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ABSTRACT

Meteorites that have fallen onto the Earth offer an easy access to a diversity

of samples from other bodies in the Solar System. The study of this material

is essential to understanding what the building blocks of our Solar System

were made of, and what dynamics led to the configuration of planets and small

bodies we observe today.

With the aim to systematise the meteorite recovery process and determine the

origins of fallen meteorites, networks of wide angle cameras have been set up

to monitor the Earth’s atmosphere for meteoroid impacts. These observations

cover only a very short arc of the meteoroids’ orbit but, using the principle of

triangulation, relatively precise trajectories can be determined. Such trajectories

are capable of pointing to likely source regions, and sometimes predicting

meteorite fall positions.

The Desert Fireball Network (DFN) is the first to do so on a very large

scale, operating 52 camera stations in Australia, but through international

partnerships totalling over 100 systems. This effort currently (2018) covers 4

million km2 (0.8% of the Earth’s surface), and aims to monitor 2% of the Earth

by 2020 (7% of the landmass).

The DFN is operated with a limited number of people, and in order to extract

the most of the science out of the observations, the data reduction must be

automated. This notably includes precisely determining the trajectory of a mete-

oroid through the atmosphere, as well as characterising its physical parameters.

This is essential to making accurate precision of where the meteorites might

land, but also to calculate its pre-encounter orbit — where it came from in the
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Solar System.

This thesis details some of the innovative methods used in the reduction

process. From this, the reduced data are then used to answer key science

questions that the DFN can tackle, by looking at the meteoroid population at

various mass ranges. Firstly metre-scale impactors are studied. These create

bolides visible from orbit, with meteoroid bodies that typically get almost

entirely destroyed by our atmosphere. Studying these objects is important

because they are at the small mass range of asteroids that can cause severe

damage on the ground. Thanks to its very large collecting area, the DFN is

uniquely placed to do this, as only very few (ă 50) impact the Earth every year.

Toward a smaller mass range, a study is then performed on the meteoroid that

led to the recovered Dingle Dell meteorite. This decimetre-scale meteoroid is

in the typical size-range of most meteorite droppers and is a worked example

of the whole reduction process and results, from orbital evolution to the fall

positions on the ground. Finally, smaller still, the analysis of a class of objects

that is usually to small to be efficiently sampled by fireball networks: cometary

debris. Cometary debris in the Taurids Complex is found to contain unusually

large objects, which is difficult to reconcile with traditional cometary ejection

models.
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Astronomy is just like geology, except that East is on the left.

-Joshua E. G. Peek, whilst speaking at ADASS XXV
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CHAPTER 1

INTRODUCTION

1.1. FORMATION OF THE SOLAR SYSTEM

One of the main objectives of planetary science is to understand what was

happening in the protoplanetary disk, and how the objects orbiting our Sun

formed and evolved. These objects include planets and large asteroids; however

the study of planetary rocks yields limited information about what the building

blocks of our Solar System were like, because most of the cosmo-chemical

history has been lost through secondary processes including differentiation of

these larger bodies. Smaller bodies on the other hand have been much less

recycled, making them good test candidates for study of the primitive disk

composition.

Small, non-differentiated, Solar System bodies preserve these records. Most

of our solar system has been has been stable for the better part of its lifetime, and

it is unlikely to evolve significantly before the Sun turns into a red giant (Laskar

and Gastineau, 2009). The stability of the orbits are in principle a powerful way

to study where things formed and what was the gas/dust composition like in

different parts of the disk. However there is some evidence that shows that the
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planetesimals were reshuffled early-on (small Mars, late heavy bombardment,

asteroid radial mixing, high inclinations and eccentricities in the main belt etc.),

and some of the mass was lost (ejected). Mapping the composition of small

bodies left today is nevertheless the key to solving this difficult inverse problem.

Direct samples obtained from various classes of such objects are key to

putting strong constraints on where and how primordial planetesimals formed.

One of the ways to study these samples directly is to commission a sample

return mission to visit a Solar System object and return material from these

bodies. Sample return mission like Apollo to the Moon, Stardust to comet Wild

2 (Brownlee et al., 2006), and Hayabusa to S-type asteroid Itokawa (Nakamura

et al., 2011), have brought back a variety of samples. These have not only

yielded important results shortly after they came back to Earth, but continue to

be studied decades later as methods of analyses and instruments improve.

When sample return to Earth is particularly difficult and/or costly, remote

laboratories like Rosetta on comet 67P (Glassmeier et al., 2007), and the Mars

rovers have been built to study the rocks in situ. These endeavours are costly,

and have not gone far beyond Near-Earth space because of delta-v issues.

Analyses are limited to the technology available at the time of the mission

design and are non-repeatable.

Another, much cheaper, way to study such primitive samples is to look at

material readily available on Earth — meteorites. Over 60,000 meteorites have

been recovered and identified as such. These are incredibly valuable samples

from a very wide range of parent bodies, from primitive main belt material to

even samples of the Moon and Mars. Unfortunately ă 1% have known origins

(Bland et al., 2012) and without this spatial context, the story is not complete.
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1.2. RECOVERING METEORITES WITH ORBITS

To determine where meteorites come from and better understand the physical

phenomena associated with the entry of a meteoroid in the atmosphere, a

network of cameras was built in the 1950’s in Czechoslovakia (Ceplecha, 1961).

Although this was not the first systematic effort to observe meteors to derive

trajectories and orbits, it was the first to do so with the aim of surveying a large

enough collecting area to have a reasonable chance of catching a rare meteorite

dropping fireballs on two or more stations, to allow triangulation. These efforts

paid off in 1959, with the recovery of the Přı́bram meteorite (ordinary chondrite)

(Ceplecha, 1961), with its pre-encounter orbit pointing to a main belt origin.

Following this, the Czechoslovakian network was expanded to cover a larger

area in central Europe. Similar efforts were initiated elsewhere: the Prairie

network in the USA starting in the 1960’s, and the Meteorite Observation and

Recovery Project (MORP) in Canada starting in the 70’s (Halliday, 1973), both

yielding one meteorite each in their 10-15 years of operation. The next Czech

network success only came more than 40 years later with the Neuschwanstein

meteorite (Spurný et al., 2003).

This relatively low yield is not caused by the rareness of meteorite falls —

MORP observed 46 fireballs with ą 100 g terminal masses (Halliday et al., 1996)

— but likely linked with the difficulty of finding meteorites in temperate climates,

where the meteorites’ typical black fusion crust competes with relatively dark

landscapes, and quickly become undistinguishable from normal rocks because

of weathering.

These considerations led Bland (2004) to set up similar observation hardware

in the Australian Desert starting in 2005, rapidly returning results in 2007 and

2010 (Bland et al., 2009; Spurný et al., 2012a). In 2012, thanks to advances in

digital camera technology, the Desert Fireball Network started designing a new
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camera system that would be cheap and reliable enough to be deployed on a

continental scale (0.6% Earth covered in 2016). It started science operations in

November 2014, and quickly gave results in the years that followed: Murrili in

2015 (Devillepoix et al., 2016), and Dingle Dell in 2016 (Devillepoix et al., 2018).

Following these successes, the Global Fireball Observatory collaboration was

formed in 2017, partnering up 14 research institutions in 6 different countries

(Australia, Saudi Arabia, Morocco, United Kingdom, Canada, and USA) with

the goal to cover 2% of the Earth by 2020. This collaboration aims to sample

as many types of meteorites as possible, with the ultimate aim of mapping

the source region for each meteorite type. It is expected that a lot of ordinary

chondrites will be recovered; but each new specimen of an already sampled

type adds statistical robustness to source region linking, primarily because the

models that can map a near-earth object’s osculating orbital elements to a likely

source regions, are statistical in nature.

This can inform us about NEO populations and asteroid families and pos-

sibly to the identification of debris streams. However, to get a good statistical

assessment of incoming material, the biases associated meteorite delivery must

be understood.

1.2.1. BIASES ASSOCIATED WITH METEORITES SAMPLING

A class of small solar system bodies that is easily accessible for study are the

Near-Earth Objects (NEOs); these include comets, asteroids, meteoroids, and,

by extension, meteorites.

ARE NEOS REPRESENTATIVE OF THE SOLAR SYSTEM SMALL BODY

POPULATION?

NEOs are broadly defined as small bodies that have a perihelion distance

ă 1.3 AU. Being constantly swept by interactions with planets, this region
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of orbital space is not stable. The objects that live there have a high chance

of falling into the Sun, being ejected, or more rarely hitting a planet, all on

relatively small timescales (a few million years). Therefore this population must

be continuously replenished. Bottke et al. (2002) has shown that the largest

source of NEO replenishment is from the asteroid main belt (94%), while the

rest likely comes from Jupiter Family Comets (JFC). This means that NEOs are

representative of some regions of the main belt and the comet population, but

not of dynamically stable regions like the Jovian Trojans or trans-Neptunian

objects, for example.

DO NEOS SAMPLE THE MAIN ASTEROID BELT EQUITABLY?

Wisdom (1985) and Morbidelli et al. (1994) have shown that orbital resonances

are efficient delivery routes for main belt asteroid to near-Earth space, by

increasing eccentricities. Asteroids occasionally collide, and the fragments find

their way into these resonant parts of orbital space through non-gravitational

forces, namely the Yarkovsky effect. This causes a slow drift in semi-major

axis (a), depending on the physical characteristics of the body (Vokrouhlicky

and Farinella, 1998). The closer the parent body is to a resonance in orbital

space (in paq for mean-motion resonances, or pa, iq for secular ones), the faster

the collisional family starts injecting the smallest members into this resonance.

A relatively well-determined example of this is the L-chondrite forming event

466 million years ago, known to have delivered a large number of meteorites to

Earth, starting less than a million years after it happened (Heck et al., 2004, 2008),

through the 5:2 mean-motion resonance with Jupiter (2.82 AU) (Nesvorný et al.,

2009). Heck et al. (2017) provide additional evidence of changes in the meteorite

flux over geological time scales. This shows how efficient the meteorite delivery

process can be, how collisions in the main asteroid belt can then rapidly affect

the near-Earth environment, but this also inherently means that asteroids living

far from resonance are poorly represented in the NEO population.
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DOES THE KILOMETRE-SIZE NEO POPULATION SCALE TO OBJECTS REGULARLY

HITTING THE TOP OF EARTH’S ATMOSPHERE?

Kilometre-size NEOs are big enough to be spectrally surveyed by telescopes,

however the composition of this population is not exactly the same for smaller

asteroids, as the Yarkovsky effect on semi-major axis drifts is size dependant.

This is illustrated by the V-shape identification technique of Bolin et al. (2017).

Because of this drift, the effects of a main belt collision will result in smaller

objects being pushed more rapidly into resonances than larger material. This is

outlined by de-biased observational evidence in the steady-state NEO model of

Granvik et al. (2016, 2018), where each source region contributes in different

proportions to the NEO population depending on size. This effect was also

hinted by Vernazza et al. (2008), when they noticed that „ 1{3rd of the NEO

population bright enough to be spectrally studied are LL-chondrite compatible

asteroids, while LL chondrites only represent 8% of meteorite falls.

ARE METEORITES REPRESENTATIVE OF THE DECIMETRE TO METRE-SCALE NEO

POPULATION?

Even if the compositional distribution of material at the top of the atmosphere

was uniform across all sizes, the Earth’s atmosphere operates a severe selection

bias of what material makes it to the ground. The orbital speed accelerated by a

powerful gravity well, combined with a relatively dense atmosphere, impose

ram pressures of several megapascals to any meteoroid trying to survive entry

and be found as a macroscopic meteorite.

There is an environmental bias due to terrestrial weathering and erosional

processes. This is governed by parameters such as macroscopic structure,

composition, and porosity. Understanding such parameters in the decime-

tre/metre scale can yield practical insights of how slightly larger — potentially

hazardous— objects might behave when entering the Earth’s atmosphere.

In the context of a coordinated effort to observe meteorite falls to recover
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meteorites, being able to derive these physical parameters from fireball obser-

vations has a practical application: can we recognise and recover meteoroids

that survive entry, even when the fireball observation look unfavourable (evi-

dence of destruction by large amounts of fragmentation, low penetrating depth

in the atmosphere)? By looking at characteristics of historical events, Brown

et al. (2013) attempt to derive entry parameters criteria for which meteorite

survivability is possible.

Understanding these issues is essential to limit the introduction of human

biases in the meteorite recovery process. A practical example is the impact

of F-type asteroid 2008 TC3 and the recovery of the resulting Almahata Sitta

meteorites (Jenniskens et al., 2009). With the asteroid getting destroyed at

„ 37 km altitude, no material was expected to have survived entry. More than

99% of the body was indeed destroyed, but the meteorites that survived proved

to be invaluable samples from a rare class of meteorites (mainly anomalous

ureilites). The extra attention this event got, because of the size of the asteroid

and the fact that it was detected in space before impact, arguably played in

favour for a successful meteorite search campaign. To some extent, similar

events played in the favour of other non ordinary chondrite falls recoveries.

Three of these events were strongly followed up because of the size of the

incoming body, the media attention the fireball created, but not because a

detailed analysis of bright flight data determined that meteorites had survived:

Tagish Lake (Brown et al., 2000), Sutter’s Mill (Jenniskens et al., 2012), and

Maribo (Spurný et al., 2013). Bunburra Rockhole (Bland et al., 2009; Spurný

et al., 2012b) was observed with dedicated instruments, and it was prioritised for

searching because of its unusual Aten orbit, not solely on its entry parameters

(final height, speed, and mass).

Apart from Bunburra Rockhole, the compiled data by Borovička et al. (2015)

shows that the ”dedicated search from detailed computation of trajectory from

fireball observations” category of has only yielded ordinary chondrites. Con-
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sidering the small number of cases, this is not statistically significant, especially

considering that 90% of falls are ordinary chondrites anyway. As fireball net-

works aiming to find meteorites increase the number of recoveries, this should

be thought about nonetheless.

1.2.2. BEYOND METEORITES

Not every observed fireball results in a meteorite and these samples are only

part of the picture. As seen above, the meteorites that make it to the ground

are strongly selected by the atmosphere, but all the other recorded meteoroid

impacts (Fig. 2.18) have a story to tell.

The meteoroid orbit population observed can be used to yield insights on

the NEO population models at the centimetre to metre scale. At this size range,

the reference results remain those from MORP (Halliday et al., 1996). The DFN

is in a unique position to put strong constraints on the flux density of material

hitting the Earth, and where this material comes from.

The atmosphere can also be used as a measurement tool for probing the

macroscopic structure of meteoroids. Far from being uniform, these bodies ex-

perience fragmentation under several orders of magnitude of dynamic pressure

less than the tensile strengths of meteorites on the ground.

1.3. THESIS STRUCTURE

This work aims to cover the methodologies used to reduce fireball data and

tackle some of the science results that this type of instrument can help answer.

The work is decomposed into four main chapters covering the main aims of

this thesis.
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CHAPTER 2— AN AUTOMATED DATA PROCESSING PIPELINE FOR THE DESERT

FIREBALL NETWORK is a technical chapter devoted to the automated data

reduction pipeline of the Desert Fireball Network. Although many parts of

this pipeline have been assigned to other team members, I have played a

fundamental role in integrating these to produce useable results. This chapter

explains in depth the algorithms and codes that I have developed for this

purpose as well as for the astrometric and photometric calibration of fireball

data.

The following chapters present the first science results from DFN data, they

relate to the observation of different sizes of meteoroids, from very bright

bolides caused by small asteroids, to small fragile cometary dust.

CHAPTER 3— OBSERVATION OF METRE-SCALE IMPACTORS BY THE DESERT

FIREBALL NETWORK (Devillepoix et al., 2019) details the two biggest asteroid

impacts the DFN has observed, with a typical mass of 103 ´ 104 kg. These aster-

oids are the only metre-scale objects observed by the DFN from the beginning

of science operations in 2014 to mid-2018.

CHAPTER 4— THE DINGLE DELL METEORITE: A HALLOWEEN TREAT FROM

THE MAIN BELT (Devillepoix et al., 2018) is inherently linked with the main

science goal of the DFN: recovering meteorites with orbits. The typical meteorite

droppers are 101´102 kg at the top of the atmosphere. Chapter 4 is the complete

analysis of the fall of the Dingle Dell meteorite, from pre-encounter orbit to

the calculation of where the meteorite landed on the ground — a worked

application of the data processing pipeline.

CHAPTER 5— TAURID METEOROID STREAM 628: A RESERVOIR OF LARGE

IMPACTORS is an example of how the DFN can be used for meteor shower

science. Although the DFN observes meteor showers, the sensors are not

optimised for this purpose. In this case we study the return of a branch of
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the Southern Taurids shower, one of the only cases an instrument dedicated

to observing much brighter fireballs gets a significant number of detections

(typical mass observed 10´3´ 100 kg). Interestingly, the most spectacular return

of a meteor shower identifiable in the historical MORP dataset (Halliday et al.,

1996) was also from these Southern Taurids, in 1981.

The development of a streamlined data reduction pipeline has lead to over

1000 orbits of fireballs for the DFN to analyse in less than 4 years of science

operations. I have investigated the suitability of the DFN to fulfil its main

meteorite recovery goal, as well as its versatility to answer different science

questions about other types of meteoroids.
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2.1. INTRODUCTION

2.1.1. SCIENCE REQUIREMENTS

The primary science goals of the DFN and its data reduction pipeline are:

• Getting fall positions of meteorites

• Calculating pre-encounter orbits of parent meteoroids

• Orbit evolution modelling from a large event dataset

These goals were the objective of Ceplecha (1961) when establishing the first

fireball network in the Czech Republic in the 1950’s, in the hope of understand-

ing where meteorites come from. With the calculation of the pre-entry orbit

of the Pr̆ı́bram meteorite, Ceplecha (1961) proved that meteorites are linked

with the main asteroid belt, and the delivery mechanism (the Yarkovsky effect

combined with orbital resonances) was fully explained later, with the work of

Morbidelli et al. (1994); Farinella et al. (1998). Since then, theses goals have not

fundamentally changed because we have yet to instrumentally observe the fall

of rarer classes of meteorites, like irons, stony-irons, and even some classes of

ordinary chondrites (Borovička et al., 2015). Furthermore the dynamical origin

identification of a meteorite through its pre-encounter orbit remains statistical

(Granvik and Brown, 2018), so a significant number of the samples of the same

class are required to fully validate a meteorite - main belt region connection.

The direct requirement that falls from these goals is the reliability of the data.

An undetected systematic error not only has consequences on the science con-

clusions about the structure of the solar system, but it can also result in people

searching for meteorites in dangerous environment in the wrong location.
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An other requirement, that is perhaps not captured in historical meteorite

recovery endeavours, is scalability. So far most fireball networks endeavours

have operated sub-million km2 networks (Halliday, 1973; Oberst et al., 1998).

Since 2016 the DFN covers 3 million km2, and plans to expand to 10 million km2

by 2020 (2% Earth) through the Global Fireball Observatory (GFO) collaboration.

More generally, getting a large number of orbits (hundreds per year) requires a

certain degree of automation for the processing routines.

The last primary requirement relates to decision making, as the network is

operated by a small team. The pipeline must not only produce reduced data for

researchers to analyse, but also the necessary high level reporting information

to make decisions to get the maximum science returns, a concept that is not far

from Operational Research (OR) theory.

The DFN observation facility is also suited to tackle a number of secondary

science objectives:

• Collect bright flight data on a large number of meteoroids to test entry

models (not only meteorite droppers).

• Determine pre-impact physical parameters (mass, structure...) of the

meteoroid.

• Investigate fireball showers.

• Derive impact flux of meteoroids on Earth.

• Use the collected imagery for other non meteor related purposes (transient

astronomy, Space Situational Awareness (SSA)...).

2.1.2. TECHNICAL REQUIREMENTS

The DFN observatories have been designed to be low-power, light-weight,

low-cost, autonomous, and able to support long gaps between servicing visits
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(Howie et al., 2017a). Furthermore, most of the DFN is set in outback Australia,

where network connectivity is very limited if at all possible.

The daily bandwidth objective is 1 MB per day, this include both engineering

data as well as information about fireball events. It is acceptable to spend a few

hundred megabytes to retrieve raw data for selected events of interest. Each

camera takes „1000, 45 MB raw images per night, so it is not possible to send

back full-resolution compressed version of the images. The event detection has

to be done on-board the low-power single-board computer (currently Commell

LE-37G using 15W), and the results have to fit in the 1 MB daily bandwidth

limit. If bandwidth was not such a big issue, the cameras would send all

the raw detected events data (including false positives) to the central server

immediately after detection. However some camera stations in the remote

outback are located very far away from cell towers, and only average a couple

of kilobytes per second of bandwidth, or are even unable to communicate in

some weather conditions. Therefore only the confirmed events of interest must

have their raw data transmitted.

These problems resemble the ones faced by some space probes exploring the

solar system. Maintenance and software/firmware updates have to be smartly

scheduled and very well tested, and data transfers limited to the bare minimum.

Contrary to space probes, the observatories can be serviced, but this must

be limited as much as possible as some sites require thousands of dollars of

logistics and several person days to be visited.

These considerations constitute the technical requirements for the steps that

happen before the data can be analysed in depth (Fig. 2.1).

Once the data is on the server, these low-power use and low-CPU usage

constraints disappear; however the server still needs to have a very high degree

of automation, as the network is operated by a small team of researchers.
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The central part of the reduction pipeline must be:

• Scalable: not dependent on a single central server doing everything; able

to share the workload between machines.

• Fault proof: ability to redeploy everything in a timely manner on a brand

new machine if the central server crashes.

• Automated: minimum human intervention,

• Sensitive to new data and software updates.

• Error reporting: problems must be disseminated to humans in a readable

way, and in a manageable volume.

• Relatively fast: in case of a meteorite alert, the team needs to have the

necessary information to make a decision in a timely manner after the

alert.

2.1.3. HOW TO READ THIS CHAPTER

In the following sections I am going to present the DFN data reduction pipeline,

and how it meets the requirements mentioned above.

The first section (Sec. 2.2) is an overview of the various steps in the pipeline.

It includes some of my work, as well as my colleagues’.

The following sections (Sec. 2.3, 2.4, 2.5, 2.6) then detail the tasks that I

have single-handedly worked on and developed (notably the astrometric and

photometric calibrations).

2.2. OVERVIEW OF THE PROCESSING STEPS
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2.2.1. CAPTURE AND DETECTION

This section deals with the main software tasks running on-board the observa-

tory. See Howie et al. (2017a) for a description of the hardware parts.

Still images are captured using a custom-made capture control software. Its

main functions are:

• Turning things on and off by sending commands to the micro-controller.

Example: the power to the DSLR and video camera is physically cut using

a relay when not in use to save power.

• Checking GPS module status to ensure that absolute time is encoded with

acceptable precision (Howie et al., 2017b) (typically 0.4 milliseconds).

• Logging all the metadata necessary for science reduction (observatory

coordinates, version of micro-controller firmware used...).

• Logging engineering data to remotely diagnose malfunctions.

• Calculating sunrise and sunset times, and adjusting exposure settings

during twilight.

• Handling communication with the DSLR, through the gPhoto library

(http://www.gphoto.org/).

• Triggering calibration images with the liquid crystal shutter open (cur-

rently set to one every 30 minutes).

• Temporarily interrupting captures when the sky is too cloudy, to reduce

wear on the mechanical shutter and save disk space.

Captured images are fed through the event detection software after they

have been retrieved from the DSLR memory card.

http://www.gphoto.org/
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However when available power during the night is limited (in winter for

example), this operation can be delayed till morning, when the sun shines

on the solar panels. More generally the observatories record the input power

voltage, allowing them to run at reduced functionality if it is determined that

normal operation would cause a power failure before the end of the night.

The fireball detection process is explained by Towner and et al. (submitted).

The algorithm is based on blurring and image differencing, then a Hough

transform to detect transient meteor streaks.

The line pixel coordinates of the events detected are subsequently converted

to sky coordinates using a simple optical formula: the Samyang f “ 8 mm

f /3.5 lens produces a stereographic projection, the distance from the centre R

can then be related to the zenith angle θ with this relation: R “ 2 ¨ f ¨ tanpθ{2q.

The variable parameters (pointing and rotation) of this transformation are

automatically calculated using a locally installed version of the astrometry.net

blind solver (Lang et al., 2010). Astrometry.net does not deal well with fisheye

images, but is able to robustly solve a crop of the centre of the image (1000

pixels » 30˝). This removes the need for precise pointing of the observatories,

or manual editing of these parameters every time a camera system changes

location.

This formula is not good enough for precise astrometry (see Sec. 2.4 for the

full science grade astrometric solver), but it is enough for roughly pinpointing

the meteor tracks to a couple of degrees precision, in a completely unsupervised

and reliable manner.

2.2.2. SERVER EVENT CORROBORATION

The server synchronises a small number of files from each observatory, usually

» 1 MB — 5 orders of magnitude smaller than the collected data volume. These
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files include engineering logs, as well as fireball detections files (postage stamp

cutouts of detections, and astrometric files).

The detections usually include a large number of false positives. The com-

mon suspects are satellites, planes, lightning, or cloud edges.

In order to only ingest valid double station fireballs, the server attempts

to calculate which simultaneous streaks correspond to a meteor. To do this,

the method of planes of Ceplecha (1987) is used on detection pairs. This ba-

sic but robust method always gives a result (planes almost always intersect

somewhere), and the location of the intersection is used to determine if the

double detection likely corresponds to a meteor: meteors are only detectable by

the camera system between 10-150 km. Anything higher will most likely be a

satellite, whilst anything else likely corresponds to uncorrelated events.

Likely meteor detections are then sent as an email to a team member, who

has a final say after reviewing the postage stamps detection images.

After this process, valid events are ingested in the main science database, and

software automatically retrieves all the relevant data for the precise reduction

steps (science images, calibration images, metadata, etc.).

2.2.3. RAW DATA RETRIEVAL

The raw data is retrieved only once an event is confirmed, in order to limit

bandwidth usage. By the time the event is confirmed, the corresponding raw

data can be in different places:

i On the internal Solid State Drive (SSD) of the observatory (accessible

when observatory is online). Typical availability period after the image

was taken: seconds to days.
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ii On one of the external hard drives of the observatory (accessible when

observatory is online and hard drives are turned on). Typical availability

period: days to years.

iii On external hard drive in transit or waiting to be ingested in the datastore

(temporarily inaccessible). Typical unavailability period: weeks.

iv On the data centre (Pawsey HPC Data Store). Typical availability period:

month to years.

v Missing (permanently inaccessible).

The server will try the data centre (iv) first, because it is the fastest to get

to and query from. If this query is unsuccessful the server will send lists of

wanted files to the remote observatories. Then the observatories will copy the

requested files to an outgoing folder from (i) (very recent events), or from (ii)

when the drives are turned on. Finally the server synchronises these folders

(the opposite is not possible, cameras cannot push to the server for security

reasons), and moves the files to their appropriate locations in the event folders.

Because the data can be temporarily inaccessible (iii), this process has to be

attempted at regular intervals.

The same process is applied to calibration images, with the added twist that

the pulled calibration image requested might be cloudy, adding another loop

that runs until a satisfactory calibration image is found and retrieved (see Sec.

2.4.2 for more information on calibration image requirements).

In the unlikely event that some data go permanently missing (v), the full

resolution image of a particularly important event can be virtually re-built

using the low-resolution detection tiles, and calibration can be achieved using

an astrometric solution from another event nearby in time.
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DEALING WITH INCOMPLETE DATA

After an event has been processed, there is always a chance that it is going to

require re-processing. The obvious reason for that is the release of a new version

of the processing software, but it can also be because some new data is available.

For instance the Murrili meteorite fall (Sansom and et al., 2018) was initially

reported by 7 online stations. The first trajectory solution showed that the data

reduction would greatly benefit from having the data from another 2 off-the-

grid stations (William Creek and Etadunna; no 3G connectivity at these stations),

therefore a decision was made to drive there to recover the data. It turns out

that the fireball had been caught on an other off-line station (Kalamurina), but

the data was recovered on a regular servicing trip nearly a year later, long after

detailed analysis was done and the meteorite was recovered. Software must be

able to cope with this, and not put too much strain on the server as the dataset

grows. This is implemented using a wrapper script that checks for new data

and software. It checks which version of the software was last run for each

event, and with what input data, and accordingly re-runs were necessary. As

re-calculating trajectory solutions, bright flight analysis, and orbits can take the

better part of a day to run on all events, this wrapper is only run once a week

on the whole dataset. However a fast track version is run only on the most

recent events (more recent than a month) every couple of hours, in order to

get relevant information about potential meteorite dropping events in a timely

manner.

2.2.4. PRE-PROCESSING AND CALIBRATION

The digital cameras record raw images in a proprietary format, it must be

decoded and linked to relevant metadata. This process is detailed in Sec. 2.3.

The main output of the image analysis is astrometric measurements of the
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meteoroid positions as it enters the atmosphere. Thanks to the large number of

stars recorded in the image, the sensor (x, y) pixel coordinates can be precisely

matched to sky coordinates (typically equatorial (Right Ascension, Declination)

or horizontal (azimuth, elevation)). The automation of this process is detailed in

Sec. 2.4. Fireball positions in the images are extracted using the semi-automated

software tool described by Howie et al. (2017a).

Photometric measurements are automatically measured and calibrated, this

is detailed in Sec. 2.5.

2.2.5. TRAJECTORY DETERMINATION

STRAIGHT LINE ASSUMPTION The meteoroid’s motion through the atmosphere

can usually be approximated to a straight line locally, as its initial velocity

(ą 11km s´1) dominates the influence of lateral forces like gravity, wind, or lift,

as long as the trajectory remains short (seconds). The approximation of this

radiant can be calculated from 2 camera viewpoints using the methods of two

intersecting planes of Ceplecha (1987). This method has the benefit of being

purely geometrical (no observation timing needed), almost always convergent,

however it does not directly allow the use of more than two viewpoints. To

solve this issue, Borovička (1990) proposed a straight line least square method

that minimises astrometric residuals from all observations. To accelerate con-

vergence of the Borovička (1990) method in the DFN pipeline, the initial guess

solution is calculated using the Ceplecha (1987) first on the two viewpoints

that have the highest convergence angle. Although Borovička (1990) say that

their method can be applied in an inertial frame (by changing the observer

coordinates on Earth), not many works citing the method have actually clarified

which reference frame they work in. For short lived meteors this method can

be applied in either an Earth-Centered/Earth-Fixed (ECEF) reference frame,

requiring no timing information on the astrometric datapoints; or in an Earth-
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Centered Inertial (ECI) frame if absolute timing is known. ECEF can be used

as long as Earth rotation effects are dominated by astrometric uncertainty. The

Earth rotates at a rate of „ 152s´1, so its effect on arcminute precision observa-

tions only becomes apparent if the fireball lasts longer than a couple of seconds.

For longer events, the use of ECI frame is necessary.

WORKING CLOSER TO THE OBSERVATION DATA The straight line assumption

has the advantage of always yielding a solution unless the observation geometry

is very poor, as it smooths out noise in the observation data. However it does

not say anything about uncertainties, and this smoothing effect might hide

subtleties in the data.

The most obvious modelled force that is not taken into account by the straight

line model is gravity. The total displacement due to gravity is equal to ĝt2{2,

from the equations of motion, with ĝ is the local acceleration vector due to

gravity, and t the duration of observation. The effect is negligible for second-

long meteor („ 5m) compared to observation precision, however it rapidly

adds up for longer fireballs: over 2.1 km for the 21.7 s long fireball reported by

Sansom et al. (2019).

Sansom et al. (2019) introduce a new trajectory determination method, indi-

vidually triangulating astrometric line of sights, which gets rid of the straight

line assumption, and allows entry models to work more closely to ”raw” astro-

metric observations. They notably find that gravity alone does not account for

the observed non-straightness of the meteoroid trajectories, and that it is even

dominated by other unmodelled forces, possibly of aerodynamic origin. More

about this method is discussed in Sec. 2.2.6.
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2.2.6. DETERMINATION OF PHYSICAL AND DYNAMICAL PARAMETERS

Ideally one would want to know the dynamical (position and velocity) and

physical (shape, density) parameters throughout the bright flight. However,

from a practical point of view, knowing these at the start and the end of the

bright flight is sufficient to attain the main goals set in Sec. 2.1.1.

The pre-entry dynamical parameters are required to determine the pre-

encounter orbit of the meteoroid (Sec. 2.2.7), while the pre-entry physical

parameters give useful information for size-frequency population studies.

Estimating these parameters at the end of the brightflight is important to suc-

cessfully propagate meteorites through the dark flight integration to potential

fall locations on the ground (Sec. 2.2.8).

The state of the art brightflight analysis model used by the European Net-

work is the ”multiple fragmentation model”. It uses a ”trial and error” approach

(Borovička et al., 2013) to minimise residuals on both meteoroid positions and

light curve. Its main advantage resides in the fact that it models all fragments,

even the smallest ones, by relying on the fact that all pieces ablating have to

add up to the total measured light curve. Its main drawback is that it does not

do a thorough search of the parameter space, therefore it does not guarantee

that the solution found is even close to the truth, and it does not yield formal

uncertainties.

The DFN observatories do not currently have the capability to record high

frequency (ą 500 Hz) light curve data. In order to reliably model the trajectory

without the use of photometric data and tackle the uncertainty issue, several

methods have been developed by Sansom et al. (2015, 2017, 2019). These apply

modern mathematical statistical techniques to the single body ablation problem,

using just the positional data.
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• Sansom et al. (2015) use a minimisation algorithm to determine optimum

dynamic parameters with which to perform an extended Kalman filter and

smoother (EKF and EKS) on observational data. The smoothing algorithm

uses pre-triangulated positions, and a single body ablation model in one

dimension, to estimate the state of the meteoroid (position, mass and

speed). As both observation and model uncertainties are quantified, the

EKS is able to provide comprehensive formal uncertainty estimates for

these states throughout the trajectory.

• Sansom et al. (2017) use an evolutionary algorithm iterated over the suc-

cessive measured positions of the meteoroid. It effectively performs a

wide-scale search of the parameter space (position, velocity, mass, density,

shape), with the aim to have a cloud of particles that is statistically rep-

resentative of the meteoroid main mass at the last time step (ie. the end

of bright flight). At each step, a cloud of possible particle is propagated

forward through the ablation equations, and the fitness of each particle is

evaluated against the next observation. Particles are re-sampled at each

step from the previous population, preferably selecting the best fitting

parent particles, and also adding process noise to account for model er-

rors. This technique gave very encouraging results for the Dingle Dell

meteorite, only needing the last second of observation to get an accurate

result (Devillepoix et al., 2018).

• Sansom et al. (2019) revisit the particle filter method of Sansom et al.

(2017), but add degrees of freedom in the parameter space by letting the

meteoroid evolve in 3 dimensions instead of being constrained by a pre-

triangulated solution like the one described in Sec. 2.2.5. This method

works closer to the data as it uses the raw astrometric observations with

corresponding uncertainties (Sec. 2.2.4), instead of a pre-triangulated

positions that do not have associated formal uncertainties since they are

the result of a mathematical fit. The method of Sansom et al. (2019) is also
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a good general trajectory solver to use on long shallow meteoroid entries,

for which the straight line assumption does not necessarily hold (due to

gravity, and possible unmodelled forces).

These methods require a good knowledge of measurement uncertainties,

but also model errors. The model uncertainties are in theory well constrained

under the single body ablation equations, however unpredictable fragmentation

events perturbs this.

Sansom et al. (2016) have tried a multiple model approach: using small

model errors in general, but jumping to a higher model error when it is more

likely to best represent the observations. This accounts to some extent for

fragmentation events, where a steady ablation model is temporarily not a good

representation of what the meteoroid is experiencing.

Not only do these methods yield valuable physical information, they also

give estimates of positions and velocities with associated uncertainties. Getting

formal uncertainties on the meteoroid velocity is key to determining formal

uncertainties on its pre-encounter orbit. To my knowledge, along with the

work of Egal et al. (2017); Vida et al. (2018), these approaches are the only ones

described in the literature that give formal uncertainties on the velocities of a

meteoroid.

The work of Sansom et al. (2017) and Sansom et al. (2019) have been made

available online, freely usable by the community 1.

2.2.7. ORBIT CALCULATION

Orbits are calculated using the backwards integration routine described by

Jansen-Sturgeon et al. (2018). The method is more robust and precise than the

1https://github.com/desertfireballnetwork/brightflight

https://github.com/desertfireballnetwork/brightflight
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historical method of Ceplecha (1987), as it takes into account the following

effects:

• pre-observation deceleration due to the atmosphere.

• Earth oblateness (J2).

• secondary perturbators (Moon and planets).

Using the formal uncertainties calculated by the methods described in Sec.

2.2.6, the uncertainties on the orbital elements are calculated using Monte Carlo

sampling. The number of orbital clones used ranges from 24 for daily processing

(limiting the CPU load), to 500-1000 for publication, or even more for long-term

simulations if required (Devillepoix et al., 2018).

2.2.8. WIND MODEL & DARKFLIGHT INTEGRATION

A traditional approach to darkflight calculations is to propagate a best guess

of the state vector of the meteoroid at the end of the observed bright flight

to the ground, using a best guess of what the weather conditions are. As the

uncertainty on mass and shape is usually relatively large, a search corridor

(usually called ”fall line”) is derived, as a change in shape or mass will mostly

result in a shift along the search corridor. The meteorite is then deemed to be

close to this so-called fall line, plus or minus some uncertainty on either side of

the line. The strategy for searching is then to start at the best guess for mass and

shape, and gradually move along the search corridor until a meteorite is found.

One of the requirements set in Sec. 2.1.1 is that the reduction pipeline should

yield results useful for making decisions. This approach does not make the

most of the statistical distributions given by the methods detailed in Sec.2.2.6.

To maximise searching efficiency, the uncertainty in the observation data

needs to be propagated all the way to ground to produce searching heat maps,
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using all the information inferred during the analysis of the bright flight as

Bayesian priors. A full example of this process is detailed by Devillepoix et al.

(2018).

Pushing the Bayesian paradigm even further, we could assign recovery like-

lihood based on characteristics of the terrain, and convolve this with meteorite

location probability heat maps. However in practice this step is examined

manually by humans, as other factors not easily modelled with a computer

come into play, like accessibility of the search site and logistics in general.

2.3. DATA INTEGRITY & PRE-PROCESSING

The first step of the data reduction process is making sure the images are in

a usable format, and have all the necessary metadata attached to them. On a

typical astronomy instrument, the images are recorded straight into an open raw

format (usually FITS), and the useful observatory environmental parameters

(location, pointing, temperature, exposure, time, filter used...) are saved as

metadata (file header for FITS). The off-the-shelf digital cameras that the DFN

uses record to a proprietary format and do not embed all the needed metadata

in the files, therefore a conversion is required before they can be used. Here I

describe all the ”house keeping” tasks that I have implemented and are required

to happen before the images can be analysed.

2.3.1. DE BAYERING

The main issue with off-the-self DSLRs for astronomy applications is their

colour sensors. Most of these colours sensors use a Bayer matrix of micro-filters

to capture colour information (Fig. 2.2). Although such devices look tempting

for capturing multi-colour photometry of astronomical targets in a single frame,



Chapter 2 H. A. R. DEVILLEPOIX 35

they are rarely used for that purpose because of the large amount of light

lost in each channel, and because of issues accurately focusing all 3 bands.

Furthermore, the spectral response in each channel is not an ideal well-defined

pass-band function but rather a broad curve that overlaps with other bands.

Processing the colour channels independently becomes necessary for scientific

applications that rely on high spatial resolution. Physically de-Bayering the

sensors is a rather complicated process and therefore does not achieve the

commercial off-the-self (COTS) hardware requirements of Howie et al. (2017a).

Therefore a solution must be found to keep the advantage of the large number

of pixels for spatial resolution. We must then use the 3 colour bands separately.

The blue and red pixels each only make up 1{4th of the sensor area, therefore a

loss of spatial resolution is inevitable when using these. On the other hand, the

green pixels cover half the matrix in a regular checkboard pattern. I chose to

use the green pixels and virtually re-create the full resolution image by doing a

simple bilinear interpolation to fill in the gaps (Fig. 2.2). One of the issues with

doing this is that a green hot pixel will look like a point spread function (PSF)

source.

2.3.2. TIME KEEPING

On Nikon digital SLRs, time stamps recorded in the digital files are only

rounded to the nearest second, and setting the time on the camera is only

accurate to 1-2 s anyway.

The observatories time is maintained by a Network Time Protocol service

(ntpd) on the computer, enhanced with Pulse-Per-Second (PPS) information

given by the GNSS module. This prevents the observatories’ clocks from drift-

ing, even after being disconnected for years from the network. System clock

sub-second precision is not vital, as time critical parts of the observatories are

handled at micro-controller level, which gets its time from the GNSS module,
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FIGURE 2.2: De-Bayering processes. A: green bi-linear interpolation to recon-
struct a monochrome image that is the same resolution as the original frame.
B, C, and D: 2x2 binning of only the green, red, and blue pixels, respectively.
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Camera system suggested timing offset (s)
DFNSMALL60 -0.002
DFNSMALL12 +0.000
DFNSMALL62 +0.000
DFNSMALL43 -0.006

DFNEXT007 +0.010
DFNSMALL33 -0.006
DFNSMALL38 +0.009
DFNSMALL14 +0.003

TABLE 2.1: Possible absolute timing offset from each camera system, as calcu-
lated from trajectory data, from for event DN170607 01.

and is a real-time processing unit. Howie et al. (2017b) show that the Liquid

Crystal (LC) shutter absolute time encoding is better than 1 ms, the time re-

sponse of the shutter being the limiting factor. This precision is then guaranteed

as long as the GNSS module is working properly, and has a GPS fix. This is why

the system regularly logs the fix quality by reading the GPSGGA sentence (0 =

invalid, 1 = GPS fix (SPS), 2 = DGPS fix, 3 = PPS fix, 4 = Real Time Kinematic,

5 = Float RTK, 6 = estimated (dead reckoning), 7 = Manual input mode, 8 =

Simulation mode). This information is recorded in log files, copied over as FITS

keyword in the images, and then as metadata in the tables, so that the data

reduction pipeline is aware of possible timing issues.

The timing coordination between various observatories’ LC shutters can be

incidentally verified using the fireball data, using this simple test:

- assume each camera suffers from an absolute timing offset εi.

- build an interpolation function f to match the relative time of one arbitrary

camera pt0q to the distance from the first triangulated point D0.

- for each camera i, find potential absolute timing offset εi by minimising

Σpfpti ` εiq ´Diq
2.

- to remove the assumption that camera 0 has zero offset, calculate new

offsets ε1i “ εi ` δ such that the median of the pε1q sequence is zero.

I have applied this to a 3.2 seconds long fireball observed by 8 cameras in
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South Australia. The absolute timings offsets pε1q suggested by the algorithm

are presented in Tab. 2.1, they show better than 10 millisecond match between

the different viewpoints. This is remarkable, considering this encompasses

a wide range of possible systematic, including shutter encoding, astrometric

calibration, and point picking.

This millisecond absolute time accuracy on the fireball measurements is not

crucial for orbit determination („ 1 second precision is sufficient), however

this extreme precision gives the DFN a unique capability of doing point-wise

triangulation of fireballs (Sansom et al., 2019).

2.3.3. OBSERVATORY LOCATION

Accurately keeping track of the positions of the fixed observatories seems like

an easy task, however this has not always been the case before wide-scale use

of GNSS systems (Spurný et al., 2014).

The DFN capture control software systematically records the camera sys-

tem’s location using the GNSS module, ensuring the science record is always

correct (Fig. 2.3). The removes the potential human factor, which is particularly

important when the observatory system is moved. In the same way as in Sec.

2.3.2, the software also records whether the the GNSS module was functioning

properly.

Warnings are raised in the downstream steps of the pipeline when the lo-

cation may not be accurate, such as in the case where the default observatory

coordinates (set manually) are used, the downstream steps of the pipeline

are aware that the location may not be accurate, and raise warnings where

appropriate.
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FIGURE 2.3: GPS logged positions of the Forrest observatory (30.85806˝ South
128.11505˝ East WGS84, 154 m altitude A.S.L.), recorded for over 2 years of
uninterrupted operation between December 2014 and December 2016. Red dot
is the camera position as spotted on the satellite imagery (imagery may not be
perfectly aligned with coordinates). Red square is 10 m on the side, to visualise
extent of the spread of the points. σ “2.5 m, maximum deviation from mean
“ 14.5 m. Satellite imagery attribution: Microsoft Corporation, DigitalGlobe,
Earthstar Geographics, CNES/Airbus DS.
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2.3.4. CONCLUSION

The code I have developed is capable of processing a 36 MPixel NEF image,

adding all the necessary environment metadata (accurate exposure start time,

observatory coordinates, reliability of the GNSS unit...), de-Bayering the array,

and saving the result to disk as a usable FITS in less than 1 second (on a typical

2016 laptop).

It has been made available online at https://github.com/desertfireballnetwork/

RAW2FITS, released under an MIT license.

2.4. ASTROMETRY

2.4.1. INTRODUCTION

In the early 2000’s, Greisen and Calabretta (2002); Calabretta and Greisen (2002)

have standardised the way focal plane coordinates are related to sky coor-

dinates, creating the World Coordinate System (WCS). This standardisation

allows simple and automated workflow for the astrometric calibration of most

astronomical images, using two simple steps:

- instrument control software records a rough mount pointing in the meta-

data of the images (FITS header typically), as well as other parameters

like pixel size.

- a WCS solution is generated or refined using the stars in the field of view,

with the help of a tool like SCAMP (Bertin, 2006).

This workflow works well, as long as the input metadata is recorded. However

in some cases, the metadata are not available (amateur picture, photographic

plate with lost record, etc.). This is the type of issues that Lang et al. (2010)

https://github.com/desertfireballnetwork/RAW2FITS
https://github.com/desertfireballnetwork/RAW2FITS
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tackles, by introducing a completely blind astrometric solver (hereafter referred

to as astrometry.net). This tool has simplified the process, not requiring a rough

known pointing or even a plate scale, and has helped bring astrometry to the

masses, allowing anybody to submit their work, whether it is an image taken

with a multi-million dollar telescope or using a hand-held point-and-shoot

camera, and determine what part of the sky the image corresponds to. However

one of the issues with astrometry.net is that it struggles to solve very wide fields

of view.

While doing astrometry on images captured by all-sky systems is evidently

not limited by the available catalogue precision or depth, there is no standard

automated solution to do so. This mostly comes from the strong distortions

induced by the wide angle optics. Previous efforts to do precise astrometry on

these were very labour intensive and required some knowledge of the optical

design. The work of Borovička (1992) and subsequently refined by (Borovička

et al., 1995) is aimed at characterising the optical system as well as possible,

empirically developing functions to described the mapping between plate and

sky coordinates. These efforts were made even more complicated by the fact

that film imagers were taking night-long exposures, with possible weather

interruptions, making automated star detection not impossible, but rather

tricky.

I aimed here to develop a blind solver that could lead to sub-pixel astrometric

calibration, in order to have a solid reference frame for meteors appearing all

the way down to 5˝ above the horizon. This has been successfully implemented

in the DFN pipeline and is detailed below.

2.4.2. METHODS & RESULTS
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QUALITY REQUIREMENTS FOR CALIBRATION IMAGES

The cameras are fixed (not tracking the sky), which implies that the mapping

from chip to horizontal coordinates px, yq Ø pAlt, Azq changes very little over

time. The only factors that can affect this on a night scale is a change in atmo-

spheric conditions, which is only relevant close to the horizon. Over several

weeks, a slight move of the camera can be expected as well (ground move, stress

on the stand anchoring due to weather, temperature, etc.). The stability of the

camera pointing needs to be checked, but in principle a fireball event can be

astrometrically calibrated using an exposure taken at a different time.

The DFN observatories save all the captured images even when no fireball is

detected. This is possible thanks to the availability of large capacity hard drives

at reasonable costs. This was particularly useful to investigate the robustness

of the detection algorithms in early testing phase. But it is still useful in some

cases to get additional viewpoints on a fireball, even if the signal to noise ratio is

too small to have been detected on some of the cameras. This large dataset also

offers a large number of good quality images of the sky, useful for performing

astrometric calibration of the instruments. From 2014 to 2017, most of the DFN

observatories were breaking fireball trails in the long exposure images using

the dash method detailed by Howie et al. (2017b). With this mode of imaging,

the limiting magnitude on a dark night is around mV “ 7. This yields over 1000

stars mV ă 6.0 that are reliably detected by star detection algorithms.

In June 2017, the DFN initiated a firmware upgrade across the network to

change the time encoding technique on the observatories’ micro-controller. This

upgrade is an attempt to tackle a dynamic range issue which affects typical me-

teorite droppers. The liquid crystal (LC) shutter encodes short pulses instead of

dashes. The de Bruijn encoding is retained: a long dash (0.06 s open followed by

0.04 s closed) becomes two 0.01 s pulses, and a short dash (0.02 s open followed

by 0.08 s closed) becomes a single 0.01 s pulse. This had very positives effects
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on fireballs, helping resolve brighter fireballs, while making the centroiding

easier to model. However the LC shutter remains closed for longer periods of

time, further cutting star light. During testing of this new encoding it became

apparent that the starlight loss would be an issue for calibration, especially low

on the horizon, so it was decided to perform calibration frames at regular inter-

vals, with the LC fully open for these exposures. With the shutter fully open,

the limiting magnitudes increases to around mV “ 8, delivering comparable

astrometric results as with the old encoding method. These calibration frames

come at the cost of a small dead time for fireball observation (+3.3% dead time

at the chosen cadence of 1 every half hour). A choice has been made to have

the calibration images synchronised network wide, meaning that if a fireball

appears during the calibration exposure, all timing information is lost for this

event, in a quality over quantity approach.

As the fisheye lens used has 185˝hemispherical field of view, it is common

for foreground ground objects to appear in the images. These objects include

trees, buildings, antennas, mountains. In the desert systems, when the moon

is not up, these generally reflect/emit very little light, so the worse they do

is occulting some of the stars and sometimes fireballs. However when these

foreground objects shine directly at the camera (such as vehicle headlights)

this can become an be an issue. They interfere with the star detection software,

adding large numbers of fake sources close to the horizon, as well as creating

halos. Furthermore, observatories that suffer from this issue are often located

in very light polluted areas, where only a handful of stars dominate the back-

ground in the frames. One approach to solve this is masking out the foreground

objects. However this is a tedious manual process, that needs to be repeated

every time something moves in the frame. The sky movement can work in our

advantage. In light polluted areas, the star density is very low, therefore any

random sky pixel has very high chances of being pure background, whereas

land-based pixels are unlikely to change much (in the case of fixed lights shin-
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FIGURE 2.4: Long exposure pictures of a particularly bright fireball, observed
from different observatories. A: de-Bruijn dash encoding (Howie et al., 2017b)
from 200 km. B: LC shutter not in operation (bad quality lens used for testing)
from 100 km. C: pulse encoding (see Sec. 2.4.2) from 250 km. All 3 images are
saturated to some degree, however astrometric data points can be precisely
extracted all along the track in C, while this is not possible in A. B displays
spectacular colour changes, but is of limited use for astrometric purposes
because of the lack of timing information.
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ning at the camera). For constructing a background frame for an astrometric

image taken at time T , we can combine surrounding exposures, in a stacked

image where each pixel is the median of a number of frames, taken at T ˘ n ˚ I

with n P r1, 2, ...s. The sky moves at maximum at a 152s´1 rate, therefore an

interval I of a couple of minutes is sufficient to avoid having a bright star

overlap with itself in another frame. Having n even adds a bit more robustness

to the process, as no pixel in the master background frame will have exact same

value as one of the actual frames. This technique was developed to calibrate the

DFN camera that recorded the Creston meteorite fall (Jenniskens et al., 2019),

when the camera was in the middle of the Silicon Valley in California, one of the

most light polluted places on Earth, with fireball datapoints as low as 8˝above

the horizon. Since then this process has been systematically and successfully

used for heavily light polluted observatories. Note that this method also acts

as a master dark frame in a sense that it removes hot pixels. For Creston, the

calibration frame time was chosen so that a bright star was located in the same

sensor area as the fireball.

We note that the requirements on the quality of the calibration images pre-

sented here are mostly relevant in the context of precise automated calibration;

an image that has the moon is not impossible to calibrate, the solver will be less

reliable, and potentially yields a solution that is not as precise as it could be.

STAR CATALOGUE

We use the ACT-Hipparcos reference catalogue as star catalogue (Urban et al.,

1998). This catalogue outperforms our all-sky cameras by orders of magnitude,

both in limiting magnitude and astrometric precision. Its main advantage

compared to more recent catalogues is that it is perfectly complete from the

brightest star Sirius to about magnitude 11. The only pre-processing needed

is to eliminate the smaller components of multiple stars systems that are not
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resolvable by our system. To be absolutely rigorous, one would need to apply

proper motions to the star catalogue and enhance the catalogue with bright

planets and asteroids ephemerides, however these two populations make up

only a very small fraction of detected objects.

Interestingly, the star catalogue compiled by de La Caille at the Cape of Good

Hope in 1751-1752 (de Lacaille et al., 1847) would be sufficient in both precision

and depth to be used as a reference catalogue for doing astrometry with the

DFN cameras.

BLIND POINTING SOLUTION

The first step towards getting a global solution is to determine a pointing

solution for some part of the field of view that can be used as a starting point.

Although we know some of the parameters of the system (rough pointing, pixel

scale), it is very convenient to use Astrometry.net (Lang et al., 2010), as this

tool does not need any hint about rough pointing direction or the plate scale.

Astrometry.net is not able to solve the entire field of view, nor even a random

crop due to the radial lens distortion, but the cropped region of the centre of

the image can be solved with a standard WCS TAN (gnomic projection). With

trial and error, we have found that on the DFN imaging system a 1000ˆ 1000

pixels („ 30ˆ 30˝) area is ideal: it is a good balance between having a sufficient

number of stars and maintaining low distortion. In practice, a hint on the size

of the field of view is passed to Astrometry.net in order to speed up the search,

but this is not technically necessary.

DEFINITION OF PIXEL TO SKY TRANSFORMATION

We define a custom transformation function to go from pixel coordinates to

equatorial coordinates, re-using the polynomial transformation T defined by
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Sokolowski (2008). T (order n) transforms sensors pixel coordinates px, yq to

sky coordinates pλ, δq:
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(2.1)

The polynomial coefficients ppq and pqq are the parameters, with the following

condition to maintain the order: pij “ qij “ 0 if i` j ą n.

GLOBAL BLIND ASTROMETRIC SOLUTION

Using the pointing information calculated in Sec. 2.4.2, we express the plate

astrometric solution using the new transformation defined in Sec. 2.4.2. From

that point, the solution has to be iteratively extended to the entire image area,

using T as an extrapolant. This choice of the interpolant is particularly impor-

tant: it needs to have enough orders of freedom to compensate for instrument

distortion and avoid having too many mis-matches between detections and

catalogue, but it also needs to avoid overfitting at all costs because overfits are

generally bad extrapolators (Hawkins, 2004). Once a solution is determined in

the central 30˝ area, 5˝ increments are used to extend the FoV (Fig. 2.6), adding

more stars and making the fit more robust (Fig. 2.5). Stars ”entering” the FoV

are cross-matched using the positions computed by transforming detections

with T , and the catalogue. This process is repeated until the whole FoV is

matched (90˝ from the centre on an all-sky fisheye lens).
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FIGURE 2.5: Number of stars matched at each iteration. As the field of view
approaches the horizon, the number of ”new” stars decreases, because of
extinction, obstacles, and possibly vignetting.
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FIGURE 2.7: Astrometric residuals to he T fit, as a function of the distance from
the optical centre, clearly showing the need for a radial correction in the final
astrometric solution.

RADIAL CORRECTION

The transformation T used in Sec. 2.4.2 to iteratively match the entire FoV

is robust enough to avoid star confusion, however it is not of high enough

order if we wanted the best possible fit. Fig. 2.7 shows that the dominating

residuals are heavily correlated with the distance of the star from the optical

centre, i.e. the radial distortion is not perfectly accounted for in the fit. As the

camera is pointing directly up, the distance from the optical centre forms a near

one-to-one relation with the altitude axis in horizontal coordinates, we further

outline the residuals correlation in Fig. 2.8 in horizontal coordinates, using

signed residuals.

To correct for this in the final “science grade” astrometric solution, we use

a third order polynomial to fit the radial component of angular residuals of

reference stars to the distance from the optical centre. We note that we operate

an outlier removal of dubious stars that have astrometric residuals ą 6002.

After this correction, we get astrometric residuals mostly contained within

half a minute of arc (Fig. 2.9). We have searched for other correlations in the
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FIGURE 2.8: Altitude residuals as a function of the star altitude, further outlin-
ing the radial correlation of the residuals shown by Fig. 2.7.

residuals, without finding anything that could make the solution significantly

better. We have also tried local re-fitting around the area of interest (the fireball),

but we did not see any significant improvements over the T transform combined

with the radial correction.
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UNCERTAINTIES

Since the precision of the star catalogue used outperforms the camera system

by orders of magnitude, the main sources of errors are:

• under-fitting: we expect to see local systematic effects on the residuals

if the limitations of the fit dominate the noise introduced by centroiding.

We did not find further obvious correlations in the residuals other than

the radial one (Sec. 2.4.2), and the final residuals distribution look mostly

Gaussian (Fig. 2.9).

• over-fitting: this happens when the interpolating function is of too high

order compared to the number of datapoints. Here it is excluded by

design with the use of a low-order polynomial (3), compared to theą 1000

reference stars available.

• centroiding: we expect this source of error to be assimilated to Gaussian

noise with a standard deviation (σ) that mostly depends on the optical

quality, and is well represented by the astrometric residuals.

Since centroiding likely dominates the errors in a Gaussian way, we can

approximate the uncertainty on the converted astrometric positions for a fireball

(ε) using:

εθ “ σθă30˝ ` εpix ¨ C

with:

• σă30˝ the residuals to the global astrometric fit on local stars (˝). Local

stars are defined as being separated by ă 30˝.
• εpix the fireball centroiding uncertainty (pixel).

• C the plate scale (˝ pix´1).

• θ the considered axis (altitude or azimuth).



54 H. A. R. DEVILLEPOIX Section 2.4

The uncertainty is calculated separately for altitude and azimuth, as the residu-

als are usually larger in altitude than in azimuth (Fig. 2.9).

In case a fireball datapoint is outside the convex hull of reference stars on the

chip and/or the number of local reference stars is too low (ă 5), its astrometric

uncertainties are marked as unconstrained, and in practice set to a default of

0.1˝.

For important events like meteorite droppers, the event diagnosis routine

warns the user that the event’s trajectory has been computed with partly un-

constrained astrometry. Devillepoix et al. (2019) show an example where the

astrometry goes unconstrained at extreme observation angles (ă 5˝ elevation).

At high elevations, the density of stars is roughly 0.3 stars per square degree

of sky. When we get down to 5˝elevation, stars are observed through over 10

airmasses. This effectively reduces the star density by a factor of 10, making it

difficult to get good astrometric information below this elevation limit. Note

that for an especially important event that is only visible very low on the horizon

one could calculate when bright stars are transiting the ă 5˝ elevation area in

the direction of the fireball, and use the corresponding images to augment the

detection catalogue with stars from different epochs. But even this technique

would be limited by refraction issues. As seen earlier, ideally one wants the

calibration image to be as close as possible in time to the science image, in order

to have the fireball and the star be affected by refraction in the same way.
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TESTING FOR SYSTEMATIC ERRORS

Searching for systematic errors is not easy without any ground truth fireball

positions, though this is possible in theory by observing in parallel with an

instrument that is inherently more precise (like a higher angular resolution

imager). We have checked the internal consistency of the astrometric solution

(Sec. 2.4.2), but this does not say anything about the consistency between

star centroiding and fireball track picking, for example. A way to test the

entire astrometric process is to look at a triangulated fireball event. Using a

large number of viewpoints, with a wide variety of observing geometries, and

from different distances to the event, it is unlikely that systematic errors in the

astrometry would get randomly hidden in the residuals to the fit. We can see

in Fig. 2.11, most of the astrometric residuals seem to be contained within 21,

all within calculated astrometric uncertainties. We note that a straight line fit

to a meteoroid trajectory may not always be a valid assumption, especially as

trajectories get longer (Sansom et al., 2019).

Another way to test for systematic errors could be to look at calculating

astrometry for a bright Low Earth Orbit (LEO) satellite, and comparing the

results with the ephemerides from a satellite database. The angular velocity for

these objects is just high enough for the DFN cameras to be able to resolve the

shutter breaks.

STABILITY OF THE ASTROMETRIC SOLUTION IN TIME

Fig. 2.12 shows that although the camera anchoring is remarkably stable, it is

not enough to be able to re-use calibration information over long periods of

time (weeks to months), and ideally one would always want to use a calibration

image taken within a few minutes of the science images (for similar atmospheric

effects). A typical example of when getting a close-by calibration frame is
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FIGURE 2.12: Drift of the zenith coordinates on the sensor of the Wilpoorina
camera station over almost 4 years, based on calibration images used for
reducing recorded fireballs (detected between 2014-08-31 and 2018-06-18). The
camera box slowly moves in the weeks after the station was installed, as the
metal stand of Howie et al. (2017a) settles (yellow dots). The pointing then
remains relatively stable to ˘101 for 2 years. Then the camera box is swapped
during servicing, significantly changing the orientation (purple/blue dots).
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difficult is when a fireball is recorded close in time to a full moon in the summer,

as moonless nautical night conditions are a few days away. In this case we

can check that the astrometric solutions calculated a couple of days before

and after the event are consistent. Another check that can be made, perhaps a

more robust one, is to check the stars detected in the science frame match the

catalogue coordinates when converting from pixel values to sky coordinates

using the astrometric solution. In both cases, the detected deviations can be

used as error estimates induced by science/calibration frame pointing change.

LIMITATIONS

It is expected that most fisheye lenses yield degraded angular resolution to-

wards the edge of the field of view. However the lens used in DFN observatories

has a stereographic projection which increases the number of pixels per degree

of sky when going towards the edges. The plate scale goes from „ 1202pix´1 at

then centre of the FoV, to about „ 702pix´1 at a zenith angle of 85˝. In practice

this means that the effective resolution of the system is uniform across the FoV,

for elevation between 5˝and the zenith, as the loss of light on the horizon due

to the increase in airmass is compensated by the better pixel scale. We note that

this 5˝limit only holds when the horizon is clear of obstacles and light pollution

is minimal. Devillepoix et al. (2018) quote an astrometric elevation limit of 10˝

when dealing with a partially obstructed horizon.

Below the astrometric elevation limit, astrometric uncertainties are essentially

unconstrained. Devillepoix et al. (2019) show an example where the trajectory fit

residuals rapidly diverges to 101 (mostly on the altitude axis) for an observation

at 3˝ above the horizon. This particular astrometric point corresponds to the

meteoroid at an altitude of 32 km seen at a 500 km distance. With the typical

spacing between DFN cameras being 100-150 km, no such datapoint should

need to be astrometrically calibrated during normal operations, i.e. when the
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fireball of interest falls within the nominal triangulation area of the network.

PORTABILITY TO OTHER INSTRUMENTS

The all-sky astrometric method detailed here benefits greatly from the complete

blind capabilities of astrometry.net, which does not require any hint on location

in the sky, pixel scale, nor the parity of the image.

This method works perfectly on the DFN imager (36 Mpixel Nikon D810 +

Samyang 8mm f/3.5 UMC Fish-eye CS II (stereographic projection)), however

we have also tested the blind solver on the following all-sky systems:

• Canon 5DSR (50 Mpixel) + Canon 8-15 mm f/4 (equisolid projection, oper-

ated at 8 mm focal).

• 1 Mpixel CCD sensor fitted with an unknown fisheye lens, with a 2 nm

filter centred on 572.4 nm (Unewisse and Cool, 2017).

In both cases the solver worked flawlessly, yielding an astrometric fit better

than sub-pixel. The only adjustment that was made is the size of the centre crop

before running the astrometry.net solver. This could easily be automated, using

a brute force trial and error search for a crop size until astrometry.net finds a

solution.

2.4.3. CONCLUSION

The all-sky astrometric method developed here is the first solution astrometric

all-sky solver that is robust, portable, and blind. The solver takes about 20

minutes on the single core of a standard 2012 workstation, and the memory

footprint is small. The speed of the solver could certainly be improved, at

least using parallelisation for numerical methods, however speed was not the
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objective as the code is run on a scalable server rather than on remote resources

limited computers.

The method shows sub-pixel astrometric calibration down to 5˝ above the

horizon. This is particularly important for the Desert Fireball Network, as the

spacing between observatories is typically greater than in other fireball net-

works, and these low-elevation datapoints are often crucial to getting reliable

trajectory solution for the meteoroids. This 5˝ astrometric elevation limit corre-

sponds to an object at „ 20 km altitude seen from a 200 km slant range, so the

astrometric solution developed here outperforms the 100-150 km observatory

spacing of the network.

However more work needs to be done to standardise the expression of the

astrometric solution, for example using one the standard World Coordinate

System (WCS) projections (Greisen and Calabretta, 2002; Calabretta and Greisen,

2002). This standardisation step is important is it will allow easier re-use of the

DFN imaging data by other research groups.

2.5. PHOTOMETRY

2.5.1. INTRODUCTION

Previous works that describe meteor photographic photometry techniques have

exclusively been on film based systems (Spurný et al., 2007). The European

network uses radiometers as main sources of brightness data, however these

instruments cannot be calibrated automatically. Lightcurve results therefore

need to compared to photographic records. This calibration is performed when

the brightness of the fireball is at a favourable SNR for the photographic system

(Spurný et al., 2012), using film density measurements and a software called

Fishscan. Not only does the radiometer offer a very hight sampling rate (500 Hz,
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and later up to 5000 Hz) on a very large dynamic range, this instrument is

absolutely necessary for European Network photographic stations to derive

absolute timing for the fireball.

On the digital DFN observatories, the absolute time information is encoded

in the astrometric data, removing the tedious need to manually combine the

data from two instruments to get absolute timing (Howie et al., 2017b,a).

The use of photometric data in the DFN reduction process is very limited

(Sec. 2.2), as the work of Sansom et al. (2015, 2016, 2017, 2019) has shown good

results using the astrometric data only. Nevertheless we describe here how

photometric data can be obtained from the digital images taken by the DFN.

When designing the observatories, the driver for choosing a camera has

mainly been focussed on astrometric performance (see Sec. 2.4), reliability,

availability of a control Linux API, and unit cost (to allow high scalability).

When choosing a camera in 2012, these constraints pointed to the Nikon D800E

(later replaced by the D810), for its 36 MPixel sensor, its acceptable low-noise

performance, its ability to be fully controlled on Linux through the open source

gPhoto API, and a tag price around AUD3500 (2012). Since then, this camera

has met all expectations, and has even proven more reliable than anticipated:

Nikon indicates a mean time between shutter failures of 200,000 exposures, but

experience has shown that most units survive much longer, with a significant

fraction reaching over a million exposures. However this camera model asso-

ciated with its mode of operation suffers from several issues for photometric

use:

1. The commercial digital camera (here a Nikon D810) is essentially a black

box. Although lossless compressed ”raw” frames are saved, there is no

guarantee that the data are completely unprocessed before they are saved.

2. The dynamic range is much more limited than the film-based system of

Spurný et al. (2007). Film has a logarithmic response, giving it a useful
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dynamic range [detection limit, saturation] of about 15 stellar magnitudes,

whereas the CMOS sensor used here is mostly linear and only has a usable

dynamic range of about 8 magnitudes.

3. Twilight flat field frames are not possible with all-sky lenses because of

large variations in sky brightness during twilight.

4. Dark frames cannot be captured because the camera does not allow an ex-

posure without the shutter being open. Building a mechanism to achieve

this would create a weak point in the reliability of the system (the obser-

vatory has no moving parts apart from fans and hard drive disks).

5. To avoid smudging of the shutter breaks in the picture when the fireball

is bright, the duty cycle of the Liquid Crystal shutter is relatively short:

40% on the de Bruijn encoding of Howie et al. (2017b), 15% on the current

version of the encoding (Devillepoix et al., 2019). This effectively severely

reduces the amount of time the sensor is exposed to fireball light.

6. The Bayer array on the sensor further limits the amount of collecting area

in each individual band (see Sec. 2.3.1).

From these considerations, it is reasonable to assume that this system would

not reach milli-magnitude precision, as would a dedicated fully calibrated,

cooled CCD.

2.5.2. METHODS & RESULTS

Until mid-2017, DFN cameras captured two 25 second-long exposures every

minute. Of the 25 second exposure, the sensor is actually exposed for 11 seconds

because of the action of the Liquid Crystal (LC) shutter. The LC shutter changes

between two states, open and closed, and the time the shutter is opened is

modulated to encode absolute timing information. In order to fully understand
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what follows, it is useful to read the work of Howie et al. (2017a) for a precise

description of the shutter and its operation, and (Howie et al., 2017b) for a full

mathematical explanation of the de Bruijn time code. On top of that, the LC

shutter leaks some light even when closed. Therefore we must make careful

corrections when calibrating meteor brightness using stars as reference.

In the following sections quantities relating to the meteor (or fireball) are

subscripted with f , while those relating to a given reference star are subscripted

with 0.

CALIBRATION OF THE INSTRUMENT: INSTRUMENTAL MAGNITUDE

Stars in the images can be used as references for determining instrumental

magnitude. Here we define the necessary equations to relate star photometric

measurements with meteor photometric measurements, given the different

exposure times caused by the action of the LC shutter and the movement

of meteors. I then apply this correction model to actual star measurements.

By looking at the resulting distribution, I aim to derive a mean instrumental

magnitude for the camera, get a feel for what the precision of this measurement

may be, and highlight possible localised effects such as vignetting or partial

cloudiness.

To compute the star exposure time, the LC shutter characteristics and op-

eration must be accounted for. I aim to compute the instrumental magnitude

at 1 airmass, with the zero-point vignetting in the centre of the lens, for the

equivalent of 1 second exposure time with the LC shutter open. For a given star

observed S0, we have T0 “ T o0 ` T c0 , with T0 the duration of the exposure, c is

with LC shutter closed, o is with LC shutter open.

Let Do
c be the shutter average duty cycle, the average fraction of time the

LC shutter is in the open state during the 25 second exposure: Do
c “ T o0 {T0.
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The LC shutter lets some light through, even when it is closed. Let ε be that

transmittance ratio between closed and open states: ε “ f c0{f
o
0 where f o0 is

the flux for when the shutter is open, and f c0 when it is closed. Let’s now

determinef o0 from the measured electron count I0.

After simplification using the above definitions, we get:

f o0 “
I0

T0pDo
c ` εp1´Do

cqq
(2.2)

We define the instrumental magnitude minst
0 , as:

minst
0 “ m0 ` 2.5 logpf o0 q ` kX0 (2.3)

The first term, m0, is the catalogue apparent magnitude of the star, the sec-

ond term is the measurement (as defined in Eq. 2.2), and the last one is the

atmospheric extinction contribution (with X0 the airmass the star is observed

through, and k the first order extinction coefficient in the considered spectral

band).

Using aperture photometry, we determine the instrumental magnitude for

a large number of reference stars in one image. Starting from the astrometric

catalogue defined in Sec. 2.4.2, we only keep stars that have an acceptable signal

to noise ratio (SNR): we exclude the stars fainter than mV “ 5.5 because of low

SNR, as well as saturated stars (saturation usually happens for stars brighter

than mV “ 2 observed through 1 airmass). The resulting instrumental magni-

tude measurements are plotted against the stars’ elevations in Fig. 2.13, with no

significant correlation between the two. We conclude that vignetting (if any)

is dominated by other factors (poor optics, noise...). minst
0 has therefore been

sufficiently corrected: the mean value minst can reliably be used as photometric

zero-point, and residuals (with σ “ 0.23 mag in this case) are representative of

the error on those measurements. Note that when the image is partially cloudy,
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FIGURE 2.13: Instrumental magnitude calculated with 567 stars across the field
of view (σ “ 0.23 mag). 8 outliers, making up 1.4% of the final star set, are
not shown on this plot. The original reference star set contained 792 stars, 28%
of them were discarded because of poor SNR, dubious astrometric catalogue
match, or too close neighbours.

we may do the same analysis in a localised approach around the meteor instead

of using the whole field of view.

BRIGHTNESS MEASUREMENTS ON THE METEOR

The basic time step for meteor photometry measurements is driven by the action

of the LC shutter. The LC shutter runs at 10 Hz, which gives 10 measurements

per second. To get the light curve of the fireball, the luminosity from each dash

is integrated. We perform rectangular aperture photometry on each dash (see

Fig. 2.14) using the Astropy Photutils package (Bradley et al., 2016). In Fig. 2.14

we can see a fireball modulated by the LC shutter, the boxes drawn represent

the apertures used. The integration time Tf corresponding to each box depends

on the modulation: with the encoding used here a short dash represents 0.02 s

of open state, and a long dash 0.06 s of open state. Howie et al. (2017b) showed

that the change in transmittance between open and closed states is close enough

to a rectangular function to neglect edge effects introduced by the electronics

on the photometry. The sky background is subtracted, and the result If is

normalised by the exposure time of the dash, and we obtain the mean flux for a
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FIGURE 2.14: Rectangular aperture photometry automatically performed on a
Taurid fireball.

given dash: ff “ If{Tf

The biggest limitation of this method is the saturation of the sensor, which

translates into large negative uncertainties in the magnitudes. In practice, this

saturation happens at around mV “ ´8. Because the LC shutter is not open

all the time and the large possible variations of the brightness on a short time

scale (mainly caused by fragmentation), some features of the light curve can

be missed. This technique is therefore expected to slightly underestimate the

overall brightness by missing some short-lived peaks.

MAGNITUDE OF THE METEOR

We are now able to relate flux for the reference (stars) and the object of interest

(meteor), which lets us calculate the apparent magnitude of the meteor mf :

mf “ minst
´ 2.5 logpff q ´ kXf (2.4)
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Note that we neglect atmospheric extinction happening in the upper layers of

the atmosphere, so we can then assume that the extinction affecting the meteor

would be the same as a star located at the same elevation on the sky.

Once the meteor is triangulated, we can calculate the distance of each point

to the observer, and the absolute magnitude, Mf , can be derived by correcting

for distance:

Mf “ mf ´ 2.5 logpp range100km
q

2
q

An example of a calibrated light curve is shown in Fig. 2.15. Most brightness

values are in agreement when measured from different cameras (to within

˘0.5 mag in most cases). This result is reasonably satisfying considering the

measured variability in instrumental magnitude on one camera has σ “ 0.23

mag. The larger inconsistencies can be caused by a variety of other effects, such

as saturation, bad optics quality, and clouds.

2.5.3. CONCLUSION

The extraction of the photometry in DFN images is highly limited by the dy-

namic range of the cameras (Devillepoix et al., 2019), it is notably far inferior in

quality compared to dedicated instruments like radiometers. These measure-

ments can be use nonetheless as additional observation data to constrain the

meteoroid’s physical parameters as it ablates through the atmosphere (Sansom

et al., 2019).

The method presented here is automatically routinely applied to the green

band on the cameras, but it can also be applied to the blue and red bands with

very little code modification, to derive colour indices. Although the spectral

coverage of the sensor is limited (400 ´ 700 nm), the colour indices could be

used for fireball taxonomy.
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FIGURE 2.15: Light curve of fireball DN140921 01, as derived from multiple
observatories, automatically calibrated spectrally and temporally by the soft-
ware. The good match between the different stations (mostly to within ˘0.5
mag) shows the quality of the measurements and calibration, accounting for
the varying observing conditions, optics quality, and elevation angles, as the
distance from the observatories varies from 116 to 287 km.
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2.6. DE-BIASING THE FIREBALL DATASET: PROOF OF

CONCEPT

2.6.1. INTRODUCTION

Meteor detection rate measurements started with visual counting, notably to

quantify the activity of meteor showers (Jenniskens, 2006). Although visual

counting of meteors is still used, mostly by amateur astronomer, this technique

has been made mostly obsolete by the wide-scale use of video cameras to

continuously capture meteors. Not only are cameras less prone to biases when

counting meteors, they can also derive radiants, orbits, and some physical

characteristics (Jenniskens et al., 2011). The current state of the art in meteor

flux de-biasing methods is described by Blaauw et al. (2016). The authors

continuously calculate a surveying time-area product, and also calculate a

detection limit in order to take sky conditions into account.

For fireball networks, the reference for de-biasing work remains the clear-

sky survey work by Halliday et al. (1996) on the Meteorite Observation and

Recovery Project (MORP) data. The reduction of the MORP data included

visually classifying photographic plates as ”clear” or ”cloudy”, based on the

number of stars visible on the all-night exposures.

These efforts resulted into unprecedented insights on the meteoroid flux

around the 100 ´ 102 kg mass range, a body size that is hard to study with other

methods: too infrequent for meteor surveys like CAMS (Jenniskens et al., 2011),

but below the reporting limit of satellite borne sensors (Brown et al., 2002).

The MORP data plotted on a size frequency distribution plot shows a bend

near the 101 kg mark (Bland and Artemieva, 2006). Higher masses seem to fit

on the same slope as the power law that fits flux densities in the 103 ´ 1010 kg
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FIGURE 2.16: Fig. 15 from Bland and Artemieva (2006).

range (Fig. 2.16), whereas lower masses are on a shallower slope. The origin of

this kink in the curve is still debated today (Rubincam, 2018). Therefore more

studies are needed, at least to reproduce and verify the Halliday et al. (1996)

results, but hopefully to yield new insights on what mechanism can cause this

change.

Here I lay out a proof of concept for on-going work by the DFN team on

de-biasing the fireball dataset.

2.6.2. METHODS

The digital nature of the DFN imaging systems makes it in principle easy to

determine clear-sky conditions in an automated manner. Furthermore the DFN

keeps all the still imagery ever recorded, and archives it in the Pawsey datastore,

making it possible to reprocess it.
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FIGURE 2.17: Simulation of the double station coverage area covered by the
DFN. This takes into account local sky conditions, potential hardware failures,
obstructions in the field of view, camera sensitivity. The colour scale shows the
absolute magnitude sensitivity, it can be read as: ”how bright does a meteor
need to be to be triangulated by at least 2 stations?”. Operational observatories
are marked as blue dots.
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We want to make this as precise as possible, by having a small time resolu-

tion, a high spatial precision, and also consider detection limits. As cameras

take an image every 30 seconds, we want to aim to have the time step as small

as 30 seconds. Different parts of the field of view will have varying sensitivity

because of clouds, vignetting, obstructions, sky transparency, etc. It is there-

fore desirable to generate a sensitivity map for each exposure using stars as

references. Assuming a nominal altitude of 70 km as a height that most fireballs

get to, it is possible to project the apparent sensitivity to absolute sensitivity,

taking the observation distance into account. We can then intersect these maps:

fireballs have to be observed by at least two stations to be triangulable, so we

build maps of double station viewing area, indexed by the absolute magnitude

the fireball has to be to be detected by at least two stations. This type of map

can be visualised in Fig. 2.17. To form the clear sky survey, the detection areas

are tallied over time.

The DFN team is currently implementing the necessary backend tools to

support this heavy task. This effort notably includes a housekeeping relational

database, in order to keep track of all the observatories, engineering and clear

sky status.

2.7. CONCLUSION

Along with operations and science studies, the development of the data re-

duction pipeline software and method is one of the main tasks of the DFN

team members. On top of developing some of the methods presented here, my

work involves coordinating the team of five that works on various parts of the

pipeline. This includes work on standardising input/output formats, writing

documentation, testing, handling operations, and monitoring quality. As of

2018, the data reduction code repository contains over 150,000 lines of python
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mid-2018 (pink). Potential meteorite droppers are highlighted in blue.
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code contributed by DFN team members.

In its next generation of observatories — tailored for the Global Fireball

Observatory — the DFN is adding digital video cameras in parallel to the long-

exposure high resolution imagers. Among other things, this will allow daytime

imaging of bright fireballs to be possible. In principle, finding the centroids of

the fireball and decoding the timing is inherently simpler, as the fireball will

look like a point source instead of a time encoded streak. With the use of long

calibration exposures on the digital video cameras yielding a large number

of stars, the astrometric solver developed (Sec. 2.4) should be ported to these

instruments with little modification.

The accuracy of the reduction routines has been proven by the swift recovery

of the Murrili meteorite in December 2015 (Devillepoix et al., 2016), and Dingle

Dell meteorite in November 2016 (Devillepoix et al., 2018). The automated

nature of the reduction package has also permitted the study of a large number

of meteoroid orbits (Fig. 2.18), as detailed in Chap. 5.

As of the meteorite recovery process, the last important step that needs to

be automated is the searching procedure. This concept of automated meteorite

searching has been tested using Unmanned Aerial Vehicles (UAV) and machine

learning algorithms to identify meteorites. Some encouraging results have

shown that it is possible (Citron et al., 2017), however it remains to be tested

and deployed on a large scale.
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ABSTRACT

The Earth is impacted by 35-40 metre-scale objects every year. These meteoroids

are the low mass end of impactors that can do damage on the ground. Despite

this they are very poorly surveyed and characterised, too infrequent for ground

based fireball observation efforts, and too small to be efficiently detected by

NEO telescopic surveys whilst still in interplanetary space. We want to evaluate

the suitability of different instruments for characterising metre-scale impactors

and where they come from. We use data collected over the first 3 years of

operation of the continent-scale Desert Fireball Network, and compare results

with other published results as well as orbital sensors. We find that although

the orbital sensors have the advantage of using the entire planet as collecting

area, there are several serious problems with the accuracy of the data, notably

the reported velocity vector, which is key to getting an accurate pre-impact

orbit and calculating meteorite fall positions. We also outline dynamic range

issues that fireball networks face when observing large meteoroid entries.

3.1. INTRODUCTION

The Earth is impacted by 35-40 metre-scale objects every year (Brown et al., 2002;

Bland and Artemieva, 2006). These large meteoroids are at the low mass end of

potentially damage-causing impacting asteroids like Chelyabinsk (Brown et al.,

2013). The study of the atmospheric behaviour, physical nature, numbers, and

dynamical origin of these objects is therefore important in order to assess the

hazard they pose, and prepare an appropriate response should an asteroid be

detected and determined to be on a collision course with Earth.
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3.1.1. HOW FREQUENTLY DO THESE IMPACTS HAPPEN?

One of the ways the size frequency distribution (SFD) of metre-scale has been

surveyed is by using the so-called US Government (USG) sensors1, which are

able to detect flashes all around the world, day and night, measure flash energy,

and sometimes derive velocities and airburst heights. As outlined by Brown

et al. (2013), there might be subtleties in the SFD, namely a larger number of 10-

50 m objects. Indeed the 1-100 m size range is largely unobserved, with objects

too small for telescopes and too infrequent for impact monitoring systems to

get representative surveys. So far, there have been 3 cases of asteroids detected

before atmospheric impact. These are asteroids 2008 TC3 (Jenniskens et al.,

2009; Farnocchia et al., 2017), 2014 AA (Farnocchia et al., 2016), and 2018 LA, all

discovered by the Catalina Sky Survey only hours before impact. As large deep

surveyors like LSST (Ivezic et al., 2008) come online these types of detections

are going to become more common, and predicting the consequences of these

impacts is going to be desirable. While the impact location of 2008 TC3 was

well constrained to sub kilometre precision thanks to a very large number

(»900) of astrometric measurements, the prediction for 2014 AA was much

more uncertain and covered a large area of the Atlantic ocean, as only a total

of 7 astrometric positions were available. The impact location of 2018 LA was

very uncertain, until 2 extra observation by the Asteroid Terrestrial-impact Last

Alert System (ATLAS) increased the observation arc length from 1.3 hours to 3.7

hours, which narrowed down the impact location to South Africa. The number

of astrometric observations and the length of the observation arc are therefore

a critical factors to precisely determining the impact point. Well coordinated,

large follow-up networks of telescopes can provide large numbers of such

observations and will aid in future impact predictions (Lister et al., 2016).

1https://cneos.jpl.nasa.gov/fireballs/ accessed November 22, 2017

https://cneos.jpl.nasa.gov/fireballs/
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3.1.2. HOW DANGEROUS ARE THESE IMPACTS?

The damage from an impact depends not only on dynamical parameters, but

also on: size, rock type, structure, strength (s) and density (ρ). To illustrate

this, we can use the equations of Collins et al. (2005) to simulate the outcome

of the impact of a 2 m object, with an entry angle of 18˝, a velocity of 19 km s´1

at the top of the atmosphere (same entry angle and velocity as Chelyabinsk),

and various bulk strengths and densities corresponding to different classes of

objects (from Chyba et al. (1993)):

• a weak cometary body (s “ 105 Pa, ρ “ 1000 kg m´3) will break up at a

high altitude (60 km), causing no significant direct damage because the

predicted 0.18 kT TNT of energy released cannot be transferred efficiently

to the ground due to the thin atmosphere (1 kT TNT = 4.184ˆ 1012 J).

• a chondritic body (s “ 107 Pa, ρ “ 3500 kg m´3) is likely going to airburst

at relatively low altitudes (the model predicts an airburst at 27 km), releas-

ing around 0.44 kT TNT of energy that can be propagated more efficiently

by the denser atmosphere.

• an iron (s “ 108 Pa, ρ “ 7900 kg m´3) monolith will reach the surface at

hypersonic velocity (3.8 km s´1), causing important but very localised

damage, as it only yields 10´1 kT TNT.

This is a simplistic example, but it shows how much the response to an imminent

asteroid impact depends on both physical and dynamical characteristics of the

impactor.

Several observation techniques can be levied while the asteroid is still in

interplanetary space:

• Multi-band photometry in Vis-NIR: size and rotation period, and lower

constraint on cohesive strength as a consequence.
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• Spectroscopy: likely composition.

• Astrometric observations: pre-encounter orbit, and predictions about the

impact geometry, velocity, and location.

• Radar observations: size, shape, rotation period, presence of satellites.

While the size and impacting velocity are well constrained factors using

astrometric observations, determining the rock type and structure from remote

sensing instruments is more challenging.

To some extent spectroscopy can provide insights on the mineralogy of the

impactor, but this technique requires a good knowledge of how asteroid spectral

types match meteorite types.

Another approach is the work of Mommert et al. (2014b,a) on small (metre-

scale) asteroids for which spectroscopic work is generally impractical. They

used a thermophysical model combined with an orbital model that takes non-

gravitational forces into accounts. This model derives physical parameters

(likely surface composition, size) by combining both astrometric observations

and Near-Infrared photometry.

In order to be reliable on large scales, these techniques have to be qualified

with direct sample analysis. This active area of research can be tackled in two

ways: either direct sample return missions (like Stardust, Hayabusa, Hayabusa

2, OSIRIS-REx), or from a large number of meteorite recoveries with associated

orbits that can link to asteroid families: the aim of ground-based efforts like the

Desert Fireball Network.

The Desert Fireball Network (DFN) is a fireball camera network currently

operating in the the Australian outback, designed for the detection and re-

covery of meteorite falls with associated orbits. Currently 52 observatories

are deployed. On January 2, 2015, a particularly bright fireball was observed
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over South Australia, large enough to be simultaneously detected by the US

government (USG) sensors, and by the DFN, which had just started science

operation 2 months before. Another similarly bright event, also observed by

both the DFN and the USG sensors, happened on June 30, 2017 over South

Australia.

Over the 3 million km2 that the DFN covers in Australia, the observation

of a metre-scale impactor is only expected to happen once every 4-5 years

(Brown et al., 2002), and once every 8-10 years during night time when most

dedicated fireball networks operate (without considering clear sky conditions).

The observation of two such events during the first 3 years of operation of the

DFN, although outside the nominal collecting area, is somewhat lucky with

respect to the size frequency distribution numbers of Brown et al. (2002). These

two superbolides are described here and add to the small list of metre-scale

impactors that have precisely determined trajectories:

• 13 events compiled and discussed by Brown et al. (2016).

• the ”Romanian” bolide (Borovička et al., 2017).

• the Dishchii’bikoh meteorite, for which initial trajectory details have been

reported by Palotai et al. (2018).

• the meteorite fall near Crawford Bay in British Columbia (Canada), for

which initial trajectory details have been reported by Hildebrand et al.

(2018).

3.1.3. WHERE DO THEY COME FROM?

The current state of the art for source region model for Near-Earth Objects (NEO)

is detailed by Granvik et al. (2018). They report a significant size dependence

of NEO origins, which had not been investigated by earlier similar works
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(Bottke et al., 2002; Binzel et al., 2004; Greenstreet et al., 2012). Their work

covers the absolute magnitude range 17 ă H ă 25 (corresponds to diameter

1200 ą D ą 30 m with an S-type albedo of 0.2), providing little insight on the

the metre-size region (H “ 32).

Several outstanding issues show that it is not possible to simply interpolate

the characteristics of the population of typical macroscopic meteorite dropper

meteoroids (decimetre-scale) and the kilometre-scale well surveyed by tele-

scopes. For instance, LL chondrites make up 8% of meteorite falls, but it is

generally thought that 1{3rd of observable near-Earth small body space is made

up of LL compatible asteroids (Vernazza et al., 2008). Granvik et al. (2016)

shows that an unmodelled destructive effect prevents small bodies from stably

populating the low perihelion region, further outlying the need to consider

body size in the dynamical models.

Brown et al. (2016) are the first to perform a source region analysis on metre-

class NEO bodies, using the Bottke et al. (2002) model on USG events. Consider-

ing the small number statistics they get intermediate source regions proportion

that are comparable to previous works on kilometre-size NEO population (Bot-

tke et al., 2002; Binzel et al., 2004; Greenstreet et al., 2012). However they also

argue for a Halley-type comet (HTC) source region, comparable in importance

to the Jupiter-family comets (JFC) source. This source has not been identified

previously in NEO works, because of a near-complete lack of such objects in

asteroid databases. Their argument is based on three fireball events in the

USG dataset that have a Tisserand parameter with Jupiter, TJ ă 2: identified

as 20150102-133919, 20150107-010559, and 20150311-061859, not associated to

a meteor shower. Because the first two of these events have independently

estimated trajectories, an issue that we are interested in is determining if this

surprising outcome could be the results of limitations of USG data.

This work aims to compile independent information not just for these cases,
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but for several other metre-scale bodies, to determine the reliability of USG data

in general, for population study, orbit determination, as well as undertaking

meteorite searches based on these data. We also evaluate the suitability of

hardware currently deployed by fireball networks to observe these particularly

bright events.

3.2. DATA AND METHODS

3.2.1. DESERT FIREBALL NETWORK

The Desert Fireball Network (DFN) is the world’s biggest fireball observa-

tion facility (3 million km2 coverage), set up in a desert environment where

meteorites are more likely to be successfully recovered. The DFN is built to

overcome the challenges of operating a distributed network of high technology

devices in a harsh remote environment. The observatories operate completely

autonomously for up to two years before maintenance is required: swapping

the hard drives and replacing the mechanical shutter in the off-the-shelf camera.

The systems can operate with network connectivity for event notifications, or

completely offline. Due to their low power usage, simple solar photo-voltaic

systems («160-240 W of solar panels) with 12 V deep-cycle lead acid battery

storage are used to power most of the observatories across the network.

The main imaging system consists of a high-resolution digital camera and a

fisheye all-sky lens, taking long exposures with shutter breaks embedded by the

GNSS synchronised operation of a liquid crystal shutter. This mode of imaging

has historically been the most successful method for determining positions

of fallen meteorites from fireball observation, as shown in the compilation of

Borovička et al. (2015). The DFN has recovered 3 meteorites in the first 3 years

of operation (Devillepoix et al., 2018). The automated observatories are more
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completely described by Howie et al. (2017a), and the encoding method used to

record absolute and relative timing (to derive velocity information) is detailed

by Howie et al. (2017b).

In June 2017, the DFN initiated a firmware upgrade across the network

to change the time encoding technique on the observatories’ microcontroller.

These were deployed to all online cameras remotely. The main new feature of

this update was a new mode of operation for the liquid crystal shutter, different

from the one described by Howie et al. (2017b). This new mode retained the

absolute timing encoding through the use of a de Bruijn sequence, but made the

pulses much shorter and equal in duration, replacing the 60 ms long dash with

two 10 ms pulses and the short 20 ms dash into a single 10 ms pulse, in order

to reduce saturation issues on bright fireballs, and make automated centroid

determination easier. In Tab. 3.2 and 3.5 we refer to this new method as pulse-

frequency (PF ), as opposed to the pulse-width (PW ) method of Howie et al.

(2017b).

Standard data reductions methods are detailed by Devillepoix et al. (2018).

The DFN is optimised to observe macroscopic meteorite dropping events at

the low mass end. The observatories are sensitive to apparent magnitude 0,

in order observe a small („ 5 cm) meteoroid high-enough before significant

atmospheric deceleration happens, to derive a precise orbit. But they can also

astrometrically observe the brightest phases of ablation of a half-metre size rock

(magnitude 15), albeit with saturating the sensor.

Thanks to the large number of stars imaged by the long exposure, the cam-

eras typically achieve their nominal arcminute astrometric precision down to

5˝elevations above the horizon (Devillepoix et al., 2018). Typical kilogram

scale meteorites usually ablate down to „ 20 km height, therefore the network

is spaced in order to have 3 camera observation down to this height, which

roughly corresponds to a 200 km slant range. Outside of these ideal observation
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conditions, fireballs are accurately imaged in the high altitude phase of the

flight (useful for orbital calculations), but getting precise meteorite fall positions

becomes more difficult due to decreased astrometric precision.

Fireball trajectories are calculated using a modified version of the least-

square method of Borovička (1990), and fireball dynamics are analysed using

the methods of Sansom et al. (2015) and Gritsevich et al. (2017). Pre-encounter

orbits are determined using numerical integration, as described by Jansen-

Sturgeon et al. (2018).

The DFN observatories were designed with a low-resolution video system

in parallel of the high-resolution still imager, initially as absolute timing device,

but later kept on some systems for future daytime observations. These data

are too low-resolution to provide useful astrometric data, although they can

be helpful in getting high temporal resolution photometric data. However the

sensor gets saturated when the fireball gets brighter than mV “ ´5, and the

auto-gain on the cameras can only attenuate the signal by a factor of about 4

stellar magnitudes. Large fireballs still saturate the sensor, however Devillepoix

et al. (2018) have successfully used the sum of all pixels in each field as a proxy

for all sky brightness. This method is particularly successful at detecting large

fragmentation events. The effect of auto-gain are corrected by performing

traditional photometry on a non saturated bright star, planet, or fixed light

in the field of view. Unfortunately because of the lossy compression of the

record and the sensor saturation, it is not possible to get a satisfying absolutely

calibrated photometry from the video, and therefore the resulting light curve is

only used qualitatively.
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FIGURE 3.1: Cropped all-sky images of the fireballs from the DFN observato-
ries. Images are of the same pixel scale with the centre of each image positioned
at the observatory location on the map. For the Kalabity fireball (red arrow,
East), light from the main explosion is particlaurly scattered in the Gum Glen
image because of clouds. For the Baird Bay event (blue arrow, West), the
Mulgathing image is cropped because the sensor is not large enough to accom-
modate the full image circle on its short side. The fireball on the Woomera
picture was partially masked by a tree. The O’Malley station only recorded
video and is missing in this map, details are given in Tab. 3.5. The dashed
arrows show the USG sensors trajectory solutions for both events (vectors are
generated by backtracking the state vector at the time of peak brightness to
t´ 5 seconds).
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3.2.2. US GOVERNMENT SENSORS

Large fireballs detected by the so-called ”US Government (USG) sensors” are

reported on the JPL website2. These sensors are apparently able to detect flashes

all around the world, day and night, measure flash energy, and sometimes

derive velocities and airburst heights. These data were used for size-frequency

studies of metre-scale objects by Brown et al. (2002), and later to derive orbital

and physical properties of this population (Brown et al., 2016).

In Tab. 3.1 we give the data for a the subset of events for which all the param-

eters are reported (time, energy, location, velocity), and for which independent

observations have been published (references in Tab 3.7). The USG sensors data

do not come with uncertainties, therefore we assume the last significant figure

represents the precision of the measurement.

We calculate the radiant and pre-entry orbits for these meteoroids, based on

USG data, using the numerical method of Jansen-Sturgeon et al. (2018). The

various numbers reported in USG data relate to the instant of peak brightness,

typically quite deep into the atmosphere. Since we are dealing with metre-

scale bodies, we ignore deceleration due to the atmosphere and use a purely

gravitational model from that point for calculating the orbit.

The online table converts the total radiated energy measured into an equiv-

alent impact energy using an empirical relation determined by Brown et al.

(2002). This total energy estimate, combined with the impacting speed, can be

used to derive a photometric mass using the classical kinetic energy relation

(E “ 1
2mv

2), and a rough size assuming a density. Only ą“ 0.1 kT TNT impacts

are reported by the USG3, which roughly corresponds to a 1 m diameter object

2https://cneos.jpl.nasa.gov/fireballs/ accessed November 22, 2017
3Johnson L. (2017) - SBAG meeting: https://www.lpi.usra.edu/sbag/meetings/

jan2017/presentations/Johnson.pdf and remarks at 32 m and answer to questions
at 56 m in online talk: https://ac.arc.nasa.gov/p98hreesxa9/, accessed August 24,
2018.

https://cneos.jpl.nasa.gov/fireballs/
https://www.lpi.usra.edu/sbag/meetings/jan2017/presentations/Johnson.pdf
https://www.lpi.usra.edu/sbag/meetings/jan2017/presentations/Johnson.pdf
https://ac.arc.nasa.gov/p98hreesxa9/
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at typical impact speeds on Earth.
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3.3. RESULTS

In this section we analyse in detail the atmospheric entry of 2 large meteoroids as

observed by the DFN, these were also observed by the USG sensors (highlighted

rows in Tab. 3.1).

3.3.1. DN150102 01 - KALABITY

On January 2, 2015 a bright bolide lit up the skies over lake Frome in South

Australia (Fig. 3.1), starting at 2015-01-02T13:39:11.086 UTC (9 minutes after

midnight ACDT) for 10.54 seconds. In early 2015 the DFN had just finished

its initial expansion phase in South Australia with 16 cameras, unfortunately

the bolide happened outside the standard network covering area at that time.

Therefore a combination of cameras mostly over 300 km from the event had to

be used to determine the trajectory (Tab. 3.2). The best convergence angle is

22˝(between Gum Glen and William Creek). The convergence angle between

the Billa Kalina and Ingomar stations is less then 1˝, therefore the latter distant

viewpoint does not help much in constraining the trajectory. The trajectory

follows a relatively shallow slope of 20˝to the horizon, visible on the images

from 83.3 km altitude. Astrometric uncertainties vary between 1.5-31(equates

to 130-260 m once projected at 300 km). These are obtained by compounding

astrometric calibration uncertainties (typically 11) and fireball picking uncertain-

ties (usually 0.5-1 pixel, depending on optics quality and fireball brightness).

Most of the residuals to the straight line fit (Fig. 3.2) are then in agreement

with astrometric uncertainties. As expected from an unconstrained astrometric

solution under 5˝elevation, the observation residuals to the straight line fit start

diverging for observations below this elevation, this is visible on around the

52 km altitude mark on the Ingomar and William Creek viewpoints.

The all-sky light curves display early fragmentation events under 0.05 and
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TABLE 3.2: Locations and nature of instrumental records DN150102 01. P:
Photographic record (long-exposure high resolution image), V: compressed
PAL video (25 frames per second). PW designates the de Bruijn encoding
method, as described in Sec. 3.2.1. Ranges are from the fireball at 70 km altitude.
Photographic imaging system was out of order for Nilpena.

Observatory Instruments Latitude Longitude Altitude (m) Range (km)
Gum Glen - DFNSMALL25 PPW , V 32.20554 S 138.24121 E 242 246

Billa Kalina - DFNSMALL26 PPW 30.23769 S 136.51565 E 114 328
William Creek - DFNSMALL30 PPW 28.91566 S 136.33495 E 79 392

Ingomar - DFNSMALL27 PPW 29.58556 S 135.03865 E 197 480
Nilpena - DFNSMALL42 V 31.02331 S 138.23256 E 112 175
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FIGURE 3.2: Cross-track residuals of the straight line least squares fit to the
trajectory from each view point. These distances correspond to astrometric
residuals projected on a perpendicular plane to the line of sight, positive
when the line of sight falls above the trajectory solution. The distances in the
legend correspond to the observation range [highest point - lowest point]. The
Ingomar and William Creek observation residuals start diverging after 52 km
altitude, this corresponds to observation elevation angles of about 4˝and 5˝,
respectively.
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FIGURE 3.3: All-sky brightness (sum of all the pixels) from the Kalabity fireball,
as recorded with the video cameras at the Gum Glen and Nilpena observatories.
Using traditional PSF photometry on star Sirius the light curve is corrected to
take into account the effect of auto-gain. The Nilpena curve has been shifted
up for clarity. The peak brightness time recorded by the USG sensors (rounded
to the nearest second) is marked by a vertical line.
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Event Time Speed Height Longitude Latitude Dynamic pressure
s m s´1 m ˝E ˝N MPa

Beginning 0.0 15406˘79 83317 139.73897 -30.25421
A 3.90 15351 62586 139.85081 -30.74874 0.05
B 4.50 15320 59453 139.86679 -30.82416 0.08
C 7.61 14487 43432 139.95010 -31.21547 0.52
D 7.83 14272 42571 139.95466 -31.23679 0.57
E - max 8.55 13463 40286 139.96683 -31.29360 0.69
F 8.95 13014 39017 139.97359 -31.32517 0.77
G 9.26 12665 38033 139.97883 -31.34963 0.83
End 10.54 8433 33420 140.00311 -31.46438

TABLE 3.3: Summary table of bright flight events for DN150102 01 Kalabity.
Fragmentation event letters are defined on the light curve (Fig. 3.3). Times are
relative to 2015-01-02T13:39:11.086 UTC. Positions and speeds at the peaks are
interpolated from astrometric data.

0.08 MPa and (peaks A and B in Fig. 3.3). The following part of the light curve

is uneventful until the body encounters an order of magnitude higher dynamic

pressures that eventually almost entirely destroys it (peaks C to G in Fig. 3.3).

This adds to the list of large meteoroids (Popova et al., 2011) that undergo

fragmentation under pressures several orders of magnitude smaller than the

surviving material tensile strength on the ground, or pressures required to

destroy the body in our case.

We note that the time reported by the USG sensor (2015-01-02T13:39:19 UTC)

is in good agreement with the brightest peak (E) in our light curve determined

to be 0.6 s later (Fig. 3.3 and Tab. 3.3). However the reported altitude is 38 km.

This does not correspond to our brightest peak E at 40.2 km, but rather to the

end of the very bright phase (peak G).

Only 6 shutter breaks are resolvable on the image after the explosion on the

Billa Kalina image, all ă 4˝ on the horizon. Using the particle filter method

of Sansom et al. (2017) on these data, we find that the main mass at this stage

was only a couple of kilograms at the most. We are only able to track down

to 33.4 km at 8.4 km s´1. We suspect that this main mass is not visible down

to ablation speed limit (» 3km s´1), because of a sensitivity issue: at this
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stage the meteoroid is at a large distance from the observatory (ą 360 km),

observed on an extreme elevation angle (» 3.5˝), and the sky background is

unusually bright because of the light from the main explosions (peaks E-G)

raising the background. We suspect the reason this feature is not visible on the

closer Gum Glen image is because of the presence of clouds in the direction

of the fireball, which efficiently scattered the light from the explosion and

subsequently saturated the sensor on a much larger area than for Billa Kalina.

The particle filter method of Sansom et al. (2017) can also be used to put a

lower bound on the initial mass of the meteoroid. The near lack of deceleration

before the main explosion implies that the mass to cross-section area ratio was

large. Using reasonable assumptions on shape (spherical), and density (ρ “

3500 kg m´3, chondiric), we find that the meteoroid was ą 2600 kg (ą 1.1 m)

before impact. We note that this assumes that the meteoroid is a single ablating

body before the airbursts (peaks E-G). We know this assumption not to be

well-founded because some fragmentation happened early on (peaks A and B

in Fig. 3.3), explaining why this number is given as a lower limit.

Using the velocity calculated at the brightest instant on DFN data (peak E in

Tab. 3.3), and the impact energy measured by the USG sensors (Tab. 3.1), we

derive a 3400 kg mass for this meteoroid, roughly equivalent to a 1.2 m diameter

body, larger than the Brown et al. (2016) estimate because of a different impact

speed used.

The DFN dynamic initial size (ą 1.1 m) is in good agreement with the USG

photometric mass (1.2 m).

The orbit of Kalabity is a typical main belt one with a semi-major axis of

1.80 AU (Tab. 4.4 and Fig. 3.4), very different from the HTC type orbit derived

from USG data (Tab. 3.1).
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FIGURE 3.4: Ecliptic plot of the pre-atmospheric orbit of the Kalabity and Baird
Bay meteoroids. b is limited to the inner solar system, while a goes out all
the way to the orbit of Uranus. The solid lines are orbits using DFN data (the
shades of grey in b represent the confidence region as calculated by Monte
Carlo simulations), whereas the dashed lines are using USG data. The orbit of
Baird Bay calculated from USG data is indistinguishable from the DFN one.
On the other hand the orbit of Kalabity is very different, mostly because of a
speed issue with USG data.
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parameter unit DN150102 01 Kalabity DN170630 01 Baird Bay
Epoch TDB 2015-01-02T13:39:11 2017-06-30T14:26:41
a AU 1.80 ˘ 0.02 1.23 ˘ 0.01
e 0.498 ˘ 0.006 0.35 ˘ 0.01
i ˝ 8.73 ˘ 0.02 3.57 ˘ 0.05
ω ˝ 219.8 ˘ 0.09 259.06 ˘ 0.07
Ω ˝ 281.619 ˘ 0.001 98.801 ˘ 0.002
q AU 0.908 ˘ 0.001 0.805 ˘ 0.004
Q AU 2.70 ˘ 0.04 1.66 ˘ 0.03
αg

˝ 64.3 ˘ 0.1 272.14 ˘ 0.02
δg

˝ 51.7 ˘ 0.2 -12.5 ˘ 0.1
Vg m s´1 10776 ˘ 115 10007 ˘ 260
TJ 3.89 5.14
αinf

˝ 70.14 ˘ 0.02 271.74 ˘ 0.02
δinf

˝ 38.05 ˘ 0.02 -15.89 ˘ 0.02

TABLE 3.4: Estimated orbital elements of DN150102 01 Kalabity and
DN170630 01 Baird Bay, with 1σ formal uncertainties. (equinox J2000).

3.3.2. DN170630 01 - BAIRD BAY

The Baird Bay meteoroid entered the atmosphere on a very steep trajectory

(72˝to the horizon), on a trajectory that starts over land in Sceale Bay, and ended

in the Southern Ocean„10 km West of the Carca Peninsula (Fig. 3.1). The bolide

was visible from 2017-06-30T14:26:41.50 UTC (3 minutes before midnight ACST)

for 5.46 s on the DFN camera systems (Tab. 3.5). Several eye witnesses reported

the bolide, notably from Adelaide, the closest densely populated area, 450 km

away.

The closest DFN camera is Mount Ive station (190 km away). The Mulgathing

camera (250 km directly North from the event) only caught the top of the fireball,

as the image circle is cropped on the short side of the sensor (usually North and

South).

Like Kalabity, Baird Bay experienced early fragmentation under pressure

ă 1 MPa (peak A at 0.08 MPa), however a much larger pressure was required to

destroy it (peak D, most likely between 1 and 2 MPa).



106 H. A. R. DEVILLEPOIX Section 3.3

TABLE 3.5: Locations and nature of instrumental records DN170630 01. P:
Photographic record (long-exposure high resolution image), V: compressed
PAL video (25 frames per second). PW and PF designate the de Bruijn
encoding method, as described in Sec. 3.2.1. Ranges are from the fireball at
70 km altitude. Photographic imaging system was out of order for O’Malley.
Note that the Mulgathing camera did not receive the PF firmware update
immediately because of a temporary internet connectivity issue.

Observatory Instruments Latitude Longitude Altitude (m) Range (km)
Mount Ive - DFNSMALL62 PPF 32.45919 S 136.10332 E 293 201

Days Hill - DFNEXT005 PPF 34.20749 S 138.66151 E 363 439
Nilpena - DFNSMALL12 PPF 31.02328 S 138.23260 E 122 447
Glenrest - DFNSMALL06 PPF 33.01963 S 138.57554 E 722 414

Billa Kalina - DFNSMALL43 PPF 30.23759 S 136.51566 E 113 387
Mulgating - DFNSMALL15 PPW 30.66078 S 134.18608 E 149 274
Woomera - DFNSMALL14 PPF 31.19609 S 136.82682 E 163 329
O’Malley - DFNSMALL40 V 30.50663 S 131.19534 E 117 410
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FIGURE 3.5: DN170630 01 Baird bay. Cross-track residuals of the straight
line least squares fit to the trajectory from each view point. These distances
correspond to astrometric residuals projected on a perpendicular plane to the
line of sight, positive when the line of sight falls above the trajectory solution.
The distances in the legend correspond to the observation range [highest point
- lowest point].
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Event Time Speed Height Longitude Latitude Dynamic pressure
s m s´1 m ˝E ˝N MPa

Beginning 0.0 15095˘61 86782 134.23858 -32.99306
A 2.51 14906 52111 134.21168 -33.08981 0.08
B 3.51 13786 38817 134.20123 -33.12718 0.42
C 3.71 13140 36240 134.19919 -33.13445 0.58
last astrometric datapoint 3.80 12783 35181 134.19836 -33.13743 0.65
D - max 4.61 9568* 25648* 134.19083* -33.16432* 2.31*
End 5.46

TABLE 3.6: Summary table of bright flight events for DN170630 01 Baird Bay.
Fragmentation event letters are defined on the light curve (Fig. 3.6). Times
are relative to 2017-06-30T14:26:41.50 UTC. * marks figures that have been
extrapolated. The end parameters have not been extrapolated as it is not
possible to know what mass is left after the large explosion (peak D), and how
this mass decelerated.
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FIGURE 3.6: All-sky brightness (sum of all the pixels) from the Baird Bay
fireball, as recorded with the video camera at the O’Malley observatory. Using
traditional PSF photometry on star α Centauri the light curve is corrected to
take into account the effect of auto-gain. The peak brightness time recorded by
the USG sensors (rounded to the nearest second) is marked by a vertical line.
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Using the same particle technique as in Sec. 3.3.1, with a reasonable assump-

tions on shape (spherical), and density (ρ “ 3500 kg m´3, chondiric), we find

that the meteoroid was ą 9400 kg (ą 1.7 m) before impact. Using the particle

filter we also find that the main mass was » 7000 kg when it airburst at 26 km

altitude. Unfortunately no astrometric data is available after the airburst, as the

only camera close enough to image the bolide at the end, Mount Ive, has a large

area of the sensor saturated because of the airburst (peak D in Fig. 3.6). The

video record from the very distant O’Malley camera (410 km) shows that some

material was still ablating for at least 0.85 s after the instant of peak brightness.

This means that there is a distinct possibility that a main mass survived, and

fell in the Southern Ocean, less than 10 km from the coast off Point Labatt.

The USG sensors locate the airburst λ “ 134.5˝ φ “ ´34.3˝ (WGS84) at

h=20 km altitude (Tab. 3.1). This position is „100 km off to the South from our

calculated entry parameters (Fig. 3.1).

On the other hand the USG geocentric velocity vector is consistent with our

calculation. The radiant solutions are separated by only 0.4˝, and the speeds are

different only by 0.1 km s´1, in agreement within uncertainties. This implies

that even with the wrong position, the orbit calculated from USG data (Tab. 3.1)

is in agreement with the DFN orbit (Tab. 4.4 and Fig. 3.4).

3.4. DISCUSSION

3.4.1. RELIABILITY OF USG FIREBALL DATA

We have compiled in Table 3.7 how well USG events match independent obser-

vations of those events, using data both from the literature and the two fireballs

described here.
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It is possible to discuss the reliability of the USG data in terms of different

desired outcomes.
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FOR ORBITAL STUDIES

The factors that come into play to calculate a meteoroid orbit are the accuracy

of the location, the absolute time, and the geocentric velocity vector.

All USG events in Table 3.7 agree in absolute time with independent records

to within a few seconds.

Locations are correct in most cases, except for the Baird Bay event described

in this work. However this „100 km location issue is this case is not important

for orbit calculation.

Hence the questions lie with the 3 geocentric cartesian velocity components.

Granvik and Brown (2018) show that in most cases a precision of 0.1 km s´1 on

the velocity is good enough for source region analysis, so we do not expect the

lack of precision on the USG numbers to be an issue here. An accurate height

can be useful to take into account the deceleration in the atmosphere, but it is

not essential as we are looking at massive bodies that hardly decelerate before

the airburst. Because radiant and speed are less likely to be correlated than the

cartesian velocity components, we have re-projected these velocity components

as radiant and speed. The speeds are inconsistent in most cases (Tab. 3.7). The

worst USG estimates are for the Buzzard Coulee meteorite (18.1 km s´1 calcu-

lated by Milley (2010) compared to 12.9 km s´1 USG), and the Romanian bolide

(27.8 km s´1 calculated by Borovička et al. (2017) compared to 35.7 km s´1 USG).

These were underestimated by 28%, and overestimated by 28%, respectively.

The USG radiant vector is off for most events, sometimes by only a couple of

degrees (which does not drastically affect the orbit), but sometimes by as much

as 90˝(Buzzard Coulee and Crawford Bay events). From these considerations,

only 4 out of 10 events in Table 3.7 would have a reasonably accurate orbit if

calculated from USG data: 2018 LA, Baird Bay, Chelyabinsk, and Košice. The

USG orbits of some meteoroids are even misleadingly peculiar: Kalabity and

Romanian would be on unusual HTC orbits (as already noted by Brown et al.
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(2016)).

Therefore USG data can generally not be relied on for orbit determination,

and there is no way to know for which events the data are reliable.

FOR MATERIAL PROPERTIES STUDIES

The atmospheric behaviour of a meteoroid can yield some insights on what the

meteoroid is made of and how it is held together. If no meteorite is recovered,

the small set of USG sensors parameters contains very limited information

regarding the rock itself, but it is nevertheless possible to derive the bulk

strength of the body. An basic way of achieving this is to look at the dynamic

pressure required to destroy the body (using s “ ρatmv
2 from Bronshten (1981)).

This is not a perfect indicator as it does not show subtleties in the rock structure,

but it should be able to distinguish iron, chondritic, and cometary material, as

these differ in bulk strengths by orders of magnitude. The key parameters are

then the height of peak brightness (to determine atmospheric density ρatm), and

the speed v.

As shown by Brown et al. (2016) (Tab. 4), the USG sensors tend to report

reasonably accurate heights of peak brightness. We note that most of height in-

consistencies are usually due to another peak in the light curve being recorded.

As seen in the previous paragraph, speeds can be wrong by as much as 28%,

which induce a factor of 2 error in strength. We conclude that the inaccuracy of

USG numbers do not affect strengths by more than an order of magnitude, this

is good enough with respect to our original aim.
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FOR SIZE-FREQUENCY STUDIES

The USG data have the advantage of using the entire planet as a collector,

yielding large sample sizes that ground-based networks will never be able to

reach for this class of objects. Hence they can be a good tool for size-frequency

studies, provided the size of the impacting bodies can be accurately determined,

and the detection efficiency is well constrained.

