.74 12.4 

Phase margin 

(°) 

-26.6 10.7 62.3 
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Figure 4.17 shows the dynamic response of DC-link voltage when PI controller is 

used. By comparing Figure 4.17 with Figure 4.11, it has shown that PI controller can 

achieve a fast dynamic response in DC-link voltage when a step change of 35𝑉  to 

50𝑉 was applied. However, the performance is not as good as lead compensator. PI 

controller offers higher percentage overshoot during the start-up process and when step 

change was applied. Moreover, the settling time required to reach steady-state is about 

300 𝑚𝑠, which is longer than lead compensator. Table 4.4 shows the stability margin 

comparison between lead compensator and PI controller. Without the inner current loop, 

PI controller can achieve positive gain and phase margin. In other words, the system is 

already stable after the compensation. However, comparing the gain and phase margin of 

both controllers, it shows that lead compensator can achieve better transient response, 

which lead to a lower overshoot and faster settling time.    

 

Figure 4.17: DC-link output voltage (VDC) using PI controller 
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Table 4.4: Stability margin comparison between lead compensator and PI controller 

 

Compensated system 

using Lead 

Compensator (without 

current inner loop) 

Compensated 

system using PI 

controller (without 

current inner loop) 

Gain margin 

(𝑑𝐵) 
5.74 0.702 

Phase margin 

(°) 
10.7 7.25 
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4.2.2 Multilevel Output Voltage Control with Different Loading Condition in CCM  

 

All system parameters of the proposed controller (i.e., Lead Compensator) applied 

on the qZSI were tabulated in Table 4.5. In this section, the output voltage is kept constant, 

the only changes are the load resistance. A CCM system is used in this section therefore, 

to generate a system that operates in CCM, the inductor value has been chosen which in 

such a way that it could be stay as far away from the boundary condition as possible. 

Moreover, to reduce the ripple effect of the output voltage, the capacitor value is chosen 

based on equation (3.50).  

 

Table 4.5: System Parameter 

Input voltage 12V 

Switching frequency, 𝑓𝑠 10𝑘𝐻𝑧 

Step up voltage 40V 

Capacitor 𝐶1 and 𝐶2 value 5.6𝑚𝐹 

Inductance 𝐿1 and 𝐿2 value 2𝑚𝐻 

System AC output frequency, 𝑓𝐴𝐶  50𝐻𝑧 

Modulation index, 𝑀 0.5 

 

The simulation model is performed by starting out with an output load of 50 ohm. 

The load changed to 100 Ω at 1s and to 30 Ω at 2s. Figure 4.18 illustrates the measured 

qZSI DC-link voltage, 𝑉𝐷𝐶  to inhibit the external disturbances (i.e., different loading 

condition). It is noticed that when the AC load changed from 50 Ω to 100 Ω and from 100 

Ω to 30 Ω, the DC-link voltage can be kept invariable. Noticed that the amplitude of the 

voltage ripple in these three cases have slight variation. When the system is operating 

further away from the boundary condition, the voltage ripple amplitude tends to be higher. 

In other words, when the system moves closer to the boundary condition, the voltage 

ripple tends to reduce in proportional.  
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Figure 4.19 shows the inductor current waveform. The graph has shown that the 

dynamic response of the inductor current was satisfied in accordance to the expectation. 

The current overshoot was low, indicates that the current stress can be remained low when 

lead compensator is used as the controller. When the AC load changed from 50Ω to 100Ω, 

the system tends to move closer to DCM, noticed that how’s the inductor current react to 

the situation. According to Ohm’s law, having a bigger load tends to reduce the inductor 

current, which move the system closer to the boundary condition as depicted in equation 

(3.41). 

 

Figure 4.18: DC-link voltage with varied load loading condition 
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Figure 4.19: Inductor current waveform 

 

Figure 4.20 shows how the lead compensator DC-link voltage reacts to the voltage 

reference. In the real-time simulation model, capacitor voltage value is obtained and fed 

into a control block with equation (3.23) to obtain the DC-link voltage. The reason to 

obtained capacitor voltage instead of DC-link voltage is because, during shoot-through 

interval, DC-link voltage tends to drop to zero and this might cause the entire system to 

turn unstable. The control system block diagram is demonstrated in Figure 4.3 in section 

4.1.2.  
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Figure 4.20: VDC and VDC reference waveform 

 

Figure 4.21 shows the shoot-through duty ratio waveform. By using equation 

(3.21), to generate an output voltage of 40𝑉 from 12𝑉 input voltage, the shoot-through 

duty ratio is expected to be 0.35. The graph indicates that the shoot-through duty ratio can 

be maintained at a steady and constant value during the step change in loading condition. 

It also proven that the derived equation (3.21) is accurate.  
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Figure 4.21: Shoot-through duty ratio waveform 

 

A multilevel output voltage waveform has been generated by using PS-SPWM as 

depicted in Figure 4.23. The multilevel model is constructed according to Figure 2.1 in 

Simulink. Figure 4.24 shows the zoomed-in version of the output voltage waveform. In 

this simulation model, five-level output voltage with 80𝑉 peak voltage has been obtained 

by using two qZSI module, each with 40𝑉 output voltage. Each of the qZSI module is 

individually controlled by own DC-link voltage controller (i.e., lead compensator). The 

same loading condition has been applied to the circuit. The simulation results shown in 

Figure 4.23 has demonstrated the effectiveness of the controller in maintaining the shoot-

through duty ratio and providing a smooth and stable output voltage. There is only slight 

distortion in the output voltage at time interval of 1s when the loading condition changed 

from 50Ω to 100Ω. At 2𝑠, the AC voltage distortion increased when the load changed 

from 100Ω  to 30Ω . Nevertheless, the controller can trace the changes in the output 

voltage and bring it back to steady-state within a very short time interval.  
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Figure 4.22: Simulink Model of multilevel qZSI 

 

 

Figure 4.23: AC output voltage, VAC 
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Figure 4.24: Zoomed-in of AC output voltage 

 

Figure 4.25 shows the AC output current waveform. The waveform indicates that 

the controller has performed an excellent job, not only maintaining a stable DC-link 

voltage, but also keeps the AC output current stable. Notice how the AC current reacts to 

the changes in the loading condition. Ohm’s law is applied when calculating the output 

AC current value. The larger the load, the lower the output AC current. Referring to 

equation (3.46), AC current has direct impact to the inductor current. Hence, it also proofs 

that the principle behind equation (3.41) is valid; qZSI which operates in larger loading 

condition tends to move closer to DCM zone.  
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Figure 4.25: AC output current, Io 
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4.3 Summary 

 

This chapter presents the detail mathematical derivation of qZSI large and small-

signal models. To achieve robust dynamic and transient response, lead compensator is 

chosen as the controller to be used in DC-link voltage control. The performance of the 

lead compensator has shown improvement over PI controller and the result is 

demonstrated in section 4.2.1. The controller performance has been performed and 

reviewed in different circumstances. The presented results include when qZSI operates in 

DCM and CCM mode, which are shown in section 4.2.1 and section 4.2.2, respectively. 

The controller was tested with step change in the DC-link voltage reference and the results 

were satisfying. Dynamic response can be achieved within 50𝑚𝑠, which has far beyond 

the expected dynamic response stated in objective (i.e., 200𝑚𝑠). Later, in section 4.2.2, 

the simulation model was tested with a step change in loading condition. The controller 

has achieved a very fast response when the step change is applied. The topology is later 

extended to multilevel qZCHI to generate multilevel output voltage/current.  
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Chapter 5 : Power Quality Improvement in qZSI 

 

Since qZSI is an emerging topology that is normally applied to PV power system, 

it is utmost important to ensure unity power factor as well as low harmonic distortion from 

the generated output voltage and current when integrating qZSI to the grid. The foregoing 

topology might inherent voltage and power imbalance to the grid. In this chapter, the 

mathematical modelling of PV-based qZSI STATCOM system is prosecuted.  

First, in section 5.1, the basic MPPT algorithms are introduced to balance the 

fluctuation of PV power. The basic MPPT algorithm has been integrated to qZSI module 

and the simulation results are shown in section 5.5.1. In this section, the MPPT algorithm 

is applied based on the previous literature [46-49] to adjust the shoot-through duty cycle 

of the converter. However, in future simulation work, instead of tuning the duty cycle of 

the converter, the MPPT algorithm will be merged with converter STATCOM system to 

generate the modulation index of the converter’s IGBT switches. Several literatures have 

demonstrated different approaches to tune the modulation index using linear control (i.e., 

PI controller) [28, 49]. 

Secondly, section 5.2 introduces the qZSI based STATCOM system control 

scheme to improve the power quality of the inverter as well as regulating the output 

current/voltage. The STATCOM controller is synthesized and combined with DC-link 

voltage controller mentioned in chapter 4 (i.e., lead compensator) to advocate and limit 

the fluctuation of the output voltage/current. Also, the main feature of the STATCOM 

system is to minimize the phase angle difference between the grid voltage and grid current 

(i.e., before the PCC). In other words, the purpose of the entire system is to make sure that 

the power factor distributed can be compensated to as closed to unity as possible. The 

simulation results are illustrated in section 5.5.2.  

Section 5.3 describes the modelling of two energy storing battery-based qZSI. This 

includes the derivation of qZSI transfer function in both large (i.e., section 5.3.1) and 

small-signal analysis (i.e., section 5.3.2). The verification of the derived transfer function 

will be done in future work. Finally, to fully develop a PV-based qZSI model with 
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STATCOM system, MPPT algorithm, STATCOM and DC-link voltage controller must 

be combined and operates concurrently. Section 5.4 covers the system modelling of the 

referred control system.  

 

5.1 MPPT algorithm 

 

In a PV system, the changes in solar irradiance and temperature of the environment 

causes intensive fluctuation of the input power. MPPT algorithms are implemented to 

resolve the power fluctuation issues when power conditioning circuit is connected 

between the PV system and the load. In other words, the algorithms are used to extract 

maximum power from the PV system based on different solar irradiance and temperature, 

then inject it to the load side. Several MPPT algorithms have been proposed to extract the 

maximum power from the PV-panel, includes Perturb and Observe (P&O) algorithm [50], 

Incremental and conductance (I&C) algorithm [47], constant voltage and parasitic 

capacitance algorithm [46, 48] etc.  

In a grid-connected PV system, to track the MPP of a PV-array, the capacitor 

voltage of qZSI is controlled to be constant. The output voltage of a PV-array decreases 

from the set value of DC-link reference voltage to the MPP by increasing the shoot-

through duty ratio [2]. At constant temperature, the changes of solar irradiance will result 

in a large change in PV current at MPP [51]. With a little variation in the temperature, the 

MPPT controller ensures that the DC-link voltage can be remained in a stable environment. 

Contrarily, at MPP, PV voltage changes according to the changes of temperature [51]. The 

resultant of PV current will ultimately distort the amplitude DC-link peak voltages, 

resulting in unstable system to occur. Figure 5.1 shows the P&O method block diagram 

for converter topology.   

In Figure 5.1, the shoot-through duty ratio of qZSI is increased when the power of 

current cycle is larger than the power of qZSI, one switching cycle before. This switching 

cycle can be referred to how much the time taken for the MPPT to react to the changes in 

irradiance or temperature. The i-term from Figure 5.1 defines the cycle number. In this 
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chapter, P&O algorithm is chosen due to its structural simplicity and easy to be 

implemented. Nevertheless, further literature reviews must be taken to evaluate the 

performance of each method and a more detail and in-depth study has to be taken in the 

future work.  

 

 

Figure 5.1: P&O method for qZSI [48] 
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5.2 qZSI based STATCOM system 

 

Power quality and efficiency issues has becoming one of the major concern in 

recent years. Low power factor, excessive harmonic and transient oscillations that 

occurred in the power transmission and distributions are common adversity in 

conventional power inverter. The AC output that consists of reactive loads, which 

naturally provide with low power factor, will draw excessive reactive power (VAR) 

restricting the maximum active power transfer and hence resulting in a low efficiency, yet 

high power losses to the power transmission and distribution systems. Therefore, it is 

crucial to improve the voltage stability as well as power quality of the power inverter 

under both contingency and normal operating conditions. The conventional voltage-

source inverter-based STATCOM has been one of the most predominant solution to 

provide the VAR compensation [52]. Among different multilevel STATCOM topologies, 

cascade H-bridge Based (CHB) configuration has received a lot of attention from 

researchers [53].   

Several methods have been reported in literature, including the classical linear 

control strategies to others non-linear control scheme [53]. For the linear control strategies, 

the most common way to perform power quality control is to use Park Transformation to 

map the system to the Synchronous Reference Frame (SRF) and then apply traditional 

linear controller such as PI or PID controller.  In a STATCOM based converter network, 

the amplitude and phase angle of the inverter’s output voltage and current is measured and 

will be controlled with respect to the AC-source voltage reference.  

In [54], the author presented a STATCOM based inverter system using 𝑖𝑜𝑞
∗  

algorithm and the associate control scheme is presented in Figure 5.2. The proposed 

algorithm enhances the transient performance of the closed-loop system by using only P 

controller and minimizes the STATCOM reactive current ripples. The STATCOM system 

is implemented to control the reactive power (VAR) compensation and the grid power 

factor correction at the PCC. The output current will be converted into dq vector and 

implemented into reactive current reference algorithm proposed by Law in [55]. The 
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algorithm is incorporated as STATCOM main system to generate the desired modulation 

index, 𝑚𝑎 as in equation (5.1).  

 
𝑚𝑎 =

𝑣𝑜
∗

2
=

√(𝑣𝑜𝑑
∗ )2  + (𝑣𝑜𝑞

∗ )
2

2
 

(5.1) 

Where 

 

𝑣𝑜𝑑
∗ (𝑘) = 𝑣𝑝𝑐𝑐𝑑(𝑘) − 𝑅𝑓𝑖𝑜𝑑(𝑘) +

𝑤𝐿𝑓

2
[𝑖𝑜𝑞(𝑘) + 𝑖𝑙𝑞(𝑘)]

+
𝑤𝐿𝑓

2
[𝑖𝑜𝑞(𝑘) + 𝑖𝑙𝑞(𝑘)] − 𝐾𝑝𝑖𝑑

[−𝑖𝑜𝑑(𝑘)] 

(5.2) 

 
𝑣𝑜𝑞

∗ (𝑘) = −𝑅𝑓𝑖𝑜𝑞(𝑘) −
𝑤𝐿𝑓

2
[𝑖𝑜𝑑(𝑘) + 𝑖𝑜𝑑

∗ (𝑘)]

− 𝐾𝑝𝑖𝑞
[(𝑖𝑙𝑞(𝑘) + 𝑖𝑜𝑞

∗ ) − 𝑖𝑜𝑞(𝑘)] 

(5.3) 

𝑖𝑜𝑑 and 𝑖𝑜𝑞 are the active and reactive current passing through the coupling impedance 

𝑍𝑓 (i.e., 𝑍𝑓 = 𝐿𝑓 + 𝑟𝑓). 𝑤 is the grid voltage angular frequency and 𝑣𝑝𝑐𝑐𝑑 is the d-axis 

grid voltage.  

The P controller in equation (5.3) has a transfer function as stated in (5.4). 

 𝐾𝑝𝑖(𝑑,𝑞)
=

𝐿𝑓

𝑇𝑖(𝑑,𝑞)
+

𝑅𝑓

2
 (5.4) 

Equation (5.5) represents the reactive current reference algorithm proposed in [56].  

 𝑖𝑜𝑞
∗ =

1 − (𝑤𝐿𝑓𝑖𝑐𝑑
∗ )

2
− (𝑤𝐿𝑓𝑖𝑙𝑞)

2
− 𝑣𝑝𝑐𝑐𝑑

2

2𝑉𝑝𝑐𝑐𝑑𝑤𝐿𝑓
 (5.5) 
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Figure 5.2: Single-phase qZSI based STATCOM system with ioq current control 

algorithm 
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5.3 Modelling of Two Energy Storing Battery-based qZSI model 

 

The fluctuations of solar power in nature leads to numerous power quality issues 

in power transmission system. The variation in solar irradiation and temperature causes 

large diversity of the output DC-link voltage and lead to high voltage stress to the inverter, 

as well as the output network. To domesticate this issue, energy storing battery-based 

system is incorporated into the power converter topology to buffer and smoothen the 

fluctuations of PV power. The incorporation of the energy storing battery to the inverter 

system allows the qZS to smoothen the grid-tie power and compensate the difference 

between PV power and the load demand. Also, the extra unused energy can be stored in 

the battery for later usage. However, there is an issue when implementing energy storing 

battery in inverter topology; overcharge or discharge to the level below the battery limits 

[57]. [57] and [58] have documented different approaches to solve the stated problem. 

However, all the ever-presented literature only included one energy storing battery to qZS, 

non-of them have utilized both the capacitors to perform compensation on the PV power. 

This section consists of the modelling of two energy storing battery-based qZSI model. 

For application-wise, the proposed energy storing battery-based qZS topology can be 

adopted into a power bank system for household or domestic usage (i.e., charging of EVs). 

The following section includes the modelling of two battery-based qZS transfer function 

as well as its small-signal analysis. 
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5.3.1 Derivation of two energy storing battery-based qZSI transfer function 

 

Figure 5.3 below shows the two energy storing battery-based qZS model.  

 

Figure 5.3: Two energy storing battery-based qZS model 

 

Figure 5.4 depicts the battery-based qZS model in shoot-through state. During this 

state, the diode will be open-circuited. The foregoing diagram is redrawn in Figure 5.5 for 

simplicity and better understanding. 

 

Figure 5.4: Two battery-based qZSI in shoot-through state 
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Figure 5.5: Simplified version of two battery-based qZSI model in shoot-through state 

 

Applying KCL to the left-hand node in Figure 5.5 (i.e., the voltage loop on the 

left-hand side of the circuit diagram), obtained the following equations: 

 𝐼𝐿1 = 𝐼𝐵2 − 𝐼𝐶2  

 𝐶2 (
𝑑𝑉𝐶2

𝑑𝑡
) = 𝐼𝐵2 − 𝐼𝐿1 (5.6) 

Where 𝐼𝐿1 is the current flowing through inductor 𝐿1, 𝐼𝐶2 is the current flowing through 

capacitor 𝐶2, 𝐼𝐵2 is the current generated or absorbed by the energy storing battery 𝐵2 and 

𝑉𝐶2  is the capacitor 𝐶2  voltage. Notice all the parameters included in this section are 

represented in their peak value. 

Applying KCL to the right-hand node in Figure 5.5.  

 𝐼𝐿2 + 𝐼𝐶1 = 𝐼𝐵1  

 𝐶1 (
𝑑𝑉𝐶1

𝑑𝑡
) = 𝐼𝐵1 − 𝐼𝐿2 (5.7) 

Where 𝐼𝐿2 is the current flowing through inductor 𝐿2, 𝐼𝐶1 is the current flowing through 

capacitor 𝐶1, 𝐼𝐵1 is the current generated or absorbed by the energy storing battery 𝐵1 and 

𝑉𝐶1 is the capacitor 𝐶1 voltage. 
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Applying KVL to loop 1, 

 𝑉𝑖𝑛 − 𝑉𝐿1 + 𝑉𝐶2 = 0  

 𝑉𝐿1 = 𝑉𝑖𝑛 + 𝑉𝐶2 (5.8) 

 𝑉𝐶2 = 𝑉𝐵2 (5.9) 

 𝑉𝐿1 = 𝑉𝑖𝑛 + 𝑉𝐵2 (5.10) 

 𝐿1 (
𝑑𝐼𝐿1

𝑑𝑡
) = 𝑉𝑖𝑛 + 𝑉𝐵2 (5.11) 

Applying KVL to loop 2, obtained, 

 𝑉𝐿2 = 𝑉𝐶1 = 𝑉𝐵1 (5.12) 

 𝐿2 (
𝑑𝐼𝐿2

𝑑𝑡
) = 𝑉𝐶1 = 𝑉𝐵1 (5.13) 

Applying KCL to the output current node, 

 𝐼𝐷𝐶 = 𝐼𝐵2 − 𝐼𝐶2 + 𝐼𝐿2 (5.14) 

And substitute equation (5.6) into equation (5.14) 

 𝐼𝐷𝐶 = 𝐼𝐿1 + 𝐼𝐿2 (5.15) 

We know that 

 𝑉𝐷𝐶 + 𝑉𝐿2 − 𝑉𝐶1 = 0  

 𝑉𝐿2 = 𝑉𝐶1  

Therefore, in shoot-through state, 

 𝑉𝐷𝐶 = 0 (5.16) 
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Rearranging equation (5.6), (5.7), (5.11) and (5.13) obtained the following state space 

equations, 

 

[

𝐿1 0 0 0
0 𝐿2 0 0
0 0 𝐶1 0
0 0 0 𝐶2

]

[
 
 
 
 
𝑖𝐿1(𝑡)
𝑖𝐿2̇(𝑡)
𝑣𝐶1̇ (𝑡)

𝑣𝐶2̇ (𝑡)

̇

]
 
 
 
 

= [

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

] [

𝑖𝐿1(𝑡)
𝑖𝐿2(𝑡)
𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)

] + [

1 0
0 0
0 0
0 0

] [
𝑣𝑖𝑛(𝑡)
𝑖𝐷𝐶(𝑡)

] + [

0 0
0 0
1 0
0 1

] [
𝑖𝐵1(𝑡)
𝑖𝐵2(𝑡)

] 

(5.17) 

In non-shoot-through state, the qZSI battery system can be drawn in Figure 5.6 below.  