As detailed in Sec. 3.2.2, using the empirical relation of Brown et al. (2002)

and assuming a density, the radiated energy reported by the USG sensors can

be converted into mass and size, with the caveat of speed accuracy. The energy

estimates seem to match independent observation for the events presented here

(Tab. 3.7).

As of the detection efficiency, Brown et al. (2002) mentions a 60-80% Earth

observation coverage by the USG sensors for their study on 1994-2002 data. If

we subset the USG events in two different groups, before and after the study

of Brown et al. (2002), we get on average 19 events per year before, and 26-27

events per year after September 2002. This 40% increase would suggest a 100%

Earth coverage after 2002. However it is interesting to note that the 0.4 kT

impact of 2014 AA (Farnocchia et al., 2016) was not reported by the sensors.

USG data is therefore useful for size frequency studies (like the work done by

Brown et al. (2002), Brown et al. (2013), as long as the sub-population grouping

is done by other means than by the orbit calculated using the USG velocity

data.

FOR METEORITE SEARCHING

Although metre-scale impactors are usually too big to be able to decelerate

enough before reaching dynamic pressures that destroy them, these objects
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still have a large chance of surviving as meteorites. We try to assess here the

viability of initiating dark flight calculations using a weather model combined

the USG entry vector. All the parameters in Tab. 3.7 (apart from time) need to

be accurate.

Although the height of peak brightness is wrong for Chelyabinsk, the re-

ported (latitude, longitude, height) triplet is located near the ground truth track,

hence the fall analysis would not significantly change for large masses. There-

fore of the events compiled in Table 3.7, only 2 out of 9 events (Košice and

Chelyabinsk) would have reasonably accurate fall positions if computed from

USG records.

But even worse, the 0.1˝error on latitude/longitude translates into a ˘5 km

error on position on the ground, this is particularly large for undertaking

meteorite searching activities.

From these considerations, it would be ill-advised to undertake meteorite

searching solely based on USG data.

3.4.2. ON THE GROUND-BASED IMAGING CAPABILITIES OF METRE-SCALE

IMPACTORS

With the help from collaborators outside Australia, the DFN is expanding into

the Global Fireball Observatory, and will eventually cover 2% of the Earth

surface in the next few years. Metre-scale object will fall on the covered area

every 1-2 years on average, but is the currently deployed technology fit to

observe such events?
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NIGHT TIME OBSERVATIONS

Fireball observatories are typically optimised to observe the behaviour of macro-

scopic meteorite droppers throughout their trajectory during the night. The

challenge is mostly a dynamic range one: being sensitive enough to observe

the smaller meteoroid at a high altitudes to get precise entry speed for orbit

calculation, whilst not saturating the records of larger rocks shining 100 million

times brighter when they reach the dense layers of the atmosphere.

So far no iron meteorite fall has been instrumentally observed, but it is

expected that this class of objects contains the smallest meteoroids (ie. the

faintest fireball) that can drop a meteorite, as their large strength allows them to

enter with limited mass loss due to fragmentation. For instance, if we assume

little to no gross fragmentation (Revelle and Ceplecha, 1994), to produce a 100 g

meteorite the parent meteoroid (ρ “ 7900 kg m´3) can be as small as 0.5 kg ”

5 cm diameter, assuming the most favourable entry conditions (vertical entry

at 12 km s´1). It is desirable to observe the meteor before the rock starts being

affected by the atmosphere too much, 80 km, altitude at which it would glow at

magnitude MV =-1.5 (assuming a luminous efficiency of 0.05).

On the bright end, we look at the compilation of Borovička et al. (2015) and

see that metre-scale events usually approach Mmax
V “ ´18, although this is

highly dependent on their atmospheric behaviour, where and how important

the fragmentation events are.

The set goal is then to have instruments that can cover 20 stellar magnitudes

of effective dynamic range.

Long exposure high resolution fireball camera systems have a long track

record for yielding meteorite ground locations and orbits (listed as ”dedicated

search from detailed computation of trajectory” by Borovička et al. (2015)),

compared to video systems. Thanks to their logarithmic response, film based
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imagers cover a very wide dynamic range („15 stellar magnitudes), but those

systems are costly and impractical for large distributed autonomous fireball

networks (Howie et al., 2017a), and do not achieve the 0 magnitude sensitivity

objective. The DFN (Howie et al., 2017a) and the European Network (Spurný

et al., 2016) have recently switched from film to digital camera technology. This

shift has simplified some operational aspects (eg. enhanced autonomy, better

reliability, eased data reduction), but it has come at the cost of a much limited

dynamic range: „8 magnitudes without saturation. For astrometric purposes

this range can be extended to 15 magnitudes (Devillepoix et al., 2018), but this

is still quite far from the 20 magnitudes objective.

Video cameras are generally more sensitive than the still imagers, but suffer

from the same limited dynamic range. Although a lot of events have been

recorded, fixed frame rate TV systems have not been proficient in yielding

meteorite fall positions. This is likely to be due to the low resolution offered by

those systems (a PAL video system with a matching circular fisheye lens has an

average pixel size over 10ˆ larger than the DFN cameras’), and the difficulty of

getting enough stars for astrometric calibration across the field of view (most

of these cameras cannot shoot long exposures). However recent advances in

digital video camera technology allow higher resolutions, long exposures for

calibration, and higher bit depth, so we expect networks based on these systems

to be more successful at meteorite recovery in the near future (eg. the Fireball

Recovery and InterPlanetary Observation Network (FRIPON) network of Colas

et al. (2015)).

DAY TIME OBSERVATIONS

The easy exposure control on industrial digital cameras allows low-noise long

exposure calibration shot to be taken at night, but also permits very short

exposures to operate during the day. The FRIPON network endeavours to oper-
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ate their cameras during both nighttime and daytime (Audureau et al., 2014),

however fireball detection on daytime frames appears somewhat challenging

(Egal et al., 2016). Even if calculating fall positions turns out to be difficult

from daytime data, the prospects of being able to calculate orbits for meteorites

that have been independently recovered are very interesting (9 out of 14 US

meteorite falls in the last 10 years do not have a trajectory solution published),

as the astrometric calibration of casual footage can be very time consuming.

3.5. CONCLUSIONS

This work investigates the Near-Earth Objects (NEO) impacting population

around the metre-scale size range. Such events are relatively rare (35-40 per

year), therefore a large collecting area is crucial in order to study them. The

Desert Fireball Network (DFN) is leading the effort as a ground based instru-

ment, covering over 3 million km2.

Meteoroids that have been observed by both the USG sensors and indepen-

dent means comprises a small set of 9 events. In this study we use a precise

comparison of these events to assess the reliability of the USG sensors for NEO

studies, yielding the following unequivocal conclusions:

1. USG sensors data are generally unreliable for orbit calculations. The new

metre-scale impactors source region of Brown et al. (2016) (Halley-type

comet orbits) is based on 3 particular USG meteoroid orbits. We have

shown that 2 of these are erroneous, seriously questioning the existence

of this source region.

2. Size frequency distribution work relies on determining rough sizes and

having a good knowledge of the probing time-area. The USG seem to
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achieve both with reasonably good precision. This confirms the sound

basis of the work done by Brown et al. (2002) and Brown et al. (2013).

3. Basic impactor physical properties (size and strength) can be well con-

strained with USG data. This validates the conclusions of Brown et al.

(2016) that relate to physical properties of objects.

4. Based on how often the derived trajectories are wrong, it would be naive

to invest large amounts of resources to undertake meteorite searching

using USG data.

We also note that ground based fireball networks must find solutions to

increase the dynamic range of their observations, in order to get sound observa-

tion data when metre-scale objects impact the atmosphere.
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ABSTRACT

We describe the fall of the Dingle Dell (L/LL 5) meteorite near Morawa in

Western Australia on October 31, 2016. The fireball was observed by six ob-

servatories of the Desert Fireball Network (DFN), a continental scale facility

optimised to recover meteorites and calculate their pre-entry orbits. The 30 cm

meteoroid entered at 15.44 km s´1, followed a moderately steep trajectory of 51˝

to the horizon from 81 km down to 19 km altitude, where the luminous flight

ended at a speed of 3.2 km s´1. Deceleration data indicated one large fragment

had made it to the ground. The four person search team recovered a 1.15 kg

meteorite within 130 m of the predicted fall line, after 8 hours of searching, 6

days after the fall. Dingle Dell is the fourth meteorite recovered by the DFN

in Australia, but the first before any rain had contaminated the sample. By

numerical integration over 1 Ma, we show that Dingle Dell was most likely

ejected from the main belt by the 3:1 mean-motion resonance with Jupiter, with

only a marginal chance that it came from the nu6 resonance. This makes the

connection of Dingle Dell to the Flora family (currently thought to be the origin

of LL chondrites) unlikely.

4.1. INTRODUCTION

As of mid-2017 there are nearly 60k meteorite samples classified in the Meteorit-

ical Bulletin Database1. However, apart from a handful of Lunar (» 300) and

Martian (» 200) meteorites that have a well known origin, the link with other

solar system bodies is limited. From the instrumentally documented fall of the

Přı́bram meteorite in 1959 (Ceplecha, 1961), we learned that chondritic material

comes from the asteroid main belt. The way this material evolves onto an Earth

1https://www.lpi.usra.edu/meteor/metbull.php

https://www.lpi.usra.edu/meteor/metbull.php
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crossing orbit starts with a disruption in the main belt. The small members of

the debris field can be strongly affected by the Yarkovsky effect (Farinella et al.,

1998) and as a consequence their semi-major axis is continually altered. If the

debris field is close to a powerful resonance (in semi-major axis, inclination,

eccentricity space), the break up event feeds material into that resonance, which

will in turn push the debris’ perihelia into the inner solar system. This can occur

on a timescale of less than a million years in some cases (Morbidelli et al., 1994).

Calculating the orbit of a meteoroid using only the luminous trajectory as

the observation arc is in most cases not precise enough to allow unequivocal

backtracking into a specific region of the main belt, hence the statistical results

reported by Bland et al. (2009); Brown et al. (2011); Jenniskens et al. (2014); Trigo-

Rodrı́guez et al. (2015). In order to understand the origin of the different groups

of meteorites from the main asteroid belt, it is therefore essential to collect

several dozen samples with orbits and look at source regions in a broader,

statistical way.

4.1.1. DEDICATED NETWORKS TO RECOVER METEORITES WITH KNOWN PROVE-

NANCE

In the decade following 2000, the recovery rate of meteorites with determined

orbits has dramatically increased (Borovička et al., 2015), without a significant

increase in collecting area of the major dedicated fireball networks. While

the initial phase of the Desert Fireball Network (DFN) started science opera-

tions in December 2005, covering 0.2ˆ 106 km2 (Bland et al., 2012), other major

networks ceased operations. The Prairie network in the USA (0.75 ˆ 106 km2

(McCrosky and Boeschenstein, 1965)) shut down in 1975, the Canadian Me-

teorite Observation and Recovery Project (MORP) - 1.3 ˆ 106 km2- stopped

observing in 1985 (Halliday et al., 1996), and the European Network’s covering

area of „ 1ˆ 106 km2 has not significantly changed (Oberst et al., 1998). If not
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due to a larger collecting area, this increase can be explained by other factors:

• Existing networks improving their data reduction techniques (Spurný

et al., 2014).

• Democratisation and cheap operating cost of recording devices (surveil-

lance cameras, consumer digital cameras...) (Borovička et al., 2003).

• Use of doppler radar designed for weather observations to constrain the

location of falling meteorites (Jenniskens et al., 2012; Fries et al., 2014; Fries

and Fries, 2010).

• Deployment of the Desert Fireball Network expressly on favourable ter-

rain to search for meteorites. In its early stage, within its first 5 years of

science operation, the DFN yielded 2 meteorites (Bland et al., 2009; Spurný

et al., 2011), whilst MORP only yielded one (Halliday et al., 1981) in 15

years of operations over a larger network.

• To a lesser extent, development of NEO telescopic surveillance programmes.

One single case so far (the Catalina Sky Survey detecting the Almahata

Sita meteoroid several hours before impact Jenniskens et al. (2009)), how-

ever this technique is likely to yield more frequent successes with new

deeper and faster optical surveyors, like LSST, which comes online in 2021

(Ivezic et al., 2008).

The DFN started developing digital observatories to replace the film based

network in 2012 with the goal of covering 106 km2, the more cost effective than

expected digital observatories allowed the construction of a continent-scale

network covering over 2.5 ˆ 106 km2 (Howie et al., 2017a). This programme

rapidly yielded results, less than a year after starting science operation (in

November 2014). One of the observatories lent to the SETI institute in California

was a crucial viewpoint to calculating an orbit for the Creston fall in California
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in October 2015 (Jenniskens et al., 2019), and the first domestic success came 2

months later with the Murrili meteorite recovery on Kati Thanda–Lake Eyre

(Devillepoix et al., 2016). We report here the analysis of observations of a

bright fireball that led to the fourth find by the Desert Fireball Network in

Australia: the Dingle Dell meteorite. Dingle Dell was originally classified as

an LL ordinary chondrite, petrographic type 6 (Met, 2017). However, further

analysis revealed that it in fact sits on the L/LL boundary (Benedix et al., 2017).

The sample has experienced a low level of shock, but has been heated enough to

show recrystallisation of minerals and matrix. There is no evidence of terrestrial

weathering visible on the metal or sulphide grains, which is consistent with its

extremely fast retrieval from the elements.

4.1.2. CURRENT UNDERSTANDING OF THE ORIGIN OF THE MAIN GROUPS

OF L AND LL CHONDRITES

L CHONDRITES L chondrites represent 32% of total falls. Schmitz et al. (2001)

first identified a large amount of fossil L chondrites meteorites in » 467 Ma

sedimentary rock, which suggests that a break up happened not too long before,

near an efficient meteorite transport route. From spectroscopic and dynamical

arguments, Nesvorný et al. (2009) proposed that the Gefion family break up

event, close to the 5:2 MMR with Jupiter, might be the source of this bombard-

ment, given the rapid delivery time, and a likely origin of L chondrite asteroids

outside of the 2.5 AU. Most shocked L5 and L6 instrumentally observed falls

also seem to come from this break up, with an 39Ar´40Ar age around » 470 Ma

ago: Park Forest (Brown et al., 2004), Novato (Jenniskens et al., 2014), Jesenice

(Spurný et al., 2010), and Innisfree (Halliday et al., 1981). Only the Villalbeto de

la Peña L6 (Trigo-Rodrı́guez et al., 2006) does not fit in this story because of its

large cosmic ray exposure age (48 Ma), inconsistent with a 8.9 Ma collisional

lifetime (Jenniskens, 2014).
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LL CHONDRITES Thanks to Vernazza et al. (2008), we know that S- and Q-type

asteroids observed in NEO space are the most likely asteroidal analogue to LL

type ordinary chondrites. The Hayabusa probe returned samples from S-type

(25143) Itokawa, finally unequivocally matching the largest group of meteorites

recovered on Earth (ordinary chondrites) with the most common spectral class

of asteroids in the main belt (Nakamura et al., 2011). The sample brought back

from Itokawa is compatible with LL chondrites. Indeed, LL compatible asteroids

make up two thirds of near-Earth space. The spectrally compatible Flora family

from the inner main belt can regenerate this population through the ν6 secular

resonance. But one large problem remains: only 8% of falls are LL chondrites

(Vernazza et al., 2008). The orbits determined for some LL samples have so far

not helped solve this issue. If we exclude Benešov (Spurný et al., 2014), which

was a mixed fall, scientists had to wait until 2013 to get an LL sample with

a precisely calculated orbit: Chelyabinsk (Brown et al., 2013; Borovička et al.,

2013). The pre-atmospheric orbit and composition of the Chelyabinsk meteorite

seems to support the Flora family origin for LL chondrites, although a more

recent impact could have reset the cosmic ray exposure age to 1.2 ˘ 0.2 Ma,

and the presence of impact melts (very rare in ordinary chondrites due to the

large impact velocities required (Keil et al., 1997)). Reddy et al. (2014) argued

that an impact melt such as the one observed in the Chelyabinsk meteorites, or

shock darkening, can alter the spectra of an S/Q-type asteroid to make it look

like a C/X-type spectrally. The implication of this is that the Baptistina family

members (C/X-type), which overlaps dynamically with the Flora (S-type), could

be the remains of a large impact on a Florian asteroid, and meteorites from both

families can be confused both in their spectral signature and dynamical origin.

It must be noted however that Reddy et al. (2014) do not make any conclusions

on the origin of Chelyabinsk from the Baptistina family. The Chelyabinsk

meteorite is also not a typical LL sample found on Earth, because of its size

(» 17m), and the presence of impact melts.
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Based on it’s classification, we put the orbit of the Dingle Dell meteorite in

context with other calculated orbits from L and LL chondrites and discuss the

resonances from which it may have originated.

4.2. FIREBALL OBSERVATION AND TRAJECTORY DATA

On Halloween night shortly after 8 PM local time, several reports of a large

bolide were made via the Fireballs In The Sky smart-phone app (Sansom et al.,

2016) from the Western Australian Wheatbelt area. These were received a few

hours prior to the daily DFN observatory reports, apprising the team of the

event expeditiously. The DFN observatory sightings are routinely emailed after

event detection has been completed on the nights’ data-set. It revealed that six

nearby DFN observatories simultaneously imaged a long fireball starting at

12:03:47.726 UTC on October 31, 2016 (Figure 4.1).

4.2.1. INSTRUMENTAL RECORDS

The main imaging system of the DFN fireball observatories is a 36 MPixel sensor:

Nikon D810 (or D800E on older models), combined with a Samyang lens 8mm

F/3.5. Long exposure images are taken every 30 seconds. The absolute and

relative timing (from which the fireball velocity is derived) is embedded into

the luminous trail by use of a liquid crystal (LC) shutter between the lens and

the sensor, modulated according to a de-Brujin sequence (Howie et al., 2017b).

The LC shutter operation is tightly regulated by a micro-controller synced with

a Global Navigation Satellite System (GNSS) module to ensure absolute timing

accurate to ˘0.4 ms. For further details on DFN observatory specifications, see

Howie et al. (2017a).

Some DFN observatories also include video systems operating in parallel
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FIGURE 4.1: Cropped all-sky images of the fireball from the six DFN observato-
ries. Images are of the same pixel scale with the centre of each image positioned
at the observatory location on the map (with the exception of Perenjori, whose
location is indicated). The Badgingarra image is cropped because the sensor is
not large enough to accommodate the full image circle on its short side. The
saturation issue is exacerbated by light scattered in the clouds on cameras close
to the event, this is particularly visible on the Perenjori image. The black blotch
in the Perenjori image is an artefact that thankfully did not extend far enough
to affect the quality of the data. Approximate trajectory path shown by orange
arrow. Location of the recovered meteorite is shown by the red dot.

with the long exposure photographic imaging system (Table 4.1). The video

cameras are Watec 902H2 Ultimate CCIR (8 bit 25 interlaced frames per second),

with a Fujinon fisheye lens. Originally intended as a backup device for absolute

timing, these video systems have been retained for future daytime observation
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capabilities. Here we make use of the video data to acquire a light curve, as the

event saturated the still camera sensors. The closest camera system to this event

was in Perenjori (Table 4.1), located almost directly under the fireball, and was

the only station to image the end of the luminous trajectory (Fig. 4.1). Other

nearby camera sites were overcast and did not record the event. In order to

triangulate the trajectory of the fireball, distant stations had to be used, all over

200 km away. The Hyden, Kukerin and Newdegate systems were all around

500 km from the event and, although still managing to capture the fireball, were

too low on the horizon for accurate calibration.

TABLE 4.1: Locations and nature of instrumental records. We use cameras ă
400 km away for trajectory determination. P: Photographic record (exposures:
25 seconds, 6400 ISO, F/4.), V: video record. *: distance from the meteoroid at
70 km altitude

Observatory Instruments Latitude Longitude altitude (m) distance* (km)
Perenjori P, V 29.36908 S 116.40654 E 242 91
Badgingarra P 30.40259 S 115.55077 E 230 204
Northam P 31.66738 S 116.66571 E 190 323
Hyden P 32.40655 S 119.15325 E 390 484
Kukerin P 33.25337 S 118.00628 E 340 520
Newdegate P 33.05436 S 118.93534 E 302 534

4.2.2. ASTROMETRY

All images captured by the DFN observatories are saved even when no fireball

is detected. This is possible thanks to the availability of large capacity hard

drives at reasonable costs. Not only does this mitigate event loss during initial

testing of detection algorithms, but it gives a snapshot of the whole visible sky

down to 7.5 point source limiting magnitude, every 30 seconds. The astrometric

calibration allows the points picked along the fireball image to be converted

to astrometric sky coordinates. The associated astrometric uncertainties are

dominated by the uncertainty on identifying the centroids along the segmented

fireball track.
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FIGURE 4.2: Configuration of DFN station observations for the Dingle Dell
fireball. White rays show observations used in triangulation of the trajectory
(approximated to the yellow line, starting NE and terminating to the SW of
Perenjori). Hyden, Newdegate and Kukerin stations were all around 500 km
away from the event and were not used in triangulation.

We have carried out studies on the long-term camera stability by checking the

camera pointing using astrometry. On the outback system tested, the pointing

changed less than 11 over the 3 month period assessed. The pointing is therefore

remarkably stable, and the relevant fireball image can thus be astrometrically

calibrated using a picture taken at a different epoch. This is particularly useful

when a bright fireball overprints nearby stars, and especially in this case where

clouds are present. In general however, we aim to use a calibration frame taken

as close as possible from the science frame, particularly when studying an

important event, such as a meteorite fall. In the following paragraph we present

the methods used for astrometrically calibrating the still images, using as an

example the Perenjori data. This technique is implemented in an automated

way in the reduction pipeline for all detected events.
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The astrometric solution for the Perenjori camera is obtained using an im-

age taken a few hours after the event, once the clouds had cleared (2016-10-

31T16:00:30 UTC), containing 1174 stars of apparent magnitude mV P r1.5, 5.5s.

A 3rd order polynomial fit is performed to match detected stars to the Tycho-2

star catalogue. The transformation is further corrected using a 2nd order poly-

nomial on the radial component of the optics. The stability of the solution can

be checked at regular intervals. The slight degradation in altitude precision for

altitudes below 20˝ in Fig. 4.3, is due to a partly obstructed horizon from this

camera (eg. trees, roofs). This degradation usually starts around 10˝ on cameras

with a clear horizon, as is the case for most outback systems.

The beginning of the fireball on the Perenjori image is partially masked by

clouds, yielding only a handful of points. The middle section is not usable as

the sensor was saturated in large blobs, rendering impossible timing decoding

or even reliable identification of the centre of the track. However the Perenjori

image provides a good viewpoint for the end of the fireball.

Well calibrated data were also obtained from the Badgingarra camera, before

it went outside the sensor area at 30.6 km altitude. Although the Northam

camera was very cloudy, we were able to pick the track of the main meteoroid

body without timing information, and use it as a purely geometric constraint.

Hyden, Kukerin, and Newdegate also picked up the fireball, however the

astrometry so low on the horizon (ă 5˝ ) was too imprecise (between 2 and 4

arcminutes) to refine the trajectory solution.

4.2.3. PHOTOMETRY

The automated DFN data reduction pipeline routinely calculates brightness for

non-saturated fireball segments. For this bright event however, the brightness

issue was exacerbated by large amounts of light scattered in the clouds (Fig. 4.1),

so it was impossible to produce a useful light curve from the photograph. On
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FIGURE 4.3: Residuals on the global astrometric solution for the Perenjori
camera. The pixel size at the centre of the FoV is shown by the grey square in
order to gauge the quality of the solution, as well as the 1σ residual bars on
the stars. The azimuth residuals are artificially large around the pole of the
spherical coordinate system, so we have multiplied them by cospelevationq to
cancel out this artefact.

the other hand, the Perenjori observatory recorded a low-resolution compressed

video through the clouds. Although it is not possible to calibrate this signal,

we can get a remarkably deep dynamic range reading of the all-sky brightness,

thanks to the large amount of light scattered in the numerous clouds. By de-

interlacing the analogue video frames, we were able to effectively double the

time resolution (25 interlaced frames per second to 50 fields per second, which
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are equally as precise for all-sky brightness measurements). To correct how

the auto-gain affects the signal, we perform aperture photometry on Venus

throughout the event. The analogue video feed is converted to digital by

the Commell MPX-885 capture card, and then processed by the compression

algorithm (H264 VBR, FFmpeg ultrafast preset) (Howie et al., 2017a) before

being written to disk, divided into 1 minute long segments. The PC clock is

maintained by the Network Time Protocol (NTP) service, fed with both GNSS

and network time sources. However the timestamp on the file created by the

PC suffers from a delay. We measured the average delay using a GPS video

time inserter (IOTA-VTI) on a test observatory. This allowed us to match the

light curve obtained from the video to astrometric data to within 20 ms. Peak A
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FIGURE 4.4: All-sky brightness (sum of all the pixels) from the video camera
at the Perenjori observatory. The light curve is corrected to take into account
the effect of auto-gain.

in Figure 4.4 is visible on the photographs from both Badgingarra and Hyden.

These are used to validate the absolute timing alignment of the video data.
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Reporting Report Location Approx. Distance Reported Reported Reported
Means Time From Event Duration (s) Brightness Colour

(UTC) (km) (stellar Mag)
FITS 12:04 Perth 300 2.6 -8 Orange

region
FITS 12:59 Ballidu 150 6.4 -7 Green
FITS 13:35 Dowerin 230 8.6 -9 Pink
eye N/A Koolanooka 7.4 ą 5 ą ´12.6

witness Hills (full moon)

TABLE 4.2: Observer reports from eyewitness accounts and Fireballs in the Sky
app (FITS).

4.2.4. EYE WITNESSES

Three anecdotal reports of the fireball were received via the Fireballs in the Sky

smartphone app (Paxman and Bland, 2014; Sansom et al., 2016) within two

hours of the event (Table 4.2). The free app is designed to enable members

of the public to easily report fireball sightings. Phone GPS, compass, and

accelerometers are utilised to report the direction of observations, while a

fireball animation aids users in estimating the colour, duration and brightness

of the event. This app is an interactive alternative to the popular web-based

reporting tool of the International Meteor Organisation (Hankey and Perlerin,

2015).

The app reports were the first notification of the fireball received by the DFN

team, even before the receipt of daily emails from the fireball observatories. The

azimuth angles reported by the observers were not sufficiently consistent to

enable a triangulation based on app reports alone.

The fireball was also reported by several nearby witnesses, and was described

in detail by an eye witness only 7.4 km from the fall position (Table 4.2) who

also reported hearing sounds, which due to the time of arrival may have been

electrophonic in nature (Keay, 1992).
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4.3. FIREBALL TRAJECTORY ANALYSIS

4.3.1. GEOMETRY

To determine the trajectory of the fireball through the atmosphere, we use

a modified version of the Borovička (1990) straight-line least squares (SLLS)

method. This involves creating a radiant in 3D space that best fits all the

observed lines of sight, minimising the angular residuals between the radiant

line and the observed lines of sight. While angular uncertainties will be similar

across different camera systems, the effect of distance results in larger cross-track

errors for more distant observatories (Fig. 4.5), and therefore have less influence

on the resulting radiant fit. The end of the fireball from the Perenjori image

was used, along with Badgingarra and Northam camera data to triangulate

the geometry of the fireball trajectory. The inclusion of astrometric data from

Hyden, Kukerin, and Newdegate (see section 4.2.2) degraded the solution: the

cross-track residuals from all viewpoints increased significantly, suggesting a

systematic issue with the above mentioned camera data. Therefore we only

used the trajectory solution yielded by the 3 closest view points (Fig. 4.5). The

best combination of viewpoints (Perenjori and Badgingarra) yields an excellent

convergence angle of 86˝. The trajectory solution points to a moderately steep

entry with a slope of 51˝ from the horizon, with ablation starting at an altitude

of 80.6 km and ending at 19.1 km (see Table 4.3).

4.3.2. DYNAMIC MODELLING OF THE TRAJECTORY, INCLUDING VELOCITY

AND MASS DETERMINATION

FILTER MODELLING The method described in Chapter 4 of Sansom (2016)

is an iterative Monte Carlo technique that aims to determine the path and

physical characteristics such as shape (A: the cross section area to volume
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Event Time* Speed Height Longitude Latitude Dynamic pressure
s m s´1 m ˝E ˝N MPa

Beginning 0.0 15443˘60 80594 116.41678 -28.77573
A 1.20 15428 65819 116.36429 -28.86973 0.03
B 1.72 15401 59444 116.34151 -28.91045 0.08
C 1.96 15378 56531 116.33108 -28.92909 0.11
D 4.08 13240 32036 116.24270 -29.08672 2.28
E 4.58 10508 27302 116.22547 -29.11738 3.09
F 4.84 8988 25019 116.21716 -29.13217 3.27
Terminal 6.10 3243 ˘ 465 19122 116.19564 -29.17045

TABLE 4.3: Summary table of bright flight events. Fragmentation event letters
are defined on the light curve (Fig. 4.4). *: past 2016-10-31T12:03:47.726 UTC.

ratio), density (ρm), and ablation coefficient (σ) of a meteoroid from camera

network data. In this approach, one is able to model meteoroid trajectories

based on raw astrometric data. This avoids any preconceived constraints
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imposed on the trajectory, such as the straight line assumption used in Section

4.3.1. Unfortunately this requires multiple view points with accurate absolute

timing information to record the meteoroid position. For this event, timings

encoded in the trajectory were distinguishable for only the initial 4.2 seconds by

the Badgingarra system (before any significant deceleration) and for the final

1.1 seconds by the Perenjori system. In this case we must rely on the straight-

line least squares (SLLS) triangulation to determine meteoroid positions (see

Section 4.3.1). We therefore applied the three dimensional particle filter model

outlined in Chapter 4 of Sansom (2016) using instead triangulated geocentric

coordinates as observation measurements. Uncertainties associated with using

pre-triangulated positions based on an assumed straight line trajectory are

incorporated. The distribution of particle positions using such observations

will be overall greater than if we had been able to use the raw measurements.

As a straight line may be an oversimplification of the trajectory, to most

reliably triangulate the end of the luminous flight using the SLLS method,

the final 1.1 seconds were isolated (this being after all major fragmentation

events described in Section 4.3.3). The filter was run using these positions and

initiated at t0 “ 5.0 seconds (2016-10-31T12:03:52.726 UTC). Particle mass values

at this time would be more suitably initiated using a logarithmic distribution

between the range of 0 kg to 1000 kg. The initiation of other filter parameters,

including the multimodal density distribution, are described in Sansom et al.

(2017) with ranges given in Table 1 of the work. As a calibrated light curve was

not attainable, brightness values were not included in this analysis, making it a

purely dynamic solution.

The adaptive particle filter technique applied here uses the same state vector

and three dimensional state equations as in Chapter 4 of Sansom (2016), to

evaluate the meteoroid travelling through the atmosphere. As we are using pre-

triangulated geocentric positions as observations, the measurement function

here is linear. The particles are still allowed to move in 3D space, and an
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FIGURE 4.6: Position residuals of the 3D particle filter fit to the SLLS trian-
gulated observations for the final 1.1 s of the luminous trajectory. Individual
particle weightings are shown in greyscales, with weighted mean values shown
in red.

evaluation of the model fit is performed as the absolute distance between the

pre-triangulated SLLS point and the evaluated particle position. This is shown

in Figure 4.6 for all particles, with the distance to the mean value also shown.

Mean particle positions show a good fit to the SLLS triangulated observations,

with a maximum of 30 m differences early on, decreasing to 6 m at the end.

The filter estimates not only the position and velocity of the meteoroid at each

observation time, but also the mass, ablation coefficient, σ, and shape density co-

efficient, κ. At the final observation time tf “ 6.1 s (2016-10-31T12:03:53.826 UTC),

the state estimate results in weighted median values of massf “ 1.49˘ 0.23 kg,

speedf “ 3359 ˘ 72 m s´1, σf “ 0.0154 ˘ 0.0054 s2 km´2 and κf “ 0.0027 ˘

0.0001 (SI). Although κ may be used to calculate densities for a given shape
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and drag coefficient, to avoid introducing assumptions at this stage we may

gauge its value by reviewing the density with which surviving particles were

initiated. The distribution of final mass estimates is plotted against this initial

density attributed to each given particle in Figure 4.7, along with the recovered

Dingle Dell meteorite mass of 1.150 kg and bulk density of 3450 kg m´3. In this

figure, the distribution of the main cluster of particles is consistent with the

recovered mass, however the initial densities are lower. The weighted median

value of initial bulk densities (at t0 “ 5.0 s) for all particles re-sampled at tf

is 3306 kg m´3. It is expected that the bulk density of a meteoroid body may

slightly increase throughout the trajectory as lower density, more friable ma-

terial is preferentially lost. This could justify the slightly lower bulk densities

attributed at t0.

In order to obtain the entry speed of the meteoroid with appropriate errors,

we apply an extended Kalman smoother (Sansom et al., 2015) to the straight line

solution for the geometry, considering the timing of the points independently for

each observatory. Of the two cameras that have timing data for the beginning

of the trajectory, only Badgingarra caught the start, giving an entry speed

of 15402 ˘ 60 m s´1 (1σ) at 80596 m altitude. To determine whether speeds

calculated are consistent between observatories, the first speed calculated for

Perenjori – 15384˘64 m s´1 at 75548 m altiude – is compared to the Badgingarra

solution at this same altitude –15386 ˘ 43 m s´1. The results are remarkably

consistent, validating the use of a Kalman smoother for determining initial

velocities.

DIMENSIONLESS COEFFICIENT METHOD As a comparison to the particle filter

method, the dimensionless parameter technique described by Gritsevich (2009)

was also applied. The ballistic parameter (α) and the mass loss parameter (β)

were calculated for the event, resulting in α “ 9.283 and β “ 1.416 (Figure 4.8).

As the particle filter technique in this case was not able to be performed on

the first 5.0 seconds of the luminous trajectory, these parameters may be used
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FIGURE 4.7: Results of the 3D particle filter modelling, showing the distribution
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initiated at t0 “ 5 s. Mass estimates are consistent with the recovered meteorite
mass found (red cross), with initial densities slightly below the bulk rock value.
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to determine both initial1, and final2 main masses, given assumed values of

the shape and density of the body. Using the same parameters as Gritsevich

(2009) (cd “ 1, A “ 1.55) along with the density of the recovered meteorite,

ρ “ 3450 kg m´3, gives an entry mass, me “ 81.6 kg, and a mf “ 1.4 kg. Varying

the shape of the body to spherical values, A “ 1.21 (Bronshten, 1983) gives an

initial mass of me “ 38.8 kg. Instead of assuming values for cd and A, we can

also insert the κ value calculated by the particle filter to giveme “ 41.1 kg. These

results can be approximated to a 30 cm diameter initial body. Note that this

method is the most reliable for calculating a minimum entry mass of the Dingle

Dell meteoroid. The photometric method would require a calibrated light curve,

and the particle filter method requires good astrometric data coverage where

significant deceleration occurs (the missing data between 4.2 and 5.0 seconds).

4.3.3. ATMOSPHERIC BEHAVIOUR

In Table 4.3 we report the ram pressure (P “ ρav
2) required to initiate the major

fragmentation events labelled on the light curve in Fig. 4.4. The density of the

atmosphere, ρa, is calculated using the NRLMSISE-00 model of Picone et al.

(2002), and v is the calculated speed. The meteoroid started fragmenting quite

early (events A, B, and C), starting at 0.03 MPa. These early fragmentation events

suggest that the meteoroid had a much weaker lithology than the meteorite that

was recovered on the ground. Then no major fragmentation happened until

two very bright peaks in the light curve: D (2.28 MPa) and E (3.09 MPa). These

large short-lived peaks suggest a release of a large number of small pieces that

quickly burnt up. A small final flare (F–3.27 MPa) 1.26 second before the end is

also noted.
1see equation 14 in Gritsevich (2009)
2see equation 6 in Gritsevich (2009)
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parameters can be used to determine the entry and terminal mass of the Dingle
Dell meteoroid.
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4.4. DARK FLIGHT AND METEORITE RECOVERY

The results of the dynamic modelling (Fig. 4.7) are fed directly into the dark

flight routine. By using the state vectors (both dynamical and physical parame-

ters) from the cloud of possible particles, we ensure that there is no discontinuity

between the bright flight and the dark flight, and we get a simulation of possible

impact points on the ground that is representative of the modelling work done

on bright flight data.

4.4.1. WIND MODELLING

The atmospheric winds were numerically modelled using the Weather Research

and Forecasting (WRF) software package version 3.8.1 with the Advanced

Research WRF (ARW) dynamic solver (Skamarock et al., 2008). The weather

modelling was initialised using global 1˝ resolution National Centers for Envi-

ronmental Prediction (NCEP) Final analysis (FNL) Operational Model Global

Tropospheric Analysis data. As a result, a 3 km resolution WRF product with

30 minutes history interval was created and weather profile at the end of the

luminous flight for 2016-10-31T12:00 UTC extracted (Fig. 4.9). The weather

profile includes wind speed, wind direction, pressure, temperature and rela-

tive humidity at heights ranging up to 30 km (Fig. 4.9), providing complete

atmospheric data for the main mass from the end of the luminous phase to

the ground, as well as for fragmentation events E and F (Table 4.3). Different

wind profiles have been generated, by starting the WRF integration at different

times: 2016 October 30d12h, 30d18h, 31d00h, 31d06h, and 31d12h UTC. Three

of the resulting wind models converge to a similar solution in both speed and

direction (30d12h, 31d00h, 31d12h) and will be hereafter referred to as solution

W1 (Fig. 4.9). The other two models from 30d18h (W2) and 31d00h (W3) differ

significantly. For example, the maximum jet stream strength is » 47 m s´1 for



150 H. A. R. DEVILLEPOIX Section 4.4

W1, » 34 m s´1 for W3, and » 29 m s´1 for W2. To discriminate which wind

profile is closer to the truth, we ran the model next to the Geraldton balloon

launches of 2016 October 31d00h and 31d06h UTC, but no discrepancy was no-

ticeable between all 5 scenarios. Considering that 3 model runs clump around

W1, whereas W3 and W2 are isolated, we choose W1 as a preferred solution.

The investigation of why W3 and W2 are different is beyond the scope of this

paper, nonetheless we discuss how these differences affect the dark flight of the

meteorites in the next section (4.4.2).
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FIGURE 4.9: Wind model profile W1, extracted as a vertical profile at the
coordinates of the lowest visible bright flight measurement.

4.4.2. DARK FLIGHT INTEGRATION

The calculations of the unobserved terminal part of the ablation phase and the

dark flight are performed using an 8th order explicit Runge-Kutta integrator

with adaptive step-size control for error handling. The physical model uses the

single body equations for meteoroid deceleration and ablation (Hoppe, 1937;
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Whipple, 1939). In this model, rotation is accounted for such that the cross

sectional area to volume ratio (A) remains constant throughout the trajectory.

The variation in flow regimes and Mach ranges passed through by the body

alter the values used for the drag coefficient, which can be approximated using

Table 1 in (Sansom et al., 2015).

The integration of all the particles from Section 4.3.2 allows the generation of

probability heat maps to maximise field searching efficiency. The ground impact

speed for the mass corresponding to the recovered meteorite is evaluated at

67 m s´1.

In calculating a fall line for an arbitrary range of masses, the assumed shape

of the body and the wind model used both affect the final fall position. However

for a given wind model a change in shape only shifts the masses along the fall

line.

We also calculate dark flight fall lines from fragmentation events that hap-

pened within the wind model domain: E and F. Unsurprisingly, the main

masses from those events are a close match to the corresponding main mass

started from the end of the visible bright flight. However small fragments are

unlikely to be found as they fell into the Koolanooka Hills bush land (Fig. 4.10).

4.4.3. SEARCH AND RECOVERY

Within two days, two of the authors (PB and MT) visited the predicted fall area,

about 4 hours’ drive from Perth, Western Australia to canvas local farmers for

access and information. Having gained landowner permission to search, a team

was sent to the area 3 days later. Searching was carried out by a team of 4 (MT,

BH, TJS, and HD), mostly on foot and with some use of mountain biking in

open fields. The open fields’ searching conditions were excellent, although the

field boundaries were vegetated. The team managed to cover about 12 ha per
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FIGURE 4.10: Fall area around Dingle Dell farm and Koolanooka Hills. Fall
lines in yellow represent different wind model solutions: W1 (bottom), W2
(middle) and W3 (top). Mass predictions for the preferred wind model are
shown for spherical (light blue markings; A “ 1.21) and cylindrical (white
markings; A “ 1.5) assumptions. The particle filter results are propagated
through dark flight using wind model W1, and are shown as a heat map. The
location of the recovered meteorite (red dot) is » 100 m from the W1 fall line.

hour when looking for a ą 1 kg mass on foot. On the second day, a meteorite

was found (Fig. 4.11) close to the Dingle Dell farm boundary, at coordinates

λ “ 116.215439˝ φ “ ´29.206106˝ (WGS84), about 130 m from the originally

calculated fall line, after a total of 8 hours of searching. The recovered meteorite

weighs 1.15 kg, with a rounded brick shape of approximately 16 x 9 x 4 cm,

and a calculated bulk density of 3450 kg m´3 (Fig. 4.11). The condition of

the meteorite is excellent, having only been on ground for 6 days, 16 hours.

Discussion with the local landowner, and checking the weather on the nearest

Bureau Of Meteorology observation station (Morawa Airport, 20 km away)

showed that no precipitation had fallen between times of landing and recovery.

The meteorite was collected and stored using a Teflon bag, and local soil samples

were also collected in the same manner for comparison. No trace of impact on
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the ground was noticed. The meteorite was found intact (entirely covered by

fusion crust) on hard ground, resting up-right (Fig. 4.11), and covered with

dust. So it is possible that the meteorite fell a few metres away in softer ground

and bounced or rolled to the recovered position.

FIGURE 4.11: Dingle Dell meteorite as it was found. Image
available at https://commons.wikimedia.org/wiki/File:Dingle_
Dell_meteorite_as_it_was_found.jpg under a Creative Commons
Attribution-ShareAlike 4.0 International.

https://commons.wikimedia.org/wiki/File:Dingle_Dell_meteorite_as_it_was_found.jpg
https://commons.wikimedia.org/wiki/File:Dingle_Dell_meteorite_as_it_was_found.jpg
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4.5. PRE-ENCOUNTER ORBIT

The backward propagation of the observed trajectory into an orbit requires

the calculation of the direction of the fireball (known as the radiant), and the

position and speed at the top of the atmosphere. The associated uncertainties

on these two components are mostly un-correlated. In order to minimise issues

associated with the oversimplified straight line trajectory for orbit purposes,

we re-triangulate the observations using only points that fall ą 60 km altitude

on the initial triangulation. In this case, as the trajectory is fairly steep, the

difference in apparent radiant between the two solutions is less than 5 arcmin.

To calculate the errors on the radiant, we use the co-variance matrix from the

least squares trajectory fit (see section 4.3.1), this gives us the apparent radiant:

slope to the horizontal = 51.562˘ 0.002˝, azimuth of the radiant (East of North)

= 26.17 ˘ 0.03˝, which corresponds to (α “ 353.38 ˘ 0.02˝, δ “ 6.34 ˘ 0.01˝) in

equatorial J2000 coordinates.

To calculate the formal uncertainty on the initial velocity, we apply the

Kalman filter methods of Sansom et al. (2015) as outlined in Section 4.3.2. Using

the time, position, radiant, speed, and their associated uncertainties, we deter-

mine the pre-atmospheric orbit by propagating the meteoroid trajectory back

through time, considering the atmospheric deceleration, Earth’s oblate shape

effects (J2), and other major perturbing bodies (such as the Moon and planets),

until the meteoroid has gone beyond 10ˆ the Earth’s sphere of influence. From

here, the meteoroid is propagated forward in time to the impact epoch, ignoring

the effects of the Earth-Moon system. Uncertainties (Table 4.4) are calculated

using a Monte Carlo approach on 1000 test particles randomly drawn using

uncertainties on the radiant and the speed.

We scanned the Astorb3 asteroid orbital database (Bowell et al., 2002) for close
3ftp://ftp.lowell.edu/pub/elgb/astorb.html, downloaded June 24, 2017

ftp://ftp.lowell.edu/pub/elgb/astorb.html
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FIGURE 4.12: Ecliptic projection of the pre-encounter orbit of Dingle Dell. The
shades of grey represent the likelihood as calculated from 1000 Monte Carlo
simulations based on formal uncertainties on the radiant and the speed.

matches in a, e, i, ω,Ω orbital space using the similarity criterion of Southworth

and Hawkins (1963). The closest match is the small (H “ 24.6) 2015 TD179

asteroid, that came into light in November 2015 when it flew by Earth at

» 10 lunar distances. But the large difference between these orbits, D “ 0.04,

makes the dynamical connection between the two highly unlikely.

To calculate the likely source region and dynamical pathway that put the

meteoroid on an Earth crossing orbit, we use the Rebound integrator (Rein and

Tamayo, 2015) to backward propagate the orbit of the meteoroid. We use 10,000
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Epoch TDB 2016-10-31
a AU 2.254 ˘ 0.034
e 0.5904 ˘ 0.0063
i ˝ 4.051 ˘ 0.012
ω ˝ 215.773˘ 0.049
Ω ˝ 218.252 ˘ 0.00032
q AU 0.92328 ˘ 0.00032
Q AU 3.586 ˘ 0.067
αg

˝ 354.581 ˘ 0.037
δg

˝ 13.093 ˘ 0.081
Vg m s´1 10508 ˘ 87
TJ 3.37

TABLE 4.4: Pre-encounter orbital parameters expressed in the heliocentric
ecliptic frame (J2000) and associated 1σ formal uncertainties.

test particles randomly selected using the radiant and speed uncertainties as

explained above, as well as the major perturbating bodies (Sun, 8 planets, and

Moon). The initial semi-major axis (Table 4.4) is close to the 7:2 (2.25 AU) and

10:3 (2.33 AU) mean motion resonances with Jupiter (MMRJ). These minor

resonances start to scatter the eccentricity of a large number of test particles

very early on, but neither are strong enough to decrease it significantly enough

to take the meteoroid outside of Mars’ orbit. Because of the interactions with

the inner planets, the particle cloud rapidly spreads out, and particles gradually

start falling into the two main dynamical pathways in this region: 3:1 MMRJ

(2.5 AU) and the ν6 secular resonance. These resonances rapidly expand the

perihelia of particles out of the Earth’s orbit initially, and eventually out of Mars’

orbit and into the main belt.

During the integration over 1 million years, we count the number of particles

that have converged close to stably populated regions of the main belt, and note

which dynamical pathway they used to get there. This gives us the following

statistics:

• ν6: 12%

• 3:1 MMRJ: 82%
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• 5:2 MMRJ: 6%
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FIGURE 4.13: The orbit of Dingle Dell in context with other L and LL ordinary
chondrite falls. References for L and LL orbits are in the introduction.

4.6. CONCLUSIONS

Dingle Dell is the fourth meteorite with an orbit recovered by the DFN in

Australia. Its luminous trajectory was observed by 6 DFN camera stations up to

535 km away at 12:03:47.726 UTC on 31 October, 2016. Clouds severely affected

the observations, but enough data was available to constrain the search area

for a swift recovery, and determine one of the most precise orbits linked to a

meteorite. The surviving rock was recovered within a week of its fall, without

any precipitation contaminating the rock, confirming the DFN as a proficient

sample recovery tool for planetary science. This recovery, in less than ideal
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conditions, also validates various choices in the design and operations of the

Desert Fireball Network:

• Use of high resolution digital cameras to enable reliable all-sky astrometry

for events up to 300 km away.

• Uninterrupted operation even when a large portion of the sky is cloudy

for individual systems.

• Archiving of all raw data to mitigate event detection failures.

While the method of Sansom et al. (2017) was still in development at the time

of the fall, the re-analysis of the fireball with this new technique is remarkably

consistent with the main mass found, requiring just a small number of high

quality astrometric data points. This validates the method, and will drastically

reduce the search area for future observed falls.

After a 1 million year integration of 10,000 test particles, it is most likely

that Dingle Dell was ejected from the main belt through the 3:1 mean motion

resonance with Jupiter rather than the ν6 resonance (82% for the 3:1 MMRJ

compared to 12% probability for ν6). This also means that L/LL Dingle Dell

is unlikely to be associated with the Flora family, likely source of most LL

chondrites (Vernazza et al., 2008), as the most efficient mechanism for getting

Florian fragments to near-Earth space is the ν6 secular resonance. This fall

adds little insight into the Flora/LL link, but 2016 was rich in instrumentally

observed LL falls, which might yield clues to help confirm this connection in

the near future: Stubenberg (LL6) (Spurný et al., 2016; Bischoff et al., 2017),

Hradec Králové (LL5) (Met, 2017), and Dishchii’bikoh (LL7) (Met, 2017; Palotai

et al., 2018).
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APPENDIX A. SUPPLEMENTARY FILES

We provide the raw astrometric tables for the 3 cameras used for computing the

trajectory.

We also give the straight line trajectory solution (latitude, longitude, height),

as well as the corresponding speeds calculated by the method of Sansom et al.

(2015) using all the data available (this explains slight differences with the

manuscript, as in the latter they were calculated separately for each camera).

Note that the number of decimals given in these tables is not necessarily

representative of uncertainty.

To illustrate the meteorite searching strategy we provide the GPS tracks, as

every member of the search team carried a GPS unit (see Fig. 4.11). Note that

one GPS unit malfunctioned, this resulted in the loss of one of the tracks on the

first afternoon of the search, and explains apparent gaps in the searching grid.
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We include the preferred weather model used for dark flight integration (W1,

from Fig. 4.9), extracted as a vertical profile.
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ABSTRACT

The Desert Fireball Network observed a significant outburst of fireballs between

October 31 and November 10, 2015, associated with the Southern Taurid Com-

plex meteor showers. While this returning outburst was predicted and observed

in previous work, 2015 is the first year that the stream is observed and precisely

described by fireball and low-light networks, providing an opportunity to better

understand the nature and cause of this stream. The Desert Fireball Network

of all-sky meteor camera detects centimetre to decimetre scale meteoroids. We

combine this data with millimetre to centimetre scale observations by low-light

video cameras of the Cameras for Allsky Meteor Surveillance (millimetre scale),

and published data from metre-scale observations by spaceborne sensors. By

calculating precise orbits we confirm that the outburst is due to meteoroids

living near the 7:2 mean-motion resonance with Jupiter. The size distribution

is exponential over a wide mass range and dominated by larger meteoroids

compared to the regular Southern Taurid shower We show that the resonant

meteoroids are consistently larger than regular Southern Taurid meteoroids.

The stream contains metre-class objects. Even bright meteors do not survive be-

low 50 km altitude (most show catastrophic fragmentation above 60 km), which

suggests consistently weak material. The stream is the product of a relatively

recent break up about 1500 years ago, of a body different from 2P/Encke. This

supports a model for the Taurid Complex showers that involves an ongoing

fragmentation cascade of comet 2P/Encke siblings that were created following

a breakup some 20,000 years ago. Even large Southern Taurids meteoroids are

unlikely to drop meteorites, but might generate dust that can be collected in the

atmosphere.
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5.1. INTRODUCTION

The Taurid Complex meteor showers are known to produce bright fireballs

with a great variety of strengths (Jenniskens, 2006; Brown et al., 2013). Whipple

(1940) first identified comet 2P/Encke as the likely parent body, but the wide

dispersion of orbits (resulting in northern and southern branches as well as

nighttime and daytime showers) required a formation age at least 20,000 years

ago, the minimum time it takes to fully precess the node and disperse the

longitude of perihelion of the orbits as wide as observed. Clube and Napier

(1984) first suggested that the a large number of potential other parent body

asteroids were part of a Taurid Complex that originated from a giant comet

breakup 20,000 years ago. However, Jenniskens (2006) pointed out that most

proposed parent bodies appeared to be S- or O-class stony asteroids, instead,

which had evolved into Encke-like orbits via the ν6 resonance. The same

conclusion was also reached more recently by Popescu et al. (2014) and Tubiana

et al. (2015). Jenniskens (2006); Jenniskens et al. (2016c) also noticed that there

was no mirror image between Taurid shower component nodes in northern and

southern branches, suggesting that meteoroids did not survive long enough to

fully disperse their nodal line. Instead, it was proposed that the 20,000 year old

stream reflected the current dispersion of a number of smaller parent bodies,

including 2004 TG10, that continue to generate Taurid meteoroids. This idea

that the Taurid complex is active as a whole, and is not just the remnant of a

single 20,000+ years old break up, is supported by the orbital analysis done

by Whipple and El-Din Hamid (1952). Long before modern orbital integrators

and the introduction of orbital similarity criteria DD (Drummond, 1981), they

were able to identify a group of Southern Taurids that dynamically converged

1400 years in the past. To explain why Encke did not match the orbit of the

group, they suggested that the stream of material could have come from a

companion, which could have itself separated from Encke earlier. More recently,



174 H. A. R. DEVILLEPOIX Section 5.1

Olech et al. (2016) reported two large bolides entering the skies of Poland on

October 31, 2015. The meteoroids have very similar orbits (DD “ 0.011), and the

authors identify two asteroids (2005 UR and 2005 TF50) as potential members

of the stream. Using a backward integration, they show that these 4 objects

(two meteoroids and two NEOs) have their orbital elements converge 1500

years ago, in good agreement with Whipple and El-Din Hamid (1952), after

taking into account the 64 years that separates these publications. Because this

disassociation event is relatively young in the history of the Taurids, can it tell

us something about the Taurid complex as a whole? The 2015 bolides were part

of an outburst of fireballs also detected by the European Network, from which

Spurný et al. (2017) outlined a correlation between size and strength: larger

bodies tend to be more fragile.

Similar enhanced Taurids activity has been observed in some other years,

with no clear link to comet Encke perihelion passages. Froeschle and Scholl

(1986) first suggested that mean motion resonances (MMR) could in some cases

shape meteoroid streams by splitting or trapping shower material. Material

trapped in a MMR is prevented from undergoing full nodal precession, explain-

ing concentrations of dust on long periods of time. Asher et al. (1993) suggested

that this occurred to some Taurids, trapped in 7:2 MMR with Jupiter. The

expected periodic signature of outbursts was later verified by Asher and Izumi

(1998). Their model is successful at explaining enhanced activity in years when

the Earth comes within ∆M P ˘30{40˝ of the resonance centre in mean anomaly.

Asher and Izumi (1998) also published future year outburst predictions by his

model (recent years are published on David Asher’s personal website 1), these

predictions were subsequently verified:

• 1995 (∆M “ `29˝): Spurný (1997)

• 1998 (∆M “ ´13˝): Beech et al. (2004)
1http://star.arm.ac.uk/˜dja/taurid/swarmyears.html, accessed May 16, 2017

http://star.arm.ac.uk/~dja/taurid/swarmyears.html
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• 2005 (∆M “ `11˝): Dubietis and Arlt (2007); Shrbený and Spurný (2012);

Olech et al. (2017)

• 2008 (∆M “ ´30˝): SonotaCo (2009)

• 2012 (∆M “ `35˝): Madiedo et al. (2014)

• 2015 (∆M “ ´07˝): this work; Spurný et al. (2017); Olech et al. (2017)

In this paper, we describe the enhanced 2015 Taurid fireball activity observed

by the Desert Fireball Network (DFN) in Australia and by the Cameras for

Allsky Meteor Surveillance (CAMS) network in California. Jenniskens et al.

(2016a) have identified this shower in 2012 data as #628 in the IAU Working List

of Meteor Showers, and called it the s Taurids (IAU code STS). We note that the

”new stream” of Spurný et al. (2017) corresponds to IAU #628. Hereafter meteor

showers IAU #2 (codenamed STA) refers to the ”regular” Southern Taurids,

IAU #628 (codenamed STS) designates the resonant Southern Taurid branch,

and Southern Taurids encompass members from both sub-streams.

5.2. DATA AND METHODS

DFN and CAMS survey meteoroid impacts at different sizes ranges: CAMS

has the sensitivity to detect large numbers of sub-millimetre size small grains,

while the DFN takes advantage of a large collecting area to catch centimetre to

decimetre scale meteoroids, at the cost of lower sensitivity. When it comes to

observing a bright meteor shower like the Taurids, the two systems complement

each other well.
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FIGURE 5.1: DN151104 01: a 2.6 s swarm Southern Taurid observed at Hughes
siding in the Nullarbor plain, near the Magellanic clouds. This is a crop of the
original all-sky picture. The meteoroid experiences a catastrophic fragmenta-
tion at 74 km altitude, shortly before disappearing.
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5.2.1. DFN

The main goal of the Desert Fireball Network (DFN) is to observe meteorite

falls in order to both have the necessary information to constrain a fall position,

and to calculate where the meteoroid came from before crossing the Earth’s

path. To make such an instrument efficient, the following parameters must be

optimised:

i. good tracking accuracy of the object: constrain fall position and orbit well.

ii. large collecting area: meteorite falls are rare.

iii. favourable ground for meteorite recovery: low vegetation and good con-

trast.

iv. favourable location for sky observations: good weather and dark skies.

Vast arid deserts such as the Nullarbor plain in Australia are ideal for (iii.)

(Bland et al., 2012) and (iv.). The remoteness of such places, however, constrain

how well (ii.) can be achieved: for logistical reasons the systems have to be

autonomous, relatively cheap, and limited in numbers. Combined with (i.), this

implies that each individual system must achieve high astrometric accuracy on

the whole visible sky, which is not viable with current video camera technology.

Within its initial phase (starting 2005), the DFN used 4 large format film

cameras (improving on the design of European Network technology), covering

150,000 km2 of recoverable area. Over the first 5 years of science operations,

this network yielded 2 meteorites (Bland et al., 2009; Spurný et al., 2011), at

a time when the number meteorites with known orbit was still on the order

of a dozen (Borovička et al., 2015). These successes prompted the upgrade

for a much larger network, cheaper to build and to operate (Howie et al.,

2017a). As of 2017, the Australian DFN covers 3 million km2 of sky viewing
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area (2.5 million km2 of recoverable area), established around 30˝ S latitude.

To some extend, operational and weather biases will be mitigated by the large

collecting area and observation time. Each DFN observatory comprises of

a high-resolution still imaging system: a 36 Mpixels digital camera (Nikon

D800, D800E, or D810), associated with a Samyang 8 mm f/3.5 fish-eye lens,

taking 25 seconds exposures at 6400 ISO. The cameras are sensitive to stellar

magnitude 0.5 for meteors (7.5 for stars), and reliably detect meteors brighter

than apparent magnitude -1.5. This upgraded design yielded its first meteorite

recovery in late 2015, just over a year after starting science operations: Murrili

(Devillepoix et al., 2016); followed by Dingle Dell (Devillepoix et al., 2018) in

November 2016. These two rapid successes have proved the validity of using

astrometric positions as main input for bright flight analysis (Sansom et al.,

2015, 2016, 2017), as well as the benefits of encoding the absolute timing within

the high-resolution images (Fig. 5.1) (Howie et al., 2017b) : automated data

reduction is facilitated by not having to consolidate measurements from other

instruments (such as a radiometer). A full description of the instrument can be

found in Howie et al. (2017a), as well as the history of fireball networks and

instrumentation used.

Meteor events are automatically detected in the images by the software

procedures described by Towner and et al. (submitted). These algorithms

reliably detect meteors as faint as visual magnitude ´1.5 (3σ detection). The

detection software is run on the on-board computer, and detections are sent to

a central server. If successful triangulation is achieved, an email alert is issued

for human review. Therefore, by design, single station events do not make it

to the DFN data reduction pipeline. Calculating probing area as a function

of time may be done accurately and relatively easily when a small number of

narrow angle optics are used, such as described in Blaauw et al. (2016). Even

at a basic level, this kind of work with all-sky cameras spaced on a continent-

scale network, is more tricky, and de-biasing the DFN dataset to get precise
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FIGURE 5.2: DFN clear sky logs in the λd P r215, 240s period, binned per
year of observation. The double station coverage area is calculated using
camera operation logs. This approximation comes with the limitations that
partly cloudy sky conditions will be considered to be clear, thus slightly over-
estimating the actual covering area. The total collecting time-area over the
period amounts to 1.7ˆ 108 km2h.

fluxes will be the subject of a future paper. Here we use the operational log

files as a proxy to get an estimate of coverage area. These analyses allow us to

determine which cameras were observing at what time, as well as a zero-order

approximate for cloud coverage (the cameras stop taking pictures at a defined

level of cloudiness).

Fig. 5.2 allows a visualisation of how much space the DFN probes at any

given time. However it does not make sense to calculate the activity rate on

an hourly or even a daily basis, due to rarity of fireball events. Calculating

overall activity for a broad stream on a specific year is valid for DFN data, as

operational and weather biases will be mitigated by the large collecting area

and observation time.
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The cameras have sufficient resolution to provide accurate entry trajectories

and pre-atmospheric orbits. The pixel coordinates of the meteors are trans-

formed to celestial coordinates using stars as reference frame. The field of view

observed by a camera for any given event is astrometrically calibrated using a

different exposure, to avoid contamination problem by the meteor itself or a

bright moon. The stability of the astrometric solution can be checked through-

out the night. The agreement between star catalog positions and computed

positions of this calibration are typically around 1 arcminute (Devillepoix et al.,

2018).

The triangulation of meteor trajectories are performed using a weighted

straight line least squares approach, similar to the one described in Borovička

(1990). This method incorporates all the individual astrometric measurements

and their corresponding angular uncertainties, from two or more camera loca-

tions to construct a best fit straight line trajectory that minimises the perpen-

dicular distances between the meteors lines-of-sight from the cameras and this

determined trajectory. While a straight line trajectory is assumed, this is not

the reality due to gravitational and various aerodynamic forces. To lessen these

effects on the following orbital and dark flight predictions for long trajectories,

the start and end portions of the bright flight may be fitted separately.

In order to get an appropriate entry velocity for the meteoroid, an extended

Kalman smoother may be applied to the positional data, throughout the visible

bright flight (Sansom et al., 2015). This method also yields statistical uncer-

tainties that encompass both model errors and measurement errors. These

results are crucial for initialising orbit determination as orbital parameters, like

the semi-major axis and eccentricity, are very sensitive to the errors in initial

velocity. The heliocentric orbit of the meteoroids are determined using a back-

ward integration from the start of the visible bright flight. The meteoroid is

back-tracked through the upper layers of the atmosphere, and out of the sphere

of influence of the Earth. Uncertainties on the orbital parameters are computed
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using a Monte Carlo method based on the uncertainties of the first velocity

vector observed.

The DFN reduction pipeline uses aperture photometry on the fireball track to

calculate brightness. Doing photometry on the reference stars used for astrome-

try yield instrumental zero point of each camera, accounting for extinction and

vignetting. Then fireball brightness is converted into magnitudes by accounting

for the different exposure times: the effective exposure time for stars is typically

11.2 s (25 s exposure modulated by the liquid crystal shutter), and 0.06 s or 0.02 s

for a fireball shutter break (see Howie et al. (2017b) for details on the action

of the liquid crystal shutter). Apparent magnitude is converted to absolute

after triangulation, using the observation range. The main limitation on this

technique is the saturation of the sensor, which typically happens when the

fireball exceeds apparent magnitude -8.

The main use of photometric measurement is to calculate meteoroid strength

and to get a zero-order mass estimate. As thoroughly explained by Brown

et al. (2016), the peak brightness instant of a fireball is a good indicator of

catastrophic fragmentation, and therefore a reasonable proxy for calculating a

general tensile strength for the entering body. This method is more robust to

instrumental bias than the PE criterion introduced by Ceplecha and McCrosky

(1976), and has the big advantage of being inferred directly from observable

parameters (no mass involved). We therefore use the following relation from

Bronshten (1981) to calculate tensile strength S: S “ ρatm.v
2, where ρatm is

the density of the atmosphere estimated using the NRLMSISE-00 atmospheric

model (Picone et al., 2002). v is the velocity at that instant calculated by the

Kalman smoother described by Sansom et al. (2015). The main limitation of

the method comes from the uncertainty on the instant of peak brightness,

dominated by the sampling rate (10 Hz), which translates into 2 km of altitude

for the average Taurid, or a » 1.3 factor in strength.
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5.2.2. CAMS

CAMS aims to map the presence of meteor showers throughout the year. CAMS

methods are described in detail in Jenniskens et al. (2011). In brief, CAMS

utilises a network of analog low-light video cameras, mostly Watec Wat902H2

Ultimate cameras with 30˝ ˆ 20˝ field of view each and +5.4 stellar limiting

magnitude, and customized software that detects the meteors, calibrates the

background star field to obtain astrometric positions, and then combines such

data from two or more stations to triangulate the meteor trajectory. CAMS

networks are established in California, Arizona, Florida, the BeNeLux, United

Arab Emirates and New Zealand. CAMS yields more than 100,000 meteoroid

orbits per year for mostly +4 to -4 magnitude meteors, and has proven to be a

very efficient tool for studying meteor showers and linking them to possible

parent objects (Jenniskens et al., 2016a,b,c). The high detection rate provides

a baseline of sporadic meteor shower activity that can be used to calculate

the effective observing time due to weather. As a result, a reliable record of

activity of meteor showers is provided, while the global coverage provides

some defense against bad weather.

5.3. RESULTS

Most CAMS networks are on the northern hemisphere, but they experienced

a relatively small number of cloudy days. Fig. 5.3 plots the geocentric speed

and time (solar longitude) of all meteors associated with the Southern Taurid

complex. Vertical white bands are due to cloudy weather (no data). The

data are split in two groups: the outburst years of 2012 and 2015, and the

no-outburst years of 2010, 2011, 2013, 2014, and 2016. The outburst years show

a component that produces a narrow range of geocentric entry speed at any

given solar longitude, with a strong change in the speed as a function of time.
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FIGURE 5.3: Southern Taurid meteor geocentric entry speed as a function of
solar longitude in the years 2012 and 2015 (left) and other years (right), as
observed by CAMS.

This component is only weakly present in non-outburst years (Fig. 5.3). This

component was earlier identified as shower #628 (STS). The period of activity

for this component is λd P r215, 240s. The presence of this STS component is

evident in the 2015 DFN data (Fig. 5.4), as the STS stream largely dominates the

Southern Taurid activity at fireball sizes.

The speed increase for the STS component results in a larger semi-major axis.

As already shown by Spurný et al. (2017), the measured semi-major axes for

STS fireballs seem to cluster around 2.25 AU, which matches the location of the

7:2 mean-motion with Jupiter. This result is confirmed by DFN data (Fig. 5.5

and 5.7).

Fig. 5.8 shows the de-biased STS rates for CAMS, along with that of the

remaining STA and NTA streams. The rates are normalised to that of all spo-

radic meteors with speeds ă 35 km s´1. This ensures that the total sporadic

count reflects the observing conditions during that part of the night when the

antihelion source is best observed. The sporadic apex and Toroidal sources

have been removed from the count. The 2015 STS count was compared to

the sporadic meteor rate in 2015 only. The multi-year de-biased distribution
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FIGURE 5.4: 2015 Southern Taurid fireball geocentric entry speed (with 1σ
uncertainties error bars), as observed by the DFN. While CAMS observed both
STAs and STSs in large numbers (Fig. 5.3), the STS stream dominates the STA
stream at larger masses.

produced better define shower activity profiles than early results in Jenniskens

et al. (2016b). The shower components identified in Jenniskens et al. (2016c)

are still present. The STA and NTA shower profiles are different, an indication

that the nodal line of individual meteoroid orbits did not fully rotate, as earlier

pointed out.

Fig. 5.6 shows the distribution of peak magnitudes in 0.5 magnitude inter-

vals for CAMS-detected NTA, STA and STS meteors. The count of all sporadic

meteors was assumed to be exponential in shape of this magnitude interval,

from which a detection probability function was derived by fitting an exponen-

tial slope to the bright-end of the magnitude distribution and then dividing

observed counts by the fit-predicted count. This probability function was then

applied to the detected count of shower meteors. The resulting curves show a

distinctly different magnitude distribution for STA and NTA compared to STS

meteors. The STS population is significantly more skewed towards brighter

meteors. The magnitude size distribution index for STA is c = 3.0, NTA is c
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FIGURE 5.5: Semi-major axis measurements (with 1σ uncertainties error bars)
of all Southern Taurid fireballs observed by the DFN 2015. Most are sig-
nificantly higher than typical Southern Taurids, compatible with the a 7:2
mean-motion resonance with Jupiter (centered on 2.256 AU).



186 H. A. R. DEVILLEPOIX Section 5.4

-5-4-3-2-1012345

max Mv (panchromatic magnitude)

1

10

100

1000

1e4

1e5

D
e-

B
ia

se
d 

 D
et

ec
tio

n 
 R

at
e

STS 2015

STA

NTA

FIGURE 5.6: Peak magnitude frequency distribution for Southern Taurids
substreams #2 STA, #17 NTA and #628 STS. Resonant Taurids (STS branch) are
generally larger than regular Southern Taurids (STA).

= 3.0 and STS = c = 2.0 (assuming a sporadic c = 3.4). These meteors behave

like weak matter. The s Taurids experience catastrophic disruption at very high

altitudes (ą 66 km, see Table 5.3).
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FIGURE 5.7: Ecliptic orbit plot of all Southern Taurids observed by the DFN in
2015 (pink), and the #628 branch (blue).
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FIGURE 5.8: De-biased CAMS shower rates for shower 628 (STS), the Southern
Taurids (STA) and the Northern Taurids (NTA), as a function of solar longitude.

5.4. DISCUSSION

5.4.1. THE STS SIZE DISTRIBUTION IS VERY DIFFERENT THAN THAT OF

NORMAL TAURIDS

The model by Asher and Izumi (1998) suggests a gradual concentration fall-off

for mean anomalies |∆M | P r30, 40s˝. The 2012 encounter is ∆M “ 35˝ from

the centre of the resonance. The weak detection of the s Taurids in 2012 by

CAMS implies an extend of this component until at least mean anomaly 35˝, in

agreement.

A study by Soja et al. (2011) on radar meteor observed by the Canadian

Meteor Orbit Radar (CMOR) in 2005 (typical observed mass of 10´7 kg, which

roughly corresponds to optical magnitude +7), failed to identify the 7:2 reso-

nance from regular Southern Taurids. They discuss that this is partly due to the
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poor constraints the radar observations put on the velocities (and therefore the

semi-major axes), so it is not possible to distinguish STSs from STAs dynami-

cally. Therefore unless the STS outburst is strong enough to significantly skew

the overall Southern Taurids rates, it is not detectable. Soja et al. (2011) do no

provide an upper constraint on the STS/STA activity, but even without hard

numbers this analysis confirms the trend shown in Fig. 5.6: the STA branch

dominates the STS branch at the low mass end (Mvmax ą ´4).

5.4.2. LARGE STREAM MEMBERS IN THE #628 STS STREAM

The DFN observations suggest that the size frequency distribution continues in

a relatively shallow manner to brighter meteors. To catch those, a larger surface

area is needed than monitored by DFN. The US government (USG) satellite

sensors detect m-scale impactors in Earth’s atmosphere over the entire planet

as a collecting area. These data are reported online on the NASA JPL fireball

website2. If any Taurids are among these impactors, we expect their penetration

depth to be relatively shallow. We start by filtering the USG dataset by height

60km as a first pass to identify weak cometary impacts, as STS observed by

the DFN break up ą 66 km. We note that the stated peak brightness altitude

from the sensors is generally reliable, as shown by Brown et al. (2016), and

that these altitudes are reported for most events from the beginning of 2005

onwards. Detections are made at night, but also in daytime. As mentioned by

Devillepoix et al. (2019), the typical energy report limit is 0.1 kTTNT , therefore

we exclude event 2011-08-04 07:25:57 (0.098 kT reported yield) from our analysis

for detection significance issues. We are left with 10 significant events that fit

the height criterion (Table 5.1), however no velocities were reported for these

events, so it is not possible to establish a dynamic link between any of these and

the Taurid complex. Nevertheless, 3 out of these 10 very weak meteoroids fall

within λd P r215, 240s, and even more remarkable they happen in 2005 and 2015,

2https://cneos.jpl.nasa.gov/fireballs/, accessed May 16, 2017

https://cneos.jpl.nasa.gov/fireballs/
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two years during which strong STA activity has been reported and are predicted

by the model of Asher and Izumi (1998). In 2005, two events occurred in short

succession. All three events suggest the largest fragments in this stream are at

solar longitude r215, 240s˝. This combined with data in Fig. X, there may be a

trend of larger matter to be more narrowly dispersed and peak earlier in time

along Earth’s path. For comparison, comet 2P/Encke would expected to cause

meteoroid activity centred on λd “ 224.6˝, using method ”H” of Hasegawa

(1990), implemented by Neslusan et al. (1998).

We also confirm that these 3 events happened while the Southern Taurid

radiant was above the local horizon. Considering the very low number of

events observed, we need to build a statistical test to assess the significance of

this apparent rate increase during a swarm episode. Let us test the hypothesis

H1: ”An airburst from weak material (main explosion ¿60 km) is more likely to happen

during a STS activity period” against the null hypothesis H0: ”No increase in the

rate of impacts from weak bodies can be observed during a STS activity episode”. We

define a STS swarm episode as a period that happens on a year predicted by the

model of Asher and Izumi (1998), within the interval where the USG sensors

have consistently observed airbursts heights (2005, 2008, 2012, 2015), and within

the activity period observed by CAMS (solar longitude P r215, 240s˝). We use

the rateratio.test R package 3, that implements the methods described in Fay

(2010) to carry out the statistical test. At 95% confidence, the background weak

metre scale impact rate is r0.001, 0.005s, compared to r0.009, 0.1sEarth´1λ´1
d

when λd P r215, 240s, which corresponds to an influx increase of r2.1, 46sˆ (see

Table. 5.2 for full test test data and results). The small p´ value “ 0.0071 shows

strong evidence against the null hypothesis (at 95% confidence). Although we

cannot definitely link any individual events with the Taurids, the apparent rate

increase in metre-scale weak impactors during the STS outburst is statistically

significant, ans we can say that during an STS outburst episode the Earth is

3https://cran.r-project.org/package=rateratio.test

https://cran.r-project.org/package=rateratio.test
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10ˆmore likely to get impacted by a metre-scale STS than a sporadic meteoroid

of the same size. This not only proves the presence of a significant number of

metre scale bodies in the stream, but also implies that the stream is currently a

major contributor to the overall population of large weak impactors. We also

note that USGS 1999-01-02 18:25:51 happened during the June daytime passage

of the resonant swarm in 1999, predicted by the model of Asher and Izumi

(1998). This daytime manifestation has not been reported by ground based

optical network because of obvious observational issues.
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5.4.3. SIZE FREQUENCY DISTRIBUTION OF THE #628 STS STREAM

We have shown that the STS stream contains an unusual number of large

members for a meteor shower. We aim to derive a frequency distribution for

this population using observations at various size ranges.

As shown in Sec. 5.2.1 it is difficult to calculate the DFN shower activity with

a small time step because of the small number of fireball events and the fact

that the de-biasing information is not yet very precise. We can however work

on the entire STS period using the activity pass-band derived from CAMS data.

In 2015, the DFN observed 40 STS fireballs brighter than MVmax “ ´7, over a

total collecting time-area of 1.7 ˆ 108 km2 hours. As of CAMS, the collecting

area is discussed by Jenniskens et al. (2016a), the faint end of the distribution

is de-biased using the sporadic counts and a magnitude population index of

c “ 3.4. This yields data points statistically significant for meteors between

magnitude 2.5 to -4.

For these ground-based measurements, to relate localised observations to

fluxes on the entire planet cross-section, we perform a zenithal correction, in

order to account for low radiant angles. We convert the locally measured flux f

to a corrected zenithal flux f0, as if the cameras were sampling the area directly

underneath the shower radiant: f0 “ f{ sinphRq, with hR the mean altitude of

the radiant.

As the USG samples the entire planet, we can just use the 2σ Poisson rates

already calculate in Tab. 5.2. We must note that using the entry parameters

calculated by Spurný et al. (2017), the EN311015 180520 STS bolide should have

been reported by the USG sensors. Its 0.2 kT TNT yield is within the reporting

limit of the instrument (ą 0.1 kT TNT, see Devillepoix et al. (2019)), this may be

indicative of an unmodelled bias.

For this study, we note that we cannot use the European Network data from
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Spurný et al. (2017), because de biasing information has not been reported. We

also note that MORP reported on average just over 1 Taurid per year, except on

1981 where 8 Southern Taurids were reported, while only 2 STAs were observed

in 1978, a likely indication that the MORP dataset contains STS. Unfortunately

the de-biasing information is not available for each individual year (Ian Halliday,

personal communication), so it is difficult to derive meteor shower fluxes for

specific years with MORP.

The size-frequency distribution using CAMS, DFN, and USG is shown in

Fig. 5.9. Using CAMS, DFN, and USG sensors, we define as a power law for

the STS impacting population: logpNq “ a ´ b logpmq, with N the cumulative

number of objects colliding with the Earth on a swarm year with mass greater

than m, we find a “ 2.4 and b “ 0.9.

The validity of extrapolating the established size frequency distribution to

larger Potentially Hazardous Objects depends on the formation mechanism

of Taurid meteoroids, more work is required to constrain this. If we make

that assumption, the risk of the Earth getting impacted by a 140 m+ STS object

would be around 10´8 on an outburst year.

5.4.4. METEORITE DROPPING TAURIDS?

Brown et al. (2013) identified the Taurid showers as a potential source of macro-

scopic meteorite dropping events. We have seen that the STS branch contains

large members, do members of that population have a chance of surviving entry

and falling as a meteorite? The deepest penetrating STS observed by the DFN

(DN151114 04) is not visible below 52 km. According to the criteria of Brown

et al. (2013), which states that a height of 35 km and velocity of 10 km s´1 are

approximate terminal dynamical criteria for a given event to have a chance of

producing a meteorite fall, this is unlikely to produce a recoverable meteorite on

the ground. It is worth noting that the two very bright STSs described by Olech
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FIGURE 5.9: Size-frequency distribution of the #628 STS stream based on the
λd P r215, 240s activity during the STS swarm years.
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et al. (2016) also terminate at high altitudes of 57.86 and 60.20 km. The deepest

penetrating Southern Taurid (MORP #715) described in the MORP dataset (Hal-

liday et al., 1996), only penetrates to 54.8 km. As outlined by Brown et al. (2013),

one of the EN fireballs in 1995 penetrated as deep as 30 km. Although this

fireball was tentatively linked with the Taurid Complex, no definite association

with either branch of the Taurids was reported, and the final velocity was not

reported either. This analysis can be generalised to Southern Taurids in general,

to our knowledge there is no report in the literature of a Southern Taurid that

comes close to the terminal parameter of Brown et al. (2013). On the other

hand, we have examples of Northern Taurids that are able to penetrate much

lower than the 50 km ceiling that Southern Taurids seem to hit. For example, on

October 9th, 2016, the DFN observed a Northern Taurid penetrating as deep as

36.4 km, slowing down to 9.7 km s´1: the terminal parameters for this NTA are

much closer to the cut-off criteria of Brown et al. (2013).

5.5. CONCLUSIONS

During the Southern Taurid #628 stream (STS) outburst years, the chance of the

Earth being hit by a metre scale weak meteoroid is multiplied by 20. The Earth

encounters the STS stream on average every 5 years, therefore the STS stream is

responsible for as much as 20% of all weak (airburst ą 60 km altitude) metre

scale bodies.

We have established the size frequency distribution for the STS stream on

8 orders of magnitude in mass, this is unprecedented for a consistent stream

of meteoroids. Using the modelled power law, we have calculated that the

risk of Earth getting impacted by a potentially hazardous (ą 140 m) is on the

order of 10´8 on a swarm year, assuming the size frequency distribution scales

from metre-scale to this class of objects. However there might be some issues



198 H. A. R. DEVILLEPOIX Section 5.5

associated with with the reporting rate in USG data, which could underestimate

this risk. When the stream next returns close to the Earth in 2022, the Large

Synoptic Survey Telescope (Ivezic et al., 2008) will be able up and running and

should be able to better constraint on the population of large STS. This could

help get insights on the disruption mechanism that formed the stream.

The results presented here support the idea presented by Jenniskens (2006);

Jenniskens et al. (2016b) that material is ejected as part of a continuous break up

of the Taurid complex, in a sense that some features of the complex might be

much younger than others, and have not had time to break up as much.

From the analysis of terminal parameters (heights and speeds) of the Taurid

meteoroids observed by the DFN, a macroscopic meteorite from a Southern

Taurid stream seems unlikely, on the other hand we have examples of Northern

Taurids that approach the meteorite dropping terminal parameters discussed

by (Brown et al., 2013).
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APPENDIX

LIST OF SYMBOLS USED IN TABLE 5.3

• DFN: DFN event identification #

• datetime: UTC timestamp of the start of visible bright flight

• duration: duration of the observed bright flight

• λd: solar longitude

• a: semi-major axis

• e: eccentricity

• i: inclination

• ω: argument of periapsis

• Ω: longitude of the ascending node

• q: perihelion distance

• Q: aphelion distance

• $: longitude of perihelion

• αg, δg: corrected radiant

• vg: geocentric speed

• TJ : Tisserand’s criterion wrt. Jupiter

• slope: average entry angle wrt to local horizon

• v8, ˘v8 : observed speed at the top of the atmosphere and associated

uncertainty

• ve, ˘ve:observed speed at the end of visible bright flight and associated

uncertainty

• H8, λ8, φ8: height, longitude, latitude at start of visible bright flight

• Az8

• He, λe, φe: height, longitude, latitude at end of visible bright flight
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• Hmax: height at instant of peak brightness

• Qc: best convergence angle between cameras observation planes

• R8: minimum slant range at the start of visible bright flight
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CHAPTER 6

THESIS CONCLUSIONS AND FUTURE

WORK

The goal of this doctoral thesis was to make fireball data reduction more au-

tomated, and to explore the first science applications of the Desert Fireball

Network.

The first task that was undertaken was building an automated data reduction

pipeline from scratch (Chapter 2), handling 5 terabytes of images per night,

turning them into scientifically usable data. This includes developing some

of the core methods like the astrometric calibration, but also coordinating a

team of 5 people also contributing to the project, as well as managing the

development cycle associated with software operations in production. With the

Global Fireball Observatory collaboration, expected to cover 2% of the Earth by

2020, the use of the software is about to be scaled several times.

The data reduction processes were successfully applied to the Creston, Mur-

rili, and Dingle Dell (Chapter 4) meteorite fireballs. This in a way validates that

the methods developed work.

Chapter 3 deals with metre-scale impactors, comparing ground-based ob-
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servations of some these events with space borne sensors. Although the obser-

vations from orbit have a much larger collecting area, there are some accuracy

issues with the data. This makes a coordinated ground-based effort even more

relevant, as the Global Fireball Observatory is expected to observe one of these

events per year on average.

Chapter 5 reports an unusual large number of Taurids fireball detections in

2015. Combining data with the CAMS meteor network as well as orbital sensors,

covering 10 orders of magnitude in mass, this work revealed that the #628

branch of the Southern Taurids is a major contributor of cometary impactors up

to at least metre-scale, a size range that is typically not represented in meteor

showers.

In its next generation of observatories — tailored for the Global Fireball

Observatory — the DFN is adding digital video cameras in parallel to the long-

exposure high resolution imagers. This will notably allow daytime observation

of very bright fireballs to be possible. A multispectral radiometer is also being

developed, and will provide detailed fireballs light curves. The data reduction

pipeline will need to be updated in order to fuse the data from these additional

instruments together. Thanks to their Bayesian nature, the filtering methods

that determine physical and dynamical entry parameters are naturally suited to

accepting additional observations (Sec. 2.2.6).

Each new fresh ordinary chondrite recovered is a clue to understanding

recent collisions in the asteroid main belt, while a sample of any other type of

meteorite has the potential to be a game changer in our understanding of Solar

System formation. As the DFN instrument’s ability to recover meteorites is

limited by the person time required to search for meteorites, the automation

of this process using aerial sensors and sophisticated detection algorithms is a

priority.

Future work will also include clear sky survey calculations, as described
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in Sec. 2.6. The DFN is in a unique place to put strong constraints on the

flux density of 101 ´ 104 kg objects on Earth, a size range that is too small for

telescopic survey but that requires a very large collecting area to get statistically

significant numbers.
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ABSTRACT
The Earth is impacted by 35–40 metre-scale objects every year. These meteoroids are the low-
mass end of impactors that can do damage on the ground. Despite this they are very poorly
surveyed and characterized, too infrequent for ground-based fireball observation efforts, and
too small to be efficiently detected by NEO telescopic surveys whilst still in interplanetary
space. We want to evaluate the suitability of different instruments for characterizing metre-scale
impactors and where they come from. We use data collected over the first 3 yr of operation of
the continent-scale Desert Fireball Network, and compare results with other published results
as well as orbital sensors. We find that although the orbital sensors have the advantage of using
the entire planet as collecting area, there are several serious problems with the accuracy of the
data, notably the reported velocity vector, which is key to getting an accurate pre-impact orbit
and calculating meteorite fall positions. We also outline dynamic range issues that fireball
networks face when observing large meteoroid entries.

Key words: meteorites, meteors, meteoroids – minor planets, asteroids: general.

1 IN T RO D U C T I O N

The Earth is impacted by 35–40 metre-scale objects every year
(Brown et al. 2002; Bland & Artemieva 2006). These large mete-
oroids are at the low-mass end of potentially damage-causing im-
pacting asteroids like Chelyabinsk (Brown et al. 2013). The study of
the atmospheric behaviour, physical nature, numbers, and dynami-
cal origin of these objects is therefore important in order to assess
the hazard they pose, and prepare an appropriate response should
an asteroid be detected and determined to be on a collision course
with Earth.

1.1 How frequently do these impacts happen?

One of the ways the size frequency distribution (SFD) of metre-scale
has been surveyed is by using the so-called US Government (USG)
sensors,1 which are able to detect flashes all around the world, day
and night, measure flash energy, and sometimes derive velocities and
airburst heights. As outlined by Brown et al. (2013), there might be
subtleties in the SFD, namely a larger number of 10–50 m objects.
Indeed the 1–100 m size range is largely unobserved, with objects
too small for telescopes and too infrequent for impact monitoring
systems to get representative surveys. So far, there have been three
cases of asteroids detected before atmospheric impact. These are

� E-mail: hadrien.devillepoix@curtin.edu.au
1https://cneos.jpl.nasa.gov/fireballs/ accessed 2017 November 22.

asteroids 2008 TC3 (Jenniskens et al. 2009; Farnocchia et al. 2017),
2014 AA (Farnocchia et al. 2016), and 2018 LA, all discovered by
the Catalina Sky Survey only hours before impact. As large deep
surveyors like LSST (Ivezic et al. 2008) come online these types of
detections are going to become more common, and predicting the
consequences of these impacts is going to be desirable. While the
impact location of 2008 TC3 was well constrained to sub kilometre
precision thanks to a very large number (�900) of astrometric mea-
surements, the prediction for 2014 AA was much more uncertain
and covered a large area of the Atlantic ocean, as only a total of
seven astrometric positions were available. The impact location of
2018 LA was very uncertain, until two extra observation by the As-
teroid Terrestrial-impact Last Alert System (ATLAS) increased the
observation arc length from 1.3 to 3.7 h, which narrowed down the
impact location to South Africa. The number of astrometric obser-
vations and the length of the observation arc are therefore a critical
factors to precisely determining the impact point. Well coordinated,
large follow-up networks of telescopes can provide large numbers of
such observations and will aid in future impact predictions (Lister et
al. 2016).

1.2 How dangerous are these impacts?

The damage from an impact depends not only on dynamical param-
eters, but also on: size, rock type, structure, strength (s), and density
(ρ). To illustrate this, we can use the equations of Collins, Melosh &
Marcus (2005) to simulate the outcome of the impact of a 2 m ob-
ject, with an entry angle of 18◦, a velocity of 19 km s−1 at the top

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
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of the atmosphere (same entry angle and velocity as Chelyabinsk),
and various bulk strengths and densities corresponding to different
classes of objects (from Chyba, Thomas & Zahnle 1993):

(i) a weak cometary body (s = 105 Pa, ρ = 1000 kg m−3) will
breakup at a high altitude (60 km), causing no significant direct dam-
age because the predicted 0.18 kT TNT of energy released cannot
be transferred efficiently to the ground due to the thin atmosphere
(1 kT TNT = 4.184 × 1012 J).

(ii) a chondritic body (s = 107 Pa, ρ = 3500 kg m−3) is likely
going to airburst at relatively low altitudes (the model predicts an
airburst at 27 km), releasing around 0.44 kT TNT of energy that can
be propagated more efficiently by the denser atmosphere.

(iii) an iron (s = 108 Pa, ρ = 7900 kg m−3) monolith will reach
the surface at hypersonic velocity (3.8 km s−1), causing important
but very localized damage, as it only yields 10−1 kT TNT.

This is a simplistic example, but it shows how much the response
to an imminent asteroid impact depends on both physical and dy-
namical characteristics of the impactor.

Several observation techniques can be levied while the asteroid
is still in interplanetary space:

(i) Multiband photometry in Vis-NIR: size and rotation period,
and lower constraint on cohesive strength as a consequence.

(ii) Spectroscopy: likely composition.
(iii) Astrometric observations: pre-encounter orbit, and predic-

tions about the impact geometry, velocity, and location.
(iv) Radar observations: size, shape, rotation period, presence of

satellites.

While the size and impacting velocity are well constrained fac-
tors using astrometric observations, determining the rock type and
structure from remote sensing instruments is more challenging.

To some extent spectroscopy can provide insights on the miner-
alogy of the impactor, but this technique requires a good knowledge
of how asteroid spectral types match meteorite types.

Another approach is the work of Mommert et al. (2014a, b) on
small (metre-scale) asteroids for which spectroscopic work is gener-
ally impractical. They used a thermophysical model combined with
an orbital model that takes non-gravitational forces into accounts.
This model derives physical parameters (likely surface composition,
size) by combining both astrometric observations and near-infrared
photometry.

In order to be reliable on large scales, these techniques have to be
qualified with direct sample analysis. This active area of research
can be tackled in two ways: either direct sample return missions
(like Stardust, Hayabusa, Hayabusa 2, OSIRIS-REx), or from a
large number of meteorite recoveries with associated orbits that can
link to asteroid families: the aim of ground-based efforts like the
Desert Fireball Network (DFN).

The DFN is a fireball camera network currently operating in
the Australian outback, designed for the detection and recovery
of meteorite falls with associated orbits. Currently 52 observato-
ries are deployed. On 2015 January 2, a particularly bright fireball
was observed over South Australia, large enough to be simulta-
neously detected by the US government (USG) sensors, and by
the DFN, which had just started science operation 2 months be-
fore. Another similarly bright event, also observed by both the
DFN and the USG sensors, happened on 2017 June 30 over South
Australia.

Over the 3 million km2 that the DFN covers in Australia, the
observation of a metre-scale impactor is only expected to happen
once every 4–5 yr (Brown et al. 2002), and once every 8–10 yr

during night time when most dedicated fireball networks operate
(without considering clear sky conditions). The observation of two
such events during the first 3 yr of operation of the DFN, although
outside the nominal collecting area, is somewhat lucky with re-
spect to the size frequency distribution numbers of Brown et al.
(2002). These two superbolides are described here and add to the
small list of metre-scale impactors that have precisely determined
trajectories:

(i) 13 events compiled and discussed by Brown et al. (2016).
(ii) the ‘Romanian’ bolide (Borovička et al. 2017).
(iii) the Dishchii’bikoh meteorite, for which initial trajectory de-

tails have been reported by Palotai et al. (2018).
(iv) the meteorite fall near Crawford Bay in British Columbia

(Canada), for which initial trajectory details have been reported by
Hildebrand et al. (2018).

1.3 Where do they come from?

The current state of the art for source region model for Near-Earth
Objects (NEO) is detailed by Granvik et al. (2018). They report a
significant size dependence of NEO origins, which had not been
investigated by earlier similar works (Bottke et al. 2002; Binzel
et al. 2004; Greenstreet, Ngo & Gladman 2012). Their work covers
the absolute magnitude range 17 < H < 25 (corresponds to diameter
1200 > D > 30 m with an S-type albedo of 0.2), providing little
insight on the metre-size region (H = 32).

Several outstanding issues show that it is not possible to sim-
ply interpolate the characteristics of the population of typical
macroscopic meteorite dropper meteoroids (decimetre-scale) and
the kilometre-scale well surveyed by telescopes. For instance, LL
chondrites make up 8 per cent of meteorite falls, but it is gener-
ally thought that 1/3rd of observable near-Earth small body space is
made up of LL compatible asteroids (Vernazza et al. 2008). Granvik
et al. (2016) show that an unmodelled destructive effect prevents
small bodies from stably populating the low perihelion region,
further outlying the need to consider body size in the dynamical
models.

Brown et al. (2016) are the first to perform a source region anal-
ysis on metre-class NEO bodies, using the Bottke et al. (2002)
model on USG events. Considering the small number statistics they
get intermediate source regions proportion that are comparable to
previous works on kilometre-size NEO population (Bottke et al.
2002; Binzel et al. 2004; Greenstreet et al. 2012). However they
also argue for a Halley-type comet (HTC) source region, compara-
ble in importance to the Jupiter-family comets (JFC) source. This
source has not been identified previously in NEO works, because of
a near-complete lack of such objects in asteroid data bases. Their ar-
gument is based on three fireball events in the USG data set that have
a Tisserand parameter with Jupiter, TJ < 2: identified as 20150102-
133919, 20150107-010559, and 20150311-061859, not associated
with a meteor shower. Because the first two of these events have
independently estimated trajectories, an issue that we are interested
in is determining if this surprising outcome could be the results of
limitations of USG data.

This work aims to compile independent information not just for
these cases, but for several other metre-scale bodies, to determine
the reliability of USG data in general, for population study, orbit
determination, as well as undertaking meteorite searches based on
these data. We also evaluate the suitability of hardware currently
deployed by fireball networks to observe these particularly bright
events.
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2 DATA A N D M E T H O D S

2.1 DFN

The DFN is the world’s biggest fireball observation facility (3 mil-
lion km2 coverage), set-up in a desert environment where meteorites
are more likely to be successfully recovered. The DFN is built to
overcome the challenges of operating a distributed network of high
technology devices in a harsh remote environment. The observato-
ries operate completely autonomously for up to two years before
maintenance is required: swapping the hard drives and replacing
the mechanical shutter in the off-the-shelf camera. The systems can
operate with network connectivity for event notifications, or com-
pletely offline. Due to their low power usage, simple solar photo-
voltaic systems (≈160–240 W of solar panels) with 12 V deep-cycle
lead acid battery storage are used to power most of the observatories
across the network.

The main imaging system consists of a high-resolution digital
camera and a fisheye all-sky lens, taking long exposures with shut-
ter breaks embedded by the GNSS synchronized operation of a
liquid crystal shutter. This mode of imaging has historically been
the most successful method for determining positions of fallen me-
teorites from fireball observation, as shown in the compilation of
Borovička, Spurný & Brown (2015). The DFN has recovered three
meteorites in the first 3 yr of operation (Devillepoix et al. 2018). The
automated observatories are more completely described by Howie
et al. (2017a), and the encoding method used to record absolute and
relative timing (to derive velocity information) is detailed by Howie
et al. (2017b).

In 2017 June, the DFN initiated a firmware upgrade across the
network to change the time encoding technique on the observato-
ries’ microcontroller. These were deployed to all online cameras
remotely. The main new feature of this update was a new mode
of operation for the liquid crystal shutter, different from the one
described by Howie et al. (2017b). This new mode retained the
absolute timing encoding through the use of a de Bruijn sequence,
but made the pulses much shorter and equal in duration, replacing
the 60 ms long dash with two 10 ms pulses and the short 20 ms dash
into a single 10 ms pulse, in order to reduce saturation issues on
bright fireballs, and make automated centroid determination easier.
In Tables 2 and 5 we refer to this new method as pulse-frequency
(PF), as opposed to the pulse-width (PW) method of Howie et al.
(2017b).

Standard data reductions methods are detailed by Devillepoix
et al. (2018). The DFN is optimized to observe macroscopic me-
teorite dropping events at the low-mass end. The observatories are
sensitive to apparent magnitude 0, in order observe a small (∼5 cm)
meteoroid high enough before significant atmospheric deceleration
happens, to derive a precise orbit. But they can also astrometrically
observe the brightest phases of ablation of a half-metre size rock
(magnitude 15), albeit with saturating the sensor.

Thanks to the large number of stars imaged by the long exposure,
the cameras typically achieve their nominal arcmin astrometric pre-
cision down to 5◦ elevations above the horizon (Devillepoix et al.
2018). Typical kilogram scale meteorites usually ablate down to
∼20 km height, therefore the network is spaced in order to have
three camera observation down to this height, which roughly cor-
responds to a 200 km slant range. Outside of these ideal observa-
tion conditions, fireballs are accurately imaged in the high-altitude
phase of the flight (useful for orbital calculations), but getting pre-
cise meteorite fall positions becomes more difficult due to decreased
astrometric precision.

Fireball trajectories are calculated using a modified version of
the least-square method of Borovička (1990), and fireball dynam-
ics are analysed using the methods of Sansom et al. (2015) and
Gritsevich et al. (2017). Pre-encounter orbits are determined using
numerical integration, as described by Jansen-Sturgeon, Sansom &
Bland (2018).

The DFN observatories were designed with a low-resolution
video system in parallel of the high-resolution still imager, ini-
tially as absolute timing device, but later kept on some systems
for future daytime observations. These data are too low resolution
to provide useful astrometric data, although they can be helpful
in getting high temporal resolution photometric data. However the
sensor gets saturated when the fireball gets brighter than mV =
−5, and the autogain on the cameras can only attenuate the signal
by a factor of about four stellar magnitudes. Large fireballs still
saturate the sensor, however Devillepoix et al. (2018) have suc-
cessfully used the sum of all pixels in each field as a proxy for all
sky brightness. This method is particularly successful at detecting
large fragmentation events. The effect of autogain are corrected by
performing traditional photometry on a non-saturated bright star,
planet, or fixed light in the field of view. Unfortunately because of
the lossy compression of the record and the sensor saturation, it
is not possible to get a satisfying absolutely calibrated photometry
from the video, and therefore the resulting light curve is only used
qualitatively.

2.2 USG sensors

Large fireballs detected by the so-called ‘USG sensors’ are re-
ported on the JPL website.2 These sensors are apparently able to
detect flashes all around the world, day and night, measure flash
energy, and sometimes derive velocities and airburst heights. These
data were used for size-frequency studies of metre-scale objects
by Brown et al. (2002), and later to derive orbital and physical
properties of this population (Brown et al. 2016).

In Table 1 we give the data for the subset of events for which all the
parameters are reported (time, energy, location, velocity), and for
which independent observations have been published (references
in Table 7). The USG sensors data do not come with uncertain-
ties, therefore we assume the last significant figure represents the
precision of the measurement.

We calculate the radiant and pre-entry orbits for these me-
teoroids, based on USG data, using the numerical method of
Jansen-Sturgeon et al. (2018). The various numbers reported in
USG data relate to the instant of peak brightness, typically quite
deep into the atmosphere. Since we are dealing with metre-scale
bodies, we ignore deceleration due to the atmosphere and use
a purely gravitational model from that point for calculating the
orbit.

The online table converts the total radiated energy measured into
an equivalent impact energy using an empirical relation determined
by Brown et al. (2002). This total energy estimate, combined with
the impacting speed, can be used to derive a photometric mass using
the classical kinetic energy relation (E = 1

2 mv2), and a rough size
assuming a density. Only >= 0.1 kT TNT impacts are reported by
the USG,3 which roughly corresponds to a 1 m diameter object at
typical impact speeds on Earth.

2https://cneos.jpl.nasa.gov/fireballs/accessed 2017 November 22.
3Johnson L. (2017) – SBAG meeting: https://www.lpi.usra.edu/sbag/meet
ings/jan2017/presentations/Johnson.pdf and remarks at 32 m and answer
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6 3 R ESULTS

In this section we analyse in detail the atmospheric entry of two
large meteoroids as observed by the DFN, these were also observed
by the USG sensors (highlighted rows in Table 1).

3.1 DN150102 01 – Kalabity

On 2015 January 2 a bright bolide lit up the skies over lake Frome in
South Australia (Fig. 1), starting at 2015-01-02T13:39:11.086 UTC

(9 min after midnight ACDT) for 10.54 s. In early 2015 the DFN
had just finished its initial expansion phase in South Australia with
16 cameras, unfortunately the bolide happened outside the stan-
dard network covering area at that time. Therefore a combination
of cameras mostly over 300 km from the event had to be used to de-
termine the trajectory (Table 2). The best convergence angle is 22◦

(between Gum Glen and William Creek). The convergence angle
between the Billa Kalina and Ingomar stations is less than 1◦, there-
fore the latter distant viewpoint does not help much in constraining
the trajectory. The trajectory follows a relatively shallow slope of
20◦ to the horizon, visible on the images from 83.3 km altitude.
Astrometric uncertainties vary between 1.5–3 arcmin (equates to
130–260 m once projected at 300 km). These are obtained by com-
pounding astrometric calibration uncertainties (typically 1 arcmin)
and fireball picking uncertainties (usually 0.5–1 pixel, depending
on optics quality and fireball brightness). Most of the residuals to
the straight line fit (Fig. 2) are then in agreement with astrometric
uncertainties. As expected from an unconstrained astrometric so-
lution under 5◦ elevation, the observation residuals to the straight
line fit start diverging for observations below this elevation, this
is visible on around the 52 km altitude mark on the Ingomar and
William Creek viewpoints.

The all-sky light curves display early fragmentation events under
0.05 and 0.08 MPa and (peaks A and B in Fig. 3). The following part
of the light curve is uneventful until the body encounters an order of
magnitude higher dynamic pressures that eventually almost entirely
destroys it (peaks C to G in Fig. 3). This adds to the list of large
meteoroids (Popova et al. 2011) that undergo fragmentation under
pressures several orders of magnitude smaller than the surviving
material tensile strength on the ground, or pressures required to
destroy the body in our case.

We note that the time reported by the USG sensor (2015-01-
02T13:39:19 UTC) is in good agreement with the brightest peak (E)
in our light curve determined to be 0.6 s later (Fig. 3 and Table 3).
However the reported altitude is 38 km. This does not correspond
to our brightest peak E at 40.2 km, but rather to the end of the very
bright phase (peak G).

Only six shutter breaks are resolvable on the image after the
explosion on the Billa Kalina image, all <4◦ on the horizon. Using
the particle filter method of Sansom, Rutten & Bland (2017) on
these data, we find that the main mass at this stage was only a
couple of kilograms at the most. We are only able to track down to
33.4 km at 8.4 km s−1. We suspect that this main mass is not visible
down to ablation speed limit (�3km s−1), because of a sensitivity
issue: at this stage the meteoroid is at a large distance from the
observatory (>360 km), observed on an extreme elevation angle
(� 3.5◦), and the sky background is unusually bright because of the
light from the main explosions (peaks E–G) raising the background.
We suspect the reason this feature is not visible on the closer Gum

to questions at 56 m in online talk: https://ac.arc.nasa.gov/p98hreesxa9/,
accessed August 24, 2018.

MNRAS 483, 5166–5178 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/4/5166/5256650 by C
urtin U

niversity Library user on 01 February 2019

Appendix A H. A. R. DEVILLEPOIX 221



5170 H. A. R. Devillepoix et al.

Figure 1. Cropped all-sky images of the fireballs from the DFN observatories. Images are of the same pixel scale with the centre of each image positioned at
the observatory location on the map. For the Kalabity fireball (red arrow, East), light from the main explosion is particularly scattered in the Gum Glen image
because of clouds. For the Baird Bay event (blue arrow, West), the Mulgathing image is cropped because the sensor is not large enough to accommodate the
full image circle on its short side. The fireball on the Woomera picture was partially masked by a tree. The O’Malley station only recorded video and is missing
in this map, details are given in Table 5. The dashed arrows show the USG sensors trajectory solutions for both events (vectors are generated by backtracking
the state vector at the time of peak brightness to t − 5 s).
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Metre-scale Earth impactors 5171

Table 2. Locations and nature of instrumental records DN150102 01. P: Photographic record (long exposure high-resolution image), V: compressed PAL
video (25 frames per second). PW designates the de Bruijn encoding method, as described in Section 2.1. Ranges are from the fireball at 70 km altitude.
Photographic imaging system was out of order for Nilpena.

Observatory Instruments Latitude Longitude Altitude (m) Range (km)

Gum Glen – DFNSMALL25 PPW, V 32.20554 S 138.24121 E 242 246
Billa Kalina – DFNSMALL26 PPW 30.23769 S 136.51565 E 114 328
William Creek – DFNSMALL30 PPW 28.91566 S 136.33495 E 79 392
Ingomar – DFNSMALL27 PPW 29.58556 S 135.03865 E 197 480
Nilpena – DFNSMALL42 V 31.02331 S 138.23256 E 112 175

Figure 2. Cross-track residuals of the straight line least squares fit to the trajectory from each view point. These distances correspond to astrometric residuals
projected on a perpendicular plane to the line of sight, positive when the line of sight falls above the trajectory solution. The distances in the legend correspond to
the observation range [highest point–lowest point]. The Ingomar and William Creek observation residuals start diverging after 52 km altitude, this corresponds
to observation elevation angles of about 4◦and 5◦, respectively.

Glen image is because of the presence of clouds in the direction of
the fireball, which efficiently scattered the light from the explosion
and subsequently saturated the sensor on a much larger area than
for Billa Kalina.

The particle filter method of Sansom et al. (2017) can also be used
to put a lower bound on the initial mass of the meteoroid. The near
lack of deceleration before the main explosion implies that the mass
to cross-section area ratio was large. Using reasonable assumptions
on shape (spherical), and density (ρ = 3500 kg m−3, chondiric), we
find that the meteoroid was >2600 kg (>1.1 m) before impact. We
note that this assumes that the meteoroid is a single ablating body
before the airbursts (peaks E–G). We know this assumption not to
be well founded because some fragmentation happened early on
(peaks A and B in Fig. 3), explaining why this number is given as
a lower limit.

Using the velocity calculated at the brightest instant on DFN
data (peak E in Table 3), and the impact energy measured by the
USG sensors (Table 1), we derive a 3400 kg mass for this mete-
oroid, roughly equivalent to a 1.2 m diameter body, larger than the

Brown et al. (2016) estimate because of a different impact speed
used.

The DFN dynamic initial size (>1.1 m) is in good agreement
with the USG photometric mass (1.2 m).

The orbit of Kalabity is a typical main belt one with a semimajor
axis of 1.80 au (Table 4 and Fig. 4), very different from the HTC
type orbit derived from USG data (Table 1).

3.2 DN170630 01 – Baird bay

The Baird Bay meteoroid entered the atmosphere on a very steep
trajectory (72◦ to the horizon), on a trajectory that starts over land
in Sceale Bay, and ended in the Southern Ocean ∼10 km West of
the Carca Peninsula (Fig. 1). The bolide was visible from 2017-06-
30T14:26:41.50 UTC (3 min before midnight ACST) for 5.46 s on
the DFN camera systems (Table 5). Several eye witnesses reported
the bolide, notably from Adelaide, the closest densely populated
area, 450 km away.

MNRAS 483, 5166–5178 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/4/5166/5256650 by C
urtin U

niversity Library user on 01 February 2019

Appendix A H. A. R. DEVILLEPOIX 223



5172 H. A. R. Devillepoix et al.

Figure 3. All-sky brightness (sum of all the pixels) from the Kalabity fireball, as recorded with the video cameras at the Gum Glen and Nilpena observatories.
Using traditional PSF photometry on star Sirius the light curve is corrected to take into account the effect of autogain. The Nilpena curve has been shifted up
for clarity. The peak brightness time recorded by the USG sensors (rounded to the nearest second) is marked by a vertical line.

Table 3. Summary table of bright flight events for DN150102 01 Kalabity. Fragmentation event letters are defined
on the light curve (Fig. 3). Times are relative to 2015-01-02T13:39:11.086 UTC. Positions and speeds at the peaks are
interpolated from astrometric data.

Event Time Speed Height Longitude Latitude Dynamic pressure
s ms−1 m ◦E ◦N MPa

Beginning 0.0 15406 ± 79 83317 139.73897 −30.25421
A 3.90 15351 62586 139.85081 −30.74874 0.05
B 4.50 15320 59453 139.86679 −30.82416 0.08
C 7.61 14487 43432 139.95010 −31.21547 0.52
D 7.83 14272 42571 139.95466 −31.23679 0.57
E – max 8.55 13463 40286 139.96683 −31.29360 0.69
F 8.95 13014 39017 139.97359 −31.32517 0.77
G 9.26 12665 38033 139.97883 −31.34963 0.83
End 10.54 8433 33420 140.00311 −31.46438

The closest DFN camera is Mount Ive station (190 km away).
The Mulgathing camera (250 km directly North from the event)
only caught the top of the fireball (Fig. 5), as the image circle is
cropped on the short side of the sensor (usually North and South).

Like Kalabity, Baird Bay experienced early fragmentation under
pressure <1 MPa (peak A at 0.08 MPa), however a much larger
pressure was required to destroy it (peak D, most likely between 1
and 2 MPa).
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Table 4. Estimated orbital elements of DN150102 01 Kalabity and
DN170630 01 Baird Bay, with 1σ formal uncertainties. (equinox J2000).

Parameter Unit DN150102 01 Kalabity DN170630 01 Baird Bay

Epoch TDB 2015-01-02T13:39:11 2017-06-30T14:26:41
a au 1.80 ± 0.02 1.23 ± 0.01
e 0.498 ± 0.006 0.35 ± 0.01
i ◦ 8.73 ± 0.02 3.57 ± 0.05
ω ◦ 219.8 ± 0.09 259.06 ± 0.07
� ◦ 281.619 ± 0.001 98.801 ± 0.002
q au 0.908 ± 0.001 0.805 ± 0.004
Q au 2.70 ± 0.04 1.66 ± 0.03
αg

◦ 64.3 ± 0.1 272.14 ± 0.02
δg

◦ 51.7 ± 0.2 − 12.5 ± 0.1
Vg ms−1 10776 ± 115 10007 ± 260
TJ 3.89 5.14
αinf

◦ 70.14 ± 0.02 271.74 ± 0.02
δinf

◦ 38.05 ± 0.02 − 15.89 ± 0.02

Using the same particle technique as in Section 3.1, with a
reasonable assumptions on shape (spherical), and density (ρ =
3500 kg m−3, chondiric), we find that the meteoroid was >9400 kg
(>1.7 m) before impact. Using the particle filter we also find that
the main mass was � 7000 kg when it airburst at 26 km altitude. Un-
fortunately no astrometric data is available after the airburst, as the
only camera close enough to image the bolide at the end, Mount Ive,
has a large area of the sensor saturated because of the airburst (peak
D in Fig. 6 and Table 6). The video record from the very distant
O’Malley camera (410 km) shows that some material was still ablat-
ing for at least 0.85 s after the instant of peak brightness. This means
that there is a distinct possibility that a main mass survived, and fell
in the Southern Ocean, less than 10 km from the coast off Point
Labatt.

The USG sensors locate the airburst λ = 134.5◦ φ = −34.3◦

(WGS84) at h = 20 km altitude (Table 1). This position is ∼100 km
off to the South from our calculated entry parameters (Fig. 1).

On the other hand the USG geocentric velocity vector is consis-
tent with our calculation. The radiant solutions are separated by only
0.4◦, and the speeds are different only by 0.1 km s−1, in agreement
within uncertainties. This implies that even with the wrong position,
the orbit calculated from USG data (Table 1) is in agreement with
the DFN orbit (Table 4 and Fig. 4).

4 D ISCUSSION

4.1 Reliability of USG fireball data

We have compiled in Table 7 how well USG events match indepen-
dent observations of those events, using data both from the literature
and the two fireballs described here.

It is possible to discuss the reliability of the USG data in terms
of different desired outcomes.

4.1.1 For orbital studies

The factors that come into play to calculate a meteoroid orbit are
the accuracy of the location, the absolute time, and the geocentric
velocity vector.

All USG events in Table 7 agree in absolute time with independent
records to within a few seconds.

Locations are correct in most cases, except for the Baird Bay
event described in this work. However this ∼100 km location issue
in this case is not important for orbit calculation.

Hence the questions lie with the three geocentric Cartesian veloc-
ity components. Granvik & Brown (2018) show that in most cases
a precision of 0.1 km s−1 on the velocity is good enough for source
region analysis, so we do not expect the lack of precision on the
USG numbers to be an issue here. An accurate height can be useful
to take into account the deceleration in the atmosphere, but it is not
essential as we are looking at massive bodies that hardly deceler-
ate before the airburst. Because radiant and speed are less likely
to be correlated than the Cartesian velocity components, we have
re-projected these velocity components as radiant and speed. The
speeds are inconsistent in most cases (Table 7). The worst USG esti-
mates are for the Buzzard Coulee meteorite (18.1 km s−1 calculated
by Milley 2010 compared to 12.9 km s−1 USG), and the Romanian
bolide (27.8 km s−1 calculated by Borovička et al. 2017 compared
to 35.7 km s−1 USG). These were underestimated by 28 per cent,
and overestimated by 28 per cent, respectively. The USG radiant
vector is off for most events, sometimes by only a couple of de-
grees (which does not drastically affect the orbit), but sometimes by
as much as 90◦(Buzzard Coulee and Crawford Bay events). From
these considerations, only 4 out of 10 events in Table 7 would have
a reasonably accurate orbit if calculated from USG data: 2018 LA,
Baird Bay, Chelyabinsk, and Košice. The USG orbits of some me-
teoroids are even misleadingly peculiar: Kalabity and Romanian
would be on unusual HTC orbits (as already noted by Brown et
al. 2016).

Therefore USG data can generally not be relied on for orbit
determination, and there is no way to know for which events the
data are reliable.

4.1.2 For material properties studies

The atmospheric behaviour of a meteoroid can yield some insights
on what the meteoroid is made of and how it is held together. If
no meteorite is recovered, the small set of USG sensors parame-
ters contains very limited information regarding the rock itself, but
it is nevertheless possible to derive the bulk strength of the body.
A basic way of achieving this is to look at the dynamic pressure
required to destroy the body (using s = ρatmv2 from Bronshten
1981). This is not a perfect indicator as it does not show subtleties
in the rock structure, but it should be able to distinguish iron, chon-
dritic, and cometary material, as these differ in bulk strengths by
orders of magnitude. The key parameters are then the height of
peak brightness (to determine atmospheric density ρatm), and the
speed v.

As shown by Brown et al. (2016; Table 4), the USG sensors tend
to report reasonably accurate heights of peak brightness. We note
that most of height inconsistencies are usually due to another peak
in the light curve being recorded.

As seen in the previous paragraph, speeds can be wrong by as
much as 28 per cent, which induce a factor of 2 error in strength.
We conclude that the inaccuracy of USG numbers do not affect
strengths by more than an order of magnitude, this is good enough
with respect to our original aim.

4.1.3 For size-frequency studies

The USG data have the advantage of using the entire planet as a
collector, yielding large sample sizes that ground-based networks
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5174 H. A. R. Devillepoix et al.

Figure 4. Ecliptic plot of the pre-atmospheric orbit of the Kalabity and Baird Bay meteoroids. b is limited to the inner Solar system, while a goes out all the
way to the orbit of Uranus. The solid lines are orbits using DFN data (the shades of grey in b represent the confidence region as calculated by Monte Carlo
simulations), whereas the dashed lines are using USG data. The orbit of Baird Bay calculated from USG data is indistinguishable from the DFN one. On the
other hand the orbit of Kalabity is very different, mostly because of a speed issue with USG data.
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Table 5. Locations and nature of instrumental records DN170630 01. P: Photographic record (long exposure high-resolution image), V: compressed PAL
video (25 frames per second). PW and PF designate the de Bruijn encoding method, as described in Section 2.1. Ranges are from the fireball at 70 km altitude.
Photographic imaging system was out of order for O’Malley. Note that the Mulgathing camera did not receive the PF firmware update immediately because of
a temporary internet connectivity issue.

Observatory Instruments Latitude Longitude Altitude (m) Range (km)

Mount Ive – DFNSMALL62 PPF 32.45919 S 136.10332 E 293 201
Days Hill – DFNEXT005 PPF 34.20749 S 138.66151 E 363 439
Nilpena – DFNSMALL12 PPF 31.02328 S 138.23260 E 122 447
Glenrest – DFNSMALL06 PPF 33.01963 S 138.57554 E 722 414
Billa Kalina – DFNSMALL43 PPF 30.23759 S 136.51566 E 113 387
Mulgating – DFNSMALL15 PPW 30.66078 S 134.18608 E 149 274
Woomera – DFNSMALL14 PPF 31.19609 S 136.82682 E 163 329
O’Malley – DFNSMALL40 V 30.50663 S 131.19534 E 117 410

Figure 5. DN170630 01 Baird bay. Cross-track residuals of the straight line least squares fit to the trajectory from each view point. These distances correspond
to astrometric residuals projected on a perpendicular plane to the line of sight, positive when the line of sight falls above the trajectory solution. The distances
in the legend correspond to the observation range [highest point–lowest point].

will never be able to reach for this class of objects. Hence they can
be a good tool for size-frequency studies, provided the size of the
impacting bodies can be accurately determined, and the detection
efficiency is well constrained.

As detailed in Section 2.2, using the empirical relation of Brown
et al. (2002) and assuming a density, the radiated energy re-
ported by the USG sensors can be converted into mass and size,
with the caveat of speed accuracy. The energy estimates seem
to match independent observation for the events presented here
(Table 7).

As of the detection efficiency, Brown et al. (2002) mentions a
60–80 per cent Earth observation coverage by the USG sensors for
their study on 1994–2002 data. If we subset the USG events in two
different groups, before and after the study of Brown et al. (2002),
we get on average 19 events per year before, and 26–27 events per
year after 2002 September. This 40 per cent increase would suggest
a 100 per cent Earth coverage after 2002. However it is interesting

to note that the 0.4 kT impact of 2014 AA (Farnocchia et al. 2016)
was not reported by the sensors.

USG data is therefore useful for size frequency studies (like the
work done by Brown et al. (2002), Brown et al. (2013), as long as
the sub-population grouping is done by other means than by the
orbit calculated using the USG velocity data.

4.1.4 For meteorite searching

Although metre-scale impactors are usually too big to be able to
decelerate enough before reaching dynamic pressures that destroy
them, these objects still have a large chance of surviving as mete-
orites. We try to assess here the viability of initiating dark flight
calculations using a weather model combined the USG entry vec-
tor. All the parameters in Table 7 (apart from time) need to be
accurate.
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Figure 6. All-sky brightness (sum of all the pixels) from the Baird Bay fireball, as recorded with the video camera at the O’Malley observatory. Using
traditional PSF photometry on star α Centauri the light curve is corrected to take into account the effect of autogain. The peak brightness time recorded by the
USG sensors (rounded to the nearest second) is marked by a vertical line.

Table 6. Summary table of bright flight events for DN170630 01 Baird Bay. Fragmentation event letters are defined on
the light curve (Fig. 6). Times are relative to 2017-06-30T14:26:41.50 UTC. ∗ marks figures that have been extrapolated.
The end parameters have not been extrapolated as it is not possible to know what mass is left after the large explosion
(peak D), and how this mass decelerated.

Event Time Speed Height Longitude Latitude Dynamic pressure
s ms−1 m ◦E ◦N MPa

Beginning 0.0 15095 ± 61 86782 134.23858 − 32.99306
A 2.51 14906 52111 134.21168 − 33.08981 0.08
B 3.51 13786 38817 134.20123 − 33.12718 0.42
C 3.71 13140 36240 134.19919 − 33.13445 0.58
Last astrometric data point 3.80 12783 35181 134.19836 − 33.13743 0.65
D – max 4.61 9568∗ 25648∗ 134.19083∗ − 33.16432∗ 2.31∗
End 5.46

Although the height of peak brightness is wrong for Chelyabinsk,
the reported (latitude, longitude, and height) triplet is located near
the ground truth track, hence the fall analysis would not signifi-
cantly change for large masses. Therefore of the events compiled
in Table 7, only two out of nine events (Košice and Chelyabinsk)
would have reasonably accurate fall positions if computed from
USG records.

But even worse, the 0.1◦ error on latitude/longitude translates
into a ±5 km error on position on the ground, this is particularly
large for undertaking meteorite searching activities.

From these considerations, it would be ill-advised to undertake
meteorite searching solely based on USG data.

4.2 On the ground-based imaging capabilities of metre-scale
impactors

With the help from collaborators outside Australia, the DFN is
expanding into the Global Fireball Observatory, and will eventu-
ally cover 2 per cent of the Earth surface in the next few years.
Metre-scale object will fall on the covered area every 1–2 yr on av-
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Table 7. USG events that have their trajectory independently estimated. Note that the date/times of the events all match the independent measurements.
The location is considered valid if the (latitude, longitude, height) is somewhere on the trajectory. CSS: Catalina Sky Survey, V: video, P: photographic, PE:
photometer, CV: casual video, I: infrasound. �: correct within errors. ≈: incorrect, but not far off. �: incorrect. NR-U: not reported by USG. NR-L: not reported
or yet published in literature. ∗: From light curve and infrasound data, [5] conclude that the impact kinetic energy for Košice is >0.1 kT, without an upper
limit. References: (0) this work; (1) Hildebrand et al. (2018); (2) Brown et al. (2016); (3) Borovička et al. (2017); (4) Borovička et al. (2013b); (5) Borovička
et al. (2013a); (6) Farnocchia et al. (2017); (7) Milley (2010); (8) Jenniskens et al. (2009); (9) Borovička & Charvát (2009); (10) Palotai et al. (2018); (+) JPL
Horizons ephemeris service, using CSS and ATLAS astrometry.

Event Date (UTC) Instruments Location Airburst height Speed Radiant Energy Ref

2018 LA 2018-06-02T16:44:12 CSS NR-L NR-L � � NR-L +
Crawford Bay 2017-09-05T05:11:27 CV, I ≈ � � � � 1
DN170630 – Baird Bay 2017-06-30T14:26:45 P, V � � � � � 0
Dishchii’bikoh 2016-06-02T10:56:32 V, CV � NR-U NR-U NR-U ≈ 10
Romanian 2015-01-07T01:05:59 CV, PE, P � ≈ � ≈ � 2, 3
DN150102 – Kalabity 2015-01-02T13:39:10 P, V � � � � � 0, 2
Chelyabinsk 2013-02-15T03:20:21 CV ≈ � ≈ ≈ � 2, 4
Košice 2010-02-28T22:24:47 V, P, PE � ≈ � ≈ �∗ 2, 5
Buzzard Coulee 2008-11-21T00:26:40 CV � ≈ � � NR-L 2, 7
Almahata Sita (2008 TC3) 2008-10-07T02:45:40 CSS ≈ � � � � 2, 6, 8, 9

erage, but is the currently deployed technology fit to observe such
events?

4.2.1 Night time observations

Fireball observatories are typically optimized to observe the be-
haviour of macroscopic meteorite droppers throughout their trajec-
tory during the night. The challenge is mostly a dynamic range
one: being sensitive enough to observe the smaller meteoroid
at a high altitudes to get precise entry speed for orbit calcula-
tion, whilst not saturating the records of larger rocks shining 100
million times brighter when they reach the dense layers of the
atmosphere.

So far no iron meteorite fall has been instrumentally observed,
but it is expected that this class of objects contains the smallest
meteoroids (i.e. the faintest fireball) that can drop a meteorite, as
their large strength allows them to enter with limited mass-loss due
to fragmentation. For instance, if we assume little to no gross frag-
mentation (Revelle & Ceplecha 1994), to produce a 100 g meteorite
the parent meteoroid (ρ = 7900 kg m−3) can be as small as 0.5 kg
≡ 5 cm diameter, assuming the most favourable entry conditions
(vertical entry at 12 km s−1). It is desirable to observe the meteor
before the rock starts being affected by the atmosphere too much,
80 km altitude at which it would glow at magnitude MV = −1.5
(assuming a luminous efficiency of 0.05).

On the bright end, we look at the compilation of Borovička et al.
(2015) and see that metre-scale events usually approach Mmax

V =
−18, although this is highly dependent on their atmospheric be-
haviour, where and how important the fragmentation events are.

The set goal is then to have instruments that can cover 20 stellar
magnitudes of effective dynamic range.

Long exposure high-resolution fireball camera systems have a
long track record for yielding meteorite ground locations and orbits
(listed as ‘dedicated search from detailed computation of trajectory’
by Borovička et al. 2015), compared to video systems. Thanks to
their logarithmic response, film based imagers cover a very wide dy-
namic range (∼15 stellar magnitudes), but those systems are costly
and impractical for large distributed autonomous fireball networks
(Howie et al. 2017a), and do not achieve the 0 magnitude sensi-
tivity objective. The DFN (Howie et al. 2017a) and the European
Network (Spurný et al. 2016) have recently switched from film
to digital camera technology. This shift has simplified some op-
erational aspects (e.g. enhanced autonomy, better reliability, eased

data reduction), but it has come at the cost of a much limited dy-
namic range: ∼8 magnitudes without saturation. For astrometric
purposes this range can be extended to 15 magnitudes (Deville-
poix et al. 2018), but this is still quite far from the 20 magnitudes
objective.

Video cameras are generally more sensitive than the still imagers,
but suffer from the same limited dynamic range. Although a lot of
events have been recorded, fixed frame rate TV systems have not
been proficient in yielding meteorite fall positions. This is likely to
be due to the low resolution offered by those systems (a PAL video
system with a matching circular fisheye lens has an average pixel
size over 10 × larger than the DFN cameras), and the difficulty of
getting enough stars for astrometric calibration across the field of
view (most of these cameras cannot shoot long exposures). However
recent advances in digital video camera technology allow higher
resolutions, long exposures for calibration, and higher bit depth, so
we expect networks based on these systems to be more successful at
meteorite recovery in the near future (e.g. the Fireball Recovery and
InterPlanetary Observation Network (FRIPON) network of Colas
et al. 2015).

4.2.2 Daytime observations

The easy exposure control on industrial digital cameras allows low-
noise long exposure calibration shot to be taken at night, but also
permits very short exposures to operate during the day. The FRIPON
network endeavours to operate their cameras during both night time
and daytime (Audureau et al. 2014), however fireball detection on
daytime frames appears somewhat challenging (Egal et al. 2016).
Even if calculating fall positions turns out to be difficult from day-
time data, the prospects of being able to calculate orbits for mete-
orites that have been independently recovered are very interesting
(9 out of 14 US meteorite falls in the last 10 yr do not have a tra-
jectory solution published), as the astrometric calibration of casual
footage can be very time consuming.

5 C O N C L U S I O N S

This work investigates the NEO impacting population around the
metre-scale size range. Such events are relatively rare (35–40 per
year), therefore a large collecting area is crucial in order to study
them. The DFN is leading the effort as a ground-based instrument,
covering over 3 million km2.
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Meteoroids that have been observed by both the USG sensors
and independent means comprises a small set of nine events. In
this study we use a precise comparison of these events to assess
the reliability of the USG sensors for NEO studies, yielding the
following unequivocal conclusions:

(i) USG sensors data are generally unreliable for orbit calcula-
tions. The new metre-scale impactors source region of Brown et al.
(2016; HTC) is based on three particular USG meteoroid orbits. We
have shown that two of these are erroneous, seriously questioning
the existence of this source region.

(ii) Size frequency distribution work relies on determining rough
sizes and having a good knowledge of the probing time area. The
USG seem to achieve both with reasonably good precision. This
confirms the sound basis of the work done by Brown et al. (2002)
and Brown et al. (2013).

(iii) Basic impactor physical properties (size and strength) can
be well constrained with USG data. This validates the conclusions
of Brown et al. (2016) that relate to physical properties of objects.

(iv) Based on how often the derived trajectories are wrong, it
would be naive to invest large amounts of resources to undertake
meteorite searching using USG data.

We also note that ground-based fireball networks must find solu-
tions to increase the dynamic range of their observations, in order
to get sound observation data when metre-scale objects impact the
atmosphere.
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Abstract–We describe the fall of the Dingle Dell (L/LL 5) meteorite near Morawa in
Western Australia on October 31, 2016. The fireball was observed by six observatories of
the Desert Fireball Network (DFN), a continental-scale facility optimized to recover
meteorites and calculate their pre-entry orbits. The 30 cm meteoroid entered at
15.44 km s�1, followed a moderately steep trajectory of 51° to the horizon from 81 km
down to 19 km altitude, where the luminous flight ended at a speed of 3.2 km s�1.
Deceleration data indicated one large fragment had made it to the ground. The four person
search team recovered a 1.15 kg meteorite within 130 m of the predicted fall line, after 8 h
of searching, 6 days after the fall. Dingle Dell is the fourth meteorite recovered by the DFN
in Australia, but the first before any rain had contaminated the sample. By numerical
integration over 1 Ma, we show that Dingle Dell was most likely ejected from the Main
Belt by the 3:1 mean motion resonance with Jupiter, with only a marginal chance that it
came from the m6 resonance. This makes the connection of Dingle Dell to the Flora family
(currently thought to be the origin of LL chondrites) unlikely.

INTRODUCTION

As of mid-2017, there are nearly 60k meteorite
samples classified in the Meteoritical Bulletin Database.1

However, aside from a handful of Lunar (≃300) and
Martian (≃200) meteorites that have a well-known origin,
the link with other solar system bodies is limited. From
the instrumentally documented fall of the P�r�ıbram
meteorite in 1959 (Ceplecha 1961), we learned that
chondritic material comes from the asteroid Main Belt.
The way this material evolves onto an Earth crossing
orbit starts with a disruption in the Main Belt. The small
members of the debris field can be strongly affected by
the Yarkovsky effect (Farinella et al. 1998) and as a
consequence their semimajor axis is continually altered.
If the debris field is close to a powerful resonance (in
semimajor axis, inclination, eccentricity space), the
breakup event feeds material into that resonance, which
will in turn push the debris’ perihelia into the inner solar

system. This can occur on a time scale of less than a
million years in some cases (Morbidelli et al. 1994).

Calculating the orbit of a meteoroid using only the
luminous trajectory as the observation arc is in most
cases not precise enough to allow unequivocal
backtracking into a specific region of the Main Belt,
hence the statistical results reported by Bland et al.
(2009); Brown et al. (2011); Jenniskens et al. (2014); and
Trigo-Rodr�ıguez et al. (2015). In order to understand
the origin of the different groups of meteorites from the
main asteroid belt, it is therefore essential to collect
several dozen samples with orbits and look at source
regions in a broader, statistical way.

Dedicated Networks to Recover Meteorites with Known

Provenance

In the decade following 2000, the recovery rate of
meteorites with determined orbits has dramatically
increased (Borovi�cka et al. 2015), without a significant
increase in collecting area of the major dedicated fireball1https://www.lpi.usra.edu/meteor/metbull.php

Meteoritics & Planetary Science 1–16 (2018)

doi: 10.1111/maps.13142

1 © The Meteoritical Society, 2018.
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networks. While the initial phase of the Desert Fireball
Network (DFN) started science operations in December
2005, covering 0.2 9 106 km2 (Bland et al. 2012), other
major networks ceased operations. The Prairie network
in the United States (0.75 9 106 km2 [McCrosky and
Boeschenstein 1965]) shut down in 1975, the Canadian
Meteorite Observation and Recovery Project (MORP)—
1.3 9 106 km2—stopped observing in 1985 (Halliday
et al. 1996), and the European Network’s covering area
of ~1 9 106 km2 has not significantly changed (Oberst
et al. 1998). If not due to a larger collecting area, this
increase can be explained by other factors as follows.
1. Existing networks improving their data reduction

techniques (Spurn�y et al. 2014).
2. Democratization and cheap operating cost of

recording devices (surveillance cameras, consumer
digital cameras, etc.) (Borovi�cka et al. 2003).

3. Use of Doppler radar designed for weather
observations to constrain the location of falling
meteorites (Fries and Fries 2010; Jenniskens et al.
2012; Fries et al. 2014).

4. Deployment of the Desert Fireball Network
expressly on favorable terrain to search for
meteorites. In its early stage, within its first 5 years
of science operation, the DFN yielded two
meteorites (Bland et al. 2009; Spurn�y et al. 2011),
while MORP only yielded one (Halliday et al. 1981)
in 15 years of operations over a larger network.

5. To a lesser extent, development of NEO telescopic
surveillance programs. One single case so far (the
Catalina Sky Survey detecting the Almahata Sita
meteoroid several hours before impact [Jenniskens
et al. 2009]); however, this technique is likely to
yield more frequent successes with new deeper and
faster optical surveyors, like LSST, which comes
online in 2021 (Ivezic et al. 2008).
The DFN started developing digital observatories

to replace the film-based network in 2012 with the goal
of covering 106 km2, the more cost-effective than
expected digital observatories allowed the construction
of a continent-scale network covering over
2.5 9 106 km2 (Howie et al. 2017a). This program
rapidly yielded results, less than a year after starting
science operation (in November 2014). One of the
observatories lent to the SETI institute in California
was a crucial viewpoint to calculating an orbit for the
Creston fall in California in October 2015 (Meteoritical
Bulletin 2015), and the first domestic success came
2 months later with the Murrili meteorite recovery on
Kati Thanda–Lake Eyre (Devillepoix et al. 2016;
Meteoritical Bulletin 2016). We report here the analysis
of observations of a bright fireball that led to the fourth
find by the Desert Fireball Network in Australia: the
Dingle Dell meteorite. Dingle Dell was originally

classified as an LL ordinary chondrite, petrographic
type 6 (Meteoritical Bulletin 2017). However, further
analysis revealed that it in fact sits on the L/LL
boundary (Benedix et al. 2017). The sample has
experienced a low level of shock, but has been heated
enough to show recrystallization of minerals and
matrix. There is no evidence of terrestrial weathering
visible on the metal or sulfide grains, which is consistent
with its extremely fast retrieval from the elements.

Current Understanding of the Origin of the Main Groups

of L and LL Chondrites

L Chondrites
L chondrites represent 32% of total falls. Schmitz

et al. (2001) first identified a large amount of fossil L
chondrites meteorites in ≃467 Ma sedimentary rock,
which suggests that a breakup happened not too long
before, near an efficient meteorite transport route. From
spectroscopic and dynamical arguments, Nesvorn�y et al.
(2009) proposed that the Gefion family breakup event,
close to the 5:2 MMR with Jupiter, might be the source of
this bombardment, given the rapid delivery time, and a
likely origin of L chondrite asteroids outside of the 2.5
AU. Most shocked L5 and L6 instrumentally observed
falls also seem to come from this breakup, with an
39Ar-40Ar age around ≃470 Ma ago: Park Forest (Brown
et al. 2004), Novato (Jenniskens et al. 2014), Jesenice
(Spurn�y et al. 2010), and Innisfree (Halliday et al. 1981).
Only the Villalbeto de la Pe~na L6 (Trigo-Rodr�ıguez et al.
2006) does not fit in this story because of its large cosmic
ray exposure age (48 Ma), inconsistent with a 8.9 Ma
collisional lifetime (Jenniskens 2014).

LL Chondrites
Thanks to Vernazza et al. (2008), we know that S-

and Q-type asteroids observed in NEO space are the
most likely asteroidal analog to LL-type ordinary
chondrites. The Hayabusa probe returned samples from
S-type (25143) Itokawa, finally unequivocally matching
the largest group of meteorites recovered on Earth
(ordinary chondrites) with the most common spectral
class of asteroids in the Main Belt (Nakamura et al.
2011). The sample brought back from Itokawa is
compatible with LL chondrites. Indeed, LL compatible
asteroids make up two thirds of near-Earth space. The
spectrally compatible Flora family from the inner Main
Belt can regenerate this population through the m6
secular resonance. But one large problem remains: only
8% of falls are LL chondrites (Vernazza et al. 2008).
The orbits determined for some LL samples have so far
not helped solve this issue. If we exclude Bene�sov
(Spurn�y et al. 2014), which was a mixed fall, scientists
had to wait until 2013 to get an LL sample with a

2 H. A. R. Devillepoix et al.
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precisely calculated orbit: Chelyabinsk (Borovi�cka et al.
2013; Brown et al. 2013). The preatmospheric orbit and
composition of the Chelyabinsk meteorite seems to
support the Flora family origin for LL chondrites,
although a more recent impact could have reset the
cosmic ray exposure age to 1.2 � 0.2 Ma, and the
presence of impact melts (very rare in ordinary
chondrites due to the large impact velocities required
[Keil et al. 1997]). Reddy et al. (2014) argued that an
impact melt such as the one observed in the
Chelyabinsk meteorites, or shock darkening, can alter
the spectra of an S/Q-type asteroid to make it look like
a C/X-type spectrally. The implication of this is that the
Baptistina family members (C/X-type), which overlaps
dynamically with the Flora (S-type), could be the
remains of a large impact on a Florian asteroid, and
meteorites from both families can be confused both in
their spectral signature and dynamical origin. It must be
noted however that Reddy et al. (2014) do not make
any conclusions on the origin of Chelyabinsk from the
Baptistina family. The Chelyabinsk meteorite is also not
a typical LL sample found on Earth, because of its size
(≃17 m) and the presence of impact melts.

Based on its classification, we put the orbit of the
Dingle Dell meteorite in context with other calculated
orbits from L and LL chondrites and discuss the
resonances from which it may have originated.

FIREBALL OBSERVATION AND TRAJECTORY

DATA

On Halloween night shortly after 8 PM local time,
several reports of a large bolide were made via the
Fireballs In The Sky smartphone app (Sansom et al. 2016)
from the Western Australian Wheatbelt area. These were
received a few hours prior to the daily DFN observatory
reports, apprising the team of the event expeditiously. The
DFN observatory sightings are routinely e-mailed after
event detection has been completed on the night’s data set.
It revealed that six nearby DFN observatories
simultaneously imaged a long fireball starting at
12:03:47.726 UTC on October 31, 2016 (Fig. 1).

Instrumental Records

The main imaging system of the DFN fireball
observatories is a 36 MPixel sensor: Nikon D810 (or
D800E on older models), combined with a Samyang
lens 8 mm F/3.5. Long-exposure images are taken every
30 s. The absolute and relative timing (from which the
fireball velocity is derived) is embedded into the
luminous trail by use of a liquid crystal (LC) shutter
between the lens and the sensor, modulated according
to a de-Brujin sequence (Howie et al. 2017b). The LC

shutter operation is tightly regulated by a
microcontroller synced with a Global Navigation
Satellite System (GNSS) module to ensure absolute
timing accurate to �0.4 ms. For further details on DFN
observatory specifications, see Howie et al. (2017a).

Some DFN observatories also include video systems
operating in parallel with the long-exposure
photographic imaging system (Table 1). The video
cameras are Watec 902H2 Ultimate CCIR (8 bit 25
interlaced frames per second), with a Fujinon fisheye
lens. Originally intended as a backup device for
absolute timing, these video systems have been retained
for future daytime observation capabilities. Here we
make use of the video data to acquire a light curve, as
the event saturated the still camera sensors. The closest
camera system to this event was in Perenjori (Table 1),

Fig. 1. Cropped all-sky images of the fireball from the six
DFN observatories. Images are of the same pixel scale with the
center of each image positioned at the observatory location on
the map (with the exception of Perenjori, whose location is
indicated). The Badgingarra image is cropped because the
sensor is not large enough to accommodate the full image circle
on its short side. The saturation issue is exacerbated by light
scattered in the clouds on cameras close to the event, this is
particularly visible on the Perenjori image. The black blotch in
the Perenjori image is an artifact that thankfully did not extend
far enough to affect the quality of the data. Approximate
trajectory path shown by orange arrow. Location of the
recovered meteorite is shown by the red dot.
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located almost directly under the fireball, and was the
only station to image the end of the luminous trajectory
(Fig. 1). Other nearby camera sites were overcast and
did not record the event. In order to triangulate the
trajectory of the fireball, distant stations had to be used,
all over 200 km away. The Hyden, Kukerin, and
Newdegate systems were all around 500 km from the
event and, although still managing to capture the
fireball, were too low on the horizon for accurate
calibration (Fig. 2).

Astrometry

All images captured by the DFN observatories are
saved even when no fireball is detected. This is possible
thanks to the availability of large-capacity hard drives

at reasonable costs. Not only does this mitigate event
loss during initial testing of detection algorithms but it
also gives a snapshot of the whole visible sky down to
7.5 point source limiting magnitude, every 30 s. The
astrometric calibration allows the points picked along
the fireball image to be converted to astrometric sky
coordinates. The associated astrometric uncertainties are
dominated by the uncertainty on identifying the
centroids along the segmented fireball track.

We have carried out studies on the long-term
camera stability by checking the camera pointing using
astrometry. On the outback system tested, the pointing
changed less than 10 over the 3-month period assessed.
The pointing is therefore remarkably stable, and the
relevant fireball image can thus be astrometrically
calibrated using a picture taken at a different epoch.

Table 1. Locations and nature of instrumental records. We use cameras <400 km away for trajectory determination.

Observatory Instruments Latitude Longitude Altitude (m) Distance a (km)

Perenjori P, V 29.36908 S 116.40654 E 242 91
Badgingarra P 30.40259 S 115.55077 E 230 204
Northam P 31.66738 S 116.66571 E 190 323

Hyden P 32.40655 S 119.15325 E 390 484
Kukerin P 33.25337 S 118.00628 E 340 520
Newdegate P 33.05436 S 118.93534 E 302 534

P = Photographic record (exposures: 25 s, 6400 ISO, F/4.); V = video record.
aDistance from the meteoroid at 70 km altitude.

Fig. 2. Configuration of DFN station observations for the Dingle Dell fireball. White rays show observations used in
triangulation of the trajectory (approximated to the yellow line, starting NE and terminating to the SW of Perenjori). Hyden,
Newdegate, and Kukerin stations were all around 500 km away from the event and were not used in triangulation.
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This is particularly useful when a bright fireball
overprints nearby stars, and especially in this case where
clouds are present. In general however, we aim to use a
calibration frame taken as close as possible from the
science frame, particularly when studying an important
event, such as a meteorite fall. In the following
paragraph, we present the methods used for
astrometrically calibrating the still images, using as an
example the Perenjori data. This technique is
implemented in an automated way in the reduction
pipeline for all detected events.

The astrometric solution for the Perenjori camera is
obtained using an image taken a few hours after the
event, once the clouds had cleared (2016-10-31T16:00:30
UTC), containing 1174 stars of apparent magnitude
mV 2 [1.5, 5.5]. A third-order polynomial fit is
performed to match detected stars to the Tycho-2 star
catalogue. The transformation is further corrected using
a second-order polynomial on the radial component of
the optics. The stability of the solution can be checked
at regular intervals. The slight degradation in altitude
precision for altitudes below 20° in Fig. 3 is due to a
partly obstructed horizon from this camera (e.g., trees,
roofs). This degradation usually starts around 10° on
cameras with a clear horizon, as is the case for most
outback systems.

The beginning of the fireball on the Perenjori image
is partially masked by clouds, yielding only a handful of
points. The middle section is not usable as the sensor
was saturated in large blobs, rendering impossible
timing decoding or even reliable identification of the
center of the track. However, the Perenjori image
provides a good viewpoint for the end of the fireball.

Well-calibrated data were also obtained from the
Badgingarra camera, before it went outside the sensor
area at 30.6 km altitude. Although the Northam camera
was very cloudy, we were able to pick the track of the
main meteoroid body without timing information, and
use it as a purely geometric constraint. Hyden, Kukerin,
and Newdegate also picked up the fireball; however, the
astrometry so low on the horizon (<5°) was too
imprecise (between 2 and 4 arcminutes) to refine the
trajectory solution.

Photometry

The automated DFN data reduction pipeline
routinely calculates brightness for nonsaturated fireball
segments. For this bright event however, the brightness
issue was exacerbated by large amounts of light
scattered in the clouds (Fig. 1), so it was impossible to
produce a useful light curve from the photograph. On
the other hand, the Perenjori observatory recorded a
low-resolution compressed video through the clouds.
Although it is not possible to calibrate this signal, we
can get a remarkably deep dynamic range reading of
the all-sky brightness, thanks to the large amount of
light scattered in the numerous clouds. By deinterlacing
the analog video frames, we were able to effectively
double the time resolution (25 interlaced frames per
second to 50 fields per second, which are equally as
precise for all-sky brightness measurements). To correct
how the auto-gain affects the signal, we perform
aperture photometry on Venus throughout the event.
The analog video feed is converted to digital by the
Commell MPX-885 capture card, and then processed by
the compression algorithm (H264 VBR, FFmpeg
ultrafast preset) (Howie et al. 2017a) before being
written to disk, divided into 1 minute long segments.
The PC clock is maintained by the Network Time
Protocol (NTP) service, fed with both GNSS and
network time sources. However, the timestamp on the
file created by the PC suffers from a delay. We
measured the average delay using a GPS video time
inserter (IOTA-VTI) on a test observatory. This
allowed us to match the light curve obtained from the
video to astrometric data to within 20 ms. Peak A in
Fig. 4 is visible on the photographs from both
Badgingarra and Hyden. These are used to validate the
absolute timing alignment of the video data.

Fig. 3. Residuals on the global astrometric solution for the
Perenjori camera. The pixel size at the center of the FoV is
shown by the gray square in order to gauge the quality of the
solution, as well as the 1r residual bars on the stars. The
azimuth residuals are artificially large around the pole of the
spherical coordinate system, so we have multiplied them by
cos(elevation) to cancel out this artifact.
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Eye Witnesses

Three anecdotal reports of the fireball were received
via the Fireballs in the Sky smartphone app (Paxman
and Bland 2014; Sansom et al. 2016) within 2 hours of
the event (Table 2). The free app is designed to enable
members of the public to easily report fireball sightings.
Phone GPS, compass, and accelerometers are utilized to
report the direction of observations, while a fireball
animation aids users in estimating the color, duration,
and brightness of the event. This app is an interactive
alternative to the popular web-based reporting tool of
the International Meteor Organization (Hankey and
Perlerin 2015).

The app reports were the first notification of the
fireball received by the DFN team, even before the
receipt of daily e-mails from the fireball observatories.
The azimuth angles reported by the observers were not
sufficiently consistent to enable a triangulation based on
app reports alone.

The fireball was also reported by several nearby
witnesses, and was described in detail by an eye witness
only 7.4 km from the fall position (Table 2) who also
reported hearing sounds, which due to the time of
arrival may have been electrophonic in nature (Keay
1992).

FIREBALL TRAJECTORY ANALYSIS

Geometry

To determine the trajectory of the fireball through
the atmosphere, we used a modified version of the
Borovi�cka (1990) straight-line least squares (SLLS)
method. This involves creating a radiant in 3-D space
that best fits all the observed lines of sight, minimizing
the angular residuals between the radiant line and the
observed lines of sight. While angular uncertainties will
be similar across different camera systems, the effect of
distance results in larger cross-track errors for more
distant observatories (Fig. 5), and therefore less
influence on the resulting radiant fit. The end of the
fireball from the Perenjori image was used, along with
Badgingarra and Northam camera data to triangulate
the geometry of the fireball trajectory. The inclusion of
astrometric data from Hyden, Kukerin, and Newdegate
(see the Astrometry section) degraded the solution: the
cross-track residuals from all viewpoints increased
significantly, suggesting a systematic issue with the
abovementioned camera data. Therefore, we only used
the trajectory solution yielded by the three closest view
points (Fig. 5). The best combination of viewpoints
(Perenjori and Badgingarra) yields an excellent
convergence angle of 86°. The trajectory solution points
to a moderately steep entry with a slope of 51° from the
horizon, with ablation starting at an altitude of 80.6 km
and ending at 19.1 km (see Table 3).

Dynamic Modeling of the Trajectory, Including Velocity

and Mass Determination

Filter Modeling
The method described in Chapter 4 of Sansom

(2016) is an iterative Monte Carlo technique that aims
to determine the path and physical characteristics such
as shape (A: the cross section area to volume ratio),
density (qm), and ablation coefficient (r) of a meteoroid
from camera network data. In this approach, one is
able to model meteoroid trajectories based on raw
astrometric data. This avoids any preconceived
constraints imposed on the trajectory, such as the

Fig. 4. All-sky brightness (sum of all the pixels) from the
video camera at the Perenjori observatory. The light curve is
corrected to take into account the effect of auto-gain.

Table 2. Observer reports from eyewitness accounts and Fireballs in the Sky app (FITS).

Reporting means
Report
time (UTC) Location

Approx. distance
from event (km)

Reported
duration (s)

Reported brightness
(stellar Mag)

Reported
color

FITS 12:04 Perth region 300 2.6 �8 Orange
FITS 12:59 Ballidu 150 6.4 �7 Green
FITS 13:35 Dowerin 230 8.6 �9 Pink
Eye witness N/A Koolanooka Hills 7.4 >5 >�12.6 (full moon)
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straight-line assumption used in the Geometry section.
Unfortunately, this requires multiple viewpoints with
accurate absolute timing information to record the
meteoroid position. For this event, timings encoded in
the trajectory were distinguishable for only the initial
4.2 s by the Badgingarra system (before any significant
deceleration) and for the final 1.1 s by the Perenjori
system. In this case, we must rely on the straight-line
least squares (SLLS) triangulation to determine
meteoroid positions (see the Geometry section). We
therefore applied the three-dimensional particle filter
model outlined in Chapter 4 of Sansom (2016) using
instead triangulated geocentric coordinates as
observation measurements. Uncertainties associated
with using pretriangulated positions based on an
assumed straight-line trajectory are incorporated. The
distribution of particle positions using such observations
will be overall greater than if we had been able to use
the raw measurements.

As a straight line may be an oversimplification of
the trajectory to most reliably triangulate the end of the

luminous flight using the SLLS method, the final 1.1 s
was isolated (this being after all major fragmentation
events described in the Atmospheric Behavior section).
The filter was run using these positions and initiated at
t0 = 5.0 s (2016-10-31T12:03:52.726 UTC). Particle mass
values at this time would be more suitably initiated
using a logarithmic distribution in the range from 0 kg
to 1000 kg. The initiation of other filter parameters,
including the multimodal density distribution, are
described in Sansom et al. (2017) with ranges given in
table 1 of their work. As a calibrated light curve was
not attainable, brightness values were not included in
this analysis, making it a purely dynamic solution. The
adaptive particle filter technique applied here uses the
same state vector and three-dimensional state equations
as in Chapter 4 of Sansom (2016) to evaluate the
meteoroid traveling through the atmosphere. As we are
using pretriangulated geocentric positions as
observations, the measurement function here is linear.
The particles are still allowed to move in 3-D space,
and an evaluation of the model fit is performed as the
absolute distance between the pretriangulated SLLS
point and the evaluated particle position. This is shown
in Fig. 6 for all particles, with the distance to the mean
value also shown. Mean particle positions show a good
fit to the SLLS triangulated observations, with a
maximum of 30 m differences early on, decreasing to
6 m at the end.

The filter estimates not only the position and
velocity of the meteoroid at each observation time but
also the mass; ablation coefficient, r; and shape density
coefficient, j. At the final observation time tf = 6.1 s
(2016-10-31T12:03:53.826 UTC), the state estimate
results in weighted median values of massf = 1.49 �
0.23 kg, speedf 3359 � 72 m s�1, rf = 0.0154 � 0.0054
s2 km�2, and jf = 0.0027 � 0.0001 (SI). Although j
may be used to calculate densities for a given shape and
drag coefficient, to avoid introducing assumptions at
this stage we may gauge its value by reviewing the
density with which surviving particles were initiated.
The distribution of final mass estimates is plotted
against this initial density attributed to each given

Fig. 5. Cross-track residuals of the straight-line least squares
fit to the trajectory from each view point. These distances
correspond to astrometric residuals projected on a
perpendicular plane to the line of sight, positive when the line
of sight falls above the trajectory solution. Note that the
larger residuals on the Northam camera do not equate to
larger astrometric uncertainties, but rather reflect a rather
large distance from the observatory. The distances in the
legend correspond to the observation range [highest point–
lowest point].

Table 3. Summary table of bright flight events. Fragmentation event letters are defined on the light curve (Fig. 4).

Event Timea (s) Speed (m s�1) Height (m) Longitude (°E) Latitude (°N) Dynamic pressure (MPa)

Beginning 0.0 15443 � 60 80594 116.41678 �28.77573

A 1.20 15428 65819 116.36429 �28.86973 0.03
B 1.72 15401 59444 116.34151 �28.91045 0.08
C 1.96 15378 56531 116.33108 �28.92909 0.11
D 4.08 13240 32036 116.24270 �29.08672 2.28

E 4.58 10508 27302 116.22547 �29.11738 3.09
F 4.84 8988 25019 116.21716 �29.13217 3.27
Terminal 6.10 3243 � 465 19122 116.19564 �29.17045
aPast 2016-10-31T12:03:47.726 UTC.
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particle in Fig. 7, along with the recovered Dingle Dell
meteorite mass of 1.150 kg and bulk density of
3450 kg m�3. In this figure, the distribution of the main
cluster of particles is consistent with the recovered mass;
however, the initial densities are lower. The weighted
median value of initial bulk densities (at t0 = 5.0 s) for
all particles resampled at tf is 3306 kg m�3. It is
expected that the bulk density of a meteoroid body may
slightly increase throughout the trajectory as lower
density, more friable material is preferentially lost. This
could justify the slightly lower bulk densities attributed
at t0.

In order to obtain the entry speed of the meteoroid
with appropriate errors, we apply an extended Kalman
smoother (Sansom et al. 2015) to the straight-line
solution for the geometry, considering the timing of the
points independently for each observatory. Of the two
cameras that have timing data for the beginning of the
trajectory, only Badgingarra caught the start, giving an
entry speed of 15402 � 60 m s�1 (1r) at 80596 m
altitude. To determine whether speeds calculated are
consistent between observatories, the first speed
calculated for Perenjori—15384 � 64 m s�1 at 75548 m
altitude—is compared to the Badgingarra solution at
this same altitude �15386 � 43 m s�1. The results are

remarkably consistent, validating the use of a Kalman
smoother for determining initial velocities.

Dimensionless Coefficient Method
As a comparison to the particle filter method, the

dimensionless parameter technique described by
Gritsevich (2009) was also applied. The ballistic
parameter (a) and the mass loss parameter (b) were
calculated for the event, resulting in a = 9.283 and
b = 1.416 (Fig. 8). As the particle filter technique in this
case was not able to be performed on the first 5.0 s of
the luminous trajectory, these parameters may be used
to determine both initial,2 and final3 main masses, given
assumed values of the shape and density of the body.
Using the same parameters as Gritsevich (2009) (cd = 1,
A = 1.55) along with the density of the recovered
meteorite, q = 3450 kg m�3 gives an entry mass,
me = 81.6 kg, and a mf = 1.4 kg. Varying the shape of
the body to spherical values, A = 1.21 (Bronshten 1983)
gives an initial mass of me = 38.8 kg. Instead of
assuming values for cd and A, we can also insert the j
value calculated by the particle filter to give
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Fig. 6. Position residuals of the 3D particle filter fit to the SLLS triangulated observations for the final 1.1 s of the luminous
trajectory. Individual particle weightings are shown in grayscales, with weighted mean values shown in red.

2See equation 14 in Gritsevich (2009).
3See equation 6 in Gritsevich (2009).

8 H. A. R. Devillepoix et al.

244 H. A. R. DEVILLEPOIX



me = 41.1 kg. These results can be approximated to a
30 cm diameter initial body. Note that this method is
the most reliable for calculating a minimum entry mass
of the Dingle Dell meteoroid. The photometric method
would require a calibrated light curve, and the particle
filter method requires good astrometric data coverage

where significant deceleration occurs (the missing data
between 4.2 and 5.0 s).

Atmospheric Behavior

In Table 3, we report the ram pressure (P = qav
2)

required to initiate the major fragmentation events
labeled on the light curve in Fig. 4. The density of the
atmosphere, qa, is calculated using the NRLMSISE-00
model of Picone et al. (2002), and v is the calculated
speed. The meteoroid started fragmenting quite early
(events A, B, and C), starting at 0.03 MPa. These early
fragmentation events suggest that the meteoroid had a
much weaker lithology than the meteorite that was
recovered on the ground. Then no major fragmentation
happened until two very bright peaks in the light curve:
D (2.28 MPa) and E (3.09 MPa). These large short-
lived peaks suggest a release of a large number of small
pieces that quickly burnt up. A small final flare (F
�3.27 MPa) 1.26 s before the end is also noted.

DARK FLIGHT AND METEORITE RECOVERY

The results of the dynamic modeling (Fig. 7) are fed
directly into the dark flight routine. By using the state
vectors (both dynamical and physical parameters) from
the cloud of possible particles, we ensure that there is
no discontinuity between the bright flight and the dark
flight, and we get a simulation of possible impact points

Fig. 7. Results of the 3D particle filter modeling, showing the distribution of final mass estimates along with the densities with
which particles were initiated at t0 = 5 s. Mass estimates are consistent with the recovered meteorite mass found (red cross), with
initial densities slightly below the bulk rock value.
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Fig. 8. Trajectory data from both Perenjori and Badgingarra
observatories, with speeds normalized to the speed at the top
of the atmosphere (15.443 km s�1; Table 3), V0, and altitudes
normalized to the atmospheric scale height, h0 = 7.16 km. The
best fit to equation 10 of Gritsevich (2009) results in a = 9.283
and b = 1.416 and is shown by the blue line. These
dimensionless parameters can be used to determine the entry
and terminal mass of the Dingle Dell meteoroid.
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on the ground that is representative of the modeling
work done on bright flight data.

Wind Modeling

The atmospheric winds were numerically modeled
using the Weather Research and Forecasting (WRF)
software package version 3.8.1 with the Advanced
Research WRF (ARW) dynamic solver (Skamarock
et al. 2008). The weather modeling was initialized using
global 1° resolution National Centers for Environmental
Prediction (NCEP) Final Analysis (FNL) Operational
Model Global Tropospheric Analysis data. As a result,
a 3 km resolution WRF product with 30 minutes
history interval was created and weather profile at the
end of the luminous flight for 2016-10-31T12:00 UTC
was extracted (Fig. 9). The weather profile includes
wind speed, wind direction, pressure, temperature, and
relative humidity at heights ranging up to 30 km
(Fig. 9), providing complete atmospheric data for the
main mass from the end of the luminous phase to the
ground, as well as for fragmentation events E and F
(Table 3). Different wind profiles have been generated,
by starting the WRF integration at different times: 2016
October 30d12h, 30d18h, 31d00h, 31d06h, and 31d12h
UTC. Three of the resulting wind models converge to a
similar solution in both speed and direction (30d12h,
31d00h, 31d12h) and will be hereafter referred to as
solution W1 (Fig. 9). The other two models from
30d18h (W2) and 31d00h (W3) differ significantly. For
example, the maximum jet stream strength is ≃47 m s�1

for W1, ≃34 m s�1 for W3, and ≃29 m s�1 for W2. To
discriminate which wind profile is closer to the truth, we
ran the model next to the Geraldton balloon launches
of 2016 October 31d00h and 31d06h UTC, but no
discrepancy was noticeable between all five scenarios.
Considering that three model runs clump around W1,
whereas W3 and W2 are isolated, we choose W1 as a
preferred solution. The investigation of why W3 and
W2 are different is beyond the scope of this paper,
nonetheless we discuss how these differences affect the
dark flight of the meteorites in the next section.

Dark Flight Integration

The dark flight calculations are performed using an
eighth-order explicit Runge–Kutta integrator with
adaptive step-size control for error handling. The
physical model uses the single body equations for
meteoroid deceleration and ablation (Hoppe 1937;
Whipple 1939). In this model, rotation is accounted for
such that the cross-sectional area to volume ratio (A)
remains constant throughout the trajectory. The
variation in flow regimes and Mach ranges passed

through the body alter the values used for the drag
coefficient, which can be approximated using table 1 in
Sansom et al. (2015). The integration of all the particles
from the Dynamic Modeling of the Trajectory,
Including Velocity and Mass Determination section
allows the generation of probability heat maps to
maximize field searching efficiency. The ground impact
speed for the mass corresponding to the recovered
meteorite is evaluated at 67 m s�1.

In calculating a fall line for an arbitrary range of
masses, the assumed shape of the body and the wind
model used both affect the final fall position. However
for a given wind model, a change in shape only shifts
the masses along the fall line.

We also calculate dark flight fall lines from
fragmentation events that happened within the wind
model domain: E and F. Unsurprisingly, the main
masses from those events are a close match to the
corresponding main mass started from the end of the
visible bright flight. However, small fragments are
unlikely to be found as they fell into the Koolanooka
Hills bush land (Fig. 10).

Search and Recovery

Within 2 days, two of the authors (PB and MT)
visited the predicted fall area, about 4 hours’ drive from
Perth, Western Australia to canvas local farmers for
access and information. Having gained landowner
permission to search, a team was sent to the area 3 days
later. Searching was carried out by a team of four (MT,
BH, TJS, and HD), mostly on foot and with some use
of mountain biking in open fields. The open fields’
searching conditions were excellent, although the field
boundaries were vegetated. The team managed to cover
about 12 ha per hour when looking for a >1 kg mass
on foot. On the second day, a meteorite was found
(Fig. 11) close to the Dingle Dell farm boundary, at
coordinates k = 116.215439° φ = �29.206106°
(WGS84), about 130 m from the originally calculated
fall line, after a total of 8 h of searching. The recovered
meteorite weighs 1.15 kg, with a rounded brick shape of
approximately 16 9 9 9 4 cm, and a calculated bulk
density of 3450 kg m�3 (Fig. 11). The condition of the
meteorite is excellent, having only been on the ground
for 6 days, 16 h. Discussion with the local landowner,
and checking the weather on the nearest Bureau Of
Meteorology observation station (Morawa Airport,
20 km away) showed that no precipitation had fallen
between times of landing and recovery. The meteorite
was collected and stored using a Teflon bag, and local
soil samples were also collected in the same manner for
comparison. No trace of impact on the ground was
noticed. The meteorite was found intact (entirely
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covered by fusion crust) on hard ground, resting up-
right (Fig. 11), and covered with dust. So it is possible
that the meteorite fell a few meters away in softer
ground and bounced or rolled to the recovered position.

PRE-ENCOUNTER ORBIT

The backward propagation of the observed
trajectory into an orbit requires the calculation of the
direction of the fireball (known as the radiant), and the
position and speed at the top of the atmosphere. The
associated uncertainties on these two components are
mostly uncorrelated. In order to minimize issues
associated with the oversimplified straight-line trajectory
for orbit purposes, we retriangulate the observations
using only points that fall >60 km altitude on the initial
triangulation. In this case, as the trajectory is fairly
steep, the difference in apparent radiant between the
two solutions is less than 5 arcmin. To calculate the
errors on the radiant, we use the covariance matrix
from the least squares trajectory fit (see the Geometry
section), this gives us the apparent radiant: slope to the
horizontal = 51.562 � 0.002°, azimuth of the radiant
(East of North) = 206.17 � 0.03°, which corresponds to
(a = 173.38 � 0.02°, d = �6.34 � 0.01°) in equatorial
J2000 coordinates.

To calculate the formal uncertainty on the initial
velocity, we apply the Kalman filter methods of Sansom
et al. (2015) as outlined in the Dynamic Modeling of
the Trajectory, Including Velocity and Mass
Determination section. Using the time, position,

radiant, speed, and associated uncertainties, we
determine the preatmospheric orbit by propagating the
meteoroid trajectory back through time, considering the
atmospheric effects, Earth’s oblate shape effects (J2),
and other major perturbing bodies (such as the Moon
and planets), until the meteoroid has gone beyond 109
the Earth’s sphere of influence. From here, the
meteoroid is propagated forward in time to the impact
epoch, ignoring the effects of the Earth–Moon system.
Uncertainties (Table 4) are calculated using a Monte
Carlo approach on 1000 test particles randomly drawn
using uncertainties on the radiant and the speed
(Fig. 12).

We scanned the Astorb4 asteroid orbital database
(Bowell et al. 2002) for close matches in a, e, i, x, O
orbital space using the similarity criterion of
Southworth and Hawkins (1963). The closest match is
the small (H = 24.6) 2015 TD179 asteroid that came
into light in November 2015 when it flew by Earth at
≃10 lunar distances. But the large difference between
these orbits, D = 0.04, makes the dynamical connection
between the two highly unlikely.

To calculate the likely source region and dynamical
pathway that put the meteoroid on an Earth crossing
orbit, we use the Rebound integrator (Rein and Tamayo
2015) to backward propagate the orbit of the meteoroid.
We use 10,000 test particles randomly selected using the
radiant and speed uncertainties as explained above, as
well as the major perturbating bodies (Sun, eight planets,
and Moon). The initial semimajor axis (Table 4) is close
to the 7:2 (2.25 AU) and 10:3 (2.33 AU) mean motion
resonances with Jupiter (MMRJ). These minor
resonances start to scatter the eccentricity of a large
number of test particles very early on, but neither are
strong enough to decrease it significantly enough to take
the meteoroid outside of Mars’ orbit. Because of the
interactions with the inner planets, the particle cloud
rapidly spreads out, and particles gradually start falling
into the two main dynamical pathways in this region: 3:1
MMRJ (2.5 AU) and the m6 secular resonance. These
resonances rapidly expand the perihelia of particles out of
the Earth’s orbit initially, and eventually out of Mars’
orbit and into the Main Belt.

During the integration over 1 Myr, we count the
number of particles that have converged close to stably
populated regions of the Main Belt, and note which
dynamical pathway they used to get there. This gives us
the following statistics:
1. m6: 12%
2. 3:1 MMRJ: 82%
3. 5:2 MMRJ: 6%

Fig. 9. Wind model profile W1, extracted as a vertical profile
at the coordinates of the lowest visible bright flight
measurement.

4ftp://ftp.lowell.edu/pub/elgb/astorb.html, downloaded June 24, 2017.
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CONCLUSIONS

Dingle Dell is the fourth meteorite with an orbit
recovered by the DFN in Australia. Its luminous
trajectory was observed by six DFN camera stations up
to 535 km away at 12:03:47.726 UTC on 31 October,
2016. Clouds severely affected the observations, but
enough data were available to constrain the search area
for a swift recovery, and determine one of the most
precise orbits linked to a meteorite. The surviving rock
was recovered within a week of its fall, without any
precipitation contaminating the rock, confirming the
DFN as a proficient sample recovery tool for planetary
science. This recovery, in less than ideal conditions, also
validates various choices in the design and operations of
the Desert Fireball Network:
1. Use of high-resolution digital cameras to enable

reliable all-sky astrometry for events up to 300 km
away.

2. Uninterrupted operation even when a large portion
of the sky is cloudy for individual systems.

3. Archiving of all raw data to mitigate event
detection failures.
While the method of Sansom et al. (2017) was still

in development at the time of the fall, the reanalysis of
the fireball with this new technique is remarkably
consistent with the main mass found, requiring just a
small number of high-quality astrometric data points.
This validates the method, and will drastically reduce
the search area for future observed falls.

After a 1 million year integration of 10,000 test
particles, it is most likely that Dingle Dell was ejected
from the Main Belt through the 3:1 mean motion
resonance with Jupiter rather than the m6 resonance
(82% for the 3:1 MMRJ compared to 12% probability
for m6). This also means that L/LL Dingle Dell is
unlikely to be associated with the Flora family, likely
source of most LL chondrites (Vernazza et al. 2008), as
the most efficient mechanism for getting Florian
fragments to near-Earth space is the m6 secular
resonance. This fall adds little insight into the Flora/LL
link (Fig. 13), but 2016 was rich in instrumentally

Fig. 10. Fall area around Dingle Dell farm and Koolanooka Hills. Fall lines in yellow represent different wind model solutions:
W1 (bottom), W2 (middle), and W3 (top). Mass predictions for the preferred wind model are shown for spherical (light blue
markings; A = 1.21) and cylindrical (white markings; A = 1.5) assumptions. The particle filter results are propagated through
dark flight using wind model W1, and are shown as a heat map. The location of the recovered meteorite (red dot) is ≃ 100 m
from the W1 fall line.
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observed LL falls, which might yield clues to help
confirm this connection in the near future: Stubenberg
(LL6) (Spurn�y et al. 2016; Bischoff et al. 2017), Hradec
Kr�alov�e (LL5) (Meteoritical Bulletin 2017), and
Dishchi�ıbikoh (LL7) (Meteoritical Bulletin 2017; Palotai
et al. 2018).
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Fig. 12. Ecliptic projection of the pre-encounter orbit of
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are in the introduction.
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Abstract

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time
12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The
Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of

1.7 s~ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky
region of 31 deg2 at a luminosity distance of 40 8

8
-
+ Mpc and with component masses consistent with neutron stars. The

component masses were later measured to be in the range 0.86 to 2.26 M. An extensive observing campaign was
launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with
the IAU identification of AT 2017gfo) in NGC 4993 (at 40 Mpc~ ) less than 11 hours after the merger by the One-
Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently
detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early
ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a
redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at
the transient’s position 9~ and 16~ days, respectively, after the merger. Both the X-ray and radio emission likely
arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches.
These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in
NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the
radioactive decay of r-process nuclei synthesized in the ejecta.

Key words: gravitational waves – stars: neutron

1. Introduction

Over 80 years ago Baade & Zwicky (1934) proposed the idea
of neutron stars, and soon after, Oppenheimer & Volkoff (1939)
carried out the first calculations of neutron star models. Neutron
stars entered the realm of observational astronomy in the 1960s by
providing a physical interpretation of X-ray emission from
ScorpiusX-1(Giacconi et al. 1962; Shklovsky 1967) and of
radio pulsars(Gold 1968; Hewish et al. 1968; Gold 1969).

The discovery of a radio pulsar in a double neutron star
system by Hulse & Taylor (1975) led to a renewed interest in
binary stars and compact-object astrophysics, including the

development of a scenario for the formation of double neutron
stars and the first population studies (Flannery & van den Heuvel
1975; Massevitch et al. 1976; Clark 1979; Clark et al. 1979;
Dewey & Cordes 1987; Lipunov et al. 1987; for reviews see
Kalogera et al. 2007; Postnov & Yungelson 2014). The Hulse-
Taylor pulsar provided the first firm evidence(Taylor &
Weisberg 1982) of the existence of gravitational waves(Einstein
1916, 1918) and sparked a renaissance of observational tests of
general relativity(Damour & Taylor 1991, 1992; Taylor et al.
1992; Wex 2014). Merging binary neutron stars (BNSs) were
quickly recognized to be promising sources of detectable
gravitational waves, making them a primary target for ground-
based interferometric detectors (see Abadie et al. 2010 for an
overview). This motivated the development of accurate models
for the two-body, general-relativistic dynamics (Blanchet et al.
1995; Buonanno & Damour 1999; Pretorius 2005; Baker et al.
2006; Campanelli et al. 2006; Blanchet 2014) that are critical for
detecting and interpreting gravitational waves(Abbott et al.
2016c, 2016d, 2016e, 2017a, 2017c, 2017d).
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In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.
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2. A Multi-messenger Transient

On 2017 August 17 12:41:06 UTC the Fermi Gamma-ray Burst
Monitor (GBM; Meegan et al. 2009) onboard flight software
triggered on, classified, and localized a GRB. A Gamma-ray
Coordinates Network (GCN) Notice(Fermi-GBM 2017) was
issued at 12:41:20 UTC announcing the detection of the GRB,
which was later designated GRB 170817A(von Kienlin et al.
2017). Approximately 6 minutes later, a gravitational-wave
candidate (later designated GW170817) was registered in low
latency(Cannon et al. 2012; Messick et al. 2017) based on a
single-detector analysis of the Laser Interferometer Gravitational-
wave Observatory (LIGO)Hanford data. The signal was consistent
with a BNS coalescence with merger time, tc, 12:41:04 UTC, less
than 2 s before GRB 170817A. A GCN Notice was issued at
13:08:16 UTC. Single-detector gravitational-wave triggers had
never been disseminated before in low latency. Given the temporal
coincidence with the Fermi-GBM GRB, however, a GCN Circular
was issued at 13:21:42 UTC(LIGO Scientific Collaboration &
Virgo Collaboration et al. 2017a) reporting that a highly significant
candidate event consistent with a BNS coalescence was associated
with the time of the GRB959. An extensive observing campaign
was launched across the electromagnetic spectrum in response to
the Fermi-GBM and LIGO–Virgo detections, and especially the
subsequent well-constrained, three-dimensional LIGO–Virgo loca-
lization. A bright optical transient (SSS17a, now with the IAU
identification of AT 2017gfo) was discovered in NGC 4993 (at

40 Mpc~ ) by the 1M2H team(August 18 01:05 UTC; Coulter
et al. 2017a) less than 11 hr after the merger.

2.1. Gravitational-wave Observation

GW170817 was first detected online(Cannon et al. 2012;
Messick et al. 2017) as a single-detector trigger and disseminated
through a GCN Notice at 13:08:16 UTC and a GCN Circular at
13:21:42 UTC (LIGO Scientific Collaboration & Virgo Collabora-
tion et al. 2017a). A rapid re-analysis(Nitz et al. 2017a, 2017b) of
data from LIGO-Hanford, LIGO-Livingston, and Virgo confirmed
a highly significant, coincident signal. These data were then
combined to produce the first three-instrument skymap(Singer &
Price 2016; Singer et al. 2016) at 17:54:51 UTC(LIGO Scientific
Collaboration & Virgo Collaboration et al. 2017b), placing
the source nearby, at a luminosity distance initially estimated to
be 40 8

8
-
+ , Mpc in an elongated region of 31» deg2 (90%

credibility), centered around R.A. J2000.0 12 57h ma =( ) and
decl. J2000.0 17 51d = -  ¢( ) . Soon after, a coherent analysis
(Veitch et al. 2015) of the data from the detector network produced
a skymap that was distributed at 23:54:40 UTC(LIGO Scientific
Collaboration & Virgo Collaboration et al. 2017c), consistent with
the initial one: a 34 deg2 sky region at 90% credibility centered
around J2000.0 13 09h ma =( ) and J2000.0 25 37d = -  ¢( ) .

The offline gravitational-wave analysis of the LIGO-Hanford
and LIGO-Livingston data identified GW170817 with a false-
alarm rate of less than one per 8.0×104 (Abbott et al. 2017c).
This analysis uses post-Newtonian waveform models(Blanchet
et al. 1995, 2004, 2006; Bohé et al. 2013) to construct a matched-
filter search(Sathyaprakash & Dhurandhar 1991; Cutler et al.
1993; Allen et al. 2012) for gravitational waves from the
coalescence of compact-object binary systems in the (detector
frame) total mass range M2 500 – . GW170817 lasted for ∼100 s
in the detector sensitivity band. The signal reached Virgo first,

then LIGO-Livingston 22 ms later, and after 3 ms more, it arrived
at LIGO-Hanford. GW170817 was detected with a combined
signal-to-noise ratio across the three-instrument network of 32.4.
For comparison, GW150914 was observed with a signal-to-noise
ratio of 24(Abbott et al. 2016c).
The properties of the source that generated GW170817 (see

Abbott et al. 2017c for full details; here, we report parameter
ranges that span the 90% credible interval) were derived by
employing a coherent Bayesian analysis(Veitch et al. 2015;
Abbott et al. 2016b) of the three-instrument data, including
marginalization over calibration uncertainties and assuming that
the signal is described by waveform models of a binary system of
compact objects in quasi-circular orbits (see Abbott et al. 2017c
and references therein). The waveform models include the effects
introduced by the objects’ intrinsic rotation (spin) and tides. The
source is located in a region of 28 deg2 at a distance of 40 14

8
-
+

Mpc, see Figure 1, consistent with the early estimates disseminated
through GCN Circulars(LIGO Scientific Collaboration & Virgo
Collaboration et al. 2017b, 2017c). The misalignment between the
total angular momentum axis and the line of sight is 56 °.
The (source-frame960) masses of the primary and secondary

components, m1 and m2, respectively, are in the range
m M1.36 2.261 Î ( – ) and m M0.86 1.362 Î ( – ) . The chirp
mass,961 , is the mass parameter that, at the leading order,
drives the frequency evolution of gravitational radiation in the
inspiral phase. This dominates the portion of GW170817 in the
instruments’ sensitivity band. As a consequence, it is the best
measured mass parameter, M1.188 0.002

0.004 = -
+

. The total
mass is M2.82 0.09

0.47
-
+

, and the mass ratio m m2 1 is bound to the
range 0.4–1.0. These results are consistent with a binary whose
components are neutron stars. White dwarfs are ruled out since
the gravitational-wave signal sweeps through 200 Hz in the
instruments’ sensitivity band, implying an orbit of size
∼100km, which is smaller than the typical radius of a white
dwarf by an order of magnitude(Shapiro & Teukolsky 1983).
However, for this event gravitational-wave data alone cannot
rule out objects more compact than neutron stars such as quark
stars or black holes(Abbott et al. 2017c).

2.2. Prompt Gamma-Ray Burst Detection

The first announcement of GRB 170817A came from the
GCN Notice(Fermi-GBM 2017) automatically generated by
Fermi-GBM at 12:41:20 UTC, just 14 s after the detection of
the GRB at T0=12:41:06 UTC. GRB 170817A was detected
by the International Gamma-Ray Astrophysics Laboratory
(INTEGRAL) spacecraft using the Anti-Coincidence Shield
(von Kienlin et al. 2003) of the spectrometer on board
INTEGRAL (SPI), through an offline search initiated by the
LIGO-Virgo and Fermi-GBM reports. The final Fermi-GBM
localization constrained GRB 170817A to a region with highest
probability at J2000.0 12 28h ma =( ) and J2000.0 30d = - ( )
and 90% probability region covering 1100~ deg2(Goldstein
et al. 2017a). The difference between the binary merger and the

959 The trigger was recorded with LIGO-Virgo ID G298048, by which it is
referred throughout the GCN Circulars.

960 Any mass parameter m det( ) derived from the observed signal is measured in
the detector frame. It is related to the mass parameter, m, in the source frame by
m z m1det = +( )( ) , where z is the source’s redshift. Here, we always report
source-frame mass parameters, assuming standard cosmology(Ade et al. 2016)
and correcting for the motion of the solar Ssystem barycenter with respect to
the cosmic microwave background(Fixsen 2009). From the gravitational-wave
luminosity distance measurement, the redshift is determined to be
z 0.008 0.003

0.002= -
+ . For full details see Abbott et al. (2016b, 2017c, 2017e).

961 The binary’s chirp mass is defined as m m m m1 2
3 5

1 2
1 5 = +( ) ( ) .
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Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time tc of the gravitational-wave event. Two types of information are shown for each band/messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL/SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1 5×1 5 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at tc+1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
tc+1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at tc+1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at tc+2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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GRB is tT0 1.734 0.054c- =  s(Abbott et al. 2017g).
Exploiting the difference in the arrival time of the gamma-ray
signals at Fermi-GBM and INTEGRAL SPI-ACS (Svinkin et al.
2017c) provides additional significant constraints on the
gamma-ray localization area (see Figure 1). The IPN localiza-
tion capability will be especially important in the case of future
gravitational-wave events that might be less well-localized by
LIGO-Virgo.

Standard follow-up analyses (Goldstein et al. 2012; Paciesas
et al. 2012; Gruber et al. 2014) of the Fermi-GBM trigger
determined the burst duration to be T 2.0 0.590 =  s, where
T90 is defined as the interval over which 90% of the burst
fluence is accumulated in the energy range of 50–300keV.
From the Fermi-GBM T90 measurement, GRB 170817A was
classified as an sGRB with 3:1 odds over being a long GRB.
The classification of GRB 170817A as an sGRB is further
supported by incorporating the hardness ratio of the burst and
comparing it to the Fermi-GBM catalog (Goldstein et al.
2017a). The SPI-ACS duration for GRB 170817A of 100 ms is
consistent with an sGRB classification within the instrument’s
historic sample (Savchenko et al. 2012).

The GRB had a peak photon flux measured on a 64ms
timescale of 3.7±0.9 photons s−1 cm−2 and a fluence over the
T90 interval of (2.8± 0.2)× 10−7 erg cm−2 (10–1000 keV;
(Goldstein et al. 2017a). GRB 170817A is the closest sGRB
with measured redshift. By usual measures, GRB 170817A is
sub-luminous, a tantalizing observational result that is explored
in Abbott et al. (2017g) and Goldstein et al. (2017a).

Detailed analysis of the Fermi-GBM data for GRB 170817A
revealed two components to the burst: a main pulse encom-
passing the GRB trigger time from T0 0.320 s- to
T0 0.256 s+ followed by a weak tail starting at
T0 0.832 s+ and extending to T0 1.984 s+ . The spectrum
of the main pulse of GRB 170817A is best fit with a
Comptonized function (a power law with an exponential
cutoff) with a power-law photon index of −0.62±0.40, peak
energy E 185 62peak =  keV, and time-averaged flux of
3.1 0.7 10 7 ´ -( ) erg cm−2 s−1. The weak tail that follows
the main pulse, when analyzed independently, has a localiza-
tion consistent with both the main pulse and the gravitational-
wave position. The weak tail, at 34% the fluence of the main
pulse, extends the T90 beyond the main pulse and has a softer,
blackbody spectrum with kT 10.3 1.5=  keV (Goldstein
et al. 2017a).

Using the Fermi-GBM spectral parameters of the main peak
and T90 interval, the integrated fluence measured by INTEGRAL
SPI-ACS is 1.4 0.4 10 7 ´ -( ) erg cm−2 (75–2000 keV), com-
patible with the Fermi-GBM spectrum. Because SPI-ACS is most
sensitive above 100keV, it detects only the highest-energy part of
the main peak near the start of the longer Fermi-GBM
signal(Abbott et al. 2017f).

2.3. Discovery of the Optical Counterpart and Host Galaxy

The announcements of the Fermi-GBM and LIGO-Virgo
detections, and especially the well-constrained, three-dimen-
sional LIGO-Virgo localization, triggered a broadband
observing campaign in search of electromagnetic counter-
parts. A large number of teams across the world were
mobilized using ground- and space-based telescopes that
could observe the region identified by the gravitational-wave
detection. GW170817 was localized to the southern sky,
setting in the early evening for the northern hemisphere

telescopes, thus making it inaccessible to the majority of
them. The LIGO-Virgo localization region(LIGO Scientific
Collaboration & Virgo Collaboration et al. 2017b, 2017c)
became observable to telescopes in Chile about 10 hr after the
merger with an altitude above the horizon of about 45°.
The One-Meter, Two-Hemisphere (1M2H) team was the first to

discover and announce(August 18 01:05 UTC; Coulter et al.
2017a) a bright optical transient in an i-band image acquired
on August 17 at 23:33 UTC (tc+10.87 hr) with the 1m Swope
telescope at Las Campanas Observatory in Chile. The team used an
observing strategy(Gehrels et al. 2016) that targeted known
galaxies (from White et al. 2011b) in the three-dimensional LIGO-
Virgo localization taking into account the galaxy stellar mass and
star formation rate (Coulter et al. 2017). The transient, designated
Swope Supernova Survey 2017a (SSS17a), was i 17.057= 
0.018 mag962 (August 17 23:33 UTC, tc+10.87 hr) and did not
match any known asteroid or supernova. SSS17a (now with the
IAU designation AT 2017gfo) was located at J2000.0a( ) =
13 09 48. 085 0.018h m s  , J2000.0 23 22 53. 343 0.218d = -  ¢  ( )
at a projected distance of 10 6 from the center of NGC 4993, an
early-type galaxy in the ESO 508 group at a distance of ;40Mpc
(Tully–Fisher distance from Freedman et al. 2001), consistent with
the gravitational-wave luminosity distance (LIGO Scientific
Collaboration & Virgo Collaboration et al. 2017b).
Five other teams took images of the transient within an

hour of the 1M2H image (and before the SSS17a announce-
ment) using different observational strategies to search the
LIGO-Virgo sky localization region. They reported their
discovery of the same optical transient in a sequence of
GCNs: the Dark Energy Camera (01:15 UTC; Allam et al.
2017), the Distance Less Than 40 Mpc survey (01:41 UTC;
Yang et al. 2017a), Las Cumbres Observatory (LCO; 04:07
UTC; Arcavi et al. 2017a), the Visible and Infrared Survey
Telescope for Astronomy (VISTA; 05:04 UTC; Tanvir et al.
2017a), and MASTER (05:38 UTC; Lipunov et al. 2017d).
Independent searches were also carried out by the Rapid Eye
Mount (REM-GRAWITA, optical, 02:00 UTC; Melandri
et al. 2017a), Swift UVOT/XRT (utraviolet, 07:24 UTC;
Evans et al. 2017a), and Gemini-South (infrared, 08:00 UT;
Singer et al. 2017a).
The Distance Less Than 40Mpc survey (DLT40; L.

Tartaglia et al. 2017, in preparation) team independently
detected SSS17a/AT 2017gfo, automatically designated
DLT17ck(Yang et al. 2017a) in an image taken on August
17 23:50 UTC while carrying out high-priority observations of
51 galaxies (20 within the LIGO-Virgo localization and 31
within the wider Fermi-GBM localization region; Valenti et al.
2017, accepted). A confirmation image was taken on August 18
00:41 UTC after the observing program had cycled through all
of the high-priority targets and found no other transients. The
updated magnitudes for these two epochs are r=17.18±0.03
and 17.28±0.04 mag, respectively.
SSS17a/AT 2017gfo was also observed by the VISTA in the

second of two 1.5 deg2 fields targeted. The fields were chosen
to be within the high-likelihood localization region of
GW170817 and to contain a high density of potential host
galaxies (32 of the 54 entries in the list of Cook et al. 2017a).
Observations began during evening twilight and were repeated
twice to give a short temporal baseline over which to search for

962 All apparent magnitudes are AB and corrected for the Galactic extinction
in the direction of SSS17a (E B V 0.109- =( ) mag; Schlafly & Finkbei-
ner 2011).
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variability (or proper motion of any candidates). The
magnitudes of the transient source in the earliest images taken
in the near-infrared were measured to be K 18.63 0.05s =  ,
J 17.88 0.03=  , and Y 17.51 0.02=  mag.
On August 17 23:59 UTC, the MASTER-OAFA robotic

telescope(Lipunov et al. 2010), covering the sky location of
GW170817, recorded an image that included NGC 4993. The
autodetection software identified MASTER OT J130948.10-
232253.3, the bright optical transient with the unfiltered
magnitude W 17.5 0.2=  mag, as part of an automated
search performed by the MASTER Global Robotic Net
(Lipunov et al. 2017a, 2017d).

The Dark Energy Camera (DECam; Flaugher et al. 2015)
Survey team started observations of the GW170817 localization
region on August 17 23:13 UTC. DECam covered 95% of the
probability in the GW170817 localization area with a sensitivity
sufficient to detect a source up to 100 times fainter than the
observed optical transient. The transient was observed on 2017
August 18 at 00:05 UTC and independently detected at 00:42
UTC(Allam et al. 2017). The measured magnitudes of the
transient source in the first images were i 17.30 0.02,= 
z 17.45 0.03=  . A complete analysis of DECam data is
presented in Soares-Santos et al. (2017).

Las Cumbres Observatory (LCO; Brown et al. 2013) surveys
started their observations of individual galaxies with their
global network of 1 and 2 m telescopes upon receipt of the
initial Fermi-GBM localization. Approximately five hours
later, when the LIGO-Virgo localization map was issued, the
observations were switched to a prioritized list of galaxies
(from Dalya et al. 2016) ranked by distance and luminosity
(Arcavi et al. 2017, in preparation). In a 300 s w-band exposure
beginning on August 18 00:15 UTC, a new transient,
corresponding to AT 2017gfo/SSS17a/DLT17ck, was detected
near NGC 4993(Arcavi et al. 2017a). The transient was
determined to have w 17.49 0.04=  mag (Arcavi et al.
2017e).

These early photometric measurements, from the optical to
near-infrared, gave the first broadband spectral energy
distribution of AT 2017gfo/SSS17a/DL17ck. They do not
distinguish the transient from a young supernova, but they
serve as reference values for subsequent observations that
reveal the nature of the optical counterpart as described in
Section 3.1. Images from the six earliest observations are
shown in the inset of Figure 2.

3. Broadband Follow-up

While some of the first observations aimed to tile the error
region of the GW170817 and GRB 170817A localization
areas, including the use of galaxy targeting (White et al.
2011a; Dalya et al. 2016; D. Cook & M. Kasliwal 2017, in
preparation; S. R. Kulkarni et al. 2017, in preparation), most
groups focused their effort on the optical transient reported by
Coulter et al. (2017) to define its nature and to rule out that it
was a chance coincidence of an unrelated transient. The multi-
wavelength evolution within the first 12–24hr, and the
subsequent discoveries of the X-ray and radio counterparts,
proved key to scientific interpretation. This section sum-
marizes the plethora of key observations that occurred in
different wavebands, as well as searches for neutrino
counterparts.

3.1. Ultraviolet, Optical, and Infrared

The quick discovery in the first few hours of Chilean
darkness, and the possibility of fast evolution, prompted the
need for the ultraviolet–optical–infrared follow-up community
to have access to both space-based and longitudinally separated
ground-based facilities. Over the next two weeks, a network of
ground-based telescopes, from 40 cm to 10 m, and space-based
observatories spanning the ultraviolet (UV), optical (O), and
near-infrared (IR) wavelengths followed up GW170817. These
observations revealed an exceptional electromagnetic counter-
part through careful monitoring of its spectral energy
distribution. Here, we first consider photometric and then
spectroscopic observations of the source.
Regarding photometric observations, at tc+11.6 hr, the

Magellan-Clay and Magellan-Baade telescopes (Drout et al.
2017a; Simon et al. 2017) initiated follow-up observations of
the transient discovered by the Swope Supernova Survey from
the optical (g band) to NIR (Ks band). At tc+12.7 hr and
tc+12.8 hr, the Rapid Eye Mount (REM)/ROS2 (Melandri
et al. 2017b) detected the optical transient and the Gemini-
South FLAMINGO2 instrument first detected near-infrared Ks-
band emission constraining the early optical to infrared color
(Kasliwal et al. 2017; Singer et al. 2017a), respectively. At
tc+15.3 hr, the Swift satellite (Gehrels 2004) detected bright,
ultraviolet emission, further constraining the effective temper-
ature (Evans et al. 2017a, 2017b). The ultraviolet evolution
continued to be monitored with the Swift satellite (Evans et al.
2017b) and the Hubble Space Telescope (HST; Adams et al.
2017; Cowperthwaite et al. 2017b; Kasliwal et al. 2017).
Over the course of the next two days, an extensive

photometric campaign showed a rapid dimming of this initial
UV–blue emission and an unusual brightening of the near-
infrared emission. After roughly a week, the redder optical and
near-infrared bands began to fade as well. Ground- and space-
based facilities participating in this photometric monitoring
effort include (in alphabetic order): CTIO1.3 m, DECam
(Cowperthwaite et al. 2017b; Nicholl et al. 2017a, 2017d),
IRSF, the Gemini-South FLAMINGO2 (Singer et al. 2017a,
2017b; Chornock et al. 2017b; Troja et al. 2017b, 2017d),
Gemini-South GMOS (Troja et al. 2017b), GROND (Chen
et al. 2017; Wiseman et al. 2017), HST (Cowperthwaite et al.
2017b; Levan & Tanvir 2017; Levan et al. 2017a; Tanvir &
Levan 2017; Troja et al. 2017a), iTelescope.Net telescopes (Im
et al. 2017a, 2017b), the Korea Microlensing Telescope
Network (KMTNet; Im et al. 2017c, 2017d), LCO (Arcavi
et al. 2017b, 2017c, 2017e), the Lee Sang Gak Telescope
(LSGT)/SNUCAM-II, the Magellan-Baade and Magellan-
Clay 6.5 m telescopes (Drout et al. 2017a; Simon et al.
2017), the Nordic Optical Telescope (Malesani et al. 2017a),
Pan-STARRS1 (Chambers et al. 2017a, 2017b, 2017c, 2017d),
REM/ROS2 and REM/REMIR (Melandri et al. 2017a,
2017c), SkyMapper (Wolf et al. 2017), Subaru Hyper
Suprime-Cam (Yoshida et al. 2017a, 2017b, 2017c, 2017d;
Tominaga et al. 2017), ESO-VISTA (Tanvir et al. 2017a),
ESO-VST/OmegaCAM (Grado et al. 2017a, 2017b), and
ESO-VLT/FORS2 (D’Avanzo et al. 2017).
One of the key properties of the transient that alerted the

worldwide community to its unusual nature was the rapid
luminosity decline. In bluer optical bands (i.e., in the g band),
the transient showed a fast decay between daily photometric
measurements (Cowperthwaite et al. 2017b; Melandri et al.
2017c). Pan-STARRS (Chambers et al. 2017c) reported
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photometric measurements in the optical/infrared izy bands
with the same cadence, showing fading by 0.6 mag per day,
with reliable photometry from difference imaging using already
existing sky images (Chambers et al. 2016; Cowperthwaite
et al. 2017b). Observations taken every 8 hr by LCO showed an
initial rise in the w band, followed by rapid fading in all optical
bands (more than 1 mag per day in the blue) and reddening
with time (Arcavi et al. 2017e). Accurate measurements from
Subaru (Tominaga et al. 2017), LSGT/SNUCAM-II and
KMTNet (Im et al. 2017c), ESO-VLT/FORS2 (D’Avanzo
et al. 2017), and DECam (Cowperthwaite et al. 2017b; Nicholl
et al. 2017b) indicated a similar rate of fading. On the contrary,
the near-infrared monitoring reports by GROND and Gemini-
South showed that the source faded more slowly in the infrared
(Chornock et al. 2017b; Wiseman et al. 2017) and even showed
a late-time plateau in the Ks band (Singer et al. 2017b). This
evolution was recognized by the community as quite
unprecedented for transients in the nearby (within 100 Mpc)
universe (e.g., Siebert et al. 2017).

Table 1 reports a summary of the imaging observations,
which include coverage of the entire gravitational-wave sky
localization and follow-up of SSS17a/AT 2017gfo. Figure 2
shows these observations in graphical form.

Concerning spectroscopic observations, immediately after
discovery of SSS17a/AT 2017gfo on the Swope 1 m telescope,
the same team obtained the first spectroscopic observations of
the optical transient with the LDSS-3 spectrograph on the 6.5 m
Magellan-Clay telescope and the MagE spectrograph on the
6.5 m Magellan-Baade telescope at Las Campanas Observa-
tory. The spectra, just 30 minutes after the first image, showed a
blue and featureless continuum between 4000 and 10000 Å,
consistent with a power law (Drout et al. 2017a; Shappee et al.
2017). The lack of features and blue continuum during the first
few hours implied an unusual, but not unprecedented transient
since such characteristics are common in cataclysmic–variable
stars and young core-collapse supernovae (see, e.g., Li et al.
2011a, 2011b).

The next 24 hr of observation were critical in decreasing the
likelihood of a chance coincidence between SSS17a/
AT 2017gfo, GW170817, and GRB 170817A. The SALT-
RSS spectrograph in South Africa (Buckley et al. 2017;
McCully et al. 2017b; Shara et al. 2017), ePESSTO with the
EFOSC2 instrument in spectroscopic mode at the ESO New
Technology Telescope (NTT, in La Silla, Chile; Lyman et al.
2017), the X-shooter spectrograph on the ESO Very Large
Telescope (Pian et al. 2017b) in Paranal, and the Goodman
Spectrograph on the 4 m SOAR telescope (Nicholl et al. 2017c)
obtained additional spectra. These groups reported a rapid fall
off in the blue spectrum without any individual features
identifiable with line absorption common in supernova-like
transients (see, e.g., Lyman et al. 2017). This ruled out a young
supernova of any type in NGC 4993, showing an exceptionally
fast spectral evolution (Drout et al. 2017; Nicholl et al. 2017d).
Figure 2 shows some representative early spectra (SALT
spectrum is from Buckley et al. 2017; McCully et al. 2017b;
ESO spectra from Smartt et al. 2017; SOAR spectrum from
Nicholl et al. 2017d). These show rapid cooling, and the lack of
commonly observed ions from elements abundant in supernova
ejecta, indicating this object was unprecedented in its optical
and near-infrared emission. Combined with the rapid fading,
this was broadly indicative of a possible kilonova (e.g., Arcavi
et al. 2017e; Cowperthwaite et al. 2017b; McCully et al. 2017b;

Kasen et al. 2017; Kasliwal et al. 2017; Kilpatrick et al. 2017b;
Nicholl et al. 2017d; Smartt et al. 2017). This was confirmed by
spectra taken at later times, such as with the Gemini Multi-
Object Spectrograph (GMOS; Kasliwal et al. 2017; McCully
et al. 2017b; Troja et al. 2017a, 2017b), the LDSS-3
spectrograph on the 6.5 m Magellan-Clay telescope at Las
Campanas Observatory (Drout et al. 2017; Shappee et al.
2017), the LCO FLOYDS spectrograph at Faulkes Telescope
South (McCully et al. 2017a, 2017b), and the AAOmega
spectrograph on the 3.9 m Anglo-Australian Telescope
(Andreoni et al. 2017), which did not show any significant
emission or absorption lines over the red featureless continuum.
The optical and near-infrared spectra over these few days
provided convincing arguments that this transient was unlike
any other discovered in extensive optical wide-field surveys
over the past decade (see, e.g., Siebert et al. 2017).
The evolution of the spectral energy distribution, rapid fading,

and emergence of broad spectral features indicated that the
source had physical properties similar to models of kilonovae
(e.g., Metzger et al. 2010; Kasen et al. 2013; Barnes & Kasen
2013; Tanaka & Hotokezaka 2013; Grossman et al. 2014;
Metzger & Fernández 2014; Barnes et al. 2016; Tanaka 2016;
Kasen et al. 2017; Kilpatrick et al. 2017b; Metzger 2017). These
show a very rapid shift of the spectral energy distribution from
the optical to the near-infrared. The FLAMINGOS2 near-
infrared spectrograph at Gemini-South (Chornock et al. 2017c;
Kasliwal et al. 2017) shows the emergence of very broad
features in qualitative agreement with kilonova models. The
ESO-VLT/X-shooter spectra, which simultaneously cover the
wavelength range 3200–24800Å, were taken over 2 weeks with
a close to daily sampling (Pian et al. 2017a; Smartt et al. 2017)
and revealed signatures of the radioactive decay of r-process
nucleosynthesis elements (Pian et al. 2017a). Three epochs of
infrared grism spectroscopy with the HST (Cowperthwaite et al.
2017b; Levan & Tanvir 2017; Levan et al. 2017a; Tanvir &
Levan 2017; Troja et al. 2017a)963 identified features consistent
with the production of lanthanides within the ejecta (Levan &
Tanvir 2017; Tanvir & Levan 2017; Troja et al. 2017a).
The optical follow-up campaign also includes linear polarimetry

measurements of SSS17a/AT 2017gfo by ESO-VLT/FORS2,
showing no evidence of an asymmetric geometry of the emitting
region and lanthanide-rich late kilonova emission (Covino et al.
2017). In addition, the study of the galaxy with the MUSE Integral
Field Spectrograph on the ESO-VLT (Levan et al. 2017b) provides
simultaneous spectra of the counterpart and the host galaxy, which
show broad absorption features in the transient spectrum,
combined with emission lines from the spiral arms of the host
galaxy (Levan & Tanvir 2017; Tanvir & Levan 2017).
Table 2 reports the spectroscopic observations that have led

to the conclusion that the source broadly matches kilonovae
theoretical predictions.

3.2. Gamma-Rays

The fleet of ground- and space-based gamma-ray observa-
tories provided broad temporal and spectral coverage of
the source location. Observations spanned 10~ orders of
magnitude in energy and covered the position of SSS17a/
AT 2017gfo from a few hundred seconds before the
GRB 170817A trigger time (T0) to days afterward. Table 3
lists, in chronological order, the results reporting observation

963 HST Program GO 14804 Levan, GO 14771 Tanvir, and GO 14850 Troja.
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Table 1
A Partial Summary of Photometric Observations up to 2017 September 5 UTC with at Most Three Observations per Filter per Telescope/Group, i.e., the Earliest,

the Peak, and the Latest in Each Case

Telescope/Instrument UT Date Band References

DFN/– 2017 Aug 17 12:41:04 visible Hancock et al. (2017),
MASTER/– 2017 Aug 17 17:06:47 Clear Lipunov et al. (2017a, 2017b)
PioftheSky/PioftheSkyNorth 2017 Aug 17 21:46:28 visible wide band Cwiek et al. (2017); Batsch et al. (2017); Zadrozny et al. (2017)
MASTER/– 2017 Aug 17 22:54:18 Visible Lipunov et al. (2017b, 2017a)
Swope/DirectCCD 2017 Aug 17 23:33:17 i Coulter et al. (2017a, 2017b, 2017)
PROMPT5(DLT40)/– 2017 Aug 17 23:49:00 r Yang et al. (2017a), Valenti et al. (submitted)
VISTA/VIRCAM 2017 Aug 17 23:55:00 K Tanvir & Levan (2017)
MASTER/– 2017 Aug 17 23:59:54 Clear Lipunov et al. (2017d, 2017a)
Blanco/DECam/– 2017 Aug 18 00:04:24 i Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Blanco/DECam/– 2017 Aug 18 00:05:23 z Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
VISTA/VIRCAM 2017 Aug 18 00:07:00 J Tanvir & Levan (2017)
Magellan-Clay/LDSS3-C 2017 Aug 18 00:08:13 g Simon et al. (2017); Drout et al. (2017b)
Magellan-Baade/FourStar 2017 Aug 18 00:12:19 H Drout et al. (2017b)
LasCumbres1-m/Sinistro 2017 Aug 18 00:15:50 w Arcavi et al. (2017a, 2017e)
VISTA/VIRCAM 2017 Aug 18 00:17:00 Y Tanvir & Levan (2017)
MASTER/– 2017 Aug 18 00:19:05 Clear Lipunov et al. (2017d, 2017a)
Magellan-Baade/FourStar 2017 Aug 18 00:25:51 J Drout et al. (2017b)
Magellan-Baade/FourStar 2017 Aug 18 00:35:19 Ks Drout et al. (2017b)
PROMPT5(DLT40)/– 2017 Aug 18 00:40:00 r Yang et al. (2017a), Valenti et al. (submitted)
REM/ROS2 2017 Aug 18 01:24:56 g Melandri et al. (2017a); Pian et al. (2017a)
REM/ROS2 2017 Aug 18 01:24:56 i Melandri et al. (2017a); Pian et al. (2017a)
REM/ROS2 2017 Aug 18 01:24:56 z Melandri et al. (2017a); Pian et al. (2017a)
REM/ROS2 2017 Aug 18 01:24:56 r Melandri et al. (2017a); Pian et al. (2017a)
Gemini-South/Flamingos-2 2017 Aug 18 01:30:00 Ks Singer et al. (2017a); Kasliwal et al. (2017)
PioftheSky/PioftheSkyNorth 2017 Aug 18 03:01:39 visible wide band Cwiek et al. (2017); Batsch et al. (2017),
Swift/UVOT 2017 Aug 18 03:37:00 uvm2 Evans et al. (2017a, 2017b)
Swift/UVOT 2017 Aug 18 03:50:00 uvw1 Evans et al. (2017a, 2017b)
Swift/UVOT 2017 Aug 18 03:58:00 u Evans et al. (2017a, 2017b)
Swift/UVOT 2017 Aug 18 04:02:00 uvw2 Evans et al. (2017a, 2017b)
Subaru/HyperSuprime-Cam 2017 Aug 18 05:31:00 z Yoshida et al. (2017a, 2017b), Y. Utsumi et al. (2017, in preparation)
Pan-STARRS1/GPC1 2017 Aug 18 05:33:00 y Chambers et al. (2017a); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 18 05:34:00 z Chambers et al. (2017a); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 18 05:35:00 i Chambers et al. (2017a); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 18 05:36:00 y Chambers et al. (2017a); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 18 05:37:00 z Chambers et al. (2017a); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 18 05:38:00 i Chambers et al. (2017a); Smartt et al. (2017)
LasCumbres1-m/Sinistro 2017 Aug 18 09:10:04 w Arcavi et al. (2017b, 2017e)
SkyMapper/– 2017 Aug 18 09:14:00 i L
SkyMapper/– 2017 Aug 18 09:35:00 z L
LasCumbres1-m/Sinistro 2017 Aug 18 09:37:26 g Arcavi et al. (2017e)
SkyMapper/– 2017 Aug 18 09:39:00 r L
SkyMapper/– 2017 Aug 18 09:41:00 g L
LasCumbres1-m/Sinistro 2017 Aug 18 09:43:11 r Arcavi et al. (2017e)
T17/– 2017 Aug 18 09:47:13 g Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
SkyMapper/– 2017 Aug 18 09:50:00 v L
T17/– 2017 Aug 18 09:56:46 r Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
SkyMapper/– 2017 Aug 18 10:01:00 i Wolf et al. (2017),
SkyMapper/– 2017 Aug 18 10:03:00 r Wolf et al. (2017),
SkyMapper/– 2017 Aug 18 10:05:00 g Wolf et al. (2017),
T17/– 2017 Aug 18 10:06:18 i Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
SkyMapper/– 2017 Aug 18 10:07:00 v Wolf et al. (2017),
LSGT/SNUCAM-II 2017 Aug 18 10:08:01 m425 Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
SkyMapper/– 2017 Aug 18 10:09:00 u Wolf et al. (2017),
LSGT/SNUCAM-II 2017 Aug 18 10:12:48 m475 Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
LSGT/SNUCAM-II 2017 Aug 18 10:15:16 m525 Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
T17/– 2017 Aug 18 10:15:49 z Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
LSGT/SNUCAM-II 2017 Aug 18 10:21:14 m575 Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
LSGT/SNUCAM-II 2017 Aug 18 10:22:33 m625 Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
AST3-2/wide-fieldcamera 2017 Aug 18 13:11:49 g Hu et al. (2017),
Swift/UVOT 2017 Aug 18 13:30:00 uvm2 Cenko et al. (2017); Evans et al. (2017b)
Swift/UVOT 2017 Aug 18 13:37:00 uvw1 Cenko et al. (2017); Evans et al. (2017b)
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Table 1
(Continued)

Telescope/Instrument UT Date Band References

Swift/UVOT 2017 Aug 18 13:41:00 u Cenko et al. (2017); Evans et al. (2017b)
IRSF/SIRIUS 2017 Aug 18 16:34:00 Ks Utsumi et al. (2017, in press)
IRSF/SIRIUS 2017 Aug 18 16:34:00 H Utsumi et al. (2017, in press)
IRSF/SIRIUS 2017 Aug 18 16:48:00 J Utsumi et al. (2017, in press)
KMTNet-SAAO/wide-fieldcamera 2017 Aug 18 17:00:36 B Im et al. (2017d, 2017c); Troja et al. (2017a)
KMTNet-SAAO/wide-fieldcamera 2017 Aug 18 17:02:55 V Im et al. (2017d, 2017c); Troja et al. (2017a)
KMTNet-SAAO/wide-fieldcamera 2017 Aug 18 17:04:54 R Im et al. (2017d, 2017c); Troja et al. (2017a)
MASTER/– 2017 Aug 18 17:06:55 Clear Lipunov et al. (2017e, 2017a)
KMTNet-SAAO/wide-fieldcamera 2017 Aug 18 17:07:12 I Im et al. (2017d, 2017c); Troja et al. (2017a)
MASTER/– 2017 Aug 18 17:17:33 R Lipunov et al. (2017c, 2017b, 2017a)
MASTER/– 2017 Aug 18 17:34:02 B Lipunov et al. (2017b, 2017a)
1.5 m Boyden/– 2017 Aug 18 18:12:00 r Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 18 18:12:00 g Smartt et al. (2017)
NOT/NOTCam 2017 Aug 18 20:24:08 Ks Malesani et al. (2017a); Tanvir & Levan (2017)
NOT/NOTCam 2017 Aug 18 20:37:46 J Malesani et al. (2017a); Tanvir & Levan (2017)
PioftheSky/PioftheSkyNorth 2017 Aug 18 21:44:44 visible wide band Cwiek et al. (2017); Batsch et al. (2017),
LasCumbres1-m/Sinistro 2017 Aug 18 23:19:40 i Arcavi et al. (2017e)
Blanco/DECam/– 2017 Aug 18 23:25:56 Y Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Magellan-Clay/LDSS3-C 2017 Aug 18 23:26:33 z Drout et al. (2017b)
Blanco/DECam/– 2017 Aug 18 23:26:55 z Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Blanco/DECam/– 2017 Aug 18 23:27:54 i Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
KMTNet-CTIO/wide-fieldcamera 2017 Aug 18 23:28:35 B Im et al. (2017d, 2017c); Troja et al. (2017a)
Blanco/DECam/– 2017 Aug 18 23:28:53 r Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Blanco/DECam/– 2017 Aug 18 23:29:52 g Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
KMTNet-CTIO/wide-fieldcamera 2017 Aug 18 23:30:31 V Im et al. (2017d, 2017c); Troja et al. (2017a)
Blanco/DECam/– 2017 Aug 18 23:30:50 u Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Magellan-Clay/LDSS3-C 2017 Aug 18 23:30:55 i Drout et al. (2017b)
REM/ROS2 2017 Aug 18 23:31:02 z Melandri et al. (2017c); Pian et al. (2017a)
Magellan-Clay/LDSS3-C 2017 Aug 18 23:32:02 r Drout et al. (2017b)
KMTNet-CTIO/wide-fieldcamera 2017 Aug 18 23:32:36 R Im et al. (2017d, 2017c); Troja et al. (2017a)
Magellan-Baade/FourStar 2017 Aug 18 23:32:58 J Drout et al. (2017b)
KMTNet-CTIO/wide-fieldcamera 2017 Aug 18 23:34:48 I Im et al. (2017d, 2017c); Troja et al. (2017a)
Magellan-Clay/LDSS3-C 2017 Aug 18 23:35:20 B Drout et al. (2017b)
VISTA/VIRCAM 2017 Aug 18 23:44:00 J Tanvir & Levan (2017)
Magellan-Baade/FourStar 2017 Aug 18 23:45:49 H Drout et al. (2017b)
PROMPT5(DLT40)/– 2017 Aug 18 23:47:00 r Yang et al. (2017b), Valenti et al. (submitted)
VLT/FORS2 2017 Aug 18 23:47:02 Rspecial Wiersema et al. (2017); Covino et al. (2017)
Swope/DirectCCD 2017 Aug 18 23:52:29 V Kilpatrick et al. (2017a); Coulter et al. (2017)
VISTA/VIRCAM 2017 Aug 18 23:53:00 Y Tanvir & Levan (2017)
TOROS/T80S 2017 Aug 18 23:53:00 g Diaz et al. (2017a, 2017b), Diaz et al. (2017, in preparation)
TOROS/T80S 2017 Aug 18 23:53:00 r Diaz et al. (2017a, 2017b), Diaz et al. (2017, in preparation)
TOROS/T80S 2017 Aug 18 23:53:00 i Diaz et al. (2017a, 2017b), Diaz et al. (2017, in preparation)
MPG2.2 m/GROND 2017 Aug 18 23:56:00 i Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 18 23:56:00 z Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 18 23:56:00 J Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 18 23:56:00 r Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 18 23:56:00 H Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 18 23:56:00 Ks Smartt et al. (2017)
Gemini-South/Flamingos-2 2017 Aug 19 00:00:19 H Cowperthwaite et al. (2017b)
Magellan-Baade/FourStar 2017 Aug 19 00:02:53 J1 Drout et al. (2017b)
VLT/X-shooter 2017 Aug 19 00:08:58 r Pian et al. (2017a, 2017a)
VLT/X-shooter 2017 Aug 19 00:10:46 z Pian et al. (2017b, 2017b)
VLT/X-shooter 2017 Aug 19 00:14:01 g Pian et al. (2017, 2017)
Swift/UVOT 2017 Aug 19 00:41:00 u Evans et al. (2017b)
Swope/DirectCCD 2017 Aug 19 00:49:15 B Kilpatrick et al. (2017a); Coulter et al. (2017)
Swope/DirectCCD 2017 Aug 19 01:08:00 r Coulter et al. (2017)
NTT/– 2017 Aug 19 01:09:00 U Smartt et al. (2017)
Swope/DirectCCD 2017 Aug 19 01:18:57 g Coulter et al. (2017)
BOOTES-5/JGT/– 2017 Aug 19 03:08:14 clear Castro-Tirado et al. (2017), Zhang et al. (2017, in preparation)
Pan-STARRS1/GPC1 2017 Aug 19 05:42:00 y Chambers et al. (2017b); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 19 05:44:00 z Chambers et al. (2017b); Smartt et al. (2017)
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(Continued)

Telescope/Instrument UT Date Band References

Pan-STARRS1/GPC1 2017 Aug 19 05:46:00 i Chambers et al. (2017b); Smartt et al. (2017)
MOA-II/MOA-cam3 2017 Aug 19 07:26:00 R Utsumi et al. (2017, in press)
B&C61cm/Tripole5 2017 Aug 19 07:26:00 g Utsumi et al. (2017, in press)
KMTNet-SSO/wide-fieldcamera 2017 Aug 19 08:32:48 B Im et al. (2017d, 2017c); Troja et al. (2017a)
KMTNet-SSO/wide-fieldcamera 2017 Aug 19 08:34:43 V Im et al. (2017d, 2017c); Troja et al. (2017a)
KMTNet-SSO/wide-fieldcamera 2017 Aug 19 08:36:39 R Im et al. (2017d, 2017c); Troja et al. (2017a)
KMTNet-SSO/wide-fieldcamera 2017 Aug 19 08:38:42 I Im et al. (2017d, 2017c); Troja et al. (2017a)
T27/– 2017 Aug 19 09:01:31 V Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
T30/– 2017 Aug 19 09:02:27 V Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
T27/– 2017 Aug 19 09:02:27 R Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
T31/– 2017 Aug 19 09:02:34 R Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
T27/– 2017 Aug 19 09:11:30 I Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
Zadko/CCDimager 2017 Aug 19 10:57:00 r Coward et al. (2017a),
MASTER/– 2017 Aug 19 17:06:57 Clear Lipunov et al. (2017b, 2017a)
MASTER/– 2017 Aug 19 17:53:34 R Lipunov et al. (2017b, 2017a)
LasCumbres1-m/Sinistro 2017 Aug 19 18:01:26 V Arcavi et al. (2017e)
LasCumbres1-m/Sinistro 2017 Aug 19 18:01:26 z Arcavi et al. (2017e)
MASTER/– 2017 Aug 19 18:04:32 B Lipunov et al. (2017b, 2017a)
1.5 m Boyden/– 2017 Aug 19 18:16:00 r Smartt et al. (2017)
REM/ROS2 2017 Aug 19 23:12:59 r Melandri et al. (2017c); Pian et al. (2017)
REM/ROS2 2017 Aug 19 23:12:59 i Melandri et al. (2017c); Pian et al. (2017)
REM/ROS2 2017 Aug 19 23:12:59 g Melandri et al. (2017c); Pian et al. (2017)
MASTER/– 2017 Aug 19 23:13:20 Clear Lipunov et al. (2017b, 2017a)
Gemini-South/Flamingos-2 2017 Aug 19 23:13:34 H Cowperthwaite et al. (2017b)
MPG2.2 m/GROND 2017 Aug 19 23:15:00 r Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 19 23:15:00 z Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 19 23:15:00 H Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 19 23:15:00 i Smartt et al. (2017)
MPG2.2 m/GROND 2017 Aug 19 23:15:00 J Smartt et al. (2017)
TOROS/EABA 2017 Aug 19 23:18:38 r Diaz et al. (2017b), Diaz et al. (2017, in preparation)
Magellan-Baade/FourStar 2017 Aug 19 23:18:50 H Drout et al. (2017b)
Etelman/VIRT/CCDimager 2017 Aug 19 23:19:00 R Gendre et al. (2017), Andreoni et al. (2017, in preparation)
Blanco/DECam/– 2017 Aug 19 23:23:29 Y Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Blanco/DECam/– 2017 Aug 19 23:26:59 r Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Blanco/DECam/– 2017 Aug 19 23:27:59 g Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
ChilescopeRC-1000/– 2017 Aug 19 23:30:33 clear Pozanenko et al. (2017a, 2017b), Pozanenko et al. (2017, in preparation)
Magellan-Baade/FourStar 2017 Aug 19 23:31:06 J1 Drout et al. (2017b)
Blanco/DECam/– 2017 Aug 19 23:31:13 u Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Magellan-Baade/FourStar 2017 Aug 19 23:41:59 Ks Drout et al. (2017b)
Magellan-Baade/IMACS 2017 Aug 20 00:13:32 r Drout et al. (2017b)
Gemini-South/Flamingos-2 2017 Aug 20 00:19:00 Ks Kasliwal et al. (2017)
LasCumbres1-m/Sinistro 2017 Aug 20 00:24:28 g Arcavi et al. (2017e)
Gemini-South/Flamingos-2 2017 Aug 20 00:27:00 J Kasliwal et al. (2017)
NTT/– 2017 Aug 20 01:19:00 U Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 20 05:38:00 y Chambers et al. (2017c); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 20 05:41:00 z Chambers et al. (2017c); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 20 05:45:00 i Chambers et al. (2017c); Smartt et al. (2017)
T31/– 2017 Aug 20 09:20:38 R Im et al. (2017a, 2017b), Im et al. (2017, in preparation)
MASTER/– 2017 Aug 20 17:04:36 Clear Lipunov et al. (2017b, 2017a)
MASTER/– 2017 Aug 20 17:25:56 R Lipunov et al. (2017b, 2017a)
MASTER/– 2017 Aug 20 17:36:32 B Lipunov et al. (2017b, 2017a)
LasCumbres1-m/Sinistro 2017 Aug 20 17:39:50 i Arcavi et al. (2017e)
LasCumbres1-m/Sinistro 2017 Aug 20 17:45:36 z Arcavi et al. (2017e)
LasCumbres1-m/Sinistro 2017 Aug 20 17:49:55 V Arcavi et al. (2017e)
MPG2.2 m/GROND 2017 Aug 20 23:15:00 g Smartt et al. (2017)
Magellan-Baade/FourStar 2017 Aug 20 23:20:42 J Drout et al. (2017b)
ChilescopeRC-1000/– 2017 Aug 20 23:21:09 clear Pozanenko et al. (2017a)
VISTA/VIRCAM 2017 Aug 20 23:24:00 K Tanvir & Levan (2017)
Blanco/DECam/– 2017 Aug 20 23:37:06 u Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Swope/DirectCCD 2017 Aug 20 23:44:36 V Coulter et al. (2017)
Swope/DirectCCD 2017 Aug 20 23:53:00 B Coulter et al. (2017)
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MASTER/– 2017 Aug 21 00:26:31 Clear Lipunov et al. (2017b, 2017a)
Gemini-South/Flamingos-2 2017 Aug 21 00:38:00 H Kasliwal et al. (2017); Troja et al. (2017a)
Pan-STARRS1/GPC1 2017 Aug 21 05:37:00 y Chambers et al. (2017d); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 21 05:39:00 z Chambers et al. (2017d); Smartt et al. (2017)
Pan-STARRS1/GPC1 2017 Aug 21 05:42:00 i Chambers et al. (2017d); Smartt et al. (2017)
AST3-2/wide-fieldcamera 2017 Aug 21 15:36:50 g L
MASTER/– 2017 Aug 21 17:08:14 Clear Lipunov et al. (2017b, 2017a)
MASTER/– 2017 Aug 21 18:06:12 R Lipunov et al. (2017b, 2017a)
MASTER/– 2017 Aug 21 19:20:23 B Lipunov et al. (2017b, 2017a)
duPont/RetroCam 2017 Aug 21 23:17:19 Y Drout et al. (2017b)
Etelman/VIRT/CCDimager 2017 Aug 21 23:19:00 Clear Gendre et al. (2017); Andreoni et al. (2017, in preparation)
MPG2.2 m/GROND 2017 Aug 21 23:22:00 Ks Smartt et al. (2017)
VLT/FORS2 2017 Aug 21 23:23:11 R D’Avanzo et al. (2017); Pian et al. (2017)
ChilescopeRC-1000/– 2017 Aug 21 23:32:09 clear Pozanenko et al. (2017c)
duPont/RetroCam 2017 Aug 21 23:34:34 H Drout et al. (2017b)
LasCumbres1-m/Sinistro 2017 Aug 21 23:48:28 w Arcavi et al. (2017e)
Swope/DirectCCD 2017 Aug 21 23:54:57 r Coulter et al. (2017)
duPont/RetroCam 2017 Aug 21 23:57:41 J Drout et al. (2017b)
Swope/DirectCCD 2017 Aug 22 00:06:17 g Coulter et al. (2017)
VLT/FORS2 2017 Aug 22 00:09:09 z D’Avanzo et al. (2017); Pian et al. (2017)
VLT/FORS2 2017 Aug 22 00:18:49 I D’Avanzo et al. (2017); Pian et al. (2017)
Magellan-Clay/LDSS3-C 2017 Aug 22 00:27:40 g Drout et al. (2017b)
VLT/FORS2 2017 Aug 22 00:28:18 B D’Avanzo et al. (2017); Pian et al. (2017)
VLT/FORS2 2017 Aug 22 00:38:20 V D’Avanzo et al. (2017); Pian et al. (2017)
HST/WFC3/IR 2017 Aug 22 07:34:00 F110W Tanvir & Levan (2017); Troja et al. (2017a)
LasCumbres1-m/Sinistro 2017 Aug 22 08:35:31 r Arcavi et al. (2017e)
HST/WFC3/IR 2017 Aug 22 10:45:00 F160W Tanvir & Levan (2017); Troja et al. (2017a)
HubbleSpaceTelescope/WFC3 2017 Aug 22 20:19:00 F336W Adams et al. (2017); Kasliwal et al. (2017)
Etelman/VIRT/CCDimager 2017 Aug 22 23:19:00 Clear Gendre et al. (2017); Andreoni et al. (2017, in preparation)
VLT/VIMOS 2017 Aug 22 23:30:00 z Tanvir & Levan (2017)
duPont/RetroCam 2017 Aug 22 23:33:54 Y Drout et al. (2017b)
VLT/VIMOS 2017 Aug 22 23:42:00 R Tanvir & Levan (2017)
VLT/VIMOS 2017 Aug 22 23:53:00 u Evans et al. (2017b)
VLT/FORS2 2017 Aug 22 23:53:31 Rspecial Covino et al. (2017)
VST/OmegaCam 2017 Aug 22 23:58:32 g Grado et al. (2017a); Pian et al. (2017)
VLT/X-shooter 2017 Aug 23 00:35:20 r Pian et al. (2017)
VLT/X-shooter 2017 Aug 23 00:37:08 z Pian et al. (2017)
VLT/X-shooter 2017 Aug 23 00:40:24 g Pian et al. (2017)
Zadko/CCDimager 2017 Aug 23 11:32:00 r Coward et al. (2017a),
IRSF/SIRIUS 2017 Aug 23 17:22:00 Ks Kasliwal et al. (2017)
IRSF/SIRIUS 2017 Aug 23 17:22:00 J Kasliwal et al. (2017)
IRSF/SIRIUS 2017 Aug 23 17:22:00 H Kasliwal et al. (2017)
VST/OmegaCam 2017 Aug 23 23:26:51 i Grado et al. (2017a); Pian et al. (2017)
VLT/VISIR 2017 Aug 23 23:35:00 8.6um Kasliwal et al. (2017)
VST/OmegaCam 2017 Aug 23 23:42:49 r Grado et al. (2017a); Pian et al. (2017)
CTIO1.3 m/ANDICAM 2017 Aug 24 23:20:00 Ks Kasliwal et al. (2017)
Swope/DirectCCD 2017 Aug 24 23:45:07 i Coulter et al. (2017)
ChilescopeRC-1000/– 2017 Aug 24 23:53:39 clear Pozanenko et al. (2017b),
Blanco/DECam/– 2017 Aug 24 23:56:22 g Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Magellan-Clay/LDSS3-C 2017 Aug 25 00:43:27 B Drout et al. (2017b)
HST/WFC3/UVIS 2017 Aug 25 13:55:00 F606W Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/UVIS 2017 Aug 25 15:28:00 F475W Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/UVIS 2017 Aug 25 15:36:00 F275W Levan & Tanvir (2017); Tanvir & Levan (2017),
Magellan-Clay/LDSS3-C 2017 Aug 25 23:19:41 z Drout et al. (2017b)
Blanco/DECam/– 2017 Aug 25 23:56:05 r Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
VLT/FORS2 2017 Aug 26 00:13:40 z Covino et al. (2017)
duPont/RetroCam 2017 Aug 26 00:14:28 J Drout et al. (2017b)
VLT/FORS2 2017 Aug 26 00:27:16 B Pian et al. (2017)
IRSF/SIRIUS 2017 Aug 26 16:57:00 J Kasliwal et al. (2017)
IRSF/SIRIUS 2017 Aug 26 16:57:00 Ks Kasliwal et al. (2017)
IRSF/SIRIUS 2017 Aug 26 16:57:00 H Kasliwal et al. (2017)
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time, flux upper limits, and the energy range of the
observations, which are summarized here.