 

Figure 5.6: Two battery-based qZSI in non-shoot-through state 

 

Applying KCL to node where 𝐼𝐿2, 𝐼𝐵2, 𝐼𝐶2 and 𝐼𝐷𝐶 present, obtained equation (5.18) as 

follows. 

 𝐼𝐿2 + 𝐼𝐵2 − 𝐼𝐶2 − 𝐼𝐷𝐶 = 0  

 𝐶2 (
𝑑𝑉𝐶2

𝑑𝑡
) = 𝐼𝐿2 + 𝐼𝐵2 − 𝐼𝐷𝐶  (5.18) 
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Applying KCL to node where 𝐼𝐵1, 𝐼𝐿1, 𝐼𝐶1 and 𝐼𝐷𝐶 present, the following equation is 

established. 

 𝐼𝐵1 + 𝐼𝐿1 − 𝐼𝐶1 − 𝐼𝐷𝐶 = 0  

 𝐶1 (
𝑑𝑉𝐶1

𝑑𝑡
) + 𝐼𝐿1 + 𝐼𝐵1 − 𝐼𝐷𝐶 = 0 (5.19) 

Applying KVL to Figure 5.6, equation (5.20) to equation (5.22) are formed. 

 𝑉𝐵1 = 𝑉𝐶1 (5.20) 

Applying KVL to the input side of Figure 5.6, obtained equation (5.21) and (5.22). 

 𝑉𝑖𝑛 − 𝑉𝐿1 − 𝑉𝐶1 = 0  

 𝑉𝑖𝑛 = 𝑉𝐿1 + 𝑉𝐶1  

 𝐿1 (
𝑑𝐼𝐿1

𝑑𝑡
) = 𝑉𝑖𝑛 − 𝑉𝐶1 (5.21) 

 𝑉𝐿2 = −𝑉𝐶2 = −𝑉𝐵2  

 𝐿2 (
𝑑𝐼𝐿2

𝑑𝑡
) = −𝑉𝐶2 = −𝑉𝐵2 (5.22) 

Applying KCL to the node where 𝐼𝑑𝑖𝑜𝑑𝑒 is present,  

 𝐼𝑑𝑖𝑜𝑑𝑒 + 𝐼𝐵1 − 𝐼𝐶1 − 𝐼𝐿2 = 0  

 𝐼𝑑𝑖𝑜𝑑𝑒 = 𝐼𝐶1 + 𝐼𝐿2 − 𝐼𝐵1 (5.23) 

Substitute equation (5.19) into equation (5.23), we get 

 𝐼𝑑𝑖𝑜𝑑𝑒 = 𝐼𝐿1 + 𝐼𝐷𝐶 + 𝐼𝐿2 (5.24) 
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Rearranging the equation (5.18), (5.19), (5.21) and (5.22), the state space equation of 

battery-based qZSI in non-shoot-through state can be written as: 

 [

𝐿1 0 0 0
0 𝐿2 0 0
0 0 𝐶1 0
0 0 0 𝐶2

]

[
 
 
 
 𝑖𝐿1(𝑡)

𝑖𝐿2̇(𝑡)

𝑣𝐶1̇ (𝑡)

𝑣𝐶2̇ (𝑡)

̇

]
 
 
 
 

= [

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

]

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 
+ [

1 0
0 0
0 −1
0 −1

] [
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] + [

0 0
0 0
1 0
0 −1

] [
𝑖𝐵1(𝑡)

𝑖𝐵2(𝑡)
] (5.25) 

Throughout one switching cycle, the average equation of capacitor current (i.e., 𝐼𝐶1 and 

𝐼𝐶2) are equate to zero. Therefore: 

 〈𝐼𝐶1〉 = (𝐼𝐵1 − 𝐼𝐿2)𝐷𝑆𝑇𝑇𝑆 + (1 − 𝐷𝑆𝑇)𝑇𝑆(𝐼𝐿1 + 𝐼𝐵1 − 𝐼𝐷𝐶) = 0  

 𝐼𝐵1 − 𝐼𝐿2𝐷𝑆𝑇 + (1 − 𝐷𝑆𝑇)𝐼𝐿1 − (1 − 𝐷𝑆𝑇)(𝐼𝐷𝐶) = 0 (5.26) 

Where 𝐷𝑆𝑇 is the duty ratio over one switching cycle, whereas 𝑇𝑆 is the time taken to 

complete one switching cycle. 

 〈𝐼𝐶2〉 = 𝐷𝑆𝑇(𝐼𝐵2 − 𝐼𝐿1)𝑇𝑆 + (1 − 𝐷𝑆𝑇)𝑇𝑆(𝐼𝐿2 + 𝐼𝐵2 − 𝐼𝐷𝐶) = 0  

 𝐼𝐷𝐶 =
𝐼𝐵2 − 𝐷𝑆𝑇𝐼𝐿1 + (1 − 𝐷𝑆𝑇)𝐼𝐿2

1 − 𝐷𝑆𝑇
 (5.27) 

Substitute equation (5.27) into equation (5.26), the equation can be simplified to  

 𝐼𝐿1 = 𝐼𝐿2 + (𝐼𝐵2 − 𝐼𝐵1) (5.28) 

Throughout one switching cycle, the average equation of the inductor voltage (i.e., 𝑉𝐿1 

and 𝑉𝐿2) are equate to zero. Therefore: 

 〈𝑉𝐿1〉 = 𝐷𝑆𝑇𝑇𝑆(𝑉𝑖𝑛 + 𝑉𝐶2) + (1 − 𝐷𝑆𝑇)𝑇𝑆(𝑉𝑖𝑛 − 𝑉𝐶1) = 0  

 𝑉𝐶1 − 𝑉𝑖𝑛 = 𝐷𝑆𝑇(𝑉𝐶1 + 𝑉𝐶2) (5.29) 

 〈𝑉𝐿2〉 = 𝐷𝑆𝑇𝑇𝑆(𝑉𝐶1) + (1 − 𝐷𝑆𝑇)𝑇𝑆(−𝑉𝐶2) = 0  

 𝑉𝐶2 = 𝐷𝑆𝑇𝑉𝐶1 + 𝐷𝑆𝑇𝑉𝐶2 (5.30) 

Substitute equation (5.30) into equation (5.29), we get 

 𝑉𝐶1 − 𝑉𝑖𝑛 = 𝑉𝐶2 (5.31) 

 𝑉𝑖𝑛 = 𝑉𝐶1 − 𝑉𝐶2 (5.32) 
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 𝑉𝐶1 = 𝑉𝐶2 + 𝑉𝑖𝑛 (5.33) 

Substitute equation (5.31) into equation (5.30), 

 
𝑉𝐶1

𝑉𝑖𝑛
=

1 − 𝐷𝑆𝑇

1 − 2𝐷𝑆𝑇
 (5.34) 

And by substitute equation (5.33) into equation (5.34), obtained the following equations 

 
𝑉𝐶2

𝑉𝑖𝑛
=

𝐷𝑆𝑇

1 − 2𝐷𝑆𝑇
 (5.35) 

In non-shoot-through state, the DC-link voltage can be defined as  

 𝑉𝐷𝐶 = 𝑉𝐶1 + 𝑉𝐶2 (5.36) 

Therefore, 

 
𝑉𝐷𝐶

𝑉𝑖𝑛
=

1

1 − 2𝐷𝑆𝑇
 (5.37) 

By looking at equation (5.34), (5.35) and (5.37) and compare with the equation 

(3.19) to equation (3.21) in section 3.1.1, noticed that by adding two batteries to the qZSI 

model, the qZSI DC-link transfer function remained unchanged. In other words, with 

additional two energy storing battery, it does not affect the qZSI in generating the DC-

link output voltage based on the shoot-through duty cycle.  
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5.3.2 Small-signal analysis of two energy storing battery-based qZSI  

 

Figure 5.7 shows the small-signal model of battery-based qZSI model in shoot-

through state to derive its transfer function. In small-signal analysis of qZSI model, the 

stray resistance (i.e., 𝑟1 and 𝑟2) are included in inductors 𝐿1 and 𝐿2 and the equivalent 

series resistance (i.e., 𝑅1 and 𝑅2) are included in the capacitors 𝐶1 and 𝐶2. It is assumed 

that, 𝑟 = 𝑟1 = 𝑟2 and 𝑅 = 𝑅1 = 𝑅2. 

 

Figure 5.7: Small-signal model of two battery-based qZSI in shoot-through state 

 

Applying KVL to Figure 5.7: 

 𝑉𝐶1 + 𝐼𝐶1𝑅 − 𝑉𝐷𝐶 − 𝐼𝐿2𝑟 − 𝑉𝐿2  

 
𝑑𝑖𝐿2

𝑑𝑡
= −

𝑅 + 𝑟

𝐿
𝑖𝐿2 +

1

𝐿
𝑉𝐶1 +

𝑅

𝐿
𝐼𝐵1 (5.38) 

Applying KVL to second loop in Figure 5.7: 

 𝑉𝐶1 + 𝐼𝐶1𝑅 − 𝑉𝐵1 = 0  

 𝑉𝐵1 = 𝑉𝐶1 + 𝐼𝐶1𝑅 (5.39) 
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Applying KVL to the loop that contains the second battery, 

 𝑉𝑖𝑛 − 𝑉𝐿1 − 𝐼𝐿1𝑟 + 𝑉𝐶2 + 𝐼𝐶2𝑅 = 0  

 
𝑑𝑖𝐿1

𝑑𝑡
= −

𝑟 + 𝑅

𝐿
𝑖𝐿1 +

𝑉𝐶2

𝐿
+

𝑉𝑖𝑛

𝐿
+

𝑅2

𝐿
𝐼𝐵2 (5.40) 

Applying KVL  

 𝑉𝐶2 + 𝐼𝐶2𝑅 − 𝑉𝐵2 = 0  

 𝑉𝐵2 = 𝑉𝐶2 + 𝐼𝐶2𝑅 (5.41) 

Applying KCL: 

 𝐼𝐶1 = −𝐼𝐿2 + 𝐼𝐵1  

 
𝑑𝑉𝐶1

𝑑𝑡
= −

1

𝐶
𝐼𝐿2 +

1

𝐶
𝐼𝐵1 (5.42) 

Writing equation (5.38) to (5.42) into state space equation, we obtained 

 

[

𝐿1 0 0 0
0 𝐿2 0 0
0 0 𝐶1 0
0 0 0 𝐶2

]

[
 
 
 
 𝑖𝐿1(𝑡)

𝑖𝐿2̇(𝑡)

𝑣𝐶1̇ (𝑡)

𝑣𝐶2̇ (𝑡)

̇

]
 
 
 
 

=

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 0

1

𝐿

0 −
𝑟 + 𝑅

𝐿

1

𝐿
0

0 −
1

𝐶
0 0

−
1

𝐶
0 0 0]

 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 
+

[
 
 
 
 
1

𝐿
0

0 0
0 0
0 0]

 
 
 
 

[
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] +

[
 
 
 
 
 
 
 0

𝑅

𝐿
𝑅

𝐿
0

0
1

𝐶
1

𝐶
0]
 
 
 
 
 
 
 

[
𝑖𝐵1(𝑡)

𝑖𝐵2(𝑡)
] 

(5.43) 

Figure 5.8 shows the two battery-based qZSI small-signal model in non-shoot-

through state (i.e., active-state). 
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Figure 5.8: Small-signal model of two battery-based qZSI in non-shoot-through state 

 

Applying KCL and KVL to the small-signal model in Figure 5.8, we can obtain the 

equations as below. 

 𝐼𝐶1 − 𝐼𝐵1 + 𝐼𝐷𝐶 − 𝐼𝐿1 = 0  

 
𝑑𝑉𝐶1

𝑑𝑡
=

1

𝐶
𝐼𝐿1 −

1

𝐶
𝐼𝐷𝐶 +

1

𝐶
𝐼𝐵1 (5.44) 

 𝐼𝐷𝐶 − 𝐼𝐿2 + 𝐼𝐶2 − 𝐼𝐵2 = 0  

 
𝑑𝑉𝐶2

𝑑𝑡
=

1

𝐶
𝐼𝐿2 −

1

𝐶
𝐼𝐷𝐶 +

1

𝐶
𝐼𝐵2 (5.45) 

 𝑉𝑖𝑛 − 𝑉𝐿1 − 𝐼𝐿1𝑟 − 𝑉𝐶1 − 𝐼𝐶1𝑅 = 0  

 
𝑑𝑖𝐿1

𝑑𝑡
= −

𝑟 + 𝑅

𝐿
𝐼𝐿1 −

𝑉𝐶1

𝐿
+

𝑅

𝐿
𝐼𝐷𝐶 −

𝑅

𝐿
𝐼𝐵1 +

𝑉𝑖𝑛

𝐿
 (5.46) 

 𝑉𝐿2 + 𝐼𝐿2𝑟 + 𝐼𝐶2𝑅 + 𝑉𝐶2 = 0  

 
𝑑𝑖𝐿2

𝑑𝑡
= −

𝑟 + 𝑅

𝐿
𝐼𝐿2 −

𝑉𝐶2

𝐿
+

𝑅

𝐿
𝐼𝐷𝐶 −

𝑅

𝐿
𝐼𝐵2 (5.47) 
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Writing equation (5.44) to (5.47) into state-space equation, obtained as per (5.48) below. 

 

[

𝐿1 0 0 0
0 𝐿2 0 0
0 0 𝐶1 0
0 0 0 𝐶2

]

[
 
 
 
 𝑖𝐿1(𝑡)

𝑖𝐿2̇(𝑡)

𝑣𝐶1̇ (𝑡)

𝑣𝐶2̇ (𝑡)

̇

]
 
 
 
 

=

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 −

1

𝐿
0

0 −
𝑟 + 𝑅

𝐿
0 −

1

𝐿
1

𝐶
0 0 0

0
1

𝐶
0 0 ]

 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 

+

[
 
 
 
 
 
 
 
1

𝐿

𝑅

𝐿

0
𝑅

𝐿

0 −
1

𝐶

0 −
1

𝐶]
 
 
 
 
 
 
 

[
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)
] +

[
 
 
 
 
 
 
 −

𝑅

𝐿
0

0 −
𝑅

𝐿
1

𝐶
0

0
1

𝐶 ]
 
 
 
 
 
 
 

[
𝑖𝐵1(𝑡)

𝑖𝐵2(𝑡)
] 

(5.48) 

Equation (5.43) and (5.48) can be represented with the following simplified equation. 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢 

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢 

(5.49) 

Where  

 𝑥 =

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 

 (5.50) 

 𝑢 =

[
 
 
 
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)

𝑖𝐵1(𝑡)

𝑖𝐵2(𝑡)]
 
 
 

 (5.51) 

 𝐴1 =

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 −

1

𝐿
0

0 −
𝑟 + 𝑅

𝐿
0 −

1

𝐿
1

𝐶
0 0 0

0
1

𝐶
0 0 ]

 
 
 
 
 
 
 

 (5.52) 

 𝐵1 =

[
 
 
 
 
 
 
 
1

𝐿

𝑅

𝐿

0
𝑅

𝐿

0 −
1

𝐶

0 −
1

𝐶

      

0
𝑅

𝐿
𝑅

𝐿
0

0
1

𝐶
1

𝐶
0]
 
 
 
 
 
 
 

 (5.53) 
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 𝐴2 =

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0 0

1

𝐿

0 −
𝑟 + 𝑅

𝐿

1

𝐿
0

0 −
1

𝐶
0 0

−
1

𝐶
0 0 0]

 
 
 
 
 
 
 

 (5.54) 

 𝐵2 =

[
 
 
 
 
 
 
 
1

𝐿

𝑅

𝐿

0
𝑅

𝐿

0 −
1

𝐶

0 −
1

𝐶

      

−
𝑅

𝐿
0

0 −
𝑅

𝐿
1

𝐶
0

0
1

𝐶 ]
 
 
 
 
 
 
 

 (5.55) 

The dynamic average equation can be obtained: 

 𝐴 = 𝑑𝑆𝑇𝐴1 + (1 − 𝑑𝑆𝑇)𝐴2 (5.56) 

Substitute equation (5.52) and equation (5.54) into equation (5.56), we get 

 𝐴 =

[
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0

𝑑𝑆𝑇 − 1

𝐿

𝑑𝑆𝑇

𝐿

0 −
𝑟 + 𝑅

𝐿

𝑑𝑆𝑇

𝐿
−

𝑑𝑆𝑇 − 1

𝐿
1 − 𝑑𝑆𝑇

𝐶
−

𝑑𝑆𝑇

𝐶
0 0

−
𝑑𝑆𝑇

𝐶

1 − 𝑑𝑆𝑇

𝐶
0 0 ]

 
 
 
 
 
 
 

 (5.57) 

The dynamic average equation of B can be obtained using the following equation: 

 𝐵 = 𝑑𝑆𝑇𝐵1 + (1 − 𝑑𝑆𝑇)𝐵2 (5.58) 
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Substitute equation (5.53) and (5.55) into equation (5.58) 

 𝐵 =

[
 
 
 
 
 
 
 
 
1

𝐿

(1 − 𝑑𝑆𝑇)𝑅

𝐿

𝑅(𝑑𝑆𝑇 − 1)

𝐿

𝑑𝑆𝑇𝑅

𝐿

0
(1 − 𝑑𝑆𝑇)𝑅

𝐿

𝑑𝑆𝑇

𝐿

(𝑑𝑆𝑇 − 1)𝑅

𝐿

0
𝑑𝑆𝑇 − 1

𝐶

1 − 𝑑𝑆𝑇

𝐶

𝑑𝑆𝑇

𝐶

0
𝑑𝑆𝑇 − 1

𝐶

𝑑𝑆𝑇

𝐶

𝑑𝑆𝑇 − 1

𝐶 ]
 
 
 
 
 
 
 
 

 (5.59) 

Therefore, the overall dynamic average equation of qZSI transfer function can be written 

as: 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢  

 
[
 
 
 
 
 
 
 
 
𝑑𝑖𝐿1(𝑡)

𝑑𝑡
𝑑𝑖𝐿2(𝑡)

𝑑𝑡
𝑑𝑣𝐶1(𝑡)

𝑑𝑡
𝑑𝑣𝐶2(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0

(𝑑𝑆𝑇 − 1)

𝐿

𝑑𝑆𝑇

𝐿

0 −
𝑟 + 𝑅

𝐿

𝑑𝑆𝑇

𝐿

(𝑑𝑆𝑇 − 1)

𝐿
(1 − 𝑑𝑆𝑇)

𝐶
−

𝑑𝑆𝑇

𝐶
0 0

−
𝑑𝑆𝑇

𝐶

(1 − 𝑑𝑆𝑇)

𝐶
0 0 ]

 
 
 
 
 
 
 
 

[
 
 
 
𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)]
 
 
 

+

[
 
 
 
 
 
 
 
 
1

𝐿

(1 − 𝑑𝑆𝑇)𝑅

𝐿

𝑅(𝑑𝑆𝑇 − 1)

𝐿

𝑑𝑆𝑇𝑅

𝐿

0
(1 − 𝑑𝑆𝑇)𝑅

𝐿

𝑑𝑆𝑇

𝐿

(𝑑𝑆𝑇 − 1)𝑅

𝐿

0
𝑑𝑆𝑇 − 1

𝐶

1 − 𝑑𝑆𝑇

𝐶

𝑑𝑆𝑇

𝐶

0
𝑑𝑆𝑇 − 1

𝐶

𝑑𝑆𝑇

𝐶

𝑑𝑆𝑇 − 1

𝐶 ]
 
 
 
 
 
 
 
 

[
 
 
 
𝑣𝑖𝑛(𝑡)

𝑖𝐷𝐶(𝑡)

𝑖𝐵1(𝑡)

𝑖𝐵2(𝑡)]
 
 
 

 

(5.60) 

In small-signal analysis of qZSI topology, the perturbations of the small-signal include 

𝑣𝑖𝑛, 𝑖𝐷𝐶 , 𝑑𝑆𝑇 , 𝑣𝐶1, 𝑣𝐶2, 𝑖𝐿1 and 𝑖𝐿2 as shown in equation (5.61) to (5.67). 

 𝑣𝑖𝑛 = 𝑉𝑖𝑛 + 𝑣𝑖�̂� (5.61) 

 𝑖𝐷𝐶 = 𝐼𝐷𝐶 + 𝑖𝐷�̂� (5.62) 

 𝑑𝑆𝑇 = 𝐷𝑆𝑇 + 𝑑𝑆�̂� (5.63) 

 𝑣𝐶1 = 𝑉𝐶1 + 𝑣𝐶1̂ (5.64) 

 𝑣𝐶2 = 𝑉𝐶2 + 𝑣𝐶2̂ (5.65) 

 𝑖𝐿1 = 𝐼𝐿1 + 𝑖𝐿1̂ (5.66) 
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 𝑖𝐿2 = 𝐼𝐿2 + 𝑖𝐿2̂ (5.67) 

Where 𝑣𝑖�̂� represents the DC-input voltage perturbation, 𝑖𝐷�̂�  represents the DC-link 

current perturbation, 𝑑�̂�represents the small-signal duty ratio perturbation, 𝑣𝐶1̂ and 𝑣𝐶2̂ 

represents the small-signal perturbation of capacitor voltage across 𝐶1 and 𝐶2 respectively, 

𝑖𝐿1̂ and 𝑖𝐿2̂ represents the small-signal perturbation of capacitor current flowing through 

inductor 𝐿1  and 𝐿2  respectively. On the other hand, 𝑉𝑖𝑛  represents the peak DC-input 

voltage, 𝐼𝐷𝐶 represents the peak DC-link current, 𝐷𝑜 represents the peak duty ratio, 𝑉𝐶1 

and 𝑉𝐶2  represents the peak capacitor voltage of 𝐶1  and 𝐶2  respectively, 𝐼𝐿1  and 𝐼𝐿2 

represents the peak capacitor current flowing through of 𝐿1 and 𝐿2 respectively.  