At the time of GRB 170817A, three out of six spacecraft of
the Inter Planetary Network(Hurley et al. 2013) had a

favorable orientation to observe the LIGO-Virgo skymap.
However, based on the Fermi-GBM (Goldstein et al. 2017b)
and INTEGRAL analyses, GRB 170817A was too weak to be
detected by Konus-Wind(Svinkin et al. 2017a). Using the

Table 1
(Continued)

Telescope/Instrument UT Date Band References

VISTA/VIRCAM 2017 Aug 26 23:38:00 Y Tanvir & Levan (2017)
ApachePointObservatory/NICFPS 2017 Aug 27 02:15:00 Ks Kasliwal et al. (2017)
Palomar200inch/WIRC 2017 Aug 27 02:49:00 Ks Kasliwal et al. (2017)
HST/WFC3/IR 2017 Aug 27 06:45:56 F110W Cowperthwaite et al. (2017b)
HST/WFC3/IR 2017 Aug 27 07:06:57 F160W Cowperthwaite et al. (2017b)
HST/WFC3/UVIS 2017 Aug 27 08:20:49 F336W Cowperthwaite et al. (2017b)
HST/ACS/WFC 2017 Aug 27 10:24:14 F475W Cowperthwaite et al. (2017b)
HST/ACS/WFC 2017 Aug 27 11:57:07 F625W Cowperthwaite et al. (2017b)
HST/ACS/WFC 2017 Aug 27 13:27:15 F775W Cowperthwaite et al. (2017b)
HST/ACS/WFC 2017 Aug 27 13:45:24 F850LP Cowperthwaite et al. (2017b)
Gemini-South/Flamingos-2 2017 Aug 27 23:16:00 J Kasliwal et al. (2017)
CTIO1.3 m/ANDICAM 2017 Aug 27 23:18:00 Ks Kasliwal et al. (2017)
Blanco/DECam/– 2017 Aug 27 23:23:33 Y Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
MPG2.2 m/GROND 2017 Aug 27 23:24:00 J Smartt et al. (2017)
Gemini-South/Flamingos-2 2017 Aug 27 23:28:10 Ks Cowperthwaite et al. (2017b)
Gemini-South/Flamingos-2 2017 Aug 27 23:33:07 H Cowperthwaite et al. (2017b)
duPont/RetroCam 2017 Aug 27 23:36:25 H Drout et al. (2017b)
Blanco/DECam/– 2017 Aug 27 23:40:57 z Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
Blanco/DECam/– 2017 Aug 28 00:00:01 i Cowperthwaite et al. (2017b); Soares-Santos et al. (2017)
VLT/FORS2 2017 Aug 28 00:07:31 R Pian et al. (2017a)
VLT/FORS2 2017 Aug 28 00:15:56 V Pian et al. (2017a)
MPG2.2 m/GROND 2017 Aug 28 00:22:00 H Smartt et al. (2017)
HST/WFC3/IR 2017 Aug 28 01:50:00 F110W Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/IR 2017 Aug 28 03:25:00 F160W Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/UVIS 2017 Aug 28 20:56:00 F275W Levan & Tanvir (2017); Tanvir & Levan (2017),
HST/WFC3/UVIS 2017 Aug 28 22:29:00 F475W Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/UVIS 2017 Aug 28 23:02:00 F814W Tanvir & Levan (2017); Troja et al. (2017a)
NTT/– 2017 Aug 28 23:03:00 H Smartt et al. (2017)
HST/WFC3/UVIS 2017 Aug 28 23:08:00 F606W Tanvir & Levan (2017); Troja et al. (2017a)
MPG2.2 m/GROND 2017 Aug 28 23:22:00 Ks Smartt et al. (2017)
VISTA/VIRCAM 2017 Aug 28 23:33:00 J Tanvir & Levan (2017)
Gemini-South/Flamingos-2 2017 Aug 28 23:36:01 Ks Cowperthwaite et al. (2017b)
VLT/FORS2 2017 Aug 29 00:00:13 I Pian et al. (2017a)
HubbleSpaceTelescope/WFC3/UVIS 2017 Aug 29 00:36:00 F275W Kasliwal et al. (2017)
HubbleSpaceTelescope/WFC3/UVIS 2017 Aug 29 00:36:00 F225W Kasliwal et al. (2017)
NTT/– 2017 Aug 29 22:56:00 Ks Smartt et al. (2017)
VLT/VIMOS 2017 Aug 29 23:16:00 R Tanvir & Levan (2017)
SkyMapper/– 2017 Aug 30 09:26:00 u L
SkyMapper/– 2017 Aug 30 09:32:00 v L
NTT/– 2017 Aug 30 23:03:00 Ks Smartt et al. (2017)
VLT/FORS2 2017 Aug 31 23:34:46 z Pian et al. (2017a)
VISTA/VIRCAM 2017 Aug 31 23:42:00 K Tanvir & Levan (2017)
Gemini-South/Flamingos-2 2017 Aug 31 23:50:00 H Singer et al. (2017b); Kasliwal et al. (2017)
SkyMapper/– 2017 Sep 01 09:12:00 i L
SkyMapper/– 2017 Sep 01 09:14:00 z L
SkyMapper/– 2017 Sep 03 09:21:00 g L
SkyMapper/– 2017 Sep 03 09:23:00 r L
NTT/– 2017 Sep 04 23:12:00 Ks Smartt et al. (2017)
Gemini-South/Flamingos-2 2017 Sep 04 23:28:45 Ks Cowperthwaite et al. (2017b)
VLT/VIMOS 2017 Sep 05 23:23:00 z Tanvir & Levan (2017)
Gemini-South/Flamingos-2 2017 Sep 05 23:48:00 Ks Kasliwal et al. (2017)
Magellan-Baade/FourStar 2017 Sep 06 23:24:28 Ks Drout et al. (2017b)
VLT/HAWKI 2017 Sep 07 23:11:00 K Tanvir & Levan (2017)
VLT/HAWKI 2017 Sep 11 23:21:00 K Tanvir & Levan (2017)

Note. This is a subset of all the observations made in order to give a sense of the substantial coverage of this event.
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Table 2
Record of Spectroscopic Observations

Telescope/Instrument UT Date Wavelengths (Å) Resolution (R) References

Magellan-Clay/LDSS-3 2017 Aug 18 00:26:17 3780–10200 860 Drout et al. (2017); Shappee et al. (2017)
Magellan-Clay/LDSS-3 2017 Aug 18 00:40:09 3800–6200 1900 Shappee et al. (2017)
Magellan-Clay/LDSS-3 2017 Aug 18 00:52:09 6450–10000 1810 Shappee et al. (2017)
Magellan-Baade/MagE 2017 Aug 18 01:26:22 3650–10100 5800 Shappee et al. (2017)
ANU2.3/WiFeS 2017 Aug 18 09:24:00 3200–9800 B/R 3000 L
SALT/RSS 2017 Aug 18 17:07:00 3600–8000 300 Shara et al. (2017),
NTT/EFOSC2Gr#11+16 2017 Aug 18 23:19:12 3330–9970 260/400 Smartt et al. (2017)
VLT/X-shooter 2017 Aug 18 23:22:25 3000–24800 4290/8150/5750 Pian et al. (2017b, 2017b)
SOAR/GHTS 2017 Aug 18 23:22:39 4000–8000 830 Nicholl et al. (2017d)
Magellan-Clay/LDSS-3 2017 Aug 18 23:47:37 3820–9120 860 Shappee et al. (2017)
VLT/MUSE 2017 Aug 18 23:49:00 4650–9300 3000 Levan & Tanvir (2017); Tanvir & Levan (2017)
Magellan-Clay/MIKE 2017 Aug 19 00:18:11 3900–9400 30000 Shappee et al. (2017)
Magellan-Baade/MagE 2017 Aug 19 00:35:25 3800–10300 4100 Shappee et al. (2017)
Gemini-South/FLAMINGOS2 2017 Aug 19 00:42:27 9100–18000 500 Chornock et al. (2017a)
LCOFaulkesTelescopeSouth/FLOYDS 2017 Aug 19 08:36:22 5500–9250 700 GC21908, McCully et al. (2017b)
ANU2.3/WiFeS 2017 Aug 19 09:26:12 3200–9800 B/R 3000 L
SALT/RSS 2017 Aug 19 16:58:00 3600–8000 300 Shara et al. (2017)
SALT/RSS 2017 Aug 19 16:58:32 3600–8000 300 Shara et al. (2017); Shara et al. 2017, McCully et al. (2017b)
NTT/EFOSC2Gr#11+16 2017 Aug 19 23:25:41 3330–9970 260/400 Smartt et al. (2017)
SOAR/GHTS 2017 Aug 19 23:28:32 4000–8000 830 Nicholl et al. (2017d)
VLT/Xshooterfixed 2017 Aug 19 23:28:46 3700–22790 4290/3330/5450 Smartt et al. (2017)
Gemini-South/FLAMINGOS2 2017 Aug 19 23:42:56 9100–18000 500 Chornock et al. (2017a)
Magellan-Baade/IMACS 2017 Aug 20 00:26:28 4355–8750 1000 Shappee et al. (2017)
GeminiSouth/GMOS 2017 Aug 20 01:01:54 4000–9500 400 McCully et al. (2017a, 2017b)
Gemini-South/GMOS 2017 Aug 20 01:08:00 6000–9000 1900 Kasliwal et al. (2017)
ANU2.3/WiFeS 2017 Aug 20 09:21:33 3200–9800 B/R 3000 L
NTT/EFOSC2Gr#11+16 2017 Aug 20 23:21:13 3330–9970 390/600 Smartt et al. (2017)
SOAR/GHTS 2017 Aug 20 23:23:17 5000–9000 830 Nicholl et al. (2017d)
VLT/X-shooter 2017 Aug 20 23:25:28 3000–24800 4290/8150/5750 Pian et al. (2017a)
Magellan-Clay/LDSS-3 2017 Aug 20 23:45:53 4450–10400 860 Shappee et al. (2017)
Gemini-South/GMOS 2017 Aug 21 00:15:00 3800–9200 1700 Troja et al. (2017b); Kasliwal et al. (2017); Troja et al. (2017a)
GeminiSouth/GMOS 2017 Aug 21 00:16:09 4000–9500 400 Troja et al. (2017b); McCully et al. (2017b); Troja et al. (2017a)
VLT/FORS2 2017 Aug 21 00:43:12 3500–8600 800–1000 Pian et al. (2017a)
ANU2.3/WiFeS 2017 Aug 21 09:13:00 3200–7060 B 3000 R 7000 L
NTT/SOFIBlueGrism 2017 Aug 21 23:11:37 9380–16460 550 Smartt et al. (2017)
SOAR/GHTS 2017 Aug 21 23:24:49 4000–8000 830 Nicholl et al. (2017d)
VLT/Xshooterfixed 2017 Aug 21 23:25:38 3700–22790 4290/3330/5450 Smartt et al. (2017)
VLT/FORS2 2017 Aug 21 23:31:12 3500–8600 800–1000 Pian et al. (2017a)
Gemini-South/FLAMINGOS2 2017 Aug 21 23:40:09 9100–18000 500 Chornock et al. (2017a)
Gemini-South/Flamingos-2 2017 Aug 22 00:21:00 12980–25070 600 Kasliwal et al. (2017)
Gemini-South/Flamingos-2 2017 Aug 22 00:47:00 9840–18020 600 Kasliwal et al. (2017)
Magellan-Clay/LDSS-3 2017 Aug 22 00:50:34 5010–10200 860 Shappee et al. (2017)
HST/WFC3/IR-G102 2017 Aug 22 09:07:00 8000–11150 210 Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/IR-G141 2017 Aug 22 10:53:00 10750–17000 130 Tanvir & Levan (2017); Troja et al. (2017a)
Magellan-Clay/LDSS-3 2017 Aug 22 23:34:00 5000–10200 860 Shappee et al. (2017)
HST/STIS 2017 Aug 23 02:51:54 1600–3200 700 Nicholl et al. (2017d)
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Table 2
(Continued)

Telescope/Instrument UT Date Wavelengths (Å) Resolution (R) References

AAT/AAOmega2DF 2017 Aug 24 08:55:00 3750–8900 1700 Andreoni et al. (2017),
HST/WFC3/IR-G102 2017 Aug 24 18:58:00 8000–11150 210 Tanvir & Levan (2017); Troja et al. (2017a)
Magellan-Clay/LDSS-3 2017 Aug 24 23:33:51 6380–10500 1810 Shappee et al. (2017)
SOAR/GHTS 2017 Aug 24 23:34:31 5000–9000 830 Nicholl et al. (2017d)
Gemini-South/FLAMINGOS2 2017 Aug 24 23:56:32 9100–18000 500 Chornock et al. (2017a)
KeckI/LRIS 2017 Aug 25 05:45:00 2000–10300 1000 Kasliwal et al. (2017)
Magellan/Baade/IMACS 2017 Aug 25 23:37:59 4300–9300 1100 Nicholl et al. (2017d)
Magellan-Clay/LDSS-3 2017 Aug 25 23:39:18 6380–10500 1810 Shappee et al. (2017)
Gemini-South/FLAMINGOS2 2017 Aug 26 00:21:24 9100–18000 500 Chornock et al. (2017a)
HST/WFC3/IR-G141 2017 Aug 26 22:57:00 10750–17000 130 Tanvir & Levan (2017); Troja et al. (2017a)
Magellan/Baade/IMACS 2017 Aug 26 23:20:54 4300–9300 1100 Nicholl et al. (2017d)
Gemini-South/FLAMINGOS2 2017 Aug 27 00:12:20 9100–18000 500 Chornock et al. (2017a)
Gemini-South/FLAMINGOS2 2017 Aug 28 00:16:28 9100–18000 500 Chornock et al. (2017a)
HST/WFC3/IR-G102 2017 Aug 28 01:58:00 8000–11150 210 Tanvir & Levan (2017); Troja et al. (2017a)
HST/WFC3/IR-G141 2017 Aug 28 03:33:00 10750–17000 130 Tanvir & Levan (2017); Troja et al. (2017a)
Gemini-South/Flamingos-2 2017 Aug 29 00:23:00 12980–25070 600 Kasliwal et al. (2017)
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Table 3
Gamma-Ray Monitoring and Evolution of GW170817

Observatory UT Date Time since GW Trigger
90% Flux Upper Limit

(erg cm−2 s−1 ) Energy Band GCN/Reference

Insight-HXMT/HE Aug 17 12:34:24 UTC −400 s 3.7 10 7´ - 0.2–5 MeV Li et al. (2017)
CALET CGBM Aug 17 12:41:04 UTC 0.0 1.3 10 7´ - a 10–1000 keV Nakahira et al. (2017)
Konus-Wind Aug 1712:41:04.446 UTC 0.0 3.0 10 7´ - [erg cm−2] 10keV–10MeV Svinkin et al. (2017a)
Insight-HXMT/HE Aug 17 12:41:04.446 UTC 0.0 3.7 10 7´ - 0.2–5 MeV Li et al. (2017)
Insight-HXMT/HE Aug 17 12:41:06.30 UTC 1.85 s 6.6 10 7´ - 0.2–5 MeV Li et al. (2017)
Insight-HXMT/HE Aug 17 12:46:04 UTC 300 s 1.5 10 7´ - 0.2–5 MeV Li et al. (2017)
AGILE-GRID Aug 17 12:56:41 UTC 0.011 days 3.9 10 9´ - 0.03–3 GeV V. Verrecchia et al. (2017, in preparation)
Fermi-LAT Aug 1713:00:14 UTC 0.013 days 4.0 10 10´ - 0.1–1 GeV Kocevski et al. (2017)
H.E.S.S. Aug 17 17:59 UTC 0.22 days 3.9 10 12´ - 0.28–2.31 TeV H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
HAWC Aug 17 20:53:14—Aug 17 22:55:00 UTC 0.342 days+0.425 days 1.7 10 10´ - 4–100 TeV Martinez-Castellanos et al. (2017)
Fermi-GBM Aug 16 12:41:06—Aug 18 12:41:06 UTC ±1.0 days 8.0 9.9 10 10´ -( – ) 20–100 keV Goldstein et al. (2017a)
NTEGRAL IBIS/ISGRI Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 2.0 10 11´ - 20–80keV Savchenko et al. (2017)
INTEGRAL IBIS/ISGRI Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 3.6 10 11´ - 80–300keV Savchenko et al. (2017)
INTEGRAL IBIS/PICsIT Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 0.9 10 10´ - 468–572keV Savchenko et al. (2017)
INTEGRAL IBIS/PICsIT Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 4.4 10 10´ - 572–1196keV Savchenko et al. (2017)
INTEGRAL SPI Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 2.4 10 10´ - 300–500keV Savchenko et al. (2017)
INTEGRAL SPI Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 7.0 10 10´ - 500–1000keV Savchenko et al. (2017)
INTEGRAL SPI Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 1.5 10 9´ - 1000–2000keV Savchenko et al. (2017)
INTEGRAL SPI Aug 1812:45:10—Aug 2303:22:34 UTC 1–5.7 days 2.9 10 9´ - 2000–4000keV Savchenko et al. (2017)
H.E.S.S. Aug 18 17:55 UTC 1.22 days 3.3 10 12´ - 0.27–3.27 TeV H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
H.E.S.S. Aug 19 17:56 UTC 2.22 days 1.0 10 12´ - 0.31–2.88 TeV H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
H.E.S.S. Aug 21 + Aug 22 18:15 UTC 4.23 days+5.23 days 2.9 10 12´ - 0.50–5.96 TeV H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)

Note.
a Assuming no shielding by the structures of ISS.
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Earth Occultation technique (Wilson-Hodge et al. 2012), Fermi-
GBM placed limits on persistent emission for the 48 hr period
centered at the Fermi-GBM trigger time over the 90% credible
region of the GW170817 localization. Using the offline targeted
search for transient signals(Blackburn et al. 2015), Fermi-GBM
also set constraining upper limits on precursor and extended
emission associated with GRB 170817A (Goldstein et al.
2017b). INTEGRAL (Winkler et al. 2003) continued unin-
terrupted observations after GRB 170817A for 10 hr. Using the
PiCSIT (Labanti et al. 2003) and SPI-ACS detectors, the
presence of a steady source 10 times weaker than the prompt
emission was excluded(Savchenko et al. 2017).

The High Energy telescope on board Insight-HXMT
monitored the entire GW170817 skymap from T0 650 s- to
T0 450 s+ but, due to the weak and soft nature of
GRB 170817A, did not detect any significant excess at
T0(Liao et al. 2017). Upper limits from 0.2–5MeV for
GRB 170817A and other emission episodes are reported in Li
et al. (2017).

The Calorimetric Electron Telescope (CALET) Gamma-ray
Burst Monitor (CGBM) found no significant excess around T0.
Upper limits may be affected due to the location of SSS17a/
AT 2017gfo being covered by the large structure of the
International Space Station at the time of GRB 170817A
(Nakahira et al. 2017). AstroSat CZTI(Singh et al. 2014;
Bhalerao et al. 2017) reported upper limits for the 100 s interval
centered on T0(Balasubramanian et al. 2017); the position of
SSS17a/AT 2017gfo was occulted by the Earth, however, at
the time of the trigger.

For the AstroRivelatore Gamma a Immagini Leggero
(AGILE) satellite(Tavani et al. 2009) the first exposure of
the GW170817 localization region by the Gamma Ray Imaging
Detector (GRID), which was occulted by the Earth at the time
of GRB 170817A, started at T0 935 s+ . The GRID observed
the field before and after T0, typically with 150 s exposures. No
gamma-ray source was detected above 3s in the energy range
30 MeV–30 GeV(V. Verrecchia et al. 2017, in preparation).

At the time of the trigger, Fermi was entering the South
Atlantic Anomaly (SAA) and the Large Area Telescope (LAT)
was not collecting science data (Fermi-GBM uses different
SAA boundaries and was still observing). Fermi-LAT resumed
data taking at roughly T0 1153 s+ , when 100% of the low-
latency GW170817 skymap(LIGO Scientific Collaboration &
Virgo Collaboration et al. 2017b) was in the field of view for

1000 s~ . No significant source of high-energy emission was
detected. Additional searches over different timescales were
performed for the entire time span of LAT data, and no
significant excess was detected at the position of SSS17a/
AT 2017gfo(Kocevski et al. 2017).

The High Energy Stereoscopic System (H.E.S.S.) array of
imaging atmospheric Cherenkov telescopes observed from
August 17 18:00 UTC with three pointing positions. The first,
at T0 5.3 hr+ , covered SSS17a/AT 2017gfo. Observations
repeated the following nights until the location moved outside
the visibility window, with the last pointing performed on
August 22 18:15 UTC. A preliminary analysis with an energy
threshold of 500 GeV~ revealed no significant gamma-ray
emission (de Naurois et al. 2017), confirmed by the final,
offline analysis (see H. Abdalla et al. (H.E.S.S. Collaboration)
2017, in preparation, for more results).

For the High-Altitude Water Cherenkov (HAWC) Observa-
tory (Abeysekara et al. 2017) the LIGO-Virgo localization

region first became visible on August 17 between 19:57 and
23:25 UTC. SSS17a/AT 2017gfo was observed for 2.03 hr
starting at 20:53 UTC. Upper limits from HAWC for energies

40> TeV assuming an E 2.5- spectrum are reported in Martinez-
Castellanos et al. (2017).
INTEGRAL (3 keV–8MeV) carried out follow-up observa-

tions of the LIGO-Virgo localization region, centered on the
optical counterpart, starting 24 hr after the event and spanning
4.7 days. Hard X-ray emission is mostly constrained by IBIS
(Ubertini et al. 2003), while above 500 keV SPI (Vedrenne
et al. 2003) is more sensitive. Besides the steady flux limits
reported in Table 3, these observations exclude delayed
bursting activity at the level of giant magnetar flares. No
gamma-ray lines from a kilonova or e+ - pair plasma
annihilation were detected (see Savchenko et al. 2017).

3.3. Discovery of the X-Ray Counterpart

While the UV, optical, and IR observations mapped the
emission from the sub-relativistic ejecta, X-ray observations
probed a different physical regime. X-ray observations of GRB
afterglows are important to constrain the geometry of the
outflow, its energy output, and the orientation of the system
with respect to the observers’ line of sight.
The earliest limits at X-ray wavelengths were provided by

the Gas Slit Camera (GSC) of the Monitor of All-Sky X-ray
Image (MAXI; Matsuoka et al. 2009). Due to an unfavorable
sky position, the location of GW170817 was not observed by
MAXI until August 17 17:21 UTC (T0 0.19+ days). No X-ray
emission was detected at this time to a limiting flux of
8.6 10 9´ - erg cm−2 s−1 (2–10 keV; Sugita et al. 2017; S.
Sugita 2017, in preparation). MAXI obtained three more scans
over the location with no detections before the more sensitive
pointed observations began.
In addition, the Super-AGILE detector (Feroci et al. 2007) on

board the AGILE mission (Tavani et al. 2009) observed the
location of GW170817 starting at August 18 01:16:34.84 UTC
(T0 0.53+ days). No X-ray source was detected at the location
of GW170817, with a 3σ upper limit of 3.0 10 9´ -

erg cm−2 s−1 (18–60 keV; V. Verrecchia et al. 2017, in
preparation).
The first pointed X-ray observations of GW170817 were

obtained by the X-Ray Telescope (Burrows et al. 2005) on the
Swift satellite (Gehrels 2004) and the NUclear Spectroscopic
Telescope ARray (NuSTAR; Harrison et al. 2013), beginning at
T0 0.62+ days and T0 0.70+ days, respectively. No X-ray
emission was detected at the location of GW170817 to limiting
fluxes of 2.7 10 13´ - erg cm−2 s−1 (0.3–10.0 keV; Evans et al.
2017a, 2017b) and 2.6 10 14´ - erg cm−2 s−1 (3.0–10.0 keV;
Evans et al. 2017a, 2017b). Swift continued to monitor the
field, and after stacking several epochs of observations, a weak
X-ray source was detected near the location of GW170817 at a
flux of 2.6 10 14´ - erg cm−2 s−1 (Evans et al. 2017c).
INTEGRAL (see Section 3.2) performed pointed follow-up

observations from one to about six days after the trigger. The
X-ray monitor JEM-X (Lund et al. 2003) constrained the
average X-ray luminosity at the location of the optical transient
to be 2 10 11< ´ - erg cm−2 s−1 (3–10.0 keV) and 7 10 12< ´ -

erg cm−2 s−1 (10–25 keV; Savchenko et al. 2017).
Chandra obtained a series of observations of GW170817

beginning at August 19 17:10 UTC (T0 2.2+ days) and
continuing until the emission from NGC 4993 became
unobservable because of SSS17a/AT 2017gfo’s proximity to
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the Sun (Fong et al. 2017; Haggard et al. 2017b; Margutti et al.
2017a; Troja et al. 2017c, 2017e). Two days post-trigger,
Margutti et al. (2017a) reported an X-ray non-detection for
SSS17a/AT 2017gfo in a ;25 ks Chandra exposure,964 along
with the detection of an extended X-ray source whose position
was consistent with the host NGC 4993 (Margutti et al. 2017b).
Refined astrometry from subsequent Swift observations con-
firmed that the previously reported candidate was indeed
associated with the host nucleus (Evans et al. 2017a, 2017b).

Nine days post-trigger, Troja et al. (2017c) reported the
discovery of the X-ray counterpart with Chandra. In a 50 ks
exposure observation, they detected significant X-ray emission
at the same position of the optical/IR counterpart (Troja
et al. 2017a; top right panel in Figure 2)965. Fifteen days post-
trigger, two additional 50 ks Chandra observations were made,
which confirmed the continued presence of X-ray emission.
Based on the first of these two observations966,967: Fong et al.
(2017) reported the detection of the X-ray counterpart and the
presence of an additional X-ray point source in the near vicinity
(Margutti et al. 2017b), and Troja et al. (2017e) reported a flux
of 4.5×10−15 erg cm−2 s−1 for the X-ray counterpart. One
day later, Haggard et al. (2017b) reported another deep
observation showing continued distinct X-ray emission coin-
cident with SSS17a/AT 2017gfo, NGC 4993, and the addi-
tional point source (Haggard et al. 2017a, 2017b).10

Neither Swift nor Chandra can currently observe GW170817
because it is too close to the Sun ( 47<  for Swift, 46<  for
Chandra). Hence, until early 2017 December, NuSTAR is the
only sensitive X-ray observatory that can continue to observe
the location of GW170817.

All X-ray observations of GW170817 are summarized in
Table 4.

3.4. Discovery of the Radio Counterpart

Radio emission traces fast-moving ejecta from a neutron star
coalescence, providing information on the energetics of the
explosion, the geometry of the ejecta, as well as the
environment of the merger. The spectral and temporal
evolution of such emission, coupled with X-ray observations,
are likely to constrain several proposed models (see, e.g., Nakar
& Piran 2011; Piran et al. 2013; Hotokezaka & Piran 2015;
Hotokezaka et al. 2016; Gottlieb et al. 2017).

Prior to detection of SSS17a/AT 2017gfo, a blind radio
survey of cataloged galaxies in the gravitational-wave
localization volume commenced with the Australia Telescope
Compact Array (ATCA; Wilson et al. 2011), and observed the
merger events’ location on 2017 August 18 at 01:46 UTC
(Kaplan et al. 2017a). In addition, the Long Wavelength Array 1
(LWA1; Ellingson et al. 2013) followed up the gravitational-
wave localization with observations at tc + 6.5 hr, then on 2017
August 23 and 30 (Callister et al. 2017a; Callister et al. 2017b)
using four beams (one centered on NGC 4993, one off-center,
and two off NGC 4993). These observations set 3σ upper limits
for the appearance of a radio source in the beam centered on
NGC 4993, about 8 hours after the GW event, as ∼200 Jy at
25 MHz and ∼100 Jy at 45 MHz.

The first reported radio observations of the optical transient
SSS17a/AT 2017gfo’s location occurred on August 18 at
02:09:00 UTC (T0+13.5 hr) with the Karl G.Jansky Very
Large Array (VLA) by Alexander et al. (2017d).968 Initially
attributed to the optical transient, this radio source was later
established to be an AGN in the nucleus of the host galaxy,
NGC 4993(Alexander et al. 2017e, 2017c). Subsequent
observations with several radio facilities spanning a wide
range of radio and millimeter frequencies continued to detect
the AGN, but did not reveal radio emission at the position of
the transient (Alexander et al. 2017f; Bannister et al. 2017b;
Corsi et al. 2017a, 2017b, 2017c; De et al. 2017a, 2017b;
Kaplan et al. 2017a; Lynch et al. 2017a, 2017b, 2017c; Mooley
et al. 2017a; Resmi et al. 2017).
The first radio counterpart detection consistent with the HST

position (refined by Gaia astrometry) of SSS17a/AT 2017gfo
(Adams et al. 2017) was obtained with the VLA on 2017
September 2 and 3 at two different frequencies ( 3 GHz» and

6» GHz) via two independent observations: the Jansky VLA
mapping of Gravitational Wave bursts as Afterglows in Radio
(JAGWAR969; Mooley et al. 2017b) and VLA/16A-206970

(Corsi et al. 2017d). Marginal evidence for radio excess emission
at the location of SSS17a/AT 2017gfo was also confirmed in
ATCA images taken on September 5 at similar radio frequencies
( 7.25 GHz;» Murphy et al. 2017). Subsequent repeated
detections spanning multiple frequencies have confirmed an
evolving transient (Hallinan et al. 2017a, 2017b; Corsi et al.
2017d; Mooley et al. 2017b). Independent observations carried
out on 2017 September 5 with the same frequency and exposure
time used by Corsi et al. (2017d) did not detect any emission to a
5σ limit971 (Alexander et al. 2017a), but this group also
subsequently detected the radio counterpart on 2017 September
25 (Alexander et al. 2017b, 2017c).
SSS17a/AT 2017gfo, as well as other parts of the initial

gravitational-wave localization area, were and are also being
continuously monitored at a multitude of different frequencies
with the Atacama Large Millimeter/submillimeter Array
(ALMA; Wootten & Thompson 2009; Schulze et al. 2017;
Kim et al. 2017, in preparation; Alexander et al. 2017c;
Williams et al. 2017a), the Australian Square Kilometre Array
Pathfinder (ASKAP; Johnston et al. 2007), ASKAP-Fast Radio
Burst (Bannister et al. 2017a, 2017c), ATCA, Effelsberg-100 m
(Barr et al. 2013), the Giant Metrewave Radio Telescope
(GMRT; Swarup et al. 1991), the Low-Frequency Array
(LOFAR; van Haarlem et al. 2013), the Long Wavelength
Array (LWA1), MeerKAT (Goedhart et al. 2017a), the
Murchison Widefield Array (MWA; Tingay et al. 2013),
Parkes-64 m (SUPERB; Bailes et al. 2017a; Keane et al. 2017),
Sardinia Radio Telescope (SRT; Prandoni et al. 2017), VLA,
VLA Low Band Ionosphere and Transient Experiment
(VLITE; Clarke & Kassim 2016), and also using the very
long baseline interferometry (VLBI) technique with
e-MERLIN (Moldon et al. 2017a, 2017b), the European VLBI
Network (Paragi et al. 2017a, 2017b), and the Very Long
Baseline Array (VLBA; Deller et al. 2017a, 2017b). The latter
have the potential to resolve (mildly) relativistic ejecta on a
timescale of months.
Table 5 summarizes the radio observations of GW170817.

964 Chandra OBSID-18955, PI: Fong.
965 Chandra OBSID-19294, PI: Troja.
966 Chandra OBSID-20728, PI: Troja (Director’s Discretionary Time
observation distributed also to Haggard, Fong, and Margutti).
967 Chandra OBSID-18988, PI: Haggard.

968 VLA/17A-218, PI: Fong.
969 VLA/17A-374, PI: Mooley.
970 VLA/16A-206, PI: Corsi.
971 VLA/17A-231, PI: Alexander.
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Table 4
X-Ray Monitoring and Evolution of GW170817

Observatory UT Date (Start) Time since GW trigger (days) fx ( erg cm
−2 s−1 ) Lx (erg s

−1) Energy (keV) GCN/Reference

MAXI Aug 17 17:21:54 UTC 0.19 8.6 10 9< ´ - 1.65 1045< ´ 2–10 S. Sugita et al. (2017, in preparation)
MAXI Aug 17 18:54:27 UTC 0.26 7.7 10 8< ´ - 1.47 1046< ´ 2–10 S. Sugita et al. (2017, in preparation)
MAXI Aug 18 00:44:59 UTC 0.50 4.2 10 9< ´ - 8.0 1044< ´ 2–10 S. Sugita et al. (2017, in preparation)
Super-AGILE Aug 18 01:16:34 UTC 0.53 3.0 10 9< ´ - 5.4 1044< ´ 18–60 V. Verrecchia et al. (2017, in preparation)
MAXI Aug 18 02:18:08 UTC 0.57 2.2 10 9< ´ - 4.2 1044< ´ 2–10 S. Sugita et al. (2017, in preparation)
Swift-XRT Aug 18 03:34:33 UTC 0.62 2.74 10 13< ´ - 5.25 1040< ´ 0.3–10 Evans et al. (2017b)
NuSTAR Aug 18 05:25 UTC 0.7 2.62 10 14< ´ - 5.01 1039< ´ 3–10 Evans et al. (2017b)
Swift-XRT Aug 18 12:11:49 UTC 0.98 2.62 10 12< ´ - 5.01 1041< ´ 0.3–10 Evans et al. (2017b)
INTEGRAL JEM-X Aug 1812:45:10 UTC 1–5.7 1.9 10 11< ´ - 3.6 1042< ´ 3–10 Savchenko et al. (2017)
INTEGRAL JEM-X Aug 1812:45:10 UTC 1–5.7 7.0 10 12< ´ - 1.3 1042< ´ 10–25 Savchenko et al. (2017)
Swift-XRT Aug 18 13:29:43 UTC 1.03 1.77 10 13< ´ - 3.39 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 19 00:18:22 UTC 1.48 1.31 10 13< ´ - 2.51 1040< ´ 0.3–10 Evans et al. (2017b)
Chandra Aug 19 17:10:09 UTC 2.20 non-detection K 0.3–10 Margutti et al. (2017a)
Swift-XRT Aug 19 13:24:05 UTC 2.03 1.02 10 13< ´ - 1.95 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 19 18:30:52 UTC 2.24 1.34 10 13< ´ - 2.57 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 20 03:24:44 UTC 2.61 1.41 10 13< ´ - 2.69 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 20 08:28:05 UTC 2.82 3.87 10 14< ´ - 7.41 1039< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 21 01:43:44 UTC 3.54 6.73 10 14< ´ - 1.29 1040< ´ 0.3–10 Evans et al. (2017b)
NuSTAR Aug 21 20:45:00 UTC 4.3 2.08 10 14< ´ - 3.98 1039< ´ 3–10 Evans et al. (2017b)
Swift-XRT Aug 22 00:05:57 UTC 4.48 6.28 10 14< ´ - 1.20 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 23 06:22:57 UTC 5.74 6.89 10 14< ´ - 1.32 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 23 23:59:57 UTC 6.47 7.21 10 14< ´ - 1.38 1040< ´ 0.3–10 Evans et al. (2017b)
Chandra Aug 26 10:33:50 UTC 8.9 Detection K 0.5–8.0 Troja et al. (2017c, 2017a)
Swift-XRT Aug 26 23:59:57 UTC 9.47 8.67 10 14< ´ - 1.66 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 28 10:46:17 UTC 10.92 1.41 10 13< ´ - 2.69 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 29 01:04:57 UTC 11.52 6.00 10 14< ´ - 1.15 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 30 01:00:57 UTC 12.51 5.47 10 14< ´ - 1.05 1040< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Aug 31 02:27:52 UTC 13.57 3.87 10 14< ´ - 7.41 1039< ´ 0.3–10 Evans et al. (2017b)
Swift-XRT Sep 01 05:53:04 UTC 14.72 4.45 10 14< ´ - 8.51 1039< ´ 0.3–10 Evans et al. (2017b)
Chandra Sep 01 15:22:22 UTC 15.1 K K Fong et al. (2017); Margutti et al. (2017b)
Chandra Sep 01 15:22:22 UTC 15.1 4.5 10 15´ - 9 1038´ 0.5–8.0 Troja et al. (2017e, 2017a)
Chandra Sep 02 15:22:22 UTC 15.1 3.5 10 15´ - 2.7 1038´ 0.3–10 Haggard et al. (2017b, 2017a)
Chandra Sep 02 00:00:00 UTC 16.1 3.8 10 15´ - 3.0 1038´ 0.3–10 Haggard et al. (2017b, 2017a)
Swift-XRT Sep 02 08:40:56 UTC 15.83 1.51 10 13< ´ - 2.88 1040< ´ 0.3–10 Evans et al. (2017b)
NuSTAR Sep 04 17:56 UTC 18.2 6.58 10 14< ´ - 1.26 1040< ´ 3–10 Evans et al. (2017b)
NuSTAR Sep 05 14:51 UTC 19.1 4.15 10 14< ´ - 7.94 1039< ´ 3–10 Evans et al. (2017b)
NuSTAR Sep 06 17:56 UTC 20.1 3.30 10 14< ´ - 6.31 1039< ´ 3–10 Evans et al. (2017b)
NuSTAR Sep 21 11:10 UTC 34.9 1.65 10 14< ´ - 3.16 1039< ´ 3–10 Evans et al. (2017b)
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Table 5
Radio Monitoring and Evolution of GW170817

Telescope UT Date Time since GW Trigger (days) Central Frequency (GHz) Bandwidth (GHz) Flux (μ Jy), 3σ GCN/Reference

LWA1 Aug 17 13:09:51 UTC 0.02 0.02585 0.020 L Callister et al. (2017a)
LWA1 Aug 17 13:09:51 UTC 0.02 0.04545 0.020 L Callister et al. (2017a)
LWA1 Aug 17 19:15:00 UTC 0.27 0.02585 0.020 <2 × 108 Callister et al. (2017a)
LWA1 Aug 17 19:15:00 UTC 0.27 0.04545 0.020 <1 × 108 Callister et al. (2017a)
VLBA Aug 17 19:58:00 UTC 0.30 8.7 0.26 Deller et al. (2017a)
VLA Aug 18 02:18:00 UTC 0.57 10.0 L Alexander et al. (2017d, 2017e)
ATCA Aug 18 01:00:00 UTC 1 8.5 2.049 120< Bannister et al. (2017d)

Kaplan et al. (2017a)
Hallinan et al. (2017a)

ATCA Aug 18 01:00:00 UTC 1 10.5 2.049 150< Bannister et al. (2017d)
Kaplan et al. (2017a)
Hallinan et al. (2017a)

ATCA Aug 18 01:00:00 UTC 1 16.7 2.049 130< Kaplan et al. (2017a)
Hallinan et al. (2017a)

ATCA Aug 18 01:00:00 UTC 1 21.2 2.049 140< Kaplan et al. (2017a)
Hallinan et al. (2017a)

VLITE Aug 18 22:23:31 UTC 1.44 0.3387 0.034 <34800 Hallinan et al. (2017a)
ASKAP Aug 18 04:05:35 UTC 0.67 1.34 0.19 Bannister et al. (2017e, 2017c)
MWA Aug 18 07:07:50 UTC 1 0. 185 0.03 <51 000 Kaplan et al. (2017b)
ASKAP Aug 18 08:57:33 UTC 0.86 1.34 0.19 Bannister et al. (2017e, 2017c)
VLA Aug 18 22:04:57 UTC 1 10.0 3.8 17.0< Alexander et al. (2017f)
ALMA Aug 18 22:50:40 UTC 1.4 338.5 7.5 L Schulze et al. (2017)
GMRT Aug 18 11:00:00 UTC 1 10.0 0.032 195< De et al. (2017a)

Hallinan et al. (2017a)
Parkes Aug 18 00:00:00 UTC 1.38 1.34 0.34 1.4 106< ´ Bailes et al. (2017a)
Parkes Aug 18 00:00:00 UTC 1.46 1.34 0.34 1.4 106< ´ Bailes et al. (2017a)
ASKAP Aug 19 02:08:00 UTC 1.58 1.34 0.19 Bannister et al. (2017e)
ASKAP Aug 19 05:34:33 UTC 2 1.345 L 900< Dobie et al. (2017a)
VLA Aug 19 22:01:48 UTC 2 6.0 4 22< Corsi et al. (2017a)
VLA Aug 19 22:01:48 UTC 2 6.0 4 22< Corsi et al. (2017a)
VLITE Aug 19 22:29:29 UTC 2.44 0.3387 0.034 <28800 Hallinan et al. (2017a)
VLA Aug 19 22:30:10 UTC 2.42 15.0 6 22< Corsi et al. (2017e)

Hallinan et al. (2017a)
VLA Aug 19 23:04:06 UTC 2.44 10.0 4 17< Corsi et al. (2017b)

Hallinan et al. (2017a)
VLA Aug 19 23:33:30 UTC 2.46 6.0 L 20< Corsi et al. (2017a)

Hallinan et al. (2017a)
ALMA Aug 19 22:31:43 UTC 2 97.5 L 50< Williams et al. (2017a)
Parkes Aug 20 00:00:00 UTC 3.17 1.34 0.34 1.4 106< ´ Bailes et al. (2017a)
Parkes Aug 20 00:00:00 UTC 3.21 1.34 0.34 1.4 106< ´ Bailes et al. (2017a)
VLITE Aug 20 20.49:36 UTC 3.34 0.3387 0.034 <44700 Hallinan et al. (2017a)
VLA Aug 20 00:01:24 UTC 3 9.7 4 18< Corsi et al. (2017b)
GMRT Aug 20 08:00:00 UTC 3 0.4 0.2 780< De et al. (2017b)
GMRT Aug 20 08:00:00 UTC 3 1.2 0.4 98< De et al. (2017b)
VLA Aug 20 21:07:00 UTC 3 6.2 4 19< Corsi et al. (2017c)
VLA/JAGWAR Aug 20 22:20:00 UTC 3 3.0 L 32< Mooley et al. (2017a)
ATCA Aug 20 23:31:03 UTC 3 8.5 2.049 20< Lynch et al. (2017a)
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Table 5
(Continued)

Telescope UT Date Time since GW Trigger (days) Central Frequency (GHz) Bandwidth (GHz) Flux (μ Jy), 3σ GCN/Reference

ATCA Aug 20 23:31:03 UTC 3 10.5 2.049 135< Lynch et al. (2017a)
ALMA Aug 20 22:40:16 UTC 3 338.5 7.5 L Schulze et al. (2017)
VLBA Aug 20 21:36:00 UTC 3 8.7 L 48< Deller et al. (2017b)
ALMA Aug 21 20:58:51 UTC 4.3 338.5 7.5 L Schulze et al. (2017)
VLA Aug 22 23:50:18 UTC 5.48 10.0 L Alexander et al. (2017c)
e-MERLIN Aug 23 12:00:00 UTC 6 5.0 0.512 108< Moldon et al. (2017a)
e-MERLIN Aug 24 12:00:00 UTC 7 5.0 0.512 96< Moldon et al. (2017a)
LWA1 Aug 24 19:50:00 UTC 7 0.02585 0.016 Callister et al. (2017b)
LWA1 Aug 24 19:50:00 UTC 7 0.04545 0.016 Callister et al. (2017b)
e-MERLIN Aug 25 12:00:00 UTC 8 5.0 512 96< Moldon et al. (2017a)
VLITE Aug 25 20:38:22 UTC 8.37 0.3387 0.034 <37500 Hallinan et al. (2017a)
GMRT Aug 25 09:30:00 UTC 7.9 1.39 0.032 130< Resmi et al. (2017)
VLA Aug 25 19:15:12 UTC 8.29 10.0 L Alexander et al. (2017c)
ALMA Aug 25 22:35:17 UTC 8.4 338.5 7.5 L Schulze et al. (2017)
MeerKAT Aug 26 08:43:00 UTC 10 1.48 0.22 <70 Goedhart et al. (2017a)
ALMA Aug 26 22:49:25 UTC 9.43 97.5 L Williams et al. (2017a)
ALMA Aug 26 22:58:41 UTC 9.4 338.5 7.5 L Schulze et al. (2017); S. Kim et al. (2017, in preparation)
EVN Aug 26 12:15:00 UTC 9 5.0 0.256 <96 Paragi et al. (2017a)
e-MERLIN Aug 26 12:00:00 UTC 9 5.0 0.512 114< Moldon et al. (2017a)
e-MERLIN Aug 27 12:00:00 UTC 10 5.0 0.512 90< Moldon et al. (2017a)
ATCA Aug 27 23:26:25 UTC 10 8.5 2. 049 54< Lynch et al. (2017b)
ATCA Aug 27 23:26:25 UTC 10 10.5 2.049 39< Lynch et al. (2017b)
e-MERLIN Aug 28 12:00:00 UTC 11 5.0 0.512 90< Moldon et al. (2017a)
VLITE Aug 30 23:10:28 UTC 13.45 0.3387 0.034 <20400 Hallinan et al. (2017a)
LWA1 Aug 30 19:50:00 UTC 13 0.02585 0.016 Callister et al. (2017)
LWA1 Aug 30 19:50:00 UTC 13 0.04545 0.016 Callister et al. (2017)
VLA Aug 30 22:09:24 UTC 13.41 10.0 L Alexander et al. (2017c)
e-MERLIN Aug 31 13:00:00 UTC 14 5.0 0.512 <109 Moldon et al. (2017b)
VLITE Sep 1 20:44:59 UTC 15.37 0.3387 0.034 <11400 Hallinan et al. (2017a)
ATCA Sep 1 12:00:00 UTC 15 16.7 L 50< Troja et al. (2017f)
ATCA Sep 1 12:00:00 UTC 15 21.2 L 50< Troja et al. (2017f)
ATCA Sep 1 12:00:00 UTC 15 43.0 L 90< Troja et al. (2017f)
ATCA Sep 1 12:00:00 UTC 15 45.0 L 90< Troja et al. (2017f)
e-MERLIN Sep 1 13:00:00 UTC 15 5.0 0.512 <114 Moldon et al. (2017b)
ALMA Sep 120:22:05 UTC 15.33 97.5 L Alexander et al. (2017c)
VLA/JAGWAR Sep 2 00:00:00 UTC 16 3.0 Detection Mooley et al. (2017b); Hallinan et al. (2017a)
e-MERLIN Sep 2 13:00:00 UTC 16 5.0 0.512 <144 Moldon et al. (2017b)
VLITE Sep 2 18:51:34 UTC 16.36 0.3387 0.034 <11700 Hallinan et al. (2017a)
e-MERLIN Sep 3 13:00:00 UTC 17 5.0 0.512 <166 Moldon et al. (2017b)
VLA Sep 3 23:30:00 UTC 17 6.0 Detection Corsi et al. (2017d); Hallinan et al. (2017a)
VLITE Sep 3 20:08:05 UTC 17.40 0.3387 0.034 <6900 Hallinan et al. (2017a)
e-MERLIN Sep 4 13:00:00 UTC 18 5.0 0.512 <147 Moldon et al. (2017b)
ATCA Sep 5 10:03:04 UTC 19 7.25 Detection Murphy et al. (2017)
e-MERLIN Sep 5 13:00:00 UTC 19 5.0 0.512 <162 Moldon et al. (2017b)
VLA Sep 5 22:12:00 UTC 19.47 6.0 L Alexander et al. (2017a)
VLA Sep 5 23:26:06 UTC 19.43 10.0 L Alexander et al. (2017c)
MeerKAT Sep 6 03:22:00 UTC 20 1.48 0.22 <75 Goedhart et al. (2017a)

20

T
h
e
A
stro

ph
y
sica

l
Jo
u
rn

a
l
L
etters,

848:L
12

(59pp),
2017

O
ctober

20
A
bbott

et
al.

Appendix B H. A. R. DEVILLEPOIX 281



Table 5
(Continued)

Telescope UT Date Time since GW Trigger (days) Central Frequency (GHz) Bandwidth (GHz) Flux (μ Jy), 3σ GCN/Reference

VLITE Sep 7 19:09:43 UTC 21.36 0.3387 0.034 <8100 Hallinan et al. (2017a)
SRT Sep 7 10:41:00 UTC 20.92 7.2 0.68 1200< Aresu et al. (2017)
ATCA Sep 8 12:00:00 UTC 22 17.0 L 35< Wieringa et al. (2017)
ATCA Sep 8 12:00:00 UTC 22 21.0 L 35< Wieringa et al. (2017)
SRT Sep 8 11:00:00 UTC 21.93 7.2 0.68 1500< Aresu et al. (2017)
VLITE Sep 8 19:05:35 UTC 22.37 0.3387 0.034 <6300 Hallinan et al. (2017a)
SRT Sep 9 10:37:00 UTC 22.92 7.2 0.68 1800< Aresu et al. (2017)
VLITE Sep 9 18:52:45 UTC 23.36 0.3387 0.034 <4800 Hallinan et al. (2017a)
GMRT Sep 9 11:30:00 UTC 23.0 1.39 0.032 L Resmi et al. (2017), S. Kim et al. (2017, in preparation)
e-MERLIN Sep 10 13:00:00 UTC 24 5.0 0.512 <126 Moldon et al. (2017b)
Effelsberg Sep 10 13:10 UTC 24 5 2 30000< Kramer et al. (2017)
Effelsberg Sep 10 13:35 UTC 24 32 2 90000< Kramer et al. (2017)
VLITE Sep 10 18:36:48 UTC 24.35 0.3387 0.034 <6600 Hallinan et al. (2017a)
e-MERLIN Sep 11 13:00:00 UTC 25 5.0 0.512 <151 Moldon et al. (2017b)
e-MERLIN Sep 12 13:00:00 UTC 26 5.0 0.512 <113 Moldon et al. (2017b)
e-MERLIN Sep 14 13:00:00 UTC 28 5.0 0.512 <147 Moldon et al. 2017b
e-MERLIN Sep 15 13:00:00 UTC 29 5.0 0.512 <106 Moldon et al. 2017b
GMRT Sep 16 07:30:00 UTC 29.8 1.39 0.032 L Resmi et al. (2017); S. Kim et al. (2017, in preparation)
e-MERLIN Sep 16 13:00:00 UTC 30 5.0 0.512 <118 Moldon et al. 2017b
ALMA Sep 16 20:36:21 UTC 30.34 97.5 L Alexander et al. (2017c)
MeerKAT Sep 17 07:16:00 UTC 31 1.48 0.22 <60 Goedhart et al. (2017a)
e-MERLIN Sep 17 13:00:00 UTC 31 5.0 0.512 <111 Moldon et al. (2017b)
e-MERLIN Sep 18 13:00:00 UTC 32 5.0 0.512 111 Moldon et al. (2017b)
SRT Sep 19 11:38:00 UTC 32.96 7.2 0.68 1200< Aresu et al. (2017)
EVN Sep 20 10:00:00 UTC 34 5.0 0.256 <84 Paragi et al. (2017b)
e-MERLIN Sep 21 13:00:00 UTC 35 5.0 0.512 <132 Moldon et al. (2017b)
e-MERLIN Sep 22 13:00:00 UTC 36 5.0 0.512 <121 Paragi et al. (2017b)
VLA Sep 25 16:51:45 UTC 39.2 6.0 GHz Detection Alexander et al. (2017b)
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Table 6
Gamma-ray Coordinates Network (GCN) Notices and Circulars related to GW170817 until 2017 October 1 UTC

Telescope UT Date tD (days) Obs. Wavelength References

Fermi/GBM 2017 Aug 17 12:41:20 0.0 gamma-ray GCN Notice 524666471, Fermi-GBM (2017)
LIGO-Virgo/– 2017 Aug 17 13:21:42 0.03 gw GCN 21505, LIGO Scientific Collaboration & Virgo Collaboration et al. (2017a)
Fermi/GBM 2017 Aug 17 13:47:37 0.05 gamma-ray GCN 21506, Connaughton et al. (2017)
INTEGRAL/SPI-ACS 2017 Aug 17 13:57:47 0.05 gamma-ray GCN 21507, Savchenko et al. (2017a)
IceCube/– 2017 Aug 17 14:05:11 0.06 neutrino GCN 21508, Bartos et al. (2017a)
LIGO-Virgo/– 2017 Aug 17 14:09:25 0.06 gw GCN 21509, LIGO Scientific Collaboration & Virgo Collaboration et al. (2017d)
LIGO-Virgo/– 2017 Aug 17 14:38:46 0.08 gw GCN 21510, LIGO Scientific Collaboration & Virgo Collaboration et al. (2017e)
IceCube/– 2017 Aug 17 14:54:58 0.09 neutrino GCN 21511, Bartos et al. (2017c)
LIGO-Virgo/– 2017 Aug 17 17:54:51 0.22 gw GCN 21513, LIGO Scientific Collaboration & Virgo Collaboration et al. (2017b)
Astrosat/CZTI 2017 Aug 17 18:16:42 0.23 gamma-ray GCN 21514, Balasubramanian et al. (2017)
IPN/– 2017 Aug 17 18:35:12 0.25 gamma-ray GCN 21515, Svinkin et al. (2017b)
–/– 2017 Aug 17 18:55:12 0.26 GCN 21516, Dalya et al. (2016)
Insight-HXMT/HE 2017 Aug 17 19:35:28 0.29 gamma-ray GCN 21518, Liao et al. (2017)
–/– 2017 Aug 17 20:00:07 0.3 GCN 21519, Cook et al. (2017a)
Fermi/GBM 2017 Aug 17 20:00:07 0.3 gamma-ray GCN 21520, von Kienlin et al. (2017)
–/– 2017 Aug 17 20:12:41 0.31 GCN 21521, Cook et al. (2017b)
ANTARES/– 2017 Aug 17 20:35:31 0.33 neutrino GCN 21522, Ageron et al. (2017a)
Swift/BAT 2017 Aug 17 21:34:36 0.37 gamma-ray GCN 21524, Barthelmy et al. (2017)
AGILE/MCAL 2017 Aug 17 22:01:26 0.39 gamma-ray GCN 21525, Pilia et al. (2017)
AGILE/GRID 2017 Aug 17 22:22:43 0.4 gamma-ray GCN 21526, Piano et al. (2017)
LIGO-Virgo/– 2017 Aug 17 23:54:40 0.47 gw GCN 21527, LIGO Scientific Collaboration & Virgo Collaboration et al. (2017c)
Fermi/GBM 2017 Aug 18 00:36:12 0.5 gamma-ray GCN 21528, Goldstein et al. (2017b)
Swope/– 2017 Aug 18 01:05:23 0.52 optical GCN 21529, Coulter et al. (2017a)
DECam/– 2017 Aug 18 01:15:01 0.52 optical GCN 21530, Allam et al. (2017)
DLT40/– 2017 Aug 18 01:41:13 0.54 optical GCN 21531, Yang et al. (2017a)
REM-ROS2/– 2017 Aug 18 02:00:40 0.56 optical, IR GCN 21532, Melandri et al. (2017a)
ASAS-SN/– 2017 Aug 18 02:06:30 0.56 optical GCN 21533, Cowperthwaite et al. (2017a)
Fermi/LAT 2017 Aug 18 02:09:53 0.56 gamma-ray GCN 21534, Kocevski et al. (2017)
–/– 2017 Aug 18 02:48:50 0.59 GCN 21535, Cook et al. (2017c)
HST/– 2017 Aug 18 03:01:20 0.6 optical GCN 21536, Foley et al. (2017a)
ATCA/– 2017 Aug 18 04:04:00 0.64 radio GCN 21537, Bannister et al. (2017d)
LasCumbres/– 2017 Aug 18 04:06:31 0.64 optical GCN 21538, Arcavi et al. (2017a)
DLT40/– 2017 Aug 18 04:11:35 0.65 optical GCN 21539, Yang et al. (2017c)
DECam/– 2017 Aug 18 04:44:32 0.67 optical GCN 21541, Nicholl et al. (2017a)
SkyMapper/– 2017 Aug 18 04:46:27 0.67 optical GCN 21542, Moller et al. (2017)
LasCumbres/– 2017 Aug 18 04:54:23 0.68 optical GCN 21543, Arcavi et al. (2017d)
VISTA/VIRCAM 2017 Aug 18 05:03:48 0.68 optical, IR GCN 21544, Tanvir et al. (2017a)
VLA/– 2017 Aug 18 05:07:58 0.69 radio GCN 21545, Alexander et al. (2017d)
MASTER/– 2017 Aug 18 05:37:59 0.71 optical GCN 21546, Lipunov et al. (2017d)
Magellan/– 2017 Aug 18 05:46:33 0.71 optical GCN 21547, Drout et al. (2017)
VLA/– 2017 Aug 18 06:56:44 0.76 radio GCN 21548, Alexander et al. (2017e)
Subaru/HSC 2017 Aug 18 07:07:07 0.77 optical GCN 21549, Yoshida et al. (2017a)
Swift/UVOT,XRT 2017 Aug 18 07:24:04 0.78 x-ray, uv GCN 21550, Evans et al. (2017a)
Magellan/LDSS-3 2017 Aug 18 07:54:23 0.8 optical GCN 21551, Simon et al. (2017)
Gemini-South/Flamingos-2 2017 Aug 18 08:00:58 0.81 IR GCN 21552, Singer et al. (2017a)
Pan-STARRS/– 2017 Aug 18 08:37:20 0.83 optical GCN 21553, Chambers et al. (2017a)
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Table 6
(Continued)

Telescope UT Date tD (days) Obs. Wavelength References

HCT/HFOSC 2017 Aug 18 09:54:21 0.88 optical GCN 21554, Pavana et al. (2017)
MAXI/GSC/– 2017 Aug 18 10:43:45 0.92 x-ray GCN 21555, Sugita et al. (2017)
REM-ROS2/– 2017 Aug 18 10:54:42 0.93 optical GCN 21556, Melandri et al. (2017b)
–/– 2017 Aug 18 12:15:23 0.98 GCN 21557, Foley et al. (2017b)
TZAC/TAROT-Reunion 2017 Aug 18 13:04:25 1.02 optical GCN 21558, Klotz et al. (2017)
ATCA/– 2017 Aug 18 13:27:25 1.03 radio GCN 21559, Bannister et al. (2017b)
SkyMapper/– 2017 Aug 18 13:54:11 1.05 optical GCN 21560, Wolf et al. (2017)
Subaru/HSC 2017 Aug 18 14:27:26 1.07 optical GCN 21561, Yoshida et al. (2017b)
ASKAP/– 2017 Aug 18 14:36:00 1.08 radio GCN 21562, Bannister et al. (2017e)
LSGT,T17/SNUCAM-II 2017 Aug 18 14:45:33 1.09 optical GCN 21563, Im et al. (2017a)
AGILE/GRID 2017 Aug 18 15:22:43 1.11 gamma-ray GCN 21564, Bulgarelli et al. (2017)
LasCumbres/– 2017 Aug 18 15:58:41 1.14 optical GCN 21565, Arcavi et al. (2017b)
LSGT,T17/SNUCAM-II 2017 Aug 18 17:15:43 1.19 optical GCN 21566, Im et al. (2017b)
Swope/– 2017 Aug 18 17:19:22 1.19 optical GCN 21567, Coulter et al. (2017b)
IceCube/– 2017 Aug 18 17:27:25 1.2 neutrino GCN 21568, Bartos et al. (2017b)
Gemini-South/– 2017 Aug 18 17:44:26 1.21 optical, IR GCN 21569, Singer et al. (2017c)
MASTER/– 2017 Aug 18 18:06:51 1.23 optical GCN 21570, Lipunov et al. (2017e)
VLA/– 2017 Aug 18 18:16:30 1.23 radio GCN 21571, Williams et al. (2017b)
Swift/UVOT,XRT 2017 Aug 18 18:32:37 1.24 x-ray, uv GCN 21572, Cenko et al. (2017)
ATCA/– 2017 Aug 18 20:19:00 1.32 radio GCN 21574, Kaplan et al. (2017a)
2MASS,Spitzer/– 2017 Aug 18 20:23:05 1.32 IR GCN 21575, Eikenberry et al. (2017)
VISTA/VIRCam 2017 Aug 18 21:16:32 1.36 IR GCN 21576, Tanvir et al. (2017b)
–/– 2017 Aug 18 23:00:31 1.43 GCN 21577, Malesani et al. (2017b)
–/– 2017 Aug 18 23:11:30 1.44 GCN 21578, Cowperthwaite et al. (2017c)
PROMPT5/– 2017 Aug 19 00:18:04 1.48 optical GCN 21579, Yang et al. (2017b)
DECam/– 2017 Aug 19 00:22:23 1.49 optical GCN 21580, Nicholl et al. (2017b)
LasCumbres/– 2017 Aug 19 01:26:07 1.53 optical GCN 21581, Arcavi et al. (2017c)
NTT/– 2017 Aug 19 01:46:26 1.55 optical, IR GCN 21582, Lyman et al. (2017)
Swope/– 2017 Aug 19 01:54:36 1.55 optical GCN 21583, Kilpatrick et al. (2017a)
GROND/– 2017 Aug 19 01:58:14 1.55 optical, IR GCN 21584, Wiseman et al. (2017)
SOAR/GoodmanSpectrograph 2017 Aug 19 03:10:19 1.6 IR, optical GCN 21585, Nicholl et al. (2017c)
Subaru/HSC 2017 Aug 19 06:52:33 1.76 optical GCN 21586, Yoshida et al. (2017c)
MASTER/– 2017 Aug 19 08:10:30 1.81 optical GCN 21587, Lipunov et al. (2017c)
VLBA/– 2017 Aug 19 09:36:26 1.87 radio GCN 21588, Deller et al. (2017a)
VLA/– 2017 Aug 19 09:51:33 1.88 radio GCN 21589, Alexander et al. (2017f)
Pan-STARRS/– 2017 Aug 19 10:14:53 1.9 optical GCN 21590, Chambers et al. (2017b)
NOT/NOTCam 2017 Aug 19 12:00:05 1.97 IR GCN 21591, Malesani et al. (2017a)
ESO-VLT/X-shooter 2017 Aug 19 12:16:37 1.98 IR, optical GCN 21592, Pian et al. (2017b)
ESO-VLT/FORS2 2017 Aug 19 14:13:15 2.06 optical GCN 21594, Wiersema et al. (2017)
Subaru/HSC 2017 Aug 19 14:46:41 2.09 optical GCN 21595, Tominaga et al. (2017)
REM-ROS2/– 2017 Aug 19 16:38:19 2.16 optical GCN 21596, Melandri et al. (2017c)
KMTNet/wide-fieldcamera 2017 Aug 19 16:55:08 2.18 optical GCN 21597, Im et al. (2017d)
ESO-VST/OmegaCam 2017 Aug 19 17:37:19 2.21 optical GCN 21598, Grado et al. (2017c)
LaSilla-QUEST/– 2017 Aug 19 18:04:05 2.22 optical GCN 21599, Rabinowitz et al. (2017)
GMRT/– 2017 Aug 19 21:18:21 2.36 radio GCN 21603, De et al. (2017a)
PROMPT5/– 2017 Aug 19 23:31:25 2.45 optical GCN 21606, Valenti et al. (2017)
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Table 6
(Continued)

Telescope UT Date tD (days) Obs. Wavelength References

GROND/– 2017 Aug 20 04:49:21 2.67 optical, IR GCN 21608, Chen et al. (2017)
VIRT/– 2017 Aug 20 05:27:49 2.7 optical GCN 21609, Gendre et al. (2017)
SALT/– 2017 Aug 20 06:14:37 2.73 optical GCN 21610, Shara et al. (2017)
Swift/XRT 2017 Aug 20 08:42:40 2.83 x-ray GCN 21612, Evans et al. (2017c)
VLA/– 2017 Aug 20 09:17:57 2.86 radio GCN 21613, Corsi et al. (2017b)
VLA/– 2017 Aug 20 10:26:01 2.91 radio GCN 21614, Corsi et al. (2017a)
Pan-STARRS/– 2017 Aug 20 13:59:50 3.05 optical GCN 21617, Chambers et al. (2017c)
ChilescopeRC-1000/– 2017 Aug 20 14:24:47 3.07 optical GCN 21618, Pozanenko et al. (2017d)
TOROS/– 2017 Aug 20 14:48:49 3.09 optical GCN 21619, Diaz et al. (2017a)
TOROS/– 2017 Aug 20 15:03:42 3.1 optical GCN 21620, Diaz et al. (2017c)
–/– 2017 Aug 20 15:40:35 3.12 L GCN 21621, Lipunov (2017)
Kanata/HONIR 2017 Aug 20 16:37:38 3.16 IR GCN 21623, Nakaoka et al. (2017)
BOOTES-5/– 2017 Aug 20 21:59:59 3.39 optical GCN 21624, Castro-Tirado et al. (2017)
ASKAP/– 2017 Aug 21 00:58:33 3.51 radio GCN 21625, Dobie et al. (2017b)
NuSTAR/– 2017 Aug 21 04:33:27 3.66 x-ray GCN 21626, Harrison et al. (2017)
Zadko/– 2017 Aug 21 05:57:23 3.72 optical GCN 21627, Coward et al. (2017b)
ATCA/– 2017 Aug 21 07:45:30 3.79 radio GCN 21628, Lynch et al. (2017c)
ATCA/– 2017 Aug 21 09:02:12 3.85 radio GCN 21629, Lynch et al. (2017d)
ANTARES/– 2017 Aug 21 15:08:00 4.1 neutrino GCN 21631, Ageron et al. (2017b)
KMTNet,iTelescope.NET/– 2017 Aug 21 15:49:41 4.13 optical GCN 21632, Im et al. (2017c)
Pan-STARRS/– 2017 Aug 21 16:03:52 4.14 optical GCN 21633, Chambers et al. (2017d)
TOROS/CASLEO 2017 Aug 21 16:05:22 4.14 optical GCN 21634, Diaz et al. (2017d)
ChilescopeRC-1000/– 2017 Aug 21 16:11:53 4.15 optical GCN 21635, Pozanenko et al. (2017a)
VLA/– 2017 Aug 21 18:40:08 4.25 radio GCN 21636, Corsi et al. (2017e)
MWA/– 2017 Aug 22 00:59:36 4.51 radio GCN 21637, Kaplan et al. (2017c)
Gemini-South/Flamingos-2 2017 Aug 22 05:20:11 4.69 IR GCN 21638, Chornock et al. (2017c)
ASKAP/– 2017 Aug 22 07:23:04 4.78 radio GCN 21639, Dobie et al. (2017a)
CALET/CGBM 2017 Aug 22 09:36:51 4.87 gamma-ray GCN 21641, Nakahira et al. (2017)
ChilescopeRC-1000/– 2017 Aug 22 15:23:04 5.11 optical GCN 21644, Pozanenko et al. (2017c)
6dFGS/– 2017 Aug 22 16:55:17 5.18 optical GCN 21645, Sadler et al. (2017)
Chandra/CXO 2017 Aug 22 18:06:23 5.23 x-ray GCN 21648, Margutti et al. (2017b)
VLA/JAGWAR 2017 Aug 22 19:13:38 5.27 radio GCN 21650, Mooley et al. (2017a)
ESO-VLT/FORS2 2017 Aug 23 07:52:38 5.8 optical GCN 21653, D’Avanzo et al. (2017)
VLA/– 2017 Aug 23 18:25:07 6.24 radio GCN 21664, Corsi et al. (2017c)
HST/Pan-STARRS1/GPC1 2017 Aug 24 01:39:20 6.54 optical GCN 21669, Yu et al. (2017)
ATCA/– 2017 Aug 24 04:30:05 6.66 radio GCN 21670, Lynch et al. (2017a)
ASKAP/– 2017 Aug 24 06:10:24 6.73 radio GCN 21671, Bannister et al. (2017c)
INTEGRAL/SPI,IBIS,JEM-X,OMC 2017 Aug 24 09:03:02 6.85 gamma-ray, x-ray, optical GCN 21672, Savchenko et al. (2017b)
H.E.S.S./– 2017 Aug 24 10:35:02 6.91 gamma-ray GCN 21674, de Naurois et al. (2017)
LOFAR/ILT 2017 Aug 24 13:35:06 7.04 radio GCN 21676, Broderick et al. (2017)
AAT/AAO 2017 Aug 24 15:31:25 7.12 optical GCN 21677, Andreoni et al. (2017)
LWA/LWA1 2017 Aug 24 16:08:17 7.14 radio GCN 21680, Callister et al. (2017a)
ESO-VLT/MUSEIntegralFieldUnit 2017 Aug 24 19:28:30 7.28 optical GCN 21681, Levan et al. (2017b)
Gemini-South/Flamingos-2,GMOS 2017 Aug 24 19:31:19 7.28 optical, IR GCN 21682, Troja et al. (2017b)
HAWC/– 2017 Aug 24 19:35:19 7.29 gamma-ray GCN 21683, Martinez-Castellanos et al. (2017)
Gemini-South/Flamingos-2 2017 Aug 25 04:04:17 7.64 IR GCN 21684, Chornock et al. (2017b)
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Table 6
(Continued)

Telescope UT Date tD (days) Obs. Wavelength References

Subaru/HSC 2017 Aug 25 07:38:17 7.79 optical GCN 21685, Yoshida et al. (2017d)
Auger/SurfaceDetector 2017 Aug 25 08:13:23 7.81 neutrino GCN 21686, Alvarez-Muniz et al. (2017)
MASTER/MASTER-II 2017 Aug 25 08:48:24 7.84 optical GCN 21687, Lipunov et al. (2017b)
ESO-VST/OmegaCAM 2017 Aug 25 22:15:33 8.4 optical GCN 21703, Grado et al. (2017a)
GMRT/– 2017 Aug 26 01:23:58 8.53 radio GCN 21708, De et al. (2017b)
ATCA/– 2017 Aug 29 03:49:22 11.63 radio GCN 21740, Lynch et al. (2017b)
Zadko/– 2017 Aug 29 08:29:39 11.83 optical GCN 21744, Coward et al. (2017a)
Konus-Wind/– 2017 Aug 29 10:55:08 11.93 gamma-ray GCN 21746, Svinkin et al. (2017a)
ALMA/– 2017 Aug 29 12:37:56 12.0 radio GCN 21747, Schulze et al. (2017)
ALMA/– 2017 Aug 29 14:55:15 12.09 radio GCN 21750, Williams et al. (2017a)
OVRO/– 2017 Aug 30 03:23:28 12.61 radio GCN 21760, Pearson et al. (2017)
EVN/VLBI 2017 Aug 30 09:48:26 12.88 radio GCN 21763, Paragi et al. (2017a)
Chandra/CXO 2017 Aug 30 12:07:12 12.98 x ray GCN 21765, Troja et al. (2017c)
GMRT/– 2017 Aug 30 16:06:24 13.14 radio GCN 21768, Resmi et al. (2017)
Gemini-South/– 2017 Aug 31 18:28:50 14.24 IR GCN 21778, Troja et al. (2017d)
Gemini-South/Flamingos-2 2017 Aug 31 18:32:01 14.24 IR GCN 21779, Singer et al. (2017b)
HST/– 2017 Aug 31 20:33:24 14.33 optical, IR GCN 21781, Levan et al. (2017a)
PioftheSky/PioftheSkyNorth 2017 Sep 01 21:54:25 15.38 optical GCN 21783, Cwiek et al. (2017)
AGILE/GRID 2017 Sep 02 16:54:59 16.18 gamma-ray GCN 21785, Verrecchia et al. (2017)
Chandra/CXO 2017 Sep 02 16:57:54 16.18 x ray GCN 21786, Fong et al. (2017)
Chandra/CXO 2017 Sep 02 17:06:21 16.18 x ray GCN 21787, Troja et al. (2017e)
Chandra/CXO 2017 Sep 03 20:24:16 17.32 x ray GCN 21798, Haggard et al. (2017b)
ATCA/– 2017 Sep 04 02:26:14 17.57 radio GCN 21803, Troja et al. (2017f)
e-MERLIN/– 2017 Sep 04 07:48:43 17.8 radio GCN 21804, Moldon et al. (2017a)
VLA/– 2017 Sep 04 22:14:55 18.4 radio GCN 21814, Mooley et al. (2017b)
VLA/– 2017 Sep 04 22:14:59 18.4 radio GCN 21815, Corsi et al. (2017d)
HST/HST,Gaia 2017 Sep 05 00:30:09 18.49 optical, IR, uv GCN 21816, Adams et al. (2017)
ESO-VST/OMEGACam 2017 Sep 06 15:07:27 20.1 optical GCN 21833, Grado et al. (2017b)
ATCA/– 2017 Sep 07 02:31:55 20.58 radio GCN 21842, Murphy et al. (2017)
LWA/LWA1 2017 Sep 08 02:47:01 21.59 radio GCN 21848, Callister et al. (2017b)
VLBA/– 2017 Sep 08 11:16:27 21.94 radio GCN 21850, Deller et al. (2017b)
VLA/– 2017 Sep 08 13:23:16 22.03 radio GCN 21851, Alexander et al. (2017a)
ATCA/– 2017 Sep 14 05:25:42 27.7 radio GCN 21882, Wieringa et al. (2017)
AST3-2/– 2017 Sep 15 03:45:21 28.63 optical GCN 21883, Hu et al. (2017)
ATLAS/– 2017 Sep 15 11:24:15 28.95 optical GCN 21886, Tonry et al. (2017)
DanishTel/– 2017 Sep 15 16:40:07 29.17 optical GCN 21889, Cano et al. (2017)
MeerKAT/– 2017 Sep 15 20:16:29 29.32 radio GCN 21891, Goedhart et al. (2017b)
DFN/– 2017 Sep 18 13:45:29 32.04 optical GCN 21894, Hancock et al. (2017)
T80S,EABA/– 2017 Sep 18 16:22:27 32.15 optical GCN 21895, Diaz et al. (2017b)
VLBA/– 2017 Sep 19 07:51:22 32.8 radio GCN 21897, Deller et al. (2017c)
ChilescopeRC-1000/– 2017 Sep 19 18:09:03 33.23 optical GCN 21898, Pozanenko et al. (2017b)
Parkes/– 2017 Sep 21 02:38:29 34.58 radio GCN 21899, Bailes et al. (2017a)
ATCA/– 2017 Sep 21 06:42:36 34.75 radio GCN 21900, Ricci et al. (2017)
LasCumbres/FLOYDS,Gemini 2017 Sep 22 03:24:44 35.61 optical GCN 21908, McCully et al. (2017a)
SRT/– 2017 Sep 22 19:06:44 36.27 radio GCN 21914, Aresu et al. (2017)
Effelsberg/– 2017 Sep 23 20:34:41 37.33 radio GCN 21920, Kramer et al. (2017)
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Table 6
(Continued)

Telescope UT Date tD (days) Obs. Wavelength References

MWA/– 2017 Sep 25 22:30:34 39.41 radio GCN 21927, Kaplan et al. (2017b)
Parkes/– 2017 Sep 26 02:00:59 39.56 radio GCN 21928, Bailes et al. (2017b)
VLA/– 2017 Sep 26 05:14:16 39.69 radio GCN 21929, Hallinan et al. (2017b)
PioftheSky/PioftheSkyNorth 2017 Sep 26 21:17:49 40.36 optical GCN 21931, Batsch et al. (2017)
MeerKAT/– 2017 Sep 27 13:19:14 41.03 radio GCN 21933, Goedhart et al. (2017a)
VLA/– 2017 Sep 27 19:03:46 41.27 radio GCN 21935, Alexander et al. (2017b)
EVN/– 2017 Sep 28 10:35:27 41.91 radio GCN 21939, Paragi et al. (2017b)
e-MERLIN/– 2017 Sep 28 11:12:37 41.94 radio GCN 21940, Moldon et al. (2017b)
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3.5. Neutrinos

The detection of GW170817 was rapidly followed up by the
IceCube (Aartsen et al. 2017) and ANTARES (Ageron et al.
2011) neutrino observatories and the Pierre Auger Observatory
(Aab et al. 2015a) to search for coincident, high-energy (GeV–
EeV) neutrinos emitted in the relativistic outflow produced by
the BNS merger. The results from these observations, described
briefly below, can be used to constrain the properties of
relativistic outflows driven by the merger (A. Albert et al. 2017,
in preparation).

In a search for muon–neutrino track candidates (Aartsen et al.
2016), and contained neutrino events of any flavor (Aartsen et al.
2015), IceCube identified no neutrinos that were directionally
coincident with the final localization of GW170817 at 90%
credible level, within ±500 s of the merger (Bartos et al. 2017a,
2017b). Additionally, no MeV supernova neutrino burst signal
was detected coincident with the merger. Following the
identification via electromagnetic observations of the host galaxy
of the event, IceCube also carried out an extended search in the
direction of NGC 4993 for neutrinos within the 14 day period
following the merger, but found no significant neutrino emission
(A. Albert et al. 2017, in preparation).

A neutrino search for upgoing high-energy muon neutrinos was
carried out using the online ANTARES data stream (Ageron et al.
2017a). No upgoing neutrino candidates were found over a
t 500 sc  time window. The final localization of GW170817
(LIGO Scientific Collaboration & Virgo Collaboration et al.
2017c) was above the ANTARES horizon at the time of the GW
event. A search for downgoing muon neutrinos was thus
performed, and no neutrinos were found over tc 500 s (Ageron
et al. 2017b). A search for neutrinos originating from below the
ANTARES horizon, over an extended period of 14 days after the
merger, was also performed, without yielding significant detection
(A. Albert et al. 2017, in preparation).

The Pierre Auger Observatory carried out a search for ultra-
high-energy (UHE) neutrinos above 1017~ eV using its Surface
Detector(Aab et al. 2015a). UHE neutrino-induced extensive
air showers produced either by interactions of downward-going
neutrinos in the atmosphere or by decays of tau leptons
originating from tau neutrino interactions in the Earth’s crust
can be efficiently identified above the background of the more
numerous ultra-high-energy cosmic rays(Aab et al. 2015b).
Remarkably, the position of the transient in NGC 4993 was just
between 0°.3 and 3°.2 below the horizon during t 500 sc  . This
region corresponds to the most efficient geometry for Earth-
skimming tau neutrino detection at 1018 eV energies. No
neutrino candidates were found in t 500 sc  (Alvarez-Muniz
et al. 2017) nor in the 14 day period after it (A. Albert et al.
2017, in preparation).

4. Conclusion

For the first time, gravitational and electromagnetic waves
from a single source have been observed. The gravitational-
wave observation of a binary neutron star merger is the first of
its kind. The electromagnetic observations further support the
interpretation of the nature of the binary, and comprise three
components at different wavelengths: (i) a prompt sGRB that
demonstrates that BNS mergers are the progenitor of at least a
fraction of such bursts; (ii) an ultraviolet, optical, and infrared
transient (kilonova), which allows for the identification of the
host galaxy and is associated with the aftermath of the BNS

merger; and (iii) delayed X-ray and radio counterparts that
provide information on the environment of the binary. These
observations, described in detail in the companion articles cited
above, offer a comprehensive, sequential description of the
physical processes related to the merger of a binary neutron
star. Table 6 collects all of the Gamma-ray Coordinates
Network (GCN) notices and circulars related to GW170817
through 2017 October 1 UTC. The results of this campaign
demonstrate the importance of collaborative gravitational-
wave, electromagnetic, and neutrino observations and mark a
new era in multi-messenger, time-domain astronomy.

(1M2H) We thank J.McIver for alerting us to the LVC
circular. We thank J.Mulchaey (Carnegie Observatories director),
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São Paulo Research Foundation (FAPESP) grant Nos.2010/
07359-6 and 1999/05404-3; Ministério da Ciência, Tecnologia,
Inovações e Comunicações (MCTIC); Czech Republic—grant
Nos.MSMT CR LG15014, LO1305, LM2015038 and
CZ.02.1.01/0.0/0.0/16_013/0001402; France—Centre de Cal-
cul IN2P3/CNRS; Centre National de la Recherche Scientifique
(CNRS); Conseil Régional Ile-de-France; Département Physique
Nucléaire et Corpusculaire (PNC-IN2P3/CNRS); Département
Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de
Paris (ILP) grant No.LABEX ANR-10-LABX-63 within the
Investissements d’Avenir Programme Grant No.ANR-11-IDEX-
0004-02; Germany—Bundesministerium für Bildung und For-
schung (BMBF); Deutsche Forschungsgemeinschaft (DFG);
Finanzministerium Baden-Württemberg; Helmholtz Alliance
for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft
Deutscher Forschungszentren (HGF); Ministerium für Innovation,

Wissenschaft und Forschung des Landes Nordrhein-Westfalen;
Ministerium für Wissenschaft, Forschung und Kunst des Landes
Baden-Württemberg; Italy—Istituto Nazionale di Fisica Nucleare
(INFN); Istituto Nazionale di Astrofisica (INAF); Ministero
dell’Istruzione, dell’Universitá e della Ricerca (MIUR);
CETEMPS Center of Excellence; Ministero degli Affari Esteri
(MAE); Mexico—Consejo Nacional de Ciencia y Tecnología
(CONACYT) No.167733; Universidad Nacional Autónoma de
México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands –
Ministerie van Onderwijs, Cultuur en Wetenschap; Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO);
Stichting voor Fundamenteel Onderzoek der Materie (FOM);
Poland—National Centre for Research and Development, grant
Nos.ERA-NET-ASPERA/01/11 andERA-NET-ASPERA/02/
11; National Science Centre, grant Nos.2013/08/M/ST9/
00322, 2013/08/M/ST9/00728, and HARMONIA 5–2013/
10/M/ST9/00062, UMO-2016/22/M/ST9/00198; Portugal—
Portuguese national funds and FEDER funds within Programa
Operacional Factores de Competitividade through Fundação para
a Ciência e a Tecnologia (COMPETE); Romania—Romanian
Authority for Scientific Research ANCS; CNDI-UEFISCDI
partnership projects grant Nos.20/2012 and 194/2012 and PN
16 42 01 02; Slovenia—Slovenian Research Agency; Spain—
Comunidad de Madrid; Fondo Europeo de Desarrollo Regional
(FEDER) funds; Ministerio de Economía y Competitividad;
Xunta de Galicia; European Community 7th Framework Program
grant No.FP7-PEOPLE-2012-IEF-328826; USA—Department
of Energy, Contract Nos.DE-AC02-07CH11359, DE-FR02-
04ER41300, DE-FG02-99ER41107, and DE-SC0011689;
National Science Foundation, grant No.0450696; The Grainger
Foundation; Marie Curie-IRSES/EPLANET; European Particle
Physics Latin American Network; European Union 7th Frame-
work Program, grant No.PIRSES-2009-GA-246806; European
Unionʼs Horizon 2020 research and innovation programme (grant
No.646623); and UNESCO.
(Australian Radio) T.M. acknowledges the support of the

Australian Research Council through grant FT150100099. S.O.
acknowledges the Australian Research Council grant Laureate
Fellowship FL15010014. D.L.K. and I.S.B. are additionally
supported by NSF grant AST-141242. P.A.B. and the DFN
team acknowledge the Australian Research Council for support
under their Australian Laureate Fellowship scheme. The
Australia Telescope Compact Array is part of the Australia
Telescope National Facility, which is funded by the Australian
Government for operation as a National Facility managed by
CSIRO. This scientific work makes use of the Murchison
Radio-astronomy Observatory, operated by CSIRO. We
acknowledge the Wajarri Yamatji people as the traditional
owners of the Observatory site. Support for the operation of the
MWA is provided by the Australian Government (NCRIS),
under a contract to Curtin University administered by
Astronomy Australia Limited. We acknowledge the Pawsey
Supercomputing Centre, which is supported by the Western
Australian and Australian Governments. The Australian SKA
Pathfinder is part of the Australia Telescope National Facility,
which is managed by CSIRO. Operation of ASKAP is funded
by the Australian Government with support from the National
Collaborative Research Infrastructure Strategy. ASKAP
uses the resources of the Pawsey Supercomputing Centre.
Establishment of ASKAP, the Murchison Radio-astronomy
Observatory and the Pawsey Supercomputing Centre are
initiatives of the Australian Government, with support from

28

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 289



the Government of Western Australia and the Science and
Industry Endowment Fund. Parts of this research were
conducted by the Australian Research Council Centre of
Excellence for All-sky Astrophysics in 3D (ASTRO 3D)
through project number CE170100013.

(Berger Time-Domain Group) The Berger Time-Domain
Group at Harvard is supported in part by the NSF through
grants AST-1411763 and AST-1714498, and by NASA
through grants NNX15AE50G and NNX16AC22G.

(Bootes) A.J.C.T. acknowledges support from the Spanish
Ministry Project AYA 2015-71718-R (including FEDER
funds) and Junta de Andalucia Proyecto de Excelencia TIC-
2839. I.H.P. acknowledges the support of the National
Research Foundation (NRF-2015R1A2A1A01006870). S.J.
acknowledges the support of Korea Basic Science Research
Program (NRF2014R1A6A3A03057484 and NRF-
2015R1D1A4A01020961). The BOOTES-5/JGT observations
were carried out at Observatorio Astronómico Nacional in San
Pedro Mártir (OAN-SPM, México), operated by Instituto de
Astronomía, UNAM and with support from Consejo Nacional
de Ciencia y Tecnología (México) through the Laboratorios
Nacionales Program (México), Instituto de Astrofísica de
Andalucía (IAA-CSIC, Spain) and Sungkyunkwan University
(SKKU, South Korea). We also thank the staff of OAN-SPM
for their support in carrying out the observations.

(CAASTRO) Parts of this research were conducted by the
Australian Research Council Centre of Excellence for All-sky
Astrophysics (CAASTRO), through project number
CE110001020. The national facility capability for SkyMapper
has been funded through ARC LIEF grant LE130100104 from
the Australian Research Council, awarded to the University of
Sydney, the Australian National University, Swinburne Uni-
versity of Technology, the University of Queensland, the
University of Western Australia, the University of Melbourne,
Curtin University of Technology, Monash University, and the
Australian Astronomical Observatory. SkyMapper is owned
and operated by The Australian National Universityʼs Research
School of Astronomy and Astrophysics.

(CALET) The CALET team gratefully acknowledges support
from NASA, ASI, JAXA, and MEXT KAKENHI grant
numbers JP 17H06362, JP26220708, and JP17H02901.

(Chandra/McGill) This work was supported in part by
Chandra Award Number GO7-18033X, issued by the Chandra
X-ray Observatory Center, which is operated by the Smithso-
nian Astrophysical Observatory for and on behalf of the
National Aeronautics Space Administration (NASA) under
contract NAS8-03060. D.H., M.N., and J.J.R. acknowledge
support from a Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant and a Fonds de
recherche du Québec–Nature et Technologies (FRQNT)
Nouveaux Chercheurs Grant. P.A.E. acknowledges UKSA
support. J.A.K. acknowledges the support of NASA grant
NAS5-00136. D.H. also acknowledges support from the
Canadian Institute for Advanced Research (CIFAR).

(CZTI/AstroSat) CZTI is built by a TIFR-led consortium of
institutes across India, including VSSC, ISAC, IUCAA, SAC,
and PRL. The Indian Space Research Organisation funded,
managed, and facilitated the project.

(DLT40) D.J.S. acknowledges support for the DLT40
program from NSF grant AST-1517649.

(EuroVLBI) The European VLBI Network is a joint facility
of independent European, African, Asian, and North American

radio astronomy institutes. Scientific results from data
presented in this publication are derived from the following
EVN project code: RP029. e-MERLIN is a National Facility
operated by the University of Manchester at Jodrell Bank
Observatory on behalf of STFC. The collaboration between
LIGO/Virgo and EVN/e-MERLIN is part of a project that has
received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No.
653477.
(ePESSTO) We acknowledge ESO programs 199.D-0143

and 099.D-0376. PS1 and ATLAS are supported by NASA
grants NNX08AR22G, NNX12AR65G, NNX14AM74G, and
NNX12AR55G. We acknowledge the Leibniz-Prize to Prof. G.
Hasinger (DFG grant HA 1850/28-1), EU/FP7-ERC grants
291222, 615929, 647208, 725161, STFC grants ST/P000312/
1 and ERF ST/M005348/1, ST/P000495/1. Marie Sklo-
dowska-Curie grant No 702538. Polish NCN grant OPUS
2015/17/B/ST9/03167, Knut and Alice Wallenberg Founda-
tion. PRIN-INAF 2014. David and Ellen Lee Prize Postdoctoral
Fellowship at the California Institute of Technology. Alexander
von Humboldt Sofja Kovalevskaja Award. Royal Society—
Science Foundation Ireland Vilho, Yrjö and Kalle Väisälä
Foundation. FONDECYT grant number 3160504. US NSF
grant AST-1311862. Swedish Research Council and the
Swedish Space Board. The Quantum Universe I-Core program,
the ISF, BSF, and Kimmel award. IRC grant GOIPG/2017/
1525. Australian Research Council CAASTRO CE110001020
and grant FT160100028. We acknowledge Millennium Science
Initiative grant IC120009.
(Fermi-GBM) B.C., V.C., A.G., and W.S.P. gratefully

acknowledge NASA funding through contract NNM13AA43C.
M.S.B., R.H., P.J., C.A.M., S.P., R.D.P., M.S., and P.V.
gratefully acknowledge NASA funding from cooperative
agreement NNM11AA01A. E.B. is supported by an appoint-
ment to the NASA Postdoctoral Program at the Goddard Space
Flight Center, administered by Universities Space Research
Association under contract with NASA. D.K., C.A.W.H., C.M.
H., and J.R. gratefully acknowledge NASA funding through
the Fermi-GBM project. Support for the German contribution
to GBM was provided by the Bundesministerium für Bildung
und Forschung (BMBF) via the Deutsches Zentrum für Luft
und Raumfahrt (DLR) under contract number 50 QV 0301. A.
v.K. was supported by the Bundesministeriums für Wirtschaft
und Technologie (BMWi) through DLR grant 50 OG 1101. S.
M.B. acknowledges support from Science Foundation Ireland
under grant 12/IP/1288.
(Fermi-LAT) The Fermi-LAT Collaboration acknowledges

support for LAT development, operation, and data analysis
from NASA and DOE (United States), CEA/Irfu and IN2P3/
CNRS (France), ASI and INFN (Italy), MEXT, KEK, and
JAXA (Japan), and the K.A.Wallenberg Foundation, the
Swedish Research Council and the National Space Board
(Sweden). Science analysis support in the operations phase
from INAF (Italy) and CNES (France) is also gratefully
acknowledged. This work performed in part under DOE
Contract DE-AC02-76SF00515.
(FRBSG) S.L.L. is supported by NSF grant PHY-

1607291(LIU). Construction of the LWA has been supported
by the Office of Naval Research under Contract N00014-07-C-
0147. Support for operations and continuing development of
the LWA1 is provided by the National Science Foundation

29

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

290 H. A. R. DEVILLEPOIX



under grants AST-1139963 and AST-1139974 of the Uni-
versity Radio Observatory program.

(GRAWITA) We acknowledge INAF for supporting the
project “Gravitational Wave Astronomy with the first detec-
tions of adLIGO and adVIRGO experiments—GRAWITA” PI:
E. Brocato. Observations are made with ESO Telescopes at the
Paranal Observatory under programmes ID 099.D-0382 (PI: E.
Pian), 099.D-0622 (PI: P. D’Avanzo), 099.D-0191 (PI: A.
Grado), 099.D-0116 (PI: S. Covino) and with the REM
telescope at the ESO La Silla Observatory under program ID
35020 (PI: S. Campana). We thank the ESO operation staff for
excellent support of this program. The Sardinia Radio
Telescope (SRT) is funded by the Department of University
and Research (MIUR), the Italian Space Agency (ASI), and the
Autonomous Region of Sardinia (RAS) and is operated as
National Facility by the National Institute for Astrophysics
(INAF). Z.J. is supported by the External Cooperation Program
of BIC (number 114332KYSB20160007). J.M. is supported by
the Hundred Talent Program, the Major Program of the
Chinese Academy of Sciences (KJZD-EW-M06), the National
Natural Science Foundation of China 11673062, and the
Oversea Talent Program of Yunnan Province. R.L.C. Starling,
K.W., A.B.H., N.R.T., and C.G.M. are supported by the STFC
(Science and Technology Facilities Council). D.K., acknowl-
edges the financial support from the Slovenian Research
Agency (P1-0188). S.K. and A.N.G. acknowledge support by
grant DFG Kl 766/16-3. D.G. acknowledges the financial
support of the UnivEarthS Labex program at Sorbonne Paris
Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02).
K.T. was supported by JSPS grant 15H05437 and by a JST
Consortia grant.

(GROND) Part of the funding for GROND was generously
granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant
HA 1850/28-1). “We acknowledge the excellent help in
obtaining GROND data from Angela Hempel, Markus Rabus
and Régis Lachaume on La Silla.”

(GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and
NuSTAR) This work was supported by the GROWTH (Global
Relay of Observatories Watching Transients Happen) project
funded by the National Science Foundation under PIRE grant
No. 1545949. GROWTH is a collaborative project among
California Institute of Technology (USA), University of
Maryland College Park (USA), University of Wisconsin–
Milwaukee (USA), Texas Tech University (USA), San Diego
State University (USA), Los Alamos National Laboratory
(USA), Tokyo Institute of Technology (Japan), National
Central University (Taiwan), Indian Institute of Astrophysics
(India), Inter-University Center for Astronomy and Astrophy-
sics (India), Weizmann Institute of Science (Israel), The Oskar
Klein Centre at Stockholm University (Sweden), Humboldt
University (Germany), Liverpool John Moores University
(UK). A.H. acknowledges support by the I-Core Program of
the Planning and Budgeting Committee and the Israel Science
Foundation. T.M. acknowledges the support of the Australian
Research Council through grant FT150100099. Parts of this
research were conducted by the Australian Research Council
Centre of Excellence for All-sky Astrophysics (CAASTRO),
through project number CE110001020. The Australia Tele-
scope Compact Array is part of the Australia Telescope
National Facility which is funded by the Australian Govern-
ment for operation as a National Facility managed by CSIRO.
D.L.K. is additionally supported by NSF grant AST-1412421.

A.A.M. is funded by the Large Synoptic Survey Telescope
Corporation in support of the Data Science Fellowship
Program. P.C.Y., C.C.N., and W.H.I. thank the support from
grants MOST104-2923-M-008-004-MY5 and MOST106-
2112-M-008-007. A.C. acknowledges support from the
National Science Foundation CAREER award 1455090,
“CAREER: Radio and gravitational-wave emission from the
largest explosions since the Big Bang.” T.P. acknowledges the
support of Advanced ERC grant TReX. B.E.C. thanks
SMARTS 1.3 m Queue Manager Bryndis Cruz for prompt
scheduling of the SMARTS observations. Basic research in
radio astronomy at the Naval Research Laboratory (NRL) is
funded by 6.1 Base funding. Construction and installation of
VLITE was supported by NRL Sustainment Restoration and
Maintenance funding. K.P.M.ʼs research is supported by the
Oxford Centre for Astrophysical Surveys, which is funded
through the Hintze Family Charitable Foundation. J.S. and A.
G. are grateful for support from the Knut and Alice Wallenberg
Foundation. GREAT is funded by the Swedish Research
Council (V.R.). E.O.O. is grateful for the support by grants
from the Israel Science Foundation, Minerva, Israeli ministry of
Science, the US-Israel Binational Science Foundation, and the
I-CORE Program of the Planning and Budgeting Committee
and The Israel Science Foundation. We thank the staff of the
GMRT that made these observations possible. The GMRT is
run by the National Centre for Radio Astrophysics of the Tata
Institute of Fundamental Research. AYQH was supported by a
National Science Foundation Graduate Research Fellowship
under grant No. DGE-1144469. S.R. has been supported by the
Swedish Research Council (VR) under grant number 2016
03657 3, by the Swedish National Space Board under grant
number Dnr. 107/16 and by the research environment grant
“Gravitational Radiation and Electromagnetic Astrophysical
Transients (GREAT)” funded by the Swedish Research council
(V.R.) under Dnr. 2016-06012. We acknowledge the support of
the Science and Engineering Research Board, Department of
Science and Technology, India and the Indo-US Science and
Technology Foundation for the GROWTH-India project.
(HAWC)We acknowledge the support from: the US National

Science Foundation (NSF); the US Department of Energy
Office of High-Energy Physics; the Laboratory Directed
Research and Development (LDRD) program of Los Alamos
National Laboratory; Consejo Nacional de Ciencia y Tecnolo-
gía (CONACyT), Mexico (grants 271051, 232656, 167281,
260378, 179588, 239762, 254964, 271737, 258865, 243290);
Red HAWC, Mexico; DGAPA-UNAM (grants RG100414,
IN111315, IN111716-3, IA102715, 109916); VIEP-BUAP; the
University of Wisconsin Alumni Research Foundation; the
Institute of Geophysics, Planetary Physics, and Signatures at
Los Alamos National Laboratory; Polish Science Centre grant
DEC-2014/13/B/ST9/945. We acknowledge the support of
the Science and Engineering Research Board, Department of
Science and Technology, India and the Indo-US Science and
Technology Foundation for the GROWTH-India project.
(H.E.S.S.) The support of the Namibian authorities and of the

University of Namibia in facilitating the construction and
operation of H.E.S.S. is gratefully acknowledged, as is the
support by the German Ministry for Education and Research
(BMBF), the Max Planck Society, the German Research
Foundation (DFG), the Alexander von Humboldt Foundation,
the Deutsche Forschungsgemeinschaft, the French Ministry
for Research, the CNRS-IN2P3 and the Astroparticle

30

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 291



Interdisciplinary Programme of the CNRS, the U.K. Science and
Technology Facilities Council (STFC), the IPNP of the Charles
University, the Czech Science Foundation, the Polish National
Science Centre, the South African Department of Science and
Technology and National Research Foundation, the University
of Namibia, the National Commission on Research, Science and
Technology of Namibia (NCRST), the Innsbruck University, the
Austrian Science Fund (FWF), and the Austrian Federal
Ministry for Science, Research and Economy, the University
of Adelaide and the Australian Research Council, the Japan
Society for the Promotion of Science and by the University of
Amsterdam. We appreciate the excellent work of the technical
support staff in Berlin, Durham, Hamburg, Heidelberg,
Palaiseau, Paris, Saclay, and in Namibia in the construction
and operation of the equipment. This work benefited from
services provided by the H.E.S.S.Virtual Organisation, sup-
ported by the national resource providers of the EGI Federation.

(Insight-HXMT) The Insight-HXMT team acknowledges the
support from the China National Space Administration
(CNSA), the Chinese Academy of Sciences (CAS; grant No.
XDB23040400), and the Ministry of Science and Technology
of China (MOST; grant No. 2016YFA0400800).

(IceCube) We acknowledge the support from the following
agencies: U.S. National Science Foundation-Office of Polar
Programs, U.S. National Science Foundation-Physics Division,
University of Wisconsin Alumni Research Foundation, the
Grid Laboratory of Wisconsin (GLOW) grid infrastructure at
the University of Wisconsin—Madison, the Open Science Grid
(OSG) grid infrastructure; U.S. Department of Energy, and
National Energy Research Scientific Computing Center, the
Louisiana Optical Network Initiative (LONI) grid computing
resources; Natural Sciences and Engineering Research Council
of Canada, WestGrid and Compute/Calcul Canada; Swedish
Research Council, Swedish Polar Research Secretariat, Swed-
ish National Infrastructure for Computing (SNIC), and Knut
and Alice Wallenberg Foundation, Sweden; German Ministry
for Education and Research (BMBF), Deutsche Forschungsge-
meinschaft (DFG), Helmholtz Alliance for Astroparticle
Physics (HAP), Initiative and Networking Fund of the
Helmholtz Association, Germany; Fund for Scientific Research
(FNRS-FWO), FWO Odysseus programme, Flanders Institute
to encourage scientific and technological research in industry
(IWT), Belgian Federal Science Policy Office (Belspo);
Marsden Fund, New Zealand; Australian Research Council;
Japan Society for Promotion of Science (JSPS); the Swiss
National Science Foundation (SNSF), Switzerland; National
Research Foundation of Korea (NRF); Villum Fonden, Danish
National Research Foundation (DNRF), Denmark.

(IKI-GW) A.S.P., A.A.V., E.D.M., and P.Y.u.M. acknowledge
the support from the Russian Science Foundation (grant 15-12-
30015). V.A.K., A.V.K., and I.V.R. acknowledge the Science and
Education Ministry of Kazakhstan (grant No. 0075/GF4). R.I. is
grateful to the grant RUSTAVELI FR/379/6-300/14 for partial
support. We acknowledge the excellent help in obtaining
Chilescope data from Sergei Pogrebsskiy and Ivan Rubzov.

(INTEGRAL) This work is based on observations with
INTEGRAL, an ESA project with instruments and science data
center funded by ESA member states (especially the PI
countries: Denmark, France, Germany, Italy, Switzerland,
Spain), and with the participation of Russia and the USA.
The INTEGRAL SPI project has been completed under the
responsibility and leadership of CNES. The SPI-ACS detector

system has been provided by MPE Garching/Germany. The
SPI team is grateful to ASI, CEA, CNES, DLR, ESA, INTA,
NASA, and OSTC for their support. The Italian INTEGRAL
team acknowledges the support of ASI/INAF agreement
No.2013-025-R.1. R.D. and A.v.K. acknowledge the German
INTEGRAL support through DLR grant 50 OG 1101. A.L. and
R.S. acknowledge the support from the Russian Science
Foundation (grant 14-22-00271). A.D. is funded by Spanish
MINECO/FEDER grant ESP2015-65712-C5-1-R.
(IPN) K.H. is grateful for support under NASA grant

NNX15AE60G. R.L.A. and D.D.F. are grateful for support
under RFBR grant 16-29-13009-ofi-m.
(J-GEM) MEXT KAKENHI (JP17H06363, JP15H00788,

JP24103003, JP10147214, JP10147207), JSPS KAKENHI
(JP16H02183, JP15H02075, JP15H02069, JP26800103,
JP25800103), Inter-University Cooperation Program of the
MEXT, the NINS program for cross-disciplinary science study,
the Toyota Foundation (D11-R-0830), the Mitsubishi Founda-
tion, the Yamada Science Foundation, Inoue Foundation for
Science, the National Research Foundation of South Africa.
(KU) The Korea-Uzbekistan Consortium team acknowledges

the support from the NRF grant No. 2017R1A3A3001362, and
the KASI grant 2017-1-830-03. This research has made use of
the KMTNet system operated by KASI.
(Las Cumbres) Support for I.A. and J.B. was provided by

NASA through the Einstein Fellowship Program, grants PF6-
170148 and PF7-180162, respectively. D.A.H., C.M., and G.H.
are supported by NSF grant AST-1313484. D.P. and D..M
acknowledge support by Israel Science Foundation grant 541/
17. This work makes use of observations from the LCO network.
(LIGO and Virgo) The authors gratefully acknowledge the

support of the United States National Science Foundation (NSF)
for the construction and operation of the LIGO Laboratory and
Advanced LIGO as well as the Science and Technology
Facilities Council (STFC) of the United Kingdom, the Max-
Planck-Society (MPS), and the State of Niedersachsen/Germany
for support of the construction of Advanced LIGO and
construction and operation of the GEO600 detector. Additional
support for advanced LIGO was provided by the Australian
Research Council. The authors gratefully acknowledge the
Italian Istituto Nazionale di Fisica Nucleare (INFN), the French
Centre National de la Recherche Scientifique (CNRS) and the
Foundation for Fundamental Research on Matter supported by
the Netherlands Organisation for Scientific Research, for the
construction and operation of the Virgo detector and the creation
and support of the EGO consortium. The authors also gratefully
acknowledge research support from these agencies as well as by
the Council of Scientific and Industrial Research of India, the
Department of Science and Technology, India, the Science &
Engineering Research Board (SERB), India, the Ministry of
Human Resource Development, India, the Spanish Agencia
Estatal de Investigación, the Vicepresidència i Conselleria
d’Innovació Recerca i Turisme and the Conselleria d’Educació
i Universitat del Govern de les Illes Balears, the Conselleria
d’Educació Investigació Cultura i Esport de la Generalitat
Valenciana, the National Science Centre of Poland, the Swiss
National Science Foundation (SNSF), the Russian Foundation
for Basic Research, the Russian Science Foundation, the
European Commission, the European Regional Development
Funds (ERDF), the Royal Society, the Scottish Funding Council,
the Scottish Universities Physics Alliance, the Hungarian
Scientific Research Fund (OTKA), the Lyon Institute of Origins

31

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

292 H. A. R. DEVILLEPOIX



(LIO), the National Research, Development and Innovation
Office Hungary (NKFI), the National Research Foundation of
Korea, Industry Canada and the Province of Ontario through the
Ministry of Economic Development and Innovation, the Natural
Science and Engineering Research Council Canada, the
Canadian Institute for Advanced Research, the Brazilian
Ministry of Science, Technology, Innovations, and Commu-
nications, the International Center for Theoretical Physics South
American Institute for Fundamental Research (ICTP-SAIFR),
the Research Grants Council of Hong Kong, the National
Natural Science Foundation of China (NSFC), the China
National Space Administration (CNSA) and the Chinese
Academy of Sciences (CAS), the Ministry of Science and
Technology of China (MOST), the Leverhulme Trust, the
Research Corporation, the Ministry of Science and Technology
(MOST), Taiwan and the Kavli Foundation. The authors
gratefully acknowledge the support of the NSF, STFC, MPS,
INFN, CNRS, and the State of Niedersachsen/Germany for
provision of computational resources. The MAXI team acknowl-
edges the support by JAXA, RIKEN, and MEXT KAKENHI
grant number JP 17H06362. The National Radio Astronomy
Observatory is a facility of the National Science Foundation
operated under cooperative agreement by Associated Univer-
sities, Inc. The European VLBI Network is a joint facility of
independent European, African, Asian, and North American
radio astronomy institutes. Scientific results from data presented
in this publication are derived from the following EVN project
code: RP029. e-MERLIN is a National Facility operated by the
University of Manchester at Jodrell Bank Observatory on behalf
of STFC. The collaboration between LIGO/Virgo and EVN/e-
MERLIN is part of a project that has received funding from the
European Unionʼs Horizon 2020 research and innovation
programme under grant agreement No. 653477. We thank Britt
Griswold (NASA/GSFC) for graphic arts. P.G.J. acknowledges
ERC–Consolidator grant No.647208. We thank the GMRT staff
for prompt scheduling of these observations. The GMRT is run
by the National Center for Radio Astrophysics of the Tata
Institute of Fundamental Research. INAF, Italian Institute of
Astrophysics ASI, Italian Space Agency. This work is part of the
research program Innovational Research Incentives Scheme
(Vernieuwingsimpuls), which is financed by the Netherlands
Organization for Scientific Research through the NWO VIDI
grant No. 639.042.612-Nissanke and NWO TOP grant No.
62002444–Nissanke. We thank ESO for granting full access to
all the LVC MoU partners of the observations of GW170817
obtained with NACO and VISIR under the Observatory program
60.A-9392.

(LOFAR) LOFAR, the Low-Frequency Array designed and
constructed by ASTRON, has facilities in several countries that
are owned by various parties (each with their own funding
sources) and that are collectively operated by the International
LOFAR Telescope (ILT) foundation under a joint scientific
policy. P.G.J. acknowledges support from ERC grant number
647208. R.F. was partially funded by ERC Advanced
Investigator Grant 267607 “4 PI SKY.”

(MASTER) Development Programme of Lomonosov Moscow
State University, Sergey Bodrov of Moscow Union OPTICA,
Russian Scientific Foundation 16-12-00085, National Research
Foundation of South Africa, Russian Federation Ministry of
Education and Science (14.B25.31.0010, 14.593.21.0005,
3.10131.2017/NM), RFBR 17-52-80133

(MAXI) The MAXI team acknowledges support by JAXA,
RIKEN, and MEXT KAKENHI grant number JP 17H06362.
(Nordic Optical Telescope) J.P.U.F. acknowledges the Carls-

berg foundation for funding for the NTE project. D.X. acknowl-
edges the support by the One-Hundred-Talent Program of the
Chinese Academy of Sciences (CAS) and by the Strategic Priority
Research Program “Multi-wavelength Gravitational Wave Uni-
verse” of the CAS (No. XDB23000000). Based on observations
made with the Nordic Optical Telescope (program 55-013),
operated by the Nordic Optical Telescope Scientific Association.
(OzGrav) Part of this research was funded by the Australian

Research Council Centre of Excellence for Gravitational Wave
Discovery (OzGrav), CE170100004 and the Australian Research
Council Centre of Excellence for All-sky Astrophysics (CAAS-
TRO), CE110001020. J.C. acknowledges the Australian Research
Council Future Fellowship grant FT130101219. Research support
to I.A. is provided by the Australian Astronomical Observatory
(AAO). A.T.D. acknowledges the support of an Australian
Research Council Future Fellowship (FT150100415). Based in
part on data acquired through the Australian Astronomical
Observatory. We acknowledge the traditional owners of the land
on which the AAT stands, the Gamilaraay people, and pay our
respects to elders past and present. The Etelman/VIRT team
acknowledge NASA grant NNX13AD28A.
(Pan-STARRS) The Pan-STARRS1 observations were sup-

ported in part by NASA grant No. NNX14AM74G issued
through the SSO Near Earth Object Observations Program and
the Queenʼs University Belfast. The Pan-STARRS1 Surveys
were made possible through contributions by the Institute for
Astronomy, the University of Hawaii, the Pan-STARRS
Project Office, the Max-Planck Society and its participating
institutes, the Max Planck Institute for Astronomy, Heidelberg
and the Max Planck Institute for Extraterrestrial Physics,
Garching, The Johns Hopkins University, Durham University,
the University of Edinburgh, the Queenʼs University Belfast,
the Harvard-Smithsonian Center for Astrophysics, the LCO
Global Telescope Network Incorporated, the National Central
University of Taiwan, the Space Telescope Science Institute,
and the National Aeronautics and Space Administration under
grant No. NNX08AR22G issued through the Planetary Science
Division of the NASA Science Mission Directorate, the
National Science Foundation grant No. AST-1238877, the
University of Maryland, Eotvos Lorand University (ELTE),
and the Los Alamos National Laboratory. The Pan-STARRS1
Surveys are archived at the Space Telescope Science Institute
(STScI) and can be accessed through MAST, the Mikulski
Archive for Space Telescopes. Additional support for the Pan-
STARRS1 public science archive is provided by the Gordon
and Betty Moore Foundation.
(Pi of the Sky) The Pi of the Sky team is grateful for the

support of the ESAt/INTA-CEDEA personnel in Mazagón,
Huelva (Spain). Analysis of the Pi of the Sky data was based on
the LUIZA software developed within the GLORIA project,
funded from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant 283783.
(SALT) D.B., S.M.C., E.R.C., S.B.P., P.V., and T.W. acknowl-

edge support from the South African National Research Founda-
tion. M.M.S. gratefully acknowledges the support of the late Paul
Newman and the Newmans Own Foundation. We are most
grateful for the DDT allocation for the SALT observations.

32

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 293



(SKA) R.F. was partially funded by ERC Advanced
Investigator Grant 267607 “4 PI SKY.”

(Swift) Funding for the Swift mission in the UK is provided
by the UK Space Agency. The Swift team at the MOC at Penn
State acknowledges support from NASA contract NAS5-
00136. The Italian Swift team acknowledge support from
ASI-INAF grant I/004/11/3.

(TOROS)We thank support from the USA Air Force Office of
International Scientific Research (AFOSR/IO), the Dirección de
Investigación de la Universidad de La Serena, the Consejo
Nacional de Investigaciones Científicas y Técnicas of Argentina,
the FAPESP, and the Observatorio Nacional-MCT of Brasil.

(TTU Group) A.C. and N.T.P. acknowledge support from
the NSF CAREER Award 1455090: “CAREER: Radio and
gravitational-wave emission from the largest explosions since
the Big Bang.” The National Radio Astronomy Observatory is
a facility of the National Science Foundation operated under
cooperative agreement by Associated Universities, Inc.

(VINROUGE) Based on observations made with ESO
telescopes at the La Silla Paranal Observatory under programmes
ID 099.D-0668, 099.D-0116, 099.D-0622, 179.A-2010, and 198.
D-2010; and with the NASA/ESA Hubble Space Telescope
observations under programs GO 14771, GO 14804, GO 14850.
The VISTA observations were processed by C.G.F. at the
Cambridge Astronomy Survey Unit (CASU), which is funded by
the UK Science and Technology Research Council under grant
ST/N005805/1. This research used resources provided by the
Los Alamos National Laboratory Institutional Computing Pro-
gram, which is supported by the U.S. Department of Energy
National Nuclear Security Administration under Contract No. DE-
AC52-06NA25396. We acknowledge support to the following
bodies: the ERC (grant No. 725246); STFC via grant ST/
P000495/1; VILLUM FONDEN (investigator grant project
number 16599); the Spanish project AYA 2014-58381-P; the
Juan de la Cierva Incorporación fellowship IJCI-2014-21669; the
Juan de la Cierva Incorporación fellowship IJCI-2015-26153; the
NRFK grant No. 2017R1A3A3001362; grants GO718062A and
HSTG014850001A; the Swedish Research Council (VR) under
grant number 2016-03657-3; the Swedish National Space Board
under grant number Dnr. 107/16; the research environment grant
“Gravitational Radiation and Electromagnetic Astrophysical
Transients (GREAT)” under Dnr 2016-06012; UKSA.

(Zadko) The Zadko Telescope was made possible by a
philanthropic donation by James Zadko to the University of
Western Australia (UWA). Zadko Telescope operations are
supported by UWA and the Australian Research Council
Centre of Excellence OzGrav CE170100004. The TAROT
network of telescopes is supported by the French Centre
National de la Recherche Scientifique (CNRS), the Observa-
toire de la Côte d’Azur (OCA), and we thank the expertise and
support of the Observatoire des Sciences de l’Univers, Institut
Pythéas, Aix-Marseille University. The FIGARONet network
is supported under the Agence Nationale de la Recherche
(ANR) grant 14-CE33. The paper-writing team would like
to thank Britt Griswold (NASA/GSFC) and Aaron Geller
(Northwestern/NUIT/CIERA) for assistance with graphics.

References

Aab, A., Abreu, P., Aglietta, M., et al. 2015a, NIMPA, 798, 172
Aab, A., Abreu, P., Aglietta, M., et al. 2015b, PhRvD, 91, 092008
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2015, PhRvD, 91, 022001
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2017, JInst, 12, P03012

Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2016, JInst, 11, P11009
Abadie, J., Abbott, B. P., Abbott, R., et al. 2010, CQGra, 27, 173001
Abadie, J., Abbott, B. P., Abbott, R., et al. 2012, A&A, 541, A155
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, ApJL, 826, L13
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, PhRvL, 116, 241102
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016c, PhRvL, 116, 061102
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016d, PhRvL, 116, 241103
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016e, PhRvX, 6, 041015
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, PhRvL, 118, 221101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, PhRvL, 118, 221101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017c, PhRvL, 119, 161101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017d, PhRvL, 119, 141101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017e, Natur, https://doi.org/

10.1038/nature24471
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017f, ApJL, https://doi.org/

10.3847/2041-8213/aa920c
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017g, ApJL, https://doi.org/

10.3847/2041-8213/aa91c9
Abeysekara, A. U., Albert, A., Alfaro, R., et al. 2017, ApJ, 843, 39
Adams, S. M., Kasliwal, M. M., Blagorodnova, N., et al. 2017, GCN, 21816
Ade, P. A. R., Aghanim, N., Arnaud, M., et al. 2016, A&A, 594, A13
Ageron, M., Aguilar, J. A., Al Samara, I., et al. 2011, NIMPA, 656, 11
Ageron, M., Baret, B., Coleiro, A., et al. 2017a, GCN, 21522
Ageron, M., Baret, B., Coleiro, A., et al. 2017b, GCN, 21631
Alexander, K. D., Berger, E., Eftekhari, T., et al. 2017a, GCN, 21851
Alexander, K., Berger , E., Fong, W., et al. 2017c, ApJL, https://doi.org/

10.3847/2041-8213/aa905d
Alexander, K. D., Fong, W., Berger, E., et al. 2017d, GCN, 21545
Alexander, K. D., Fong, W., Berger, E., et al. 2017e, GCN, 21548
Alexander, K. D., Fong, W., Berger, E., et al. 2017f, GCN, 21589
Alexander, K. D., Fong, W., Williams, P. K. G., et al. 2017b, GCN, 21935
Allam, S., Annis, J., Berger, E., et al. 2017, GCN, 21530
Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E.

2012, PhRvD, 85, 122006
Alvarez-Muniz, J., Pedreira, F., Zas, E., et al. 2017, GCN, 21686
Andreoni, I., Cooke, J., Lidman, C., et al. 2017, GCN, 21677
Arcavi, I., Howell, D. A., McCully, C., et al. 2017a, GCN, 21538
Arcavi, I., Howell, D. A., McCully, C., et al. 2017b, GCN, 21565
Arcavi, I., Howell, D. A., McCully, C., et al. 2017c, GCN, 21581
Arcavi, I., Howell, D. A., McCully, C., et al. 2017d, GCN, 21543
Arcavi, I., Hosseinzadeh, G., Howell, D., et al. 2017e, Natur, https://doi.org/

10.1038/nature24291
Aresu, G., Bachetti, M., Buffa, F., et al. 2017, GCN, 21914
Baade, W., & Zwicky, F. 1934, PhRv, 46, 76
Bagot, P., Portegies Zwart, S. F., & Yungelson, L. R. 1998, A&A, 332, L57
Bailes, M., Andreoni, I., et al. 2017a, GCN, 21899
Bailes, M., Andreoni, I., et al. 2017b, GCN, 21928
Baker, J. G., Centrella, J., Choi, D., Koppitz, M., & van Meter, J. 2006, PhRvL,

96, 111102
Balasubramanian, A., Mate, S., Bhalerao, V., et al. 2017, GCN, 21514
Bannister, K., Lynch, C., Kaplan, D., et al. 2017b, GCN, 21559
Bannister, K., Lynch, C., Kaplan, D., et al. 2017d, GCN, 21537
Bannister, K., Shannon, R., Hotan, A., et al. 2017c, GCN, 21671
Bannister, K., Shannon, R., Hotan, A., et al. 2017e, GCN, 21562
Bannister, K. W., Shannon, R. M., Macquart, J.-P., et al. 2017a, ApJL,

841, L12
Barnes, J., & Kasen, D. 2013, ApJ, 775, 18
Barnes, J., Kasen, D., Wu, M.-R., & Mart’inez-Pinedo, G. 2016, arXiv:1605.