Substituting equation (5.61) til equation (5.67) into equation (5.60), the dynamic 

state average equation with small-signal perturbations can be written as: 

 

[
 
 
 
 
 
 
 
 
𝑑(𝐼𝐿1(𝑡) + 𝑖𝐿1̂(𝑡))

𝑑𝑡
𝑑(𝐼𝐿2(𝑡) + 𝑖𝐿2̂(𝑡))

𝑑𝑡
𝑑(𝑉𝐶1(𝑡) + 𝑣𝐶1̂(𝑡))

𝑑𝑡
𝑑(𝑉𝐶2(𝑡) + 𝑣𝐶2̂(𝑡))

𝑑𝑡 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −

𝑟 + 𝑅

𝐿
0

(𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1)

𝐿

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐿

0 −
𝑟 + 𝑅

𝐿

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐿

(𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1)

𝐿
(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐶
−

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶
0 0

−
𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶

(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐶
0 0 ]

 
 
 
 
 
 
 
 

[

𝐼𝐿1(𝑡) + 𝑖𝐿1̂(𝑡)

𝐼𝐿2(𝑡) + 𝑖𝐿2̂(𝑡)
𝑉𝐶1(𝑡) + 𝑣𝐶1̂(𝑡)
𝑉𝐶2(𝑡) + 𝑣𝐶2̂(𝑡)

]

+

[
 
 
 
 
 
 
 
 
1

𝐿

𝑅(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐿

𝑅(𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1)

𝐿

(𝐷𝑆𝑡 + 𝑑𝑆�̂�)𝑅

𝐿

0
𝑅(1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�)

𝐿

(𝐷𝑆𝑇 + 𝑑𝑆�̂�)𝑅

𝐿

(𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1)𝑅

𝐿

0 −
1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�

𝐶

1 − 𝐷𝑆𝑇 − 𝑑𝑆�̂�

𝐶

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶

0 −
1 − 𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶

𝐷𝑆𝑇 + 𝑑𝑆�̂�

𝐶

𝐷𝑆𝑇 + 𝑑𝑆�̂� − 1

𝐶 ]
 
 
 
 
 
 
 
 

[

𝑉𝑖𝑛(𝑡) + 𝑣𝑖�̂�(𝑡)
𝐼𝐷𝐶(𝑡) + 𝑖𝐷�̂�(𝑡)
𝐼𝐵1(𝑡) + 𝑖𝐵1̂(𝑡)
𝐼𝐵2(𝑡) + 𝑖𝐵2̂(𝑡)

] 

(5.68) 

By doing linearization and applied Laplace transform on equation (5.68), only taking the 

first order AC terms while eliminates others, the following equations (5.69) can be 

obtained. Also, assuming that, 𝑖𝐿1̂ = 𝑖𝐿2̂ and 𝑣𝐶1̂ = 𝑣𝐶2̂. 

 

[𝐿𝑠 + (𝑟 + 𝑅)]𝐼�̂�(𝑠)

= 𝑑𝑆�̂�(𝑠)(𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶 + 𝑅𝐼𝐵1 + 𝑅𝐼𝐵2)

+ 𝑣𝐶1̂(𝑠)(2𝐷𝑆𝑇 − 1) + 𝐼𝐷�̂�(𝑠)(𝑅 − 𝐷𝑆𝑇𝑅) + 𝑣𝑖�̂�(𝑠) 

(5.69) 
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𝐶𝑠𝑣𝐶1̂(𝑠) = 𝑖�̂�(𝑠)(1 − 2𝐷𝑆𝑇)

+ 𝑑𝑆�̂�(𝑠)(−𝐼𝐿1 − 𝐼𝐿2 + 𝐼𝐷𝐶 − 𝐼𝐵1 + 𝐼𝐵2)

+ 𝑖𝐷�̂�(𝑠)(𝐷𝑆𝑇 − 1) + 𝑖𝐵1̂(𝑠)(1 − 𝐷𝑆𝑇) 

(5.70) 

By rearranging equation (5.70), we obtained the following simplified equation. 

 𝑖�̂�(𝑠) =
𝐶𝑠𝑣𝐶1̂(𝑠) + 𝑑𝑆�̂�(𝑠)(𝐼𝐿1 + 𝐼𝐿2 − 𝐼𝐷𝐶 + 𝐼𝐵1 − 𝐼𝐵2) + 𝑖𝐷�̂�(1 − 𝐷𝑆𝑇) + 𝑖𝐵1̂(𝑠)(𝐷𝑆𝑇 − 1)

1 − 2𝐷𝑆𝑇
 (5.71) 

Substitute equation (5.71) into equation (5.69), we obtained the capacitor to shoot-

through duty ratio transfer function as per equation (5.72) below 

 𝐺𝑣�̂�𝑑𝑆�̂�
=

[(𝐼𝑜 − 𝐼𝐿1 − 𝐼𝐿2 − 𝐼𝐵1 + 𝐼𝐵2)(𝐿𝑠 + (𝑟 + 𝑅)) + (𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶 + 𝑅𝐼𝐵1 + 𝑅𝐼𝐵2)(1 − 2𝐷𝑆𝑇)]

[𝐿𝐶𝑠2 + 𝐶(𝑅 + 𝑟)𝑠 + (1 − 2𝐷𝑆𝑇)
2]

 (5.72) 
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5.4 Modelling of MPPT and grid-tie qZS Cascaded Multilevel Inverter-based 

STATCOM system 

 

Figure 5.9 shows the qZCHI based grid-tie PV power system in real-time. Each 

qZSI model is fed by an independent PV-panel. To abstract the maximum power, the 

MPPT algorithm is implemented to the PV-panel. The total AC output voltage of the 

inverter is a series summation of cascaded of 𝑛𝑡ℎ  independent qZSI controlled by its 

individual DC-link voltage controller. Each of the individual PV power source consists of 

identical PV cells that internally connected in parallel and series. A complete qZCHI based 

PV systems consists of two different controller modules. The first module consists of the 

DC-link voltage control to accomplish DC-link voltage balance and hence providing a 

smooth and equal AC voltage to the grid. This module is responsible to stabilize and 

generate shoot-through duty ratio for the qZSI to increase or decrease the output voltage. 

Another module consists of the power quality control of the input and the output side of 

the PV-based qZSI which include the MPPT control of the PV-panel and the VAR 

compensation at the PCC. In this module, the controller outputs desired modulation index 

to the power inverters switches to achieve maximum power extraction from each of the 

PV-array and to ensure the power injection to the grid at unity power factor with low 

harmonic distortion. The following section includes the derivation and modelling of the 

whole PV-based grid-tie qZCHI based STATCOM system. 
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Figure 5.9: qZCHI based grid-tie PV power system 
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5.4.1 System modelling of grid-tie current loop 

 

 

Figure 5.10: PV-based qZSI module 

 

Figure 5.10 shows the PV-based qZSI module. Applying KCL to Figure 5.10, the 

𝑛𝑡ℎ qZSI-HBI module has the following equation: 

 𝐼𝑃𝑉𝑛 − 𝐼𝐶𝑃𝑛 = 𝐼𝐿1𝑛 (5.73) 

Where 𝐼𝑃𝑉𝑛  is the 𝑛𝑡ℎ PV-array’s current, 𝐼𝐶𝑃𝑛  is the current that passes through the 

capacitor of the PV-array terminal capacitor that fence the PV-array to the qZS network.  

𝐼𝐿1𝑛 is the first inductor’s current of the qZS network. The n in each component symbol 

represents the 𝑛𝑡ℎ module of the qZSI.  

 𝐼𝐿1𝑛 = 𝐼𝑃𝑉𝑛 − 𝐶𝑝 (
𝑑𝑉𝑃𝑉𝑛

𝑑𝑡
) (5.74) 

Where 𝐶𝑝 is the capacitance of the PV-array terminal capacitor. Using KVL to define the 

equation at the AC output side of the qZSI, obtained the equation (5.75). 

 𝑉𝐷𝐶𝑇 = 𝑉𝑔 + 𝐿𝑓

𝑑𝐼𝑠
𝑑𝑡

+ 𝑟𝑓𝐼𝑠  (5.75) 

Where 𝑉𝐷𝐶𝑇 is the summation of DC-link voltage of 𝑛𝑡ℎ modules. 𝑉𝑔 is the grid voltage, 

𝐼𝑠 is the grid-injected current, 𝐿𝑓 is the filter inductance and 𝑟𝑓 is the parasitic resistance 

of the filter inductor. By performing laplace transform to equation (5.75), obtained the 

transfer function as per (5.76) below. 
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 𝑉𝐷𝐶𝑇(𝑠) = 𝑉𝑔(𝑠) + 𝑠𝐿𝑓𝐼𝑠(𝑠) + 𝑟𝑓𝐼𝑠(𝑠) (5.76) 

Rearranging equation (5.76), obtained the following transfer function of the grid-injected 

current: 

 𝐺𝑓(𝑠) =
𝐼𝑠(𝑠)

𝑉𝐷𝐶𝑇(𝑠) − 𝑉𝑔(𝑠)
=

1

𝐿𝑓𝑠 + 𝑟𝑓
 (5.77) 

A PR-controller is commonly used in grid-tie closed-loop control system to track 

the desired reference of a AC voltage/current [59]. The transfer function of the PR-

controller can be defined as: 

 𝐺𝑃𝑅(𝑠) = 𝑘𝑃 +
𝑘𝑅𝑤𝑜

𝑠2 + 𝑤𝑜
2
 (5.78) 

There is no work has been done to implement current reference algorithm (as 

shown in section 5.2 above) when the qZSI consists of both MPPT control and grid-tie 

current control (i.e., STATCOM). However, in [2], the author demonstrates the 

combination of MPPT control, grid-tie current control and DC-link voltage control to 

monopolize the DC-link voltage as well as power control implementation. According to 

[60], the implementation of ideal PR-controller is not practical due to the infinite quality 

factor. An approximated PR-controller is proposed in [60] and its transfer function is 

demonstrated in equation (5.79). The approximated PR-controller has broader bandwidth 

around the pre-set fundamental frequencies. In other words, the controller is less sensitive 

to the frequency outside of the preferred zone and hence providing a more robust system 

to frequency variations around these targeted frequencies.  

 𝐺𝑃𝑅(𝑠) = 𝑘𝑝 +
2𝑘𝑅𝑤𝑐𝑠

𝑠2 + 2𝑤𝑐𝑠 + 𝑤2
 (5.79) 

The 𝑛𝑡ℎ qZSI-CHB module has the modulation signal defined in equation (5.80). 

 𝑉𝑚𝑛 = 𝑉𝑚𝑛
′ + 𝑉𝑔(𝑠) [

𝑉𝑚𝑛(𝑠)

𝑛𝑉𝐷𝐶𝑇(𝑠)
] (5.80) 

Where 𝑉𝑚𝑛 is the 𝑛𝑡ℎ module modulating signal, while 𝑉𝑚𝑛
′  is the regulated modulating 

signal from separate voltage control of 𝑛𝑡ℎ module. Knowing that the modulating signal 

plays an important role in the generation of AC output voltage. The relationship between 

the modulating signal and the DC-link voltage is defined as per equation (5.81).  
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 𝑉𝐷𝐶𝑛 =
𝑉𝐷𝐶𝑇(𝑠)

𝑉𝑚𝑛(𝑠)
 (5.81) 

Where 𝑉𝐷𝐶𝑛 is the DC-link voltage in 𝑛𝑡ℎ module. 

From equation (5.81), 

 𝑉𝐷𝐶𝑇(𝑠) = ∑ 𝑉𝑚𝑛(𝑠)  ∙𝑘
𝑛=1 𝑉𝐷𝐶𝑛   

 𝑉𝐷𝐶𝑇(𝑠) = ∑  [𝑉𝑚𝑛
′ (𝑠) ∙𝑘

𝑛=1 𝑉𝐷𝐶𝑛 +
𝑉𝑔(𝑠)

𝑛 𝑣𝐷𝐶�̂�
∙ 𝑉𝐷𝐶𝑛]  (5.82) 

Assume that the DC-link voltage for each module is kept being the same. Hence, by 

rearranging equation (5.82), obtained the following equation: 

 𝑉𝑔(𝑠) = (𝑉𝑚𝑛 − 𝑉𝑚𝑛
′ )𝑛𝑉𝐷𝐶𝑛 (5.83) 

Substitute equation (5.83) into equation (5.77) and simplify it, transfer function in 

equation (5.84) can be obtained. 

 𝐺𝑓(𝑠) =
𝐼𝑠(𝑠)

∑ 𝑉𝑚𝑛
′ (𝑠)  ∙ 𝑉𝐷𝐶𝑛

𝑘
𝑛=1

  

 𝐼𝑠(𝑠) = 𝐺𝑓(𝑠)𝑉𝐷𝐶𝑛 ∑ 𝑉𝑚𝑛
′ (𝑠) 

𝑘

𝑛=1

 (5.84) 
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5.4.2 System modelling of PV voltage loop 

 

Rearranging equation (5.74) and apply Laplace transform, obtained the following transfer 

function: 

 𝑉𝑃𝑉𝑛(𝑠) =
1

𝐶𝑝𝑠
(𝐼𝑃𝑉𝑛(𝑠) − 𝐼𝐿1𝑛(𝑠)) (5.85) 

Assuming a 100% efficiency system, the output power of the entire system will be equal 

to its input power. In equation (5.86), 𝑃𝑔𝑟𝑖𝑑 represents the grid power, 𝑃𝑜𝑢𝑡 represents the 

DC-link output power, and 𝑃𝑖𝑛 represents the input power generated by the PV-array.  

 𝑃𝑔𝑟𝑖𝑑 = 𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛  

 
𝐼𝑠𝑉𝐷𝐶𝑛

2
= 𝑉𝐷𝐶𝑛𝐼𝐷𝐶𝑛 = 𝑉𝑃𝑉𝑛𝐼𝐿1𝑛𝑛𝑠𝑡

 (5.86) 

Where 𝐼𝐿1𝑛𝑛𝑠𝑡
 represents the current that passes through the first inductor in nth qZS 

network during the non-shoot-through state. 

Using equation (3.21) and replace 𝑉𝑖𝑛  in equation (3.21) with 𝑉𝑃𝑉𝑛  in this case, the 

inductor current in non-shoot-through state has the following transfer function. 

 𝐼𝐿1𝑛𝑠𝑡
=

𝐼𝑠𝑉𝐷𝐶𝑛

2𝑉𝐷𝐶𝑛(1 − 2𝐷𝑛)
 (5.87) 

During shoot-through state, the inductor current can be written as: 

 𝐼𝐿1𝑛𝑠𝑡
= 𝐼𝑃𝑉𝑛 (5.88) 

Using the same analogy of inductor current described in chapter 3 and chapter 4, the 

average inductor current (i.e., 𝐼𝐿1𝑛) in one switching cycle can be defined as: 

Figure 5.11 shows a bode plot example of the grid-tie current loop before and after 

the AC current compensation by PR-controller. The following bode plot is designed based 

on the parameters in section 4.2.1. The orange line represents the frequency response of 

the system before compensation, while the blue line represents the frequency response of 

 𝐼𝐿1𝑛 = 𝐷𝑛𝐼𝐿1𝑛𝑠𝑡
+ (1 − 𝐷𝑛)𝐼𝐿1𝑛𝑛𝑠𝑡

  

  𝐼𝐿1𝑛 = 𝐷𝑛𝐼𝑃𝑉𝑛 +
𝐼𝑠(1 − 𝐷𝑛)𝑉𝐷𝐶𝑛

2𝑉𝐷𝐶𝑛(1 − 2𝐷𝑛)
 (5.89) 
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the system after compensation. The PR-controller parameters are designed to get a fast 

dynamic and provide zero steady-state error at the fundamental frequency. The symbol 

𝜔𝑛 represents the corner frequency of the closed-loop transfer function of the grid-tie 

current loop; 𝜔𝐹 represents the fundamental frequency of the grid voltage/current (i.e., 50 

Hz or 314 rad/s). The corner frequency, 𝜔𝑛 can be calculated using the following equation: 

 𝜔𝑛 =
𝑟𝑓

𝐿𝑓
  (5.90) 

𝜔𝐹  also called the resonant frequency of the PR-controller. Noticed that when the 

difference between the actual grid-current and its reference is compensated by using PR-

controller, it provides a large gain inside its bandpass region (i.e., in the range between 

𝜔𝑛 and 𝜔𝐹, making the crossover frequency tenfold the corner frequency [2]. Therefore, 

the dynamic response of the grid-current/voltage can be enhanced without the detriment 

of system stability. The complete design and simulation for section 5.3 and section 5.4 

will be performed in future work.  

 

Figure 5.11: Bode plot for grid-current closed-loop control 
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Figure 5.12 represents the PV-based qZCHI STATCOM system control scheme 

block diagram. Notice in Figure 5.12, the control system consists of total voltage loop and 

separate voltage loop. The total voltage loop is used to track the summation of 𝑛𝑡ℎ PV-

array voltages by comparing its value with the total output voltage reference from MPPT 

algorithm. The difference in reference voltage will then be compensated by a controller 

(i.e., lead compensator) and the generated reference value will be fed into the grid-tie 

current loop as discussed in section 5.4.1. With the combination of total PV loop and grid-

tie current loop, the modulation output signal can be generated. This control loop 

combination is required to generate the first qZSI module’s modulation signal. Other than 

that, this control loop is also employed in a single-stage grid-tie qZSI based STATCOM 

system. On the other hand, each of the qZSI module (other than the first module) has its 

own individual PV-array voltage loop to achieve MPPT. The (𝑛 − 1)𝑡ℎ  separate PV 

voltage loops regulate the (𝑛 − 1)𝑡ℎ PV-array voltages using their respective controller in 

each of the module by generating each qZSI-CHB module modulation signal. This can 

reduce the 𝑛𝑡ℎ regulator’s burden, achieve a fast dynamic response and minimize the grid 

voltage’s impact on the grid-tie current [61]. 
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Figure 5.12: Block diagram of PV-based qZCHI STATCOM system control scheme 
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5.5 Simulation results 

 

 This section discusses the MATLAB/SIMULINK results for MPPT control and 

qZSI based STATCOM system under different loading conditions.  

 

5.5.1 MPPT based duty cycle control of qZSI 

 

In this simulation model, a PV-panel with model SunPower SPR-305-WHT was 

used. The combination of 1 series and 2 parallel PV modules was selected in this model. 

Table 5.1 shows the PV cell’s parameters used in this simulation model. In this section, 

P&O algorithm was applied to the qZSI module for MPPT control. The voltage-ampere 

and voltage-power characteristic of SunPower SPR-305-WHT module for a specific given 

condition are shown in Figure 5.13. The model is simulated for various conditions and the 

obtained results are presented and discussed in this section. The following simulation 

model can be found in Figure A-6 in Appendix D. On the other hand, the P&O algorithm 

was coded in MATLAB C programming script to be simulated in SIMULINK block 

diagram. The code is presented in Appendix E. 

 

Table 5.1: PV module parameters 

Module type SunPower SPR-305-

WHT 

Number of series-connected 

modules per string 

1 

Number of parallel strings 2 

PV Open circuit voltage, Voc 64.2𝑉 

PV Short circuit current, Isc 5.96𝐴 

Voltage at MPP, Vmp  54.7𝑉 

Current at MPP 𝐼𝑚𝑝  5.58𝐴 
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Figure 5.13: String array waveform at MPP (Current-voltage relationship and power-

voltage relationship) 

 

In this simulation model, the temperature on the PV module was kept constant 

while changing the solar irradiance projected to the PV module. Simulation was executed 

in the case that the output load was kept constant (i.e., 𝑅𝑙𝑜𝑎𝑑 = 50Ω) with varies PV 

circumstances (i.e., PV-panels are shaded by clouds etc.). Figure 5.14 shows the changes 

in the solar irradiance during the entire interval of 3s.  The solar irradiance remained at 

1 𝑘𝑤/𝑚2  within the interval of 0𝑠  to 0.7𝑠 . The solar irradiance dropped and reach 

0.5 𝑘𝑤/𝑚2 at 1.2𝑠. The solar irradiance slowly went up and reach 1 𝑘𝑤/𝑚2 again at 2𝑠 

time interval. To shows the effectiveness of the designed controller, the solar irradiance 

dropped instantaneously to 0.25 𝑘𝑤/𝑚2  at time interval of 2.3𝑠 . Lastly, the solar 

irradiance raised back up instantaneously at 2.7𝑠 to 1 𝑘𝑤/𝑚2. The initial duty ratio of 

qZSI is set to be at a fixed value (i.e., 0.4). The controller starting time is set to be at 0.05𝑠 

for the qZSI system to stabilize itself before the controller has taken control over the output 

voltage.  
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According to Figure 5.13, the MPP is measured to be approximately 600𝑊 when 

the solar irradiation reaches 1𝑘𝑤/𝑚2. At MPP, the voltage and current are expected to be 

54.7𝑉 and 10.96𝐴 respectively. At solar irradiation of 0.5𝑘𝑤/𝑚2, the MPP located at 

around 250𝑊 with 54.7𝑉 and 7.7𝐴. The solar panel has a MPP located at 170𝑊 (voltage 

and current are 54.7𝑉  and 5.5𝐴  respectively) when the solar irradiation is set to be 

0.25 𝑘𝑤/𝑚2. 