07218
Barr, E. D., Guillemot, L., Champion, D. J., et al. 2013, MNRAS, 429, 1633
Barthelmy, S. D., Chincarini, G., Burrows, D. N., et al. 2005, Natur, 438, 994
Barthelmy, S. D., Lien, A. Y., Palmer, D. M., et al. 2017, GCN, 21524
Bartos, I., Countryman, S., Finley, C., et al. 2017a, GCN, 21508
Bartos, I., Countryman, S., Finley, C., et al. 2017b, GCN, 21568
Bartos, I., Countryman, S., Finley, C., et al. 2017c, GCN, 21511
Batsch, T., Castro-Tirado, A. J., Czyrkowski, H., et al. 2017, GCN, 21931
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407
Berger, E. 2010, ApJ, 722, 1946
Berger, E. 2014, ARA&A, 52, 43
Berger, E., Fong, W., & Chornock, R. 2013a, ApJL, 774, L23
Berger, E., Fong, W., & Chornock, R. 2013b, ApJL, 774, L23
Berger, E., Fox, D. B., Price, P. A., et al. 2007, ApJ, 664, 1000
Berger, E., Price, P. A., Cenko, S. B., et al. 2005, Natur, 438, 988
Bhalerao, V., Bhattacharya, D., Vibhute, A., et al. 2017, JApA, 38, 31
Blackburn, L., Briggs, M. S., Camp, J., et al. 2015, ApJS, 217, 8
Blanchet, L. 2014, LRR, 17, 2

33

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

294 H. A. R. DEVILLEPOIX



Blanchet, L., Buonanno, A., & Faye, G. 2006, PhRvD, 74, 104034 (Erratum:
2007, PhRvD, 75, 049903; Erratum: 2010, PhRvD, 81, 089901)

Blanchet, L., Damour, T., Esposito-Farèse, G., & Iyer, B. R. 2004, PhRvL, 93,
091101

Blanchet, L., Damour, T., Iyer, B. R., Will, C. M., & Wiseman, A. G. 1995,
PhRvL, 74, 3515

Bloom, J. S., Sigurdsson, S., & Pols, O. R. 1999, MNRAS, 305, 763
Bohé, A., Marsat, S., & Blanchet, L. 2013, CQGra, 30, 135009
Broderick, J. W., Rowlinson, A., Jonker, P. G., et al. 2017, GCN, 21676
Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, PASP, 125, 1031
Buckley, D. A. H., Andreoni, I., Barway, S., et al. 2017, MNRAS, submitted
Bulgarelli, A., Tavani, M., Verrecchia, F., et al. 2017, GCN, 21564
Buonanno, A., & Damour, T. 1999, PhRvD, 59, 084006
Burrows, D. N., Grupe, D., Capalbi, M., et al. 2006, ApJ, 653, 468
Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, SSRv, 120, 165
Callister, T., Dowell, J., Kanner, J., et al. 2017a, GCN, 21680
Callister, T., Dowell, J., Kanner, J., et al. 2017b, GCN, 21848
Campanelli, M., Lousto, C. O., Marronetti, & Zlochower, Y. 2006, PhRvL, 96,

111101
Cannon, K., Cariou, R., Chapman, A., et al. 2012, ApJ, 748, 136
Cano, Z., Jorgensen, U. G., Hodosan, G., et al. 2017, GCN, 21889
Castro-Tirado, A. J., Tello, J. C., Hu, Y., et al. 2017, GCN, 21624
Cenko, S. B., Emery, S. W. K., Campana, S., et al. 2017, GCN, 21572
Chambers, K. C., Huber, M. E., Smartt, S. J., et al. 2017a, GCN, 21553
Chambers, K. C., Huber, M. E., Smitch, K. W., et al. 2017c, GCN, 21617
Chambers, K. C., Huber, M. E., Smitch, K. W., et al. 2017d, GCN, 21633
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv:1612.05560
Chambers, K. C., Smartt, S. J., Huber, M. E., et al. 2017b, GCN, 21590
Chen, T. W., Wiseman, P., Greiner, J., et al. 2017, GCN, 21608
Chornock, R., Berger, E., et al. 2017b, GCN, 21684
Chornock, R., Berger, E., et al. 2017c, GCN, 21638
Chornock, R., Berger, E., Kasen, D., et al. 2017a, ApJL, https://doi.org/

10.3847/2041-8213/aa905c
Clark, J. P. A. 1979, in Sources of Gravitational Radiation, ed. L. L. Smarr

(Cambridge: Cambridge Univ. Press), 447
Clark, J. P. A., van den Heuvel, E. P. J., & Sutantyo, W. 1979, A&A, 72, 120
Clarke, T. E., Kassim, N. E., Brisken, W., et al. 2016, in Ground-based and

Airborne Telescopes VI, Vol. 990699065B
Connaughton, V., Blackburn, L., Briggs, M. S., et al. 2017, GCN, 21506
Cook, D. O., Van Sistine, A., Singer, L., et al. 2017a, GCN, 21519
Cook, D. O., Van Sistine, A., Singer, L., et al. 2017b, GCN, 21521
Cook, D. O., Van Sistine, A., Singer, L., et al. 2017c, GCN, 21535
Corsi, A., Hallinan, G., Mooley, K., et al. 2017d, GCN, 21815
Corsi, A., Kasliwal, M. M., et al. 2017a, GCN, 21614
Corsi, A., Kasliwal, M. M., et al. 2017b, GCN, 21613
Corsi, A., Kasliwal, M. M., Frail, D., et al. 2017c, GCN, 21664
Corsi, A., Kasliwal, M. M., et al. 2017e, GCN, 21636
Coulter, D. A., Kilpatrick, C. D., Siebert, M. R., et al. 2017, Sci, https://doi.

org/10.1126/science.aap9811
Coulter, D. A., Kilpatrick, C. D., Siebert, M. R., et al. 2017a, GCN, 21529
Coulter, D. A., Kilpatrick, C. D., Siebert, M. R., et al. 2017b, GCN, 21567
Covino, S., Wiersema, K., Fan, Y., & Toma, K. 2017, Natur, doi:10.1038/

s41550-017-0285-z
Coward, D., Howell, E., Laugier, R., et al. 2017a, GCN, 21744
Coward, D., Howell, E., Laugier, R., et al. 2017b, GCN, 21627
Cowperthwaite, P. S., Berger, E., Villar, V. A., et al. 2017b, ApJL, https://

doi.org/10.3847/2041-8213/aa8fc7
Cowperthwaite, P. S., Foley, R. J., & Berger, E. 2017a, GCN, 21533
Cowperthwaite, P. S., Nicholl, M., & Berger, E. 2017c, GCN, 21578
Cutler, C., Apostolos, T. A., Bildsten, L., et al. 1993, PhRvL, 70, 2984
Cwiek, A., Zarnecki, A. F., Mankiewicz, A., et al. 2017, GCN, 21783
Dalya, G., Frei, Z., Galgoczi, G., Raffai, P., & de Souza, R. 2016, yCat, 7275
Damour, T., & Taylor, J. H. 1991, ApJ, 366, 501
Damour, T., & Taylor, J. H. 1992, PhRvD, 45, 1840
D’Avanzo, P., Malesani, D., Covino, S., et al. 2009, A&A, 498, 711
D’Avanzo, P., Melandri, A., Covino, S., et al. 2017, GCN, 21653
De, K., Kasliwal, M. M., Bhalerao, V., et al. 2017a, GCN, 21603
De, K., Mooley, K. P., Chandra, P., et al. 2017b, GCN, 21708
de Naurois, M., Schussler, F., et al. 2017, GCN, 21674
Deller, A., Bailes, M., Andreoni, I., et al. 2017a, GCN, 21588
Deller, A., Bailes, M., Andreoni, I., et al. 2017b, GCN, 21850
Deller, A., Bailes, M., Andreoni, I., et al. 2017c, GCN, 21897
Dewey, R. J., & Cordes, J. M. 1987, ApJ, 321, 780
Dezalay, J.-P., Barat, C., Talon, R., et al. 1992, in AIP Conf. Proc. 265,

Gamma-Ray Bursts, ed. W. S. Paciesas & G. J. Fishman (Melville, NY:
AIP), 304

Diaz, M., Garcia Lambas, D., Macri, L., Nilo Castellon, J. L., & Bernoiz, M.
2017a, GCN, 21619

Diaz, M., Garcia Lambas, D., Macri, L., Nilo Castellon, J. L., & Bernoiz, M.
2017c, GCN, 21620

Diaz, M., Garcia Lambas, D., Macri, L., Nilo Castellon, J. L., & Bernoiz, M.
2017d, GCN, 21634

Diaz, M., Macri, L., Nilo Castellon, J. L., et al. 2017b, GCN, 21895
Dobie, D., Hotan, A., Bannister, K., et al. 2017a, GCN, 21639
Dobie, D., Hotan, A., Bannister, K., et al. 2017b, GCN, 21625
Drout, M. R., et al. 2017b, Sci, https://doi.org/10.1126/science.aaq0049
Drout, M. R., Simon, J. D., Shappee, B. J., et al. 2017a, GCN, 21547
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Natur, 340, 126
Eikenberry, S., Ackley, K., & Klimenko, S. 2017, GCN, 21575
Einstein, A. 1916, Sitzungsberichte der Königlich Preußischen Akademie der

Wissenschaften (Berlin), 1, 688
Einstein, A. 1918, Sitzungsberichte der Königlich Preußischen Akademie der

Wissenschaften (Berlin), 1, 154
Ellingson, S. W., Taylor, G. B., Craig, J., et al. 2013, ITAP, 61, 2540
Evans, P., Cenko, S., Kennea, J. A., et al. 2017a, Sci, https://doi.org/10.1126/

science.aap9580
Evans, P., Kennea, J. A., Breeveld, A. A., et al. 2017b, GCN, 21550
Evans, P., Kennea, J. A., Cenko, S. B., et al. 2017c, GCN, 21612
Fermi-GBM 2017, GCN, 524666471
Feroci, M., Costa, E., Soffitta, P., et al. 2007, NIMPA, 581, 728
Fixsen, D. J. 2009, ApJ, 707, 916
Flannery, B. P., & van den Heuvel, E. P. J. 1975, A&A, 39, 61
Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150
Foley, R. J. 2017b, GCN, 21557
Foley, R. J., Kilpatrick, C. D., Nicholl, M., & Berger, E. 2017a, GCN, 21536
Fong, W., Berger, E., Chornock, R., et al. 2013, ApJ, 769, 56
Fong, W., Berger, E., Margutti, R., & Zauderer, B. A. 2015, ApJ, 815,

102
Fong, W., Margutti, R., Haggard, D., et al. 2017, GCN, 21786
Fong, W., Margutti, R., Haggard, D., et al. 2013, ApJ, 776, 18
Fox, D. B., Frail, D. A., Price, P. A., et al. 2005, Natur, 437, 845
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152
Gehrels, N. 2004, in AIP Conf. Ser. 727, Gamma-Ray Bursts: 30 Years of

Discovery, ed. E. Fenimore & M. Galassi (Melville, NY: AIP), 637
Gehrels, N., Cannizzo, J. K., Kanner, J., et al. 2016, ApJ, 820, 136
Gehrels, N., Sarazin, C. L., O’Brien, P. T., et al. 2005, Natur, 437, 851
Gendre, B., Cucchiara, A., Morris, D., et al. 2017, GCN, 21609
Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962, PhRvL, 9,

439
Goedhart, S., Mooley, K., et al. 2017a, GCN, 21933
Goedhart, S., Mooley, K., et al. 2017b, GCN, 21891
Gold, T. 1968, Natur, 218, 731
Gold, T. 1969, Natur, 221, 25
Goldstein, A., Burgess, J. M., Preece, R. D., et al. 2012, ApJS, 199, 19
Goldstein, A., Veres, P., Burns, E., et al. 2017a, ApJL, https://doi.org/

10.3847/2041-8213/aa8f41
Goldstein, A., Veres, P., von Kienlin, A., et al. 2017b, GCN, 21528
Goodman, J. 1986, ApJL, 308, L47
Gottlieb, O., Nakar, E., & Piran, T. 2017, arXiv:1705.10797
Grado, A., Cappellaro, E., Greco, G., et al. 2017c, GCN, 21598
Grado, A., Getman, F., Limatola, L., et al. 2017a, GCN, 21703
Grado, A., Getman, F., Limatola, L., et al. 2017b, GCN, 21833
Grossman, D., Korobkin, O., Rosswog, S., & Piran, T. 2014, MNRAS,

439, 757
Gruber, D., Goldstein, A., Weller von Ahlefeld, V., et al. 2014, ApJS, 211, 12
Haggard, D., Nynka, M., Ruan, J. J., et al. 2017a, ApJL, https://doi.org/

10.3847/2041-8213/aa8ede
Haggard, D., Nynka, M., Kalogera, V., et al. 2017b, GCN, 21798
Hallinan, G., et al. 2017a, Sci, https://doi.org/10.1126/science.aap9855
Hallinan, G., Corsi, A., Mooley, K., et al. 2017b, GCN, 21929
Hancock, P. J., Tingay, S. J., de Gois, J. S., et al. 2017, GCN, 21894
Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, ApJ, 770, 103
Harrison, F. A., Forster, K., Garcia, J., et al. 2017, GCN, 21626
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968,

Natur, 217, 709
Hjorth, J., Sollerman, J., Gorosabel, J., et al. 2005a, ApJL, 630, L117
Hjorth, J., Watson, D., Fynbo, J. P. U., et al. 2005b, Natur, 437, 859
Hjorth, J., Watson, D., Fynbo, J. P. U., et al. 2005c, Natur, 437, 859
Hotokezaka, K., Nissanke, S., Hallinan, G., et al. 2016, ApJ, 831, 190
Hotokezaka, K., & Piran, T. 2015, MNRAS, 450, 1430
Hu, L., Wang, L., Sun, T., et al. 2017, GCN, 21883

34

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 295



Hulse, R. A., & Taylor, J. H. 1975, ApJL, 195, L51
Hurley, K., Mitrofanov, I. G., Golovin, D., et al. 2013, in EAS Publications Ser.

61, Gamma-ray Bursts: 15 Years of GRB Afterglows – Progenitors,
Environments and Host Galaxies from the Nearby to the Early Universe, ed.
A. J. Castro-Tirado, J. Gorosabel, & I. H. Park (Les Ulis: EDP Sciences), 459

Im, M., Choi, C., Kim, J., et al. 2017a, GCN, 21563
Im, M., Choi, C., Kim, J., et al. 2017b, GCN, 21566
Im, M., Choi, C., Kim, J., et al. 2017c, GCN, 21632
Im, M., Choi, C., Kim, J., et al. 2017d, GCN, 21597
Jin, Z.-P., Hotokezaka, K., Li, X., et al. 2016, NatCo, 7, 12898
Johnston, S., Bailes, M., Bartel, N., et al. 2007, PASA, 24, 174
Kalogera, V., Belczynski, K., Kim, C., O’Shaughnessy, R., & Willems, B.

2007, PhR, 442, 75
Kaplan, D., Brown, I., Sokolowski, M., et al. 2017b, GCN, 21927
Kaplan, D., Murphy, T., Bannister, K., et al. 2017a, GCN, 21574
Kaplan, D., Sokolowski, M., Wayth, R., et al. 2017c, GCN, 21637
Kasen, D., Badnell, N. R., & Barnes, J. 2013, ApJ, 774, 25
Kasen, D., Metzger, B., Barnes, J., Quataert, E., & Ramirez-Ruiz, E. 2017,

Natur, https://doi.org/10.1038/nature24453
Kasliwal, M., Nakar, E., Singer, L. P., & Kaplan, D. E. A. 2017, Sci, https://

doi.org/10.1126/science.aap9455
Kilpatrick, C. D., Coulter, D. A., Siebert, M. R., et al. 2017a, GCN, 21583
Kilpatrick, C. D., Foley, R. J., Kasen, D., et al. 2017b, Science, https://doi.

org/10.1126/science.aaq0073
Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, ApJL, 182, L85
Klotz, A., Laugier, R., Boer, M., et al. 2017, GCN, 21558
Kocevski, D., Omodei, N., Buson, S., et al. 2017, GCN, 21534
Kocevski, D., Thöne, C. C., Ramirez-Ruiz, E., et al. 2010, MNRAS, 404, 963
Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJL, 413, L101
Kramer, M., Kraus, A., Eatough, R., & Nissanke, S. 2017, GCN, 21920
Kulkarni, S. R. 2005, arXiv:astro-ph/0510256
Labanti, C., Di Cocco, G., Ferro, G., et al. 2003, A&A, 411, L149
Lattimer, J. M., & Schramm, D. N. 1974, ApJL, 192, L145
Lattimer, J. M., & Schramm, D. N. 1976, ApJ, 210, 549
Lee, W. H., & Ramirez-Ruiz, E. 2007, NJPh, 9, 17
Levan, A. J., Lyman, J. D., Tanvir, N. R., et al. 2017, ApJL, https://doi.org/

10.3847/2041-8213/aa905f
Levan, A., Lyman, J. D., Steeghs, D. T. H., et al. 2017b, GCN, 21681
Levan, A., Troja, E., Tanvir, N. R., et al. 2017a, GCN, 21781
Li, L.-X., & Paczyński, B. 1998, ApJL, 507, L59
Li, T. P., Xiong, S. L., Zhang, S. N., et al. 2017, Science China Physics,

Mechanics & Astronomy, https://doi.org/10.1007/s11433-017-9107-5
Li, W., Chornock, R., Leaman, J., et al. 2011a, MNRAS, 412, 1473
Li, W., Leaman, J., Chornock, R., et al. 2011b, MNRAS, 412, 1441
Liao, J. Y., Li, C. K., Ge, M. Y., et al. 2017, GCN, 21518
LIGO Scientific Collaboration & Virgo Collaboration et al. 2017a, GCN, 21505
LIGO Scientific Collaboration & Virgo Collaboration et al. 2017b, GCN, 21513
LIGO Scientific Collaboration & Virgo Collaboration et al. 2017c, GCN, 21527
LIGO Scientific Collaboration & Virgo Collaboration et al. 2017d, GCN, 21509
LIGO Scientific Collaboration & Virgo Collaboration et al. 2017e, GCN, 21510
Lipunov, V., Gorbovskoy, E., Kornilov, V., et al. 2017a, ApJL, https://doi.

org/10.3847/2041-8213/aa92c0
Lipunov, V., Kornilov, V., Gorbovskoy, E., et al. 2010, AdAst, 2010, 349171
Lipunov, V. M. 2017, GCN, 21621
Lipunov, V. M., Gorbovskoy, E., Kornilov, V. G., et al. 2017b, GCN, 21687
Lipunov, V. M., Gorbovskoy, E., Kornilov, V. G., et al. 2017c, GCN, 21587
Lipunov, V. M., Gorbovskoy, E., Kornilov, V. G., et al. 2017d, GCN, 21546
Lipunov, V. M., Gorbovskoy, E., Kornilov, V. G., et al. 2017e, GCN, 21570
Lipunov, V. M., Postnov, K. A., & Prokhorov, M. E. 1987, A&A, 176, L1
Lund, N., Budtz-Jørgensen, C., Westergaard, N. J., et al. 2003, A&A, 411, L231
Lyman, J., Homan, D., Maguire, K., et al. 2017, GCN, 21582
Lynch, C., Murphy, T., Kaplan, D., et al. 2017a, GCN, 21670
Lynch, C., Murphy, T., Kaplan, D., et al. 2017b, GCN, 21740
Lynch, C., Murphy, T., Kaplan, D., et al. 2017c, GCN, 21628
Lynch, C., Murphy, T., Kaplan, D., et al. 2017d, GCN, 21629
Malesani, D., Pian, E., Hjorth, J., et al. 2017a, GCN, 21591
Malesani, D., Watson, D., & Hjorth, J. 2017b, GCN, 21577
Margutti, R., Berger, E., Fong, W., et al. 2017b, ApJL, https://doi.org/

10.3847/2041-8213/aa9057
Margutti, R., Fong, W., Berger, E., et al. 2017a, GCN, 21648
Martinez-Castellanos, I., Smith, A. J., et al. 2017, GCN, 21683
Massevitch, A. G., Tutukov, A. V., & Iungelson, L. R. 1976, Ap&SS, 40, 115
Matsuoka, M., Kawasaki, K., Ueno, S., et al. 2009, PASJ, 61, 999
McCully, C., Hiramatsu, D., Howell, D. A., et al. 2017b, ApJL, https://doi.

org/10.3847/2041-8213/aa9111
McCully, C., Howell, D. A., & Hosseinzadeh 2017a, GCN, 21908

Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791
Melandri, A., Campana, S., Covino, S., et al. 2017a, GCN, 21532
Melandri, A., D’Avanzo, P., Campana, S., et al. 2017b, GCN, 21556
Melandri, A., D’Avanzo, P., Campana, S., et al. 2017c, GCN, 21596
Messick, C., Blackburn, K., Brady, P., et al. 2017, PhRvD, 95, 042001
Metzger, B. D. 2017, LRR, 20, 3
Metzger, B. D., & Berger, E. 2012, ApJ, 746, 48
Metzger, B. D., & Fernández, R. 2014, MNRAS, 441, 3444
Metzger, B. D., Martínez-Pinedo, G., Darbha, S., et al. 2010, MNRAS,

406, 2650
Moldon, J., Beswick, R., Paragi, Z., et al. 2017a, GCN, 21804
Moldon, J., Beswick, R., Paragi, Z., et al. 2017b, GCN, 21940
Möller, A., Chang, & Wolf, C. 2017, GCN, 21542
Mooley, K. P., Hallinan, G., et al. 2017a, GCN, 21650
Mooley, K. P., Hallinan, G., Corsi, A., et al. 2017b, GCN, 21814
Murphy, T., Lenc, E., Lynch, C., et al. 2017, GCN, 21842
Nakahira, S., Yoshida, A., Sakamota, T., et al. 2017, GCN, 21641
Nakaoka, T., Kawabata, K. S., Kawabata, M., et al. 2017, GCN, 21623
Nakar, E. 2007, PhR, 442, 166
Nakar, E., & Piran, T. 2011, Natur, 478, 82
Narayan, R., Paczynski, B., & Piran, T. 1992, ApJL, 395, L83
Nicholl, M., Berger, E., Kasen, D., et al. 2017d, ApJL, https://doi.org/

10.3847/2041-8213/aa9029
Nicholl, M., Briceno, C., & Cowperthwaite 2017c, GCN, 21585
Nicholl, M., Cowperthwaite, P. S., Allam, S., et al. 2017a, GCN, 21541
Nicholl, M., Cowperthwaite, P. S., Berger, E., et al. 2017b, GCN, 21580
Nissanke, S., Kasliwal, M., & Georgieva, A. 2013, ApJ, 767, 124
Nitz, A. H., Dent, T., Dal Canton, T., Fairhurst, S., & Brown, D. A. 2017a,

arXiv:1705.01513
Nitz, A., Harry, I., Brown, D., et al. 2017b, ligo-cbc/pycbc: O2 Production

Release 20, doi:10.5281/zenodo.883086
Ofek, E. O., Cenko, S. B., Gal-Yam, A., et al. 2007, ApJ, 662, 1129
Oppenheimer, J. R., & Volkoff, G. M. 1939, PhRv, 55, 374
Paciesas, W. S., Meegan, C. A., von Kienlin, A., et al. 2012, ApJS, 199, 18
Paczynski, B. 1986, ApJL, 308, L43
Paragi, Z., Agudo, I., An, T., et al. 2017a, GCN, 21763
Paragi, Z., Yang, J., Marcote, B., et al. 2017b, GCN, 21939
Pavana, M., Kiran, B. S., Anupama, G. C., et al. 2017, GCN, 21554
Pearson, T. J., Readhead, A. C. S., et al. 2017, GCN, 21760
Pian, E., D’Avanzo, P., Bennetti, S., et al. 2017a, Natur, https://doi.org/

10.1038/nature24298
Pian, E., D’Elia, V., Piranomonte, S., et al. 2017b, GCN, 21592
Piano, G., Verrecchia, F., Pilia, M., et al. 2017, GCN, 21526
Pilia, M., Cardillo, M., Piano, G., et al. 2017, GCN, 21525
Piran, T., Nakar, E., & Rosswog, S. 2013, MNRAS, 430, 2121
Postnov, K. A., & Yungelson, L. R. 2014, LRR, 17, 3
Pozanenko, A., Volnova, A., Mazaeva, E., et al. 2017a, GCN, 21635
Pozanenko, A., Volnova, A., Mazaeva, E., et al. 2017b, GCN, 21898
Pozanenko, A., Volnova, A., Mazaeva, E., et al. 2017c, GCN, 21644
Pozanenko, A., Volnova, A., Mazaeva, E., et al. 2017d, GCN, 21618
Prandoni, I., Murgia, M., Tarchi, A., et al. 2017, arXiv:1703.09673
Pretorius, F. 2005, PhRvL, 95, 121101
Prochaska, J. X., Bloom, J. S., Chen, H.-W., et al. 2006, ApJ, 642, 989
Rabinowitz, D., Baltay, C., et al. 2017, GCN, 21599
Resmi, L, Misra, K., Tanvir, N. R., et al. 2017, GCN, 21768
Ricci, R., Wieringa, M., Piro, L., & Troja, E. 2017, GCN, 21900
Roberts, L. F., Kasen, D., Lee, W. H., & Ramirez-Ruiz, E. 2011, ApJL,

736, L21
Rosswog, S. 2005, ApJ, 634, 1202
Sadler, E. M., Allison, J. R., Kaplan, D. L., et al. 2017, GCN, 21645
Sathyaprakash, B. S., & Dhurandhar, S. V. 1991, PhRvD, 44, 3819
Savchenko, V., Ferrigno, C., Kuulkers, E., et al. 2017, ApJL, https://doi.org/

10.3847/2041-8213/aa8f94
Savchenko, V., Ferrigno, C., Kuulkers, E., et al. 2017b, GCN, 21672
Savchenko, V., Neronov, A., & Courvoisier, T. J.-L. 2012, A&A, 541, A122
Savchenko, V., Mereghetti, S., Ferrigno, C., et al. 2017a, GCN, 21507
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schulze, S., Kim, S., Martin, S., et al. 2017, GCN, 21747
Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and

Neutron Stars: The Physics of Compact Objects (New York: Wiley)
Shappee, B. J., Simon, J. D., Drout, M. R., et al. 2017, Sci, https://doi.org/

10.1126/science.aaq0186
Shara, M., Williams, T., Vaisanen, et al. 2017, GCN, 21610
Shklovsky, I. S. 1967, ApJL, 148, L1
Siebert, M. R., Foley, R. J., Drout, M. R., et al. 2017, ApJL, https://doi.org/

10.3847/2041-8213/aa905e

35

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

296 H. A. R. DEVILLEPOIX



Simon, J. D., Shappee, B. J., Drout, M. R., et al. 2017, GCN, 21551
Singer, L. P., et al. 2017c, GCN, 21569
Singer, L. P., Chen, H.-Y, Holz, D. E., et al. 2016, ApJL, 829, L15
Singer, L. P., Lau, R., Kasliwal, M. M., et al. 2017a, GCN, 21552
Singer, L. P., Lau, R., Kasliwal, M. M., et al. 2017b, GCN, 21779
Singer, L. P., & Price, L. 2016, PhRvD, 93, 024013
Singh, K. P., Tandon, S. N., Agrawal, P. C., et al. 2014, ASTROSAT Mission,

doi:10.1117/12.2062667
Smartt, S. J., et al. 2017, Natur, https://doi.org/10.1038/nature24303
Soares-Santos, M., Holz, D., Annis, J., et al. 2017, ApJL, https://doi.org/

10.3847/2041-8213/aa9059
Soderberg, A. M., Berger, E., Kasliwal, M., et al. 2006, ApJ, 650, 261
Sugita, S., Kawai, N., Serino, M., et al. 2017, GCN, 21555
Svinkin, D., Golenetskii, S., Aptekar, R., et al. 2017a, GCN, 21746
Svinkin, D., Hurley, K., von Kienlin, A., et al. 2017b, GCN, 21515
Svinkin, D., Hurley, K., von, K. A., et al. 2017c, GCN, 21515
Swarup, G., Ananthakrishnan, S., Kapahi, V. K., et al. 1991, CSci, 60, 95
Tanaka, M. 2016, AdAst, 2016, 634197
Tanaka, M., & Hotokezaka, K. 2013, ApJ, 775, 113
Tanvir, N. R., Levan, A. J., et al. 2017a, GCN, 21544
Tanvir, N. R., Levan, A. J., Fruchter, A. S., et al. 2013, Natur, 500, 547
Tanvir, N. R., Levan, A. J., González-Fernández, C., et al. 2017, ApJL,

https://doi.org/10.3847/2041-8213/aa90b6
Tanvir, N. R., Levan, A. J., & Steeghs, D. 2017b, GCN, 21576
Tavani, M., Barbiellini, G., Argan, A., et al. 2009, A&A, 502, 995
Taylor, J. H., & Weisberg, J. M. 1982, ApJ, 253, 908
Taylor, J. H., Wolszczan, A., Damour, T., &Weisberg, J. M. 1992, Natur, 355, 132
Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e007
Tominaga, N., Yoshida, M., Tanaka, M., et al. 2017, GCN, 21595
Tonry, J., Smith, K. W., Denneau, L., et al. 2017, GCN, 21886
Troja, E., Butler, N., Watson, A., et al. 2017d, GCN, 21778
Troja, E., King, A. R., O’Brien, P. T., Lyons, N., & Cusumano, G. 2008,

MNRAS, 385, L10
Troja, E., Piro, L., Sakamota, T., et al. 2017c, GCN, 21765
Troja, E., Piro, L., Sakamota, T., et al. 2017e, GCN, 21787
Troja, E., Piro, L., van Eerten, H., et al. 2017a, Natur, doi:10.1038/nature24290

Troja, E., Sakamoto, T., Cenko, S. B., et al. 2016, ApJ, 827, 102
Troja, E., Watson, A., Covina, S., et al. 2017b, GCN, 21682
Troja, E., Ricci, R., Wieringa, M. L., & Piro, L. 2017f, GCN, 21803
Tunnicliffe, R. L., Levan, A. J., Tanvir, N. R., et al. 2014, MNRAS, 437, 1495
Ubertini, P., Lebrun, F., di Cocco, G., et al. 2003, A&A, 411, L131
Valenti, S., Yang, S., Sand, D., et al. 2017, GCN, 21606
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2
Vedrenne, G., Roques, J.-P., Schönfelder, V., et al. 2003, A&A, 411, L63
Veitch, J., Raymond, V., Farr, B., et al. 2015, PhRvD, 91, 042003
Verrecchia, F., Cardillo, M., Bulgarelli, A., et al. 2017, GCN, 21785
Villasenor, J. S., Lamb, D. Q., Ricker, G. R., et al. 2005, Natur, 437, 855
von Kienlin, A., Beckmann, V., Rau, A., et al. 2003, A&A, 411, L299
von Kienlin, A., Meegan, C., Goldstein, A., et al. 2017, GCN, 21520
Wex, N. 2014, arXiv:1402.5594
White, D. J., Daw, E., & Dhillon, V. 2011a, CQGra, 28, 085016
White, D. J., Daw, E. J., & Dhillon, V. S. 2011b, CQGra, 28, 085016
Wieringa, M., Ricci, R., & Piro Troja, E. 2017, GCN, 21882
Wiersema, K., Covino, S., Melandri, A., et al. 2017, GCN, 21594
Williams, P. K. G., Alexander, K. D., Berger, E., et al. 2017a, GCN, 21750
Williams, P. K. G., Alexander, K. D., Berger, E., et al. 2017b, GCN, 21571
Wilson, W. E., Ferris, R. H., Axtens, P., et al. 2011, MNRAS, 416, 832
Wilson-Hodge, C. A., Case, G. L., Cherry, M. L., et al. 2012, ApJS, 201, 33
Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1
Wiseman, P., Chen, T. W., Greiner, J., et al. 2017, GCN, 21584
Wolf, C., Chang, S. W., & Möller, A. 2017, GCN, 21560
Wootten, A., & Thompson, A. R. 2009, IEEEP, 97, 1463
Yang, S., Valenti, S., Sand, D., et al. 2017a, GCN, 21531
Yang, S., Valenti, S., Sand, D., et al. 2017b, GCN, 21579
Yang, S., Valenti, S., Sand, D., et al. 2017c, GCN, 21539
Yoshida, M., Tanaka, M., Terai, T., et al. 2017a, GCN, 21549
Yoshida, M., Tanaka, M., Terai, T., et al. 2017b, GCN, 21561
Yoshida, M., Tanaka, M., Terai, T., et al. 2017c, GCN, 21586
Yoshida, M., Tanaka, M., Utsumi, Y., et al. 2017d, GCN, 21685
Yu, P.-C., Ngeow, C.-C., Ip, W.-H., et al. 2017, GCN, 21669
Zadrożny, A., Sokołowski, M., Mankiewicz, L., & Żarnecki, A. F. 2017, Pi of the

Sky in LSC-Virgo’s EM follow-up in O1 science, doi:10.1117/12.2281024

B. P. Abbott1, R. Abbott1, T. D. Abbott2, F. Acernese3,4, K. Ackley5,6, C. Adams7, T. Adams8, P. Addesso9, R. X. Adhikari1,
V. B. Adya10, C. Affeldt10, M. Afrough11, B. Agarwal12, M. Agathos13, K. Agatsuma14, N. Aggarwal15, O. D. Aguiar16,
L. Aiello17,18, A. Ain19, P. Ajith20, B. Allen10,21,22, G. Allen12, A. Allocca23,24, P. A. Altin25, A. Amato26, A. Ananyeva1,
S. B. Anderson1, W. G. Anderson21, S. V. Angelova27, S. Antier28, S. Appert1, K. Arai1, M. C. Araya1, J. S. Areeda29,

N. Arnaud28,30, K. G. Arun31, S. Ascenzi32,33, G. Ashton10, M. Ast34, S. M. Aston7, P. Astone35, D. V. Atallah36,
P. Aufmuth22, C. Aulbert10, K. AultONeal37, C. Austin2, A. Avila-Alvarez29, S. Babak38, P. Bacon39, M. K. M. Bader14,
S. Bae40, P. T. Baker41, F. Baldaccini42,43, G. Ballardin30, S. W. Ballmer44, S. Banagiri45, J. C. Barayoga1, S. E. Barclay46,
B. C. Barish1, D. Barker47, K. Barkett48, F. Barone3,4, B. Barr46, L. Barsotti15, M. Barsuglia39, D. Barta49, S. D. Barthelmy50,
J. Bartlett47, I. Bartos51,5, R. Bassiri52, A. Basti23,24, J. C. Batch47, M. Bawaj53,43, J. C. Bayley46, M. Bazzan54,55, B. Bécsy56,

C. Beer10, M. Bejger57, I. Belahcene28, A. S. Bell46, B. K. Berger1, G. Bergmann10, J. J. Bero58, C. P. L. Berry59,
D. Bersanetti60, A. Bertolini14, J. Betzwieser7, S. Bhagwat44, R. Bhandare61, I. A. Bilenko62, G. Billingsley1, C. R. Billman5,

J. Birch7, R. Birney63, O. Birnholtz10, S. Biscans1,15, S. Biscoveanu64,6, A. Bisht22, M. Bitossi30,24, C. Biwer44,
M. A. Bizouard28, J. K. Blackburn1, J. Blackman48, C. D. Blair1,65, D. G. Blair65, R. M. Blair47, S. Bloemen66, O. Bock10,

N. Bode10, M. Boer67, G. Bogaert67, A. Bohe38, F. Bondu68, E. Bonilla52, R. Bonnand8, B. A. Boom14, R. Bork1,
V. Boschi30,24, S. Bose69,19, K. Bossie7, Y. Bouffanais39, A. Bozzi30, C. Bradaschia24, P. R. Brady21, M. Branchesi17,18,

J. E. Brau70, T. Briant71, A. Brillet67, M. Brinkmann10, V. Brisson28, P. Brockill21, J. E. Broida72, A. F. Brooks1,
D. A. Brown44, D. D. Brown73, S. Brunett1, C. C. Buchanan2, A. Buikema15, T. Bulik74, H. J. Bulten75,14, A. Buonanno38,76,
D. Buskulic8, C. Buy39, R. L. Byer52, M. Cabero10, L. Cadonati77, G. Cagnoli26,78, C. Cahillane1, J. Calderón Bustillo77,

T. A. Callister1, E. Calloni79,4, J. B. Camp50, M. Canepa60,80, P. Canizares66, K. C. Cannon81, H. Cao73, J. Cao82,
C. D. Capano10, E. Capocasa39, F. Carbognani30, S. Caride83, M. F. Carney84, J. Casanueva Diaz28, C. Casentini32,33,

S. Caudill14,21, M. Cavaglià11, F. Cavalier28, R. Cavalieri30, G. Cella24, C. B. Cepeda1, P. Cerdá-Durán85, G. Cerretani23,24,
E. Cesarini33,86, S. J. Chamberlin64, M. Chan46, S. Chao87, P. Charlton88, E. Chase89, E. Chassande-Mottin39, D. Chatterjee21,
K. Chatziioannou90, B. D. Cheeseboro41, H. Y. Chen91, X. Chen65, Y. Chen48, H.-P. Cheng5, H. Chia5, A. Chincarini60,
A. Chiummo30, T. Chmiel84, H. S. Cho92, M. Cho76, J. H. Chow25, N. Christensen72,67, Q. Chu65, A. J. K. Chua13, S. Chua71,
A. K. W. Chung93, S. Chung65, G. Ciani5,54,55, R. Ciolfi94,95, C. E. Cirelli52, A. Cirone60,80, F. Clara47, J. A. Clark77,

P. Clearwater96, F. Cleva67, C. Cocchieri11, E. Coccia17,18, P.-F. Cohadon71, D. Cohen28, A. Colla97,35, C. G. Collette98,

36

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 297



L. R. Cominsky99, M. Constancio Jr.16, L. Conti55, S. J. Cooper59, P. Corban7, T. R. Corbitt2, I. Cordero-Carrión100,
K. R. Corley51, N. Cornish101, A. Corsi83, S. Cortese30, C. A. Costa16, M. W. Coughlin72,1, S. B. Coughlin89, J.-P. Coulon67,
S. T. Countryman51, P. Couvares1, P. B. Covas102, E. E. Cowan77, D. M. Coward65, M. J. Cowart7, D. C. Coyne1, R. Coyne83,
J. D. E. Creighton21, T. D. Creighton103, J. Cripe2, S. G. Crowder104, T. J. Cullen29,2, A. Cumming46, L. Cunningham46,

E. Cuoco30, T. Dal Canton50, G. Dálya56, S. L. Danilishin22,10, S. D’Antonio33, K. Danzmann22,10, A. Dasgupta105,
C. F. Da Silva Costa5, V. Dattilo30, I. Dave61, M. Davier28, D. Davis44, E. J. Daw106, B. Day77, S. De44, D. DeBra52,

J. Degallaix26, M. De Laurentis17,4, S. Deléglise71, W. Del Pozzo59,23,24, N. Demos15, T. Denker10, T. Dent10,
R. De Pietri107,108, V. Dergachev38, R. De Rosa79,4, R. T. DeRosa7, C. De Rossi26,30, R. DeSalvo109, O. de Varona10,

J. Devenson27, S. Dhurandhar19, M. C. Díaz103, L. Di Fiore4, M. Di Giovanni110,95, T. Di Girolamo51,79,4, A. Di Lieto23,24,
S. Di Pace97,35, I. Di Palma97,35, F. Di Renzo23,24, Z. Doctor91, V. Dolique26, F. Donovan15, K. L. Dooley11, S. Doravari10,
I. Dorrington36, R. Douglas46, M. Dovale Álvarez59, T. P. Downes21, M. Drago10, C. Dreissigacker10, J. C. Driggers47, Z. Du82,
M. Ducrot8, P. Dupej46, S. E. Dwyer47, T. B. Edo106, M. C. Edwards72, A. Effler7, P. Ehrens1, J. Eichholz1, S. S. Eikenberry5,
R. A. Eisenstein15, R. C. Essick15, D. Estevez8, Z. B. Etienne41, T. Etzel1, M. Evans15, T. M. Evans7, M. Factourovich51,

V. Fafone32,33,17, H. Fair44, S. Fairhurst36, X. Fan82, S. Farinon60, B. Farr91, W. M. Farr59, E. J. Fauchon-Jones36,
M. Favata111, M. Fays36, C. Fee84, H. Fehrmann10, J. Feicht1, M. M. Fejer52, A. Fernandez-Galiana15, I. Ferrante23,24,
E. C. Ferreira16, F. Ferrini30, F. Fidecaro23,24, D. Finstad44, I. Fiori30, D. Fiorucci39, M. Fishbach91, R. P. Fisher44,
M. Fitz-Axen45, R. Flaminio26,112, M. Fletcher46, H. Fong90, J. A. Font85,113, P. W. F. Forsyth25, S. S. Forsyth77,

J.-D. Fournier67, S. Frasca97,35, F. Frasconi24, Z. Frei56, A. Freise59, R. Frey70, V. Frey28, E. M. Fries1, P. Fritschel15,
V. V. Frolov7, P. Fulda5, M. Fyffe7, H. Gabbard46, B. U. Gadre19, S. M. Gaebel59, J. R. Gair114, L. Gammaitoni42,

M. R. Ganija73, S. G. Gaonkar19, C. Garcia-Quiros102, F. Garufi79,4, B. Gateley47, S. Gaudio37, G. Gaur115, V. Gayathri116,
N. Gehrels50,954, G. Gemme60, E. Genin30, A. Gennai24, D. George12, J. George61, L. Gergely117, V. Germain8, S. Ghonge77,

Abhirup Ghosh20, Archisman Ghosh20,14, S. Ghosh66,14,21, J. A. Giaime2,7, K. D. Giardina7, A. Giazotto24, K. Gill37,
L. Glover109, E. Goetz118, R. Goetz5, S. Gomes36, B. Goncharov6, G. González2, J. M. Gonzalez Castro23,24, A. Gopakumar119,
M. L. Gorodetsky62, S. E. Gossan1, M. Gosselin30, R. Gouaty8, A. Grado120,4, C. Graef46, M. Granata26, A. Grant46, S. Gras15,
C. Gray47, G. Greco121,122, A. C. Green59, E. M. Gretarsson37, B. Griswold70, P. Groot66, H. Grote10, S. Grunewald38,

P. Gruning28, G. M. Guidi121,122, X. Guo82, A. Gupta64, M. K. Gupta105, K. E. Gushwa1, E. K. Gustafson1, R. Gustafson118,
O. Halim18,17, B. R. Hall69, E. D. Hall15, E. Z. Hamilton36, G. Hammond46, M. Haney123, M. M. Hanke10, J. Hanks47,

C. Hanna64, M. D. Hannam36, O. A. Hannuksela93, J. Hanson7, T. Hardwick2, J. Harms17,18, G. M. Harry124, I. W. Harry38,
M. J. Hart46, C.-J. Haster90, K. Haughian46, J. Healy58, A. Heidmann71, M. C. Heintze7, H. Heitmann67, P. Hello28,
G. Hemming30, M. Hendry46, I. S. Heng46, J. Hennig46, A. W. Heptonstall1, M. Heurs10,22, S. Hild46, T. Hinderer66,

D. Hoak30, D. Hofman26, K. Holt7, D. E. Holz91, P. Hopkins36, C. Horst21, J. Hough46, E. A. Houston46, E. J. Howell65,
A. Hreibi67, Y. M. Hu10, E. A. Huerta12, D. Huet28, B. Hughey37, S. Husa102, S. H. Huttner46, T. Huynh-Dinh7, N. Indik10,
R. Inta83, G. Intini97,35, H. N. Isa46, J.-M. Isac71, M. Isi1, B. R. Iyer20, K. Izumi47, T. Jacqmin71, K. Jani77, P. Jaranowski125,
S. Jawahar63, F. Jiménez-Forteza102, W. W. Johnson2, D. I. Jones126, R. Jones46, R. J. G. Jonker14, L. Ju65, J. Junker10,
C. V. Kalaghatgi36, V. Kalogera89, B. Kamai1, S. Kandhasamy7, G. Kang40, J. B. Kanner1, S. J. Kapadia21, S. Karki70,

K. S. Karvinen10, M. Kasprzack2, M. Katolik12, E. Katsavounidis15, W. Katzman7, S. Kaufer22, K. Kawabe47, F. Kéfélian67,
D. Keitel46, A. J. Kemball12, R. Kennedy106, C. Kent36, J. S. Key127, F. Y. Khalili62, I. Khan17,33, S. Khan10, Z. Khan105,
E. A. Khazanov128, N. Kijbunchoo25, Chunglee Kim129, J. C. Kim130, K. Kim93, W. Kim73, W. S. Kim131, Y.-M. Kim92,
S. J. Kimbrell77, E. J. King73, P. J. King47, M. Kinley-Hanlon124, R. Kirchhoff10, J. S. Kissel47, L. Kleybolte34, S. Klimenko5,
T. D. Knowles41, P. Koch10, S. M. Koehlenbeck10, S. Koley14, V. Kondrashov1, A. Kontos15, M. Korobko34, W. Z. Korth1,

I. Kowalska74, D. B. Kozak1, C. Krämer10, V. Kringel10, B. Krishnan10, A. Królak132,133, G. Kuehn10, P. Kumar90,
R. Kumar105, S. Kumar20, L. Kuo87, A. Kutynia132, S. Kwang21, B. D. Lackey38, K. H. Lai93, M. Landry47, R. N. Lang134,

J. Lange58, B. Lantz52, R. K. Lanza15, S. L. Larson89, A. Lartaux-Vollard28, P. D. Lasky6, M. Laxen7, A. Lazzarini1,
C. Lazzaro55, P. Leaci97,35, S. Leavey46, C. H. Lee92, H. K. Lee135, H. M. Lee136, H. W. Lee130, K. Lee46, J. Lehmann10,
A. Lenon41, M. Leonardi110,95, N. Leroy28, N. Letendre8, Y. Levin6, T. G. F. Li93, S. D. Linker109, T. B. Littenberg137,

J. Liu65, R. K. L. Lo93, N. A. Lockerbie63, L. T. London36, J. E. Lord44, M. Lorenzini17,18, V. Loriette138, M. Lormand7,
G. Losurdo24, J. D. Lough10, C. O. Lousto58, G. Lovelace29, H. Lück22,10, D. Lumaca32,33, A. P. Lundgren10, R. Lynch15,

Y. Ma48, R. Macas36, S. Macfoy27, B. Machenschalk10, M. MacInnis15, D. M. Macleod36, I. Magaña Hernandez21,
F. Magaña-Sandoval44, L. Magaña Zertuche44, R. M. Magee64, E. Majorana35, I. Maksimovic138, N. Man67, V. Mandic45,
V. Mangano46, G. L. Mansell25, M. Manske21,25, M. Mantovani30, F. Marchesoni53,43, F. Marion8, S. Márka51, Z. Márka51,
C. Markakis12, A. S. Markosyan52, A. Markowitz1, E. Maros1, A. Marquina100, P. Marsh127, F. Martelli121,122, L. Martellini67,

I. W. Martin46, R. M. Martin111, D. V. Martynov15, K. Mason15, E. Massera106, A. Masserot8, T. J. Massinger1,
M. Masso-Reid46, S. Mastrogiovanni97,35, A. Matas45, F. Matichard1,15, L. Matone51, N. Mavalvala15, N. Mazumder69,

R. McCarthy47, D. E. McClelland25, S. McCormick7, L. McCuller15, S. C. McGuire139, G. McIntyre1, J. McIver1,
D. J. McManus25, L. McNeill6, T. McRae25, S. T. McWilliams41, D. Meacher64, G. D. Meadors38,10, M. Mehmet10,

37

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

298 H. A. R. DEVILLEPOIX



J. Meidam14, E. Mejuto-Villa9, A. Melatos96, G. Mendell47, R. A. Mercer21, E. L. Merilh47, M. Merzougui67, S. Meshkov1,
C. Messenger46, C. Messick64, R. Metzdorff71, P. M. Meyers45, H. Miao59, C. Michel26, H. Middleton59, E. E. Mikhailov140,
L. Milano79,4, A. L. Miller5,97,35, B. B. Miller89, J. Miller15, M. Millhouse101, M. C. Milovich-Goff109, O. Minazzoli67,141,
Y. Minenkov33, J. Ming38, C. Mishra142, S. Mitra19, V. P. Mitrofanov62, G. Mitselmakher5, R. Mittleman15, D. Moffa84,
A. Moggi24, K. Mogushi11, M. Mohan30, S. R. P. Mohapatra15, M. Montani121,122, C. J. Moore13, D. Moraru47, G. Moreno47,
S. R. Morriss103, B. Mours8, C. M. Mow-Lowry59, G. Mueller5, A. W. Muir36, Arunava Mukherjee10, D. Mukherjee21,
S. Mukherjee103, N. Mukund19, A. Mullavey7, J. Munch73, E. A. Muñiz44, M. Muratore37, P. G. Murray46, K. Napier77,
I. Nardecchia32,33, L. Naticchioni97,35, R. K. Nayak143, J. Neilson109, G. Nelemans66,14, T. J. N. Nelson7, M. Nery10,

A. Neunzert118, L. Nevin1, J. M. Newport124, G. Newton46,955, K. K. Y. Ng93, P. Nguyen70, T. T. Nguyen25, D. Nichols66,
A. B. Nielsen10, S. Nissanke66,14, A. Nitz10, A. Noack10, F. Nocera30, D. Nolting7, C. North36, L. K. Nuttall36, J. Oberling47,

G. D. O’Dea109, G. H. Ogin144, J. J. Oh131, S. H. Oh131, F. Ohme10, M. A. Okada16, M. Oliver102, P. Oppermann10,
Richard J. Oram7, B. O’Reilly7, R. Ormiston45, L. F. Ortega5, R. O’Shaughnessy58, S. Ossokine38, D. J. Ottaway73,

H. Overmier7, B. J. Owen83, A. E. Pace64, J. Page137, M. A. Page65, A. Pai116,145, S. A. Pai61, J. R. Palamos70, O. Palashov128,
C. Palomba35, A. Pal-Singh34, Howard Pan87, Huang-Wei Pan87, B. Pang48, P. T. H. Pang93, C. Pankow89, F. Pannarale36,

B. C. Pant61, F. Paoletti24, A. Paoli30, M. A. Papa38,21,10, A. Parida19, W. Parker7, D. Pascucci46, A. Pasqualetti30,
R. Passaquieti23,24, D. Passuello24, M. Patil133, B. Patricelli146,24, B. L. Pearlstone46, M. Pedraza1, R. Pedurand26,147,
L. Pekowsky44, A. Pele7, S. Penn148, C. J. Perez47, A. Perreca1,110,95, L. M. Perri89, H. P. Pfeiffer90,38, M. Phelps46,
O. J. Piccinni97,35, M. Pichot67, F. Piergiovanni121,122, V. Pierro9, G. Pillant30, L. Pinard26, I. M. Pinto9, M. Pirello47,

M. Pitkin46, M. Poe21, R. Poggiani23,24, P. Popolizio30, E. K. Porter39, A. Post10, J. Powell46,149, J. Prasad19, J. W. W. Pratt37,
G. Pratten102, V. Predoi36, T. Prestegard21, L. R. Price1, M. Prijatelj10, M. Principe9, S. Privitera38, G. A. Prodi110,95,
L. G. Prokhorov62, O. Puncken10, M. Punturo43, P. Puppo35, M. Pürrer38, H. Qi21, V. Quetschke103, E. A. Quintero1,
R. Quitzow-James70, F. J. Raab47, D. S. Rabeling25, H. Radkins47, P. Raffai56, S. Raja61, C. Rajan61, B. Rajbhandari83,

M. Rakhmanov103, K. E. Ramirez103, A. Ramos-Buades102, P. Rapagnani97,35, V. Raymond38, M. Razzano23,24, J. Read29,
T. Regimbau67, L. Rei60, S. Reid63, D. H. Reitze1,5, W. Ren12, S. D. Reyes44, F. Ricci97,35, P. M. Ricker12, S. Rieger10,
K. Riles118, M. Rizzo58, N. A. Robertson1,46, R. Robie46, F. Robinet28, A. Rocchi33, L. Rolland8, J. G. Rollins1, V. J. Roma70,
R. Romano3,4, C. L. Romel47, J. H. Romie7, D. Rosińska150,57, M. P. Ross151, S. Rowan46, A. Rüdiger10, P. Ruggi30,
G. Rutins27, K. Ryan47, S. Sachdev1, T. Sadecki47, L. Sadeghian21, M. Sakellariadou152, L. Salconi30, M. Saleem116,

F. Salemi10, A. Samajdar143, L. Sammut6, L. M. Sampson89, E. J. Sanchez1, L. E. Sanchez1, N. Sanchis-Gual85, V. Sandberg47,
J. R. Sanders44, B. Sassolas26, B. S. Sathyaprakash64,36, P. R. Saulson44, O. Sauter118, R. L. Savage47, A. Sawadsky34,

P. Schale70, M. Scheel48, J. Scheuer89, J. Schmidt205, P. Schmidt1,66, R. Schnabel34, R. M. S. Schofield70, A. Schönbeck34,
E. Schreiber10, D. Schuette10,22, B. W. Schulte10, B. F. Schutz36,10, S. G. Schwalbe37, J. Scott46, S. M. Scott25, E. Seidel12,

D. Sellers7, A. S. Sengupta153, D. Sentenac30, V. Sequino32,33,17, A. Sergeev128, D. A. Shaddock25, T. J. Shaffer47,
A. A. Shah137, M. S. Shahriar89, M. B. Shaner109, L. Shao38, B. Shapiro52, P. Shawhan76, A. Sheperd21, D. H. Shoemaker15,
D. M. Shoemaker77, K. Siellez77, X. Siemens21, M. Sieniawska57, D. Sigg47, A. D. Silva16, L. P. Singer50, A. Singh38,10,22,
A. Singhal17,35, A. M. Sintes102, B. J. J. Slagmolen25, B. Smith7, J. R. Smith29, R. J. E. Smith1,6, S. Somala154, E. J. Son131,
J. A. Sonnenberg21, B. Sorazu46, F. Sorrentino60, T. Souradeep19, A. P. Spencer46, A. K. Srivastava105, K. Staats37, A. Staley51,
M. Steinke10, J. Steinlechner34,46, S. Steinlechner34, D. Steinmeyer10, S. P. Stevenson59,149, R. Stone103, D. J. Stops59,

K. A. Strain46, G. Stratta121,122, S. E. Strigin62, A. Strunk47, R. Sturani155, A. L. Stuver7, T. Z. Summerscales156, L. Sun96,
S. Sunil105, J. Suresh19, P. J. Sutton36, B. L. Swinkels30, M. J. Szczepańczyk37, M. Tacca14, S. C. Tait46, C. Talbot6,

D. Talukder70, D. B. Tanner5, M. Tápai117, A. Taracchini38, J. D. Tasson72, J. A. Taylor137, R. Taylor1, S. V. Tewari148,
T. Theeg10, F. Thies10, E. G. Thomas59, M. Thomas7, P. Thomas47, K. A. Thorne7, K. S. Thorne48, E. Thrane6, S. Tiwari17,95,
V. Tiwari36, K. V. Tokmakov63, K. Toland46, M. Tonelli23,24, Z. Tornasi46, A. Torres-Forné85, C. I. Torrie1, D. Töyrä59,

F. Travasso30,43, G. Traylor7, J. Trinastic5, M. C. Tringali110,95, L. Trozzo157,24, K. W. Tsang14, M. Tse15, R. Tso1,
L. Tsukada81, D. Tsuna81, D. Tuyenbayev103, K. Ueno21, D. Ugolini158, C. S. Unnikrishnan119, A. L. Urban1, S. A. Usman36,

H. Vahlbruch22, G. Vajente1, G. Valdes2, N. van Bakel14, M. van Beuzekom14, J. F. J. van den Brand75,14,
C. Van Den Broeck14, D. C. Vander-Hyde44, L. van der Schaaf14, J. V. van Heijningen14, A. A. van Veggel46, M. Vardaro54,55,

V. Varma48, S. Vass1, M. Vasúth49, A. Vecchio59, G. Vedovato55, J. Veitch46, P. J. Veitch73, K. Venkateswara151,
G. Venugopalan1, D. Verkindt8, F. Vetrano121,122, A. Viceré121,122, A. D. Viets21, S. Vinciguerra59, D. J. Vine27, J.-Y. Vinet67,
S. Vitale15, T. Vo44, H. Vocca42,43, C. Vorvick47, S. P. Vyatchanin62, A. R. Wade1, L. E. Wade84, M. Wade84, R. Walet14,
M. Walker29, L. Wallace1, S. Walsh38,10,21, G. Wang17,122, H. Wang59, J. Z. Wang64, W. H. Wang103, Y. F. Wang93,

R. L. Ward25, J. Warner47, M. Was8, J. Watchi98, B. Weaver47, L.-W. Wei10,22, M. Weinert10, A. J. Weinstein1, R. Weiss15,
L. Wen65, E. K. Wessel12, P. Wessels10, J. Westerweck10, T. Westphal10, K. Wette25, J. T. Whelan58, S. E. Whitcomb1,
B. F. Whiting5, C. Whittle6, D. Wilken10, D. Williams46, R. D. Williams1, A. R. Williamson66, J. L. Willis1,159, B. Willke22,10,
M. H. Wimmer10, W. Winkler10, C. C. Wipf1, H. Wittel10,22, G. Woan46, J. Woehler10, J. Wofford58, K. W. K. Wong93,
J. Worden47, J. L. Wright46, D. S. Wu10, D. M. Wysocki58, S. Xiao1, H. Yamamoto1, C. C. Yancey76, L. Yang160, M. J. Yap25,

38

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 299



M. Yazback5, Hang Yu15, Haocun Yu15, M. Yvert8, A. Zadrożny132, M. Zanolin37, T. Zelenova30, J.-P. Zendri55, M. Zevin89,
L. Zhang1, M. Zhang140, T. Zhang46, Y.-H. Zhang58, C. Zhao65, M. Zhou89, Z. Zhou89, S. J. Zhu38,10, X. J. Zhu6,

A. B. Zimmerman90, M. E. Zucker1,15, J. Zweizig1,
(LIGO Scientific Collaboration and Virgo Collaboration),

C. A. Wilson-Hodge137, E. Bissaldi161,162, L. Blackburn163,15, M. S. Briggs164, E. Burns50, W. H. Cleveland165,
V. Connaughton165, M. H. Gibby166, M. M Giles166, A. Goldstein165, R. Hamburg164, P. Jenke164, C. M. Hui137,

R. M. Kippen167, D. Kocevski137, S. McBreen168, C. A. Meegan164, W. S. Paciesas165, S. Poolakkil164, R. D. Preece164,
J. Racusin50, O. J. Roberts165, M. Stanbro164, P. Veres164, A. von Kienlin169,

(Fermi GBM),
V. Savchenko170, C. Ferrigno170, E. Kuulkers171, A. Bazzano172, E. Bozzo170, S. Brandt173, J. Chenevez173, T. J.-L. Courvoisier170,

R. Diehl169, A. Domingo174, L. Hanlon168, E. Jourdain175, P. Laurent176,177, F. Lebrun176, A. Lutovinov178,179,
A. Martin-Carrillo168, S. Mereghetti180, L. Natalucci172, J. Rodi172, J.-P. Roques175, R. Sunyaev178,181, P. Ubertini172,

(INTEGRAL),
M. G. Aartsen182, M. Ackermann183, J. Adams184, J. A. Aguilar185, M. Ahlers186, M. Ahrens187, I. Al Samarai188,

D. Altmann189, K. Andeen190, T. Anderson191, I. Ansseau185, G. Anton189, C. Argüelles192, J. Auffenberg193, S. Axani192,
H. Bagherpour184, X. Bai194, J. P. Barron195, S. W. Barwick196, V. Baum197, R. Bay198, J. J. Beatty199,200, J. Becker Tjus201,
E. Bernardini183, D. Z. Besson202, G. Binder198,203, D. Bindig204, E. Blaufuss205, S. Blot183, C. Bohm187, M. Börner206,
F. Bos201, D. Bose207, S. Böser197, O. Botner208, E. Bourbeau186, J. Bourbeau209, F. Bradascio183, J. Braun210, L. Brayeur210,
M. Brenzke193, H.-P. Bretz183, S. Bron188, J. Brostean-Kaiser183, A. Burgman208, T. Carver188, J. Casey209, M. Casier210,
E. Cheung205, D. Chirkin209, A. Christov188, K. Clark211, L. Classen212, S. Coenders213, G. H. Collin192, J. M. Conrad192,
D. F. Cowen191,214, R. Cross202, M. Day209, J. P. A. M. de André216, C. De Clercq210, J. J. DeLaunay191, H. Dembinski217,
S. De Ridder218, P. Desiati209, K. D. de Vries210, G. de Wasseige210, M. de With219, T. DeYoung216, J. C. Díaz-Vélez209,

V. di Lorenzo197, H. Dujmovic207, J. P. Dumm187, M. Dunkman191, E. Dvorak194, B. Eberhardt197, T. Ehrhardt197,
B. Eichmann201, P. Eller191, P. A. Evenson217, S. Fahey209, A. R. Fazely220, J. Felde205, K. Filimonov198, C. Finley187,

S. Flis187, A. Franckowiak183, E. Friedman205, T. Fuchs206, T. K. Gaisser217, J. Gallagher221, L. Gerhardt205, K. Ghorbani209,
W. Giang195, T. Glauch193, T. Glüsenkamp189, A. Goldschmidt205, J. G. Gonzalez217, D. Grant195, Z. Griffith209, C. Haack193,
A. Hallgren208, F. Halzen209, K. Hanson209, D. Hebecker219, D. Heereman185, K. Helbing204, R. Hellauer205, S. Hickford204,
J. Hignight216, G. C. Hill182, K. D. Hoffman205, R. Hoffmann204, B. Hokanson-Fasig209, K. Hoshina209,222, F. Huang191,
M. Huber213, K. Hultqvist187, M. Hünnefeld206, S. In207, A. Ishihara223, E. Jacobi183, G. S. Japaridze224, M. Jeong207,
K. Jero209, B. J. P. Jones225, P. Kalaczynski193, W. Kang207, A. Kappes212, T. Karg183, A. Karle209, M. Kauer209,

A. Keivani191, J. L. Kelley209, A. Kheirandish209, J. Kim207, M. Kim223, T. Kintscher183, J. Kiryluk226, T. Kittler189,
S. R. Klein205,198, G. Kohnen227, R. Koirala217, H. Kolanoski219, L. Köpke197, C. Kopper195, S. Kopper228, J. P. Koschinsky193,
D. J. Koskinen186, M. Kowalski219,183, K. Krings213, M. Kroll201, G. Krückl197, J. Kunnen210, S. Kunwar183, N. Kurahashi229,
T. Kuwabara223, A. Kyriacou182, M. Labare218, J. L. Lanfranchi191, M. J. Larson186, F. Lauber204, M. Lesiak-Bzdak226,

M. Leuermann193, Q. R. Liu209, L. Lu223, J. Lünemann210, W. Luszczak209, J. Madsen230, G. Maggi210, K. B. M. Mahn216,
S. Mancina209, R. Maruyama231, K. Mase223, R. Maunu205, F. McNally209, K. Meagher185, M. Medici186, M. Meier206,

T. Menne206, G. Merino209, T. Meures185, S. Miarecki205,198, J. Micallef216, G. Momenté197, T. Montaruli188, R. W. Moore195,
M. Moulai192, R. Nahnhauer183, P. Nakarmi228, U. Naumann204, G. Neer216, H. Niederhausen226, S. C. Nowicki195,
D. R. Nygren203, A. Obertacke Pollmann204, A. Olivas205, A. O’Murchadha185, T. Palczewski203,198, H. Pandya217,
D. V. Pankova191, P. Peiffer197, J. A. Pepper228, C. Pérez de los Heros208, D. Pieloth206, E. Pinat185, P. B. Price198,

G. T. Przybylski203, C. Raab185, L. Rädel193, M. Rameez186, K. Rawlins232, I. C. Rea213, R. Reimann193, B. Relethford229,
M. Relich223, E. Resconi213, W. Rhode206, M. Richman229, S. Robertson182, M. Rongen193, C. Rott207, T. Ruhe206,

D. Ryckbosch218, D. Rysewyk216, T. Sälzer193, S. E. Sanchez Herrera195, A. Sandrock206, J. Sandroos197, M. Santander228,
S. Sarkar186,233, S. Sarkar195, K. Satalecka183, P. Schlunder206, T. Schmidt203, A. Schneider209, S. Schoenen193,
S. Schöneberg201, L. Schumacher193, D. Seckel217, S. Seunarine230, J. Soedingrekso206, D. Soldin204, M. Song205,

G. M. Spiczak230, C. Spiering183, J. Stachurska183, M. Stamatikos199, T. Stanev217, A. Stasik183, J. Stettner193, A. Steuer197,
T. Stezelberger203, R. G. Stokstad203, A. Stössl223, N. L. Strotjohann183, T. Stuttard186, G. W. Sullivan205, M. Sutherland199,
I. Taboada234, J. Tatar203,198, F. Tenholt201, S. Ter-Antonyan220, A. Terliuk183, G. Tešić191, S. Tilav217, P. A. Toale228,
M. N. Tobin209, S. Toscano210, D. Tosi209, M. Tselengidou189, C. F. Tung234, A. Turcati213, C. F. Turley191, B. Ty209,

E. Unger208, M. Usner183, J. Vandenbroucke209, W. Van Driessche218, N. van Eijndhoven210, S. Vanheule218, J. van Santen183,
M. Vehring193, E. Vogel193, M. Vraeghe218, C. Walck187, A. Wallace182, M. Wallraff193, F. D. Wandler195,

N. Wandkowsky209, A. Waza193, C. Weaver195, M. J. Weiss191, C. Wendt209, J. Werthebach206, B. J. Whelan182, K. Wiebe197,
C. H. Wiebusch193, L. Wille209, D. R. Williams228, L. Wills229, M. Wolf209, T. R. Wood195, E. Woolsey195, K. Woschnagg198,

D. L. Xu209, X. W. Xu220, Y. Xu226, J. P. Yanez195, G. Yodh196, S. Yoshida223, T. Yuan209, M. Zoll187,
(IceCube Collaboration),

39

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

300 H. A. R. DEVILLEPOIX



A. Balasubramanian235,236, S. Mate236, V. Bhalerao236, D. Bhattacharya19, A. Vibhute19, G. C. Dewangan19, A. R. Rao119,
S. V. Vadawale237,

(AstroSat Cadmium Zinc Telluride Imager Team),
D. S. Svinkin238, K. Hurley239, R. L. Aptekar238, D. D. Frederiks238, S. V. Golenetskii238, A. V. Kozlova238, A. L. Lysenko238,

Ph. P. Oleynik238, A. E. Tsvetkova238, M. V. Ulanov238, T. Cline240,
(IPN Collaboration),

T. P. Li241,82,242, S. L. Xiong241, S. N. Zhang241,242, F. J. Lu241, L. M. Song241, X. L. Cao241, Z. Chang241, G. Chen241,
L. Chen243, T. X. Chen241, Y. Chen241, Y. B. Chen82, Y. P. Chen241, W. Cui241,82, W. W. Cui241, J. K. Deng82,

Y. W. Dong241, Y. Y. Du241, M. X. Fu82, G. H. Gao241,242, H. Gao241,242, M. Gao241, M. Y. Ge241, Y. D. Gu241, J. Guan241,
C. C. Guo241,242, D. W. Han241, W. Hu241, Y. Huang241, J. Huo241, S. M. Jia241, L. H. Jiang241, W. C. Jiang241, J. Jin241,
Y. J. Jin82, B. Li241, C. K. Li241, G. Li241, M. S. Li241, W. Li241, X. Li241, X. B. Li241, X. F. Li241, Y. G. Li241, Z. J. Li241,242,
Z. W. Li241, X. H. Liang241, J. Y. Liao241, C. Z. Liu241, G. Q. Liu82, H. W. Liu241, S. Z. Liu241, X. J. Liu241, Y. Liu241,
Y. N. Liu82, B. Lu241, X. F. Lu241, T. Luo241, X. Ma241, B. Meng241, Y. Nang241,242, J. Y. Nie241, G. Ou241, J. L. Qu241,
N. Sai241,242, L. Sun241, Y. Tan241, L. Tao241, W. H. Tao241, Y. L. Tuo241,242, G. F. Wang241, H. Y. Wang241, J. Wang241,

W. S. Wang241, Y. S. Wang241, X. Y. Wen241, B. B. Wu241, M. Wu241, G. C. Xiao241,242, H. Xu241, Y. P. Xu241,
L. L. Yan241,242, J. W. Yang241, S. Yang241, Y. J. Yang241, A. M. Zhang241, C. L. Zhang241, C. M. Zhang241, F. Zhang241,
H. M. Zhang241, J. Zhang241, Q. Zhang241, S. Zhang241, T. Zhang241, W. Zhang241,242, W. C. Zhang241, W. Z. Zhang243,
Y. Zhang241, Y. Zhang241,242, Y. F. Zhang241, Y. J. Zhang241, Z. Zhang82, Z. L. Zhang241, H. S. Zhao241, J. L. Zhao241,

X. F. Zhao241,242, S. J. Zheng241, Y. Zhu241, Y. X. Zhu241, C. L. Zou241,
(The Insight-HXMT Collaboration),

A. Albert244, M. André245, M. Anghinolfi246,247, M. Ardid247, J.-J. Aubert248, J. Aublin249, T. Avgitas249, B. Baret249,
J. Barrios-Martí250, S. Basa251, B. Belhorma252, V. Bertin248, S. Biagi253, R. Bormuth14,254, S. Bourret249, M. C. Bouwhuis14,
H. Brânzaş255, R. Bruijn14,256, J. Brunner248, J. Busto248, A. Capone257,258, L. Caramete255, J. Carr248, S. Celli257,258,259,

R. Cherkaoui El Moursli260, T. Chiarusi261, M. Circella262, J. A. B. Coelho249, A. Coleiro249,250, R. Coniglione253,
H. Costantini248, P. Coyle248, A. Creusot249, A. F. Díaz263, A. Deschamps264, G. De Bonis258, C. Distefano253,

I. Di Palma257,258, A. Domi246,265, C. Donzaud249,266, D. Dornic248, D. Drouhin244, T. Eberl189,260,267, I. El Bojaddaini267,
N. El Khayati260, D. Elsässer268, A. Enzenhöfer248, A. Ettahiri260, F. Fassi260, I. Felis247, L. A. Fusco261,269, P. Gay270,249,

V. Giordano271, H. Glotin272,273, T. Grégoire249, R. Gracia Ruiz249, K. Graf189, S. Hallmann189, H. van Haren274,
A. J. Heijboer14, Y. Hello264, J. J. Hernández-Rey250, J. Hössl189, J. Hofestädt189, C. Hugon246,265, G. Illuminati250,

C. W. James189, M. de Jong14,254, M. Jongen14, M. Kadler268, O. Kalekin189, U. Katz189, D. Kiessling189, A. Kouchner249,273,
M. Kreter268, I. Kreykenbohm275, V. Kulikovskiy248,276, C. Lachaud249, R. Lahmann189, D. Lefèvre277, E. Leonora271,278,

M. Lotze250, S. Loucatos279,249, M. Marcelin251, A. Margiotta261,269, A. Marinelli280,281, J. A. Martínez-Mora247,
R. Mele282,283, K. Melis14,256, T. Michael14, P. Migliozzi282, A. Moussa267, S. Navas284, E. Nezri251, M. Organokov285,
G. E. Păvălaş255, C. Pellegrino261,269, C. Perrina257,258, P. Piattelli253, V. Popa255, T. Pradier285, L. Quinn248, C. Racca244,

G. Riccobene253, A. Sánchez-Losa262, M. Saldaña247, I. Salvadori248, D. F. E. Samtleben14,254, M. Sanguineti246,265,
P. Sapienza253, C. Sieger189, M. Spurio261,269, Th. Stolarczyk279, M. Taiuti246,265, Y. Tayalati260, A. Trovato253, D. Turpin248,
C. Tönnis250, B. Vallage279,249, V. Van Elewyck249,273, F. Versari261,269, D. Vivolo282,283, A. Vizzoca257,258, J. Wilms275,

J. D. Zornoza250, J. Zúñiga250,
(ANTARES Collaboration),

A. P. Beardmore286, A. A. Breeveld287, D. N. Burrows288, S. B. Cenko289,290, G. Cusumano291, A. D’Aì291, M. de Pasquale292,
S. W. K. Emery287, P. A. Evans286, P. Giommi293, C. Gronwall288,294, J. A. Kennea288, H. A. Krimm295,296, N. P. M. Kuin287,
A. Lien297,298, F. E. Marshall287, A. Melandri299, J. A. Nousek288, S. R. Oates300, J. P. Osborne286, C. Pagani286, K. L. Page286,

D. M. Palmer301, M. Perri302,293, M. H. Siegel288, B. Sbarufatti288, G. Tagliaferri299, A. Tohuvavohu288,303,
(The Swift Collaboration),

M. Tavani304,305,306, F. Verrecchia307,308, A. Bulgarelli309, Y. Evangelista304, L. Pacciani304, M. Feroci304, C. Pittori307,308,
A. Giuliani310, E. Del Monte304, I. Donnarumma311, A. Argan304, A. Trois312, A. Ursi304, M. Cardillo304, G. Piano304,
F. Longo313, F. Lucarelli307,308, P. Munar-Adrover314, F. Fuschino309, C. Labanti309, M. Marisaldi315, G. Minervini304,
V. Fioretti309, N. Parmiggiani309, F. Gianotti309, M. Trifoglio309, G. Di Persio304, L. A. Antonelli311, G. Barbiellini313,

P. Caraveo310, P. W. Cattaneo316, E. Costa304, S. Colafrancesco317, F. D’Amico311, A. Ferrari318, A. Morselli319, F. Paoletti320,
P. Picozza319, M. Pilia312, A. Rappoldi316, P. Soffitta304, S. Vercellone321,

(AGILE Team),
R. J. Foley322, D. A. Coulter322, C. D. Kilpatrick322, M. R. Drout323, A. L. Piro323, B. J. Shappee323,324, M. R. Siebert322,
J. D. Simon323, N. Ulloa325, D. Kasen326,327, B. F. Madore323, A. Murguia-Berthier322, Y.-C. Pan322, J. X. Prochaska322,

E. Ramirez-Ruiz322,328, A. Rest329,330, C. Rojas-Bravo322,
(The 1M2H Team),

40

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 301



E. Berger163, M. Soares-Santos331,332, J. Annis332, K. D. Alexander163, S. Allam332, E. Balbinot333, P. Blanchard163,
D. Brout334, R. E. Butler335,332, R. Chornock336, E. R. Cook337,338, P. Cowperthwaite163, H. T. Diehl332, A. Drlica-Wagner332,

M. R. Drout339, F. Durret340, T. Eftekhari163, D. A. Finley332, W. Fong341, J. A. Frieman332, C. L. Fryer342,
J. García-Bellido343, R. A. Gruendl344, W. Hartley345,346, K. Herner332, R. Kessler347, H. Lin332, P. A. A. Lopes348,

A. C. C. Lourenço348, R. Margutti349, J. L. Marshall337, T. Matheson350, G. E. Medina351, B. D. Metzger352, R. R. Muñoz351,
J. Muir353, M. Nicholl163, P. Nugent354, A. Palmese345, F. Paz-Chinchón344, E. Quataert355, M. Sako334, M. Sauseda337,
D. J. Schlegel356, D. Scolnic347, L. F. Secco334, N. Smith357, F. Sobreira358,359, V. A. Villar163, A. K. Vivas360, W. Wester332,

P. K. G. Williams163, B. Yanny332, A. Zenteno360, Y. Zhang332, T. M. C. Abbott360, M. Banerji361,362, K. Bechtol338,
A. Benoit-Lévy363,345,364, E. Bertin363,364, D. Brooks345, E. Buckley-Geer332, D. L. Burke365,366, D. Capozzi367,

A. Carnero Rosell359,368, M. Carrasco Kind369,344, F. J. Castander370, M. Crocce370, C. E. Cunha365, C. B. D’Andrea334,
L. N. da Costa359,368, C. Davis365, D. L. DePoy371, S. Desai372, J. P. Dietrich373,374, T. F. Eifler375,376, E. Fernandez377,
B. Flaugher332, P. Fosalba370, E. Gaztanaga370, D. W. Gerdes378,379, T. Giannantonio361,362,380, D. A. Goldstein381,354,

D. Gruen365,366, J. Gschwend359,368, G. Gutierrez332, K. Honscheid382,383, D. J. James384, T. Jeltema385, M. W. G. Johnson344,
M. D. Johnson344, S. Kent332,347, E. Krause365, R. Kron332,347, K. Kuehn386, O. Lahav345, M. Lima387,359,

M. A. G. Maia359,368, M. March334, P. Martini382,388, R. G. McMahon361,362, F. Menanteau369,344, C. J. Miller378,379,
R. Miquel389,377, J. J. Mohr373,374,390, R. C. Nichol367, R. L. C. Ogando359,368, A. A. Plazas376, A. K. Romer391,

A. Roodman365,366, E. S. Rykoff365,366, E. Sanchez392, V. Scarpine332, R. Schindler366, M. Schubnell379, I. Sevilla-Noarbe392,
E. Sheldon393, M. Smith394, R. C. Smith360, A. Stebbins332, E. Suchyta395, M. E. C. Swanson344, G. Tarle379, R. C. Thomas354,

M. A. Troxel382,383, D. L. Tucker332, V. Vikram396, A. R. Walker360, R. H. Wechsler397,365,366, J. Weller373,390,380,
J. L. Carlin338, M. S. S. Gill366, T. S. Li332, J. Marriner332, E. Neilsen332,

(The Dark Energy Camera GW-EM Collaboration and the DES Collaboration),
J. B. Haislip398, V. V. Kouprianov398, D. E. Reichart398, D. J. Sand399, L. Tartaglia399,400, S. Valenti400, S. Yang400,401,402,

(The DLT40 Collaboration),
S. Benetti403, E. Brocato404, S. Campana405, E. Cappellaro403, S. Covino405, P. D’Avanzo405, V. D’Elia404,406, F. Getman407,
G. Ghirlanda405, G. Ghisellini405, L. Limatola407, L. Nicastro408, E. Palazzi408, E. Pian408, S. Piranomonte404, A. Possenti312,
A. Rossi408, O. S. Salafia409,405, L. Tomasella403, L. Amati408, L. A. Antonelli404, M. G. Bernardini410,405, F. Bufano411,

M. Capaccioli407,412, P. Casella404, M. Dadina408, G. De Cesare408, A. Di Paola404, G. Giuffrida404, A. Giunta404,
G. L. Israel404, M. Lisi404, E. Maiorano408, M. Mapelli403,413, N. Masetti408,414, A. Pescalli415,405, L. Pulone404,

R. Salvaterra416, P. Schipani407, M. Spera403, A. Stamerra146,417, L. Stella404, V. Testa404, M. Turatto403, D. Vergani408,
G. Aresu312, M. Bachetti312, F. Buffa312, M. Burgay312, M. Buttu312, T. Caria312, E. Carretti312, V. Casasola418,

P. Castangia312, G. Carboni312, S. Casu312, R. Concu312, A. Corongiu312, G. L. Deiana312, E. Egron312, A. Fara312,
F. Gaudiomonte312, V. Gusai312, A. Ladu312, S. Loru312, S. Leurini312, L. Marongiu312, A. Melis312, G. Melis312,
Carlo Migoni312, Sabrina Milia312, Alessandro Navarrini312, A. Orlati312, P. Ortu312, S. Palmas312, A. Pellizzoni312,

D. Perrodin312, T. Pisanu312, S. Poppi312, S. Righini419, A. Saba312, G. Serra312, M. Serrau312, M. Stagni419, G. Surcis312,
V. Vacca312, G. P. Vargiu312, L. K. Hunt418, Z. P. Jin420, S. Klose421, C. Kouveliotou422,423, P. A. Mazzali424,425, P. Møller426,

L. Nava405,427, T. Piran428, J. Selsing328, S. D. Vergani429,405, K. Wiersema430, K. Toma431,432, A. B. Higgins430,
C. G. Mundell433, S. di Serego Alighieri418, D. Gótz434, W. Gao435, A. Gomboc436, L. Kaper437, S. Kobayashi438, D. Kopac439,

J. Mao440, R. L. C. Starling430, I. Steele441, A. J. van der Horst442,423,
(GRAWITA: GRAvitational Wave Inaf TeAm),

F. Acero443, W. B. Atwood444, L. Baldini445, G. Barbiellini446,447, D. Bastieri448,449, B. Berenji450, R. Bellazzini451,
E. Bissaldi452,453, R. D. Blandford454, E. D. Bloom454, R. Bonino455,456, E. Bottacini454, J. Bregeon457, R. Buehler469,
S. Buson50, R. A. Cameron454, R. Caputo459, P. A. Caraveo180, E. Cavazzuti460, A. Chekhtman461, C. C. Cheung462,

J. Chiang454, S. Ciprini462,463, J. Cohen-Tanugi457, L. R. Cominsky465, D. Costantin449, A. Cuoco466,455,
F. D’Ammando466,467, F. de Palma453,468, S. W. Digel454, N. Di Lalla445, M. Di Mauro454, L. Di Venere452,453, R. Dubois454,

S. J. Fegan458, W. B. Focke454, A. Franckowiak458, Y. Fukazawa471, S. Funk189, P. Fusco452,453, F. Gargano453,
D. Gasparrini462,464, N. Giglietto452,453, F. Giordano452,453, M. Giroletti466, T. Glanzman454, D. Green472,50, M.-H. Grondin473,

L. Guillemot474,475, S. Guiriec50,422, A. K. Harding50, D. Horan458, G. Jóhannesson476,477, T. Kamae478, S. Kensei471,
M. Kuss451, G. La Mura449, L. Latronico455, M. Lemoine-Goumard473, F. Longo446,447, F. Loparco452,453, M. N. Lovellette462,
P. Lubrano463, J. D. Magill472, S. Maldera455, A. Manfreda445, M. N. Mazziotta453, J. E. McEnery50,472, M. Meyer454,

P. F. Michelson454, N. Mirabal50, M. E. Monzani454, E. Moretti481, A. Morselli479, I. V. Moskalenko454, M. Negro455,456,
E. Nuss457, R. Ojha50, N. Omodei454, M. Orienti467, E. Orlando454, M. Palatiello446,446, V. S. Paliya480, D. Paneque481,

M. Pesce-Rollins451, F. Piron457, T. A. Porter454, G. Principe189, S. Rainò452,453, R. Rando448,449, M. Razzano451,
S. Razzaque482, A. Reimer483,454, O. Reimer483,454, T. Reposeur473, L. S. Rochester454, P. M. Saz Parkinson444,484,485,

C. Sgrò451, E. J. Siskind486, F. Spada451, G. Spandre451, D. J. Suson487, M. Takahashi481, Y. Tanaka488, J. G. Thayer454,
J. B. Thayer454, D. J. Thompson50, L. Tibaldo489,490, D. F. Torres491,492, E. Torresi493, E. Troja50,472, T. M. Venters50,

41

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

302 H. A. R. DEVILLEPOIX



G. Vianello454, G. Zaharijas446,447,494,
(The Fermi Large Area Telescope Collaboration),

J. R. Allison495,496, K. W. Bannister497, D. Dobie495,497,498, D. L. Kaplan499, E. Lenc495,498, C. Lynch495,498, T. Murphy495,498,
E. M. Sadler495,498,

(ATCA: Australia Telescope Compact Array),
A. Hotan500, C. W. James501, S. Oslowski502, W. Raja497, R. M. Shannon497,501, M. Whiting497,

(ASKAP: Australian SKA Pathfinder),
I. Arcavi503,504, D. A. Howell503,504, C. McCully503,504, G. Hosseinzadeh503,504, D. Hiramatsu503,504, D. Poznanski505,

J. Barnes506, M. Zaltzman505, S. Vasylyev503,504, D. Maoz505,
(Las Cumbres Observatory Group),

J. Cooke507,508,509, M. Bailes507,508, C. Wolf510,509,508, A. T. Deller507,508,509, C. Lidman511,509, L. Wang512,513,514,
B. Gendre515, I. Andreoni507,508,511,509, K. Ackley516, T. A. Pritchard507, M. S. Bessell510, S.-W. Chang510,509,

A. Möller510,509, C. A. Onken510,509, R. A. Scalzo510,509,517, R. Ridden-Harper510, R. G. Sharp510,509, B. E. Tucker510,509,
T. J. Farrell511, E. Elmer518, S. Johnston519,509, V. Venkatraman Krishnan507,509, E. F. Keane520,509, J. A. Green519,

A. Jameson507,509, L. Hu513,514, B. Ma521,514, T. Sun513,514, X. Wu513,514, X. Wang522, Z. Shang521,523,514, Y. Hu521,514,
M. C. B. Ashley524, X. Yuan525,514, X. Li525,514, C. Tao522, Z. Zhu526, H. Zhang527, N. B. Suntzeff512, J. Zhou527, J. Yang513,
B. Orange528, D. Morris515, A. Cucchiara515, T. Giblin529, A. Klotz530, J. Staff515, P. Thierry531, B. P. Schmidt532,509,

(OzGrav, DWF (Deeper, Wider, Faster program), AST3, and CAASTRO Collaborations),
N. R. Tanvir533, A. J. Levan300, Z. Cano52,534, A. de Ugarte-Postigo527,534, C. González-Fernández535, J. Greiner536,
J. Hjorth328, M. Irwin535, T. Krühler536, I. Mandel537, B. Milvang-Jensen328, P. O’Brien533, E. Rol538, S. Rosetti533,

S. Rosswog539, A. Rowlinson540,541, D. T. H. Steeghs300, C. C. Thöne534, K. Ulaczyk300, D. Watson328, S. H. Bruun328,
R. Cutter300, R. Figuera Jaimes542, Y. I. Fujii543,544, A. S. Fruchter545, B. Gompertz300, P. Jakobsson546, G. Hodosan534,
U. G. Jèrgensen543, T. Kangas545, D. A. Kann534, M. Rabus547,548, S. L. Schrøder328, E. R. Stanway300, R. A. M. J. Wijers540,

(The VINROUGE Collaboration),
V. M. Lipunov549,550, E. S. Gorbovskoy550, V. G. Kornilov549,550, N. V. Tyurina550, P. V. Balanutsa550, A. S. Kuznetsov550,
D. M. Vlasenko549,550, R. C. Podesta551, C. Lopez551, F. Podesta551, H. O. Levato552, C. Saffe552, C. C. Mallamaci553,

N. M. Budnev554, O. A. Gress554,550, D. A. Kuvshinov549,550, I. A. Gorbunov549,550, V. V. Vladimirov550,
D. S. Zimnukhov549,550, A. V. Gabovich555, V. V. Yurkov555, Yu. P. Sergienko555, R. Rebolo556, M. Serra-Ricart556,

A. G. Tlatov557, Yu. V. Ishmuhametova554,
(MASTER Collaboration),

F. Abe558, K. Aoki559, W. Aoki560, Y. Asakura558,956, S. Baar561, S. Barway562, I. A. Bond563, M. Doi564, F. Finet559,
T. Fujiyoshi559, H. Furusawa560, S. Honda561, R. Itoh565, N. Kanda566, K. S. Kawabata567, M. Kawabata568, J. H. Kim559,

S. Koshida559, D. Kuroda569, C.-H. Lee559, W. Liu567,570, K. Matsubayashi569, S. Miyazaki571, K. Morihana572,
T. Morokuma564, K. Motohara564, K. L. Murata565, H. Nagai560, H. Nagashima568, T. Nagayama573, T. Nakaoka568,

F. Nakata559, R. Ohsawa564, T. Ohshima561, K. Ohta574, H. Okita559, T. Saito561, Y. Saito565, S. Sako564,575, Y. Sekiguchi576,
T. Sumi571, A. Tajitsu559, J. Takahashi561, M. Takayama561, Y. Tamura572, I. Tanaka559, M. Tanaka560,

T. Terai559, N. Tominaga577,578, P. J. Tristram579, M. Uemura567, Y. Utsumi567, M. S. Yamaguchi564, N. Yasuda578,
M. Yoshida559, T. Zenko574,

(J-GEM),
S. M. Adams580, G. C. Anupama581, J. Bally582, S. Barway583, E. Bellm584, N. Blagorodnova580, C. Cannella580,
P. Chandra585, D. Chatterjee586, T. E. Clarke587, B. E. Cobb588, D. O. Cook580, C. Copperwheat441, K. De580,

S. W. K. Emery589, U. Feindt591, K. Foster580, O. D. Fox592, D. A. Frail593, C. Fremling580, C. Frohmaier594,595,
J. A. Garcia580, S. Ghosh586, S. Giacintucci587, A. Goobar591, O. Gottlieb596, B. W. Grefenstette580, G. Hallinan580,
F. Harrison580, M. Heida580, G. Helou597, A. Y. Q. Ho580, A. Horesh598, K. Hotokezaka599, W.-H. Ip600, R. Itoh601,
Bob Jacobs66, J. E. Jencson580, D. Kasen602,603, M. M. Kasliwal580, N. E. Kassim587, H. Kim604, B. S. Kiran581,

N. P. M. Kuin589, S. R. Kulkarni580, T. Kupfer580, R. M. Lau580, K. Madsen580, P. A. Mazzali441,605, A. A. Miller606,607,
H Miyasaka580, K. Mooley608, S. T. Myers593, E. Nakar596, C.-C. Ngeow600, P. Nugent602,354, E. O. Ofek609,

N. Palliyaguru610, M. Pavana581, D. A. Perley611, W. M. Peters587, S. Pike580, T. Piran598, H. Qi586, R. M. Quimby612,613,
J. Rana19, S. Rosswog614, F. Rusu615, E. M. Sadler495,616, A. Van Sistine586, J. Sollerman614, Y. Xu580, L. Yan580,597,

Y. Yatsu601, P.-C. Yu600, C. Zhang586, W. Zhao615,
(GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations),

K. C. Chambers617, M. E. Huber617, A. S. B. Schultz617, J. Bulger617, H. Flewelling617, E. A. Magnier617, T. B. Lowe617,
R. J. Wainscoat617, C. Waters617, M. Willman617,

(Pan-STARRS),

42

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 303



K. Ebisawa618, C. Hanyu619, S. Harita620, T. Hashimoto621, K. Hidaka619, T. Hori622, M. Ishikawa623, N. Isobe618,
W. Iwakiri624, H. Kawai625, N. Kawai620,624, T. Kawamuro626, T. Kawase627, Y. Kitaoka621, K. Makishima624,

M. Matsuoka624, T. Mihara624, T. Morita622, K. Morita620, S. Nakahira624, M. Nakajima627, Y. Nakamura625, H. Negoro627,
S. Oda622, A. Sakamaki627, R. Sasaki625, M. Serino621, M. Shidatsu624, R. Shimomukai618, Y. Sugawara618, S. Sugita620,
M. Sugizaki624, Y. Tachibana620, Y. Takao624, A. Tanimoto622, H. Tomida618, Y. Tsuboi625, H. Tsunemi628, Y. Ueda622,

S. Ueno618, S. Yamada622, K. Yamaoka629, M. Yamauchi619, F. Yatabe624, T. Yoneyama628, T. Yoshii620,
(The MAXI Team),

D. M. Coward630, H. Crisp630, D. Macpherson630, I. Andreoni631, R. Laugier632, K. Noysena632,633, A. Klotz633,
B. Gendre632,634, P. Thierry635, D. Turpin630,

(TZAC Consortium),
M. Im636, C. Choi636, J. Kim636, Y. Yoon636, G. Lim636, S.-K. Lee636, C.-U. Lee637, S.-L. Kim637, S.-W. Ko637, J. Joe637,

M.-K. Kwon637, P.-J. Kim637, S.-K. Lim637, J.-S. Choi637,
(KU Collaboration),

J. P. U. Fynbo328, D. Malesani328, D. Xu638,
(Nordic Optical Telescope),

S. J. Smartt639, A. Jerkstrand425, E. Kankare639, S. A. Sim639, M. Fraser168, C. Inserra640, K. Maguire639, G. Leloudas328,
M. Magee639, L. J. Shingles639, K. W. Smith639, D. R. Young639, R. Kotak639, A. Gal-Yam641, J. D. Lyman642,

D. S. Homan643, C. Agliozzo644,645, J. P. Anderson646, C. R. Angus640, C. Ashall611, C. Barbarino647, F. E. Bauer648,645,649,
M. Berton650,651, M. T. Botticella652, M. Bulla653, G. Cannizzaro654, R. Cartier640, A. Cikota655, P. Clark639, A. De Cia655,
M. Della Valle652,656, M. Dennefeld657, L. Dessart658, G. Dimitriadis640, N. Elias-Rosa659, R. E. Firth640, A. Flörs655,425,

C. Frohmaier660, L. Galbany661, S. González-Gaitán662, M. Gromadzki663, C. P. Gutiérrez640, A. Hamanowicz655,663,
J. Harmanen664, K. E. Heintz546,328, M.-S. Hernandez665, S. T. Hodgkin666, I. M. Hook667, L. Izzo668, P. A. James611,

P. G. Jonker654,66, W. E. Kerzendorf655, Z. Kostrzewa-Rutkowska654,66, M. Kromer669,670, H. Kuncarayakti671,664,
A. Lawrence643, I. Manulis641, S. Mattila664, O. McBrien639, A. Müller672, J. Nordin673, D. O’Neill639, F. Onori654,
J. T. Palmerio674, A. Pastorello675, F. Patat655, G. Pignata644,645, P. Podsiadlowski676, A. Razza646,677, T. Reynolds664,

R. Roy647, A. J. Ruiter678,532,679, K. A. Rybicki663, L. Salmon168, M. L. Pumo680,675,681, S. J. Prentice611,
I. R. Seitenzahl678,532, M. Smith640, J. Sollerman647, M. Sullivan640, H. Szegedi682, F. Taddia647, S. Taubenberger655,425,
G. Terreran349,675, B. Van Soelen682, J. Vos665, N. A. Walton666, D. E. Wright683, Ł. Wyrzykowski663, O. Yaron641,

(ePESSTO) ,
T.-W. Chen684, T. Krühler684, P. Schady684, P. Wiseman684, J. Greiner684, A. Rau684, T. Schweyer684, S. Klose685,

A. Nicuesa Guelbenzu685,
(GROND),

N. T. Palliyaguru686,
(Texas Tech University),

M. M. Shara687,361, T. Williams688, P. Vaisanen688,689, S. B. Potter688, E. Romero Colmenero688,689, S. Crawford688,689,
D. A. H. Buckley688, J. Mao440,

(SALT Group),
M. C. Díaz690, L. M. Macri691, D. García Lambas692, C. Mendes de Oliveira693, J. L. Nilo Castellón694,695, T. Ribeiro696,
B. Sánchez692, W. Schoenell693,697, L. R. Abramo698, S. Akras699, J. S. Alcaniz699, R. Artola692, M. Beroiz690, S. Bonoli700,
J. Cabral692, R. Camuccio690, V. Chavushyan701, P. Coelho693, C. Colazo692, M. V. Costa-Duarte693, H. Cuevas Larenas695,

M. Domínguez Romero692, D. Dultzin702, D. Fernández703, J. García690, C. Girardini692, D. R. Gonçalves704,
T. S. Gonçalves704, S. Gurovich692, Y. Jiménez-Teja699, A. Kanaan697, M. Lares692, R. Lopes de Oliveira696,705,

O. López-Cruz701, R. Melia692, A. Molino693, N. Padilla703, T. Peñuela690,706, V. M. Placco707,708, C. Quiñones692,
A. Ramírez Rivera695, V. Renzi692, L. Riguccini704, E. Ríos-López701, H. Rodriguez692, L. Sampedro693, M. Schneiter692,

L. Sodré693, M. Starck692, S. Torres-Flores695, M. Tornatore692, A. Zadrożny690, M. Castillo690,
(TOROS: Transient Robotic Observatory of the South Collaboration),

A. J. Castro-Tirado709,710, J. C. Tello709, Y.-D. Hu709, B.-B. Zhang709, R. Cunniffe709, A. Castellón711, D. Hiriart712,
M. D. Caballero-García713, M. Jelínek714, P. Kubánek715, C. Pérez del Pulgar710, I. H. Park716, S. Jeong716,

J. M. Castro Cerón717, S. B. Pandey718, P. C. Yock719, R. Querel720, Y. Fan721, C. Wang721,
(The BOOTES Collaboration),

A Beardsley722, I. S. Brown499, B. Crosse501, D. Emrich501, T. Franzen501, B. M. Gaensler723, L. Horsley501,
M. Johnston-Hollitt724, D. Kenney501, M. F. Morales725, D. Pallot726, M. Sokolowski501,498,727, K. Steele501,

S. J. Tingay501,498, C. M. Trott501,498, M. Walker501, R. Wayth501,498, A. Williams501, C. Wu726,
(MWA: Murchison Widefield Array),

43

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

304 H. A. R. DEVILLEPOIX



A. Yoshida728, T. Sakamoto728, Y. Kawakubo728, K. Yamaoka729, I. Takahashi730, Y. Asaoka731, S. Ozawa731, S. Torii731,
Y. Shimizu732, T. Tamura732, W. Ishizaki733, M. L. Cherry2, S. Ricciarini734, A. V. Penacchioni735, P. S. Marrocchesi735,

(The CALET Collaboration),
A. S. Pozanenko736,737,738, A. A. Volnova736, E. D. Mazaeva736, P. Yu. Minaev736, M. A. Krugov739, A. V. Kusakin739,

I. V. Reva739, A. S. Moskvitin740, V. V. Rumyantsev741, R. Inasaridze742, E. V. Klunko743, N. Tungalag744,
S. E. Schmalz745, O. Burhonov746,
(IKI-GW Follow-up Collaboration),

H. Abdalla747, A. Abramowski748, F. Aharonian749,750,751, F. Ait Benkhali749, E. O. Angüner752, M. Arakawa753, M. Arrieta754,
P. Aubert755, M. Backes756, A. Balzer757, M. Barnard747, Y. Becherini758, J. Becker Tjus759, D. Berge760, S. Bernhard761,
K. Bernlöhr749, R. Blackwell762, M. Böttcher747, C. Boisson754, J. Bolmont763, S. Bonnefoy183, P. Bordas749, J. Bregeon764,

F. Brun765, P. Brun766, M. Bryan757, M. Büchele189, T. Bulik767, M. Capasso768, S. Caroff470, A. Carosi755,
S. Casanova752,746, M. Cerruti763, N. Chakraborty746, R. C. G. Chaves764, A. Chen769, J. Chevalier755, S. Colafrancesco769,

B. Condon765, J. Conrad770, I. D. Davids756, J. Decock766, C. Deil746, J. Devin764, P. deWilt762, L. Dirson745,
A. Djannati-Ataï771, A. Donath746, L. O’C. Drury750, K. Dutson772, J. Dyks773, T. Edwards746, K. Egberts774, G. Emery763,

J.-P. Ernenwein775, S. Eschbach189, C. Farnier770,758, S. Fegan470, M. V. Fernandes745, A. Fiasson755, G. Fontaine470,
S. Funk189, M. Füssling183, S. Gabici771, Y. A. Gallant764, T. Garrigoux744, F. Gaté755, G. Giavitto183, B. Giebels470,

D. Glawion776, J. F. Glicenstein766, D. Gottschall768, M.-H. Grondin765, J. Hahn746, M. Haupt183, J. Hawkes762,
G. Heinzelmann745, G. Henri777, G. Hermann746, J. A. Hinton746, W. Hofmann746, C. Hoischen774, T. L. Holch778,
M. Holler761, D. Horns745, A. Ivascenko744, H. Iwasaki753, A. Jacholkowska763, M. Jamrozy779, D. Jankowsky189,

F. Jankowsky776, M. Jingo769, L. Jouvin771, I. Jung-Richardt189, M. A. Kastendieck745, K. Katarzyński780,
M. Katsuragawa781,763, D. Kerszberg763, D. Khangulyan753, B. Khélifi771, J. King746, S. Klepser183, D. Klochkov768,

W. Kluźniak773, Nu. Komin769, K. Kosack766, S. Krakau759, M. Kraus189, P. P. Krüger744, H. Laffon765, G. Lamanna755,
J. Lau762, J.-P. Lees755, J. Lefaucheur754, A. Lemière771, M. Lemoine-Goumard765, J.-P. Lenain763, E. Leser774, T. Lohse778,
M. Lorentz766, R. Liu746, I. Lypova183, D. Malyshev768, V. Marandon746, A. Marcowith764, C. Mariaud470, R. Marx746,

G. Maurin755, N. Maxted762, M. Mayer778, P. J. Meintjes782, M. Meyer770, A. M. W. Mitchell746, R. Moderski773,
M. Mohamed776, L. Mohrmann189, K. Morå770, E. Moulin766, T. Murach183, S. Nakashima781, M. de Naurois470,

H. Ndiyavala744, F. Niederwanger761, J. Niemiec752, L. Oakes778, P. O’Brien772, H. Odaka781, S. Ohm183, M. Ostrowski779,
I. Oya183, M. Padovani764, M. Panter746, R. D. Parsons746, N. W. Pekeur744, G. Pelletier777, C. Perennes763, P.-O. Petrucci777,

B. Peyaud766, Q. Piel755, S. Pita771, V. Poireau755, H. Poon746, D. Prokhorov758, H. Prokoph760, G. Pühlhofer768,
M. Punch771,758, A. Quirrenbach776, S. Raab189, R. Rauth761, A. Reimer761, O. Reimer761, M. Renaud764, R. de los Reyes746,
F. Rieger746,783, L. Rinchiuso766, C. Romoli750, G. Rowell762, B. Rudak773, C. B. Rulten754, V. Sahakian784,751, S. Saito753,

D. A. Sanchez755, A. Santangelo768, M. Sasaki189, R. Schlickeiser759, F. Schüssler766, A. Schulz183, U. Schwanke778,
S. Schwemmer776, M. Seglar-Arroyo766, M. Settimo763, A. S. Seyffert744, N. Shafi769, I. Shilon189, K. Shiningayamwe756,
R. Simoni757, H. Sol754, F. Spanier744, M. Spir-Jacob771, Ł. Stawarz779, R. Steenkamp756, C. Stegmann774,183, C. Steppa774,
I. Sushch744, T. Takahashi781, J.-P. Tavernet763, T. Tavernier771, A. M. Taylor183, R. Terrier771, L. Tibaldo746, D. Tiziani189,

M. Tluczykont745, C. Trichard775, M. Tsirou764, N. Tsuji753, R. Tuffs746, Y. Uchiyama753, D. J. van der Walt744,
C. van Eldik189, C. van Rensburg744, B. van Soelen782, G. Vasileiadis764, J. Veh189, C. Venter744, A. Viana746, P. Vincent763,
J. Vink757, F. Voisin762, H. J. Völk746, T. Vuillaume755, Z. Wadiasingh744, S. J. Wagner776, P. Wagner778, R. M. Wagner770,
R. White746, A. Wierzcholska752, P. Willmann189, A. Wörnlein189, D. Wouters766, R. Yang746, D. Zaborov470, M. Zacharias744,

R. Zanin746, A. A. Zdziarski773, A. Zech754, F. Zefi470, A. Ziegler189, J. Zorn746, N. Żywucka779,
(H.E.S.S. Collaboration),

R. P. Fender785, J. W. Broderick541, A. Rowlinson786,541, R. A. M. J. Wijers786, A. J. Stewart785, S. ter Veen541,
A. Shulevski541,

(LOFAR Collaboration),
M. Kavic787, J. H. Simonetti788, C. League787, J. Tsai788, K. S. Obenberger789, K. Nathaniel788, G. B. Taylor790,

J. D. Dowell790, S. L. Liebling791, J. A. Estes787, M. Lippert787, I. Sharma787, P. Vincent787, B. Farella787,
(LWA: Long Wavelength Array),

A. U. Abeysekara792, A. Albert793, R. Alfaro794, C. Alvarez795, R. Arceo795, J. C. Arteaga-Velázquez796, D. Avila Rojas794,
H. A. Ayala Solares797, A. S. Barber792, J. Becerra Gonzalez50, A. Becerril794, E. Belmont-Moreno794, S. Y. BenZvi798,
D. Berley799, A. Bernal800, J. Braun801, C. Brisbois797, K. S. Caballero-Mora795, T. Capistrán802, A. Carramiñana802,
S. Casanova803, M. Castillo796, U. Cotti796, J. Cotzomi804, S. Coutiño de León802, C. De León804, E. De la Fuente805,
R. Diaz Hernandez802, S. Dichiara800, B. L. Dingus793, M. A. DuVernois801, J. C. Díaz-Vélez805,801, R. W. Ellsworth806,

K. Engel799, O. Enríquez-Rivera807, D. W. Fiorino799, H. Fleischhack797, N. Fraija800, J. A. García-González794, F. Garfias800,
M. Gerhardt797, A. Gonzõlez Muñoz794, M. M. González800, J. A. Goodman799, Z. Hampel-Arias801, J. P. Harding793,

S. Hernandez794, A. Hernandez-Almada794, B. Hona797, P. Hüntemeyer797, A. Iriarte800, A. Jardin-Blicq808, V. Joshi808,

44

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 305



S. Kaufmann795, D. Kieda792, A. Lara807, R. J. Lauer809, D. Lennarz810, H. León Vargas794, J. T. Linnemann811,
A. L. Longinotti802, G. Luis Raya812, R. Luna-García813, R. López-Coto808, K. Malone814, S. S. Marinelli811, O. Martinez804,

I. Martinez-Castellanos799, J. Martínez-Castro813, H. Martínez-Huerta815, J. A. Matthews809, P. Miranda-Romagnoli816,
E. Moreno804, M. Mostafá814, L. Nellen817, M. Newbold792, M. U. Nisa798, R. Noriega-Papaqui816, R. Pelayo813, J. Pretz814,
E. G. Pérez-Pérez812, Z. Ren809, C. D. Rho798, C. Rivière799, D. Rosa-González802, M. Rosenberg814, E. Ruiz-Velasco794,
H. Salazar804, F. Salesa Greus803, A. Sandoval794, M. Schneider818, H. Schoorlemmer808, G. Sinnis793, A. J. Smith799,
R. W. Springer792, P. Surajbali808, O. Tibolla795, K. Tollefson811, I. Torres802, T. N. Ukwatta793, T. Weisgarber801,

S. Westerhoff801, I. G. Wisher801, J. Wood801, T. Yapici811, G. B. Yodh819, P. W. Younk793, H. Zhou793, J. D. Álvarez796,
(HAWC Collaboration),

A. Aab66, P. Abreu820, M. Aglietta821,822, I. F. M. Albuquerque823, J. M. Albury824, I. Allekotte825, A. Almela826,827,
J. Alvarez Castillo828, J. Alvarez-Muñiz829, G. A. Anastasi830,831, L. Anchordoqui832, B. Andrada826, S. Andringa820,

C. Aramo833, N. Arsene834, H. Asorey825,835, P. Assis820, G. Avila836,837, A. M. Badescu838, A. Balaceanu839,
F. Barbato840,820, R. J. Barreira Luz820, K. H. Becker204, J. A. Bellido824, C. Berat841, M. E. Bertaina822,842, X. Bertou825,
P. L. Biermann843, J. Biteau844, S. G. Blaess824, A. Blanco820, J. Blazek845, C. Bleve846,847, M. Boháčová845, C. Bonifazi848,
N. Borodai849, A. M. Botti826,850, J. Brack851, I. Brancus839, T. Bretz852, A. Bridgeman853, F. L. Briechle852, P. Buchholz854,
A. Bueno855, S. Buitink66, M. Buscemi856,857, K. S. Caballero-Mora795, L. Caccianiga858, A. Cancio827,826, F. Canfora14,66,

R. Caruso856,857, A. Castellina821,822, F. Catalani859, G. Cataldi847, L. Cazon820, A. G. Chavez860, J. A. Chinellato861,
J. Chudoba845, R. W. Clay824, A. C. Cobos Cerutti862, R. Colalillo840,833, A. Coleman863, L. Collica864, M. R. Coluccia846,847,
R. Conceição820, G. Consolati864,865, F. Contreras836,837, M. J. Cooper824, S. Coutu863, C. E. Covault866, J. Cronin867,957,
S. D’Amico868,847, B. Daniel861, S. Dasso869,870, K. Daumiller850, B. R. Dawson824, J. A. Day824, R. M. de Almeida871,
S. J. de Jong14,66, G. De Mauro14,66, J. R. T. de Mello Neto848,872, I. De Mitri846,847, J. de Oliveira871, V. de Souza873,
J. Debatin853, O. Deligny844, M. L. Díaz Castro861, F. Diogo820, C. Dobrigkeit861, J. C. D’Olivo828, Q. Dorosti854,

R. C. Dos Anjos874, M. T. Dova875, A. Dundovic876, J. Ebr845, R. Engel850, M. Erdmann852, M. Erfani854, C. O. Escobar877,
J. Espadanal820, A. Etchegoyen826,827, H. Falcke14,66,878, J. Farmer867, G. Farrar879, A. C. Fauth861, N. Fazzini877,

F. Feldbusch880, F. Fenu822,842, B. Fick881, J. M. Figueira826, A. Filipčič494,882, M. M. Freire883, T. Fujii867, A. Fuster826,827,
R. Gaïor884, B. García862, F. Gaté885, H. Gemmeke880, A. Gherghel-Lascu839, P. L. Ghia844, U. Giaccari848,886,

M. Giammarchi864, M. Giller887, D. Głas888, C. Glaser852, G. Golup825, M. Gómez Berisso825, P. F. Gómez Vitale836,837,
N. González826,850, A. Gorgi821,822, M. Gottowik204, A. F. Grillo831,954, T. D. Grubb824, F. Guarino840,833, G. P. Guedes889,

R. Halliday866, M. R. Hampel826, P. Hansen875, D. Harari825, T. A. Harrison824, V. M. Harvey824, A. Haungs850,
T. Hebbeker852, D. Heck850, P. Heimann854, A. E. Herve853, G. C. Hill824, C. Hojvat877, E. Holt850,826, P. Homola849,

J. R. Hörandel14,66, P. Horvath890, M. Hrabovský890, T. Huege850, J. Hulsman826,850, A. Insolia856,857, P. G. Isar834, I. Jandt204,
J. A. Johnsen891, M. Josebachuili826, J. Jurysek845, A. Kääpä204, K. H. Kampert204, B. Keilhauer850, N. Kemmerich823,

J. Kemp852, R. M. Kieckhafer881, H. O. Klages850, M. Kleifges880, J. Kleinfeller836, R. Krause852, N. Krohm204,
D. Kuempel204, G. Kukec Mezek494, N. Kunka880, A. Kuotb Awad853, B. L. Lago892, D. LaHurd866, R. G. Lang873,
M. Lauscher852, R. Legumina887, M. A. Leigui de Oliveira893, A. Letessier-Selvon884, I. Lhenry-Yvon844, K. Link853,

D. Lo Presti856,857, L. Lopes820, R. López894, A. López Casado829, R. Lorek866, Q. Luce844, A. Lucero826, M. Malacari867,
M. Mallamaci858,864, D. Mandat845, P. Mantsch877, A. G. Mariazzi875, I. C. Maris895, G. Marsella846,847, D. Martello846,847,
H. Martinez896, O. Martínez Bravo894, J. J. Masías Meza870, H. J. Mathes850, S. Mathys204, J. Matthews2, G. Matthiae897,898,

E. Mayotte204, P. O. Mazur877, C. Medina891, G. Medina-Tanco828, D. Melo826, A. Menshikov880, K.-D. Merenda891,
S. Michal890, M. I. Micheletti883, L. Middendorf852, L. Miramonti858,864, B. Mitrica839, D. Mockler853, S. Mollerach825,

F. Montanet841, C. Morello821,822, G. Morlino830,831, A. L. Müller826,850, G. Müller852, M. A. Muller861,899, S. Müller853,826,
R. Mussa822, I. Naranjo825, P. H. Nguyen824, M. Niculescu-Oglinzanu839, M. Niechciol854, L. Niemietz204, T. Niggemann852,
D. Nitz881, D. Nosek900, V. Novotny900, L. Nožka890, L. A. Núñez835, F. Oikonomou863, A. Olinto867, M. Palatka845,

J. Pallotta901, P. Papenbreer204, G. Parente829, A. Parra894, T. Paul832, M. Pech845, F. Pedreira829, J. Pȩkala849,
J. Peña-Rodriguez835, L. A. S. Pereira861, M. Perlin826, L. Perrone846,847, C. Peters852, S. Petrera830,831, J. Phuntsok863,
T. Pierog850, M. Pimenta820, V. Pirronello856,857, M. Platino826, M. Plum852, J. Poh867, C. Porowski849, R. R. Prado873,

P. Privitera867, M. Prouza845, E. J. Quel901, S. Querchfeld204, S. Quinn866, R. Ramos-Pollan835, J. Rautenberg204,
D. Ravignani826, J. Ridky845, F. Riehn820, M. Risse854, P. Ristori901, V. Rizi831,902, W. Rodrigues de Carvalho823,
G. Rodriguez Fernandez897,898, J. Rodriguez Rojo836, M. J. Roncoroni826, M. Roth850, E. Roulet825, A. C. Rovero869,
P. Ruehl854, S. J. Saffi824, A. Saftoiu839, F. Salamida902,831, H. Salazar894, A. Saleh494, G. Salina898, F. Sánchez826,
P. Sanchez-Lucas855, E. M. Santos823, E. Santos845, F. Sarazin891, R. Sarmento820, C. Sarmiento-Cano826, R. Sato836,
M. Schauer204, V. Scherini847, H. Schieler850, M. Schimp204, D. Schmidt850,826, O. Scholten903,904, P. Schovánek845,
F. G. Schröder850, S. Schröder204, A. Schulz850, J. Schumacher852, S. J. Sciutto875, A. Segreto857,905, A. Shadkam2,

R. C. Shellard886, G. Sigl876, G. Silli826,850, R. Šmída850, G. R. Snow906, P. Sommers863, S. Sonntag854, J. F. Soriano832,
R. Squartini836, D. Stanca839, S. Stanič494, J. Stasielak849, P. Stassi841, M. Stolpovskiy841, F. Strafella846,847, A. Streich853,

45

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

306 H. A. R. DEVILLEPOIX



F. Suarez826,827, M. Suarez-Durán835, T. Sudholz824, T. Suomijärvi844, A. D. Supanitsky869, J. Šupík890, J. Swain907,
Z. Szadkowski888, A. Taboada850, O. A. Taborda825, C. Timmermans14,66, C. J. Todero Peixoto859, L. Tomankova850,

B. Tomé820, G. Torralba Elipe829, P. Travnicek845, M. Trini494, M. Tueros875, R. Ulrich850, M. Unger850, M. Urban852,
J. F. Valdés Galicia828, I. Valiño829, L. Valore840,833, G. van Aar66, P. van Bodegom824, A. M. van den Berg903, A. van Vliet66,
E. Varela894, B. Vargas Cárdenas828, R. A. Vázquez829, D. Veberič850, C. Ventura872, I. D. Vergara Quispe875, V. Verzi898,
J. Vicha845, L. Villaseñor860, S. Vorobiov494, H. Wahlberg875, O. Wainberg826,827, D. Walz852, A. A. Watson908, M. Weber880,

A. Weindl850, M. Wiedeński888, L. Wiencke891, H. Wilczyński849, M. Wirtz852, D. Wittkowski204, B. Wundheiler826,
L. Yang494, A. Yushkov845, E. Zas829, D. Zavrtanik494,882, M. Zavrtanik494,882, A. Zepeda896, B. Zimmermann880,

M. Ziolkowski854, Z. Zong844, F. Zuccarello909,857,
(The Pierre Auger Collaboration),

S. Kim548,910, S. Schulze911, F. E. Bauer649,910,912, J. M. Corral-Santana913, I. de Gregorio-Monsalvo913,914,
J. González-López910, D. H. Hartmann915, C. H. Ishwara-Chandra916, S. Martín913,914, A. Mehner913, K. Misra917,

M. J. Michałowski918, L. Resmi919,
(ALMA Collaboration),

Z. Paragi920, I. Agudo921, T. An922,923, R. Beswick924, C. Casadio925, S. Frey926, P. Jonker66,927, M. Kettenis920,
B. Marcote920, J. Moldon924, A. Szomoru920, H. J. van Langevelde920,928, J. Yang929,

(Euro VLBI Team),
A. Cwiek727, M. Cwiok930, H. Czyrkowski930, R. Dabrowski930, G. Kasprowicz931, L. Mankiewicz932, K. Nawrocki727,

R. Opiela932, L. W. Piotrowski933, G. Wrochna727, M. Zaremba930, A. F. Żarnecki930,
(Pi of the Sky Collaboration),

D. Haggard934, M. Nynka934, J. J. Ruan934,
(The Chandra Team at McGill University),

P. A. Bland935, T. Booler501, H. A. R. Devillepoix935, J. S. de Gois501, P. J. Hancock501, R. M. Howie936, J. Paxman936,
E. K. Sansom935, M. C. Towner935,
(DFN: Desert Fireball Network),