 

Figure 5.14: Changes in Solar Irradiance 

 

Figure 5.15 and Figure 5.16 shows the duty cycle waveform and the DC-link 

output voltage waveform respectively. Notice that in this simulation model, the duty ratio 

did not change the DC-link voltage output. The reason is because the input voltage and 

current are varying during the time interval as the solar irradiation changes. The controller 

can maintain the DC-link voltage at stable and constant value even though the solar 

irradiance changes. Noticed how the duty ratio reacts to the changes in solar irradiance; 

duty ratio changes proportionally with the changes in solar irradiance. The instantaneous 

changes in the solar irradiance at 2.3𝑠 and 2.7𝑠 caused an overshoot in DC-link voltage. 

However, the overshoot voltage was somehow within an acceptable range. Nevertheless, 



127 
 

in real-life, the solar irradiation should not be changes in such pace, so we can conclude 

that the result is acceptable.    

 

Figure 5.15: Duty cycle waveform 

 

 

Figure 5.16: DC-link voltage waveform 
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As depicted from the name of MPPT algorithm, the most crucial parameters to be 

confined is the input PV power. In other words, the final goal for MPPT algorithm to 

achieve is to make sure the generated input power is corresponding to the MPP shown in 

Figure 5.13. Figure 5.17 describes the input power waveform of the qZSI with changes in 

solar irradiance. Unravel from the fact that Figure 5.13 only shows the theoretical value 

of MPP for the ideal cases. In Figure 5.17, notice that there is slight discrepancy in the PV 

generated power when MPPT algorithm was applied to the qZSI with solar irradiance 

variation. Despite, the MPPT has performed its job well to maintain the input power to be 

closed to the desired MPP. 

 

Figure 5.17: Input power waveform 
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5.5.2 STATCOM control system 

 

In this section, the STATCOM system is incorporated with the SIMULINK model 

used in section 4.2. The complete simulation model can be found in Figure A-5 in 

Appendix D. The proposed lead compensator is applied to obtain DC-link voltage balance 

by controlling the shoot-through duty ratio. On the other hand, the modulation index that 

has been set as a constant (i.e., 0.5) in section 4.2 is now replaced with an adjustable value; 

the modulation index is now controlled by the STATCOM system. From the control 

scheme shown in Figure 5.2, AC output current from the qZSI is measured and fed into 

the abc-to-dq transformation block diagram. Meanwhile, the AC voltage at PCC is fed 

into phase-lock loop (PLL) and 𝑖𝑜𝑞
∗  algorithm to calculate the desired phase angle and 𝑖𝑜𝑞

∗  

reference respectively. Table 5.2 below shows the network parameters of the foregoing 

SIMULINK model. Notice in the following simulation, the output AC voltage is scaled 

down by ten-fold for better views when comparing the phase difference between voltage 

and current.  

Table 5.2: System parameters for qZSI STATCOM system 

System parameters Value 

Input voltage, 𝑉𝑖𝑛 12𝑉 

Desired DC-link output voltage, 𝑉𝐷𝐶 60𝑉 

Capacitor 𝐶1 and 𝐶2 value 1000𝜇𝐹 

Inductance 𝐿1 and 𝐿2 value 100𝜇𝐻 

Switching frequency, 𝑓𝑠 10𝑘𝐻𝑧 

Shoot-through duty ratio, 𝐷𝑠𝑡 0.4 

System AC output frequency, 𝑓𝐴𝐶  50𝐻𝑧 

Coupling inductance, 𝐿𝑓 54𝑚𝐻 

Coupling parasitic resistance, 𝑅𝑓 17Ω 

d-axis current gain 0.20813 

q-axis current gain 1.633505 
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Figure 5.18(a) shows the combination of grid voltage (i.e., 𝑉𝑠) and grid-current 

(i.e., 𝐼𝑠) waveforms before reactive power compensation. Table 5.2 shows all the system 

parameters used in the simulation model. The simulation was conducted using two 

different loading conditions where the load is being changed at the time interval of 2s. The 

design of the STATCOM controller is explained and shown in section 5.2. The fully 

development of the control system can be viewed in [55]. Figure 5.18(b) shows the 

zoomed-in version of the grid voltage and grid-current waveform to provide a better view 

on the phase difference between these two waveforms (i.e., the power factor). Clearly by 

inspection of Figure 5.18(b), the grid-current is lagging of the grid voltage.  

Figure 5.19 shows the grid voltage-current waveform after reactive power 

compensation. The zoomed-in version shown in Figure 5.19(b) has proven that the 

controller has performed the compensation pleasantly; reducing the time-shift  between 

grid voltage and grid-current (i.e., power factor improvement from 0.62 to 0.99); the 

power factor is corrected significantly. Based on the graph, we can conclude that the 

power factor for the inductive load can be compensated to nearly unity after compensation.  
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(a) 

 
(b) 

Figure 5.18: (a) Grid voltage and current waveform before reactive power 

compensation (b) Zoomed-in version of grid voltage and current waveform before 

reactive power compensation 
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(a) 

 
(b) 

Figure 5.19: (a) Grid voltage and current waveform after reactive power 

compensation (b) Zoomed-in version of grid voltage and current waveform after 

reactive power compensation 

 

Figure 5.20 demonstrates the dynamic and transient performance of the proposed 

STATCOM control scheme. The controller can maintain the output voltage at a constant 

value when different loading condition is applied. At the time interval of 2𝑠, the grid-

current shows a minor overshoot and it reaches steady-state within a very short interval, 

confirms that the qZSI based STATCOM system can properly generate reactive power to 

compensate for different loading conditions.  
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Figure 5.20: Grid voltage and current waveform when varied loading condition was 

applied 

 Figure 5.21 shows AC-output voltage and DC-link output voltage without the AC 

filter. The controller can achieve stable DC-link voltage and maintain it at 60V within a 

very short period, which has verify the analysis made earlier in chapter 4 (i.e., the 

feasibility of lead compensator). Figure 5.22 indicates the modulation signal generated by 

the STATCOM system to compensate with the reactive power generated. Notice that the 

STATCOM system is only activated after the first 200 ms. Therefore, the initial 

modulation signal is set to be 0.5. This is to make sure that the DC-link controller is able 

to achieve optimal DC-link voltage compensation before the STATCOM system takes 

control over the modulation signal.  

 Lastly, Figure 5.23 shows the 𝑖𝑙𝑞 and 𝑖𝑐𝑞 current within the STATCOM system. 

The 𝐼𝑙𝑞 is generated to compensate with the 𝐼𝑐𝑞 (i.e., due to capacitive load). Figure 5.23 

shows the current generated is opposed to each other. In other words, if capacitive reactive 

current is present in the load, the STATCOM system will generate 𝐼𝑙𝑞 to cancel out the 

negative reactive source current, and vice versa.   
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Figure 5.21: (a)AC output voltage (b) DC-link output voltage 

 

 
Figure 5.22: Modulation signal 
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Figure 5.23: Icq & Ilq waveform 

 

 

 

5.6 Summary 

 

This chapter is mainly focus on the power quality improvement of qZSI. The first part of 

results illustrates that the MPPT algorithm has been successfully integrated to qZSI when PV 

power system is included. The simulation results show that the controller can achieve MPP with 

small variations from the theoretical value. The second part of the results shows the integration of 

STATCOM system for reactive power compensation. The STATCOM system ensures that the 

power factor of the system to reach unity. With the combination of lead compensator, the 

controllers can maintain the output voltage at constant value. On the other hand, the modelling of 

two energy storing battery-based qZSI has been conducted and shown in section 5.3. This includes 

the derivation of large and small-signal transfer function of the proposed topology. Lastly, section 

5.4 demonstrates the modelling of MPPT and grid-tie qZS Cascaded Multilevel Inverter-based 

STATCOM system with the derivation of grid-tie transfer function as well as the transfer function 

of total and separate PV voltage loop.  
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion Remarks 

 

To conclude, this research project has been carried out successfully through 

simulation work performed in software MATLAB/SIMULINK. The simulation models 

consist of three different parts. The first part comprises of the operating mode of qZSI 

which can be characterized into three categories; CCM, BCM and DCM. Second part of 

the research project consists of the design of DC-link voltage controller and followed by 

cascading two qZSI module to generate multilevel output voltage. The third part of the 

research project covers the power improvement strategy in qZSI.   

The first part of research project presents a detailed analysis of CCM, BCM and 

DCM analysis in qZSI. The mathematical equations to distinguish between these 

operating modes have been derived. The simulation results have shown that the derived 

equations were accurate. The derived equations also illustrate and allows researchers to 

prevent qZSI to operate in DCM, by adjusting several parameters and form different 

combination when designing qZSI. Thereupon, the obtained simulation results have 

fulfilled and achieved the first objective of this research project.  

In this research work, lead compensator is selected to replace the commonly used 

controller in qZSI control system (i.e., PI controller) in the voltage loop of the qZSI control 

system. An equation that compute DC-link voltage to inductor current is missing in 

conventional qZSI voltage control loop. To compensate with this issue, the mentioned 

equation is derived and included when lead compensator is used.  However, this does not 

mean that the control system designed by previous researcher is incorrect. By inspecting 

equation (4.88), we have noticed that the transfer function consists of an integral term 

multiply with a constant (i.e., gain), which is congruent with the integral term used in a PI 

controller. Although lead compensator seems to be more complex than PI control, but the 

design procedure of lead compensator is somewhat simple and easy to be implement. 

Overall, the performance in lead compensator is rather similar to PI controller when apply 

in qZSI. The major difference in the performance happens in the DC-link voltage 

comparison of both methods. From the simulation results, PI controller offers higher 
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percentage overshoot during the start-up process and requires longer settling time to 

achieve steady-state in real-time simulation. Nevertheless, controller’s performance can 

be altered when different system parameters are employed. To prevent an unfair 

judgement, further analysis must be performed in future work. However, based on the 

selected parameters in this research project, lead compensator shows major dominance 

over PI controller.  

The last chapter of the research project is to enhance the input and output power 

quality of the qZSI when PV power system is included. Output side of the qZSI refers to 

the distribution of grid voltage and current. The solar irradiance and temperature change 

rapidly throughout the day, which causes similar fluctuation in input PV power as well. 

To comprehend this issue, MPPT algorithm is applied. Further regulation of input power 

can be done by adding energy storing battery to the qZS module; connected the battery to 

the qZS capacitor. The modelling of the two energy storing battery-based qZSI has been 

included with the derivation of novel transfer functions which illustrate the foregoing 

model. Later, the five-level qZCHI was adopted to be used in STATCOM application with 

different loading condition. With a simulated reactive load, the qZCHI STATCOM system 

successfully compensated the reactive power and allow the power factor to attain at unity.  
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6.2 Future works 

 

 With successful simulation execution of this research project, hardware 

implementation can be performed in the future to further verify the practicality of the 

derived mathematical equations. Based on literature reviews, most of the researchers only 

analyse the performance of controller when qZSI operates in CCM. Thus, experiment can 

be conducted to identify the performance of lead compensator and PI controller in qZSI 

when the system is operating in DCM as well. Different combination of system parameters 

should be tested to examine the accuracy of the derived equations.  

 Section 5.2 discusses the implementation of 𝐼𝑜𝑞
∗  algorithm in STATCOM control 

system. Yet in section 5.4, the STATCOM approach is totally different from that in section 

5.2. In [2], the author applied proportional resonant controller in the STATCOM feedback 

loop to ensure that the voltage and current are in phase; Section 5.4 has similar approaches. 

As mentioned earlier, no research has been done to implement 𝐼𝑜𝑞
∗  algorithm based 

STATCOM control system to qZSI when PV power system is included. Therefore, it 

could be another novel research by integrating 𝐼𝑜𝑞
∗  algorithm based STATCOM with PV 

power system to output a modulation index to the inverter IGBTs.  

 Other than that, simulation and experimental implementation can be performed for 

the two energy storing battery-based qZSI as the modelling of the proposed topology has 

been done in section 5.3. The derived transfer function will be verified followed by the 

design of DC-link controller-based on the proposed topology. Once the DC-link voltage 

controller has reach the expected performance, PV power system and STATCOM system 

can be merged into the module. Next, MPPT control will be implemented to regulate the 

PV power when the energy storing battery has run out of power. Finally, the proposed 

topology will be implemented in real-life experiment setup.   
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Appendix 

Appendix A: Derivation of Inductor Current Transfer Function in Non-Shoot-

Through state 

 

During shoot-through state  

 𝑉𝐷𝐶𝑆𝑇
= 0 (A-1) 

Where 𝑉𝐷𝐶𝑆𝑇
 is the DC-link voltage in shoot-through state. 

 𝐼𝐷𝐶𝑆𝑇
= 𝐼𝐿1𝑆𝑇

 (A-2) 

Where 𝐼𝐷𝐶𝑆𝑇
 and 𝐼𝐿1𝑆𝑇

 is the DC-link output current and inductor 1 current respectively. 

During non-shoot-through state (i.e., active-state), the DC-link output current is equal to 

the AC output current. In equation (A-3), 𝐼𝐷𝐶𝑁𝑆𝑇
 represents DC-link output current, while 

𝐼𝑜 represents the AC output current generated. 

 𝐼𝐷𝐶𝑁𝑆𝑇
= 𝐼𝑜 (A-3) 

Over a full switching cycle, the output power, 𝑃𝑜𝑢𝑡 is defined as: 

 𝑃𝑜𝑢𝑡 = 𝑉𝐷𝐶𝑛𝑠𝑡
× 𝐼𝐷𝐶𝑛𝑠𝑡

× (1 − 𝐷) + 𝑉𝐷𝐶𝑆𝑇
× 𝐼𝐷𝐶𝑆𝑇

× 𝐷  

 𝑃𝑜𝑢𝑡 = 𝑉𝐷𝐶𝑛𝑠𝑡
× 𝐼𝐷𝐶𝑛𝑠𝑡

× (1 − 𝐷) + 0 × 𝐼𝐷𝐶𝑆𝑇
× 𝐷  

 𝑃𝑜𝑢𝑡 = 𝑉𝐷𝐶𝑛𝑠𝑡
× 𝐼𝑜 × (1 − 𝐷) (A-4) 

Assuming input power equal to output power (i.e., 𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡). 

 𝑉𝑖𝑛 × 𝐼𝐿1 = 𝑉𝐷𝐶𝑛𝑠𝑡
× 𝐼𝑜 × (1 − 𝐷)  

 
𝑉𝑖𝑛 × 𝐼𝐿1 =

1

1 − 2𝐷
× 𝑉𝑖𝑛 × 𝐼𝑜 × (1 − 𝐷) 

 

 
𝐼𝐿1 =

1 − 𝐷

1 − 2𝐷
× 𝐼𝑜 

(A-5) 
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Appendix B: qZSI transfer function design procedure  

 

This section describes the calculation of the qZSI transfer function as shown in 

section 4.2.1. The parameters in Table 4.1 is substituted to qZSI transfer functions to 

obtain numerical equation for controller design in later stage. To generate a 50V voltage 

from 12V input voltage, duty cycle of 0.38 in value is used. The inductor current can be 

calculated using equation (3.46). In shoot-through state, the AC output current is equal to 

zero. In non-shoot-through state, the AC output current can be calculated with following 

equation: 

𝐼𝐴𝐶 =
𝑉𝑜
𝑅

=
𝑉𝐷𝐶

𝑅
=

50𝑉

50Ω
= 1𝐴 

𝐼𝐿 =
1 − 𝐷𝑆𝑇

1 − 2𝐷𝑆𝑇
𝐼𝐴𝐶 

𝐼𝐿 =
1 − 0.38

1 − 2 × 0.38
(1) = 2.583𝐴 

 

The minimum inductor value for qZSI to stay in CCM based on parameters shown in 

Table 4.1 

𝐿𝑚𝑖𝑛 =
(𝑉𝑖𝑛 + 𝑉𝐶2)𝐷𝑆𝑇

2𝐼𝐿 × 𝑓𝑠
=

(12 + 19)(0.38)

2 × 2.583 × 10000
= 0.000228𝐻 = 2.28𝜇𝐻 

 Since the inductance used in section 4.2.1 is lower than the calculated minimum 

inductor value, the designed qZSI is operating in DCM. To calculate the voltage loop 

transfer function, equation (5.36) is used. 

𝐺𝑣�̂�𝑑𝑆�̂�
=

[(𝐼𝑜 − 𝐼𝐿1 − 𝐼𝐿2)(𝐿𝑠 + (𝑟 + 𝑅)) + (𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝐷𝐶)(1 − 2𝐷𝑆𝑇)]

[𝐿𝐶𝑠2 + 𝐶(𝑅 + 𝑟)𝑠 + (1 − 2𝐷𝑆𝑇)2]
 

𝐺𝑣�̂�𝑑𝑆�̂�

=
[(1 − 2.583 − 2.583)(100 × 10−6𝑠 + (3.22 × 10−2 + 5.60 × 10−2)) + (31 + 19 − 5.60 × 10−2)(1 − 2 × 0.38)]

[(100 × 10−6 × 1 × 10−3)𝑠2 + (1 × 10−3)(3.22 × 10−2 + 5.60 × 10−2)𝑠 + (1 − 2 × 0.38)2  

𝐺𝑣�̂�𝑑𝑆�̂�
=

−0.000417𝑠 + 11.61906

0.0000001𝑠2 + 0.0000882𝑠 + 0.0576
 

From the above calculation, it is obvious that the qZSI transfer function has a right-hand 

plane zero at 𝑠 = 27863.5, therefore, this indicates that qZSI operates in non-minimum 

phase. To calculate the current inner loop transfer function, equation (4.37) is used. 
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𝐺𝑖�̂�𝑑𝑆�̂�
=

𝐶𝑠(𝑉𝐶1 + 𝑉𝐶2 − 𝑅𝐼𝑜) + (𝐼𝐿1 + 𝐼𝐿2 − 𝐼𝑜)(1 − 2𝐷𝑆𝑇)

[(𝐿𝑠 + 𝑅 + 𝑟)[𝐿𝐶𝑠2 + (𝑅 + 𝑟)𝐶𝑠 + (1 − 2𝐷𝑆𝑇)2]]
 

𝐺𝑣�̂�𝑑𝑆�̂�

=
(100 × 10−3)𝑠(31 + 19 − 50) + (2.583 + 2.583 − 1)(1 − 2 × 0.38)

[(100 × 10−6 × 1 × 10−3)𝑠2 + (1 × 10−3)(3.22 × 10−2 + 5.60 × 10−2)𝑠 + (1 − 2 × 0.38)2
 

𝐺𝑣�̂�𝑑𝑆�̂�
=

4.99 × 10−2𝑠 + 1

0.0000001𝑠2 + 0.0000882𝑠 + 0.0576
 

 

Similar calculation can be performed calculated for the parameters shown in section 4.2.2.  
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Appendix C: Tuning of PI controller in MATLAB/SIMULINK 
 

 

Figure A-1: PI controller tuning block diagram in MATLAB/SIMULINK 

 

 

 

Figure A-2: P controller tuning block diagram in MATLAB/SIMUINK 



147 
 

 

 

Figure A-3: DC-link voltage control loop with PI controller 

 

 

Figure A-4: Complete DC-link control system of qZSI model (with voltage and current 

inner loop) 

 

From Figure A-4, the PI controller represents the controller used in the DC-link 

voltage loop, whereas the P controller is used in the inner current loop. Control system 

with PI-P controller requires tuning both the PI and P controller concurrently as each of 

the controller does have impact the overall transient response. Adjusting the transient time 

and the transient behaviour of the controller until obtain satisfaction results.  

Similar approach can be done by tuning the proportional gain of the current inner 

loop when lead compensator is used in the voltage loop. However, lead compensator is 

always designed ahead of the tuning procedure as this provide more flexibility to the 

design process. The lead compensator will make sure that the voltage loop can attain stable 

transient and dynamic response beforehand, reducing the burden of the P controller. 
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Appendix D: Simulation Model 

 

Figure A-5: Complete SIMULINK design of grid-tie qZSI based STATCOM system 
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Figure A-6: qZSI topology with MPPT control
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Appendix E: MPPT Algorithm MATLAB C Code 

 

The following appendix shows the MPPT algorithm (i.e., Perturb and Observed Algorithm) 

MATLAB coding. 

function D  = POalgorithm(Parameter, Enabled, V, I) 

  

Dint = Parameter(1);  %initial D 

Dmax = Parameter(2);   %Maximum value for D (0.5) 

Dmin = Parameter(3);   %Minimum value for D 

deltaD = Parameter(4); %increment of D in each cycle 

  

persistent V_old P_old D_old; 

  

dataType = 'double'; 

  

if isempty(V_old) 

    V_old=0; 

    P_old=0; 

    D_old=Dint; 

end 

P= V*I; 

dV= V – V_old; 

dP= P – P_old; 

  

if dP ~= 0 & Enabled ~=0 

    if dP < 0 

        if dV < 0 

            D = D_old - deltaD; 
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        else 

            D = D_old + deltaD; 

        end 

    else 

        if dV < 0 

            D = D_old + deltaD; 

        else 

            D = D_old - deltaD; 

        end     

    end 

else D=D_old; 

end 

  

if D >= Dmax | D<= Dmin 

    D=D_old; 

end 

  

D_old=D; 

V_old=V; 

P_old=P; 

 

 