J. Tonry617, M. Coughlin937, C. W. Stubbs938, L. Denneau617, A. Heinze617, B. Stalder939, H. Weiland617,
(ATLAS),

R. P. Eatough940, M. Kramer940, A. Kraus940,
(High Time Resolution Universe Survey),

E. Troja941,942, L. Piro172, J. Becerra González943,944, N. R. Butler722, O. D. Fox945, H. G. Khandrika945, A. Kutyrev941,942,
W. H. Lee946,298, R. Ricci947, R. E. Ryan Jr.945, R. Sánchez-Ramírez172, S. Veilleux942,290, A. M. Watson946,

M. H. Wieringa948, J. M. Burgess949, H. van Eerten950, C. J. Fontes951, C. L. Fryer951, O. Korobkin951, R. T. Wollaeger951,
(RIMAS and RATIR),

and
F. Camilo952, A. R. Foley952, S. Goedhart952, S. Makhathini952, N. Oozeer952, O. M. Smirnov952,

R. P. Fender66, and P. A. Woudt953

(SKA South Africa/MeerKAT)

1 LIGO, California Institute of Technology, Pasadena, CA 91125, USA
2 Louisiana State University, Baton Rouge, LA 70803, USA

3 Università di Salerno, Fisciano, I-84084 Salerno, Italy
4 INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

5 University of Florida, Gainesville, FL 32611, USA
6 OzGrav, School of Physics & Astronomy, Monash University, Clayton, VIC 3800, Australia

7 LIGO Livingston Observatory, Livingston, LA 70754, USA
8 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France

9 University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
10 Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany

11 The University of Mississippi, University, MS 38677, USA
12 NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

13 University of Cambridge, Cambridge CB2 1TN, UK
14 Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands

15 LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
16 Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil

17 Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
18 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy

19 Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
20 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India

21 University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
22 Leibniz Universität Hannover, D-30167 Hannover, Germany

23 Università di Pisa, I-56127 Pisa, Italy

46

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 307



24 INFN, Sezione di Pisa, I-56127 Pisa, Italy
25 OzGrav, Australian National University, Canberra, ACT 0200, Australia

26 Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France
27 SUPA, University of the West of Scotland, Paisley PA1 2BE, UK

28 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France
29 California State University Fullerton, Fullerton, CA 92831, USA

30 European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
31 Chennai Mathematical Institute, Chennai 603103, India
32 Università di Roma Tor Vergata, I-00133 Roma, Italy

33 INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
34 Universität Hamburg, D-22761 Hamburg, Germany

35 INFN, Sezione di Roma, I-00185 Roma, Italy
36 Cardiff University, Cardiff CF24 3AA, UK

37 Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
38 Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany

39 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité,
F-75205 Paris Cedex 13, France

40 Korea Institute of Science and Technology Information, Daejeon 34141, Korea
41 West Virginia University, Morgantown, WV 26506, USA

42 Università di Perugia, I-06123 Perugia, Italy
43 INFN, Sezione di Perugia, I-06123 Perugia, Italy
44 Syracuse University, Syracuse, NY 13244, USA

45 University of Minnesota, Minneapolis, MN 55455, USA
46 SUPA, University of Glasgow, Glasgow G12 8QQ, UK
47 LIGO Hanford Observatory, Richland, WA 99352, USA

48 Caltech CaRT, Pasadena, CA 91125, USA
49 Wigner RCP, RMKI, Konkoly Thege Miklós út 29-33, H-1121 Budapest, Hungary

50 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
51 Columbia University, New York, NY 10027, USA
52 Stanford University, Stanford, CA 94305, USA

53 Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
54 Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy

55 INFN, Sezione di Padova, I-35131 Padova, Italy
56 Institute of Physics, Eötvös University, Pázmány P. s. 1/A, H-1117 Budapest, Hungary

57 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
58 Rochester Institute of Technology, Rochester, NY 14623, USA

59 University of Birmingham, Birmingham B15 2TT, UK
60 INFN, Sezione di Genova, I-16146 Genova, Italy

61 RRCAT, Indore MP 452013, India
62 Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

63 SUPA, University of Strathclyde, Glasgow G1 1XQ, UK
64 The Pennsylvania State University, University Park, PA 16802, USA

65 OzGrav, University of Western Australia, Crawley, WA 6009, Australia
66 Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, 6525 AJ Nijmegen, The Netherlands

67 Artemis, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France
68 Institut FOTON, CNRS, Université de Rennes 1, F-35042 Rennes, France

69 Washington State University, Pullman, WA 99164, USA
70 University of Oregon, Eugene, OR 97403, USA

71 Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France
72 Carleton College, Northfield, MN 55057, USA

73 OzGrav, University of Adelaide, Adelaide, SA 5005, Australia
74 Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
75 VU University Amsterdam, 1081 HV Amsterdam, The Netherlands

76 University of Maryland, College Park, MD 20742, USA
77 Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA

78 Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
79 Università di Napoli “Federico II,” Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

80 Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy
81 RESCEU, University of Tokyo, Tokyo, 113-0033, Japan

82 Tsinghua University, Beijing 100084, China
83 Texas Tech University, Lubbock, TX 79409, USA

84 Kenyon College, Gambier, OH 43022, USA
85 Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain

86 Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, I-00184 Roma, Italy
87 National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China

88 Charles Sturt University, Wagga Wagga, NSW 2678, Australia
89 Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA

90 Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada
91 University of Chicago, Chicago, IL 60637, USA
92 Pusan National University, Busan 46241, Korea

93 The Chinese University of Hong Kong, Shatin, NT, Hong Kong
94 INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy

95 INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
96 OzGrav, University of Melbourne, Parkville, VIC 3010, Australia

97 Università di Roma “La Sapienza,” I-00185 Roma, Italy

47

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

308 H. A. R. DEVILLEPOIX



98 Université Libre de Bruxelles, Brussels 1050, Belgium
99 Sonoma State University, Rohnert Park, CA 94928, USA

100 Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
101 Montana State University, Bozeman, MT 59717, USA

102 Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
103 The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

104 Bellevue College, Bellevue, WA 98007, USA
105 Institute for Plasma Research, Bhat, Gandhinagar 382428, India

106 The University of Sheffield, Sheffield S10 2TN, UK
107 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy

108 INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
109 California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA

110 Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
111 Montclair State University, Montclair, NJ 07043, USA

112 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
113 Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain

114 School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
115 University and Institute of Advanced Research, Koba Institutional Area, Gandhinagar Gujarat 382007, India

116 IISER-TVM, CET Campus, Trivandrum Kerala 695016, India
117 University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary

118 University of Michigan, Ann Arbor, MI 48109, USA
119 Tata Institute of Fundamental Research, Mumbai 400005, India

120 INAF, Osservatorio Astronomico di Capodimonte, I-80131, Napoli, Italy
121 Università degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy
122 INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

123 Physik-Institut, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
124 American University, Washington, DC 20016, USA
125 University of Białystok, 15-424 Białystok, Poland

126 University of Southampton, Southampton SO17 1BJ, UK
127 University of Washington Bothell, 18115 Campus Way NE, Bothell, WA 98011, USA

128 Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
129 Korea Astronomy and Space Science Institute, Daejeon 34055, Korea

130 Inje University Gimhae, South Gyeongsang 50834, Korea
131 National Institute for Mathematical Sciences, Daejeon 34047, Korea

132 NCBJ, 05-400 Świerk-Otwock, Poland
133 Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland

134 Hillsdale College, Hillsdale, MI 49242, USA
135 Hanyang University, Seoul 04763, Korea

136 Seoul National University, Seoul 08826, Korea
137 NASA Marshall Space Flight Center, Huntsville, AL 35812, USA

138 ESPCI, CNRS, F-75005 Paris, France
139 Southern University and A&M College, Baton Rouge, LA 70813, USA

140 College of William and Mary, Williamsburg, VA 23187, USA
141 Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco

142 Indian Institute of Technology Madras, Chennai 600036, India
143 IISER-Kolkata, Mohanpur, West Bengal 741252, India

144 Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA
145 Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India

146 Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
147 Université de Lyon, F-69361 Lyon, France

148 Hobart and William Smith Colleges, Geneva, NY 14456, USA
149 OzGrav, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

150 Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland
151 University of Washington, Seattle, WA 98195, USA

152 King’s College London, University of London, London WC2R 2LS, UK
153 Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India

154 Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India
155 International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil

156 Andrews University, Berrien Springs, MI 49104, USA
157 Università di Siena, I-53100 Siena, Italy

158 Trinity University, San Antonio, TX 78212, USA
159 Abilene Christian University, Abilene, TX 79699, USA
160 Colorado State University, Fort Collins, CO 80523, USA

161 INFN Sezione di Bari, I-70126 Bari, Italy
162 Politecnico di Bari, I-70126 Bari BA, Italy

163 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
164 University of Alabama in Huntsville, Huntsville, AL 35899, USA

165 Universities Space Research Association, Huntsville, AL 35805, USA
166 Jacobs Technology, Inc., Huntsville, AL 35806, USA

167 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
168 School of Physics, O’Brien Centre for Science North, University College Dublin, Belfield, Dublin 4, Ireland

169 Max-Planck-Institut für extraterrestrische Physik, D-85748 Garching, Germany
170 ISDC, Department of Astronomy, University of Geneva, Chemin d’Écogia, 16 CH-1290 Versoix, Switzerland

171 European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
172 INAF, Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Rome, Italy

48

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 309



173 DTU Space, National Space Institute Elektrovej, Building 327 DK-2800 Kongens Lyngby Denmark
174 Centro de Astrobiología (CAB-CSIC/INTA, ESAC Campus), Camino bajo del Castillo S/N, E-28692 Villanueva de la Cañada, Madrid, Spain

175 IRAP, Université de Toulouse, CNRS, UPS, CNES, 9 Av. Roche, F-31028 Toulouse, France
176 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris Sorbonne Paris Cité,

10 rue Alice Domont et Léonie Duquet, F-75205 Paris Cedex 13, France.
177 DSM/Irfu/Service d’Astrophysique, Bat. 709 Orme des Merisiers CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France

178 Space Research Institute of Russian Academy of Sciences, Profsoyuznaya 84/32, Moscow, 117997, Russia
179 Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700, Russia

180 INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano, Italy
181 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, Garching b. Munchen D-85741, Germany

182 Department of Physics, University of Adelaide, Adelaide, 5005, Australia
183 DESY, D-15738 Zeuthen, Germany

184 Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
185 Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
186 Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

187 Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden
188 Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland

189 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen, Germany
190 Department of Physics, Marquette University, Milwaukee, WI, 53201, USA

191 Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA
192 Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

193 III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
194 Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

195 Dept. of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
196 Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA

197 Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
198 Dept. of Physics, University of California, Berkeley, CA 94720, USA

199 Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
200 Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA

201 Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
202 Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA

203 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
204 Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany

205 Dept. of Physics, University of Maryland, College Park, MD 20742, USA
206 Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany

207 Dept. of Physics, Sungkyunkwan University, Suwon 440-746, Korea
208 Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden

209 Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA
210 Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium

211 SNOLAB, 1039 Regional Road 24, Creighton Mine 9, Lively, ON P3Y 1N2, Canada
212 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany

213 Physik-department, Technische Universität München, D-85748 Garching, Germany
214 Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA

215 Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
216 Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

217 Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
218 Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
219 Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

220 Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA
221 Dept. of Astronomy, University of Wisconsin, Madison, WI 53706, USA

222 Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
223 Dept. of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan

224 CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
225 Dept. of Physics, University of Texas at Arlington, 502 Yates Street, Science Hall Room 108, Box 19059, Arlington, TX 76019, USA

226 Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
227 Université de Mons, B-7000 Mons, Belgium

228 Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
229 Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA

230 Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA
231 Dept. of Physics, Yale University, New Haven, CT 06520, USA

232 Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
233 Dept. of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

234 School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
235 Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India

236 Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
237 Physical Research Laboratory, Ahmedabad, India

238 Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021, Russia
239 University of California-Berkeley, Space Sciences Lab, 7 Gauss Way, Berkeley, CA 94720, USA

240 Emeritus, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
241 Key Laboratory Of Particle Astrophysics, Institute Of High Energy Physics, Chinese Academy Of Sciences, Beijing 100049, China

242 University Of Chinese Academy Of Sciences, Chinese Academy Of Sciences, Beijing 100049, China
243 Beijing Normal University, Beijing 100088, China

244 GRPHE, Université de Haute Alsace, Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, F-68008 Colmar, France
245 Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona, Spain

246 INFN—Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy

49

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

310 H. A. R. DEVILLEPOIX



247 Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València. C/ Paranimf 1, E-46730 Gandia, Spain
248 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

249 APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, France
250 IFIC, Instituto de Física Corpuscular (CSIC—Universitat de València), c/ Catedrático José Beltrán, 2 E-46980 Paterna, Valencia, Spain

251 LAM—Laboratoire d’Astrophysique de Marseille, Pôle de l’Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, F-13388 Marseille Cedex 13, France
252 National Center for Energy Sciences and Nuclear Techniques, B.P. 1382, R. P. 10001 Rabat, Morocco

253 INFN—Laboratori Nazionali del Sud (LNS), Via S. Sofia 62, I-95123 Catania, Italy
254 Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, The Netherlands

255 Institute for Space Science, RO-077125 Bucharest, Măgurele, Romania
256 Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Science Park 105, 1098 XG Amsterdam, The Netherlands

257 INFN—Sezione di Roma, P.le Aldo Moro 2, I-00185 Roma, Italy
258 Dipartimento di Fisica dell’Università La Sapienza, P.le Aldo Moro 2, I-00185 Roma, Italy

259 Gran Sasso Science Institute, Viale Francesco Crispi 7, I-00167 L’Aquila, Italy
260 University Mohammed V in Rabat, Faculty of Sciences, 4 av. Ibn Battouta, B.P. 1014, 10000, Rabat, Morocco

261 INFN—Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna, Italy
262 INFN—Sezione di Bari, Via E. Orabona 4, I-70126 Bari, Italy

263 Department of Computer Architecture and Technology/CITIC, University of Granada, E-18071 Granada, Spain
264 Géoazur, UCA, CNRS, IRD, Observatoire de la Côte d’Azur, Sophia Antipolis, France

265 Dipartimento di Fisica dell’Università, Via Dodecaneso 33, I-16146 Genova, Italy
266 Université Paris-Sud, F-91405 Orsay Cedex, France

267 University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P. 717, Oujda 6000, Morocco
268 Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer Str. 31, D-97074 Würzburg, Germany

269 Dipartimento di Fisica e Astronomia dell’Università, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
270 Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, BP 10448, F-63000 Clermont-Ferrand, France

271 INFN—Sezione di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
272 LSIS, Aix Marseille Université CNRS ENSAM LSIS UMR 7296 F-13397 Marseille, France; Université de Toulon CNRS LSIS UMR 7296,

F-83957 La Garde, France
273 Institut Universitaire de France, F-75005 Paris, France

274 Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands
275 Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg, Germany
276 Moscow State University, Skobeltsyn Institute of Nuclear Physics, Leninskie gory, 119991 Moscow, Russia

277 Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, F-13288, Marseille, Cedex 9, France; Université du Sud Toulon-Var, CNRS-INSU/
IRD UM 110, 83957, La Garde Cedex, France

278 Dipartimento di Fisica ed Astronomia dell’Università, Viale Andrea Doria 6, I-95125 Catania, Italy
279 Direction des Sciences de la Matière, Institut de recherche sur les lois fondamentales de l’Univers, Service de Physique des Particules, CEA Saclay,

F-91191 Gif-sur-Yvette Cedex, France
280 INFN—Sezione di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

281 Dipartimento di Fisica dell’Università, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
282 INFN—Sezione di Napoli, Via Cintia I-80126 Napoli, Italy

283 Dipartimento di Fisica dell’Università Federico II di Napoli, Via Cintia I-80126, Napoli, Italy
284 Dpto. de Física Teórica y del Cosmos & C.A.F.P.E., University of Granada, E-18071 Granada, Spain

285 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
286 University of Leicester, X-ray and Observational Astronomy Research Group, Leicester Institute for Space and Earth Observation, Department of Physics &

Astronomy, University Road, Leicester, LE1 7RH, UK
287 University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT, UK

288 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
289 Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

290 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA
291 Istituto Nazionale di Astrofisica – Istituto di Astrofisica Spaziale e Fisica Cosmica Palermo, Via Ugo La Malfa 153, I-90146, Palermo, Italy

292 Department of Astronomy and Space Sciences, University of Istanbul, Beyzιt 34119, Istanbul, Turkey
293 Space Science Data Center—Agenzia Spaziale Italiana, I-00133 Roma, Italy

294 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
295 Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046, USA

296 National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA
297 Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt MD, 20771 USA

298 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
299 Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate, Italy

300 Department of Physics, University of Warwick, Coventry CV4 7AL, UK
301 Los Alamos National Laboratory, B244, Los Alamos, NM, 87545, USA

302 Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Italy
303 Department of Physics and Astronomy, University of Maryland, College Park, MD 20742-4111, USA

304 INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma, Italy
305 Dip. di Fisica, Univ. di Roma “Tor Vergata,” via della Ricerca Scientifica 1, I-00133 Roma, Italy

306 Gran Sasso Science Institute, viale Francesco Crispi 7, I-67100 L’Aquila, Italy
307 INAF-OAR, via Frascati 33, I-00078 Monte Porzio Catone (Roma), Italy

308 ASI Space Science Data Center (SSDC), via del Politecnico, I-00133 Roma, Italy
309 INAF-IASF-Bologna, via Gobetti 101, I-40129 Bologna, Italy
310 INAF-IASF Milano, via E.Bassini 15, I-20133 Milano, Italy

311 Agenzia Spaziale Italiana, via del Politecnico, I-00133 Roma, Italy
312 INAF, Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy

313 Dip. di Fisica, Università di Trieste and INFN, via Valerio 2, I-34127 Trieste, Italy
314 Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

315 Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
316 INFN-Pavia, via Bassi 6, I-27100 Pavia, Italy

317 University of Witwatersrand, Johannesburg, South Africa

50

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 311



318 CIFS, c/o Physics Department, University of Turin, via P. Giuria 1, I-10125, Torino, Italy
319 INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma, Italy

320 East Windsor RSD, 25A Leshin Lane, Hightstown, NJ 08520, USA
321 Osservatorio Astronomico di Brera, via Emilio Bianchi 46, I-23807 Merate (LC), Italy

322 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
323 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA

324 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
325 Departamento de Física y Astronomía, Universidad de La Serena, La Serena, Chile

326 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
327 Departments of Physics and Astronomy, University of California, Berkeley, CA 94720, USA

328 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark
329 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

330 Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
331 Department of Physics, Brandeis University, Waltham, MA, USA

332 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
333 Department of Physics, University of Surrey, Guildford GU2 7XH, UK

334 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
335 Department of Astronomy, Indiana University, 727 E. Third Street, Bloomington, IN 47405, USA

336 Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701, USA
337 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University,

College Station, TX 77843, USA
338 LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA

339 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA
340 Institut d’Astrophysique de Paris (UMR7095: CNRS & UPMC), 98 bis Bd Arago, F-75014, Paris, France

341 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University,
Evanston, IL 60208, USA

342 Center for Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
343 Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
344 National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, USA

345 Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
346 Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland

347 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
348 Observatòrio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, Rio de Janeiro, RJ, 20080-090, Brazil

349 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University,
Evanston, IL 60208, USA

350 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA
351 Departamento de Astronomonía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago, Chile
352 Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA

353 Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040, USA
354 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

355 Department of Astronomy & Theoretical Astrophysics Center, University of California, Berkeley, CA 94720-3411, USA
356 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8160, USA

357 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA
358 Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP—13083-859, Brazil

359 Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400, Brazil
360 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile

361 Institute of Astronomy, University of Cambridge Madingley Road, Cambridge CB3 0HA, UK
362 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

363 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
364 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France

365 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
366 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

367 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
368 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400, Brazil

369 Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
370 Institute of Space Sciences, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

371 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University,
College Station, TX 77843, USA

372 Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
373 Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany

374 Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich, Germany
375 Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA

376 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
377 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain

378 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
379 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

380 Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
381 Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA
382 Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

383 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
384 Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195, USA

385 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
386 Australian Astronomical Observatory, North Ryde, NSW 2113, Australia

387 Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP—05314-970, Brazil
388 Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA

51

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

312 H. A. R. DEVILLEPOIX



389 Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
390 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany

391 Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
392 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

393 Brookhaven National Laboratory, Building 510, Upton, NY 11973, USA
394 School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

395 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
396 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

397 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
398 Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

399 Department of Astronomy and Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85719, USA
400 Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616-5270, USA

401 Department of Physics and Astronomy, University of Padova, Via 8 Febbraio, I-35122 Padova, Italy
402 INAF—Osservatorio Astronomico di Padova, Vicolo della Osservatorio 5, I-35122 Padova, Italy
403 INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

404 INAF—Osservatorio Astronomico di Roma, Via di Frascati, 33, I-00078 Monteporzio Catone, Italy
405 INAF—Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (LC), Italy

406 Space Science Data Center, ASI, Via del Politecnico, s.n.c., I-00133, Roma, Italy
407 INAF—Osservatorio Astronomico di Capodimonte, salita Moiariello 16, I-80131, Napoli, Italy

408 INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Gobetti 101, I-40129 Bologna, Italy
409 Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, P.za della Scienza 3, I-20126 Milano, Italy

410 Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, 34095, Montpellier, France
411 INAF—Osservatorio Astronomico di Catania, Via S. Sofia 78, I-95123, Catania, Italy

412 Department of physics, University of Naples Federico II, Corso Umberto I, 40, I-80138 Napoli, Italy
413 Institute for Astrophysics and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck, Austria

414 Departamento de Ciencias Fιsicas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago, Chile
415 Università degli Studi dell’Insubria, via Valleggio 11, I-22100, Como, Italy

416 INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, via E. Bassini 15, I-20133 Milano, Italy
417 INAF—Osservatorio Astrofisico di Torino, Pino Torinese, Italy

418 INAF—Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Florence, Italy
419 INAF—Istituto di Radioastronomia di Bologna, Bologna Italy

420 Key Laboratory of dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210008, China
421 Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany

422 Department of Physics, The George Washington University, Corcoran Hall, Washington, DC 20052, USA
423 Astronomy, Physics, and Statistics Institute of Sciences (APSIS)

424 Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
425 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching bei München, Germany
426 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany

427 INAF—Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste, Italy
428 Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

429 GEPI, Observatoire de Paris, PSL Research University, CNRS, Place Jules Janssen, F-92190, Meudon, France
430 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

431 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
432 Astronomical Institute, Tohoku University, Sendai 980-8578, Japan

433 Department of Physics, University of Bath Claverton Down, Bath, BA2 7AY, UK
434 CEA Saclay—DRF/Irfu/Département d’Astrophysique, F-91191 Gif-sur-Yvette, France

435 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210046, China
436 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia

437 Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
438 Astrophysics Research Institute, Liverpool John Moores University, ic2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK

439 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
440 Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province, China

441 Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK
442 Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052, USA

443 Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette, France
444 Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz,

Santa Cruz, CA 95064, USA
445 Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy

446 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste, Italy
447 Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

448 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
449 Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, I-35131 Padova, Italy

450 California State University, Los Angeles, Department of Physics and Astronomy, Los Angeles, CA 90032, USA
451 Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy

452 Dipartimento di Fisica “M. Merlin” dell’Università e del Politecnico di Bari, I-70126 Bari, Italy
453 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy

454 W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator
Laboratory, Stanford University, Stanford, CA 94305, USA

455 Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
456 Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy

457 Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095 Montpellier, France
458 Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany

459 Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
460 Italian Space Agency, Via del Politecnico, snc, I-00133 Roma, Italy

461 College of Science, George Mason University, Fairfax, VA 22030; Resident at Naval Research Laboratory, Washington, DC 20375, USA

52

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 313



462 Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352, USA
463 Space Science Data Center—Agenzia Spaziale Italiana, Via del Politecnico, snc, I-00133, Roma, Italy

464 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy
465 Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928-3609, USA

466 RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology (TTK), D-52056 Aachen, Germany
467 INAF Istituto di Radioastronomia, I-40129 Bologna, Italy

468 Dipartimento di Astronomia, Università di Bologna, I-40127 Bologna, Italy
469 Università Telematica Pegaso, Piazza Trieste e Trento, 48, I-80132 Napoli, Italy

470 Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
471 Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

472 Department of Physics and Department of Astronomy, University of Maryland, College Park, MD 20742, USA
473 Centre d’Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex, France
474 Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans/CNRS, F-45071 Orléans Cedex 02, France

475 Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay, France
476 Science Institute, University of Iceland, IS-107 Reykjavik, Iceland

477 Nordita, Roslagstullsbacken 23, 106 91 Stockholm, Sweden
478 Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

479 Istituto Nazionale di Fisica Nucleare, Sezione di Roma “Tor Vergata,” I-00133 Roma, Italy
480 Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978, USA

481 Max-Planck-Institut für Physik, D-80805 München, Germany
482 Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa

483 Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
484 Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

485 Laboratory for Space Research, The University of Hong Kong, Hong Kong, China
486 NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA

487 Purdue University Northwest, Hammond, IN 46323, USA
488 Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

489 CNRS, IRAP, F-31028 Toulouse cedex 4, France
490 GAHEC, Universit de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse, France

491 Institute of Space Sciences (CSICIEEC), Campus UAB, Carrer de Magrans s/n, E-08193 Barcelona, Spain
492 Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain

493 INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Bologna, via P. Gobetti 101, I-40129 Bologna, Italy
494 Centre for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
495 Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

496 ARC Centre of Excellence for All-sky Astrophysics in 3 Dimensions (ASTRO 3D)
497 ATNF, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia

498 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
499 University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA

500 ATNF, CSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Kensington, WA 6152, Australia
501 International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia

502 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, VIC 3122, Australia
503 Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

504 Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA
505 School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

506 Columbia Astrophysics Laboratory, Columbia University, New York, NY, 10027, USA
507 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, H29, Hawthorn, VIC 3122, Australia

508 The Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia
509 The Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO), Australia

510 Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia
511 Australian Astronomical Observatory, 105 Delhi Road, North Ryde, NSW 2113, Australia

512 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Texas A. & M. University,
Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843, USA
513 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China

514 Chinese Center for Antarctic Astronomy, Nanjing 210008, China
515 The University of the Virgin Islands, 2 John Brewer’s Bay, St. Thomas 00802, USVI

516 Monash Centre for Astrophysics, Monash University, VIC 3800, Australia
517 Centre for Translational Data Science, University of Sydney, Sydney, NSW 2006, Australia

518 School of Physics and Astronomy, University of Nottingham, Nottingham, UK
519 CSIRO Astronomy & Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710, Australia

520 SKA Organisation, Jodrell Bank Observatory, SK11 9DL, UK
521 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

522 Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, 100084, China
523 Tianjin Normal University, Tianjin 300074, China

524 School of Physics, University of New South Wales, NSW 2052, Australia
525 Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China

526 Department of Astronomy, Beijing Normal University, Beijing 100875, China
527 School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University,

Nanjing 210093, China
528 Orangewave Innovation Science, 2113 Old Highway 52, Moncks Corner, SC 29461, USA
529 Department of Physics, 2354 Fairchild Drive, U.S. Air Force Academy, CO 80840, USA

530 Universite de Toulouse, IRAP 14 Av. Edouard Belin, F-31000 Toulouse France
531 Auragne Observatory, France

532 Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia
533 Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
534 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain

53

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

314 H. A. R. DEVILLEPOIX



535 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
536 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85740 Garching, Germany

537 Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
538 School of Physics and Astronomy and Monash Centre for Astrophysics, Monash University, VIC 3800, Australia

539 The Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden
540 Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
541 ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands

542 SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
543 Niels Bohr Institute & Centre for Star and Planet Formation, University of Copenhagen Øster Voldgade 5, DK-1350—Copenhagen, Denmark

544 Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
545 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

546 Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík, Iceland
547 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile

548 Max-Planck-Institut für Astronomie Königstuhl 17, D-69117 Heidelberg, Germany
549 Lomonosov Moscow State University, Physics Department, Vorobievy gory, 1 Moscow, 119991, Russia

550 Lomonosov Moscow State University,SAI, Universitetsky prospekt, 13 Moscow, 119234, Russia
551 Observatorio Astronomico Felix Aguilar (OAFA), Avda Benavides s/n, Rivadavia, El Leonsito, Argentina

552 Instituto de Ciencias Astronomicas de la Tierra y del Espacio, Casilla de Correo 49, 5400 San Juan, Argentina
553 Universidad Nacional de San Juan, Av. Ignacio de la Roza 391, San Juan, 5400, Argentina
554 Irkutsk State University Applied Physics Institute, 20, Boulevard, 664003, Irkutsk, Russia

555 Blagoveschenk State Pedagogical University, Lenin str., 104, Blagoveschensk, 675000, Russia
556 Instituto de Astrofsica de Canarias, C/Via Lctea, s/n E-38205, La Laguna, Tenerife, Spain

557 Kislovodsk Solar Station, Pulkovo Observatory RAS, Gagarina str. 100, Kislovodsk, 357700, Russia
558 Institute for Space-Earth Environmental Research, Nagoya, 464-8601, Japan

559 Subaru Telescope, Hilo, HI 96720, USA
560 National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

561 University of Hyogo, Sayo 679-5313, Japan
562 South African Astronomical Observatory, Cape Town, South Africa

563 Massey University, Auckland 0745, New Zealand
564 Institute of Astronomy, Graduate School of Science, Mitaka 181-0015, Japan

565 Tokyo Institute of Technology, Tokyo 152-8551, Japan
566 Osaka City University, Osaka 558-8585, Japan

567 Hiroshima Astrophysical Science Center, Higashi-Hiroshima 739-8526, Japan
568 Hiroshima University, Higashi-Hiroshima, 739-8526, Japan

569 Okayama Astrophysical Observatory, Asakuchi 719-0232, Japan
570 Purple Mountain Observatory, Nanjing 210008, China

571 Osaka University, Toyonaka 560-0043, Japan
572 Nagoya University, Nagoya 464-8602, Japan

573 Kagoshima University, Kogoshima 890-0065, Japan
574 Kyoto University, Kyoto 606-8502, Japan

575 Precursory Research for Embryonic Science and Technology, Mitaka, Tokyo 181-0015, Japan
576 Toho University, Funabashi 274-8510, Japan
577 Konan University, Kobe 658-8501, Japan

578 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Kashiwa 277-8583, Japan
579 University of Canterbury, Mt John Observatory, Lake Tekapo 7945, New Zealand

580 Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
581 Indian Institute of Astrophysics, Bangalore-560034, India

582 University of Colorado, Boulder, CO 80309, USA
583 South African Astronomical Observatory (SAAO), Cape Town 7935, South Africa
584 Department of Astronomy, University of Washington, Seattle, WA 98195, USA

585 National Center for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind Pune 411007, India
586 Department of Physics, University of Wisconsin, Milwaukee, WI 53201, USA

587 Remote Sensing Division, Naval Research Laboratory, Code 7213, Washington, DC 20375, USA
588 Department of Physics, George Washington University,Washington, DC 20052, USA

589 University College London, Mullard Space Science Laboratory, RH5 6NT, UK
590 X-ray and Observational Astronomy Research Group, Leicester Institute for Space and Earth Observation,

Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, UK
591 The Oskar Klein Centre, Department of Physics, Stockholm, University, AlbaNova, SE-106 91 Stockholm, Sweden

592 Space Telescope Science Institute, Baltimore, MD 21218, USA
593 National Radio Astronomy Observatory, Socorro, NM, USA

594 Department of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
595 Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

596 The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
597 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA

598 Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
599 Center for Computational Astrophysics, Simons Foundation, New York, NY 10010, USA
600 Graduate Institute of Astronomy, National Central University, Taoyuan City 32001, Taiwan

601 Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
602 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA

603 Department of Physics, University of California, Berkeley, CA 94720, USA
604 Gemini Observatory, Casilla 603, La Serena, Chile

605 Max-Planck Institute for Astrophysics, Garching, Germany
606 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University,

Evanston, IL 60208, USA
607 The Adler Planetarium, Chicago, IL 60605, USA

54

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 315



608 Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH, UK
609 Department of Particle Physics & Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel

610 Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA
611 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK

612 Department of Astronomy, San Diego State University, CA 92182, USA
613 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo,

Kashiwa, Chiba 277-8583, Japan
614 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

615 University of California Merced, Merced, CA, USA
616 Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), Sydney Institute for Astronomy, School of Physics,

The University of Sydney, Sydney, NSW 2006, Australia
617 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA

618 ISAS/JAXA, Sagamihara, Kanagawa 229-8510, Japan
619 University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan

620 Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
621 Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan

622 Kyoto University, Kyoto, Kyoto, 606-8502, Japan
623 JAXA, Tsukuba, Ibaraki 305-8505, Japan
624 RIKEN, Wako, Saitama, 351-0198, Japan

625 Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
626 National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

627 Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
628 Osaka University, Toyonaka, Osaka 560-0043, Japan
629 Nagoya University, Nagoya, Aichi 464-8601, Japan

630 The University of Western Australia, 35, Stirling Highway, Perth, WA 6009, Australia
631 Swinburne University, John Street, Hawthorn, VIC 3122, Australia

632 ARTEMIS (UCA, CNRS, OCA), boulevard de l’Observatoire, CS 34229, F-06304 Nice, France
633 IRAP (CNRS, UPS), 14 avenue Edouard Belin, F-31029 Toulouse, France

634 The University of the Virgin Islands, 2 John Brewer’s Bay, St Thomas 00802, USVI
635 The Auragne Observatory, F-31190 Auragne, France

636 Center of the Exploration of the Origin of the Universe, Astronomy Program, Dept. of Physics & Astronomy, Seoul National University, 1 Gwanak-rho,
Gwanak-gu, Seoul 08826, Korea

637 Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea
638 CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

639 Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK
640 Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

641 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
642 Department of Physics, University of Warwick, Coventry CV4 7AL, UK

643 Institute for Astronomy, SUPA (Scottish Universities Physics Alliance), University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
644 Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago, 8320000, Chile
645 Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile

646 European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile
647 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden

648 Instituto de Astrofísica and Centro de Astroingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
649 Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA

650 Dipartimento di Fisica e Astronomia ”G. Galilei,” Università di Padova, Vicolo dell’Osservatorio 3, I-35122, Padova, Italy
651 INAF—Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (LC), Italy

652 INAF—Osservatorio Astronomico di Capodimonte, via Salita Moiariello 16, I-80131 Napoli, Italy
653 The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden

654 SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, The Netherlands
655 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching b. München, Germany

656 ICRANet-Pescara, Piazza della Repubblica 10, I-65122 Pescara, Italy
657 IAP/CNRS and Université Pierre et Marie Curie, Paris, France

658 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile,
Camino El Observatorio 1515, Las Condes, Santiago, Chile

659 Istituto Nazionale di Astrofisica, Viale del Parco Mellini 84, I-00136 Roma, Italy
660 Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth PO1 3FX, UK

661 PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
662 CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Portugal

663 Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
664 Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland
665 Instituto de Física y Astronomía, Universidad de Valparaiso, Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile

666 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
667 Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

668 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada, Spain
669 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Philosophenweg 12, D-69120 Heidelberg, Germany

670 Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
671 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland

672 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
673 Institut fur Physik, Humboldt-Universitat zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany

674 Sorbonne Universités, UPMC Univ. Paris 6 and CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France
675 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

676 Department of Astrophysics, University of Oxford, Oxford OX1 3RH, UK
677 Department of Astronomy, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago de Chile, Chile

55

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

316 H. A. R. DEVILLEPOIX



678 School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy,
Canberra, ACT 2600, Australia

679 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Canberra, ACT 2611, Australia
680 Università degli studi di Catania, DFA & DIEEI, Via Santa Sofia 64, I-95123 Catania, Italy

681 INFN—Laboratori Nazionali del Sud, Via Santa Sofia 62, I-95123 Catania, Italy
682 Department of Physics, University of the Free State, Bloemfontein, 9300 South Africa

683 School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455-0149, USA
684 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748, Garching, Germany

685 Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany
686 Texas Tech University, Lubbock, TX 79409, USA

687 Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024, USA
688 South African Astronomical Observatory, PO Box 9, 7935 Observatory, South Africa

689 Southern African Large Telescope Foundation, P.O. Box 9, 7935 Observatory, South Africa.
690 Center for Gravitational Wave Astronomy and Department of Physics & Astronomy, University of Texas—Río Grande Valley, Brownsville, TX, USA
691 George P. and Cynthia W. Mitchell Institute for Fundamental Physics & Astronomy, Department of Physics & Astronomy, Texas A&M University,

College Station, TX, USA
692 IATE-OAC, Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina

693 Instituto de Astronomia, Geofísica e Ciências Atmosféricas da U. de São Paulo, São Paulo, SP, Brazil
694 Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile

695 Departamento de Física y Astronomía, Universidad de La Serena, La Serena, Chile
696 Departamento de Física, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil

697 Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
698 Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil

699 Departamento de Astronomia, Observatório Nacional, Rio de Janeiro, RJ, Brazil
700 Centro de Estudios de Física del Cosmos de Aragón, E-44001 Teruel, Spain

701 Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla, México
702 Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, México

703 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile
704 Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Río de Janeiro, RJ, Brazil

705 X-ray Astrophysics Laboratory and CRESST, NASA Goddard Space Flight Center, Greenbelt, MD, USA
706 Ludwig Maximilian Universität Munich, Faculty of Physics, Munich, Germany

707 Department of Physics, University of Notre Dame, Notre Dame, IN, USA
708 Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, USA

709 Instituto de Astrofísica de Andalucía del Consejo Superior de Investigaciones Científicas (IAA-CSIC), Granada, Apdo. 03004, E-18080 Granada, Spain
710 Departamento de Ingeniería de Sistemas y Automática, Escuela de Ingenierías (Unidad Asociada al IAA-CSIC), Universidad de Málaga,

Dr. Pedro Ortiz Ramos, E-29071 Málaga, Spain
711 Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Málaga, Campus de Teatinos, E-29071 sn, Málaga, Spain

712 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 870, 2800 Ensenada, Baja California, México
713 Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, CZ-141 00 Prague, Czech Republic

714 Astronomical Institute, Academy of Sciences of the Czech Republic, 251 65 Ondřejov, Czech Republic
715 Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Praha 8, Czech Republic

716 Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
717 ISDEFE for ESA, ESAC, E-28692 Villanueva de la Cañada (Madrid), Spain

718 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 002, India
719 Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

720 National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
721 Yunnan Astronomical Observatory, CAS, Kunming 650011, Yunnan, China

722 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
723 Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada

724 Peripety Scientific Ltd., PO Box 11355 Manners Street, Wellington, 6142, New Zealand
725 Department of Physics, University of Washington, Seattle, WA 98195, USA

726 International Centre for Radio Astronomy Research, University of Western Australia, Crawley, WA 6009, Australia
727 National Centre for Nuclear Research, 00-681 Warsaw, Poland

728 Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan
729 Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan

730 Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan
731 Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

732 Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa, Yokohama, Kanagawa 221-8686, Japan
733 Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582, Japan

734 Institute of Applied Physics (IFAC), National Research Council (CNR), Via Madonna del Piano, 10, I-50019 Sesto, Fiorentino, Italy
735 University of Siena, Rettorato, via Banchi di Sotto 55, I-53100 Siena, Italy

736 Space Research Institute, Moscow, 117997, Russia
737 National Research University Higher School of Economics, Moscow, 101000, Russia

738 National Research Nuclear University MEPhI, Moscow, 115409, Russia
739 Fesenkov Astrophysical Institute, Almaty, 050020, Kazakhstan

740 Special Astrophysical Observatory of Russian Academy of Sciences, Nizhniy Arkhyz, 369167, Russia
741 Crimean Astrophysical Observatory, Nauchny, Crimea 298409

742 Kharadze Abastumani Astrophysical Observatory, Ilia State University, Tbilisi, 0162, Georgia
743 Institute of Solar Terrestrial Physics, Irkutsk, 664033 Russia

744 Institute of Astronomy and Geophysics, Mongolian Academy of Sciences, 13343, Ulaanbaatar, Mongolia
745 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya 4, 125047, Moscow, Russia

746 Ulugh Beg Astronomical Institute, Astronomicheskaya st., 33, Tashkent, 100052, Uzbekistan
747 Centre for Space Research, North-West University, Potchefstroom 2520, South Africa

748 Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
749 Max-Planck-Institut für Kernphysik, P.O. Box 103980, D-69029 Heidelberg, Germany

56

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Appendix B H. A. R. DEVILLEPOIX 317



750 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
751 National Academy of Sciences of the Republic of Armenia, Marshall Baghramian Avenue, 24, 0019 Yerevan, Republic of Armenia
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Abstract

The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations
by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up
observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label
AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research
programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-
infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source
emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission
lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and
subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr
ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore
unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger.
The displacement (∼2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the
host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the
progenitor are poor.

Keywords: gamma-ray burst: individual: GRB170817A – gravitational waves – stars: neutron – supernovae: general –
supernovae: individual: AT2017gfo

1 INTRODUCTION

The first detection of an electromagnetic (EM) counterpart
to a gravitational wave (GW) event has led to the new era
of GW multi-messenger astrophysics. The close coordina-
tion of LIGO data analysis groups and multiple observational
teams worldwide via the restricted Gamma-Ray Coordinates
Network (GCN) reports under confidential Memoranda of
Understanding (MoU), were key to the prompt identification
and detailed multi-wavelength follow up of the counterpart.

On 2017 August 17 12:41:041, the Advanced Laser In-
terferometer Gravitational-Wave Observatory (aLIGO) inter-
ferometers detected a GW signal G298048, now referred to
as GW170817 (Abbott et al. 2017c, 2017d, 2017e, 2017f,
2017g, 2017a). The Advanced-Virgo (aVirgo) interferome-
ter was online at the time of the discovery and also con-

1 All dates in this paper are UT, unless a different time reference is explicitly
specified.

tributed to the localisation of the GW event. On 2017 August
17 12:41:06, about 2 s after the GW detection, the Gamma-ray
Burst Monitor (GBM) instrument on board the Fermi satel-
lite independently detected a short gamma-ray burst, labelled
as GRB 170817A (Connaughton et al. 2017; Goldstein et al.
2017a; Goldstein et al. 2017b; von Kienlin et al. 2017). The
INTErnational Gamma-Ray Astrophysics Laboratory (IN-
TEGRAL) also detected GRB 170817A (Savchenko et al.
2017a; Savchenko et al. 2017b), providing unique informa-
tion especially when the data were combined with those ob-
tained with Fermi (Abbott et al. 2017b). The close temporal
coincidence of the gamma-ray burst and GW event made it a
compelling target for follow-up observations at other wave-
lengths.

The One-Meter, Two-Hemisphere project (1M2H) first
announced the discovery of a transient in an image ac-
quired with the 1-m Swope telescope at Las Campanas
Observatory in Chile on 2017 August 17 at 23:33, 10.87 h
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after the LIGO detection. However, the optical counterpart
to GW170817 (and GRB 170817A) was already imaged
independently by six other programmes before this report.
The 1M2H team referred to the transient with the name
Swope Supernova Survey 2017a (SSS17a, Coulter et al.
2017b, 2017a). Details about the other independent detec-
tions can be found in Allam et al. (2017) for the Dark En-
ergy Camera, Valenti et al. (2017) and Yang et al. (2017)
for the Distance Less Than 40 Mpc survey (DLT40), Ar-
cavi et al. (2017a) and Arcavi et al. (2017b) for the Las
Cumbres Observatory, Tanvir et al. (2017a) and (2017b)
for the Visible and Infrared Survey Telescope for Astron-
omy, Lipunov et al. (2017a) and (2017b) for the MASTER
discoveries.

Lipunov et al. (2017b) offer an extensive review of the
world-wide follow up. The optical transient is located at
RA = 13:09:48.089 DEC = −23:22:53.350 (Adams et al.
2017; Kasliwal et al. 2017), approximately 2.2 kpc from the
centre of its host galaxy NGC 4993. The host is a nearby
E/S0 galaxy at z = 0.009727, corresponding to a distance
of ∼39.5 Mpc (Freedman et al. 2001). Hereafter, we refer
to the EM counterpart of GW170817 with the IAU label
AT2017gfo.

Short-duration GRBs (sGRBs, a class first identified by
Kouveliotou et al. 1993) were previously suggested to be
associated with merging compact objects, such as a binary
neutron star (BNS) system or neutron star-black hole (NSBH)
system (e.g., Paczynski 1986; Goodman 1986; Eichler et al.
1989). Electromagnetically, such mergers are also postu-
lated to generate a relatively rapidly evolving optical/infrared
transient—referred to as kilonova or macronova (e.g., Li &
Paczyński 1998; Metzger et al. 2010; Roberts et al. 2011;
Barnes & Kasen 2013; Tanaka & Hotokezaka 2013; Kasen,
Fernández, & Metzger 2015; Metzger et al. 2015; Barnes et al.
2016). The combination of an sGRB and kilonova is consid-
ered the ‘smoking gun’ signature of such mergers. Kilonova
candidates were previously identified during the follow up of
sGRBs, for example, GRB 080503 (Perley et al. 2009; Gao
et al. 2015), GRB 130603B (Berger, Fong, & Chornock 2013;
Tanvir et al. 2013; Hotokezaka et al. 2013), and GRB 050709
(Jin et al. 2016). However, no kilonova candidates have been
discovered unrelated to GRB triggers, despite their antici-
pated isotropic emission, unlike that of sGRBs. BNS, and
NSBH mergers, thus sGRBs, and subsequent kilonovae, are
expected to be the most promising GW events to exhibit EM
counterparts.

Previous work has discussed the importance of rapid re-
sponse (e.g., Chu et al. 2016) and collaborative strategies
to maximise the chances of success in the EM follow up of
aLIGO and Virgo triggers. Specifically, Howell et al. (2015)
presents the role that Australia can play in this context. The
association of GW170817 to GRB 170817A, detected during
the LIGO and Virgo Collaboration (LVC) ‘O2’ run, has en-
abled the first multi-messenger (EM multi-wavelength, neu-
trino, and GW observations) study of an astrophysical event
(Lipunov et al. 2017b).

This paper presents and discusses the data acquired during
the search for an EM counterpart to GW170817 and the fol-
low up of the now confirmed counterpart, AT2017gfo, by 14
observing programmes led by Australian institutions and re-
searchers. The observing programmes include facilities and
collaborators associated with the Australia Research Coun-
cil (ARC) Centre of Excellence for All-sky Astrophysics
(CAASTRO2), the ARC Centre of Excellence for Gravita-
tional Wave Discovery (OzGrav3), and the multi-wavelength,
multi-facility Deeper, Wider, Faster (DWF4) programme. In
Section 2, we summarise the observations from the tele-
scopes/instruments that participated in the GW170817 fol-
low up, including optical, mid-infrared, and radio imaging
and spectroscopic observations. In Section 3, we provide an
overview of the spectroscopic observations of the event and
host galaxy and preliminary comparisons of our observations
with theoretical sGRB afterglow and kilonova models. Fi-
nally, we present a discussion and summary and in Section 4.

2 FACILITIES INVOLVED IN THE EM
FOLLOW UP OF GW170817

The following sections describe the optical, mid-infrared
(mIR), and radio telescopes, instruments, and relevant ob-
servations involved in the follow up of the GW170817 EM
counterpart by Australian or Australian-led programmes.

Shortly after the LVC community was alerted to the GW
event, many of the facilities discussed here were triggered into
action for follow-up observations. However, NGC 4993 and
the bulk of the LVC error ellipse had set in Eastern Australia
and the Zadko telescope in Western Australia was temporar-
ily not operational. On the following day, the location of the
optical counterpart AT2017gfo was known. Radio telescopes
were on the field that day and optical facilities were on the
field shortly after sunset. Figure 1 presents the broad tempo-
ral coverage of the GW event by our spectroscopic, radio,
and optical/mIR observations that extend from early to late
times. The general characteristics of each facility is presented
in Table 1 and details of the corresponding observations are
listed in Tables 2–15.

2.1. Optical/near-infrared imaging

2.1.1. SkyMapper

SkyMapper (Keller et al. 2007) is a 1.35-m modified-
Cassegrain telescope located at Siding Spring Observatory
in New South Wales, Australia, which is owned and operated
by the Australian National University (ANU). The camera
has a 5.7 deg2 field of view, a pixel scale of 0.5 arcsec/pixel
and six photometric filters in the uvgriz system, which span
the visible and ultraviolet bands from 325 to 960 nm. Typ-
ical single-epoch 5σ limiting magnitudes for each filter are

2 http://www.caastro.org
3 http://www.ozgrav.org
4 http://www.dwfprogram.altervista.org
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Table 1. Facilities participating in the follow-up observations summarised in this paper. Principal references for the relevant data
from each facility are indicated in the right-most column. We specify under which programme the observations were taken when
multiple groups used the same telescope to follow up GW170817 and AT2017gfo.

OIR imaging Band FoV Aperture (m) References

SkyMapper u,v,g,r,i,z 5.7 deg2 1.35 This work

AST3-2a i 4.14 deg2 0.5
This work
Hu et al. (2017b)

Zadko r, Clear 0.15 deg2 1 This work
UVI Etelmana R, Clear 0.11 deg2 0.5 This work
ESO VLT/NACOa L3.8 μm 784 arcsec2 8.2 This work
ESO VLT/VISIRa J8.9 μm 1 arcmin2 8.2 Kasliwal et al. (2017)
DFN V full-sky 2 × 8 mm This work
OIR spectroscopy Range (Å) R Aperture (m) References
ANU2.3/WiFeS 3 300–9 200 3 000,7 000 2.3 This work

This work
SALT/RSSa 3 600–9 700 ∼300 10 McCully et al. (2017)

Buckley et al. (2017)
AAT/2dF+AAOmegaa 3 700–8 800 1 700 3.9 This work
Radio Band FoV (deg2) Mode References

ATCAb 5.5–21.2 GHz 0.037 – 0.143 Imaging
Hallinan et al. (2017)
Kasliwal et al. (2017)

ASKAP 0.7–1.8 GHz 30 Imaging This work
ASKAP 0.7–1.8 GHz 210 FRB This work
MWAc 185 MHz 400 Imaging This work
VLBA 8.7 GHz 0.04 Imaging This work
Parkes 1.2–1.6 GHz 0.55 FRB This work

aObservations initiated, or proposed for, via collaboration with DWF programme.
b Programme CX391.
c Programme BD218.
d Programme D0010.
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Figure 1. Observation timeline for the facilities presented in this paper showing the time of observation offset from the GW event and the nominal
length of the reported observations. Spectroscopic observations are shown in green, radio observations in orange, and optical and mid-infrared are in
blue.

u = 19.5, v = 19.5, g = 21, r = 21, i = 20, and z = 19,
over 100 s exposure times. Since 2014, SkyMapper has con-
ducted a full-hemisphere Southern sky survey in all six bands
(see Wolf et al. in preparation; http://skymapper.anu.edu.au).
Alongside this survey, the SkyMapper Transient Survey

(SMT) has been performing a survey dedicated to supernovae
and other transients (Scalzo et al. 2017).

SkyMapper first received the GW trigger when the target
area had recently set in Eastern Australia and began observing
relevant target ranges shortly after sunset the following night.
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Table 2. AST3-2 observations of GW170817 and AT2017gfo.

AST3-2

UT obs date Band Mag Mag error

2017-08-18 13:11:42.72 i 17.23 0.22(−0.21)
2017-08-18 14:15:54.29 i 17.61 0.16
2017-08-18 15:00:16.24 i 17.72 0.18(−0.17)
2017-08-20 16:07:27.71 i >18.67
2017-08-21 15:36:49.65 i >18.38

Figure 2. Footprints of SkyMapper observations in two different follow-up
modes: one using the blind search of new transient sources where fields
overlap with GW localisation map (grey squares) and the other using the
targeted observation of the optical counterpart, AT2017gfo, discovered by
other EM follow-up groups (yellow square). The positions of AT2017gfo
and its host galaxy (NGC 4993) are indicated on the figure. The red dots
are target galaxies from the 6dFGS catalogue that were prioritised by their
position and spectroscopic redshift.

The follow-up strategy included two components: (1) to ob-
tain uvgriz photometry of the field containing AT2017gfo,
in the event that the transient was the correct counterpart to
the GW trigger, and (2) to image the 90% probability region
(85 deg2) of the LVC sky-map to search for other counterpart
candidates (Figure 2).

Archival images at the coordinates of AT2017gfo were
found from the SkyMapper Southern Sky Survey and the
SMT from 2015 August 8 to 2017 July 22. We found no
evidence of a pre-existing source or variability in the images
coincident with AT2017gfo to a 95% upper limit of i ∼19.6
and r ∼20.5 (Figure 3; Möller et al. 2017).

Imaging of the LVC skymap started at 2017-08-18
09:04:56 in the uvgriz filters with texp = 100 s. The images of
AT2017gfo were taken between 2017-08-18 09:16:58 and

Figure 3. SkyMapper optical images of NGC 4993 (left centre) ∼26 d be-
fore and ∼1 d after the detection of AT2017gfo. The images are oriented
with North up and East to the left and are cropped to 2 arcmin on a side, with
the position of AT2017gfo marked. The image taken on 2017 July 22 is in
i-band, the image taken on 2017 August 18 (where the transient is visible)
is in r-band.

2017-08-18 10:00 UT in all bands (Figure 4). The obser-
vations were taken at an airmass above 2 and roughly half
of the primary mirror was vignetted by the telescope dome.
As a result of dome seeing and high airmass, the images
have a seeing FWHM of 3.5–6 arcsec in i/z-bands to u-band.
Nevertheless, the transient AT2017gfo was immediately con-
firmed visually on raw frames in all six bands. Preliminary
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Figure 4. Optical light curve of AT2017gfo for the first week after the GW detection obtained with the AST3-2, SkyMapper (SM),
Zadko, and Etelman/VIRT telescopes. Down arrows indicate upper limits. Note that the evolution at bluer bands is faster than the
evolution at redder bands. Dashed vertical lines indicate epochs when spectroscopy was acquired. Spectra analysed in this work and
presented in Figures 7 and 8 are indicated in black, whereas spectra marked in grey were obtained but are to be published at a later
time, as they were acquired in a different mode than the first and require a different analysis.

Table 3. Zadko observations of GW170817 and AT2017gfo.

Zadko

UT obs date Band Mag Mag error

2017-08-19 10:57:00 r 18.46 0.17
2017-08-20 11:30:00 r 19.18 0.12
2017-08-21 11:52:00 r 19.86 0.21
2017-08-22 11:46:00 r 20.20 0.23
2017-08-23 11:32:00 r >20.6

photometric AB magnitudes are given as u = 17.9 ± 0.15,
v = 17.9 ± 0.10, g = 17.76 ± 0.05, r = 17.20 ± 0.05, and
i = 16.0 ± 0.30, respectively (Wolf et al. 2017a).

Observations of the source continued between 2017-08-18
and 2017-08-22, at which point AT2017gfo could no longer
be visually identified in uvg bands. Imaging was attempted
again between 2017-08-28 and 2017-09-03 to obtain images
for host galaxy subtraction, but was unsuccessful. A total of
83 successful exposures were taken with exposure times of
100 s for bands griz and up to 300 s, for uv. Host galaxy
images in all filters are planned when the target re-appears
from behind the Sun.

2.1.2. AST3-2

The Antarctic Schmidt Telescope (AST3) project comprises
three 68 cm (50 cm non-vignetted aperture) equatorial-mount
telescopes located at the Kunlun Station at Dome A, Antarc-
tica (Cui, Yuan, & Gong 2008).

Table 4. Etelman/VIRT observations of GW170817 and
AT2017gfo.

Etelman/VIRT

UT obs date Band Mag Mag error

2017-08-20 00:12 Clear 18.90 0.28

The second of the AST3 telescopes, AST3-2, employs a 10
K×10 K STA1600FT camera with a pixel scale of 1 arcsec
pixel−1 and a 4.14° field of view. The AST3-2 observations
presented in this paper were performed as part of the DWF
programme (PI Cooke). Most facilities following AT2017gfo
were only able to monitor the source for 1–2 h per night as
a result of its position near the Sun. The location of AST3-2
is advantageous in that it can monitor the source over longer
periods of time as the source moved low along the horizon.
The disadvantages are that the source was always at high
airmass and the dark Antarctic winter was ending.

Observations targeting the GW counterpart AT2017gfo
span from 2017-08-18 to 2017-08-28 in SDSS-i filter. A total
of 262 exposures were acquired, each with an exposure time
of 300 s per image, except for the initial five images having
exposure time of 60 s, with approximately 54 s between ex-
posures. AST3-2 detected AT2017gfo on 2017-08-18 with
an average i-band magnitude of 17.23+0.22

−0.21, 17.61+0.16
−0.16, and

17.72+0.18
−0.17 from co-added images. The uncertainties of these

measurements include the 0.088 mag errors of the zero-point
calibration. The AST3-2 circular, Hu et al. (2017a), reports
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Table 5. ESO VLT observations of GW170817 and AT2017gfo
(Kasliwal et al. in preparation).

ESO VLT

Instrument UT obs date Band Mag

NACO 2017-08-25 22:45 L′3.8 >14.5
NACO 2017-08-26 22:45 L′3.8 >14.8
NACO 2017-08-27 22:45 L′3.8 >14.5
NACO 2017-09-01 22:45 L′3.8 >14.3
VISIR 2017-08-23 23:35 J8.9 >8.26
VISIR 2017-08-31 23:18 J8.9 >7.74
VISIR 2017-09-01 23:18 J8.9 >7.57
VISIR 2017-09-06 23:33 J8.9 >7.42

Table 6. SkyMapper Observations of GW170817 and AT2017gfo
with photometric measurements. The SkyMapper follow up is not
limited to the data points presented in this table. The results from
the analysis of the complete dataset will be discussed in future
publications.

SkyMapper

UT obs date Band Mag Mag error

2017-08-18 09:16:58 i 17.42 0.05
2017-08-18 10:03:44 r 17.32 0.07
2017-08-18 10:05:44 g 17.46 0.08
2017-08-19 09:06:17 i 17.96 0.07
2017-08-19 09:24:57 i 18.18 0.08
2017-08-20 09:12:57 r 19.34 0.08
2017-08-20 09:14:58 g 20.43 0.11
2017-08-20 09:31:44 r 19.37 0.09
2017-08-20 09:33:45 g 20.21 0.12
2017-08-22 09:09:22 r >20.51 95%
2017-08-22 09:11:24 g >20.60 95%
2017-08-22 09:28:08 r >20.47 95%
2017-08-22 09:30:08 g >20.66 95%
2017-08-28 09:17:13 r >19.36 95%
2017-08-28 09:19:13 g >19.53 95%
2017-08-28 09:35:52 r >19.39 95%
2017-08-28 09:37:53 g >19.50 95%
2017-08-30 09:18:53 g >19.36 95%
2017-08-30 09:20:52 r >19.32 95%
2017-08-30 09:37:33 g >19.24 95%

g-band magnitudes, however, this must be corrected to the
i-band magnitudes that we report here. Detections and upper
limits estimated in the following observations are presented
in Figure 4 and Table 2.

2.1.3. Zadko

The 1-m Zadko Telescope (Coward et al. 2010) is located just
north of Perth in Western Australia. The CCD imager has a
pixel scale of 0.69 arcsec pixel−1 (binning 1 × 1) resulting
in a field of view of 0.15 deg2 and reaches an approximate
limiting magnitude of 21 in the R-band in 180 s.

The TAROT–Zadko–Aures–C2PU collaboration (TZAC)
joins the efforts of partners located in Australia (Zadko),
France (with TAROT telescopes in France, Chile and La Réu-
nion Island, C2PU in France), and Algeria (Aurès Observa-
tory, under construction). The initial position of GW 170817
was monitored using the TCH (TAROT-Chile) 25-cm rapid
robotic telescope prior to Zadko imaging.

Zadko observations of AT2017gfo commenced on 2017-
08-19 10:57 and extended until 2017-08-26 11:43 in the Clear
(C) and r filters, with 120 s exposures and 2 × 2 binning. The
object was observed for ∼1 h at the onset of dusk each night,
until its low elevation precluded observations.

We stacked all images taken each night to increase the
signal-to-noise ratio under the assumption that the bright-
ness of the object does not vary significantly during 1 h.
As AT2017gfo is located at 10 arcsec from the nucleus of
NGC 4993 (i.e. 7 pixels), the background varies steeply.
For accurate photometry, a galaxy reference image with-
out AT2017gfo was subtracted to retrieve a flat background.
The reference image was created from the stack of im-
ages taken on the last night (i.e., nine nights after the
GW trigger) when the source was no longer visible. The
photometry was performed on the subtracted image tak-
ing the point spread function (PSF) of the star NOMAD-
1 0666-0296321 (RA=197h28m44.96s, Dec=–23°21′49.70′′

J2000.0, mR=15.580). Photometric results are presented in
Coward et al. (2017), Figure 4, and Table 3.

2.1.4. University of virgin islands Etelman observatory

The Virgin Islands Robotic Telescope (VIRT) is a 0.5-m
Cassegrain telescope located at the Etelman Observatory in
the U. S. Virgin Islands. The observations with VIRT pre-
sented in this paper were performed in association with the
DWF programme. VIRT is equipped with a Marconi 42-20
CCD imager that has a pixel scale of 0.5 arcsec pixel−1, a
field of view of 0.11 deg2, and imaging in the UBVRI and
ND filters.

Observations of AT2017gfo commenced on 2017-08-19
23:19 in the R and Clear (C) filters. At approximately 2017-
08-19 23:54, a potential counterpart was observed in the C
filter. Calculation of the precise source magnitude is limited
due to the galaxy contamination in the observing band (Gen-
dre et al. 2017). Additional observations were carried out on
2017-08-20 00:12 and 2017-08-22 00:00 with the C filter,
where a possible first detection of the source was made on
2017-08-20 mC = 18.90 ± 0.28 (Figure 4). Inclement trop-
ical weather (hurricane Irma, followed by hurricane Maria)
delayed full analysis of the observations, however, the mea-
surements made to date are listed in Table 4.

2.1.5. The desert fireball network

The Desert Fireball Network (DFN, Day & Bland 2016) is
a network of 50 remote cameras located in the Western and
South Australian desert designed for the detection and trian-
gulation of Fireballs and bright meteors. Each DFN camera
consists of a Nikon D800E camera equipped with a Samyang
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Table 7. ASKAP Observations of GW170817 and AT2017gfo.

ASKAP

UT obs date Mode Frequency (MHz) Bandwidth (MHz) Nant. Nbeams

2017-08-18 04:05–07:36 FRB 1 320 336 7 108
2017-08-18 08:57–13:03 FRB 1 320 336 7 108
2017-08-19 02:08–13:08 FRB 1 320 336 7 108
2017-08-19 05:34–07:58 Imaging 1 344 192 10 36
2017-08-20 02:21–11:21 Imaging 1 344 192 10 36
2017-08-21 07:21–12:28 Imaging 1 344 192 10 36
2017-08-22 01:44–10:52 Imaging 1 344 192 10 36
2017-09-01 02:33–03:28 Imaging 888 192 12 1
2017-09-01 07:59–10:59 Imaging 888 192 12 1
2017-09-02 06:21–08:28 Imaging 888 192 16 1
2017-09-06 01:16–02:17 Imaging 1 344 192 12 1
2017-09-06 03:36–08:36 Imaging 1 344 192 12 1
2017-09-08 02:32–06:00 Imaging 1 344 192 16 1
2017-09-09 03:34–08:41 Imaging 1 344 192 16 1
2017-09-10 03:52–04:52 Imaging 1 344 192 16 1
2017-09-15 08:17–11:17 Imaging 1 344 192 15 1
2017-09-21 05:30–06:30 Imaging 1 344 192 12 1
2017-09-22 08:35–10:35 Imaging 1 368 240 12 1
2017-09-29 23:21–2017-09-30 03:21 Imaging 1 320 240 12 36
2017-09-30 23:32–2017-10-01 03:32 Imaging 1 320 240 12 36
2017-10-01 23:32–2017-10-02 03:32 Imaging 1 320 240 12 36

Table 8. ATCA Observations of GW170817 and AT2017gfo.

ATCA (Imaging)

UT obs date Frequency (GHz) Bandwidth (GHz) Flux (μJy)

2017-08-18 01:00–09:07 8.5 2.049 <120
2017-08-18 01:00–09:07 10.5 2.049 <150
2017-08-18 01:00–09:07 16.7 2.049 <130
2017-08-18 01:00–09:07 21.2 2.049 <140
2017-08-20 23:31–2017-08-21 11:16 8.5 2.049 <135
2017-08-20 23:31–2017-08-21 11:16 10.5 2.049 <99
2017-08-27 23:31–2017-08-28 09:00 8.5 2.049 <54
2017-08-27 23:31–2017-08-28 09:00 10.5 2.049 <39
2017-08-27 23:31–2017-08-28 09:00 10.5 2.049 <39
2017-09-04 22:48–2017-09-05 10:04 7.25 4.098 25±6

8 mm f/3.5 UMC Fish-eye CS II lens. The cameras capture
full sky images with a cadence of 30 s from sunset to sunrise
every night of the year.

Observations from Wooleen Station are available from
2 min before the GW170817 trigger and, as a result, DFN
is the only optical facility imaging the source during the GW
detection. Between 12:39:28 and 12:49:28, the host galaxy
was observed at an elevation of 20°. Initial analysis of the
images finds no persistent or transient sources in a 3° radius
of NGC 4993, to a limiting magnitude of magv= 4 (Hancock
et al. 2017). Further calibration and analysis have brought
this limiting magnitude down to magv = 6.

2.1.6. ESO VLT/NACO mid-IR

The ESO Very Large Telescope (VLT) consists of four 8.2-m
telescopes located at the Paranal Observatory in Chile. Ob-

servations were made with the NACO instrument (Lenzen
et al. 2003; Rousset et al. 2003) on the VLT UT1 Antu tele-
scope. The system allows for adaptive-optics and natural see-
ing imaging over J, H, Ks, L′, and M′ filters, as well as provid-
ing Wollaston polarimetry and coronography in L′. The 5σ

limiting magnitudes are given as J = 24.05, H = 24.05, Ks =
23.35, L′ = 18.55, and M′ = 15.15 in 1 h. These observations
were initially proposed as Director’s Discretionary Time (PI
Cooke, Baade) as part of the DWF programme to be made
immediately available to the LVC community. However, the
observations were finalised and executed by ESO, and made
available to the LVC community.

Observations in the L′-band (3.8 μm) were attempted on
each night between 2017-08-24 and 2017-09-04. Due to the
proximity to the Sun and scheduling constraints, the tar-
get was observed during twilight (at UT 22:45–23:20) at
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Figure 5. Stacked NACO image of NGC 4993 (27 arcsec × 27 arcsec), with
the location of AT2017gfo marked. The image is oriented with North up and
East to the left. The image is the combination of observations taken over
four nights and no significant source was found to the detection limits of
L′ = 15.3, 5σ .

airmass 1.5–1.6. Weather and inaccurate pointing during the
first nights resulted in the data from the four nights of August
25, 26, 27, and September 1 being analysed. A pixel scale
of 27 mas pix−1 was used for a total field of view of 27×27
arcsec. Observations were made in natural seeing mode with
integration times 126 × 0.2 s per jitter point (with a 3 arc-
sec throw per axis), for a total of 15, 19, 14, and 11 min per
night. HD 205772 was observed as a flux standard on August
28. The data were reduced by a custom script in a standard
way, correcting for sky variance by combining the jittered ob-
servations and de-striping by median filtering each detector
quadrant separately.

No sources apart from the NGC 4993 nucleus were de-
tected in the field (Figure 5). The detection limits were es-
timated from the background noise assuming a conservative
PSF corresponding to the detected galactic nucleus at ap-
proximately 0.5 arcsec FWHM, using a circular aperture of
1 arcsec (40 pix) radius. For the nights of August 25, 26, 27,
and September 1, the 5σ detection limits in L′ are 14.5, 14.8,
14.5, and 14.3 mag, respectively, with a combined limit of
15.3 mag.

2.1.7. ESO VLT/VISIR mid-IR

Imaging observations in the mid-IR were also made with
the VISIR instrument (Lagage et al. 2004) on the ESO VLT
UT3 Melipal telescope. Similar to NACO above, the obser-
vations were executed by ESO and made available to the LVC
community. VISIR provides an imaging field of view of 38
arcsec × 38 arcsec with a plate scale of 0.045 arcsec per

Table 9. ATCA measured flux densities for NGC 4993.

Observation date Frequency Flux density
(UTC) (GHz) (μJy)

2017-08-18.04 – 2017-08-18.38 8.5 420±50
2017-08-20.98 – 2017-08-21.47 8.5 360±20
2017-08-27.98 – 2017-08-28.37 8.5 460±30
2017-08-18.04 – 2017-08-18.38 10.5 500±40
2017-08-20.98 – 2017-08-21.47 10.5 550±60
2017-08-27.98 – 2017-08-28.37 10.5 400±20
2017-08-18.04 – 2017-08-18.38 16.7 300±50
2017-08-18.04 – 2017-08-18.38 21.2 210±70

Table 10. MWA Observations of GW170817 and AT2017gfo.

MWA (Imaging)

UT obs date Frequency (MHz) Bandwidth (MHz)

2017-08-18 07:07:52–09:40:00 185 30.72
2017-08-19 07:04:00–09:38:00 185 30.72
2017-08-20 07:00:08–09:34:08 185 30.72
2017-08-21 06:56:08–09:28:08 185 30.72
2017-08-22 06:52:16–09:26:16 185 30.72

Table 11. Parkes observations of GW170817 and AT2017gfo
searching for FRBs.

Parkes (FRB)

UT obs date Frequency (GHz) Bandwidth (MHz)

2017-08-18 06:49:31 1.341 340
2017-08-18 08:50:36 1.341 340
2017-08-20 01:44:32 1.341 340
2017-08-20 02:50:14 1.341 340

pixel. AT2017gfo was observed on 2017 August 23, 2017
August 31, September 1, 2017, and 2017 September 6, 2017
with the J8.9 filter (central wavelength 8.72 μm). Total on-
source integration times were 44.8, 17.5, 12.2, and 44.8 min,
respectively. Chopping and nodding in perpendicular direc-
tions with 8 arcsec amplitudes were used to remove the sky
and telescope thermal background. No source was detected
to a limiting mag of J8.9 ∼7–8 (Table 5). Details of the ob-
servations can be found in Kasliwal et al. (2017).

2.2. Optical/near-infrared spectroscopy

Observations of AT2017gfo and the galaxy NGC 4993 were
taken in the optical via longslit, fibre, and integral field unit
(IFU) spectroscopic modes. Both Australian and Australian
partner observational programmes participated in the spec-
troscopic follow up of AT2017gfo. Details of the instruments
and observations are provided below.
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Table 12. VLBA observations of GW170817 and AT2017gfo.

VLBA (Imaging)

UT obs date Frequency (GHz) Bandwidth (MHz) Flux (μJy)

2017-08-18 19:58–2017-08-19 01:34 8.7 256 <125
2017-08-20 18:31–2017-08-21 01:13 8.7 256 <125
2017-08-21 18:26–2017-08-22 01:08 8.7 256 <120

Table 13. ANU2.3/WiFeS observations of GW170817 and
AT2017gfo.

ANU2.3/WiFeS

UT obs date Spectral range (Å) Exposure (s)

2017-08-18 09:24:25 3 300–9 800 900
2017-08-18 09:40:25 3 300–9 800 900
2017-08-19 08:43:15 3 300–9 800 900
2017-08-19 08:59:42 3 300–9 800 900
2017-08-19 09:16:06 3 300–9 800 900
2017-08-19 09:36:18 3 300–9 800 900
2017-08-19 09:55:38 3 300–9 800 900
2017-08-20 08:47:28 3 200–7 060 1 800
2017-08-20 09:21:33 3 300–9 800 1 800
2017-08-21 08:40:58 3 300–9 800 900
2017-08-21 09:13 3 300–9 800 900
2017-08-21 09:29 3 300–9 800 900

Table 14. SALT/RSS observations of GW170817 and AT2017gfo.

SALT/RSS

UT obs date Spectral range (Å) Exposure (s)

2017-08-18 17:07:19.703 3 600–8 000 433
2017-08-19 16:58:32.76 3 600–8 000 716

2.2.1. ANU2.3/WiFeS

The ANU 2.3-m telescope is located at Siding Spring Ob-
servatory in New South Wales, Australia. It includes the
dual-beam, image-slicing, integral-field echelle spectrograph
(WiFeS, Dopita et al. 2007) which can simultaneously ob-
serve spectra over a 25 arcsec × 38 arcsec field of view.
WiFeS has a spectral range extending from 3 300 to 9 800 Å,
which can be observed either in a single exposure with a res-
olution of R = 3 000, or in two exposures with R = 7 000,
depending on the choice of low- or high-resolution grating
configurations, respectively. The observations were done us-
ing Director’s Discretionary Time.

Spectroscopic observations began on 2017-08-18 at
09:24:25 and 09:40:25 with a wavelength range of 3 200–
9 800 Å. Each observation had an exposure time of 15 min.
The reduced spectrum shows a blue, featureless continuum
peaking near 4 500 Å (Figure 7). The observations con-

Figure 6. WiFeS IFU collapsed data cube image (cropped to ∼25 arcsec
× 25 arcsec) of NGC 4993 and AT2017gfo (marked). The image combines
the data from both beams taken on 2017-08-18. The transient is noticeably
bluer than the host galaxy.

tinued for two further nights with the same configuration
but a larger number of exposures to increase signal for the
fading source. The last exposures were taken on 2017-08-
21 at times 08:40:58, 09:13, and 09:29 with a wavelength
range of 3 200–7 060 Å, again with exposure times of
15 min. A WiFeS collapsed data cube image is shown in
Figure 6.

2.2.2. SALT/RSS

Optical spectroscopy of AT2017gfo was obtained using the
Robert Stobie Spectrograph (RSS, Burgh et al. 2003) on the
10-m-class Southern African Large Telescope (SALT) lo-
cated in Sutherland, South Africa. The observations were
taken with Director’s Discretionary Time initiated as part of
the DWF programme. The RSS is a spectrograph covering
the range 3 200–9 000 Å with spectroscopic resolutions of
R = 500–10 000. The observations were performed using the
PG0300 grating at an angle of 5.75° and the 2 arcsec slit.
Data taken on 2017-08-18 at 17:07 and 2017-08-19 at 16:59
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Figure 7. The rapid spectral evolution of AT2017gfo. The ANU 2.3-m WiFeS, SALT RSS (2 spectra), and AAT AAOmega+2dF spectra obtained
at 0.93, 1.18, 2.16, and 6.92 d, respectively, after GW detection are shown and labelled. Vertical grey bands denote telluric features that are not well
removed in some spectra. Blackbody model fits (red curves) over the full spectra result in temperatures of 6 275 K (WiFeS), 6 475 and 4 700 K
(RSS), and 2 080 K (AAOmega). Peaks in the WiFeS, RSS, and AAOmega continua correspond to ∼6 400 K, ∼5 600 K, ∼4 400 K, and <3 200 K,
respectively.

(Shara et al. 2017) had exposure times of 433 and 716 s,
respectively. Due to the visibility limitations of SALT, the
data were acquired in early twilight and are heavily contam-
inated with a high sky background. Spectral flux calibration
standards were also observed on the same night.

Basic CCD reductions, cosmic ray cleaning, wavelength
calibration, and relative flux calibration were carried out with
the PySALT package (Crawford et al. 2010). Because of the
changing pupil during SALT observations, only a relative flux
calibration can be achieved. In order to de-blend the sources,
the flux from the host galaxy, the atmospheric sky lines, and
the GW source were fit simultaneously using the astropy
modelling package (Astropy Collaboration et al. 2013). The
reduced spectra appears to have a relatively blue, featureless
continua as seen in Figure 7. The data are also presented
and interpreted in McCully et al. (2017) and Buckley et al.
(2017).

2.2.3. AAT/2dF+AAOmega

The Anglo-Australian Telescope (AAT) is a 3.9-m
Equatorial-mount optical telescope located in New South
Wales, Australia. AAOmega is a dual-beam optical fibre spec-
trograph with 3 700 to 8 800 Å wavelength coverage and a
spectroscopic resolution of R = 1 700 (Smith et al. 2004). We
used AAOmega combined with the Two Degree Field (2dF)
multi-object system which allows for simultaneous spectro-
scopic observations of up to 392 objects within a 2° diameter
field of view. The observations were done as part of the DWF
programme and granted via Director’s Discretionary Time
while activating the newly commissioned AAT 2dF Target
Of Opportunity (ToO) mode. Fully configuring all 392 fibres
takes ∼40 min and is too long for rapid follow up of short-
lived transient phenomena. In rapid ToO mode, the 2dF soft-
ware determines, from an existing fibre configuration, which
fibres need to move to place a single fibre on the target and one
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Figure 8. AAT fibre spectrum of NGC 4993 in a 2-arcsec region at the position of AT2017gfo. A fit to the stellar light (blue) and the stellar light and
nebular emission (red) are shown. The fits include the flux of AT2017gfo (at +6.92 d) and the galaxy. Several common atomic transitions are marked
and a zoom-in of the Hα region is shown. The spectrum is corrected for line-of-sight Milky Way extinction.

Table 15. AAT/AAOmega+2dF observations of GW170817 and
AT2017gfo.

AAT/AAOmega+2dF

UT obs date Spectral range (Å) Exposure (s)

2017-08-24 08:55:07 3 750–8 900 2 400

on a guide star. This capability enables configuration and ob-
servation within a few minutes and, in the case of AT2017gfo,
5 min between ToO activation and the commencement of the
observations.

AT2017gfo observations began on 2017-08-24 at 08:55:07
to 09:41:28 with exposure times of 600 s each (Table 15).
The data were processed using the OzDES pipeline (Chil-
dress et al. 2017). Four exposures were analysed, revealing an
E/S0-like galaxy spectrum (Figure 8) with a weak red flux en-
hancement (Andreoni et al. 2017b). The source was isolated
by subtracting the host galaxy using the SALT host galaxy
spectrum (McCully et al. 2017) extracted from the region of
the galaxy near the source. The SALT spectrum was cleaned
over chip gaps and telluric line regions using the average
value on either edge of each feature. Finally, the SALT host
and AAT AAOmega host+event spectra were scaled and sub-
tracted (Figure 7). Subtracting two spectra with relative flux
calibrations introduces uncertainties in the scalar offset. Such
subtractions do not significantly affect the form of the residual

spectrum, but can provide a small affect on blackbody model
fit results. Although care was taken in the subtraction process,
the two spectra introduce possible flux calibration differences
from the different instruments and extraction techniques. As
a result, we stress that the spectrum presented here is meant
to be indicative of the behaviour and temperature of the event
at 6.92 d, and suffers from the above caveats. A proper host
galaxy subtraction with the AAT AAOmega+2dF is planned
when NGC 4993 becomes visible.

2.3. Radio

Five Australian and international radio facilities participated
in this follow-up campaign. In this section we describe the
role of each radio observatory that performed the follow up
of GW170817 and/or AT2017gfo under Australian-led ob-
serving programs.

2.3.1. ATCA

The Australia Telescope Compact Array (ATCA) is located
at the Paul Wild Observatory in New South Wales, Australia.
It is an array of six 22-m radio antennas, which can be con-
figured with antenna spacings up to 6 km. The array can
observe in one of five observing bands spread between 1.1
and 105 GHz.

We carried out ATCA observations on August 18, 21, 28,
and September 5, 2017 under a ToO programme (CX391;
PI: T. Murphy). During the August observations, we targeted
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53 galaxies identified to be located within the 90% contain-
ment volume of GW170817 (Bannister et al. 2017b, 2017c).
The September 5 observation targeted only the optical coun-
terpart, AT2017gfo and its host galaxy NGC 4993. Table 8
presents a summary of the observations.

The August observations used two 2 GHz frequency bands
with central frequencies of 8.5 and 10.5 GHz and observed
NGC 4993 using two frequency bands centred on 16 and
21 GHz on August 18, For the September observations, we
centred these two frequency bands on 5.5 and 9.0 GHz. The
configuration of the ATCA changed over the course of the
observations, with ATCA in the EW352 configuration for
the August 18 observation and in the 1.5 A configuration for
all other observations.

For all epochs and all frequencies, the flux scale was de-
termined using the ATCA primary calibrator PKS B1934-
638. The bandpass response at 8.5 and 10.5 GHz was de-
termined using PKS B1934-638 and observations of QSO
B1245-197 were used to calibrate the complex gains. We
used QSO B1921-293 to solve for the bandpass at 16.7 and
21.2 GHz and observations of QSO B1256-220 were used to
solve for the complex gains at these frequencies. All of the
visibility data were reduced using the standard routines in the
MIRIAD environment (Sault et al. 1995).

We used the MIRIAD tasks INVERT, CLEAN, and RESTOR

to invert and clean the calibrated visibility data from the Au-
gust observations of the 53 targeted galaxies. We fit a sin-
gle Gaussian to each of the 53 galaxies detected in our Au-
gust observing epochs (Lynch et al. LVC GCN 21628, Lynch
et al. LVC GCN 21629). Comparing these observations, we
find no transient emission above a 3σ limit between 36 and
640 μJy. The measured flux densities for host galaxy NGC
4993 are listed in Table 9. The results from our observations
of AT2017gfo are described in Hallinan et al. (2017), includ-
ing a detection on September 5 at 7.25 GHz, with measured
flux density of 25±6 μJy (Murphy et al. 2017).

2.3.2. ASKAP

The Australian Square Kilometre Array Pathfinder (ASKAP)
is a system of 36 12-m phased-array feed receiver radio tele-
scopes located in Western Australia. The instrument covers
a frequency range of 0.7 to 1.8 GHz with a bandwidth of
300 MHz. The field of view of is 30 deg2 at 1.4 GHz, with a
resolution of ∼30 arcsec.

ASKAP performed imaging observations on 2017-08-19
05:34:32 (LVC GCN 21513) with 12 of the 36 antennas5.
The 90% LVC contour region (The LIGO Scientific Collabo-
ration and the Virgo Collaboration 2017d) was covered with
three pointings using an automated algorithm (Dobie et al.
in preparation) observed over the following 4 d. We place an
upper limit of ∼1 mJy on emission from AT2017gfo and its
host galaxy NGC4993.

At the time of publication, 14 further single-beam observa-
tions of the AT2017gfo location were carried out with varying

5 As a result of ongoing commissioning.

numbers of beams and antennas at different frequencies and
bandwidths (subject to commissioning constraints). These
observations are undergoing processing, while further obser-
vations are ongoing.

ASKAP also searched the 90% LVC uncertainty region at
high-time resolution for fast radio bursts (FRBs Lorimer et al.
2007) using the search algorithms described in Section 2.3.5
to cover a dispersion measure range of 0–2 000 pc cm−3.
The observations were in “fly’s-eye” mode with seven an-
tennas at a central frequency of 1 320 MHz (Bannister et al.
2017a). Observation times were 2017-08-18 04:05, 2017-08-
18 08:57, and 2017-08-19 02:08, for a total duration of 3.6,
4.1, and 11.0 h, respectively. Above a flux density threshold
of ∼40 Jy/

√
w, there were no FRB detections (GCN21671),

where w is the observed width of the FRB in milliseconds.

2.3.3. MWA

The Murchison Widefield Array (MWA) is a system of 2048
dual-polarisation dipole antennas organised into 128 tiles
of 4×4 antennas located in Western Australia. MWA op-
erates between 80 and 300 MHz (Tingay et al. 2013) and
has a resolution of several arcmin. Operations with the orig-
inal array (baselines up to 3 km) with a compact configu-
ration with maximum redundancy ceased in 2016. The re-
duced baseline was used until mid-2017 at which point tiles
with extended baselines up to 5 km were installed for MWA
Phase II.

The telescope responded automatically to the LVC GCN
(Kaplan et al. 2015) but the initial LVC notice only included
information from a single detector of LIGO, so the telescope
pointing was not useful. Later, we manually pointed the tele-
scope and began observations on 2017-08-18 at 07:07 with
only 40 tiles in a hybrid array with elements of the maximally
redundant array and the original array. Observations occurred
daily from 2017-08-18 to 2017-08-22 with 75 × 2 min ex-
posures and then continued weekly. The observations cover
a 400 deg2 field of view at a central frequency of 185 MHz
and a bandwidth of 30 MHz (Kaplan et al. 2017b). We see
no emission at the position of NGC 4993 with a flux density
limit of 51 mJy beam−1 (3σ confidence) from the data taken
on 2017 August 18 (Kaplan et al. 2017c). Later, observations
with more functioning tiles and longer baselines should have
considerably improved performance. Kaplan et al. (2016) dis-
cuss in detail the strategies to use MWA for finding prompt
radio counterparts to GW events.

2.3.4. VLBA

The Very Long Baseline Array (VLBA) is a radio interfer-
ometer consisting of 10 25-m radio telescopes spread across
the United States, and is capable of observing in one of 10
bands at frequencies between 1.2 and 96 GHz.

The counterpart AT2017gfo and its host galaxy NGC
4993 were observed on three occasions under the Direc-
tor’s Discretionary Time project BD218, each with 6.5
h duration. The observations were performed from 2017-
08-18 19:58 to 2017-08-19 01:34, 2017-08-20 18:31 to
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2017-08-21 01:13, and 017-08-21 18:26 to 2017-08-22
01:09. The central observing frequency was 8.7 GHz, with
a bandwidth of 256 MHz and dual polarisation. The source
VCS1 J1258-2219, with a position uncertainty of 0.2 mas,
was used as a primary phase reference calibrator, with NVSS
J131248-235046 as a secondary calibrator. An observing fail-
ure rendered the first epoch unusable, but the second and third
epochs provided good data.

No source was detected within 0.5 arcsec of the position
of AT2017gfo, consistent with the findings of both the VLA
and ATCA instruments (e.g., Bannister et al. 2017c; Kaplan
et al. 2017a; Lynch et al. 2017). However, we are able to
provide 5.5σ upper limits of 125 and 120 μJy beam−1 at 2017
August 20 21:36 and 2017 August 21 21:36, respectively,
while stacking the two images produces an upper limit of
88 μJy beam−1 (Deller et al. 2017a, 2017b).

Imaging the core region of NGC 4993 identifies a sub-
mJy radio source at the centre with coordinates RA =
13h09m47.69398s Dec = –23°23′02.3195′′ (J2000). The de-
tection is consistent with either an unresolved source or a
marginally resolved source on a scale smaller than the VLBA
synthesised beam (2.5×1.0 mas). The systematic uncertain-
ties of our position are �1 mas in both RA and DEC. We
find a 9σ flux density of 0.22 mJy, and the a priori amplitude
calibration available to the VLBA is accurate to the 20%
level. If we assume the synthesised beam size of 2.5×1.0
mas to represent a conservative upper limit on the size of
the source, we infer a lower limit for the brightness temper-
ature of 1.6 × 106 K. An initial interpretation suggests the
recovered brightness temperature is consistent with an AGN
(Deller et al. 2017c). Comparison of the flux densities es-
timated by ATCA and VLA (see Table 9 and Hallinan et al.
2017) to the VLBA value indicates that a considerable amount
(∼50%) of the total source flux is contained within this mass
scale component.

2.3.5. Parkes

The Parkes Radio Telescope (Parkes) is a 64-m telescope lo-
cated in Parkes, New South Wales, Australia. Parkes operated
in FRB search mode with the Multibeam receiver (Staveley-
Smith et al. 1996) and the BPSR backend (Keith et al. 2010).
The usable bandwidth is 340 MHz, in the range of 1182–
1582 MHz. If the neutron star merger produced a massive
(>2 M�) neutron star instead of a black hole, it would be ex-
pected to possess a spin period close to the break-up velocity
of ∼1 ms and potentially a large magnetic field generated dur-
ing its formation. Such objects (millisecond magnetars) are
a potential source of FRBs or possibly even repeating FRBs
(Spitler et al. 2016; Metzger, Berger, & Margalit 2017). The
FRB should be detectable at S/N > 100 with Parkes at the dis-
tance of NGC 4993, if appropriately beamed and not hidden
by the ejecta from the merger.

A dedicated search for FRBs (Keane et al. 2018) with dis-
persion measures ranging from 0–2 000 pc cm−3 associated
with AT2017gfo was performed on 2017-08-18 at 06:49:31
and 08:50:36 with 2-h and 1-h integration times, respectively,

and again on 2017-08-20 at 01:44:32 and 02:50:14 with 1-h
integration times (Bailes et al. 2017a, 2017b). No FRBs were
detected with a 7σ limiting flux density of 1.4 sqrt(w/0.064)
Jy sqrt(ms), where w is the observed pulse width of the FRB
in ms.

3 ANALYSIS

The observations presented here identified the optical tran-
sient on multiple epochs for the first ∼7 d after the
LIGO trigger, starting from about 21 h after the event. In
Figure 4, we present the multi-band photometric light curve
of AT2017gfo, observed in g-band (SkyMapper), r-band
(SkyMapper, Zadko, Etelman/VIRT), and i-band (AST3-
2, SkyMapper). The multi-band measurements indicate a
decay faster in g-band than in the r- and i-bands. We
processed and analysed four optical spectra acquired with
ANU2.3m/WiFeS, SALT/RSS, AAT/2dF+AAOmega. The
subtraction of the host galaxy allows the signature of the
transient to be identified and the spectral evolution to be
assessed (Figure 7). In this section, we review the spec-
tral evolution of AT2017gfo, describe the properties of
the host galaxy NGC 4993, and assess the photometric
evolution of the event compared to sGRB and kilonova
models.

3.1. Spectral evolution of AT2017gfo

The ANU 2.3m (WiFeS), SALT (RSS), and AAT
(AAOmega+2dF) spectra reveal a rapid evolution of the tran-
sient over ∼7 d while maintaining relatively featureless con-
tinua. As a coarse measure of the evolving spectral energy dis-
tribution, we fit a blackbody model to the spectra (Figure 7).
Continuum blackbody temperatures were calculated by fit-
ting the observed spectra using the python scipy package
implementation of the non-linear least-squares Levenberg–
Marquadt algorithm. Spectra are corrected to rest-frame and
for Milky Way line-of-sight extinction using the Cardelli,
Clayton, & Mathis (1989) prescription and adopting RV =
3.1 and E(B − V) = 0.12 and based on the dust maps of
Schlegel, Finkbeiner, & Davis (1998).

The model fits result in a temperature evolution from
∼6 400 K to ∼2 100 K in ∼7 d. The WiFeS spectrum is
reasonably well fit by a ∼6 300 K blackbody, with the peak
in the spectrum continuum corresponding to ∼6 400 K. The
curvature of the SALT spectrum is not well fit by a black-
body model, with the model fit producing a temperature of
∼6 500 K, whereas the peak in the spectrum roughly corre-
sponds to ∼5 600 K. The second SALT spectrum, taken at
+2.16 d, is reasonably well fit, producing a blackbody model
fit of ∼4700 K, while the continuum peak corresponds to
roughly 4 400 K. By day ∼7, the source is quite faint and host
galaxy subtraction is less reliable. The AAOmega+2dF spec-
trum at +6.92 d is best fit by a blackbody model at ∼2 080 K,
but has the caveats stated in Section 2.2.3.
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3.2. The host galaxy

The AAT/2dF+AAOmega spectrum (Figure 8, Andreoni
et al. 2017b) was acquired 6.92 d after the LIGO trigger. The
fibre was centred on the transient position, but the spectrum
is dominated by the light of the host galaxy. Figure 7 shows
the galaxy-subtracted transient spectrum from the same
observation.

We use pPXF (Cappellari 2017) to fit the spectrum to
7 300 Å (the extent of the MILES spectral template library)
to estimate the metallicity, age, r-band mass-to-light ratio,
and velocity dispersion of stars in the region immediately
surrounding AT2017gfo. At the redshift of the host galaxy,
the 2-arcsec diameter of a 2dF fibre corresponds to a linear
size of 400 parsec. Assuming a spectral resolution of 4.5 Å
(measured using night sky lines), the pPXF fit yields a ve-
locity dispersion of 100 km s−1, a stellar age of 10 billion
yrs, a metallicity of [M/H] = −0.2, and an r-band mass-to-
light ratio of 4. Evidence for Hα emission in the pPXF fit
is very weak, measured at EW = −0.2 Å, but is consistent
with zero. The environment in the location of the transient is
consistent with an old, passively evolving stellar population
with no ongoing star formation.

The above assessment of NGC 4993 in the region of the
source is consistent with the report of Sadler et al. (2017)
for the central 6-arcsec region of the galaxy based on spec-
troscopy from the 6dFGS (Jones et al. 2009). The central stel-
lar velocity dispersion of 163 km s−1 (Ogando et al. 2008)
predicts a central black hole mass of MBH = 107.7 M� (Yu
et al. 2017), which can be compared against estimates based
on the radio properties of the central source. The compact
radio emission detected by VLBA in the central region of
NGC 4993 with a brightness temperature exceeding 106 K
indicates the presence of a low-luminosity active galactic
nucleus (LLAGN), allowing us to estimate the black hole
mass using the fundamental plane of black hole activity
(e.g. Plotkin et al. 2012; Merloni, Heinz, & di Matteo 2003;
Falcke, Körding, & Markoff 2004). The VLBA flux density
was measured to be 0.22 ± 0.04 mJy at 8.7 GHz, which (as-
suming a flat spectral index) gives a 5-GHz radio luminosity
of (2.1 ± 0.04) × 1036 erg s−1, while the X-ray luminosity
as measured by SWIFT is 5.6+2.4

−1.9 × 1039 erg s−1 (Evans et al.
2017). The radio spectral index is consistent with being flat
or slightly negative (as can be seen from the ATCA results
shown in Table 9); the results are insensitive to small vari-
ations in this parameter. Using the relationship described in
Plotkin et al. (2012), we obtain a predicted central black hole
mass of 107.8 ± 0.3 M�, in good agreement with the velocity
dispersion estimate.

Sadler et al. (2017) also state that the nuclear dust lanes
evident in the HST ACS images (Foley et al. 2017; Pan et al.
2017) may be the product of a galaxy–galaxy merger that
occurred as long as several Gyr ago. We note that a wet
galaxy merger (to produce the visible dust) implies that the
binary progenitor of AT2017gfo might have originated in the
merging galaxy and not necessarily in the main early-type

host. Such an origin could permit a shorter BNS inspiral time
than would be plausible for a massive galaxy with no recent
star formation. Previous sGRB hosts with possible kilonovae
are often low-mass, blue star-forming galaxies (Tanvir et al.
2013; Fong & Berger 2013), though 20–40% of sGRBs occur
in early-type galaxies (Fong et al. 2013). The diversity of pos-
sible host galaxies for neutron star merger events therefore
needs to be kept in mind when searching for the counterparts
of future GW events.

3.3. Comparison with GRB afterglow and kilonova
models

The optical data we acquired, alone, can give insight on the
nature of the transient event. First, we explore the GRB after-
glow scenario in order to test the possibility that AT2017gfo
behaves as a ‘standard’ on-axis GRB in the optical, specif-
ically using the Granot, Piran, & Sari (1999) and Granot &
Sari (2002) models. Second, we investigate the kilonova sce-
nario by comparing the data we acquired with three possible
models (Tanaka & Hotokezaka 2013; Hotokezaka et al. 2013;
Barnes & Kasen 2013; Metzger et al. 2015). In Figure 9, we
overlay the results we obtain to our data.

3.3.1. GRB afterglow

We investigate the GRB afterglow scenario using the Granot
and Sari (Granot et al. 1999; Granot & Sari 2002, G02) formu-
lation for a relativistic blast wave in an ISM environment. Far
from the sites of the break frequencies of the GS02 spectra,
each power-law segment becomes asymptotic. In particular,
we can assume that the frequency of our optical observations,
νopt, relates to other characteristic frequencies as νsa < νm <

νopt < νc, where νsa is the self-absorption frequency, νm is the
minimal electron synchrotron (or peak) frequency, and νc is
the frequency at which an electron cools over the dynamical
time span of the system. In this region of the spectrum, we
can approximate the spectral flux density as Fν ∝ tα . Simulta-
neous X-ray or radio measurements would help to constrain
the locations of the break frequencies of the spectrum.

We calculate the index α by χ2 minimisation of the Zadko
telescope r-band data points and we find α =−1.73 ± 0.10; in
addition, we derive an electron power-law index p = 1 + 4

3α

(G02) to determine p = 3.31 ± 0.13. This value is higher than
historical sGRBS (see Fong et al. 2015, for a decadal review),
where the median value of p is found to be 〈p〉 = 2.43+0.36

−0.28.
In a classical sGRB scenario, our calculated p could be in-
terpreted as (i) emission is not a spherically isotropic blast
wave (Sari, Piran, & Halpern 1999) giving a larger temporal
decay slope than historical sGRBs (Fong et al. 2015) or (ii)
evidence that the jet itself may be structured (Rossi, Lazzati,
& Rees 2002; Granot & Kumar 2003).

We use the isotropic gamma-ray energy measured with
Fermi 〈Eγ , iso〉 ≈ (5.35 ± 1.26) × 1046 erg (Goldstein et al.
2017a) to constrain our parameter space, assuming that Eγ , iso

≈ EK, iso (Frail et al. 2001). In this way, we find an un-
physically high circumburst number density (in the order of
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Tanaka+ 2013

Tanaka+ 2013

Tanaka+ 2013

Figure 9. Comparison of models to optical photometry with Zadko (squares, r-
band), AST3-2 (diamonds, i-band), Etelman/VIRT (triangles, C-filter presented
in the central panel), and SkyMapper (circles, gri-bands). The solid black line is
the GS02 model of a short GRB afterglow. The dark orange region represents the
kilonova model by Tanaka & Hotokezaka (2013). The solid red line represents the
Barnes & Kasen (2013) model for 56Ni+r-process opacities. The blue lines repre-
sent the free neutron-powered blue precursor (solid: vej = 0.2c, Mej = 0.01 M�;
dashed: vej = 0.2c, Mej = 0.1 M� Metzger et al. 2015), while the black dashed and
dot–dashed lines represent the Metzger et al. (2015) and Barnes & Kasen (2013)
models together. The figure is organised in three panels, presenting photometry
and overlaid models in g-band (top), r-band (centre), and i-band (bottom).
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n ∼ 1013 cm−3). In addition, placing such high values for
the circumburst number density back into the GS02 models,
we come across results that contradict our assumption that
νsa < νm < νopt < νc, i.e. that νc < νopt. Contradictory re-
sults are also obtained considering any other assumption for
the relation between the spectral breaks and for any spectra
given in Granot & Sari (2002). Therefore, we rule out the
optical emission being the afterglow of a ‘standard’ on-axis
sGRB. This conclusion is supported by the lack of any prompt
X-ray afterglow detection (Cenko et al. 2017), which usually
follow on-axis-GRB discoveries.

3.3.2. Kilonova models

We compare our data with three standard models describ-
ing inherent kilonova emission. In particular, we consider
the case of r-processes in the ejecta from BNS mergers
in the ‘TH13’ formulation (Tanaka & Hotokezaka 2013;
Hotokezaka et al. 2013) for a range of NS equations of
state, the ‘B&K13’ model (Barnes & Kasen 2013), and free
neutron-powered blue precursor to the kilonova emission
(‘M15’, Metzger et al. 2015). We plot the expected gri-bands
light curves for all these models in Figure 9.

TH13 model: We calculate the expected light curves us-
ing the TH13 kilonova gri-bands light curves for a source
located at DL=40 Mpc and for a variety of NS equations
of state, specifically APR4-1215, H4-1215, Sly-135, APR4-
1314, and H4-1314. We calculate the light curves for polar
view angles, where the magnitudes are K-corrected in the
rest frame using a standard �CDM cosmology with H0 =
70 km s−1 Mpc−1, �m = 0.3, and �� = 0.7 (Hotokezaka
et al. 2013). The results lie within the solid orange regions
in Figure 9 and show a fainter emission than we observed.
The results are to be expected, as the spectra (Figure 7) are
characteristic of a blue transient—at least in the first few days
after the merger—while the TH13 model predicts a transient
peaking at near-IR wavelengths. The ‘mismatch’ between our
measurements and the TH13 models reduces at late times and
at redder bands (from g to i), but only a longer monitoring of
the source could indicate whether the transient can be domi-
nated by r-processes at late times.

BK13 model: In the BK13 model, the ejecta have an
opacity similar to r-process material, made up of heavier
lanthanide-group elements generated from dynamical ejec-
tion, and material made up of 56Ni that is ejected via disk
winds. These cases predict an emission peaking in the near-
IR and optical, respectively (Barnes & Kasen 2013). We show
the results for the emission expected from 56Ni in Figure 9
as a dashed grey line. At late times (t ≈ 6 days), we find an
upper limit magnitude consistent with this model.

M15 precursor model: The photometry and spectroscopy
acquired here show a high optical luminosity and hot, blue
continua during the first ∼1 d (see Section 3.1). Therefore,
we explore the M15 model that predicts an energetic blue
precursor. This model is based on the idea that a small fraction
(i.e. Mn ∼ 10−4M�; Metzger 2017) of the ejected mass in the

outer shell is rapidly expanded after shock heating during the
merger. Thus, the neutrons in the outer shell avoid capture by
the nuclei in the dense inner ejecta during the r-process. The
unbound neutrons are then subject to β-decay, which gives
rise to a precursor to the kilonova which, at the distance to
AT2017gfo, would peak at magr ∼ 17.5 after a few hours,
and consistent with the photometry. The peak luminosity of
the neutron layer can be approximated by Lpeak ∝ vej × M1/3

ej
(Metzger 2017) We overlay the gri-bands plots to our data in
Figure 9 for lanthanide-free ejecta and for two sets of values
for the velocity and mass of the ejecta (vej = 0.2c, Mej =
0.01 M�; and vej = 0.2c, Mej = 0.1 M�).

The M15 model seems to match our observations with a
greater accuracy than the TH13 and BK13 models in the first
∼2 d after the merger. However, this model alone predicts a
steeper decay of the light curve than the observations. The
SkyMapper g-band upper limits place a mild constraint in
favour of a scenario with only an M13-type precursor. Nev-
ertheless, the combination of the M15 and BK13 models,
represented with black dashed lines in Figure 9, is a better
match to our data and, particularly, for the r-band measure-
ments shown in the central panel.

4 DISCUSSION

The first detection of the EM counterpart to a GW event is
a milestone in the history of modern astronomy. Australian
teams contributed to both the search and the follow up of the
transient AT2017gfo, the EM counterpart to GW170817. In
this paper, we present the observations, follow-up strategies,
and data acquired by 14 radio, infrared, and optical facilities
led by Australian observing programmes.

It is interesting to discuss the progenitor of this event. Our
own galaxy contains at least seven BNS pairs that will coa-
lesce in less than a Hubble time, see Özel & Freire (2016).
For some, like the double pulsar PSR J0737-3039A/B (Bur-
gay et al. 2003), the ‘remaining time’ before merger is short
(∼80 Myr), whereas for others, like PSR B1534+12 the (re-
maining) coalescence time is 2.7 Gyr (Arzoumanian, Cordes,
& Wasserman 1999). The latter would appear to be a more
likely progenitor for this event as it could have formed when
the last episode of star formation in NGC 4993 was still un-
derway. It will be fascinating to see how many binary star
mergers are ultimately observed in active star-forming galax-
ies from ‘ultra-relativistic’ progenitors with short lifetimes
compared to those from wider systems like PSR B1534+12.

The location in NGC 4993 is also of some interest. At
40 Mpc, the projected distance of AT2017gfo from the centre
is 2.2 kpc. Such a displacement could be achieved during a
galaxy merger, so constraints on any kick received by the
binary are poor.

No radio source is detected down to 40 μJy with the ATCA,
ASKAP, VLBA, and MWA telescopes within 10 d from the
GW detection. However, past sGRBs that were detected in the
radio despite being 30–60 times more distant than this event
(Berger et al. 2005; Soderberg et al. 2006; Fong et al. 2014;
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Zhang et al. 2017) imply that future neutron star mergers at
these (40 Mpc) distances could reach flux densities of 0.1 to
1 Jy. The Parkes and ASKAP radio telescopes searched for
FRBs in NGC 4993 after the BNS merger for a total of 5 and
18.7 h, respectively. No FRB was detected: a signal from a
source at ∼40 Mpc with similar properties of the repeating
FRB 121102 (Spitler et al. 2016) would have resulted in a
highly significant detection.

We compared ‘standard’ sGRB afterglow models (GS02)
with the optical light curve obtained with the measurements
of the Zadko, AST3-2, SkyMapper, and Etelman/VIRT tele-
scopes. The AT2017gfo transient was proven to be the EM
counterpart to GW170817 and GRB 170817A (Lipunov et al.
2017b), but its optical light curve does not match the sGRB
afterglow models. The continuum profiles and evolution of
the spectra of AT2017gfo are unlike sGRBs and argue for a
kilonova-like explosion, with a blackbody-like event cooling
rapidly over the ∼7 d of our spectral coverage. No features
are identifiable in the optical spectra acquired in the first week
after the trigger, which prevents us from performing veloc-
ity measurements. We cannot rule out that the emission is
collisionally dominated. Tidally energised winds may have
existed just prior to the merger, however the lack of any strong
X-ray emission and the exotic composition required for such
winds make this scenario unlikely. We compared three kilo-
nova models (T&H13, B&K13, and M15) with our photomet-
ric data and the plots, combined with the spectral evolution
of the transient, make the combination of a neutron-powered
blue precursor and a r-process red emission at later time a
plausible scenario.

5 FUTURE PERSPECTIVES

Several facilities discussed here have existing reactive pro-
grammes to follow-up GW alerts, while others perform ob-
servations as part of DWF and/or OzGrav.

DWF coordinates ∼30 major observatories worldwide and
in space to provide simultaneous, fast-cadenced, deep (m ∼
23–25, optical), radio to gamma-ray coverage of fast tran-
sients and GW events6 (Cooke et al. in preparation). As a re-
sult, DWF is on-source before, during, and after fast transients
and has been in full operation since 2016. Moreover, DWF
performs real-time (seconds) supercomputing data analysis
and transient identification (Andreoni et al. 2017a; Vohl et al.
2017; Meade et al. 2017) and triggers rapid-response, con-
ventional ToO, and long-term spectroscopy and imaging with
our network of 1–10-m class telescopes. DWF operates sev-
eral weeks a year and was not on sky during this GW event.
However, 10 DWF participating facilities provided data for
AT2017gfo. GW event detections during future DWF ob-
serving runs will provide complete, densely sampled, multi-
wavelength imaging, and spectroscopy of the event and host
galaxy.

6 http://www.dwfprogram.altervista.org

The intent of the EM component of OzGrav is to help over-
see a number of collaborating facilities, including the DWF
programme, in an effort to optimise the follow up of GW
events by Australian and Australian-led programs at all wave-
lengths. By the time of LIGO/Virgo ‘O3’ run, OzGrav will
be fully optimised to provide complete and dense coverage
of GW events at all wavelengths via imaging, spectroscopy,
interferometry, and FRB searches.

The DFN is being augmented with cameras designed to
detect bright optical transients. The first such station consists
of a Nikon D810 Camera with a Samyang 14 mm f/2.8 IF
ED UMC Lens, giving a field of view of 80 × 100°, an imag-
ing cadence of 15 s, and a limiting magnitude of magv = 10.
Successor astronomy stations have been developed to have
a greater sky coverage and increased sensitivity, via multi-
ple cameras to tile the sky with a <5 s imaging cadence and
limiting magnitude of agv = 12. The current and future DFN
network is the only facility that can provide continuous mon-
itoring for half of the Southern sky.

The future of the OzGrav facilities network also includes
the Gravitational-wave Optical Transient Observer (GOTO7),
a planned wide-field robotic optical telescope optimised for
following up LVC triggers. GOTO is supported by a collabo-
ration between Monash University; Warwick, Sheffield, Le-
icester, and Armagh University in the UK; and the National
Astronomical Research Institute of Thailand (NARIT). Each
instrument consists of eight 40-cm astrographs on a single
mount, with fields of view arranged to achieve a total cov-
erage of order 40 deg2. The prototype instrument, with four
astrographs, was deployed in 2017 June, although full robotic
operation was not achieved before the end of O2. Funding has
now been secured for an additional four astrographs, and the
instrument is expected to commence operations in 2018.

Australia will further be able to support the search for and
characterisation of GW sources with GLUV, a 30-cm ultravi-
olet survey telescope under development at ANU (Sharp et al.
2016) for a high altitude balloon platform. It will feature a
7 deg2 field of view and a limiting magnitude in near-UV
of ∼22. Ridden-Harper et al. (2017) explores the applica-
tion of GLUV to GW source characterisation, showing that
early UV observations could provide a powerful diagnostic
to identify merger pathways. The system is expected to fly in
2019 and build towards a constellation of telescopes flying
in observation campaigns.
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Abstract The expansion of the Australian Desert Fireball Network has been enabled
by the development of a new digital fireball observatory based around a consumer
digital camera. The observatories are more practical and much more cost effective
than previous solutions whilst retaining high imaging performance. This was made
possible through a flexible concurrent design approach, a careful focus on design for
manufacture and assembly, and by considering installation and maintenance early
in the design process. A new timing technique for long exposure fireball obser-
vatories was also developed to remove the need for a separate timing subsystem
and data integration from multiple instruments. A liquid crystal shutter is used to
modulate light transmittance during the long exposure which embeds a timecode
into the fireball images for determining fireball arrival times and velocities. Using
these observatories, the Desert Fireball Network has expanded to cover approxi-
mately 2.5 million square kilometres (around one third of Australia). The observatory
and network design has been validated via the recovery of the Murrili Meteorite in
South Australia through a systematic search at the end of 2015 and the calculation
of a pre-atmospheric entry orbit. This article presents an overview of the design,
implementation and performance of the new fireball observatories.
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1 Introduction

Meteorites provide insight into the formation and current state of the solar system,
but the value of most of these (more than 50,000 worldwide) is limited because the
origin of the sample, the heliocentric orbit, is unknown. The scientific value of sam-
ples with known origins is one of the motivations for sample return missions such
as Stardust [1] and Hayabusa [2]. Meteorites with a known pre-atmospheric entry
orbit determined by a fireball camera network allow us to constrain the origin of the
rock in the main asteroid belt, and possibly in some cases, even the specific asteroid
parent body. As of mid 2016, only about 29 [3–8] recovered meteorites have orbits
determined through fireball camera networks or other observational means.

Fireball camera networks continuously monitor the night sky for fireballs (meteors
magnitude -4 or brighter) produced as larger meteoroids enter the Earth’s atmosphere
at high speeds (tens of kilometres per second). These larger meteoroids are more
likely to produce meteorites on the ground instead of completely burning up dur-
ing the luminous trajectory (bright flight). The bright fireballs produced during the
ablation process can be tracked as they move through the atmosphere using optical
means. The observed trajectory (consisting of both position and timing data) allows
the calculation of the heliocentric orbit of the meteoroid and a fall position estimate
of the meteorite. The fall position must be known with sufficient certainty to recover
the meteorite via a ground search, and orbital precision must allow meaningful com-
parison with the orbits of known Solar System bodies. These constraints inform the
observational requirements of a fireball camera network.

The Australian Nullarbor plain is an exemplary site for a fireball camera network
due to its dark skies, minimal cloud cover, low rainfall, lack of vegetation and pale
geology [9]. The light coloured featureless terrain contrasts well with (usually) black
recent meteorites for a visual search. The Australian Desert Fireball Network (DFN)
aims to cover the Nullarbor and a significant fraction of the entire Australian Out-
back with fireball cameras in order to produce the first consistent source of meteorites
with orbits (delivering multiple meteorites with orbits per year). The original goal
was one million square kilometres of coverage [10], but that has since been revised
upwards due to the performance of the new observatories exceeding initial expecta-
tions. The new goal is to cover as much good meteorite searching terrain as possible
in Australia. The network recovered two meteorites with orbits during its initial phase
using large format film cameras (see Section 2.5): Bunburra Rockhole, an anomalous
basaltic meteorite [11] in 2008, and Mason Gully, an H5 ordinary chondrite [12, 13]
in 2010. A third meteorite (Murrili) has now been recovered using the new digital
observatories detailed in this work.

Meteorite recovery rates are determined by network coverage area which is lim-
ited by the per observatory cost relative to the imaging performance. Reducing this
cost to expand the network is the driving motivation behind the development of a new
cost effective fireball observatory for the DFN. The fully autonomous digital obser-
vatory (Fig. 1) is designed to record high resolution fireball trajectories in the harsh
conditions of the remote Australian Outback and is based on commodity off-the-shelf
digital imaging and computing hardware to minimise costs.
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Fig. 1 Digtal DFN observatory installation at Mt Ive Station in South Australia

2 Fireball camera networks

The first meteor photograph was captured in 1885 [14], and systematic photo-
graphic meteor observations have taken place since 1936 [15]. Three large fireball
camera networks with the aim of meteorite recovery were constructed in the
latter half of the 20th century. The European Fireball Network (originally the
Czechoslovak Fireball Network) and the US Prairie Meteorite Network started oper-
ations in the mid ’60’s, and the Canadian Meteorite Observation and Recovery
Project (MORP) followed in the early ’70’s [16]. These networks used large for-
mat film based camera systems to achieve the required resolution and sensitivity
to image fireballs for orbit determination and meteorite recovery. The observa-
tories typically take one exposure per camera per night; an additional exposure
is sometimes started after a bright fireball is detected (depending on network
capability) [17].

Estimating fall positions of meteorites from fireball data requires camera net-
works to capture fireball trajectories with high spatial and temporal precision
from multiple geographically distinct locations. The spatial precision of the cam-
eras determines the accuracy of the trajectory path triangulation, and relative
timing data is required to determine the velocity and deceleration of the mete-
oroid for mass estimation [18]. Absolute timing (time of appearance) is also
required to calculate the pre-atmospheric entry orbit due to the constant orbital
motion and rotation of the Earth. Previous networks have employed differ-
ent approaches to determining absolute timing, ranging from relying on chance
observations of the general public (no timing) to high precision sky brightness
loggers [16].
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2.1 Czechoslovak fireball network

Ondřejov Observatory has a long history of meteor observation, and commenced dou-
ble station observations using multiple narrow angle meteor cameras in 1951 [19].
These employed a rotating shutter mounted in front of the objective lens to create
periodic breaks (at 68 and 98 breaks per second [20]) in the meteor trails created
as the shutter arms pass in front of the objective lens to indicate meteoroid velocity
(once observations were triangulated with the secondary station). Since this tech-
nique only determines the relative timing (velocity) of the meteors and not the arrival
times necessary for orbits, sidereal tracking cameras following the relative motion of
the sky throughout the night were added alongside the fixed cameras by 1958 [21].
Meteor arrival times were determined by comparing the unguided (fixed pointing)
and sidereal tracking guided images [22]. These meteor cameras captured the fireball
that lead to the recovery of the Přı́bram meteorite fragments in 1959, providing the
first recovered meteorite with a known heliocentric orbit [23, 24].

The successful recovery of the Přı́bram chondrite spurred the creation of the
Czechoslovak Fireball network—with the goal of meteorite recovery in addition to
the previous objectives of meteor observation, trajectory analysis and orbit determi-
nation. This new network started operations with five stations in autumn 1963 [25].
These fireball cameras used a single all-sky camera per station instead of multiple
narrow angle cameras used by the meteor photography stations; this reduced the
workload for the operators manually initiating the night long exposures. The camera
and rotating shutter were mounted above a convex mirror to collect all sky imagery.
The rotating shutter in the fireball cameras was driven to produce 12.5 breaks per
second—slower than the rate used on the previous meteor cameras. The observato-
ries gathered the data required for trajectory triangulation and fall position estimation
(trajectory spatial and relative timing data) but employed no method of determining
the arrival times of fireballs; the network originally relied on chance fireball obser-
vations by the public for arrival times and therefore orbits. Driven sidereal tracking
cameras were added to three of the fireball camera sites at a later date to calcu-
late arrival times in the same method used by the original meteor cameras with an
accuracy usually within 5 seconds [22].

2.2 Prairie meteorite network

The US Prairie Meteorite Network was established in 1964 with sixteen stations in
the Midwest [26]. Each station consisted of four cameras using repurposed rectilin-
ear large format aerial imaging cameras integrated into small buildings with ancillary
instrumentation. The Prairie Network observatories also periodically occulted the
fireballs (20 times per second) to allow velocity measurement of triangulated events,
but departed from the rotating shutter design of previous fireball and meteor cam-
eras. The Prairie observatories utilised a switching shutter constructed from a bistable
electromechanical relay attached to a lightweight blade which oscillated in and out of
the optical path in the centre of the lens breaking meteor trail images according to a
pre-programmed pattern. The pattern embedded into the fireball trail image recorded
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the fireball’s arrival time. The system used repeating sequences which limited the
timing precision to a 10.4 second window.

The Prairie systems were also equipped with sky photomultiplier tube (PMT)
based photometers alongside each camera to extend the capabilities of the obser-
vatory. The photometer controlled the film exposure in response to sky brightness
during normal operation, and during extremely bright fireball events, it could reduce
the lens aperture and insert a neutral density filter to protect the exposure. The
photometer also stamped arrival times (more accurately than the switching shut-
ter timecode) of bright meteors by re-illuminating the data chamber (containing the
clock) when meteors brighter than magnitude -4 (fireballs) were detected [26]. The
Prairie network recovered the Lost City meteorite with an orbit in 1971 [27] and
ceased operation in 1975.

2.3 Meteorite observation and recovery project

The Canadian Meteorite Observation and Recovery Project (MORP) was created
after a number of Canadian meteorite falls were recovered in the 1960’s, stimulat-
ing regional interest in the field. The network started routine operation in 1971 and
took a similar approach in observatory design to the Prairie Network, with obser-
vatories consisting of five rectilinear cameras housed in a purpose built pentagonal
building. The cameras used a rotating shutter with a unique three sector design, con-
sisting of one transparent sector and two neutral density sectors (of densities 2.0 and
5.0) designed to image meteors across a large range of brightnesses [17]. Due their
unique design, the rotating shutters in the MORP observatories were driven more
slowly than previous designs to produce four dashes per second.

The MORP observatories used innovative PMT based meteor detectors for the
precise recording of meteor arrival times. In order to detect fireballs, and reject other
common bright transients, two concentric perforated cones were mounted over the
PMT. A light source moving at typical fireball speeds would produce a signal in a
particular frequency range as the light was periodically blocked and admitted through
the holes in the interleaved cones. Signals in this frequency range were detected
via electronic filtering, and this commanded the observatory to print the time of the
meteor event and advance the film after an appropriate delay. The project operated
from 1971 to 1985, recovering the Innisfree [17] meteorite with an orbit in 1977 and
produced a sizeable fireball dataset [28–30].

2.4 European fireball network

The Czechoslovak network became the European Fireball Network in 1968 when a
number of cameras were installed in southern Germany to work in conjunction with
the Czechoslovak cameras. This coverage was again expanded in 1988 when the Ger-
man cameras were redistributed to cover a larger area including Austria, Belgium and
Switzerland [31]. The Czechoslovak part of the network has undergone considerable
expansion and modernisation since its inception. The cameras have been upgraded
multiple times, first, moving from the manual mirror based all sky cameras to manual
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large format fisheye lenses providing significantly better precision (angular resolu-
tion of approximately one arc minute) and sensitivity. Additional stations with guided
cameras for absolute timing were added, and more recently (2003-2008) the manual
observatories have been replaced with automated observatories [32]. These contain
the same larger format film fisheye imaging configuration but are automated for 32
exposures providing five to seven weeks of autonomous observing, depending on
conditions, by way of a magazine equipped film handling system [32]. The cameras
monitor observing conditions using precipitation sensors and video camera based
star counters. If conditions are favourable, the observatories commence night long
exposures and continue to monitor the observing conditions throughout the night
(pausing or ending observations as required). The automated observatories are also
equipped with PMTs to measure sky brightness during fireball events. The brightness
is logged at 500 Hz, (later upgraded to 5000 Hz [7]) producing detailed brightness
curves for mass estimation via the photometric method [33]. The automated obser-
vatories are networked through a central server and can rapidly alert researchers of
the occurrence of bright fireballs. The European Network has recovered a number
of meteorites through systematic search campaigns (including Neuschwanstein [34],
Košice [35], Žďár nad Sázavou [6] and Stubenberg [6]) and provided orbital or tra-
jectory data for a number of other meteorites found by members of the public in
Europe (including Jesenice [36] and Križevci [37]); the network continues to operate
to this day. Recently the European Network has also started the transition to digital
observatories [6].

2.5 Desert fireball network — initial phase

The excellent searching terrain in the Australian Nullarbor was the motivation for the
development of the Australian Desert Fireball Network; the initial phase was con-
ducted using four fireball observatories [10] based on the automated Czech design
[32]. The design was modified to deal with the extreme heat of the Australian Out-
back with the addition of side panels and a retractable sunshield to shade the system
during the day, a modified thermal management system, and special high reflectance
paint to minimise solar heating. The solar powered observatories were installed on
pastoral stations, network connectivity was provided by geostationary satellite data
links, and the generous volunteer hosts changed the film magazines as required.

The initial DFN observatories track fireballs well, but are expensive, difficult
to install and costly to run and maintain; the £60,000 120kg observatories (Fig. 2)
required a truck and three days of work by a small team to install. The sys-
tems required monthly film magazine changes were powered by eighteen 80 Watt
solar panels. Storage was provided by a small shed of flooded lead acid batteries.
Maintenance was complicated by the size and weight of the observatory.

The initial phase of the DFN commenced routine operation in 2005 and produced
two meteorites with orbits: Bunburra Rockhole [11, 38] in 2008 and Mason Gully
[12, 13] in 2010. This proved the viability of a fireball camera network based in the
Australian Outback and laid the groundwork for the expanded digital DFN. Opera-
tion of the initial film based observatories ceased in 2015 once the expanded digital
network using the observatories described in this work commenced operations.
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Fig. 2 DFN large format film based observatory — used in initial phase, prototype digital observatory
visible in background

One aspect common to all of the custom engineered observatories used by these
previous networks is their high cost and complexity. It would be cost prohibitive and
impractical (due to the maintenance requirements) to cover an extremely large area
like the Australian Outback with these designs. A substantial reduction in observatory
cost and complexity whilst retaining high imaging performance was required to meet
the DFN coverage goals.

3 The need for a more practical and cost effective photographic fireball
observatory

The meteorite recovery rate of a fireball camera network depends on the size of the
coverage area and nature of the meteorite searching terrain. The southern half of the
Australian Outback, and the Nullarbor in particular, is excellent terrain for mete-
orite recovery, so the primary factor influencing the number of meteorite recoveries
is the observational capability of the DFN. With nearly ideal night time observ-
ing conditions in this region due to low light pollution and minimal cloud cover to
interrupt observations, this capability is primarily dependant upon the double station
(triangulable) coverage area.

Network coverage depends on the number and spacing of observatory stations
which is constrained by observatory imaging capabilities and the logistics of instal-
lation and maintenance. The number of stations is directly determined by the costs
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and maintenance requirements of the fireball camera design. The ideal fireball obser-
vatory has a low upfront cost, low ongoing costs, simple installation, infrequent and
minimal maintenance and high imaging performance.

Two types of fireball networks exist today: video networks and long exposure pho-
tographic networks. Video networks (such as the Southern Ontario All-sky Meteor
Camera Network [39], the Slovak Video Meteor Network [40], the Finnish Fireball
Network [41], and the French FRIPON network [42]) use analogue or digital video
cameras to record meteor trajectories at a high frame rate (usually around 30 frames
per second) but at low resolutions (0.3-1 megapixel (MP)). Photographic networks
(such as those previously mentioned in Section 2 or the Tajikistan Fireball Network
[43]) capture long exposure fireball photographs using high resolution (20+ MP dig-
ital or large format film) cameras to record meteor trajectories in a long exposure.
The exposures can be up to a few hours in length, so these networks also utilise at
least one method of determining meteor arrival times within the long exposure (see
Section 4.3).

The video based approach has become popular in recent years due to the increased
availability and affordability of sensitive video cameras. Observatories can be con-
structed from widely available off-the-shelf hardware and software, and the per
station cost is low, making them an attractive approach for amateur and collaborative
networks. Sensitive video cameras are well suited for recording meteor trajecto-
ries to determine geophysical properties by examining ablation and fragmentation
and for characterising meteoroid flux and orbital population distributions. However,
low resolution cameras do not, generally, record trajectories with sufficient preci-
sion to refine fall position distributions to the point where meteorites can be reliably
recovered through systematic search campaigns at specific locations (with the excep-
tion of more advanced multi camera systems such as [44]). All sky video networks
do indicate the general region where meteorites may fall, and these are sometimes
then recovered by the public (cf. [36, 45, 46]).Video networks also offer limited
orbital precision (due to the spatial precision of trajectory observations) which can
make matching sporadic fireballs (those not part of a known meteor stream) to parent
bodies with high confidence more difficult.

Much higher resolution photographic cameras do offer the spatial precision
required to determine fall positions with sufficient accuracy to reliably recover mete-
orites through systematic search campaigns. Large format film has been traditionally
used to achieve spatial precision of approximately one arcminute (limited by film
scanning techniques). Long exposure fireball observatories are more complex due
to the need to periodically occult the exposure for velocity determination and—
traditionally—the need for a separate absolute timing system. Digital photographic
cameras now offer the necessary resolution, but are expensive and require cus-
tom camera control solutions to function as fireball cameras. For these reasons, the
design and construction of high resolution long exposure fireball observatories have
typically been out of reach for amateur and collaborative networks.

Reaching the DFN’s original goals would be difficult using previous high pre-
cision fireball observatories. Modern digital still cameras present an opportunity to
develop a smaller, lighter, more power efficient and less costly fireball observatory.
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This type of design, constructed around a high resolution consumer digital cam-
era and off-the-shelf components, could satisfy the operational requirements and be
constructed for a much lower cost than previously possible.

4 The new automated digital fireball observatory

4.1 Requirements

The main design goals of the new Desert Fireball Network observatory are sufficient
spatial and temporal precision to enable meteorite recovery by small teams on foot;
the ability to operate reliably and unattended in the Australian Outback for long peri-
ods; compatibility with an automated data reduction pipeline; low per-system costs
relative to the imaging performance; and simple, fast and inexpensive manufacture,
assembly and deployment.

The observatories must be capable of withstanding the extremes of the Aus-
tralian Outback including temperatures over 50 ◦C, wind gusts carrying sand and
dust in excess of 100 km/hr, thunderstorms bringing occasional torrential rain, and
must operate unattended for long periods between servicing and data download vis-
its (ideally at least one year). This requires a robust design with the capability to
recover from minor malfunctions such as software or subsystem crashes. Connectiv-
ity to enable remote access for administration, troubleshooting and fireball event data
download is also desirable.

Small teams on foot in the Outback can cover 2-6 km2 per week depending on
the terrain; trips are usually limited to to around two weeks and 5-12 people due to
logistical constraints. This drives the spatial and temporal precision requirements of
the network. In order to reduce the uncertainty of the fall position estimate to the
point where recovery within these constraints is probable, the trajectory triangulation
should be accurate to ±100 metres (triangulation final vector should be accurate to
± 0.05 degrees) and the mass estimation should be within one order of magnitude.
Absolute temporal precision should be 0.01 seconds or better in order to obtain accu-
rate pre-atmospheric entry orbits, enable independent point by point triangulation
along the trajectory and allow straightforward alignment with measurements taken
by any other instruments. Relative timing precision (for velocity determination and
mass estimation) must be significantly more precise.

Camera spacing influences the choice of imaging system; around 100-150 km
between sites is a good compromise between coverage density and servicing effort,
and suits the spacing of availably installation sites (mostly pastoral stations) in the
Outback. A high resolution imaging system is required in order to meet the trajectory
precision requirements at this spacing; 36 MP image sensors are readily available in
consumer digital cameras and exceed this requirement (even when used with all sky lenses).

In order to deploy a continental scale network, the upfront and ongoing per sta-
tion costs must be minimised relative to the imaging performance. The upfront costs
include materials, manufacturing, assembly and installation while the ongoing costs
include maintenance and data connection costs. The move to digital imaging yields
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both cost reductions compared to film based systems and an automated data reduc-
tion capability. The cost and capability of digital imaging has greatly improved in
the last decade to the point where commodity consumer cameras have the resolution
and sensitivity required to capture fireball imagery with enough precision to produce
orbits and recover meteorites. Basing the observatory around off-the-shelf compo-
nents where possible enables significant cost reductions compared to the highly
customised approach of previous observatories.

It is not possible to manually process the large volume of fireball events gener-
ated by a continental scale network. To process the huge amount of data generated,
the new observatories must be compatible with an automated data reduction pipeline.
Consumer digital cameras integrate well into this approach because they allow
automatic data download to a computer in a readily accessible format.

The size, weight and power draw of the observatories needed to be reduced com-
pared to previous designs in order to make deployment and observatory maintenance
fast and simple. On site maintenance is difficult in the Outback due to the dusty and
sometimes harsh conditions. Ideally, the observatory would be small and light enough
for spares to be carried on servicing trips. This would allow the observatories to be
exchanged in the field and serviced in the lab (for more serious problems), allowing
simpler and more time efficient network maintenance.

4.2 Concept design

The proven approach of a long exposure fireball camera with an optical occulter was
selected to satisfy the design requirements but implemented with a high resolution
digital camera instead of large format film. The long exposures would be limited
to around 30 seconds (instead of an entire night) to prevent star trails that ham-
per lens calibration and astrometry. These 30 second exposures would be collected
continuously throughout the night during good observing conditions. A mechanical
shutter, of the rotating or switching type, was eliminated early in the design process
to reduce the number of expensive and failure prone precision mechanical compo-
nents. A number of different electro-optic modulators, or shutters, were tested for
suitability, and a LC-Tec X-FOS liquid crystal (LC) shutter was selected for it’s
ease of implementation, proven reliability and long lifetime (http://www.lc-tec.se/
products/fast-optical-shutters/). (Liquid crystal displays have been operating in con-
sumer devices for decades.) The LC shutter is driven via a microcontroller through an
H-bridge driver. The microcontroller also triggers the camera exposures via the cam-
era’s remote release port. The operation of the microcontroller is tightly synchronised
with highly precise global navigation satellite service (GNSS) time through a GNSS
receiver module. The long exposure images captured by the camera throughout the
night are downloaded via an embedded PC using the camera’s USB connection; see
Fig. 3 for system topology. Images are then automatically analysed by the com-
puter for fireball events before being moved from the solid state drive to the archival
disk drives. As a part of the event detection, the observatories communicate with
the network’s central server via an Internet connection (where available) to corrobo-
rate potential fireball events with a preliminary approximate triangulation excluding
single station false positives.
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Fig. 3 Digital Desert Fireball Network observatory block diagram showing data and power connections

Rapid development of the fireball observatory was prioritised to get the digi-
tal network operational as quickly as possible. A number of cameras and all-sky
lenses were tested for suitability. The Samyang 8mm f/3.5 UMC Fish-eye CS II was
selected due to the favourable (stereographic) projection and acceptable image qual-
ity. The Nikon D800E (later replaced with the D810) digital single lens reflex camera
(DSLR) was selected for its weather resistance, high resolution and good noise per-
formance, as well as the ability to control it from a Linux computer via gPhoto2
(http://gphoto.sourceforge.net/). In order to determine the viability of a fireball obser-
vatory based around an off-the-shelf consumer camera, four prototypes were rapidly
built and deployed for the 2012/13 summer to test the durability of the DSLRs in the
hot Australian climate.

The decision to archive all images (instead of only fireball images) was made early
in the concept design phase. This eliminated the chance of losing fireball images
due to false negatives in the event detection algorithms and allows us to collect a
complete wide field optical night sky dataset taken from multiple geographically
distinct locations. This dataset is offered to interested researchers for investigation
of optical counterparts to radio transients, meteorology, animal behaviour and other
fields (contact the authors for access).

To keep the observatory cost low, the primary components (camera, lens, com-
puter, data storage) are commercial off-the-shelf products with small modifications
where necessary. The electronics to drive and synchronise the shutter with GNSS
time and manage subsystem power are custom designed. The number of moving parts
has been minimised to keep costs low and reduce the potential points of failure.

4.3 Fireball timing

A photomultiplier tube is too large and expensive of a solution to fireball timing if
the design goals were to be achieved (mostly due to the high voltage power sup-
ply required). The flexibility of the microcontroller controlled shutter driver makes
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it possible to drive the LC shutter to modulate the exposure according to a pattern or
sequence. This can be used to embed a unique timecode into the fireball trail recorded
by the camera as it travels across the frame during the (30 s) long exposure. This
imprinted sequence shows the arrival time (absolute timing) and the velocity informa-
tion (relative timing) of the meteoroid allowing the calculation of both a fall position
and orbit. The ideal sequence is as long as possible while requiring the smallest part
of the sequence to be known in order to identify a unique arrival time for the fire-
ball. A longer sequence permits an extended exposure time, reducing the data rate of
the camera and wear on the camera’s shutter mechanism. This permits less frequent
data download and maintenance visits, reducing operating demands and cost. It is
desirable to be able to decode the timing from a short part of the sequence because
short meteors are more abundant, and statistical analysis of meteoroid populations is
another objective of the DFN.

The sequence that optimally satisfies these requirements is a De Bruijn sequence,
defined as the shortest possible sequence containing all possible n-element subse-
quences [47–49]. The microcontroller is precisely synchronised with UTC time via
a GNSS receiver to maintain timing precision. The technique eliminates the separate
absolute timing subsystem required by most previous designs, reducing, size com-
plexity, and cost. It is the main innovation allowing the new DFN digital fireball
observatories to be so compact and cost effective; the approach is detailed in Howie
et al. [50]. The Prairie Meteorite Network film cameras also used coded operation
of the (mechanical) shutter to record fireball arrival times directly into the fireball
image (on film), but this time was only known to within a 10.4 second window which
doesn’t meet the timing precision requirements of the DFN. For more accurate times
the Prairie Network systems depended on the same complex and expensive PMT used
in other designs, and this was limited to only bright meteors (fireballs, magnitude -4
and brighter).

The De Bruijn sequence technique used in the DFN observatories encodes abso-
lute and relative timing for all meteors and fireballs that are clearly imaged by the
cameras; The absolute timing precision is better than one millisecond and the relative
timing is significantly more precise.

Figure 4 shows a good meteorite dropping fireball candidate (DN141129 01) with
clearly visible time encoding as observed from the Perenjori DFN station.

The absolute timing precision allows independent triangulation of the fireball data
points (two per dash, twenty per second) along the trajectory. This three dimen-
sional point by point triangulation method eschews the straight line assumption
used in the traditional methods (intersection of planes [51], least-squares [52] and
multiparameter fit [53]).

4.4 Observatory design

In order to rapidly develop the digital fireball observatory, we adopted a concur-
rent engineering design approach, prototyping early and often. This allowed us to
quickly prove the viability of a digital fireball observatory based around commod-
ity imaging hardware and discover the key areas of difficulty early on in the design
process.
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Fig. 4 Enlarged view of DFN fireball event DN141129 01 with de Bruijn sequence time encoding clearly
visible. Times relative to exposure start time at 14:31:30 UTC on 29 November 2014

Discovering these problems early on significantly accelerated the design process,
and ensured design effort was targeted towards the aspects of the observatory that
most required it. Areas where this additional effort was required included the lens
environmental sealing and power supply reliability. Care was taken to devise and test
simple and creative solutions to design challenges adding minimal cost and complex-
ity before implementing more complex solutions. For example, instead of developing
a mechanised lens cover, an inexpensive hydrophobic surface treatment was success-
fully tested on the prototypes to allow self cleaning of accumulated dust on the lenses
during rainfall.

The observatory was designed with manufacture, assembly and maintenance in
mind. The number of manual manufacturing steps had to be minimised to con-
struct the significant number of observatories (more than 75) without contracting
out the manufacture. This was achieved by modelling the design in a 3D computer
aided design (CAD) package and then using affordable and flexible computer aided
manufacturing (CAM) techniques including computer numeric control (CNC) laser
cutting, CNC water jet cutting, 3D printing and CNC turning for the majority of the
manufacturing operations. This computer aided approach allowed us to minimise the
number of design revisions by examining the fit and alignment of components in
the computer model without waiting for the manufacture of prototype components.
Most of the (few) manufacturing steps were performed with these flexible and cost
effective manufacturing processes (with minimal or no tooling cost) using the CAD
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model geometry directly resulting in short lead times. This made rapid design iter-
ations and the short development time possible. Minimal manufacturing processes
were performed in-house; the majority of in-house work was semi-skilled assembly
performed by casual workers on an as needed basis. This flexibility allowed us to eas-
ily respond to design variations and respond to the changing demand as the network
roll-out progressed.

Off-the-shelf components were used wherever possible, resulting in significant
reductions in up front costs compared to previous fireball observatories (by a factor
of about 12). Care was taken to keep the design modular to simplify field and lab
based maintenance. The various subassemblies are interconnected using pluggable
connectors and, for the most part, can be removed and replaced without removing or
disassembling the adjacent subassemblies.

The first observatory prototypes proved the reliability of the selected DSLR and
LC shutter in the harsh conditions of the Australian summer as well as the operation
of the De Bruijn encoding; the design was revised a number of times adding func-
tionality and refining the existing systems. Care was taken whilst refining the design
to ensure complexity was minimised.

The initial observatory prototypes contained a fisheye lens, LC shutter, cam-
era, low powered PC with a system drive, power supplies and a basic circuit with
the GNNS module, microcontroller, and shutter driver. The four prototypes were
installed at the original film observatory sites (which were still operating at the time).
Data was stored on a small dual 3.5 inch drive network attached storage (NAS) device
located in the film camera’s battery shed and connected via Ethernet. These proto-
types successfully proved the concept, and underwent two major revisions to produce
the final design: Figs. 5 and 6.

The first major revision added a video camera to provide additional imagery of the
fireballs—especially of fragmentation events, increased computing power for image
processing, moved the data storage inside the observatory enclosure and integrated
more flexible power management.

Lens condensation blowers for the main and video lenses were added to prevent
condensation obscuring the images when the temperature of the glass front elements
dropped below the dewpoint at night. The design works particularly well because the
airflow cools the internal components and then transfers heat to the lenses, reliably
defogging them with minimal power usage (compared to lens heaters). Subsystem
power management is controlled by the microcontroller and directed via the PC
for a flexible system making fine grained power management possible. The subsys-
tems can be powered on and off as required; allowing the solar powered observatory
to achieve the desired low power usage. Figure 3 shows the power and control
connections between the different observatory subsystems.

The archival data storage consists of two 3.5 inch hard drives (WD Red models
with an extended operating temperature range) in a dual drive enclosure connected
via USB. Over time the total capacity has increased as larger drives (6 and 8 TB)
have become available.

A small number of these second revision prototypes were constructed, and, after
testing, the PCB was re-implemented with surface mount components to accelerate
production and save board space. A serial level converter was added to allow the PC
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Fig. 5 The exterior of the fireball observatory showing the door, lenses, outer blower ducting and
sunshield mounting bolts with a 15 cm ruler for scale

to also receive accurate time information from the GNSS module, and the self reset
functionality was also slightly modified. The design as a whole has not changed since
this revision, but minor changes have been made to the self reset circuitry and some
modifications have been made for production reasons (e.g.: swapping IC packages
for more reliable reflow soldering).

The the other components in the observatory have evolved a little over the three
years the design has been in use. The camera was upgraded to the Nikon D810 when
it was released due to the slightly increased performance and lower cost compared to
the D800E. The embedded PC was upgraded to a Commell LE-37D model equipped
with USB 3.0 enabling faster image download from the camera, a wider input voltage
range, more powerful CPU, additional expansion ports, and a more reliable power
connector. The initial observatories had some reliability issues due to power supply
problems, but these were eliminated by the PC upgrade, swapping to higher rated
solar charge regulators and swapping the DC-DC converter regulating the power to
the PC and hard disk drives (HDDs) to a more capable model with a wider input
voltage range. The modular design of the observatory allowed most of these changes
to be easily retrofitted to the existing systems in the field.

5 Notable design aspects

The observatory has a number of notable features and inventive solutions to problems
encountered.
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Fig. 6 Fireball observatory internals. Showing (clockwise from top left): video camera and lens,
blower ducting, camera and lens (LC shutter inside), embedded PC, observatory management PCB
(microcontroller, GNSS module), hard drive enclosure

5.1 3D printed blower ducting

Directing airflow from the lens blower mounted inside the box over the lenses to
remove condensation during the night was a significant challenge due to the tight
space constraints. A two piece duct was designed in software from the geometry and
layout of the box, blower and lenses. The duct is a complex organic shape designed to
direct the airflow evenly over the two lenses without sharp turns and provide multiple
drain locations for any accumulated water. The part was designed in CAD (see Fig. 7a) and
produced on two different 3D printers. This allowed the production of the compli-
cated shape without the significant tooling expense of injection moulding. A simple
coat of paint provides UV resistance to the printed plastic part. The final blower and
ducting assembly is shown in Fig. 7b.

5.2 Lasercut interlocking stand

Installation of the film observatories was a laborious, time consuming and expensive
three day exercise requiring a truck, a large team and pouring of a concrete foun-
dation. A faster and smaller scale installation procedure was required for the rapid
deployment of the digital DFN; a semi-permanent support structure would allow
this faster deployment and uncomplicated camera relocations if required. The semi-
permanent nature of the installation, leaving little to no trace after removal, allowed
simpler negotiation of installation sites enabling rapid network deployment.
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Fig. 7 Lens condensation blower and ducting. a The CAD design showing the complex ducting geometry.
b The manufactured ducting assembly removed from the observatory with the blower

The stand (Fig. 8) is constructed from interlocking laser cut steel plate which is cut
to order with low lead times and machining costs. The interlocking plates fit together
like a three dimensional jigsaw puzzle and are affixed with inexpensive steel wedges
hammered into specially design slots in the interlocking tabs. This design packs flat
and allows rapid installation in approximately thirty minutes. Torsional stability is
provided by tensioned wire stays visible in Fig. 1.

5.3 Weather sealed lens flanges and hydrophobic coating

To weatherproof the lenses against the infrequent but sometimes torrential rain, they
are sealed into custom designed Aluminium flanges (clearly visible in Fig. 5). The
flanges also support the lenses and attached cameras. The flange meets the glass front
element of the lens with a thin metal protrusion which is bonded to the glass with
a small amount of precisely applied waterproof and flexible silicone sealant. The
weather sealing on a few flanges failed initially; the sealant application procedure
was modified and no further failures have occurred. The design is versatile and has
been adapted to the Samyang 14mm f/2.8 rectilinear and Canon 8-15mm f/4 fisheye
zoom lenses for testing and special purpose DFN observatories.

The open flange design does not protect the lens from dust which can lower the
contrast and sensitivity of the imaging system. To minimise the accumulation of dirt
and ensure water droplets run off the dome shaped front element (instead of evaporat-
ing in place leaving a precipitate) the lenses are coated with a consumer hydrophobic
surface treatment. This is intended to make the lenses self cleaning; accumulated dust
and dirt should be cleaned off when rain droplets bead up and run off the lens. The
coating seems to perform as intended, as the lenses remain clean between servicing trips.

Image quality is not affected at all by the flanges making them preferred to pro-
tective domes. The weather sealed flanges are also much simpler and less costly than
retractable lens covers. They are not susceptible to mechanical or electronic failure
helping to increase reliability.
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Fig. 8 Stand made from interlocking lasercut steel plates which packs flat and can be assembled on site
with steel wedges in about 30 minutes

5.4 Flexible network connectivity

The observatories are networked via an Internet connection where available. This
links them to the central server for status reporting and allows event detection to
incorporate observations from multiple stations to increase reliability. The observa-
tories support a wide variety of different connection types including: 3G mobile data
from two different service providers, Ethernet, WiFi and satellite data. This versatil-
ity allows the installation of DFN observatories nearly anywhere, and allows the use
of the lowest cost connection on a per-site basis. A virtual private network (VPN)
is used to bridge the heterogeneous architecture creating a connection agnostic and
seamless network. The majority of the network is connected through 3G mobile data.
The connected observatories use a few hundred megabytes of data per month on logs
and event detection notifications (which include small image tiles). The observatory
is also capable of operating without a network connection; event detection is run on
the data from these offline cameras when the hard drives are collected and ingested
into the central data store. This mode of operation is used at some remote sites where
satellite connections are currently prohibitively expensive.

5.5 Other notable aspects

Some other notable design aspects include the ability to power cycle all of the sub-
systems including the cameras, PC, HDD’s and microcontroller. This allows recovery
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from occasional software glitches including frozen cameras or dropped USB con-
nections. The observatory enclosure is an off-the-shelf steel hinged enclosure CNC
water jet cut to accommodate the observatory fittings. This provides a high quality
durable enclosure that meets the requirements without the expense and complication
of designing and manufacturing a custom enclosure. CNC cutting makes improve-
ments and new prototypes simple to implement by modifying the CAD software
design. Enclosure temperature is regulated by a thermostat controlled cooling fan.
(Heating is not necessary at the current observatory sites.) A fixed sunshield mounted
on top of the observatory reduces solar heating during the day. The shield is mounted
below the protruding lenses and does not obscure the field of view.

5.6 Design for manufacture and assembly

Considerable design effort was focused on the ease of assembly of the observatory
to make it possible to produce the design quickly and easily in-house. The manufac-
turing steps are automated from the CAD design, including the laser cutting of the
backplane, HDD support, stand and sunshield; the water jet cutting of the enclosure,
gasket, and flange rings; the CNC turning of the lens flanges; and the 3d printing
of the blower ducting. The observatory is modular and easy to assemble; the in-
house assembly is performed in small batches and takes approximately six hours per
observatory.

6 Observatory operation

The observatory is controlled by the embedded PC (Commell LE-37D); flexible
scripting allows it to adapt to the operational conditions as required including: posi-
tion, date, time of day, weather and remaining drive capacity. Online observatories
regularly file status reports with the central server and relay fireball event detections,
so potentially meteorite dropping fireballs can be analysed before HDD collection.
Full size images can be downloaded from online cameras for analysis if required.
This is only performed for significant potentially meteorite dropping fireball events
due to the high data transfer costs of downloading large raw image files.

The PC is connected to the Atmel ATmega32U4 microcontroller via a USB vir-
tual serial connection (using the LUFA library—http://www.fourwalledcubicle.com/
LUFA.php) which controls the observatory subsystems. The PC directs operations
with high level commands (e.g.: start camera triggering) that are sent to the micro-
controller and then implemented at a low level (e.g.: triggering the DSLR every 30
seconds through the remote release port). This approach avoids tying the observatory
to a specific embedded PC; any PC with USB connections for the microcontroller,
camera and hard drives would be compatible. Subsystems are only powered by the
power distribution electronics when required. This results in substantial power sav-
ings for the solar powered observatory as many subsystems are only required for
a portion of the day or night (e.g.: camera and video camera at night during good
observing conditions, hard drives for 30-60 minutes in the morning while data is
archived). The operational and exposure parameters are listed in Table 1.
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Table 1 Nominal DFN operational parameters

Parameter Value Note:

Exposure Period 30 s time between exposure starts

Exposure Duration 29 s shutter open time

Deadtime 1 s (out of every 30 s) time where shutter is not open

Observing Time 8-14 hours per night depending on latitude and season

Camera Nikon D810 older systems use D800/D800E

Sensor Size 35.9 x 24.0 mm 35 mm “full frame”

Image Resolution 36 MP (7360 x 4912) 69 % pixel utilisation, see Fig. 14

Bit Depth 14 bits

Colour Filter RGGB Bayer array

Image Size 45 MB ≈45-75 GB per cloudless night

Image Format Nikon lossless compressed raw (.NEF)

Embedded PC Commell LE-37D Intel Bay Trail based single board
computer

Operating System Debian GNU/Linux

Camera Control Library gPhoto2

ISO Speed 6400 most stations

Lens Aperture Setting f/4 most stations

Lens Samyang 8mm F3.5 Fish-eye CS II Nikon F mount

Lens Projection stereographic fisheye

Image Circle ≈28.7 mm slight crop at top and bottom of
image circle

Field of view 180 degrees 5 % of hemisphere area cropped

Limiting Magnitude, Fireballs ≈0.5 stellar magnitude

Limiting Magnitude, Stars ≈7.5 stellar magnitude

Optical Modulator LC-Tec X-FOS LC Shutter twisted nematic type liquid crystal
shutter

Open state transmittance 36%

Closed state transmittance 0.1%

Shutter Operation de Bruijn time-code

Shutter Rate 10 dashes per second, te = 100 ms 10 elements per second sequence rate

Data Point Rate 20 data points per second dash starts and ends

Particular Sequence prefer high de Bruijn sequence k = 2 (binary), n = 9 (subsequence
length)

Encoding pulse width t0 = 20 ms, t1 = 60 ms (dash length)

Observations are automatically controlled by local sunset and sunrise times at
each site depending on season and location; observations start and stop when the
Sun is six degrees below the horizon. Each exposure is modulated by the LC shut-
ter between the lens and the image sensor to encode the arrival time of any fireballs.
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The microcontroller precisely synchronises the start and end of the exposure as well
as the modulation of the LC shutter with GNSS time to ensure sub-millisecond tim-
ing precision. Images are captured in the Nikon raw format. Every fifteen minutes,
an image is analysed to determine the quality of observing conditions. Which are
quantified using a star counting algorithm comparing the count to a dynamically
adjusted threshold that compensates for the presence of the Moon and other bright
light sources within the image. Observations are paused in poor conditions to save
storage space and shutter actuations (wear on the camera). Analysis of the observ-
ing conditions continues at 15 minute intervals, and normal operation is resumed if
conditions improve.

The video camera operates at night in parallel with the still camera. One minute
segments are saved to the SSD throughout the night and retained on the HDDs where
a corresponding event is detected in the still images. The operational parameters for
the video camera are shown in Table 2. The video camera observations are not cur-
rently incorporated into the automated data pipeline. Expanded video capabilities,
including photometry, will be incorporated into the data pipeline in the future.

In the morning, still images are downloaded from the camera’s CF card over the
USB connection using gPhoto2 and stored on a solid state drive (SSD). Custom
automated event detection software then searches the sequence of images for meteor
events which are then relayed back to the central server (for online cameras). The
server attempts to corroborate the events across multiple observatories by performing
a rough triangulation which eliminates most false positives: satellites, aircraft, stray
lights. Data is periodically archived from the SSD to the larger HDDs to be collected
during servicing and then ingested into the central data store.

When a significant fireball event is detected, the images are processed through the
centralised data pipeline—Fig. 9.

Table 2 Nominal DFN video camera operational parameters

Parameter Value Note:

Video camera Watec WAT-902H2 CCIR ULTIMATE some older systems using EIA
equivalent

Video camera resolution 795 x 582

Colour Filter none panchromatic camera

Bit depth 8 bit, YUV colourspace

Frame rate 25 fps, interlaced

Exposure time 1/50 s

Gain control auto gain

Capture card Commell MPX-885

Compression H264 variable bit rate FFmpeg “ultrafast” preset

Nominal bit rate ≈ 27 Mbps

Lens Fujinon FE185C046HA-1 1/2” format 5 MP 185 degree fisheye

Lens aperture setting f/1.4

Limiting magnitude ≈2 stellar magnitude (fireballs and stars)
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Fig. 9 Stages in the data processing pipeline for a fireball event

7 Data pipeline

When a promising fireball event is flagged by the event detection, the relevant images
are downloaded from the cameras or recalled from the data store. Event metadata
is tracked throughout the entire pipeline. First, pixel coordinates are selected with
timing from the fireball dashes; this is performed manually with a workflow opti-
mised custom software tool (Fig. 10) allowing the points to be selected quickly and
reviewed or edited if required. This process takes approximately five minutes per
image on average. The luminous trajectory is triangulated using these points and the
camera calibration data which characterises the relationship between each observa-
tory’s pixel coordinates and the corresponding altitude and azimuth coordinates from
each site. This relationship is dependant on the all-sky lens projection, atmospheric
refraction, lens distortion (intrinsic parameters) and camera orientation (extrinsic
parameters). Calibration is determined by analysing the starfield as imaged by the
DLSR. Visible stars are matched to a catalogue iteratively from the centre of the
image until the entire field of view is described by a polynomial fit.
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Fig. 10 Fireball data point extraction tool. Times for the data points (in red) are automatically calculated
from the corresponding de Bruijn sequence element. A partial preview of the sequence, as well as the
currently selected element, is displayed to the user at the bottom of the window

Triangulation is currently performed using the least-squares method [52] which
makes a straight line assumption, but we are currently developing a independent point
by point three dimensional triangulation method that doesn’t rely on this assumption.
This is only possible due to the absolute timing precision of the observations that is
maintained by the GNSS synchronised operation.

The triangulated trajectory is analysed using the dynamic method as described by
[18], which uses the observations to estimate meteoroid position, velocity and mass.
This method calculates the likely errors based on the uncertainties of the observations
and the single body dynamic model. This approach is advantageous because these
uncertainties, and in particular the uncertainty of the final mass, can then be factored
into the dark flight modelling and incorporated into search and recovery decisions.

The final vector and mass distribution is used to model the dark flight of the mete-
oroid once it has decelerated to the point where ablation ceases and it is no longer
visible to the camera network. The first step of this process is high resolution (3km
grid) WRF ARW (http://www.wrf-model.org/index.php) atmospheric modelling of
the relevant volume initialised from a regional model incorporating local ground and
weather balloon flight data. The fall position distribution is determined by simulation
of meteoroid motion through this volume (dark flight) using the Monte Carlo method
to incorporate uncertainties (mostly in the mass, final velocity, and the atmospheric
model). This fall position distribution is then used to plan the search and recovery
of the single meteorite or multiple meteorite fragments. The ideal fireball has a long
visible trajectory at a steep angle, a slow final velocity at a low altitude, a final mass
estimate of one kilogram or more and a search area in accessible featureless terrain
with a stable hard surface [54–56].
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The heliocentric meteoroid orbit is calculated from the initial atmospheric entry
vector refined in the trajectory analysis using an numerical propagation technique,
which can then be back propagated (in time) and possibly matched to a parent body
or asteroid family. Where a link can be made and a meteorite recovered, the sample—
now of known origin—can be analysed with the proper context; which may, in turn,
contribute to new understanding about the formation and current state of the Solar
System.

The data processing pipeline, in it’s current state, is semi-automated; the individ-
ual steps (apart from fireball coordinate extraction) are automated but, for now, the
process is manually coordinated. Automation of the image analysis for coordinate
extraction is a priority. While the problem is not difficult for the ideal case (a fast,
unsaturated fireball in the higher resolution central area of the fisheye lens), it is chal-
lenging in many real world cases where the fireball is obstructed, slow or toward the
edge of the lens. In the long term, all of the steps and the coordination of the pipeline
will be fully automated to produce masses, fall positions and orbits from detected
events without manual intervention.

8 Performance

The digital fireball observatory has satisfied the design requirements and enabled the
rapid deployment of the digital Australian Desert Fireball Network. The observato-
ries are so cost effective and easy to deploy that the coverage goal has been revised
upwards to cover as much good searching terrain as possible within Australia—and
this is well under way.

The system has proven to be reliable, suitable for harsh Australian conditions,
compatible with a (semi-)automated data pipeline, and easy to install and maintain.
The observatories successfully operate for long periods between data download and
maintenance trips, but the desired goal of one year between download intervals has
not been met yet. The cameras fill two 6TB drives after 8-10 months, but some configura-
tion changes are planned to reduce the filesize of the images, by cropping them to just
the region of the sensor used by the fisheye lens. This should extend the download
interval to approximately one year when combined with drive upgrades (8 TB drives
with suitable temperature ratings are now available and in use at some stations).

The spatial precision of the observatories is approximately one arcminute (down
to 5 degrees above the horizon) which is similar to the precision of the previous
film based observatories. This allows trajectory triangulation to within several tens
of metres. Improvements past this point would do little to refine search areas on the
ground due to the dark flight (wind profile) and mass uncertainties. The de Bruijn
timecode has performed well: absolute timing precision on the trajectory is better
than one millisecond and the techniques has even produced good results for visibly
fragmented meteors. The spatial and timing precision achieved more than satisfy the
requirements for orbits and ground searches.
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The observatories can be fully deployed and commissioned in four hours by two
people. The observatories are are small (370x300x150 mm) and light (12 kg). This
makes it simple to bring spare observatories on maintenance trips; for more seri-
ous problems, they can be exchanged in the field and serviced back in the clean
laboratory with more capable equipment. Maintenance in the field and in the lab is
made easier by the modular construction. Routine maintenance includes inspection,
exchanging hard drives, cleaning the lenses, examining the power systems and con-
nections, operations testing, replacement of the outer blower ducting if required and
extracting the occasional spider. The periodic replacement of some parts is planned:
the DSLR’s mechanical focal plane shutter has a limited lifetime; the outer blower
ducting usually lasts for one to two years, and lenses are predicted to degrade at
some point from UV exposure and dust storms. Nikon rates the D800/D810 as
tested to 200,000 shutter actuations; in practise, the cameras seem to last signif-
icantly longer than this: very few have failed to date. One D800 has taken more
than 890,000 exposures to date and is still operating, but more time is required to
determine the average shutter lifetime under observatory conditions. The cameras
can be returned to the manufacturer for a focal plane shutter replacement when
required.

A graphical summary of the performance and characteristics of the new digi-
tal fireball observatory compared to the previous large format film observatories is
presented in Fig. 11.

Fig. 11 A comparison of the new digital DFN observatories and the previous film based observatories
used in the initial phase
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8.1 Network deployment

The first four production observatories were installed in December 2012, and, as of
December 2016, the Desert Fireball Network has expanded to 49 stations in three
main regions: Western Australia (Wheatbelt and Mid-west), The Nullarbor and South
Australia. A new southern Queensland region is also being established. Nominal
camera spacing is about 130 km, and the current network coverage (Fig. 12) is ≈2.5
million km2 (approximate double station coverage — where fireball triangulation is
possible), which is roughly one third of Australia.

8.2 First recovery — murrili meteorite

The DFN recovered the Murrili Meteorite at the end of 2015 (Fig. 13) using observa-
tions from four of the new digital observatories. This is the third meteorite recovered
by the DFN and the first using the new digital network. The 6.1 second fireball
(Fig. 14) appeared on 27 November 2015 on a steep trajectory into Kati Thanda—
Lake Eyre South in South Australia. The heliocentric orbit has also been calculated,
and will be presented in a future publication. The 1.7 kg meteorite was located
through a systematic search by a small team of three researchers and excavated from

Fig. 12 Current DFN deployment of 49 stations showing approximate double-station coverage (triangu-
lable area)
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Fig. 13 The Murrilli Meteorite — the first recovered using the new digital DFN observatories

the thick salt lake mud by hand from a depth of 42 cm. The Arabana People, the local
indigenous people, assisted with the recovery and naming of the meteorite. This result
demonstrates the success of the digital DFN and the viability of the new observatory
design.

Fig. 14 The 6.2 second Murrili Meteorite Fireball, 27 November 2015 10:43:44.50 UTC as observed by
the Billa Kalina DFN observatory
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9 Future work

Network expansion is ongoing in Australia and internationally through partner net-
works managed by collaborators. A new version of the camera designed for simple
rooftop installation at mains powered sites is under development.

The extreme dynamic range of fireball events pose a problem for all imaging
systems. The DFN observatories are well suited for imaging the vast majority of
meteorite dropping fireballs, but extremely bright superbolides can saturate large
areas of the image sensor, obscuring the trajectory and timing. While events like this
are rare (a couple per year at the current network size), they are particularly inter-
esting. Work to improve the dynamic range at both ends of the spectrum is currently
under way.

The current (dynamic) mass estimation method [18] does not require brightness,
so fireball photometry is not regularly performed. As the data processing pipeline
is further developed, fireball photometry will be automatically derived from video
camera data using local brightness reference stars to be incorporated in future models.

More than a dozen good meteorite dropping fireball candidates have been
observed to date. Fieldwork to recover some of these will be conducted in the future.
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Chesley, S.R., Shrbený, L., Borovička, J., et al.: An anomalous basaltic meteorite from the innermost
main belt. Science 325, 1525–1527 (2009)
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Brown, P., et al.: The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit. Meteorit.
Planet. Sci. 48, 1757–1779 (2013)
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Abstract–Long-exposure fireball photographs have been used to systematically record
meteoroid trajectories, calculate heliocentric orbits, and determine meteorite fall positions
since the mid-20th century. Periodic shuttering is used to determine meteoroid velocity, but
up until this point, a separate method of precisely determining the arrival time of a
meteoroid was required. We show it is possible to encode precise arrival times directly into
the meteor image by driving the periodic shutter according to a particular pattern—a de
Bruijn sequence—and eliminate the need for a separate subsystem to record absolute fireball
timing. The Desert Fireball Network has implemented this approach using a microcontroller
driven electro-optic shutter synchronized with GNSS UTC time to create small, simple, and
cost-effective high-precision fireball observatories with submillisecond timing accuracy.

INTRODUCTION

Meteorites provide valuable insight into the
formation and history of the solar system and have
remained relatively undisturbed since the formation of
their parent bodies. There is no shortage of recovered
meteorites available for study, but interpreting the
results of the physical and chemical analysis is
constrained by a lack of knowledge of the precise
origins of the samples; this lack of context also limits
the conclusions that can be drawn from a single
meteorite. The solution is to study planetary materials
of known origins. Sample return and rendezvous space
missions to asteroids and comets are expensive and
high-risk approaches to solving this problem; fireball
camera networks which record atmospheric trajectories
of bright meteors can provide a cost-effective
alternative.

Fireball camera networks traditionally use long-
exposure photography from multiple stations to
produce a triangulated trajectory with sufficient
precision to recover meteorites and calculate heliocentric
orbits that can be compared to the orbits of potential
parent bodies (Halliday 1973). Long-exposure images
are occulted by a periodic shutter in order to determine
meteoroid velocity during the observable trajectory

(Jacchia and Whipple 1956; Ceplecha 1957).
Traditionally, these systems have required separate
timing subsystems to record absolute arrival times for
orbit calculation (McCrosky and Boeschenstein 1965;
Halliday et al. 1978). We present a technique using
timecodes constructed from de Bruijn sequences (Flye
Sainte-Marie 1894; de Bruijn 1946) to embed the arrival
time into the fireball trail image using an electro-optic
shutter with no moving parts. This approach enables
much smaller, lower power, and more cost-effective
fireball cameras than previously possible, and has
allowed the rapid deployment of the Desert Fireball
Network (DFN) (Bland et al. 2012) in the Australian
Outback. The development is significant in that it
allows off-the-shelf cameras to be turned into high-
precision fireball observatories without the need for
additional sensors. The design also significantly
simplifies data reduction. The motivation and
development will be outlined along with a
demonstration of the results produced using the
technique to gather all required trajectory data from a
single long-exposure image per station.

Using this technique, the Desert Fireball Network
has achieved spatial precision of approximately 1
arcminute and submillisecond timing precision at a
fraction of the cost of previous observatories. The
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technique could also be applied to other areas where
high-precision motion-time data are required, including
spacecraft, particle image velocimetry, and tracking
other objects or phenomena.

FIREBALL CAMERA NETWORKS

Fireball camera networks continuously observe the
night sky for rare bright meteors known as fireballs or
bolides, which may result in single or multiple meteorite
falls. The bright flight or observable luminous trajectory
of the fireball (as the meteoroid ablates in the
atmosphere) is recorded on a highly accurate imaging
device from multiple geographically distinct stations.
The meteoroid’s trajectory through the Earth’s
atmosphere is triangulated from these multiple
observations in order to determine the estimated fall
location and the meteoroid’s preatmospheric entry
orbit. In addition to the path through the atmosphere,
the distributed observatories must also accurately record
timing of the trajectory. The relative timing is vital for
determining meteoroid velocity and deceleration, which,
in combination with the path geometry, allows the
estimation of its mass and hence a fall position
distribution. The absolute arrival time of the fireball is
required to accurately determine the heliocentric orbit
of the meteoroid due to the constant orbital motion and
rotation of the Earth.

Three large fireball networks were developed in the
1960s and 1970s. The Czechoslovak Fireball Network
(now the European Fireball Network) commenced
operations with all-sky cameras in 1963 (Ceplecha and
Rajchl 1965), shortly followed by the Prairie Meteorite
Network in the Midwest United States in 1964
(McCrosky and Boeschenstein 1965) and the Canadian
Meteorite Observation and Recovery Project (MORP)
in 1971 (Halliday et al. 1978). The Desert Fireball
Network (DFN), located in the remote Australian
Outback, commenced operation in 2003 with the testing
of a large-format film-based observatory based on the
recent European Network automated design (Spurn�y
et al. 2006) with modifications for the Australian
climate (Bland et al. 2012). The network became
operational with three stations in 2005, and a fourth
station was added in 2007 (Spurn�y et al. 2012a). The
trial network successfully recovered two meteorites:
Bunburra Rockhole (Bland et al. 2009; Spurn�y et al.
2012a) and Mason Gully (Spurn�y et al. 2012b; Dyl
et al. 2016). This success paved the way for the
development and deployment of the first all digital
fireball camera network designed for meteorite recovery.

Fireball trajectories must be recorded with high
accuracy and precision to ensure meteorites can be
located and meteoroid orbits can be meaningfully

compared to the orbits of potential parent bodies. Due
to the extremely low population density and remoteness
of the region, meteorite searches in the Australian
Outback are typically conducted by small teams (5–12
persons) on foot, for up to 2 weeks. This places an
upper limit on the area of searchable terrain for each
predicted meteorite fall (approximately 2–6 km2), which
informs the precision requirements for the network
(DFN precision goals for bright flight observations:
meteoroid trajectory: �50 m, triangulation final vector:
�0.05°, mass: 1 order of magnitude). The relative
timing along the bright flight trajectory provides the
velocity information required to calculate a fall position
probability distribution, while the precise absolute
arrival time is required for the orbital calculation.
Trajectory analysis and mass estimation are performed
using the dynamic method detailed in Sansom et al.
(2015), giving a robust analysis of the observational and
modeling errors involved. After the mass distribution
has been estimated, dark flight modeling simulates the
meteoroid behavior as it falls to the ground after
ablation ceases and it is no longer visible to the camera
network; the atmospheric conditions are modeled in the
relevant volume from a climate model based on the best
available local meteorological data including ground-
based measurements and balloon flight data.

Uncertainties in the observed position and velocity
of the meteoroid during the trajectory increase the area
of the ground search; for this reason, meteor camera
networks have previously used large-format film-based
cameras to achieve high spatial precision (approximately
1 arcminute, limited by film developing and scanning
techniques [Spurn�y et al. 2006]). The DFN uses high-
resolution (36 megapixel), full-frame (24 9 36 mm)
digital sensors with fisheye all-sky lenses to achieve
similar spatial precision. The digital observatories are
constructed from off-the-shelf components where
possible to simplify manufacturing and reduce costs
(Howie et al. 2017). They are significantly smaller and
easier to manufacture and install than previous designs
and integrate with an automated data processing
pipeline to greatly reduce the data reduction workload
of a large network.

RELATIVE FIREBALL TRAJECTORY TIMING

Relative fireball timing is determined by periodically
occulting the sensor or film plane during a long-
exposure fireball image. This chops the meteor trail
(Fig. 1a) into small segments (Fig. 1b) at a known rate,
allowing the calculation of meteoroid velocity
throughout the luminous trajectory after triangulation
from multiple stations. The first purpose-built fireball
observatories in the Czechoslovak network used a

1670 R. M. Howie et al.

376 H. A. R. DEVILLEPOIX



mechanical rotating shutter to periodically obstruct the
film plane similar to previous meteor camera designs
(Ceplecha et al. 1959; Ceplecha and Rajchl 1965). The
rotational position of the shutter is tightly controlled
with respect to time. As the shutter rotates throughout
the exposure, the open sectors in the disk create the
visible dashes, and the opaque sectors create blanks in
the trail where the light path from the fireball to the
film plane is obstructed. This relative timing data
enables the estimation of fall site distributions but not
heliocentric orbits. The Prairie Network replaced the
rotating mechanical shutter with a solenoid-controlled
switching shutter that moved a lightweight blade in and
out of the optical path within the lens (McCrosky and
Boeschenstein 1965). This switching shutter operated at
20 cycles per second to produce regular dashes in
fireball trails for relative timing similar to the rotating
approach. The Canadian MORP network used modified

slow-rotating shutters with three different sectors
producing four dashes per second, one transparent and
two different neutral density filters to allow the imaging
of very bright fireballs that would otherwise overexpose
the film (Halliday et al. 1978).

Absolute Fireball Trajectory Timing (Arrival Time)

The absolute arrival time of a meteoroid is required
in addition to the path and velocity of the meteor’s
luminous trajectory in order to calculate the meteoroid’s
preatmospheric orbit due to the constant orbital motion
and rotation of the Earth. Because photographs in long-
exposure fireball camera networks can be up to one
night in length, a method of determining the arrival
time of a fireball within the exposure is required. The
three large networks took different approaches to the
absolute timing problem. The Czechoslovak network

Fig. 1. Long-exposure fireball encoding using a light modulator. a) Long exposure, no encoding. b)Traditional periodic
occultation for velocity determination. c) de Bruijn sequence encoded as shutter opacity (0: closed, 1: open). d) de Bruijn
sequence encoded as pulse width (0: short, 1: long). (Color figure can be viewed at wileyonlinelibrary.com.)
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initially relied on chance human observations for arrival
times, but was then upgraded to determine absolute
timing by comparing images from the fixed fireball
cameras with rotating shutters to concurrent images
from identical sidereal-guided cameras on equatorial
mounts (Ceplecha et al. 1959). The difference in
position of the meteor trail image between the two
cameras is determined by the position of the guided
camera when the meteor arrives. This allows the
calculation of the arrival time due to the precise
relationship between time of day and the guided
camera’s position. This method is theoretically simple
but relies on very precise movement of the equatorial
mount to achieve the specified timing precision of �5 s
(Spurn�y 1997). The Prairie Network recorded absolute
timing by modifying the switching shutter’s pattern of
operation. A break was extended to denote the
beginning of a timing window. Different dashes were
omitted in each window by holding the switching
shutter closed to indicate which 10.4 s window in the
4 h exposure a fireball appeared (McCrosky and
Boeschenstein 1965). A photomultiplier tube (PMT) was
also used to timestamp arrivals, but only for meteors
brighter than magnitude �4 (fireballs). The MORP
observatories were also equipped with a PMT—this
time behind interleaved perforated masks to detect
motion in the appropriate (angular) velocity range for
meteors via an electronic filter circuit. This meteor
detector printed the arrival time on the current sheet of
film in the camera and then advanced the film to the
next frame. The Czechoslovak design (now operating
within the European Fireball Network) was updated in
the late 1990s with the addition of a PMT to record
meteor light curves at a high sample rate and remove
the need for guided cameras operating alongside the
fixed cameras (Oberst et al. 1998); this Czech design
was later automated to reduce the labor demand
(Spurn�y et al. 2006).

Standard video cameras are also used in some
fireball networks (Finnish Fireball Network [Gritsevich
et al. 2014], Spanish Fireball Network [Trigo-
Rodr�ıguez et al. 2005], Polish Fireball Network [Olech
et al. 2006], the Croatian Meteor Network [Andrei�c
and �Segon 2010], and others). These video cameras can
offer good timing precision, do not require data
integration from multiple sensors, and are often used
in amateur and collaborative networks where the low
per station cost makes them an attractive option.
However, the poor spatial resolution offered by
systems built around commonly available video
cameras paired with all-sky lenses produces significant
uncertainty in the fall position and orbit, reducing the
likelihood of successful meteorite recovery and the
chance of matching an orbit to a potential parent

body. Video systems based on expensive high-
resolution industrial imaging cameras or using multiple
video cameras with rectilinear lenses (such as Cameras
for Allsky Meteor Surveillance [CAMS] [Jenniskens
et al. 2011]) can achieve similar spatial precision to
still cameras. However, the high data rates can make
the overall solution complex.

The absolute timing precision required for accurate
orbit determination depends on the spatial precision of
the observatory. Absolute timing precision of 1 s is
sufficient for orbit determination by networks similar to
the DFN (high-resolution still cameras with all-sky
lenses). More precise timing will not result in more
precise orbits due to the spatial uncertainty. The
submillisecond timing precision offered by this
technique becomes more useful for orbit determination
when higher spatial precision instruments such as
traditional telescopes and fireball observatories
incorporating narrow angle rectilinear lenses are used.
The technique can be applied in these higher spatial
precision instruments without additional difficulty.

High absolute timing precision is also useful for
other purposes aside from orbit determination. The
ability to precisely align camera network fireball
observations with other timed data sources such as
Doppler RADAR (which can provide meteoroid
positions at lower altitudes than camera networks) can
be beneficial for the recovery of meteorites in more
difficult situations. Accurate absolute timing of the data
points in fireball images also makes a wider range of
triangulation techniques possible because the trajectory
data points can be individually triangulated.

A NEW APPROACH

The primary objective during the development of a
new fireball observatory for the DFN was to reduce
the per station cost in order to deploy the largest
network possible on a finite budget while maintaining
the precision required for meteorite recovery. The
expected number of meteorite dropping fireballs
observed by the network per year depends primarily
on the network coverage area, and the likelihood of
recovery depends on the suitability of the meteorite
searching terrain. The primary factors contributing to
the high cost of previous designs were the custom
large-format film-based imaging system, the precision
manufacturing and assembly required to produce the
mechanical shutter, and the expensive and complex
photomultiplier tube subsystem. The new DFN
observatories are based around off-the-shelf consumer
digital cameras in order to significantly reduce the per
station cost and utilize an automatic data pipeline for
triangulation, fall position estimation, and orbit
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calculation. After testing a number of camera and lens
options, the Nikon D810 (offering high resolution and
good low-light noise performance) and Samyang 8 mm
f/3.5 II (offering a favorable projection and good
value) were selected. A mechanical shutter of the
rotating or switching type presents an obstacle to
reducing the per observatory cost; the tight
manufacturing tolerances and difficult assembly
required to implement a precisely controlled
mechanical shutter between the lens and sensor plane
would significantly contribute to the overall cost of
each observatory.

An electro-optic shutter does not require such tight
manufacturing tolerances and significantly reduces
complexity with no moving parts, resulting in greatly
reduced manufacturing and assembly costs. Liquid
crystal, polymer-dispersed liquid crystal, and switchable
liquid crystal mirror shutter technologies were tested;
the liquid crystal (LC) shutter option was selected for
its proven track record in long-lasting consumer
products (liquid crystal displays), ease of
implementation, low cost, and availability. The LC
shutter also has the added advantage of global
operation, where the transmittance changes across the
whole frame with the same timing and hence timing is
position independent. This is in contrast to a rotating
shutter where the sweeping motion of the rotating
shutter across the frame over time must be considered
(Ceplecha 1987). The drawback of LC shutters is the
limited open state transmittance—approximately 36%
for the LC-Tec X-FOS shutters used by the DFN
(LC-Tec 2013); this drives the need for good low-light
performance from the camera. The LC shutter is
mounted between the lens and the sensor plane to
periodically obstruct the light path like the mechanical
shutters of previous designs, but without moving parts.
The shutter must be as thin as possible to minimize
focus shift and optical aberrations. The LC shutter is
simply mounted over the rear element of the all-sky lens
(Fig. 2), and the thin drive wires are routed out through
the side of the lens.

A New Technique for Absolute Timing

The previous techniques for determining arrival
time in long-exposure fireball images are not ideal for a
low-cost fireball camera network deployed in the
Australian Outback where the observatories must
operate in harsh conditions without manual intervention
for periods up to 1 yr. The dust and high winds
prevalent in the outback make it difficult and expensive
to design and construct precision mechanical systems
that operate reliably without frequent maintenance; the
dual guided and unguided camera configuration of the

original Czechoslovak system was not considered for
this reason. The photomultiplier tubes of the recent
European network design provide fireball timing along
with well-resolved brightness data but are expensive and
require high voltage power supplies, complex supporting
electronics, a separate optical window or cover, and
constant drive voltage adjustments in order to capture a
high dynamic range and prevent destruction of the
PMT. Processing the brightness curve data is not simple
due to the changing drive voltage (affecting gain) and
the angle-dependent response of the PMT. Avoiding the
added cost and complexity of a separate absolute timing
subsystem enables a more cost-effective, smaller, and
more power efficient fireball camera. The coded shutter
approach of the Prairie Meteorite Network (McCrosky
and Boeschenstein 1965) partly achieves this as it
records absolute timing in the fireball’s trail as it travels
across the frame of the long-exposure image, but the
precision of the system is too low (within a 10.4 s
window) to meet the DFN’s objectives for high orbital
accuracy.

Time Encoding

Electro-optic shutters make more advanced time
encoding straightforward: the devices have fast
response times compared to mechanical alternatives
and are simple to drive electronically. The flexibility of
a microcontroller-driven LC shutter makes it possible
to encode absolute timing data (arrival time) by
slightly varying the pattern used for relative timing

Fig. 2. Imaging system showing all-sky lens, camera, LC
shutter, shutter driver, microcontroller, and GNSS receiver.
(Color figure can be viewed at wileyonlinelibrary.com.)
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data (velocity) according to a timecode without
requiring any additional hardware. Higher precision
than previous attempts at using timecodes—in
absolute timing and therefore orbits—is achieved with
a constantly changing sequence that does not repeat
during the exposure and by synchronizing the
operation with highly accurate GNSS time. GNSS or
global navigation satellite systems use constellations of
satellites (including GPS, GLONASS, QZSS, Galileo,
and Compass/BeiDou) to provide users with precise
positioning and timing data.

When a meteor or fireball appears, the image of the
meteor trail is embedded with a part of this timecode as
the meteor moves across the frame, while the LC
shutter modulates the light transmittance according to
the timecode sequence. The part of the timecode
sequence visible in the meteor trail corresponds to the
time within the long exposure where the fireball was
visible. This records the absolute timing data including
the arrival time, and makes the calculation of the
heliocentric orbit possible. The recording of the relative
and absolute timing data is inherent in the image and
does not require the integration of data from multiple
subsystems, therefore simplifying the data processing
problem.

The ideal timecode should be as long as possible in
order to maximize the possible exposure length, but
require as few elements visible as possible for time
decoding in order to capture the arrival times of short
fireballs. While short fireballs are less likely to drop
recoverable meteorites, they appear more frequently and
are important for the statistical analysis of meteoroid
orbits, a secondary goal of the DFN.

A number of different types of sequences were
considered as timecodes. The characters in the sequence
produce uniquely recognizable image features (e.g.,
brightness, or dash length—depending on the encoding
used); the absolute timing of the trajectory can be
determined when the pattern of features visible in the
image can be matched with a section of the timecode
sequence. The conceptually simplest is a counter
sequence with each digit encoded as a different shutter
opacity (the first approach in Table 1). This type of
sequence is not optimal because the start of each
subsequence is not defined and the number of elements
that must be visible to decode the unique arrival time
varies throughout the sequence. An alternate encoding
with a character reserved to define the start of each
subsequence could be used (the second approach in
Table 1), but this is an inefficient usage of a character
in the sequence alphabet that could otherwise be used
to extend the sequence. A longer sequence allows a
longer exposure on the fireball observatory; this extends
the camera lifetime and reduces the amount of data

collected per night resulting in longer periods between
visits for maintenance and drive changes.

The optimal solution for this type of problem is a
sequence that includes every subsequence exactly once
for a given subsequence length (the third approach in
Table 1). This type of sequence is known as a full-
length cycle or de Bruijn sequence (Flye Sainte-Marie
1894; de Bruijn 1946).

DE BRUIJN SEQUENCES

De Bruijn sequences are the shortest cyclic
sequences containing all possible subsequences for a
given alphabet and subsequence length. Their existence
was formally described in Flye Sainte-Marie (1894) and
then independently described again several times in the
20th century (de Bruijn 1975). de Bruijn (1946) is the
best known of these rediscoveries and the reason they
are often referred to as de Bruijn sequences today.
Interestingly, their use dates at least as far back as an
ancient Sanskrit sutra for memorizing rhythms around
1000 AD (Kak 2000; Stein 2010). As an example, the de
Bruijn sequence “00011101” contains all of the eight
possible three element subsequences “000,” “001,”
“011,” “111,” “110,” “101,” “010,” and “100” for the
binary alphabet A={0, 1} when considered cyclically
(the last three digit subsequence is formed by the last
digit and the first two). As a window three elements in
length is slid along the cyclical sequence, each
subsequence is revealed. In the fireball camera
application, the sequence is encoded by the electro-optic
shutter over time and the window revealing a particular
subsequence is the appearance of a fireball in the frame.
The elements visible in the fireball’s trail indicate the
position in the timecode and therefore the fireball’s time
of arrival. Subsequences are also referred to as n-tuples,
where n is the subsequence length; de Bruijn sequences
are also known as full-length cycles because they
contain all possible n-tuples.

Table 1. A simplistic comparison of three timecode
approaches using the three character alphabet {0,1,2}.
Each sequence requires three elements to be known for
the unique position within the sequence (time within
the timecode) to be discovered (for all positions in the
sequence).

Approach Resulting sequence

Sequence

length

Counter sequence 000102101112202122 18
Counter sequence
with reserved

start character

200201210211 12

de Bruijn sequence 000222122021121020120011101 27

1674 R. M. Howie et al.

380 H. A. R. DEVILLEPOIX



Given an alphabet A with size k (a k-ary
alphabet) and a subsequence length of n, there are
number of different particular de Bruijn sequences that
satisfy the above criteria. The number |B| distinct
sequences Bi for the case B(k, n) can be calculated
from de Bruijn’s Theorem generalized for k-ary
alphabets (Van Aardenne-Ehrenfest and de Bruijn
1951) (Equation 1).

jBj ¼ ðk!Þkn�1

kn
(1)

For many applications such as meteor trajectory
encoding, it is not important to know all of these
sequences, or even the number of distinct sequences.
What is required, however, is the ability to procedurally
generate at least one of these sequences for all relevant
cases of n and k. There are various algorithms for
developing de Bruijn sequences, many of which are
discussed in Fredricksen (1982) and Mitchell et al.
(1996). Memory usage and computation speed of these
algorithms are of interest to users in the fields of
communication and genetics where sequences can be
billions of elements long (Compeau et al. 2011); these
factors are unimportant for fireball cameras where only
relatively short sequences (several hundred elements in
length) are required for encoding meteor trajectory
data. The length of the de Bruijn sequences N depends
on the subsequence length n and the alphabet size k
(Equation 2).

N ¼ kn (2)

This length refers to the size of the cyclic sequence
where the subsequence beginning with the last element
in the sequence is completed by the first n-1 elements.
The number of possible sequences increases rapidly as
the alphabet size or subsequence lengths increase. There
are 24 possible distinct sequences of nine elements in
length for B(k = 3, n = 2), but this increases to 373,248
distinct sequences of 27 elements in length for the case
B(k = 3, n = 3).

de Bruijn Sequence Generation

A repeatable method of generating de Bruijn
sequences is required to implement the encoding on the
observatory and the decoding in the image processing
pipeline; one of the simpler ways to construct a de
Bruijn sequence is the prefer high method which is a
generalization of the prefer one method for binary
alphabets detailed in Fredricksen (1982). The
construction starts with n zeros. Then the highest
number in the alphabet (k-1) is inserted unless this

would produce an n-tuple already present in the
sequence. In this case, the next highest element is tried
and the process continues until the sequence is
complete. An implementation of this algorithm is
presented above in pseudocode.

This method is simple to implement, but there is no
methodical way to know where a particular subsequence
appears in the sequence without generating it and
performing a search. This requirement can become quite
computationally expensive for longer sequences. Others
have focused on constructing decodable de Bruijn
sequences that do not require this brute force approach
(Mitchell et al. 1996), but this is unnecessary for meteor
time encoding as the short sequences only take fractions
of a second to generate and search.

SEQUENCE ENCODING

The sequence encoding defines the way in which the
de Bruijn sequence is used to modulate the
transmittance of the electro-optic shutter. The state of
the shutter is changed over time according to the
elements of the sequence; two options were tested on
the DFN observatories. In the initial method, the
sequence was encoded in shutter opacity. A “0” was
encoded with a fully darkened shutter, a “1” was encoded
with a partially opened shutter, and a “2” was encoded
with a fully opened shutter. This encoding is simple to
implement, even with an alphabet of arbitrary size, but
has two main drawbacks for meteor trajectory timing.
First, it can be difficult to distinguish between the fully
and partially open shutter states for fireballs with
rapidly changing brightness due to fragmentation. This

algorithm prefer high de Bruijn sequence generation:

set n to sequence length

set k to alphabet size

make empty list sequence

for n times:

append 0 to sequence

while length of sequence is less than or equal to k^n:

set i to k-1

set element added to false

while element added is false:

set test n-tuple to last n-1 elements of sequence concatenated with i

if sequence does not contain test n-tuple:

append i to sequence

set element added to true

else:

decrement i by 1

return sequence
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is especially true when examining dim fireballs at the
edges of all-sky images where resolution is decreased
and optical aberrations are more prevalent. The
problem can be alleviated by only using a binary
alphabet with the shutter open and closed, producing
the encoding as in Fig. 1c. The second problem with the
opacity encoding approach is the ambiguity when
velocity is uncertain. If only a few sequence elements
are visible, it can be impossible to decode the sequence
because the dash length is unknown. For example, the
subsequence “222000111,” which would be encoded as a
bright dash, a blank of equal length, and then a dim
dash of equal length, appears identical to the
subsequences “220011” and “201” if the velocity is
completely unknown. A related problem is that the data
points from the dash endpoints are not generated at a
consistent rate. Areas of the de Bruijn sequence where
elements are repeated have a lower data point density
than locations where elements are not repeated. This is
undesirable and can increase trajectory velocity
uncertainty for fireballs arriving at certain times.

A more appropriate encoding method would
eliminate this velocity ambiguity and provide data
points at a constant rate. Encoding the sequence
elements as pulse width instead of opacity (Fig. 1d) is
simple with the flexible shutter driver and accomplishes
this goal. The encoding has only been implemented for
a binary alphabet for ease of decoding with high
sequence rates, but could be generalized to larger
alphabets. A “0” is encoded with a short dash length
and a “1” is encoded with a longer dash length; there is
no velocity ambiguity and data points have a consistent
density throughout the sequence. Pulse width encoding
also clearly shows the direction of a fireball even when
only a couple of dashes are visible.

Sequence Parameters for Fireball Observation

The appropriate parameters of the de Bruijn
sequence depend on the imaging configuration and
target meteor characteristics. The appropriate sequence
rate (in elements per second) depends on the expected
velocity of the target meteor and the amount of
halation or blurring caused by optical aberrations in
the imaging system and meteor trail length. If the
sequence rate is too high for a particular scenario, the
elements (dashes) in the sequence will smear together
making the decoding difficult or impossible. A sequence
rate near the upper limit is desirable to provide as
many trajectory timing data points as possible and
therefore, a more accurate meteoroid mass estimation—
using the dynamic method (Sansom et al. 2015)—and
fall position distribution. Faster meteors can be imaged
with a higher sequence rate than slower meteors

because each dash and blank of the meteor trail is
projected across more pixels on the sensor making it
easier to discern between the individual segments. The
DFN is currently optimized for slower fireballs
operating at a rate of 10 sequence elements per second
with 8 mm all-sky lenses and 36 megapixel full frame
(36 9 24 mm) sensors. If the targets of interest are
faster, dimmer meteors from a known shower instead
of slower, brighter fireballs, the operating parameters
could be tuned to produce as many trajectory data
points as possible by increasing the sequence rate. The
DFN plans to add this capability of switching into an
alternate mode of operation during peak periods of
known showers in the future.

The sequence duration (tS) must be greater than the
exposure time to avoid duplicating subsequences during
the exposure, thereby ensuring a meteor’s arrival time
during the exposure is unambiguous. The sequence
duration depends on the sequence length and the
sequence rate (Equation 3); extending the exposure time
with a longer sequence duration is desirable due to the
corresponding reduction in data rate and storage
requirements. If star trails are not a concern, the
exposure length is limited by the long-exposure noise
performance of the camera.

The minimum time a fireball must be visible for, in
order to be decoded, tMin is equal to the subsequence
length divided by the sequence rate (Equation 3). tMin

has a large impact on ts and therefore the corresponding
data rate of the observatories, all other parameters
being equal (Equation 3).

ts ¼ N

rs
¼ kn

rs
¼ ktMinrs

rs
(3)

tMin ¼ n

rs
(4)

The alphabet size is determined by the number of
distinguishable distinct patterns using the chosen
encoding and sequence rate. A binary alphabet (k = 2)
with pulse width modulation at 10 elements per second
is used by the DFN (rS = 10). The subsequence length
currently used is nine elements (n = 9), and hence the
minimum decodable meteor duration (tMin) is 0.9 s.
This limits the exposure length to 52.0 s. Zeros in the
sequence are represented by a short dash where the LC
shutter is open for 0.02 s, and ones are represented by a
long 0.06 s dash. The starts of the dashes are aligned
(every 0.1 s). The DFN observatories take 25 s
exposures every 30 s during operation. However, work
to extend the open time to 29.0–29.5 s out of 30 is
underway. The approximate exposure start time is
recorded in the image file by the camera. The de Bruijn
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sequence and the camera exposure start every 30 s at
the top and bottom of the UTC minute and are
precisely (better than 1 ms) synchronized with UTC
time through a global navigation satellite system
(GNSS) receiver.

Decoding Arrival Time

The DFN currently uses a semiautomated approach
to de Bruijn sequence decoding. If the automated event
processing routines detect a large fireball appearing
simultaneously at multiple stations, the images are
downloaded for analysis and decoding. The camera’s
sequences are synchronized (via the GNSS receivers) so
points in the sequence from multiple cameras can be
matched. Trajectory triangulation is possible without
any knowledge of the de Bruijn sequence.

The search for the subsequence in the overall de
Bruijn sequence revealed by each fireball can be
performed in a few seconds, either manually or with the
assistance of a DFN software tool designed for
matching partially obscured de Bruijn sequences. The
sequence of long and short dashes are manually
translated into the corresponding sequence of “0”s and
“1”s; this string is then either found manually within
the sequence (usually using a text editor) or fed into the
error tolerant search tool. The Hamming distance
(Hamming 1950) provides a good metric for finding the
location of the subsequence within the complete de
Bruijn sequence in a fault tolerant manner. The fault
tolerant search is possible because each additional
element visible past the required n elements provides a
degree of error checking. The current search tool also
permits searching for partially obstructed sequences by
entering unknown elements. In this situation, the
Levenshtein distance (Levenshtein 1966) is used because
it also accounts for insertions and deletions unlike the
Hamming distance. This is important if the number of
elements obstructed is unknown.

Once the subsequence is located within the overall
de Bruijn sequence, the absolute timing of the
trajectory is simply calculated from the element length
tE, location found in the sequence search, and the dash
lengths. The propagation delay due to the operation of
the microcontroller and the shutter driver as well as
the time response of the LC shutter are also accounted
for (these can be determined experimentally and should
be less than a millisecond). The approximate time in
the image metadata is examined to determine the
precisely synchronized sequence start time (hh:
mm:00.000 or hh:mm:30.000 UTC) and this is added
to the time within the sequence to produce the
absolute timing for the trajectory (including the arrival
time).

IMPLEMENTATION

The first four prototype long-exposure fireball
cameras using LC shutters with de Bruijn timecodes
were deployed to The Nullarbor in December 2012. The
design has since been revised to expand storage,
increase computing power for image processing, and
optimize power management. The network now consists
of more than 49 observatories covering a double station
triangulable area of over 2.5 million square kilometers
—approximately one-third of Australia.

The operation of the de Bruijn timecode has been
verified in the laboratory with a phototransistor (�10 ls
time response) and a data logging digital oscilloscope.
The precision—relative to the GNSS time source—is
better than 1 ms, and the time response of the LC
shutter is the limiting factor.

This technique, combined with the use of digital
off-the-shelf hardware where possible, has enabled the
development of smaller, lighter (109), more cost-
effective (209) fireball observatories for the DFN
(compared to the initial film systems) and enabled the
rapid roll-out of the digital network. The initial digital
DFN observatory for solar-powered operation in
remote locations proved the viability of the technique
and core imaging system. The observatory hardware is
presented in detail in Howie et al. (2017). Recently, an
even smaller and lower cost mains powered rooftop
variant of the autonomous digital fireball observatory
has been developed for powered sites that can be
attended more frequently (twice per year).

The LC shutters have proven reliable and long-
lasting, and the de Bruijn sequence time encoding has
been used to capture precise timing data for over 1,000
fireballs including at least one nine station event and
one meteorite recovery with an orbit (Murrili) (Bland
et al. 2016). Approximately a dozen of the fireballs
observed as of February 2016 have been classified as
meteorite dropping by the data processing pipeline, and
searches will be conducted for many of these in the
future.

Limitations

The technique is validated by the large number of
successfully imaged and processed fireballs with timing
as well as the recovery of the Murrili meteorite but has
a few limitations. Under some conditions, it can be
hard to decode the sequence. Extremely bright fireballs
pose problems for a few reasons. The all-sky lenses in
the DFN’s implementation perform best at the image
center, but optical aberrations become more prevalent
toward the edge of the image. These imperfections can
cause the brighter dashes to smear together, becoming
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hard to distinguish. Extremely bright fireballs have the
potential to saturate large areas of the sensor at the
high sensitivity settings used to image as much of the
fading fireball at the end of its luminous trajectory as
possible. This obstacle is present in all imaging systems
because of the limited dynamic range of digital sensors
and film. This problem will be reduced as higher
dynamic range sensors are developed and become
available. The other limitation with respect to bright
fireballs is the transmittance of the shutter in the closed
state. The shutter still allows a small percentage of the
incoming light (approximately 0.45%) (LC-Tec 2013)
through in the closed state. This light bleed can
complicate the time decoding of extremely bright
fireballs. Fireball tails and fragmentation also present
some problems for the implementation of timecodes in
long-exposure images. Very long tails can be visible in
the space where the image of the fireball head was
darkened by the shutter. This is the downside of this
sort of spatial-time encoding used for the de Bruijn
sequence time encoding and previous long-exposure
meteor camera techniques (rotating and switching
shutters). If the tail is long enough to completely cover
the break between dashes, decoding timing can become
difficult or impossible. Video networks solve this timing
problem by eliminating the long exposures, but
compromise on spatial precision. The precise
positioning of the data points can be degraded by the
tail effect in both video and photographic networks if a
simple data point extraction algorithm (such as finding
the centroid) is used. The tail has the effect of dragging
the apparent data point away from the true point at the
head of the fireball.

Another limitation inherent in any long exposure
system employing a periodic shutter is that part of the
fireball trail is obscured. Flares due to fragmentation
and other variations in brightness during breaks where
the shutter is closed can be missed. For this reason,
radiometers such as PMTs are used where the mass
estimation is performed using the photometric method
(Gritsevich and Koschny 2011). The dynamic method
used as part of the DFN’s data pipeline (Sansom et al.
2016) incorporates these fragmentation events by the
corresponding observed deceleration, but most DFN
observatories also employ a video camera so that data
can be collected on these fragmentation events more
directly.

Fragmentation performance of the de Bruijn
sequence time encoding has been better than expected.
While fragmentation of the fireball into multiple heads
does make the (currently manual) point picking process
take longer, it is possible to distinguish between the
main mass and smaller fragments in almost every case.
These fragments have been processed separately on a

number of fireballs to produce separate fall position
estimates for the fragments and main mass.

These limitations are present in all long-exposure
meteor camera systems that interrupt the meteor image
for relative or absolute timing. In its current state, the
approach is suitable for imaging the vast majority of
meteorite dropping fireballs, but as lens designs and
sensor technologies improve (with reduced optical
aberrations and increased sensor dynamic range), the
results for very faint and extremely bright fireballs will
only improve.

RESULTS IN PRACTICE: DN150417_01

On April 17, 2015, a fireball event in the upper
atmosphere above the West Australian Nullarbor

Fig. 3. DN150417_01 Fireball seen from DFN observatories
at Kybo (a) and Forrest (b). (Color figure can be viewed at
wileyonlinelibrary.com.)
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designated as DN150417_01 was recorded by five DFN
observatories and is presented here to demonstrate the
use of de Bruijn timecodes in long-exposure fireball
photography; the object became visible to the camera
network at UTC20:04:04.3270 � 0.0006 s traveling
eastwards and remained observable for 10.4590 �
0.0007 s without visible flares or fragmentation until
observable ablation ceased at UTC20:04:14.7864 �
0.0001 s.

The best observations were made from the closest
DFN cameras at Kybo (Fig. 3a) and Forrest (Fig. 3b),
adjacent settlements located along the Trans-Australian
Railway. The sites are separated by nearly 150 km and
each have a permanent population of approximately
two persons (giving an indication of the population
density in the coverage area of the DFN). The
trajectory triangulation was performed using four of the
five observations (Kybo, Forrest, Deakin North, and
Kanandah). Hughes was excluded because distant and
low to the horizon observations result in reduced

Fig. 4. DN150417_01 fireball observed from Forrest observatory showing de Bruijn sequence encoded timing (alphabet size
k = 2, subsequence length n = 9, rate rs = 10 elements per second, generated using the prefer high method). Element 0 is at 2015-
04-07 20:04.00 UTC. Sequence: 000000000111111111011111110011111101011111100011111011011111010011111001011111000
0111101110111101100111101010111101000111100110111100100111100010111100000111011100111011010111011000111010110110
101010011101001011101000011100110011100101011100100011100011011100010011100001011100000011011 0110100110110010110
1100001101011001101010101101010001101001001101000101101000001100110001100101001100100 101100100001100010101100010
0011000010011000001011000000010101010010101000010100100010100010010 10000001001001000001000100001 (labeled elements
in bold). (Color figure can be viewed at wileyonlinelibrary.com.)

Fig. 5. Observed versus modeled position residuals along the
straight-line trajectory, dashed lines indicate �1r range.
(Color figure can be viewed at wileyonlinelibrary.com.)
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precision (compared to the closer cameras with better
triangulation geometry).

Trajectory timing was recorded by the DFN
observatories using the de Bruijn timecode approach.
The timing embedded by the GNSS synchronized LC
shutter into the Forrest observatory image is illustrated
in Fig. 4. The trajectory was triangulated according to
the straight least squares method (Borovi�cka 1990) and
analyzed using the dynamic method described
previously (Sansom et al. 2015), which uses the
observations to estimate the position, mass, and velocity
of a meteoroid while statistically constraining the
uncertainties in these parameters introduced by
observation and dynamic model errors. The object
appeared at a height of 85.80 � 0.05 km at 126.7166
� 0.0003°E 31.02550 � 0.00022°S (WSG 84) with an
initial velocity of 17.98 � 0.07 km s�1 and an entry
angle of 15.14 � 0.05° from the horizontal. The object
gradually decelerated over the 143.31 � 0.01 km
luminous trajectory, which ceased at a height of 45.70 �
0.03 km at 128.23950 � 0.00017°E 30.57766 �

0.00015°S (WSG 84) and a final velocity of 4.4 � 0.7
km s�1. The trajectory analysis indicates the fireball
event was the result of a small meteoroid with an initial
mass of 32 � 4 kg entering the atmosphere at a shallow
angle before completely burning up. The position
residuals from the trajectory analysis (Fig. 5) show a
good fit between the observations and the dynamic
model.

The heliocentric orbit (Fig. 6) was calculated from the
initial entry vector using a numerical propagation
technique that accounts for perturbations caused by a
number of small solar system bodies. The eccentric and
slightly inclined orbit has its aphelion inside the Main Belt
and its perihelion between the orbits of Earth and Venus
(e = 0.5992, a = 2.132 AU, i = 6.960°, Ω=207.59011°,
x=51.06° J2000).

These data were entirely derived from the four
images taken by the DFN observatories with the
relative timing for trajectory analysis and the absolute
timing for orbit calculation embedded by the de Briujn
sequence timecode.

Fig. 6. Heliocentric orbit for DN_15041701 meteoroid. (Color figure can be viewed at wileyonlinelibrary.com.)
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FUTURE WORK

Extraction of fireball data points from images with
timing is currently performed manually with the
assistance of a custom software tool. It is the only time-
consuming step remaining in the DFN’s data pipeline
that has not been automated. The development of
image-processing software to handle this task is a
priority. The problem is simple in the ideal case (a fast-
moving fireball in the center of the lens with no blown
highlights and minimal fragmentation and tail), but
significantly more difficult when the fireball is partially
obstructed, close to the extreme edge of the image, or
contains bright flares. Once the data points can be
precisely located automatically in most conditions, the
automatic decoding of de Bruijn sequence timing is
simple. Newer trajectory triangulation techniques that
take advantage of the fact that each data point along
the trajectory can be independently triangulated are
currently being developed and will be tested against
more traditional techniques that make the straight line
assumption.

Other aspects warranting further study include the
viability of larger ternary and quaternary alphabets
(three or four different pulse lengths), higher sequence
rates for imaging known meteor showers, real-time
adjustment of the LC shutter in response to very bright
fireballs to prevent sensor saturation, and the testing of
other higher transmittance electro-optic shutter
technologies. The method may also be useful in other
fields where precise motion-time data are required such
as spacecraft, fluid dynamics, and high speed tracking
of other (nonmeteoroid) objects.
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ABSTRACT
Recently, low-frequency, broad-band radio emission has been observed accompanying bright
meteors by the Long Wavelength Array (LWA). The broad-band spectra between 20 and
60 MHz were captured for several events, while the spectral index (dependence of flux density
on frequency, with Sν ∝ να) was estimated to be −4 ± 1 during the peak of meteor afterglows.
Here we present a survey of meteor emission and other transient events using the Murchison
Wide Field Array (MWA) at 72–103 MHz. In our 322 h survey, down to a 5σ detection
threshold of 3.5 Jy beam−1, no transient candidates were identified as intrinsic emission from
meteors. We derived an upper limit of −3.7 (95 per cent confidence limit) on the spectral
index in our frequency range. We also report detections of other transient events, such as
reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of
the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

Key words: plasmas – instrumentation: interferometers – meteorites, meteors, meteoroids.

1 IN T RO D U C T I O N

When a rocky or a metallic object (meteoroid) plunges into the
atmosphere and is heated to incandescence, a meteor can be ob-
served. Very bright meteors are referred to as fireballs. The meteor
is heated by radiation from the atmospheric shock front that it pro-
duces (De Pater & Lissauer 2015), causing iron and silicates to
melt and vapourize. The vapourized atoms are ionized in collisions
with air atoms, producing a cloud of quasi-neutral plasma, which
is referred to as the ionized trail (Dokuchaev 1960). The ionized
trails are known to reflect radio waves, and radio echoes are used

�
E-mail: zhangxiang@pmo.ac.cn (XZ); paul.hancock@curtin.edu.au (PH)

to measure the orbits of meteors and radiants of meteor showers
(Ceplecha et al. 1998).

Detailed investigations of radio emission from meteors began
in the 1950s, when astronomers proposed that plasma resonance in
meteor trails might produce radio noise (Hawkins 1958). Detections
of low-frequency emission were reported to be coincident with
large meteors in the past several decades (Beech, Brown & Jones
1995; Guha et al. 2012). Sometimes bright meteors were observed
accompanied by acoustic propagation, which might be caused by
radio emission converting into electrophonic sounds (Keay 1980,
1992; Keay & Ceplecha 1994).

Recently, scientists working with the LWA (Taylor et al. 2012;
Ellingson et al. 2013a) made some interesting discoveries of radio
emission from meteors. In 2014, two transient events were reported
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in a search for prompt low-frequency emission from gamma-ray
bursts (GRBs) with the first station of the Long Wavelength Ar-
ray (LWA1; Obenberger et al. 2014a). The LWA1 was operating
in the narrow transient buffer mode, with a usable bandwidth of
75 kHz tunable to any centre frequency between 10 and 88 MHz.
These two events lasted for 75 and 100 s, respectively at 37.9 and
29.9 MHz. They were not coincident with any known GRBs. Further
observations revealed more similar long-duration (tens of seconds)
transients. Many of these transients were coincident with optical
meteors, both spatially and temporally. Between 2014 April and
2016 April, a total of 20 000 h data were collected, in which 154
radio transients were detected (Obenberger et al. 2016a). Optical
meteor counterparts were coincident with 44 of these radio tran-
sients.

The transients correlated with meteors are different from the well-
studied radio echoes from meteor trails (Obenberger et al. 2014b).
First, most radio transmitters are polarized, thus the reflections from
meteor trails are also polarized (Close et al. 2011; Helmboldt et al.
2014). However, no significant amount of polarization has shown up
in these transient cases, either linear or circular. Secondly, transmit-
ters often broadcast in very narrow radio bands, and spectral lines
are visible in meteor reflection, but spectral features are not found
anywhere in the LWA1 transients. Thirdly, power profiles of these
transients resemble each other, but are quite different from meteor
reflections. All these differences led Obenberger et al. (2014b) to
suggest that meteors emit a previously undiscovered low-frequency,
non-thermal pulse.

Broad-band measurements were also made with the beamformer
mode of the LWA1 in order to obtain the dynamic spectra of the tran-
sient events (Obenberger et al. 2016b). Three beams were formed
and pointed around zenith at azimuths of 60◦, 180◦, and 240◦, all
with elevations of 87◦. The field of view for each beam is ∼50 deg2.
Compared with the all-sky imager mode, the beamformer mode’s
field of view is much smaller, leading to fewer detections. The
broad-band spectra of four events were captured between 22.0 and
55.0 MHz. The frequency-dependent flux densities of these events
were fit to a power law, and the spectral indices were found to be
time variable, with the spectrum steepening overtime.

Obenberger et al. (2016b) also discussed the potential for other
observatories to measure meteor spectra, including the Murchision
Wide Field Array (MWA; Tingay et al. 2013a) in Australia, the
Amsterdam-ASTRON Radio Transients Facility and Analysis Cen-
ter (AARTFAAC; Prasad et al. 2014) based on the Low-Frequency
Array (LOFAR; Van Haarlem et al. 2013) in the Netherlands, and
two additional LWA stations. It was concluded that the MWA, with
its exceptionally high sensitivity, had the best opportunity to test
the high-frequency predictions of meteor radio afterglows. How-
ever, there are several factors that might prevent the MWA from
detecting radio emission from meteors: the high spatial resolution
of the MWA will lead to a drop in peak flux density, thus the me-
teors might still be undetectable for the MWA; the uncertain and
time variable spectral index may cause a lower flux density than
predicted.

Based on the research above, we carried out a 322 h survey for
meteor afterglows with the MWA. Our work aims to detect the radio
afterglow from ionized meteor trails at higher frequencies and put
some limits on the meteor radiation spectra.

In this paper, we begin in Section 2 with a description of our
observations, both radio and optical. The data reduction process is
given in Section 3, including pre-processing, imaging, and source
finding. A brief description of results is given in Section 4. In Sec-
tion 5, we discuss the relation between meteor event rates and flux

density, followed by an estimated upper limit on meteor radiation
spectra. Section 5 also contains some other transient events detected
in our survey and a discussion of future work. The conclusion is
presented in Section 6.

2 O BSERVATI ONS

Both radio and optical observations were carried out in this work.
Radio observations were made by the MWA, while optical observa-
tions were performed by the Desert Fireball Network (DFN; Bland
et al. 2012). The implementation of optical observations allows us to
compare radio transient events with optical meteors and investigate
possible emission from meteors.

2.1 Radio observations using the MWA

The MWA is one of the Square Kilometre Array Precursor tele-
scopes. It is located at the Murchison Radio-astronomy Observa-
tory in Western Australia, where the Radio Frequency Interference
(RFI) is extremely low (Offringa et al. 2015). The MWA consists
of 128 aperture array antennas (referred to as tiles) distributed over
a ∼3 km diameter area. It is optimized for the 80–300 MHz fre-
quency range, with a processed bandwidth of 30.72 MHz for both
linear polarizations (Tingay et al. 2013a).

In this project, radio observations were carried out under two
modes, one targeted and another opportunistic. For both observa-
tions, all the tiles of the MWA were pointed to the zenith, and
the lowest band of the MWA (72.3–103.0 MHz) was used. The
choice of observational band was based on two reasons: first, pre-
viously detected radio emission from meteors was below 60 MHz;
secondly, the chosen band partly overlapped with the FM broad-
cast band in Australia (87.5–108 MHz), making it possible for us to
observe reflection and intrinsic emission from meteors at the same
time.

Under the targeted mode, we observed several known meteor
showers listed in the International Meteor Organization (IMO) Me-
teor shower calendar (Rendtel, Ogawa & Sugimoto 2017), which
are given in Table1. The α-Centaurids, γ -Normids, π -Puppids, and
η-Aquariids showers were observed because they all have radiants
in the Southern hemisphere. We observed each of these showers for
2 h around midnight. The Geminids shower, however, was chosen
due to its especially high zenithal hourly rate (ZHR). We observed
the Geminids three times – in 2014, 2015, and 2016. Each time the
observation lasted about 9 h, from dusk to dawn.

For all the meteor showers listed in Table 1, a series of 112 s
observations were obtained with a temporal resolution of 0.5 s,
which is the highest temporal resolution of the MWA. The frequency
resolution was 40 kHz. The drift of the sky during each 112 s scan
was accounted for during imaging processing by fixing the phase
centre for each observation to be at a certain RA/Dec.

Since we were not able to predict when and where meteors occur,
we also performed some opportunistic observations when the MWA
was not occupied by other projects. An example of the opportunistic
observations is the filling observations carried out in 2016 March,
when some of the MWA tiles failed to point due to lightning dam-
age. Since these tiles pointed up by default, we pointed all tiles to
the zenith and observed the sky with the entire array. The filling ob-
servations were carried out with a duration of 232 s and a temporal
resolution of 2 s. A list of the opportunistic observations is given in
Table 2. The total radio observational time from both dedicated and
opportunistic campaigns adds up to approximately 322 h.
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Table 1. Meteor showers observed by the MWA. ZHR stands for zenithal hourly rate, for a calculated maximum number of meteors per hour, an ideal observer
would see in perfectly clear skies with the shower radiant overhead. Velocities listed in this table are apparent meteoric velocities.

Date Name
Total observation length

(h) Radiant (RA, Dec.) ZHR Velocity in km s−1

2014–2016 December
14

Geminids 28 112◦, +30◦ 120 35

2016 Feburary 8 α-Centaurids 2 210◦, −59◦ 6 56
2016 March 14 γ -Normids 2 239◦, −50◦ 6 56
2016 April 23 π -Puppids 2 110◦, −45◦ Variable 18
2016 May 5 η-Aquariids 2 338◦, −01◦ 40 66

Table 2. Opportunistic observations, performed when the MWA was not
occupied by other projects.

Date Total observation length (h)

2015 March 14–22 15
2016 March 17–29 103
2016 April 2–14 49
2016 May 1–3 22
2016 May 10–June 1 93
2016 September 8–9 4

2.2 Optical observations using the DFN

The DFN is a camera network with dozens of cameras in Western
Australia and South Australia. It is designed to detect meteors and
triangulate their trajectories, in order to recover the meteorite (debris
of a meteor, which impacts the Earth’s surface) and trace the meteor
back to its origin. Since 2015 September, some DFN cameras have
been installed at Wooleen station, 70 km away from the MWA, thus
these cameras share a significant portion of the sky with the MWA.
For our 322 h radio observations, 297 h were also covered by optical
observations.

The Wooleen DFN node includes a standard meteor camera, as
well as a specially designed camera for astronomical work (Howie
et al. 2017). Both cameras are pointed to the zenith. The standard
meteor camera has a fish-eye lens that can see the entire sky. The
limiting magnitude for a meteor to be detected by the camera is about
0.5 mag. A modulated liquid crystal shutter is used to determine the
angular speed of meteors, which leads to gaps in meteor trails in
the images (see Fig. 1). The standard meteor camera is operated
autonomously, taking images with a 29 s exposure time when the
Sun is down, and the sky is clear. The astronomical camera, on the
other hand, has a much improved sensitivity with a smaller field
of view (80◦ × 100◦). The exposure duration of the astronomical
camera is 13 s.

3 DATA R E D U C T I O N

For radio observations, the data reduction pipeline is composed of
four steps: pre-processing via COTTER (Offringa et al. 2015), cali-
bration using bright radio sources, imaging with WSCLEAN (Offringa
et al. 2014), and source finding via AEGEAN (Hancock et al. 2012;
Hancock, Trott & Hurley-Walker 2018). However, in our 322 h
observation, not all the data were of good quality. Therefore, only
308 h of observational data were processed with the pipeline and
used for the analysis.

The optical data were captured as an independent verification of
the presence of a meteor. These images were used in their original
form (coloured JPEGs). Recently a calibration scheme has been

Figure 1. Optical image of a meteor captured by the DFN camera at
Wooleen station, on 2015 December 14. The exposure duration was 25 s.
The gaps in the meteor trail were caused by the coded shutter to measure its
apparent speed.

created to correct astrometry and photometry of these images, but
such calibration was not required in this project.

3.1 Pre-processing and calibration

We pre-processed the raw visibility data through the MWA pre-
processing pipeline, COTTER, to average the data and convert it into
Common Astronomy Software Applications (CASA; McMullin et al.
2007) measurement set format. COTTER can also flag RFI with a
C++ library provided by the RFI detector, AOFLAGGER (Offringa et al.
2010; Offringa, Van de Gronde & Roerdink 2012).

For each observation, we made two measurement sets with 8 s
integration: we flagged RFI in one measurement set (referred to as
emission data), and kept RFI in another (referred to as reflection
data). Since ionized meteor trails are known to reflect RFI, the
emission data can show intrinsic emission from meteors, while the
reflection data are able to reveal reflected radio signal from meteors.
However, the RFI flagging process is not able to exclude all the RFI
in the FM band, so we only used emission data outside the FM band
to make emission images, as described in Section 3.2.

After pre-processing, the measurement sets were calibrated us-
ing bright point sources with well-modelled emission for the
MWA. Based on the models of the calibrators, we derived time-
independent, frequency-dependent phase, and amplitude calibration
solutions, which were applied to the measurement sets.

Calibrators were observed for 112 s at the phase centre of the
telescope, before or after our scheduled observations for one night.

MNRAS 477, 5167–5176 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/4/5167/4970785
by Curtin University Library user
on 13 August 2018

392 H. A. R. DEVILLEPOIX



5170 X. Zhang et al.

Table 3. The WSCLEAN settings used to image the meteor observations. All
other settings were set to default.

Setting Value

UV range (λ) <32
Channel range for emission images
(MHz)

72.3–86.4

Channel range for reflection images
(MHz)

72.3–103.0

Image integration time (s) 8
Maximum number of clean iterations 4000
Size of image (pixel) 240
Size of one pixel (arcmin) 20
Briggs weighting 0.5
Polarization XX, YY

The quality of drift scan data is always limited by the ionosphere, so
in calm conditions a single calibration solution can be applied to all
the data from the same night (Hurley-Walker et al. 2014). The most
commonly used calibrator was Hydra A. For several nights without
useful calibrator observations, we either used a common observation
in which a bright radio source was close to the zenith, or used
catalogued radio resources from the GaLactic and Extragalactic
All-sky MWA survey (GLEAM; Wayth et al. 2015; Hurley-Walker
et al. 2017) for calibration.

3.2 Imaging

The calibrated measurement sets were imaged and deconvolved us-
ing WSCLEAN (Offringa et al. 2014), a fast wide-field imager for radio
astronomy. For each observation, the reflection and emission mea-
surement sets were separately made into 8 s integrated reflection
and emission all-sky images. In this process, only short baselines
were used, and only frequency channels below the FM band were
used for the emission images. Precise limits on baselines and fre-
quency channels were decided via a few tests with a simulated
meteor, which are described in Section 3.3. The detailed settings of
WSCLEAN are listed in Table 3.

The selection of image integration time (8 s) was based on the
detected meteor dynamic spectra from Obenberger et al. (2015).
Meteor emission can last for more than 1 min at 20–40 MHz, but
the spectral index drops significantly after the first 20 s. Thus meteor
emission at MWA frequencies may be shorter in duration.

In order to exclude background sources and reduce noise, we
subtracted adjacent 8 s snapshots to make difference images, as
shown in Fig. 2. Dirty (un-deconvolved) images were used for
subtraction, because cleaning may create artefacts in difference
images. In the imaging process, the phase centre of each observation
was fixed in RA/Dec., so sky rotation did not introduce artefacts
into the difference images.

3.3 Baseline and channel limits in imaging process

There are two reasons why we only have used short baselines. First,
like most radio telescopes, the MWA is focused in the far field, since
most objects included in the MWA science are effectively at an in-
finite distance from the telescope. The MWA correlator assumes
incoming waves from these sources as plane waves. However, for
objects close to the telescope (in the near field), the incoming waves
are spherical rather than planar. In antenna design, the widely ac-
cepted transition between near field and far field is the Fraunhofer
distance d = 2D2/λ, where D is the diameter of the telescope and λ is

the wavelength. For the MWA with its longest baselines at 80 MHz,
the Fraunhofer distance is 4800 km. Since the typical height of me-
teors is 80–120 km, using the longest baselines will put meteors in
the near field. In order to place the meteors in the far field at 80 km,
we can only use baselines shorter than 387 m.

Another reason to use the short baselines is to improve the de-
tectability for meteors. A typical meteor trail is tens of kilometres
long, several metres wide, and about 100 km above the ground. In
MWA observational images, that corresponds to an extended source
which is tens of degrees in length and less than 1 arcmin in width,
we excluded baselines longer than 120 m to get a lower spatial res-
olution (2.15◦) and higher peak flux density for meteors. Since the
MWA has a 100 m diameter dense core containing 50 tiles (Tingay
et al. 2013a), excluding these baselines increases the thermal noise
by just 16 per cent.

We limited the channel ranges (72.3–86.4 MHz) for emission
images mostly due to RFI contamination, since our observational
band (72.3–103 MHz) overlapped with the FM broadcasting band
in Australia (87.5–108 MHz). Although AOFLAGGER was used to flag
RFI, a small amount of RFI was still left within the FM band. Using
the channels below, the FM band also brought another advantage:
the meteor emission is much brighter at lower frequencies, thus only
using the lower band can improve the detectability of meteors.

In order to determine the precise baseline and channel limits to
be used in the imaging process, we did tests by adding a simulated
meteor to the visibility data of a blank sky observation, and made
difference emission images with several baseline and channel range
settings.

According to the four meteor events described by Obenberger
et al. (2016b), the spectrum of meteors follows a power law between
20 and 60 MHz. The power law is given by S ∝ να , where S is the
flux density, ν is the frequency, and α is the spectral index. During
the peak of the afterglows, α ∼ −4 ± 1.

Here we used one of the four meteors given in Obenberger
et al. (2016b) for extrapolation. This meteor belongs to a group
of faint/common meteors occurring 130 times yr−1 π sr−1. It was
detected as an unresolved source by the LWA1 at 25.6 MHz, with
a flux density of 1800 Jy. Since the MWA has a higher spatial res-
olution than the LWA1, and the width of a meteor trail is much
smaller than the MWA spatial resolution, we assumed that the
simulated meteor was extended in 1D in MWA images, along the
trail.

Fig. 3 shows the extrapolated peak flux densities of the meteor,
assuming different spectral indices. Also shown are comparison
plots of the 5σ sensitivity of the MWA (short baselines, 8 s integra-
tion and 12 MHz bandwidth). The MWA values were obtained from
MWA observational images and data from Sutinjo et al. (2015). As
illustrated in Fig. 3, it is estimated that in 72–103 MHz band, the
MWA is capable of detecting radio emission from meteors when α

≥ − 4, but it is not able to detect meteors when α ≤ 5.
We used CASA to put the simulated meteor into the visibility

data, and made difference emission images with it (see Fig. 4). The
spectral index adopted was −4. To get the best detectability, we
made images with baseline upper limits from 30 to 600 m, and
top channel limits from 74.9 to 103.2 MHz. The relation between
the signal-to-noise ratio (SNR) and the limits is given in Figs 5
and 6. According to these figures, the SNR reaches a peak near
channel range 72.3–87.7 MHz and baseline length upper limit 75 m.
However, considering other factors such as overlapping with the FM
band, sensitivity, and spatial resolution, the channel range was set
to 72.3–86.4 MHz, and the baseline length upper limit was set to
120 m (or 32 λ at 80 MHz).

MNRAS 477, 5167–5176 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/4/5167/4970785
by Curtin University Library user
on 13 August 2018

Appendix B H. A. R. DEVILLEPOIX 393



Radio emission from meteors 5171

Figure 2. MWA radio images of an 8 s duration, during which a meteor occurred. Top-left: normal reflection image, showing the radio sky with RFI.
Background radio sources such as Fornax A and Pictor A can be seen in this image, together with reflected RFI from the ionized meteor trail. Top-right:
normal emission image, showing the sky without RFI. This image contains background sources but not reflection from the meteor. Bottom-left: difference
reflection image, illustrating a temporal variation in the normal reflection image. Bottom-right: difference emission image, showing a temporal variation in the
normal emission image. This image has capability to reveal intrinsic emission from meteors, but no emission is found for the particular meteor event. Pictor A
is removed from this image, while Fornax A remains due to scintillation or instrumental effects. Normal images (top) and difference images (bottom) do not
share the same colour scale. Compared with reflection images (left), emission images (right) are based on observational data below FM band, with RFI flagged.

3.4 Source finding

The source finding is done by AEGEAN (Hancock et al. 2012; Han-
cock et al. 2018), which is designed to detect and characterize
sources within radio images; it works by grouping pixels above a
given threshold into contiguous groups called islands. AEGEAN also
includes a background and noise estimator (BANE) which provides
a method for creating background and noise images. In our data
processing pipeline, we ran both BANE and AEGEAN on the difference
emission images to extract meteors. BANE first formed detailed back-
ground maps for the images, then AEGEAN searched for pixels above
the 5σ level and grouped them together with nearby pixels above
3σ level into ‘islands’. The outputs from AEGEAN included sizes of
the islands and their integrated flux densities.

AEGEAN found approximately 2 × 105 islands in 1.2 × 105 im-
ages, so we did some selection based on the sizes of meteor events
observed by the LWA1 and the projection method. Islands with a

maximum angular size larger than 5◦ and pixel number over 10
were selected to form a list of meteor candidates. The process was
able to detect our simulated meteor.

4 R ESULTS

Using the data reduction pipeline described above, 5372 events
were selected as meteor candidates in our 322 h survey. However,
most of them can be attributed to variations in bright radio sources
caused by instrumental and/or ionospheric effects. No candidate
was confirmed to be a meteor.

We followed a three-step method to check if a candidate was
a meteor. First, we compared the candidate with its corresponding
normal emission image. If the candidate was coincident with a bright
radio source in the normal emission image (like the Fornax A event
in Fig. 2), we believe that the candidate was related to the bright
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Figure 3. Estimated peak flux densities of the faint/common meteor as
observed by the MWA. The solid lines illustrate broad-band spectra of
meteors with different spectral indices, while the blue dashed line describes
the 5σ sensitivity of the MWA in our observations.

Figure 4. Simulated meteor on a difference image. The spectral index was
set to −4, the length set to 4◦ as a point source observed by the LWA1, while
the width of meteor set to 2 arcsec. The meteor trail emission was simulated
with Gaussian distribution.

Figure 5. Relation between top channel limit and SNR for the simu-
lated meteor when baseline limit was set to 120 m. The bottom channel
is 72.3 MHz in all the tests.

Figure 6. Relation between baseline length limit and SNR for the simulated
meteor when top channel was set to 80 MHz.

radio source, i.e. not a meteor. In this way, we excluded the majority
of our candidates. Secondly, candidates not related to bright sources
in normal images were compared with a subset (above 10 Jy) of
the GLEAM catalogue. If a candidate was coincident with a radio
source in the catalogue, the candidate would be excluded. Thirdly,
for the few candidates that could not be attributed to variabilities in
bright radio sources, we checked corresponding optical images from
DFN and the reflection images. If a candidate was consistent with an
optical meteor or a reflection event, both spatially and temporally, it
would be considered a probable event for intrinsic radio emission.
However, none of the candidates were consistent with any optical
meteors or reflection events.

5 D ISCUSSION

When an experiment returns a null result, there are two possibilities:
(1) no events were observed because no events occurred and (2)
events occurred, but noise or timing prevented detection. In other
words, the null result can be attributed to event rate density, flux
density, or duration.

Here we provide an analysis of the sensitivity limits of our ob-
servational data and interpret the null result in terms of the physical
parameters of intrinsic emission from meteors. The analysis is based
on a framework by Trott et al. (2013), which was designed to deter-
mine constraints on the detection rate of fast transient events. This
framework takes into account the primary beam shape, frequency
effects, and detection efficiency, resulting in the 2D probability
distributions in the sensitivity-rate parameter space.

5.1 Minimum detectable flux density

When meteor emission events do occur, detection is limited by the
MWA beam pattern (Sokolowski 2017) and sampling time-scale.
We take an unresolved meteor event for example. If this event is
detected, its signal PS must exceed a threshold, given by the noise
PN and some SNR value, C.

PS > CPN. (1)

When an array is used to detect radio signals, PS can be given as

PS = 1


ν

∫


ν

B(θ )P (ν)dν, (2)

where 
ν is the bandwidth, B(θ ) is the beam model (see Fig. 7),
Pν is the frequency-dependent flux density of the radio source. We
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Figure 7. Beam model of the MWA at 80 MHz. Antennas pointed to zenith.

assume that the dependence of beam model on frequency can be
neglected in our channel range.The noise PN can always be given
from the system equivalent flux density:

PN = SEFD√
npNant(Nant − 1)
ν
ts

, (3)

where np is the number of polarizations, Nant is the number of
antennas within the MWA, and 
ts is the sampling time-scale.

It is assumed that the flux density of a meteor can be represented
by a power law in frequency, so we have P(ν) = S0(ν/ν0)α , where
S0 is the flux density at the reference frequency, ν0.

For some short-duration meteor events, the temporal sampling
time may exceed the duration of meteor emission, thus the radio
signal received suffers a loss in flux density due to the averaging
of the signal over time. Here we introduce the Duration Threshold
factor η, which is defined as

η = min(
tact/
ts, 1), (4)

where 
tact is the duration of meteor emission and 
ts is the sam-
pling time. Then we have

Smeasure ≈ ηSact =
{

Sact, for 
tact � 
ts

tact

ts

Sact, for 
tact < 
ts,
(5)

where Smeasure is the measured signal flux density andSact is the
original signal flux density.

Thus the minimum detectable original flux density at angle θ

from beam centre, Smin(θ ), can be given by

Smin(θ ) = C

η
PN

(
1


ν

∫


ν

B(θ )(ν/ν0)αdν

)−1

. (6)

Emission from meteors can be resolved as observed by the MWA,
so detection is limited by the peak flux density. We estimated the
minimum detectable peak flux density in our observations, which
is illustrated in Fig. 8.

5.2 Probability of detection

However, the detected flux density of a radio source is composed
of its true flux density S and noise. The noise follows a Gaussian
distribution, with mean value μ = 0 and variance σ 2. Thus the

Figure 8. Minimum peak flux density required for meteor event detection
within our observations. Detection is limited by the MWA beam model
and the meteor event duration. The sampling time-scale is 8 s. Events with
durations longer than 8 s have the same minimum detectable peak flux
density as 8 s events.

probability for a radio source with true flux density S to be detected
above the threshold, Cσ , is given by the cumulative distribution
function:

P (S > Cσ ) =
∫ ∞

Cσ

N (S, σ 2)dS = 1

2
+ 1

2
erf

(
S − Cσ√

2σ

)
, (7)

where N (S, σ 2) denotes the Gaussian distribution and erf is the
error function. The probability that an event is not detected because
of noise is the complementary function, 1 − P(S > Cσ ).

We assume that meteor afterglows are randomly distributed (both
temporally and spatially) with a mean frequency of occurrence.
Then the probability that k events occur with an expectation of λ

follows the Poisson distribution:

P (k; λ) = e−λ λk

k!
. (8)

The probability that at least one event should be detected is

P = 1 − P (0; λ) = 1 − e−λ, (9)

Fig. 9 shows the probability of detecting at least one meteor in
our observations, given expected event density and event strength.
The ‘event strength’ is defined as

Sactη
ts =
{

Sact
ts, for 
tact � 
ts
Sact
tact, for 
tact < 
ts,

(10)

to cover events both shorter and longer than the sampling time. The
total effective observational time is 308 h, and the frequency range
is 72–86 MHz. The rise of meteor event numbers in our observations
caused by meteor showers is included.

In Fig. 9, we indicate three LWA1 events with event densities 15,
40, and 130 times yr−1 π sr−1, as described in Obenberger et al.
(2016b). A spectral index of −4 is used to extrapolate flux densities
of these events to the MWA frequency range. As illustrated in Fig. 9,
the probabilities for the MWA to detect these three events in our
observations are less than 50 per cent.

5.3 An upper limit on meteor spectral index

According to Obenberger et al. (2016b), the luminosity function of
meteor emission resembles a power law, with higher event rates for
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Figure 9. Probability of detecting at least one meteor in our observation.
Yellow circles indicate the extrapolated event strength (equation 10) of three
LWA1 events (Obenberger et al. 2016b) at MWA frequencies, assuming a
spectral index of −4. Durations of the three LWA1 events are about 40 s at
LWA1 band.

fainter meteors. Under the assumption of a spectral index of −4, the
three LWA1 events would be above 10σ at MWA frequencies. Under
this assumption, fainter meteors with higher event rates above the
5σ detection threshold of the MWA should be abundant. Given we
make no such 5σ detections, we give an estimated relation between
meteor flux density and event rates, based on which we can derive
an upper limit on the spectral index of meteor emission, relevant for
our frequency range.

We start with the radio magnitude of meteors, which is defined by
the ionization produced per unit length of the meteor path (without
any reference to visual luminosity). An approximate radio magni-
tude relation is deduced by McKinley (1961):

Mr = 40 − 2.5 log10 q, (11)

where Mr is the radio magnitude of a meteor and q is the electron
line density.

According to previous radio observations by radar, there is an em-
pirical relation between meteor radio magnitude and meteor num-
bers (McKinley 1961):

log10 N (< Mr) 
 16 − 1.34 log10 q, (12)

where N( < Mr) is the total number of meteors of radio magnitude
Mr and brighter encountered by the Earth’s atmosphere in a 24 h
period.

The mechanism for intrinsic radio emission from meteors is still
under discussion, with one possible explanation being radiation of
Langmuir waves (Obenberger et al. 2015). Thus we assume that
the peak flux density of meteor emission is proportional to the peak
electron line density, i.e. S ∝ q (the width of ionized meteor trails can
be neglected due to the low spatial resolution of the MWA images
made in this project). By differentiating the cumulative number of
meteors we have

dNS ∝ S−2.34, (13)

where dNS is the number of meteors between peak flux density S
and S + dS. Since all the meteor events observed by the LWA1 have
durations longer than our sampling time, and significant drops in
meteor spectral indices occur after the first 20 s for the three typical
events, we estimate that the durations for most meteors detectable

Figure 10. Estimated luminosity function of intrinsic radio emission from
meteors. Yellow circles are the extrapolated LWA1 events (Obenberger et al.
2016b) at MWA frequencies, under an assumed spectral index of −4; dashed
orange line represents the estimated relation between meteor event strength
and event density, as given in equation (13); dashed red line represents the
5σ threshold of the MWA.

Table 4. Parameters of the two satellites observed by the MWA. RCS is
short for Radar cross-section.

Parameters Duchifat-1 Alouette-2

Period (min) 96.65 117.52
Inclination (deg) 97.91 79.80
Apogee (km) 608 2637
Perigee (km) 588 502
RCS size range (m2) <0.1 0.1 < RCS < 1.0

to the MWA also exceed the sampling time, i.e. η = 1. Thus meteor
event strength is proportional to peak flux density in our project.

Based on the three meteor events and equation (13), we give
an estimated relation between event strength and expected event
density, as illustrated in Fig. 10. It is shown that in our survey, the
probability of detecting a fainter event is higher than that of the
three LWA1 events, but not exceeding 73 per cent.

However, the extrapolated LWA1 events and the estimated meteor
strength–rate relation given in Fig. 10 are derived using spectral
index −4. If we use spectral index −3, then the probability for the
MWA to detect faint meteors in our survey exceeds 95 per cent (see
Fig. 11). At spectral index −3.7, the probability of detecting at least
one event in our observations is 95 per cent. In other words, we
give an estimated meteor spectral index upper limit of −3.7 with
95 per cent confidence.

5.4 Other transient events

Besides meteor reflections and scintillations, some other transient
events were also captured in the FM band. Previously, McKinley
et al. (2012) and Tingay et al. (2013b) have detected reflected FM
signals from the Moon and the International Space Station, respec-
tively with the MWA.

Two of the detected transient events found in our data lasted for
minutes and moved tens of degrees across the sky. We overplotted
radio images with the positions of satellites and confirmed that
these two events were caused by two satellites, Duchifat-1 and
Alouette-2. The orbital parameters of the satellites, based on the
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Table 5. Parameters of contemporary radio transient detection arrays. The parameters are estimated at 80 MHz for the MWA, 60 MHz for AARTFAAC, and
74 MHz for the LWA1 (Wijnholds & van Cappellen 2011; Tingay et al. 2013a; Ellingson et al. 2013b; Prasad et al. 2014). Only parameters of the low band
antennas of AARTFAAC are listed here.

Parameter MWA LOFAR (AARTFAAC) LWA1 (PASI) LWA1 (phased array mode)

Frequency range (MHz) 80–300 30–80 10–88 10–88
Field of view (sr) 0.06π π π 0.005π

Total effective area (m2) 3016 2617 1393 1393
Tsys(ν−2.55 K) 1730 3600 2100 2100
Angular resolution (arcmin) 3 60 120 120
Spectral resolution (kHz) 10 16 75 19.14
Bandwidth (MHz) 30.72 13 0.075 36
Temporal resolution (s) 0.5 1 5 0.04

Figure 11. Luminosity function of intrinsic radio emission from meteors,
derived with different spectral indices. The dotted, solid, and dashed orange
lines give estimated meteor event strength with spectral indices −3, −3.7,
and −4.

Two Line Elements (TLE) set1 (Hoots 1988), are listed in Table4.
Since neither of the two satellites transmit in the observed FM band,
we believe that the transient events caused by the satellites were due
to radio reflection of terrestrial FM broadcasting signals. A detailed
discussion of the satellite reflection events will be published in the
future (Hancock et al. in preparation).

5.5 Potential for other facilities

Considering the spectral index and event rate of meteor emission,
the main factors that limit a radio telescope’s ability to detect radio
emission from meteors are frequency range, field-of-view (FoV),
and sensitivity.

Here we give the parameters of some LOFARs in Table 5. The
MWA has a high sensitivity, but its meteor detection is restricted by
the relatively small FoV and the high-frequency range. The LWA1
has two modes: PASI provides all-sky images, but the bandwidth is
narrow, while the phased array mode has a wide bandwidth with a
very small FoV. With these two modes, the LWA1 has detected more
than 100 meteor emission events, but only obtained a few spectra.
AARTFAAC, with its all-sky FoV, the suitable frequency range, and
a wide bandwidth, has the best opportunity to collect radio spectra
from meteor emission. Since the frequency range of AARTFAAC

1https://www.space-track.org/

overlaps with both the LWA1 and the MWA (lower), it would be
possible to directly determine the higher frequency behaviour of
events detected by the LWA1.

6 C O N C L U S I O N S

We have reported a survey for intrinsic radio emission from meteors
with the MWA, which spans observing frequencies from 72.3 to
103.0 MHz. Optical observations were also carried out to verify
possible candidates. Although radio reflection from ionized meteor
trails and optical meteors were detected in the survey, no intrinsic
emission was observed. Assuming the radio emission from meteors
follows a power law with frequency, we derived an upper limit −3.7
on meteor emission spectral index with a confidence of 95 per cent.
This upper limit is consistent with the previous estimation from
Obenberger et al. (2016b).

We have also reported the detections of some other transient
events, including the reflected FM broadcast signals from satellites
in low Earth orbits, which are consistent with previous simulations
by Tingay et al. (2013b). These detections show the potential of the
MWA for Space Situational Awareness.
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A B S T R A C T

Meteoroid modelling of fireball data typically uses a one dimensional model along a straight line triangulated trajectory. The assumption of a straight line trajectory
has been considered an acceptable simplification for fireballs, but it has not been rigorously tested. The unique capability of the Desert Fireball Network (DFN) to
triangulate discrete observation times gives the opportunity to investigate the deviation of a meteoroid’s position to different model fits. Here we assess the viability
of a straight line assumption for fireball data in two meteorite-dropping test cases observed by the Desert Fireball Network (DFN) in Australia – one over 21 s
(DN151212_03), one under 5 seconds (DN160410_03). We show that a straight line is not valid for these two meteorite dropping events and propose a three
dimensional particle filter to model meteoroid positions without any straight line constraints. The single body equations in three dimensions, along with the
luminosity equation, are applied to the particle filter methodology described by Sansom et al. (2017). Modelling fireball camera network data in three dimensions has
not previously been attempted. This allows the raw astrometric, line-of-sight observations to be incorporated directly. In analysing these two DFN events, the
triangulated positions based on a straight line assumption result in the modelled meteoroid positions diverging up to 3.09 km from the calculated observed point (for
DN151212_03). Even for the more typical fireball event, DN160410_03, we see a divergence of up to 360 m. As DFN observations are typically precise to < 100 m, it
is apparent that the assumption of a straight line is an oversimplification that will affect orbit calculations and meteorite search regions for a significant fraction of
events.

1. Introduction

When meteoroids pass through the Earth’s atmosphere the luminous
phenomena produced can be characterised by its brightness, increasing
from meteor to fireball to bolide (Ceplecha et al., 1998). Meteors are
typically associated with cometary dust and burn up high in the at-
mosphere. Fireballs tend to be slower than meteors and more likely of
asteroidal origin. These lower entry velocities allow meteoroids to pe-
netrate deeper into the atmosphere, with longer trajectories likely to be
influenced by its increasing density. Fireballs are particularly sig-
nificant as they are frequent enough for dedicated camera networks to
capture regularly, whilst still having the potential for objects to survive
entry and drop meteorites to Earth. Modelling of fireball trajectories for
orbit analysis and meteorite recovery is typically based on a straight
line assumption (McCrosky and Boeschenstein, 1965; Spurný et al.,
2012; Brown et al., 1994; Hildebrand et al., 2006). The synchronised
astrometric observations acquired by the Desert Fireball Network (DFN;
Howie et al. 2017) provide a unique opportunity to test this assump-
tion. This work analyses two fireball test cases and introduces a 3D
particle filter modelling technique that uses raw observational data to

estimate a trajectory without the need for pre-triangulated data. Al-
though DFN data are used, they are simply to illustrate the issues sur-
rounding the straight line assumption and the functionality of the 3D
particle filter technique presented.

1.1. Modelling and observing fireball trajectories

Determining the potential of a fireball to produce a meteorite in-
volves a trajectory analysis of each individual event. The meteoroid can
be modelled based on the single body theory of meteoroid dynamics – a
set of continuous differential equations representing the evolution of a
meteoroid’s behaviour as it passes through the atmosphere (Hoppe,
1937; Baldwin and Sheaffer, 1971; Sansom et al., 2017). This is, how-
ever, a simplified theory and does not explicitly include any disruptions
to the body. Furthermore, many of the trajectory parameters are un-
known and assumptions must be made, or models used, to determine
their values.

Models such as those used by Ceplecha and Revelle (2005) and
Kikwaya et al. (2011) apply a least squares methodology to determine
the characteristics of a meteoroid during its flight based on positional
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observations and light curves. A least squares approach however does
not rigorously examine the uncertainties in observations, or the lim-
itations posed by the single body model applied, when evaluating er-
rors. Typically the observational residuals to a straight line fit are
quoted as positional uncertainties for the trajectory. This is not valid as
the errors induced by using any model must be incorporated.

Even though meteor ablation models (Campbell-Brown and
Koschny, 2004; Kikwaya et al., 2011) expand on the single body
equations for ablation by including thermal fragmentation mechanisms,
their application is limited to small meteor-producing bodies
( ×10 to 4 10 kg12 5 / 10 μm to 2mm ; Campbell-Brown and Koschny
2004).

Hydrodynamic numerical models (such as SOVA (Shuvalov, 1999)
and the model of Shuvalov and Artemieva 2002) focus on external
processes for modelling the interaction and propagation of shock waves
through the atmosphere caused by hypersonic flight of bolides
(Artemieva and Shuvalov, 2016). These models do not use raw ob-
servational data and are computationally expensive procedures
(Artemieva and Pierazzo, 2009). For this reason a pragmatic approach,
such as the particle filter technique used by Sansom et al. (2017) (after
Ristic et al. 2004), is favoured to characterise meteoroid atmospheric
entry of large fireball network data sets.

The Monte Carlo technique of Sansom et al. (2017) iteratively es-
timates the state of the trajectory system at each observation time. It
does not aim to fit the entire trajectory at once. This removes the as-
sumptions and limitations of normal fitting techniques that may force
the simplified single body equations to model this more complex
system. Despite the particle filter using these equations as a base model,
the adaptive approach uses the observations and appropriate covar-
iances to incorporate, to some extent, unmodelled processes (such as
fragmentation). The nature of this technique allows a broad range of
trajectory parameters (including densities, shapes and ablation para-
meters) to be explored, and favourable values to be identified, in a more
robust way than a brute force least squares approach.

Beside modelling a meteoroid’s dynamic trajectory, it is possible to
relate the mass loss of the body along the trajectory to the observed
brightness of the event, as a portion of the kinetic energy loss is
transformed into visible light (Ceplecha et al., 1998). This can be
modelled following the differential equation

= + ×I
v

v dm
dt

1 2
2

10 .2

2
7

(1)

The luminosity, I, is typically referred to in erg s 1 but is given here in SI
units of Watts (and thus introducing the conversion factor of

W s erg107 1). The percentage of energy that is converted to radiation is
quantified by the luminous efficiency, τ. v and m are the velocity and
mass of the meteoroid with t being the observation time and σ the
ablation parameter.

As fireball observations by the DFN are only in the visible wave-
lengths, as is typical for such networks, the luminosity values need to be
adjusted depending on the meteoroid temperature. A value of
1.5×1010 is used to relate a typical source temperature of 4500 K to
the luminosity in the visual pass-band, Iv (Ceplecha et al., 1998). If the
observed brightness values can be expressed in absolute visual stellar
magnitudes, Mv, then a comparison may be made to models using Eq.
(1) by:

×
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Incorporating the fireball’s calculated luminosity into the particle filter
methodology is able to provide an additional observation to the filter,
helping to further constrain mass loss estimates. The luminosity of a
fireball can be calculated based on the long exposure images or by
calibrating the measurements of an external device such as a radio-
meter.

When a fireball is captured by multiple Desert Fireball Network

remote observatories, each camera image is calibrated using the back-
ground star field to determine an astrometric azimuth and elevation for
positions along the fireball trail. This method of calibration (detailed by
Devillepoix et al. (2018)) accounts well for any effects of atmospheric
refraction, and the uncertainty introduced by the calibration is typically
less than 1 arcminute. The DFN camera systems encode absolute timing
in fireball trajectories using a modulated liquid crystal shutter within
the lens of each camera (Howie et al., 2017). The De-Brujn encoding
embedded within the fireball trail itself is synchronised across the
network via GNSS. This gives us the unique capability of individually
triangulating meteoroid positions for every discrete time-step with
multi-station observations. This has not hereto been possible. Despite
the uncertainties, with correct error analysis this triangulation of dis-
crete observation times can give us ‘ground truth’ positions of the
meteoroid with which we can compare different approaches to me-
teoroid trajectory analyses.

Here we assess the viability of a straight line assumption for fireball
data by comparing straight line positions to those calculated using this
unique triangulation capability of the DFN. We also propose a three
dimensional particle filter to model meteoroid positions without any
straight line constraints. The single body equations in three dimensions,
along with the luminosity equation, are applied to the particle filter
methodology described by Sansom et al. (2017). In doing this, the ob-
servations used by the filter to update the state vector are permitted to
be in the form of the raw line-of-sight observations in azimuth and
elevation as well as luminosities (where available). This drops the
simplifying assumption of a straight line trajectory entirely, as particles
are free to move in three dimensional space. Error propagation is
thorough as the filter considers the observational uncertainties in each
azimuth and elevation individually as well as considers trajectory
model limitations.

The better the understanding we have of the final state of a me-
teoroid, and the uncertainties throughout the modelling phase, the
more confidence we have in predicted fall regions. This may sig-
nificantly influence decisions regarding the feasibility of ground-based
searches for meteorites.

2. Assessing the limitations of the straight line assumption

Historically, there have been two predominant meteoroid triangu-
lation methods; the method of planes (Ceplecha, 1987) and the straight
line least squares (SLLS) method (Borovička, 1990). The method of
planes involves finding the best fit, 2D plane for each observatory that
contains both the observatory location and the line-of-sight meteoroid
observations. The intersection of multiple planes defines the trajectory;
in the case of more than two observatories, this will result in multiple
trajectory results which are then averaged in practice. The straight line
least squares method on the other hand determines a best fit, straight
line radiant for the trajectory considering all the raw observations at
once. This is done by minimising the angular difference between the
observed lines of sight and the line joining the observatory to the closest
corresponding point along the best fit radiant line. By assuming a
straight line trajectory, this effectively destroys any subtleties in the
data by forcing it to fit what may potentially be an oversimplified
model. The straight line assumption may be an acceptable simplifica-
tion for some events, especially short, fast meteors, but may not always
be valid for longer fireballs with significant deceleration and should be
tested.

A least squares approach however does not rigorously examine the
uncertainties in observations, or the limitations posed by the single
body model used, when evaluating errors. Typically the observational
residuals to a straight line fit are quoted as positional uncertainties for
the trajectory. This is not valid as the errors induced by using any model
must be incorporated. Despite the decrease in residuals when con-
sidering the upper sections of the trajectory only (observations of the
fireball above 50 km), it must be noted that this is not a good measure
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of the true trajectory uncertainties as the model errors are not taken
into account.

The reference frame in which the straight line is fitted also needs be
considered for such long, decelerating events and is rarely discussed. It
is expected that a fireball trajectory is approximately straight in an
inertial reference frame only, and that Earth rotation effects will cause
an apparently curved path for an observer on the ground. This requires
accurate timing throughout the meteoroid flight. Although Ceplecha
(1987) adjust entry vectors for both Earth rotation and gravity, this is
intended to correct the heliocentric orbit beyond the sphere of influence
of the Earth. The SLLS method of Borovička (1990) allows the in-
corporation of time differences between measurements to account for
Earth rotation effects, though it is not a requirement of the method; the
authors even state that the local sidereal time of the observer is usually
assumed to be constant throughout a meteor’s flight. For short events
that do not show any significant deceleration, it is unlikely that these
effects would be noticeable within the error of the observations. For
fireballs that are longer and show significant deceleration however, this
may no longer hold true. Most trajectory analyses of recent fireball
events (Brown et al., 2011; Borovička et al., 2013; 2015; Spurný et al.,
2017) cite the SLLS of Borovička (1990) as the method of trajectory
determination, though it is not made apparent in every case which
considerations have been made. Uncertainties in triangulated positions
are also often quoted as the residuals to the straight line (Spurný et al.,
2010; Borovička et al., 2013; 2015; Spurný et al., 2017) fit without
taking into consideration the error of the straight line model and are
therefore not a true representation of the trajectory uncertainty.

2.1. Point-wise triangulation

The unique method used by the DFN camera systems to encode
absolute timing in fireball trajectories is synchronised across the net-
work via GNSS. The instantaneous meteoroid position for a given time

step can therefore be evaluated using what we here refer to as a point-
wise triangulation (schematically illustrated in Fig. 1). Point-wise trian-
gulation estimates the meteoroid position, ℓ, by minimising the angular
separation, θ, between the calculated line-of-sight unit vector to ℓ and
the observed line-of-sight unit vector, zn for each observatory, On (where
zn, ℓ and On are in an ECEF rectangular geocentric coordinate system).

= O
O

zarccos •
n

n

n
n

2

(3)

The resulting individually triangulated positions (ITPs) are used as a
reference for comparison of trajectory models.

2.2. Introducing two fireball test cases

Here we detail two fireballs observed by the Desert Fireball Network
and assess the appropriateness of a straight line trajectory fit for these
cases.

2.2.1. Case 1: DN151212_03 – long, shallow
On the 12th of December 2015, at 11:36:23.826 UTC, a > 21 s

long fireball over South Australia was captured by five DFN ob-
servatories east of Kati Thanda (hereafter referred to as event
DN151212_03). DFN systems at this time were designed to capture one
25 s, long exposure image every 30 s, and the fireball was split over two
consecutive images. The fireball appeared in the last ∼ 2 s of the first
exposure, was unobserved during the gap between exposures, and
further captured for another ∼ 14 s in the second exposure, with a final
observation time at 11:36:45.526 UTC. Fig. 2 shows the second ex-
posure captured by the observatory closest to the terminal point
(DFNO_39). The modulation of the liquid crystal shutter used to encode
absolute and relative timing can be seen as long and short dashes along
the trajectory. Initially the entire 21.7 s trajectory was fitted using the
straight line least squares (SLLS) method following Borovička (1990).

Fig. 1. Schematic representation (not to scale) of five unique time steps observed by two DFNOs. Difference between the straight line least squares trajectory points
(red) and the individually triangulated positions (green) are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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As absolute timing is known to a high accuracy, this is preferably
performed in an Earth centred, inertial (ECI) reference frame, though a
non-inertial (Earth centred, Earth fixed; ECEF) solution is also calcu-
lated to assess the variation in fits (and subsequent radiant values are
converted to J2000 for comparison). A 1D extended Kalman smoother
trajectory analysis (Sansom et al., 2015) on these straight line data
estimates the trajectory parameters. The results for both reference
frames are given in Table 1.

The cross-track residuals of individual camera observations to the
straight line fit (in ECI) can be seen in Fig. 3. These cross-track residuals
show the minimum distance between the observed lines of sight and the
straight line triangulated trajectory and do not include along-track er-
rors in triangulated positions. The 13.56 arcmin difference in entry
radiant between inertial and non-inertial reference frames (Table 1)
shows the importance of including Earth rotation effects (this exceeds
the typical < 1 arcmin astrometric uncertainties of DFN observa-
tions). The > 1 km residuals show this is an inappropriate fit to the
trajectory.

By considering only the observations above 50 km we hope to

improve the fit and calculate a more realistic entry radiant. The cross-
track residuals to the straight line fit (in ECI) for its subset are seen in
Fig. 4. The decreases in observation residuals to the straight line model
shows a significantly improved fit, providing a more reliable entry ra-
diant (43.10′ difference between Tables 1 and 2 ECI values). Despite the
decrease in residuals, it must be noted that this is not a good measure of
the true trajectory uncertainties as the model errors are not taken into
account. Updated entry parameters given in Table 2 are again calcu-
lated using an EKS (Sansom et al., 2015), which incorporates both
observational and model errors in the quoted uncertainties. Non-in-
ertial SLLS (ECEF) results are also quoted to highlight that despite
improved fits in both reference frames, the radiant angles are still se-
parated by nearly 2′ which is double observational uncertainties. A si-
milar exercise can be performed with the lower half of the trajectory
(observations < 50 km). Fig. 5 shows that a SLLS fit to these data still
does not well represent the data and is little improved from Fig. 3.
Rather than continuing to chop the trajectory into increasingly small
segments, we can observe the path of the ITPs relative to the entry
radiant calculated in Table 2. Fig. 6 is a view looking down the ECI
entry radiant (white point). This “down-line” view projects all points
onto the plane normal to the straight line trajectory, resulting in the ECI
trajectory stacking to a single point. The x-axis is truly horizontal, and
as the meteoroid travelled from North to South, negative deviations are
to the East, while positive deviations are to the West. The y-axis is the
deviation above and below the straight line trajectory and values can be
translated to true vertical using the cosine of the trajectory slope. From
this down-line view, we can gain an understanding of the true non-
linearity of the DN151212_03meteoroid trajectory; the lower half is not
randomly scattered around a straight line as points above 50 km are,
rather they show a distinct lateral deviation to the East. This also shows
that, despite the 21.7 s trajectory theoretically accumulating a 2.1 km
vertical drop due to gravity, this is not the cause of the deviation from a
straight line.

This fireball represents an interesting case, showing that effects
other than Earth rotation and gravity are involved in significantly in-
fluencing trajectories. This long, shallow trajectory however is certainly
not a regular event. Next we perform a similar analysis on a more ty-
pical fireball case.

2.2.2. Case 2: DN160410_03 – typical event
On the 10th of April 2016, at 13:09:02.526 UTC, a ‘typical’ fireball

was observed by three DFN observatories over central South Australia,
near lake Cadibarrawirracanna (event DN160410_03, Fig. 7). It is an
ideal case to analyse as it was nearly equidistant to all cameras, with the
angle of observing planes at 46°/52°/80° (Fig. 8), and 88 of the 91 total
observations made (from identifying the starts and ends of the trajec-
tory dashes) were visible in all three still images (Fig. 7). There is little
observable fragmentation in the still images and no major peaks no-
ticeable in the light curve which is regular and symmetric. The method
used by the DFN to calculate the luminosity of an event is only ap-
plicable when an event does not saturate the sensor, which was un-
fortunately the case for the other two viewpoints, DFNO_27 and
DFNO_32.

As with event DN151212_03, a straight line least squares (SLLS)
triangulation of this event was calculated. Initially for the entire tra-
jectory (Fig. 9), with resulting parameters determined using the EKS
given in Table 3. Although this event is steeper and significantly
shorter, gravity still contributes a 105 m downward component over
the 58 km long trajectory and Earth rotation an apparent 1.9 km lateral
deflection to an observer on the ground. The ECI and ECEF entry ra-
diants show a 12.93′ separation (Table 3).

Despite the apparently reasonable fit of the straight line to the entire
trajectory in this case, we once again isolate the observations above
50 km and re-triangulate this upper dataset (Fig. 10). The ECI entry
radiant changed by a not insignificant 17′ (Table 4).

With this new entry radiant, we can once again project the ITPs onto

Fig. 2. DN151212_03 fireball as seen from Etadunna Station, South Australia,
travelling from North (top) to South (bottom) with a final recorded point at
11:36:45.526 UTC. Calibration with background stars determines azimuth and
elevation of trajectory points.

Table 1
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for all observations of event
DN151212_03. Trajectory characteristics (height, velocity, mass) are estimated
using an extended Kalman smoother in one dimension on these straight line
data. Entry slope is given as an angle from horizontal. Despite the reference
frame used to calculate the straight line, radiants are given in J2000 equatorial
coordinates for comparison; the angular separation between the two radiants is
13.56′ (0.23°).

DN151212_03 (full) ECI ECEF

Entry radiant – RA ( °) 23.77 ± 0.37 23.99 ± 0.22
Entry radiant – DEC ( °) 46.17 ± 0.13 46.00 ± 0.15
Initial height (km) 87.7 ± 0.1 88.5 ± 0.1
Initial velocity (km s 1) 13.21 ± 0.13 13.15 ± 0.13
Initial mass (kg) 35 ± 2 33 ± 2
Entry slope, γe (°) 16.4 16.5
Final height (km) 26.5 ± 0.1 26.4 ± 0.2
Final velocity (km s 1) 3.03 ± 0.21 2.93 ± 0.11
Final mass (kg) 2.0 ± 0.2 1.9 ± 0.3
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the plane normal to it, allowing us to observe how the meteoroid po-
sitions track in the lower section of the trajectory (Fig. 11). Despite this
event being a more typical example, with acceptable observational re-
siduals, there is still a not insignificant lateral trend to the end me-
teoroid positions as shown by the ITPs in this figure.

2.2.3. Summary of straight line comparisons
Event DN151212_03 may be considered unique in its duration, and

its non-linear flight path with up to 2.1 km of lateral deviation an
anomaly, but in performing a similar analysis to the more typical event
DN160410_03 we are still able to notice a distinct pattern/wander to
the end of the trajectory. These deviations from a straight line cannot be
accounted for by gravity, and Earth rotation effects are removed when
an inertial reference frame is used. It is clear that there are real lim-
itations to the straight line assumption and it is best to consider mod-
elling fireball trajectories without any pre-defined assumptions; allow
the raw observations to be the sole influences on the data. To achieve
this we can apply the single body equations in three dimensions to the
particle filter methodology described by Sansom et al. (2017). This will
utilise raw astrometric observations to resolve meteoroid position es-
timates.

3. Particle filter modelling using three dimensional meteoroid
flight and luminosity

The iterative Monte Carlo technique of the particle filter allows a
broad range of trajectory parameters (including densities, shapes and
ablation parameters) to be explored, and favourable values to be
identified, in a more robust way than a brute force least squares

approach. A set of tracer particles are propagated through the motion
and luminous equations, and their weightings evaluated at each time
step according to their closeness to available observational data. A
detailed description of applying particle filters to meteoroid trajectories
is presented in Sansom et al. (2017). Although Sansom et al. (2017)
apply the single body equations as a model, the adaptive approach uses
appropriate covariances to incorporate, to some extent, unmodelled
processes such as fragmentation.

Particle filters fall within the class of Bayesian state-space methods
which use a vector, x, to represent the state of a system. In meteoroid
trajectory analysis this includes the motion parameters (position and
velocity) as well as other trajectory variables.

To use a three dimensional model for flight, we divide positions and
velocities into their x, y, z components in geocentric coordinates.
Incorporating the luminous efficiency into the state vector allows lu-
minosity values to be calculated. Eq. (4) represents the meteoroid state
and encapsulates the knowledge of the meteoroid system at a given
time tk.

=
v
v
v
m

x

position in X
position in Y
position in Z
velocity in X
velocity in Y
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shape-density parameter
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Fig. 3. Cross track residuals for individual station observations of DN151212_03 to a straight line trajectory fit in an inertial (ECI) reference frame. Range values in
legend are the minimum and maximum distances of a station to the fireball trajectory. Error bars on observations are 1σ astrometric errors projected at the
corresponding range. The gap between 82 and 62 km corresponds to the ∼ 5 s gap between exposures.
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The shape-density and ablation trajectory parameters are given by

= =c A c
c H

1
2

and
*

,d

m

h

d
2/3

where cd and ch the drag and heat transfer coefficients respectively, A is
the shape parameter as described by Bronshten (1983), ρm the bulk
density of the meteoroid, and H* the enthalpy of sublimation.

This state is determined by assessing the conditional probability
density function p(xk|z0: k) given an observation zk of the system at time
tk (z0: k therefore being the history of all observations from time t0
through to time tk).

This is achieved through the three state-space equations:

(i) The state prior,

p x( ),0 (5)

which is the probability density function that encapsulates prior
knowledge of the state of the system and initialises the recursion.

(ii) The process equation,

= ++ fx x u( ) ,k k k1 (6)

defines the evolution of the state in discrete time, with process
noise uk.

(iii) The measurement equation,

= +hz x w( ) ,k k k (7)

uses the measurement function h(xk) to correlate the state of the me-
teoroid to the given azimuth and elevation measurements from camera
observatories. Observation noise, wk, is assumed to be Gaussian with a
mean of zero and covariance Rk in degrees (Rk represents observational
error). Further explanation of the measurement function are detailed in
Section 3.1.

Although fireball observations are made in discrete time, modelling
the meteoroid dynamics is more appropriate using continuous model
equations. Continuous-time differential state equations (fc(x)) may be
integrated in order to attain the form needed for the process Eq. (6):

= ++
+ f dtx x u( ) .k t

t
c k1

k

k 1

(8)

Although fc(x), using the single body equations, is non-linear, the

Fig. 4. Cross track residuals for the upper half of the DN151212_03 trajectory to a straight line fit in an inertial (ECI) reference frame. Only observations of the fireball
above 50 km were used. Error bars on observations are 1σ astrometric errors projected at the corresponding range.

Table 2
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for observations of event
DN151212_03 above 50 km only. Trajectory characteristics (height, velocity,
mass) are estimated using an extended Kalman smoother in one dimension on
these straight line data. Despite the reference frame used to calculate the
straight line, radiants are given in J2000 equatorial coordinates for comparison;
the angular separation between the two radiants is 1.77′ (0.03°).

DN151212_03 ( > 50 km) ECI ECEF

Entry radiant – RA ( °) 24.18 ± 0.01 24.14 ± 0.01
Entry radiant – DEC ( °) 45.51 ± 0.01 45.51 ± 0.01
Initial height (km) 89.99 ± 0.02 89.97 ± 0.02
Initial velocity (km s 1) 13.52 ± 0.06 13.47 ± 0.05
Entry slope, γe (°) 17.1 17.1
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discrete-time process noise, uk, can be closely approximated by
Gaussian noise with zero mean and covariance Qk (Qk corresponds to
how well the process equation represents the true system).

A particle filter is very flexible and requires no constraints on the
linearity of state equations, nor the noise distributions (Ristic et al.,
2004). This is due to there being no single representation of the state
prior, rather a set of Ns weighted particles are used to represent the
distribution.

Each ith particle can be represented at any time tk by its state, x ,k
i

and weight, wk
i as:

= …w i Nx{ , } 1, , ,k
i

k
i

s (9)

with weights normalised as:

=w 1.
i

N

k
i

s

(10)

Particle weights are evaluated according to how well a particle’s state
represents the available observational data. The weighted mean of the
distribution, x̂ ,k can be approximated at any time tk as:

= wx x^ ,k
i

N

k
i

k
i

s

(11)

with covariance
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There are three steps in running a particle filter, similar to other

Bayesian filtering methods: initialisation, prediction, update. Sansom
et al. (2017) provides a detailed methodology for a one dimensional
trajectory model. Here we will outline the variations required to allow a
particle filter to be performed in three dimensions and incorporate
absolute visual magnitude observations.

3.1. Initialisation using point-wise triangulation

An initial set of particles is required that best represents the state
prior (5) of the meteoroid system; initialisation in 3D requires an ap-
proximate start location. As the full data set is available at the time of
executing the particle filter, the initial position and velocity compo-
nents may be more accurately estimated from the observational data.
The instantaneous meteoroid position for a given time step can be
evaluated using point-wise triangulation (see Section 2.1). Performing a
point-wise triangulation on the first handful of multi-station observa-
tions produces a set of individually triangulated positions (ITPs) from
which the instantaneous velocity of the meteoroid can be determined –
simply taking the difference in positions with time: = +

+
vk

d
dt

k k
k k

: 1
: 1

. Due to
the inherent scatter in the ITPs and therefore velocities, v0 may be
reasonably well approximated by assuming constant deceleration be-
tween the first few multi-station observations and t0:

= ×d
dt

tv v v ,m m0 (13)

where tm is the relative time of the first available multi-station ob-
servations and the value of vm and d

dt
v are determined by a linear least

squares fit to the scattered velocities.

Fig. 5. Cross track residuals for the lower half of the DN151212_03 trajectory to a straight line fit in an inertial (ECI) reference frame. Only observations of the fireball
below 50 km were used. Error bars on observations are 1σ astrometric errors projected at the corresponding range.
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If the first ITP is at t0, its position can be used to initialise the first
three components of the state vector (4). If tm≠ t0 (multi-station data is
not available at t0), an initial position may then be roughly approxi-
mated by rearranging and integrating (13) with respect to time:

= ×t d
dt

tv v1
2

.m m m0 0
2

(14)

The initialisation of particle state parameters for position and ve-
locity at t0 is then drawn from a Gaussian distribution shown by

= = = …i NP v v P( ; ) ( ; ) 1, ,i i
sv0 0 ;0 0 0 ;0 (15)

where mean values of the ℓ0 and v0 vectors are calculated as described
above, and covariance values, P0, are determined by the uncertainty in

this least squares fit and may vary for each directional component.
Possible original values for mass, κ and σ can be randomised within

theoretical bounds (see Table 1 of Sansom et al. 2017). A similar con-
cept can be applied to the luminous efficiency; here we randomise
within the range 0.01% < τ < 10% after Ceplecha and Revelle (2005)
and Ceplecha et al. (1998). All particles are initially weighted equally as

=wi
N0
1

s
.

3.2. Filter prediction using three dimensional state equations

Recursion commences after initialisation, beginning with a forward
prediction of particles from tk to +tk 1 by the process Eq. (6).

The change in trajectory parameters κ, σ and τ with time is not well

Fig. 6. “Down-line” view (c) as seen by an observer looking down the ECI straight line radiant (illustrated by (a)–(b)) calculated using the top half of the trajectory
(points > 50 km; see Fig. 4). This results in the ECI trajectory stacking to a single point (white) whereas the individually triangulated positions (ITPs; coloured
points) are projected onto the viewing plane. This plane is normal to the straight line trajectory with the x-axis aligned with the Earth horizontal, and inclined from
true vertical by the cosine of the trajectory slope. From this down-line view the ITPs help to illustrate the true non-linearity of the path taken by the meteoroid.
(Google Earth image credit: Landsat/Copernicus/CNES/Airbus).
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known and at this stage is assumed to be nil (see discussion related to
Eq. (20)):

= = =d
dt

d
dt

d
dt

0.
(16)

In order to analyse the full trajectory in 3D, the differential equa-
tions of motion must be split into their vector components:

=d
dt

v
(17a)

= +d
dt

mv v v ga
µ( 1)

(17b)

=dm
dt

m v ,a
µ 3

(17c)

where ℓ and v are the position and velocity vectors, g is the local
gravitational acceleration vector, and ||v|| is the magnitude of the ve-
locity. μ is the shape change parameter, representing the rotation of the
body, here assumed to be 2/3, representing spin rapid enough for ab-
lation to be uniform across the entire surface (Bronshten, 1983). At-
mospheric densities, ρa, can be calculated using the NRLMSISE-00 at-
mospheric model (Picone et al., 2002).

This gives the continuous-time state equation for a meteoroid tra-
velling through the atmosphere in 3D as:

=f dl
dt

dl
dt

dl
dt

dv
dt

dv
dt
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dt
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dt

d
dt

d
dt

d
dt
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(18)

with the continuous-time Gaussian process noise uc of zero mean and
covariance Qc. The discrete-time process noise covariance, Qk can be
approximated as

= + e e dtQ Qk t

t Ft
c

F t
k

k T1

(19)

using the linearised form of the process equation, =F f x
x
( )c (Grewal and

Andrews, 1993). In the 3D filter, we use

=

×

diag m s m s m s
m s m s m s

m kg s m kg s
s km

Q [(0 ), (0 ), (0 ),
(75 ), (75 ), (75 ),
(0.8 ), (10 ),
(10 ), (0.001 %)] ,

c

k

1 1 1

2 2 2

1 3 2 2/3 1

4 2 2 (20)

where each element along this square matrix diagonal represents the
uncertainty of each differential model equation in (18). That is, the
uncertainty in position and velocity components are introduced
through noise in the acceleration model (17b), therefore allowing the

Fig. 7. DN160410_03 fireball as seen from three DFN stations in South
Australia, starting at 13:09:02.526 UTC. Calibration with background stars
determines azimuth and elevation of trajectory points.

Fig. 8. Configuration of DN160410_03 observations. White observation rays correspond to the start and end points of the trajectory dashes in Fig. 7. (Google Earth
image credit: Landsat/Copernicus).
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variance of =d dt/ 0 m s 1. The process model for dm/dt is not able to
fully represent the change of mass due to fragmentation; the process
noise is therefore set as a relatively high percentage of the existing
mass. Although the trajectory parameters κ, σ and τ are currently as-
sumed to be constant (16), this is not entirely true; process noise is
therefore attributed to allow small variations to these parameters
throughout the trajectory (20).

The discrete process noise, Qk, is then calculated from Eq. (19) at

every time step along the trajectory.

3.3. Line-Of-Sight measurement update

Images taken by each observatory show a discontinuous streak
across a star background. The Desert Fireball Network uses the mod-
ulation of a liquid crystal shutter within the lens of each camera to
encode a unique time sequence into the fireball’s path (Howie et al.,
2017). By comparing the position of the start and end of each fireball
segment with the background stars, the azimuth and elevation of each
time encoded data point can be determined (Devillepoix et al., 2018).

The astrometric observations of the fireball, zk, are a series of an-
gular measurements. The measurement function in Eq. (7) extracts the
position vector (ℓ) from the state which will be compared to these ob-
servations and performs the transformation required. Within this
function, k

i is converted from geocentric cartesian coordinates to a
calculated line-of-sight azimuth and elevation with respect to each
observatory. At each tk, this conversion is required for each station that
made an observation. The cartesian vector between each n observatory
and the particle position, is rotated into local observatory-centred co-
ordinates (East, North, Up; a[^ ]k

i n
ENU

; ) before subdividing it into its alti-
tude and elevation components:

=az moda aarctan 2([^ ] , [^ ] ) ( 2 )k
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Fig. 9. Cross track residuals for individual station observations of DN160410_03 to a straight line trajectory fit in an inertial (ECI) reference frame. Range values in
legend are the minimum and maximum distances of a station to the fireball trajectory. Error bars on observations are 1σ astrometric errors projected at the
corresponding range.

Table 3
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for all observations of event
DN160410_03. Trajectory characteristics (height, velocity, mass) are estimated
using an extended Kalman smoother in one dimension on these straight line
data. Despite the reference frame used to calculate the straight line, radiants are
given in J2000 equatorial coordinates for comparison; the angular separation
between the two radiants is 12.93′ (0.22°).

DN160410_03 (full) ECI ECEF

Entry radiant – RA ( °) 161.76 ± 0.02 161.98 ± 0.02
Entry radiant – DEC ( °) ±4.65 0.02 ±4.61 0.02
Initial height (km) 79.1 ± 0.05 79.1 ± 0.02
Initial velocity (km s 1) 15.2 ± 0.1 15.2 ± 0.1
Initial mass (kg) 1.6 ± 0.7 1.5 ± 0.6
Entry slope, γe (°) 64.3 64.8
Final height (km) 26.7 ± 0.07 26.6 ± 0.05
Final velocity (km s 1) 4.0 ± 0.4 4.0 ± 0.7
Final mass (kg) 0.05 ± 0.01 0.06 ± 0.01
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For consistency in calculated and true angular measurements, the azi-
muth value is expressed within the 0–2π radian range. As an azimuth
value of 0 radians is congruent with that of 2π radians, a modulo op-
eration is included in (21).

The result of the measurement function, ẑk
i is the predicted line-of-

sight unit vectors for a given particle i in azimuth and elevation from all
observatories and can be summarised by:

= …az el az elẑ [ , , , , ].k
i

k
i

k
i

k
i

k
i;1 ;1 ;2 ;2 (23)

A multivariate Gaussian probability is then used to calculate the position
weighting of a particle:

= ( )w eR[ ˜ ] 2 | | ,k
i

pos k
z z R z z1 1

2 [^ ] ^Ns k k
T

k k
i

k
2

1
2

1

(24)

where |Rk| is the determinant of the observation noise covariance
matrix containing azimuth and elevation errors pertaining to each ob-
servatory:

= …diag Var az Var el Var az Var elR [ ( ), ( ), ( ), ( ), ].k
1 1 2 2 (25)

The observational uncertainties in both azimuth and elevation are
linked to the accuracy of picking the start and end points of modulated
segments in the fireball image, their calibration and the shutter re-
sponse time. For all-sky images captured using fish eye lenses, the ac-
curacy in azimuth is much greater than in elevation. Although the DFN
observations are syncronised in time, this is not required by the 3D
particle filter; only muti-station observations which include absolute
timing data are needed.

3.4. Luminosity measurement update

As well as considering the line-of-sight observations, the calculated
absolute visual magnitude observations, M ,v

obs may also be used to
constrain mass loss estimates. Observed luminosities can be obtained
from the long exposure images by doing aperture photometry on each
shutter break. These measurements are then converted to apparent
magnitudes using the stars, accounting for the different exposure times.
Apparent magnitudes are finally turned into absolute magnitudes
(Mv

obs) by doing a distance correction using the basic trajectory solution

Fig. 10. Cross track residuals for the upper section the DN160410_03 trajectory to a straight line fit in an inertial (red; ECI) and non-inertial (blue; ECEF) reference
frame. Only observations of the fireball above 50 km were used. Error bars on observations are 1σ astrometric errors projected at the corresponding range. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for observations of event
DN160410_03 above 50 km only. Trajectory characteristics (height, velocity,
mass) are estimated using an extended Kalman smoother in one dimension on
these straight line data. Despite the reference frame used to calculate the
straight line, radiants are given in J2000 equatorial coordinates for comparison;
the angular separation between the two radiants is 0.21′ (0.004°).

DN160410_03 ( > 50 km) ECI ECEF

Entry radiant – RA ( °) 161.981 ± 0.016 161.984 ± 0.015
Entry radiant – DEC ( °) ±4.469 0.017 ±4.469 0.016
Initial height (km) 79.13 ± 0.01 79.12 ± 0.01
Initial velocity (km s 1) 15.22 ± 0.06 15.18 ± 0.02
Entry slope, γe (°) 64.2 64.7
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given by the SLLS. A combination of Eqs. (1) and (2) are used to cal-
culate the predicted visual magnitude for each particle, Mv

i between tk
and +tk 1. The luminous weighting for each particle, w[ ˜ ]k

i
lum can then be

obtained by evaluating the 1D Gaussian probability distribution func-
tion

=w
R

e[ ˜ ] 1
2k

i
lum

k

M M
R

( )
2

v
obs

v
i

k

2

(26)

where Rk here is the uncertainty in the observed Mv values. This can
include errors introduced in the calibration process that is usually

Fig. 11. DN160410_03 – “Down-line” view (c) as seen by an observer looking down the ECI straight line radiant (illustrated by (a)–(b)) calculated using the top
section of the trajectory (points > 50 km; see Fig. 10). This results in the ECI trajectory stacking to a single point (white) whereas the individually triangulated
positions (ITPs; coloured points) are projected onto the viewing plane. This plane is normal to the straight line trajectory with the x-axis aligned with the Earth
horizontal, and inclined from true vertical by the cosine of the trajectory slope. From this down-line view the ITPs help to illustrate the true non-linearity of the path
taken by the meteoroid. (Google Earth image credit: Landsat/Copernicus/CNES/Airbus).

E.K. Sansom et al. Icarus 321 (2019) 388–406

399

412 H. A. R. DEVILLEPOIX



required to convert arbitrary brightness units to distance-normalised,
absolute visual magnitudes.

The overall weighting of each particle including both line-of-sight
and absolute magnitude observations can then be calculated as the
product of normalised position and luminous weightings:

=w w w˜ [ ˜ ] [ ˜ ] ,k
i

k
i

pos k
i

lum (27)

which can then be normalised

=w w
w

˜
˜

.k
i k

i

j
N

k
js

(28)

3.5. Results of the 3D particle filter

As this is a filtering technique, the 3D particle filter iteratively
converges upon a final state estimate that combines all observational
data, and uncertainties. The estimate at any discrete time is the best
guess of the filter up until that point; there is no full trajectory solution.
A smoother is able to combine forward and reverse filters to give a full

solution (such as the extended Kalman smoother in Sansom et al.
(2015) and multiple model smoother in Sansom et al. (2016)). Particle
filter smoothing is still being developed and is not described in this
work. To this end, the results desired dictate the order in which ob-
servations are presented. As we focus on determining likelihood of final
mass estimates for meteorite recovery, we perform a 3D particle filter
forward in time on these two test cases using =N 100, 000s . If entry
masses were to be desired, the filter can be initialised at tf and run in
reverse time order (from terminal point to entry point).

The distance between the ITPs and all predicted particle positions
for event DN151212_03 are shown1 in Fig. 12 and for event
DN160410_03 in Fig. 13. The weighted mean residuals, as calculated by
Eq. (11), are marked in black. ITPs may give us a reasonable indication
of meteoroid position, but are sensitive to observational geometry and
error. Despite using the ITPs as reference positions for these figures, the

Fig. 12. The absolute distance between individually triangulated positions (ITPs; =y 0 with variances in green) and the estimated position of the DN151212_03
meteoroid using different methods of modelling a meteoroid trajectory: a straight line least squares approximation (SLLS) fitted to the entire suite of observations in
an ECI reference frame (grey), a SLLS fitted to the upper (above 50 km) and lower (below 50 km) segments of the trajectory separately (blue; see Section 2) and the
results of a 3D particle filter (weighted mean positions in black). The gap between km62 84 corresponds to the time between exposures. The final 1.22 s (∼ 800m
height) was only observed by a single observatory and no individually triangulated position could be calculated as a reference. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

1 In order to graphically represent such a large output file (number of parti-
cles plotted= ×N ks ) we made use of TOPCAT table processing software which
is an open source library for manipulating large tabular data (Taylor, 2005)
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3D particle filter is weighting estimates based on the raw observations.
The history information inherent in the particle ‘cloud’ provides a
certain inertia that prevents unrealistic changes to the overall mean
when unfavourable observations are made. Though there is still a
flexibility to the estimates that allows to an extent for unmodelled
factors (fragmentation etc. not included in the single body equations) to
be incorporated, as model uncertainty is considered in the process noise
covariance (Eq. (20)).

3.5.1. Case 1: DN151212_03
No absolute brightness data were acquired for this event as the

fireball saturated the sensors. The particle filter was still able to cal-
culate theoretical values for Mv, though only normalised values of
w[ ˜ ]k

i
pos Eq. (24) were used to determine particle weightings for this case.
The maximum deviation of any weighted mean to its corresponding

calculated observed position for DN151212_03 is 470m, with over half
within 80m. The higher mean values between 34 and 32 km could be
related to increased uncertainty in the ITPs for these observations
(Fig. 12), or could be indicative of an unmodelled cause. The large gap
in Fig. 12 between 62and84 km corresponds to the time between ex-
posures. For this event, the final 1.22 s (seven observation times) were
only visible from one camera (Fig. 2). The 3D particle filter still esti-
mates positions with single station observations, but the mean final

state estimate at =t 21.14 sf has slightly higher uncertainties because of
this. Particles are not shown in Fig. 12 for this final 760m as no in-
dividually triangulated position could be calculated as a reference. The
exploration of velocity state-space by the particles can be seen in
Fig. 14. Final state estimates are given in Table 5.

3.5.2. Case 2: DN160410_03
The mean particle positions for event DN160410_03 show a max-

imum deviation of 150m, with nearly 80% within 50m of the ITPs
(Fig. 13; black). Not only do the position estimates match the ob-
servations well, the calculated values of Mv (evaluated using Eqs. (1)
and (2)) also correspond well to the calibrated light curve for DFNO_30
(Fig. 15). The inferior weightings attributed toward the end are most
likely due to the calculation using the relatively constant value of τ
(around ∼ 0.2%). The good correlation between position and lumin-
osity estimates to observational data validates the results of the particle
filter, giving confidence to the estimates determined for other state
variables through the link in the state equations. The velocities for
example can also be compared to those calculated between ITPs and the
SLLS positions (Fig. 16). The exploration of this state space is inter-
esting to observe. For example, we can see that a lower velocity option
was tested at ∼ 55 km but discontinues; a high velocity option around
35 km experiences a similar fate. These discontinued streams can be

Fig. 13. The absolute distance between individually triangulated positions (ITPs; =y 0 with normalised variances in green) and the estimated position of the
DN160410_03 meteoroid using different methods of modelling a meteoroid trajectory: a straight line least squares approximation (SLLS) fitted to the entire suite of
observations in an ECI reference frame (grey), a SLLS fitted to the upper (above 50 km) and lower (below 50 km) segments of the trajectory separately (blue; see
Section 2) and the results of a 3D particle filter (weighted mean positions in black). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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linked to different mass options (Fig. 17). The final meteoroid states for
this exent at =t 4.6f are also given in Table 5.

4. Discussion

Fireball trajectories are typically approximated as straight line paths
over a spherical Earth (Ceplecha and Revelle, 2005). This may be a
reasonable assumption for short meteors, but for fireballs, effects that
cause deviations to a straight line trajectory are not always negligible.
The astrometric uncertainty on DFN observations is typically < 1

arcmin. This high precision, when projected at the observational range
to the fireball, gives uncertainties ∼ 100 m. Any disturbances to the
body greater than this will be resolvable. Gravity and Earth rotation
have known effects on trajectories and their observations respectively,
and can be quantified. The 231 km long trajectory of the shallow event
DN151212_03 ( = 17e ) was observed for 21.14 s. This means a
> 2.1 km downward displacement was experienced due to gravity
alone. Over this length of time, at the latitude of the event, an observer
on the ground would have moved nearly 8.5 km eastward with Earth’s
rotation. This must be accounted for if reduction is done in a non-in-
ertial reference frame. Event DN160410_03 was steeper ( = 65e ) and
significantly shorter in both duration (observed for 4.66 s) and length
(58 km). Gravity therefore contributes a 105 m vertical displacement.
The ground stations will also have moved 1.9 km eastward, affecting
apparent velocity vectors in a non-inertial frame.

Fitting a linear trajectory to observations of a meteoroid will reduce
the overall effects of gravity (and Earth rotation if using a non-inertial
frame) by essentially averaging them out. This may provide usable
position data, but will translate into a strong misrepresentation of ve-
locity vectors. The difference in entry radiants calculated in both an
inertial (ECI) and non-inertial (ECEF) frame for these trajectories de-
monstrates the effect of Earth rotation on these entry vectors. For event
DN151212_03 they vary by 13.56′ and for event DN160410_03 by
12.93′. Entry radiants are used in the calculation of fireball orbits.

Fig. 14. Magnitude of the velocity vector as calculated by the change in ITP positions with time (green) and as estimated by the 3D particle filter. The gap between 62
and 84 km corresponds to the time between exposures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 5
Trajectory characteristics, including state values, estimated using the 3D par-
ticle filter for the final observation time of both events DN151212_03 and
DN160410_03.

Final state values for: DN151212_03 DN160410_03

tf (seconds since start) 21.14 4.66
Height (km) 26.3 ± 0.8 26.3 ± 0.06
Velocity (km s 1) 3.5 ± 0.3 3.8 ± 0.1
Mass (kg) 2.7 ± 0.3 0.13 ± 0.02
Shape density coefficient (κ ; m kg3 1) 0.0032 ± 0.0001 0.0039 ± 0.0001

↪ Density (kg m 3); if × =A c( ) 1.5d 3610 2650

Ablation coefficient (σ ; s km2 2) 0.0141 ± 0.00003 0.0192 ± 0.0003
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Integrating the fireball’s motion back in time, performed to determine
the heliocentric orbit beyond Earth’s sphere of influence, is highly
sensitive to both radiant direction and entry velocity. Using an in-
appropriate model to fit the observations introduces systematic errors
to radiant angles, and as shown in Tables 2 and 4, can be far greater
than the quoted uncertainties based on the residual fit for longer tra-
jectories. These systematic errors will affect orbit calculations, resulting
in the incorrect evaluation of a meteoroid’s orbit. The final velocity
vector is used in dark flight modelling to estimate meteorite fall posi-
tions and will have similar issues, perhaps even more pronounced due
to the lower velocities toward the end of the luminous trajectory.
Without a means of further testing meteoroid positions, there could be
other forces involved that cause unmodelled deviations to a meteoroid
trajectory.

Here we use individually triangulated positions (ITPs) as a base for
comparison between meteoroid positions calculated using a straight
line least squares approximation and a 3D particle filter. The calcula-
tion of the ITPs is a unique capability of the DFN as a result of absolute
synchronisation of the time encoding between observatories. We have

shown for both cases presented that there is a significant deviation of
the meteoroid body when comparing ITPs to a straight line trajectory.
To some degree the non-linear variability of these fireball trajectories
can be visualised in Figs. 6 and 11. The absolute difference between the
ITPs and the SLLS results are quantified for event DN151212_03 in
Fig. 12 and for event DN160410_03 in Fig. 13. For both the long,
shallow case (DN151212_03), and the steeper, shorter case
(DN160410_03), the straight line trajectory does not represent the data
well. For the triangulated positions using a straight line fitted to the
entire data set, positions diverge up to 3.09 km for the former and up to
360m for the latter. The straight line trajectories fitted to data seg-
mented at 50 km give improved results for DN151212_03 positions,
diverging up to 750m for the upper trajectory, and 810m for the lower
trajectory (discarding the 1.40 km outlier at 49.2 km). The segmented
triangulations for DN160410_03 show an improvement only in the
upper trajectory (290m), with an increased distance to the ITPs in the
lower segment (420m). These deviations show that factors other than
deceleration and ablation are able to significantly influence meteoroid
trajectories. These could include aerodynamic effects on non-spherical

Fig. 15. Comparison of light curve obtained from the DFNO_30 still imagery (green) and predicted absolute visual magnitudes from 3D particle filter (coloured based
on density of particles). The inferior match of higher weighted particles to the light curve toward the end can be attributed to the relatively constant value of τ
(around ∼ 0.2%) used for the calculation of predicted Mv values (Eqs. (1) and (2)). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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bodies and, where fragmentation occurs, the dynamics involved in body
disruption.

We can approximate the magnitude of the forces required to cause
the deviations seen in Figs. 6 and 11. Over the final 10 s of the
DN151212_03 trajectory (below 50 km), there is a lateral displacement
of ∼ 2.1 km. This results in an Eastward acceleration of ∼ 42 m s 2.
For a 10 kg body (minimum estimated mass at 50 km altitude), this
requires a lateral force of 420 N. The vertical displacement of ∼ 1.2 km
seen in Fig. 6 does not include any downward gravity component. As a
vertical force would also have to overcome gravity to cause this change,
an additional 460 m displacement should be included (gravitational
displacement normal to the trajectory over final 10 s =480 m× cos γ).
This gives a ∼ 330 N upward force. Although DN160410_03 wanders
less drastically, a ∼ 230 m lateral displacement from an altitude of
35 km (the final 1.3 s) requires a greater than 500 N lateral force for a
2 kg body (minimum estimated mass at 35 km). From 30.2–27.3 km
(the final 0.7 s), a vertical displacement normal to the trajectory of
∼ 170 m would require over a 1000 N force.

Work has been presented in the past on unique Earth-grazing events
where a significant effort has been made to determine the path of the
meteoroid without the unique use of a SLLS approximation (Borovicka
and Ceplecha, 1992; Madiedo et al., 2016). It is interesting to note
however that in Borovicka and Ceplecha (1992) there is an observatory
almost directly under the event from which the authors were able to
determine that there was no curvature to the trajectory outside the
observational plane from this viewpoint. For event DN151212_03

analysed here, there was a deviation from the SLLS trajectory not only
in altitude, but with a significant lateral component. Because of its large
size and extreme ablation duration, DN151212_03 may not be a typical
event, however DN160410_03 is an ideal example of a meteorite
dropping fireball. The deviation of the DN160410_03 fireball from a
straight line shows that an SLLS may not be an appropriate approx-
imation for the majority of deep-penetrating ( < 50 km altitude)
fireballs. The cross-track forces as approximated above, are certainly
significant, complicating the ideal straight line scenario and bringing
into question the reliability of using this assumption even for small
events. Their origins, be they aerodynamic, related to fragmentation or
as yet unconsidered, should be investigated.

The complexity of meteoroid trajectories makes it difficult to si-
mulate them with simplified model equations such as given by Eq. (17).
Using this single dimension model in a particle filter (e.g. Sansom et al.
(2017)) forces the measurement update step to use straight line position
values for distance travelled along the trajectory. This misrepresenta-
tion of the data in the filter can not only affect position estimates, but
may additionally influence other state parameters through the re-
lationship in the state Eq. (17), such as velocity and mass values. As the
particle filter is an adaptive approach that uses observations to update
state estimates, using the most unprocessed measurements permits
subtleties in the data to influence the predicted state. Using the three
dimensional model (17), it is able to use the raw line-of-sight ob-
servations as described in Section 3.3. Using a 3D particle filter also
provides a more robust error analysis as uncertainties are propagated

Fig. 16. Magnitude of the velocity vector as calculated by the change in ITP positions with time (green), change in straight line least squares (SLLS) triangulated
positions for each observatory with time (blue), and estimated by the 3D particle filter. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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comprehensively from well constrained astrometric errors through to
the end of the luminous trajectory. At tend, the remaining particles can
be used as a direct input to Monte Carlo dark flight simulations, as
presented by Devillepoix et al. (2018). The minimisation of time spent
in the field searching for meteorites is of great importance. It is there-
fore essential to define a search region on the ground that is re-
presentative of the statistical results obtained from physical modelling
of bright flight observations. The final mass given using an extended
Kalman smoother on pre-triangulated straight line data for event
DN151212_03 is 2.0 ± 0.2 kg (Table 1) and 0.05 ± 0.01 (Table 3) for
event DN160410_03, compared to the 2.7 ± 0.3 kg and
0.13 ± 0.02 kg final masses predicted for these events using the par-
ticle filter. Identifying events with greater chances of a successful find
will significantly influence decisions about the feasibility of a remote
search for a given event. Shallow events in particular, such as
DN151212_03 ( = 15. 8e ) tend to produce extended fall lines, tens of
kilometres long, from small fragments to main body masses. Well
constrained final states in these cases are essential.

5. Conclusion

As fireball producing events are typically associated with larger
asteroidal debris they have the ability to penetrate deep into the Earth’s
atmosphere. These events can last tens of seconds, with ground based
observations influenced by Earth’s rotation and gravity effects re-
solvable with modern camera resolution. The unique ability of the
Desert Fireball Network to triangulate a meteoroid’s position at discrete
times allows us to investigate the true variability of trajectories. These

individually triangulated positions (ITPs) are used as a reference for
comparison to other methods of evaluating meteoroid positions. The
flights of two fireballs observed by the Desert Fireball Network were
investigated as example events. Triangulating data using a straight line
assumption eliminates subtleties in the data that may be indicative of
unmodelled processes, such as fragmentation and aerodynamic effects.
Deviations from a straight line path of up to 3.09 km for event
DN151212_03 and 360m for event DN160410_03 were observed, and a
downline view in an inertial reference frame (ECI) shows this is mostly
lateral. The investigation in an ECI reference frame eliminates Earth
rotation effects, and, as these deviations cannot be accounted for by
gravity, must have a different cause. Even the more typical event
DN160410_03 is affected, showing all influences on fireball trajectories
should be considered in all deep penetrating cases. The mis-
representation of the start and end of meteoroid trajectories by a
straight line fit will affect dark flight models for meteorite search re-
gions as well as orbit determination.

Modelling fireball camera network data in three dimensions has not
previously been attempted. The self-contained particle filter approach
of Sansom et al. (2017) has been adapted to use a three dimensional
dynamic model, and incorporate absolute visual magnitude observa-
tions. This allows the raw astrometric observations as seen by each
observatory to be incorporated directly into the estimation of a me-
teoroid state, removing the need for pre-triangulated measurement
data. By incorporating the raw observations, errors in each azimuth and
elevation can be accounted for and propagated individually. This re-
sults in a final state estimate with fully comprehensive errors, leading to
more realistic meteorite search areas and will allow an automated,

Fig. 17. Masses estimated by the 3D particle filter, coloured by density of particles.
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systematic evaluation of trajectories observed by multiple station
camera networks.
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Abstract–It hasbeenproposedthatallLchondritesresultedfromanongoingcollisionalcascadeof
fragments that originated from the formation of the ~500 Ma old asteroid familyGefion, located
near the 5:2 mean-motion resonance with Jupiter in the middleMain Belt. If so, L chondrite pre-
atmospheric orbits should be distributed as expected for that source region. Here, we present
contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary
chondritefallatCreston,CA(herereclassifiedtoL5/6).Creston’sshort1.30 � 0.02AUsemimajor
axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt.
Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston’s small
meteoroid size and low 4.23 � 0.07� inclination indicate a short dynamical lifetime against
collisions. This suggests, instead, that Creston originatedmost likely in the inner asteroid belt and
was delivered via the m6 resonance. TheU-Pb systematics ofCreston apatite reveals aPb-Pbage of
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4,497.1 � 3.7 Ma, and an upper interceptU-Pb age of 4,496.7 � 5.8 Ma (2r), circa 70 Ma after
formation of CAI, as found for other L chondrites. The K-Ar (age ~4.3 Ga) and U,Th-He (age
~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U-Pb age is poorly
defined as 770 � 320 Ma. So far, the three known L chondrites that impacted on orbits with
semimajoraxesa<2.0AUallhavehigh(>3 Ga)K-Arages.ThisarguesforasourceofsomeofourL
chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of
Gefionfamilydebrisstretchingacrossthe3:1mean-motionresonance.

INTRODUCTION

There is an ongoing effort to identify the source of
L chondrites in the asteroid belt. The delivery resonance
and inclination of the source region can be identified in
a statistical sense from meteorite falls for which an
atmospheric impact trajectory and pre-atmospheric
orbit are calculated (Jenniskens 2014). So far, five L5
and L6 chondrites have yielded pre-impact orbits:
Innisfree, Jesenice, Park Forest, Villalbeto de la Pe~na,
and Novato.

About two-thirds of L chondrites have a common
470 � 6 Ma Ar-Ar and U-Pb resetting age, especially
those that show shock blackening (Anders 1964; Haack
et al. 1996; Alexeev 1998; Scott 2002; Korochantseva
et al. 2007; Weirich et al. 2012; Yin et al. 2014; Li and
Hsu 2016; Wu and Hsu 2017). In addition, L chondrite
falls were much more common 470 Ma ago, where they
are found in the fossil record of terrestrial strata dated
to 467.3 � 1.6 Ma (Schmitz et al. 2001, 2016).

It has been proposed that the Gefion asteroid
family, located near the 5:2 mean-motion resonance,
was formed at that time and this is the source of these
shocked L chondrites (Nesvorn�y et al. 2009). While
delivery was rapid, initially, via the 5:2 mean-motion
resonance, the meteorites would now be delivered to
Earth more efficiently via the 3:1 mean-motion
resonance. Gefion is the only known family with large
members of L (as opposed to H and LL) chondrite
composition (Vernazza et al. 2014) and some asteroids
found in the 3:1 mean-motion resonance, e.g., (355)
Gabriella, (14470) Utra, and (1722) Goffin, have L
chondrite-like spectra (Fieber-Beyer and Gaffey 2015).
In more recent years, however, the reflection spectra of
some Gefion family members were found to resemble
that of H chondrites and basaltic achondrites (McGraw
et al. 2017) and the age of the Gefion family may be
older than required, 1103 � 386 Ma according to Spoto
et al. (2015), who did not include the initial velocity at
ejection, however.

There could be more than one source region of L
chondrites in the main asteroid belt. It has been argued
that large groups of compositionally similar asteroids
are a natural outcome of planetesimal formation

(Youdin 2011; Vernazza et al. 2014). Also, the current
asteroid population is mostly composed of reassembled
matter from large-scale disruptions of an earlier
generation of planetesimals (Bottke et al. 2005). If so,
the L chondrite parent body may have broken into
several daughter asteroids during an initial disruption of
the L chondrite parent body long ago, each of which
could later have created an asteroid family in a different
part of the Main Belt.

More than one recent collision created the
meteoroids that now impact Earth. L5 and L6
chondrites have a broad distribution of cosmic ray
exposure ages (CRE). The CRE age identifies the
moment in time when a collision caused the meteoroid
to no longer be shielded from cosmic rays by a few
meters of overlaying burden. The broad distribution
implies that multiple disruptive collision or cratering
events produced this meteorite type (Marti and Graf
1992; Eugster et al. 2006; Wasson 2012). Note that L3
and L4 chondrites appear to have different CRE age
distributions than L5 or L6 chondrites, and are not
considered here. At this moment, there are no observed
L3 or L4 falls with measured pre-atmospheric orbits.

Here, we report on the October 24, 2015 fall of the
ordinary chondrite Creston near Paso Robles, California.
Two hundred and eighteen eyewitnesses reported the
fireball (American Meteor Society event number 2635-
2015). Fourteen witnesses close to the path heard
sonic booms shortly after the fireball. Seismic stations
timed tremors when the shock wave coupled to the
ground. Based on the visual and seismic sightings, six
Doppler radar returns from the United States National
Oceanic and Atmospheric Administration (NOAA) next
generation weather radar network (NEXRAD) were
identified that were likely from falling meteorites (Fries
et al. 2016). Based on the radar-defined search area,
the first stone was located on October 27, now named
CR01 and classified as an L6 ordinary chondrite
(Bouvier et al. 2017). The stone had shattered when it
hit a metal fence post. Five other meteorites were
found in the following month, with a total weight of
852.3 g (Table 1).

Two of the meteorites (CR05 and CR06) were made
available for nondestructive analysis (Fig. 1), while

2 P. Jenniskens et al.
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fragments of meteorites CR01 and CR02 were used for
destructive analysis. We determined the pre-atmospheric
orbit and the collision history of the meteorites in order
to investigate whether Creston originated from the same
source as other L chondrites with known pre-atmospheric
orbits. We also comprehensively characterized the
meteorite mineralogically, petrographically, geochemically,
isotopically, and magnetically.

EXPERIMENTAL METHODS

Meteoroid Trajectory and Orbit

The fireball was recorded by an automated digital
camera developed for the Desert Fireball Network
(DFN) during testing at the Cameras for Allsky Meteor
Surveillance project (CAMS; Jenniskens et al. 2011)

Table 1. Creston meteorite masses and find locations.

CR# Date of find Mass (g) Latitude (N) Longitude (W) Altitude (m) Finder

01b October 27, 2015 ~396a 35.57508 120.49847 397 Robert & Ann Marie Ward
02b October 28, 2015 69.2 ~35.568 ~120.481 ~499 Terry Scott

03 October 31, 2015 102.2 ~35.568 ~120.481 ~499 Terry Scott
04 November 16, 2015 108 ~35.568 ~120.481 ~499 Michael Farmer
05b November 19, 2015 72.681 ~35.565 ~120.467 ~477 (local finder/via Sonny Clary)

06b November 21, 2015 95.549 35.56547 120.46747 477 Aaron Miller
aBroken on impact.
bMeteorites studied here.

Fig. 1. Top) Optical photographs of Creston meteorites #5 (left) and #6. Notice how each meteorite has one side that is more
reddish colored, the irregular surface in the case of C05 and the fresher flatter surface in the case of C06, respectively. Bottom)
Creston bolide from Sunnyvale (cropped image) and Goleta.

The Creston, California, meteorite fall 3
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station in Sunnyvale, California (Fig. 2). The camera
consists of a Nikon D810 digital still camera equipped
with a liquid crystal shutter that interupts the image 10
times per second, with some breaks kept dark to encode
the time during the exposure (Fig. 1, lower left). At the
time of the fall, the skies in Sunnyvale were hazy and
illuminated by a full Moon. Few stars are visible in the
image. Images from the previous night were used to
calibrate the background star field with a mean
observed-calculated astrometric precision of O-C = 1.0’
(Table 2).

A second digital still image, a single exposure, was
obtained from the pier at Goleta by Christian M. Rodriguez
of Santa Barbara and posted on a social media website.
The meteor is captured near the right edge of the image,
entering from a corner (Fig. 1, lower right). Upon

request, the original image was made available for
analysis to reveal a rich star field, including a star on the
right side of the meteor trail. Rodriguez saw the
fireball and stopped the exposure about 5 s after it faded.
The field of view is relatively small, resulting in an
O-C = 0.24’.

The fireball was also captured in two SkySentinel
allsky cameras, one at Riverside, operated by Richard
Garcia, and one in El Segundo, operated by Dave
Goodyear (Fig. 3). Station locations relative to
Sunnyvale and Goleta are shown in Fig. 2. Both
cameras are small image format (640 9 480 pixels),
low-light video cameras equipped with an allsky lens. In
Riverside, there is more obstruction near the horizon
than in El Segundo, the latter capturing the same two
flares as seen in Goleta. In Riverside, only the first flash

Fig. 2. California map with location of camera stations (open circles), radar stations (black squares), and seismic stations (black
dots). (White area is enlarged in Fig. 5.)

Table 2. Camera station locations, sampling rate, and astrometric precision.

# Station Latitude (N) Longitude (W)

Altitude

(m) Type

Frame

rate (Hz) O-C (0)
Range

(km)

1 Sunnyvale 37.34781 122.03896 60 Digital Still
w. Shutter

10.00 1.0 � 0.7 264

2 Goleta 34.41508 119.82893 11 Digital Still – 0.24 � 0.14 146

3 Riverside 33.91367 117.34020 471 Allsky Video 29.97 4.4 � 3.1 331
4 El Segundo 33.92745 118.41215 46 Allsky Video 29.97 4.4 � 3.3 250

4 P. Jenniskens et al.
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is recorded. The Iris software was used to track the
meteor’s position and brightness in the video frames.
No stars are visible in the individual image frames, but
after averaging a number of frames, sufficient stars can
be found for calibration above 15� elevation. The zenith
angles (z) of the meteor as a function of time were
computed from pixel coordinates by fitting the
exponential model as a function of zenith distance
described in Borovicka et al. (1995). Observed-
calculated root-mean-square precision for 82 stars
(above 15� elevation) was O-C = 4.4’. This is sufficient
to align the observed light curve to the trajectory
solution, but not enough to help improve the trajectory
solution from combining the Sunnyvale and Goleta
observations.

Meteorite Petrography, Bulk Chemistry, and Isotopes

Petrographic analysis of CR01 was done initially at
the Arizona State University and reported in Bouvier
et al. (2017). At NASA Johnson Space Center (JSC),
electron microprobe analysis (EPMA) of a subsample of
CR02 was performed to evaluate metamorphic
conditions of the rock and verify the initial classification.
These analyses were made using a Cameca SX100
microprobe at the E-beam laboratory of the
Astromaterials and Exploration Science (ARES)
Division of JSC. Natural mineral standards were used,
and analytical errors are at the 0.1 wt% level for most
elements. We used a 1 lm focused beam in all analyses,
at 15 kV and 20 nA. The moderately and highly shocked
lithologies were analyzed separately, for comparison.

Oxygen isotope studies were performed at the
University of New Mexico. Three subsamples of 1.20,
1.30, and 0.80 mg, respectively, were acid-treated in
order to remove any possible terrestrial contamination.

Molecular oxygen was released from the samples by
laser-assisted fluorination (20 or 50 W far-infrared CO2

laser) in a BrF5-atmosphere, producing molecular O2

and solid fluorides, from which excess BrF5 was
removed by reaction with hot NaCl. The oxygen was
purified by freezing at �196 °C, followed by elution at
~300 °C into a He-stream. NF3 is then separated in a
gas chromatography column and frozen again at
�196 °C to remove He. The O2 is then released directly
into a dual inlet mass spectrometer (Thermo Finnigan
MAT 253). The San Carlos olivine standards (~1–2 mg)
were analyzed daily. Each mass spectroscopic analysis
consists of 20 cycles of standard-sample comparisons
(e.g., Popova et al. 2013).

Chromium isotope and bulk chemical composition
measurements were completed at the University of
California, Davis (UC Davis). A fusion crust-free
fragment (50.8 mg) was crushed into a powder and
placed into a polytetrafluoroethylene (PTFE) Parr
capsule along with a 3:1 mixture of concentrated HF:
HNO3 acid. The PTFE capsule was placed into a
stainless steel jacket and heated in a 190 °C oven for
96 h. After complete dissolution, an aliquot of the
solution was used for Cr isotopes and the remaining
solution was used for major, minor, and trace element
concentration determination. Chromium was separated
from the bulk sample using a three-column chemical
separation procedure described previously by
Yamakawa et al. (2009). After separating Cr from the
sample matrix, the isotopic composition of the purified
Cr fraction was analyzed using a Thermo Triton Plus
thermal ionization mass spectrometer at UC Davis. A
total Cr load of 12 lg was loaded onto four outgassed
W filaments (3 lg of Cr per filament). The Cr separated
from Creston was bracketed by four filaments loaded
with NIST SRM 979 Cr standard solution at the same

Fig. 3. Creston bolide from (left) El Segundo and (right) Riverside in SkySentinel video. Below each allsky image summary is a
sequence of video frames showing the meteor in detail (moving from left to right toward the horizon).
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total Cr load as the Creston fractions. Chromium
isotopic compositions are reported as parts per 10,000
deviation from the measured SRM 979 standard
(e-notation).

An aliquot set aside from the same dissolved sample
above before Cr separation was used to determine the
concentrations for a suite of elements (major, minor,
and trace) using Thermo Element XR high-resolution
inductively coupled plasma mass spectrometer at UC
Davis. The analytical methods for this procedure have
been described previously (Jenniskens et al. 2012, 2014;
Popova et al. 2013).

Meteorite Cosmic Ray Exposure, K-Ar and U,Th-He

Ages

To determine the cosmic ray exposure age and
meteoroid size, cosmogenic radionuclide concentrations
were analyzed by means of nondestructive high purity
germanium (HPGe) gamma spectroscopy. Two
specimens of Creston (CR05 and CR06) were measured
in the underground laboratories at the Laboratori
Nazionali del Gran Sasso (LNGS) (Arpesella 1996) for
14.74 days (CR06, 263 days after the fall) and
15.90 days (CR05, 278 days after the fall), respectively.
The counting efficiencies have been calculated using
thoroughly tested Monte Carlo codes.

Additional measurements of cosmogenic
radionuclides 10Be and 36Cl were obtained from a
sample of CR02 weighting ~52 mg. At UC Berkeley, the
sample was gently crushed in an agate mortar and the
powder dissolved in concentrated HF/HNO3 along with
a carrier solution containing approximately 2.8 mg of
Be and 3.5 mg of Cl. After complete dissolution of the
sample, an aliquot was taken for chemical analysis by
ICP-OES and radionuclides were separated and purified
for measurement by accelerator mass spectroscopy
(AMS) at Purdue University.

At ETH Z€urich, the CRE age and K-Ar age were
determined from noble gas concentrations. Two samples
of CR02 were prepared by breaking apart a ~70 mg
piece of Creston. The samples were weighed, wrapped
in Al foil, and loaded into an in-house built noble gas
mass spectrometer. Noble gases were extracted by a
furnace heated by electron bombardment to 1700–
1800 °C in a single heating step, and separated into a
He and Ne, and an Ar fraction by temporarily freezing
the Ar to a charcoal cooled by liquid nitrogen. Analysis
was done according to a protocol most recently
described in Meier et al. (2017). Helium-4 and all Ne
and Ar isotopes were measured, together with the ion
species H2O

+, 35Cl+, 37Cl+, 40Ar+, and CO2
+, which

were monitored to potentially correct for interferences
on the masses of the noble gas isotopes, but all

interferences proved to be negligible. The two samples
were analyzed back-to-back, and bracketed with two Al
blanks. Blank contributions to total signals were
<0.04% on 4He, <0.8%, and <4% on all Ne and Ar
isotopes, respectively.

Meteorite U-Pb and Pb-Pb Ages

U-Pb ages for Creston were determined at the
National Astronomical Observatories (NAO), Chinese
Academy of Sciences (CAS) in Beijing. The detailed
analytical procedure for U-Pb dating of phosphate
grains in terrestrial rocks can be found in Li et al.
(2010), which was further refined and applied
successfully to meteorites (Popova et al. 2013; Zhou
et al. 2013; Yin et al. 2014). Backscattered electron
images of phosphate grains in a polished mount of
CR01 were imaged with a Carl Zeiss SUPRA-55 field-
emission scanning electron microscope (FESEM)
equipped with energy dispersive spectrometer (EDS).
The probe current was 300 pA at an accelerating
voltage of 15 kV. This step was essential in selecting
suitable analytical spots in the subsequent ion probe
session for U-Pb dating to avoid microfractures,
inclusions, and other observed physical defects in the
individual phosphate grains. The analytical spots are
identified in Fig. 4.

In situ isotopic analysis of U-Pb for phosphate
grains was performed on the large radius magnetic
sector multicollector, secondary ion mass spectrometer
(SIMS), a Cameca IMS-1280HR at the Institute of

Fig. 4. Apatite grains in Creston CR01. Ap = apatite;
Chrom = chromite; Merr = merrillite.
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Geology and Geophysics (IGG), Chinese Academy of
Sciences (CAS) in Beijing. The O2� primary ion beam
was accelerated at �13 kV, with an intensity ranging
between 8 and 9 nA. The K€ohler illumination mode was
used with a 200 mm diameter aperture, resulting in an
elliptical spot size of 20 9 30 mm2 on the target.
Positive secondary ions were extracted with a 10 kV
potential. A monocollector electron multiplier (EM) was
used as the detection device to measure secondary ion
beam intensities of 204Pb+, 206Pb+, 207Pb+, 208Pb+,
232Th+, 238U+, 232Th16O+, 238U16O+, 238U16O2

+, and
a matrix reference peak of 40Ca2

31P16O3
+ at a mass

resolution of approximately 9000 (defined at 50%
height). The 40Ca2

31P16O3
+ signal was used as reference

peak for tuning the secondary ions, energy, and mass
adjustments. Pb/U ratios were calibrated with power
law relationship between 206Pb*+/238U+ and
238U16O2

+/238U+ relative to an apatite standard of
NW-1 (1160 Ma) that comes from the same complex at
Prairie Lake as that of the Sano et al. (1999) apatite
standard (PRAP). Uranium concentration is calibrated
relative to the Durango apatite, which contains
approximately 9 ppm of U (Trotter and Eggins 2006). The
detection limit is approximately 4 ppb of U in apatite. The
206Pb/238U standard deviation measured in the standard
was propagated to the unknowns. Each measurement
consisted of 10 cycles, with the total analytical time of
about 23 min. Due to the low uranium concentration, all
of the merrillites failed to yield useful Pb-Pb age
information. The uncertainties for individual apatite
analyses are reported as 1r. The weighted average of
206Pb*/238U and Pb-Pb ages, quoted at the 95%
confidence level, was calculated using ISOPLOT 3.0.

The 204Pb counts are very low in all apatite grains.
Most points have zero counts, which indicate the common
lead levels are very low. We assumed that the common
lead level is mostly surface contamination, and correction

using modern terrestrial common lead composition was
applied. Given the very low level of 204Pb and common Pb
fraction f206 (%), using the primordial lead composition
(Tatsumoto et al. 1973) instead of terrestrial common lead
would make no difference in the calculated radiogenic lead
composition. To illustrate the point, we plotted the
common lead corrected data in both the normal Wetherill-
type concordia diagram, inverse Tera-Wasserburg
diagram, as well as the 3-D linear regression of the total
lead as measured (without correction for initial or
common lead) in 207Pb/206Pb versus 238U/206Pb plane
(Wendt and Carl 1984; Wendt 1989; Ludwig 1998). The
similar results (not shown here) among the three panels
within errors indicate that the unknown common Pb
isotope composition and its correction are insignificant for
age calculations.

RESULTS

Trajectory and Orbit

The exact time of the onset of the fireball was
derived from the CAMS low-light video cameras
(Jenniskens et al. 2011). GPS synchronization of the
DFN camera was unreliable at the time of the event.
The fireball was just below the camera field of view at
the CAMS station at Fremont Peak Observatory. A
single-frame flash (<0.05 s long) was detected in
cameras 62, 71, and 73 at 05:47:48.8 � 0.2 UTC, and a
weaker flash at 05:47:49.1 � 0.2 UTC, which are
interpreted to be the two flares seen in Fig. 1.

Results for the trajectory and orbit derived from
triangulation of Sunnyvale with Goleta are given in
Table 3 and Fig. 5. The convergence angle between the
intersecting planes through meteor and station is only
7.2�. The solution based on DFN/Sunnyvale and Goleta
is most sensitive to systematic errors in the DFN

Table 3. Trajectory and orbit, October 24, 2015.

Trajectory (apparent): Orbit (geocentric):

Time begin (UT) 05:47:44.3 � 0.1 Solar longitude (�) 210.2828 � 0.0001
Right ascension (�, apparent) 25.90 � 0.07 Right ascension (�, geocentric) 28.50 � 0.10
Declination (�, apparent) +4.83 � 0.10 Declination (�, geocentric) �0.70 � 0.18

Entry speed (km/s, apparent) 16.00 � 0.26 Entry speed (km/s, geocentric) 11.26 � 0.34
Latitude begin (�, N) 35.347 � 0.028 Perihelion distance (AU) 0.7670 � 0.0053
Longitude begin (�, W) 120.226 � 0.022 Semimajor axis (AU) 1.300 � 0.019
Altitude begin (km) ~70 km Eccentricity 0.410 � 0.013

Latitude end (�, N) 35.557 � 0.014 Inclination (�, J2000) 4.228 � 0.070
Longitude end (�, W) 120.487 � 0.080 Argument of perihelion (�) 79.20 � 0.13
Altitude end (km) 21.0 � 0.5 Node (�) 30.458 � 0.006

Altitude maximum (km) 29.5 � 0.5 True anomaly (�) 280.49 � 0.11
Azimuth radiant (S, �) 314.5 � 0.8 Epoch (UT) 2015-10-24.24148
Entry angle (�) 50.6 � 0.8 Mass (kg) 10–100
Convergence angle (�) 7.2 � 0.2 Diameter (m) 0.20–0.40
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camera observations. The (1-sigma) uncertainty in the
triangulation was evaluated by a Monte Carlo
simulation around the three velocity components. Two
calibration methods were taken to derive the astrometry
from the DFN camera, which resulted in slightly
different positions of the trajectory. The first used star
positions localized in the region around the meteor
trajectory to fit the lens distortion parameters. The
second used a global calibration. The localized method
resulted in less systematic errors, but higher random
errors as fewer stars were involved. The global effort
may seem more accurate, but appeared to introduce
systematic errors at the position of the meteor. This is
clearly shown in Fig. 6, which gives two orbital
elements of the fitted pre-atmospheric orbit for a range
of solutions that cover the astrometric uncertainty. The
calculated trajectory shifted by 2.3 km SE in the global
method compared to the local method. The resulting
direction of the radiant was different by 0.8�, which
translates into a 0.3� systematic error in inclination. On
the other hand, because of the large distance to the
meteor, the velocities are not much affected. By
comparing the measured trajectory positions to that of
the recovered meteorites (Fig. 5), we were able to
determine that the local calibration method gave the
most reliable results. Those are tabulated in Table 3.

Using the wind sonde data from Oakland at
0 h and 12 h UT (http://weather.uwyo.edu/upperair/
sounding.html), the wind drift of meteorites of different
masses were calculated assuming a spherical shape and
density of 3.2 g cm�3. Figure 5 shows the calculated

positions relative to the first-method trajectory for 1 g,
10 g, 100 g, and 1 kg masses falling from an altitude of
29 and 25 km, at the time of the flares. Notice how the
recovered meteorite masses were found close to the
predicted positions for the trajectory calculated using
the local calibration method.

Six Doppler radar returns from three separate
radars of the NOAA NEXRAD weather radar network
were identified that could be from falling meteorites or
dust (Bouvier et al. 2017). The earliest radar signature
(“A,” Fig. 5) appears in imagery from the radar with
call letters “KVTX” (Los Angeles, California, with
location shown in Fig. 2) at an altitude of 16.5 km
above sea level (ASL) at 05:49:10.4 UTC—just 80 s
after the meteor passed the 29.5 km altitude point
(05:47:50.3 UTC), where the first breakup was recorded
as a flare in the meteor imaging (Fig. 1). The radar-
reported timing (05:47:57.6 UTC) is corrected for the
time it takes the radar to adjust to the next-higher
elevation level with each sweep. The new time implies
that this signature “A” is due to fine material,
approximately ~0.06 g in mass. However, it is found
above the 1.2 kg point in the predicted strewn field.

Radar “KVBX” (Vandenberg Air Force Base)
recorded signatures of what may be falling meteorites
from 5.8 km ASL at 05:50:06.5 UTC (“B” and “C,”
Fig. 5), and from 6.9 km ASL at 05:51:36.3 UTC
(“D”). The time lag of 136 s and 225 s to those
altitudes, respectively, would correspond approximately
to the fall time of 68 g and 3.5 g meteorites. Instead,
these signatures are found above the 700 g and 70 g

Fig. 5. Creston meteorite strewn field map (inset to Fig. 2).
The ground-projected meteor trajectory (arrow) has 25 and
29 km altitude points marked. The calculated fall locations for
meteorites of different masses (1 g–10 kg) are shown by a tick
line. Radar reflections from falling meteorites are labeled
(A–F). White dots show the actual find location of meteorites.

Fig. 6. Error range in the derived semimajor axis and
inclination for local and global astrometry of the DFN allsky
image.
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points, respectively (Fig. 5). Radar “KHNX” (San
Joaquin) recorded several returns at 05:51:34.1 at an
altitude of 4.0 km, from 14 g meteorites (“E,” Fig. 5).
These reflections are above the 90 g point.

Finally, “KMUX” (San Francisco) recorded a pair
of returns at 16.6 km altitude at 06:00:02.7 UTC (“F,”
Fig. 5), many minutes after the meteor. They are
perhaps due to slow falling fine debris.

All recovered ~100 g meteorites are fully fusion
crusted (Fig. 1), which confirms that they originated in
a breakup before the end of the luminous trajectory. In
contrast, the radar returns are only consistent with the
measured trajectory if there was aggressive ongoing
fragmentation after the main breakups at 29 and 25 km
altitude. In particular, the final detection suggests
ongoing fragmentation following the 29 km breakup
and small debris settling to lower altitudes. Such
ongoing fragmentation was also observed during
breakup of the Novato meteoroid (Jenniskens et al.
2014). It is not impossible that these small 3–10 g
meteorites would consist of broken fragments that are
not fully crusted.

The light curve of this event is remarkably flat
(Fig. 7). Each break in the DFN camera trace (marked
“SV”) provided a brightness measurement. The
SkySentinel cameras (“RV” and “ES”) brightness in
each video frame was calibrated using the image of the
Moon (Fig. 3), as well as the images of stars in the
integrated image. Finally, the photographic trace is
shown as a line marked “GO.” Based on the CAMS
video, the peak intensity of the very brief first (29 km)
flare may be half a magnitude brighter, during a 1/60th
second video field, than measured from the integrated
intensity of the photometric trace (arrow).

The fall area is not far from the San Andreas Fault
and densely populated by seismic stations. Seismic
signatures were detected by nine stations (Table 4).
Several traces show two bursts, possibly from the 29
and 25 km breakup events (Fig. 8). If so, the

corresponding distances imply a relatively high
334 m s�1 average sound speed. The strongest signal
was measured at station SMM (Simmler) close to the
track in the uprange direction, and that one is single-
peaked, just like the signal at station MPP (Macpherson
Peak) in about that same azimuthal direction. In this
direction, the shock waves appear to have overlapped.

Mineralogical and Geochemical Properties of the

Meteorite

The meteorite’s interior was light gray and
sprinkled with small (<1 mm) metal and troilte grains,
as described by Bouvier et al. (2017). The stones exhibit
shock melt veins, some to 2 mm thick, which are

Table 4. Seismic detections of the sonic boom.

Station ID Station Name Latitude (N) Longitude (W) Altitude (m)
Arrival
Time (UT)

Relative
Time (s)a Range (km)b Az (S, �)

CI.PHL Park Hill 35.40773 120.54556 355 05:49:30.0 101.2 33 46
PB.B072 Parkfield 35.83100 120.34500 398 05:50:12.5 143.7 47 190
PB.B078 Parkfield 35.83770 120.34520 387 05:50:12.5 143.7 48 190

PB.B079 Parkfield 35.71570 120.20570 437 05:49:58.0 129.2 42 220
PB.B901 Parkfield 35.68970 120.14200 275 05:50:05.5 136.7 44 231
PB.B900 Parkfield 35.68600 120.00300 220 05:50:33.5 164.7 52 242

CI.VES Vestal 35.84089 119.08469 154 05:54:25.0 396.2 130 256
CI.SMM Simmler 35.31420 119.99581 599 05:50:41.5 172.7 53 299
CI.MPP McPherson Peak 34.88848 119.81362 1739 05:52:19.0 270.2 93 321
aTime relative to 05:47:48.8 UT.
bFrom 29.5 km altitude fragmentation event.

Fig. 7. The meteor visual light curve as seen from each
camera station, normalized to a common distance of 100 km,
as a function of time after 05:47:00 UTC and altitude.

The Creston, California, meteorite fall 9

Appendix B H. A. R. DEVILLEPOIX 429



sometimes broken at places along well-developed shiny
black slickenside surfaces. We analyzed the moderately
and highly shocked lithologies separately, for
comparison. We found that olivine in both lithologies
had identical compositions (and so are combined here),
being an average olivine composition Fa23.3�1.4 and a
maximum CaO content of 0.053 (PMD=2.1%, n = 10),
and low-Ca pyroxene with an average composition of
Fs23.5�3.5Wo1.2�0.5 (PMD = 1.4%, n = 8), with Fe/
Mn = 28.0 � 2.2. These results differ slightly from
those reported by Bouvier et al. (2017). These earlier
results were: Fa24.8�0.4 (n = 11), Fs21.1�0.2Wo1.3�0.2

(n = 14), with pyroxene Fe/Mn = 28.1 � 1.3.
Differences may be on account of varying equilibration
of olivine and pyroxene grains or chondrules across the
sampled stones.

Only two barred olivine chondrules were apparent in
the investigated section. Plagioclase grains up to 200 lm
are abundant, with compositions generally in the range
An26Ab61Or13 to An27Ab62Or11, with one aberrant grain
found with the composition An18Ab70Or11. Chromite
and troilite grains measuring up to 300 lm, and Fe-Ni
metal grains up to 400 lm are abundant. As reported by
Bouvier et al. (2017), a well-developed 1 mm thick shock
vein had the typical blebs and spheres of Fe-Ni metal
and sulfides. Fine-grained melt pockets were present but
rare. Shock melt veins and pockets are heterogeneously
distributed throughout the section, indicating a shock
level of S4 (St€offler et al. 1991).

The thin section may not be typical of all
meteorites. X-ray CT scans of CR05 (Fig. 9, left) and
CR06 (Fig. 9, right) were obtained by methods

described in Jenniskens et al. (2014), and show only
sparse and thin shock veins, without clear
interconnected irregular melt veins, which is more
typical of shock stage S3 (St€offler et al. 1991).
Brecciation is evident from a nonhomogeneous
distribution of metals and chondrules, the bright white
spots and dark roundish features in Figs. 9C and 9D,
respectively.

The new results appear to be slightly less
equilibrated than L6, but are within the compositional
field of L5/6, and therefore suggest rather more variable
metamorphic heating than had been previously
proposed. We classify the meteorite as L5/6 and shock
stage S3/4, with weathering stage W0.

The classification of L is confirmed by the magnetic
susceptibility 10log(v), measured at U.C. Davis. The
value ranged from 4.79 to 4.93, with a mean of 4.86,
which is in the middle of the range for unweathered L-
type chondrites (Rochette et al. 2012). The
measurement depended on the orientation of the
meteorite in the magnetic susceptibility bridge. Trace
element abundances compared to those of standard
Orgueil (Table 5) also align better with the average of L
chondrites than that of, say, LL chondrites (Fig. 10).

Further confirmation comes from oxygen and
chromium isotope analysis of two independent aliquots of
Creston. Stable isotope data results for CR01 in &
VSMOW are: d17O’ = 3.537, 3.781, and 3.618;
d18O’ = 4.582, 5.210, and 4.828; and D17O’ = 1.118, 1.030,
and 1.069, respectively. The prime symbol refers to values
of the ratio 17O/16O and 18O/16O being plotted on a natural
log scale, so that dependencies are linear: d17O’ = 1000 * ln

Fig. 8. Airburst generated seismic signatures as seen in different azimuth directions relative to the meteor trajectory (arrow).
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([17O/16O]sample/[
17O/16O]standard(VSMOW)), and similar for

d18O’ (Jenniskens et al. 2012). These values fall within the
range of other known L chondrites: d17O’ = 3.0–3.8 and
d18O’ = 4.2–5.6, in the overlap area between L and LL and
at the upper end of the d17O’ range (Clayton et al. 1991).
Combined with the olivine composition, the oxygen isotope
values place Creston squarely in the L chondrite domain
(Fig. 11). The e54Cr isotopic composition of Creston is
�0.38 � 0.11. This isotopic composition is
indistinguishable from previously analyzed L chondrites
including Knyahinya, Novato, Villalbeto de la Pe~na, and
Lundsg�ard (Trinquier et al. 2007; Jenniskens et al. 2014;
Schmitz et al. 2016). When combining e54Cr and D17O
isotopic compositions, Creston plots directly within the
ordinary chondrite field (Fig. 11).

The crack distribution in X-ray CT scans implies a
density of 0.5 fractures/cm2 larger than 1 cm in length
and a Weibull coefficient of a = 0.22 � 0.10, which
compares to the a = 0.185 measured for L5, S3, Bluff
(a) (Bryson and Ostrowski 2017). The bulk density of
the meteorite determined with a helium pycnometer is

3.2933 � 0.0005 g cm�3 (CR05) and 3.2486 � 0.0006
g cm�3 (CR06), compared to 3.42 � 0.05 g cm�3 for
Villalbeto de la Pe~na (Llorca et al. 2005). The grain
density is 3.597 � 0.010 and 3.583 � 0.004 g cm�3,
respectively (Villalbeto de la Pe~na: 3.59 � 0.05 g cm�3)
for a porosity of 8.44 � 0.02 and 9.33 � 0.01% (Villal-
beto: 4.7%), using methods described in Ostrowski and
Bryson (2016).

Meteorite Collision History

Negligible activity of 60Co (<1.7 dpm kg�1) suggests
that the pre-atmospheric size of the Creston meteoroid
was rather small and no significant production of
secondary thermal neutrons took place within the
meteoroid during its recent cosmic ray exposure in
space (Table 6). Normalized to the composition of an
ordinary L chondrite, the measured 26Al activity is
consistent with that expected for a small-size L
chondrite (Bhandari et al. 1989; Bonino et al. 2001;
Leya and Masarik 2009).

Fig. 9. X-ray CT scans of Creston meteorite CR05 (A and C) and CR06 (B and D). Top diagrams (A and B) visualize the 3-D
internal metal grain distribution. Metal grains have highest density for X-rays. Bottom panels (C and D) show CT slices through
the meteorites. The diffuse gray corresponds to the fine grain matrix, while the bright white spots correspond to the metal grains
and metal-filled shock veins.
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When we compare the radionuclide concentrations
with cosmic ray production estimations for 26Al (Leya
and Masarik 2009), 60Co (Eberhardt et al. 1963; Spergel
et al. 1986), 54Mn (Kohman and Bender 1967), and
22Na (Bhandari et al. 1993), the best agreement in the
sequence of the given isotopes is obtained for radii of
r = 10–20 cm, <20 cm, 8–12 cm, and 5–10 cm,

respectively. These are upper limits to the size at the
time of fall. Combining all results, we infer a roughly
spherical meteoroid with 10–20 cm radius. The
22Na/26Al ratios of the two specimens are 1.42 � 0.15
and 1.55 � 0.17, respectively. That makes Creston
similar to Jesenice with respect to the radionuclide
content (Bischoff et al. 2011).

Fig. 10. Trace element abundances relative to Orgueil in order of decreasing condensation temperature for (A) refractory
siderophile and lithophile elements and (B) for chalcophile elements and halogens.

Table 5. Major, minor, and trace element composition in Creston.

Orgueil (this) Orgueila Creston Orgueil (this) Orgueila Creston

Li ppm 1.52 1.47 1.02 Cd ppm 0.691 0.674 0.028
Be ppm 0.022 0.03 0.028 Sb ppm 0.14 0.13 0.057

Na Wt% 0.49 0.5 0.63 Cs ppb 0.187 0.189 0.008
Mg Wt% 9.53 9.58 12.28 Ba ppm 2.3 2.46 2.311
Al Wt% 0.81 0.85 0.94 La ppm 0.242 0.246 0.401

P Wt% 0.11 0.1 0.15 Ce ppm 0.63 0.6 0.898
K Wt% 0.057 0.054 0.065 Pr ppm 0.088 0.091 0.133
Ca Wt% 0.88 0.92 1.19 Nd ppm 0.478 0.464 0.628

Sc ppm 5.85 5.9 7.43 Sm ppm 0.149 0.152 0.199
Ti Wt% 0.055 0.05 0.071 Eu ppm 0.061 0.058 0.081
V ppm 60.2 54.3 71.9 Gd ppm 0.203 0.205 0.311
Cr ppm 2705 2650 1903 Tb ppm 0.042 0.038 0.055

Mn Wt% 0.2 0.19 0.24 Dy ppm 0.248 0.255 0.419
Co ppm 510 506 320.9 Ho ppm 0.59 0.057 0.083
Fe Wt% 19.33 18.5 19.01 Er ppm 0.159 0.163 0.25

Ni Wt% 1.01 1.08 0.101 Tm ppm 0.027 0.026 0.038
Cu ppm 127 131 74.8 Yb ppm 0.161 0.169 0.263
Zn ppm 318 312 36.6 Lu ppm 0.028 0.025 0.039

Ga ppm 8.98 9.8 2.72 Hf ppm 0.101 0.106 0.175
Rb ppm 2.27 2.31 2.07 Ta ppm 0.018 0.015 0.021
Sr ppm 7.8 7.81 7.81 Tl ppm 0.127 0.142 0.003
Y ppm 1.6 1.53 1.89 Pb ppm 2.61 2.63 0.051

Zr ppm 3.9 3.62 5.11 Th ppm 0.033 0.031 0.049
Nb ppm 0.288 0.279 0.351 U ppm 0.007 0.008 0.016
aReference values for Orgueil taken from Lodders (2003) and Lodders et al. (2009).
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The activity of the short-lived radioisotopes with
half-life less than the orbital period represents the
production integrated over the last segment of the
orbit. The fall of Creston occurred during the solar
cycle 24 maximum. The cosmic ray flux was low in the
6 months prior to the fall, so that the activities for the
very short-lived radionuclides are expected to be low
(see Table 6). The naturally occurring radionuclides
(Table 7) are low also, but in the range of other
concentrations measured in ordinary L chondrites
(Wasson and Kallemeyn 1988).

The 10Be concentration of 20.3 dpm kg�1 is
consistent with irradiation near the center of an object
with a radius of about 20 cm (Leya and Masarik 2009)
or a near-surface irradiation (5–10 cm depth) in a
larger object (up to ~75 cm radius). The 36Cl
concentration of 8.6 dpm kg�1 shows no neutron-
capture contribution and therefore favors a relatively
small meteoroid. Combining 10Be with 21Ne
concentration (see below) gives a 21Ne/10Be cosmic ray
exposure age of 50–54 Ma.

Creston does not contain solar wind or other
trapped noble gases. Hence, it is not a regolith breccia.
Indeed, only a few % of all L chondrites are. Based on
22Ne/22Ne = 1.10 � 0.01 (Table 8) and the model
calculations by Leya and Masarik (2009), it derives
from a meteoroid with at least 20 cm radius, consistent
with the one derived from radionuclides. Creston has a
CRE age of about 40–50 Ma based on the empirically
calibrated 22Ne/21Ne-21Ne and 22Ne/21Ne-38Ar methods
(Dalcher et al. 2013).

Fig. 11. Meteorite classification. A) D17O versus Fa mol% in olivine in Creston compared with other ordinary chondrites, based
on data from Troiano et al. (2011) and references therein, Popova et al. (2013), and Jenniskens et al. (2014). B) Comparison of
the D17O-e54Cr isotopic composition of Creston with achondrite and noncarbonaceous chondrite groups. Adapted after Schmitz
et al. (2016), also plotting the Winonaite clast of Villalbeto de la Pe~na (Bischoff et al. 2013).

Table 6. Massic activities of cosmogenic radionuclides
(in dpm kg�1) corrected to the time of fall of the
meteorite October 24, 2015. Errors in gamma-ray
activities include a 1r uncertainty of 10% in the
detector efficiency calibration; those in AMS activities
are dominated by counting statistics.

Nuclide Half-life
CR02
(dpm kg�1)

CR05
(dpm kg�1)

CR06
(dpm kg�1)

Method – AMS c-ray c-ray
58Co 70.83 d – 9 � 4 <14
56Co 77.236 d – <18 8 � 3
46Sc 83.787 d – 14 � 3 <12
57Co 271.8 d – 6 � 1 8 � 1
54Mn 312.3 d – 58.0 � 5.9 52.7 � 5.4
22Na 2.60 y – 68.4 � 5.0 72.6 � 5.4
60Co 5.27 y – <1.7 <1.7
44Ti 60 y – <2.8 <2.7
36Cl 3.01 9 105 y 8.6 � 0.1 – –
26Al 7.17 9 105 y – 48.2 � 3.6 46.7 � 3.7
10Be 1.39 9 106 y 20.3 � 0.2 – –

Table 7. Concentration of primordial radionuclides (ng
g�1 for U and Th chains and mg g�1 for 40K) in the
specimens of the Creston stone measured by nondestructive
gamma-ray spectroscopy. Errors include a 1r uncertainty
of 10% in the detector efficiency calibration.

Nuclide Half-life CR05 CR06
232Th 1.405 9 1010 y 35.5 � 2.5 34.2 � 2.4
238U 4.468 9 109 y 9.8 � 0.8 9.2 � 0.8
40K 1.251 9 109 y 810 � 80 720 � 70
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The U,Th-He age (corrected for cosmogenic 4He via
21Necos) of Creston is ~1 Ga and the K-Ar age is
~4.3 Ga (Table 8). Both are significantly higher than
their counterparts in L chondrite Villalbeto de la Pe~na,
which has a similar CRE age as Creston. Both ages
assume L-chondritic abundances of K, U, and Th listed
in Tables 4 and 7 (Wasson and Kallemeyn 1988).

The U-Pb systematics of Creston apatite reveals an
upper intercept age of 4497.9 � 5.8 Ma (Wetherial
diagram) and 4496.7 � 5.8 Ma (2r) (Tera-Wasserburg
diagram), respectively. Results for individual apatite grains
are given in Table 9. A total of 37 apatite grains give a
weighted average 207Pb/206Pb age at 4497.1 � 3.7 Ma (2r)
(Fig. 12). Compared to the earliest solar system solids
having formed 4,568.2 Ma ago (Bouvier and Wadhwa
2010), the measured age is 71.1 � 3.7 Ma after the
formation of the solar system. The measurements also show
a lower intercept age at 755 � 320 Ma (Tera-Wasserburg
reserve Concordia) and 771 � 320 Ma (Wetherial
Concordia), respectively.

DISCUSSION

The L Chondrite Source Region

Table 10 provides a summary of the various age
estimates and compares results to those obtained from
other L5 and L6 chondrite falls for which atmospheric

trajectories and pre-atmospheric orbits were derived.
Columns are in order of increasing semimajor axis of
the orbit.

Note that each past orbit sampled a different range
of CRE age (Table 10), suggesting all L chondrites
studied so far originated in different collision events
(Jenniskens et al. 2014). Creston’s CRE age and oxygen
isotope compositions are similar to those of Villalbeto
de la Pe~na (Llorca et al. 2005), but Villalbeto de la
Pe~na has a significantly different olivine Fa and
pyroxene Fs mineral composition. This meteorite is
otherwise exceptional also because it has a Winonaite-
related fragment in a hydrothermally metamorphosed
polymict L-chondritic breccia (Bischoff and Schultz
2004; Bischoff et al. 2013), suggesting Villalbeto de la
Pe~na came from a different source altogether (Fig. 11).
We still may be looking at all different collision events.

Oxygen isotope values for Creston differ
significantly from those of Park Forest (Simon et al.
2004). While Creston plots closer to a group of both
high d17O’ and d18O’ values for L chondrites in
Clayton et al. (1991), Park Forrest plots closer to a
group of both low values. This may point to different
source regions. Novato has similar oxygen isotopes,
mineral composition, and shock stage. The known
ranges of oxygen isotope and olivine and pyroxene
composition values (e.g., Rubin 1990; Clayton et al.
1991) are reflected in those measured for the six L
chondrites with known orbits.

The U-Pb age of Creston is within error identical
to, but with better precision than, the 4472 � 31 Ma
measured for L6 chondrite Novato (Yin et al. 2014).
This is due to the fact the U-Pb data points for the
measured phosphates in Creston are concentrated near
the upper intercept (Fig. 12), whereas the data points
for Novato (greater Pb loss) are spread along the
discordia (cf. fig. 5 in Yin et al. 2014). Thus, the upper
intercept age of Creston is better defined than Novato,
while the opposite is true for the lower intercept ages.
The age of upper intercept is thought to signify the time
of blocking temperature for Pb diffusion in phosphate
minerals associated with extensive collisional impacts.
This shows significant impacts occurred on the L
chondrite parent body until about 70 Ma after
formation of the first solids (4568 Ma ago). This epoch
was earlier linked to the Earth–Moon-forming giant
impact, suggesting that fragments from that event
impacted the parent body in the asteroid belt at
relatively high speed (Yin et al. 2014; Bottke et al.
2015). Most recently, Barboni et al. (2017) suggested the
Moon impact event occurred earlier than
>4.51 � 0.01 Ga ago, i.e., before 57 Ma after formation
of the first solids in the solar system, more in line with
the earlier suggestion based on Hf-W ages of the Moon-

Table 8. Noble gas concentrations of He, Ne, and Ar in
Creston.

CR01-NG-1a CR01-NG-2a Totala

3He n.m. n.m. n.m.
4He 742(3) 711(2) 725(2)
20Ne/22Ne 0.838(7) 0.839(6) 0.838(5)
21Ne/22Ne 0.913(1) 0.902(2) 0.907(1)
20Ne 12.7(1) 12.9(1) 12.8(1)
36Ar/38Ar 0.736(23) 0.755(19) 0.746(15)
40Ar/36Ar 3230(100) 3200(80) 3210(60)
36Ar 1.76(6) 1.78(4) 1.77(4)
22Necos/

21Necos 1.09(1) 1.11(1) 1.10(1)
21Necos 15.17(4) 15.40(4) 15.30(3)
38Arcos 2.35(2) 2.30(2) 2.32(1)
4Herad (=non-cos) 336(31) 295(32) 314(31)

CRE-21Ne (Ma) 39(5) 42(6) 41(6)
CRE-38Ar (Ma) 50(2) 51(2) 50(2)
U,Th-He (Ga) 1.11 0.99 1.05

K-Ar (Ga) 4.32 4.31 4.31
Mass (mg) 32.6 37.0 69.6
aAll concentrations are given in 10�8 cm³ STP/g (1 cm³
STP = 2.687 9 1019 atoms). Values in parentheses indicate

uncertainties on the last digit. Uncertainties of concentrations (and

thus, CRE ages) do not include the uncertainty of the standard

amounts, which is about 3%. T = CRE ages, R = radiogenic gas

retention ages.

14 P. Jenniskens et al.
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forming impact (e.g., Yin et al. 2014). The two
interpretations of the Moon-forming giant impact
timing are in apparent conflict, and require resolutions
with future work.

Creston experienced additional heating events later
in its history. The high K-Ar age and U,Th-He ages
(Table 10) suggest that Creston’s radiogenic clock was
either not fully reset during the 467 Ma collision event
that is thought to have formed the Gefion family, or
that Creston originated from a source other than the
Gefion family. The measured K-Ar age is identical to
that of Innisfree (Goswami et al. 1978), an L5 (S3) type
ordinary chondrite with a similar short semimajor axis
orbit (Table 10). However, the lower intercept ages have
such high uncertainty that they overlap with both the
1050 Ma U,Th-He age and the 467 Ma resetting
signature detected in Novato (Jenniskens et al. 2014;
Yin et al. 2014) and Park Forest (Meier et al. 2017).

The downward trend for U,Th-He ages relative to
K-Ar ages is thought to be due to gas loss, with 4He
having a higher diffusivity than 40Ar (and shorter half-
life of 40K relative to 238U and 232Th [Wasson 2012]). In
the overall diagram of U,Th-He ages versus K-Ar ages
(Fig. 13), Creston, Novato, and Park Forest are among
the most displaced.

Solid gray symbols in Fig. 13 show meteorites for
which U,Th-He, K-Ar and CRE ages are available. It is
possible that Creston was liberated in the same collision
as L5 Tane and L6 Nogata (Takaoka et al. 1989), L6
Mihonoseki (Shima et al. 1993), and L6 Kaptal-Aryk
(Welten et al. 2001).

The orbit of Creston is considerably more evolved
than that of previously observed meteorite falls. The
semimajor axis is only 1.30 � 0.02 AU, as opposed to
1.7–2.5 AU for other L chondrite falls observed so far.
As with Villalbeto de la Pe~na, the cosmic ray exposure

Fig. 12. Summary of Pb-Pb measurements on Creston. A) A mean Pb-Pb age is 4,497.1 � 3.7 (0.081%), with 95% confidence. B)
Intercepts for Pb-U age are at 771 � 320 Ma and 4497.9 � 5.8 [�11] Ma. MSWD = 1.9. C) Intercepts for Pb-Pb age are at
755 � 320 Ma and 4496.7 � 5.8 [�11] Ma. MSWD = 1.9. D) Detail of (C).

16 P. Jenniskens et al.
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age is considerably longer than the expected
dynamical lifetime of ~9 Ma against collisions in the
asteroid belt. The CRE age is inconsistent with the
short dynamical lifetime of asteroids originating in
the Gefion family (Jenniskens et al. 2014). Only
highly inclined source regions or sources at the inner

edge of the inner asteroid belt produce such long
dynamical lifetimes.

Based on the measured orbit of Creston, the
dynamical lifetimes were calculated for a range of
possible source regions (Table 10). A model
describing the evolution of small asteroids was

Table 10. L chondrites with known orbits: classification criteria, collision history, and mean dynamical lifetimes for
ejection from different source regions. The dynamical lifetimes in bold (1-sigma) and italic bold (2-sigma) are in
agreement with the measured CRE age.

Creston (this study) Jesenice (1) Innisfree (2) Novato (3) Villalbeto (4) Park Forest (5)

Classification: L5/6, S3/4 L6, S3 L5, S3 breccia L6, S4 breccia L6, S4 breccia L5, S5 breccia
Fa 23.3 � 1.4 25.1 � 0.4 25.3 � 0.2 24.1 � 0.4 24.2 � 0.2 24.7
Fs 23.3 � 3.5 21.1 � 0.4 – 20.7 � 0.5 20.3 � 0.2 20.7

Wo 1.2 � 0.5 1.5 – 1.5 � 0.2 1.6 � 0.2 1.6
d17O0 3.65 � 0.12 – – 3.70 � 0.10 3.60 � 0.26 3.44 � 0.02
d18O0 4.87 � 0.32 – – 4.83 � 0.19 5.61 � 0.50 4.68 � 0.07

D17O0 1.072 � 0.044 – – 1.149 � 0.022 1.1 –
K-Ar age (Ma) 4310 � 100 3275 � 205 4100 � 300 550, 1520 � 250 700 490 � 70
40Ar-39Ar age (Ma) – ~4300 – – – –
U-Pb lower intercept
age (Ma)

(755 � 320) – – 473 � 38 – –

U,Th-He age (Ma) 1050 � 60 2300 � 500 – 460 � 220 – 430 � 90

U-Pb upper intercept
age (Ma)

4496.7 � 5.8 – – 4472 � 31 – –

CRE age (Ma) 45 � 5 ~15 28 � 3 9 � 1a 48 � 5 14 � 2
Collisional lifetime in

Main Belt (Ma)b
8.9 6.3 4.3 5.9 8.9 12.9

Semimajor axis (AU) 1.30 � 0.02 1.75 � 0.07 1.872 2.09 � 0.08 2.3 � 0.2 2.53 � 0.19
Inclination (�) 4.23 � 0.07 9.6 � 0.5 12.28 5.51 � 0.04 0.0 � 0.2 3.2 � 0.3

Dynamical age for ejection from inner belt:
Hungaria (i ~ 23�) –c 52.4 � 1.8 58.1 � 2.2 19.8 � 3.2 31.6 � 3.9 29.9 � 2.4
m6 inner (a < 2.5; i < 4�) 22.2 � 5.1 12.2 � 1.0 20.2 � 2.3 9.4 � 1.0 11.9 � 2.5 13.7 � 1.3

m6 inner (a < 2.5; i > 4�) 33.4 � 11.0 11.3 � 0.8 11.2 � 1.0 6.1 � 0.4 13.8 � 1.6 12.2 � 0.7

4:1 9.2 � 2.6 5.1 � 0.6 12.9 � 2.2 0.9 � 0.7 2.5 � 0.3 3.8 � 0.4
7:2 (a < 2.5 AU) 21.3 � 5.9 21.5 � 2.3 18.9 � 2.1 28.1 � 8.9 15.3 � 1.2 16.3 � 0.6

3:1 (a < 2.5 AU) 12.9 � 3.4 7.0 � 1.1 11.1 � 2.6 3.5 � 1.8 1.2 � 0.1 0.9 � 0.2

From central belt:
m6 inner (a > 2.5 AU) – 27.8 � 22.8 – 15.8 � 14.8 ~1.8 4.5 � 2.0
7:2 (a > 2.5 AU) – 19.5 � 5.8 5.0 � 2.4 9.4 � 5.1 7.1 � 3.9 14.9 � 4.6

n6 outer (i ≤ 18�) – 7.1 � 3.0 8.7 � 1.1 – 4.4 � 1.4 6.8 � 1.2
3:1 (a > 2.5, i > 6�, incl.
Gefion family)

– 48.1 � 39.2 21.1 � 16.8 2.0 � 0.6 6.8 � 3.5 1.8 � 0.4

3:1 (a > 2.5 AU, i < 6�) 10.4 � 8.3 11.1 � 5.9 13.9 � 7.3 2.7 � 0.9 0.8 � 0.2 0.7 � 0.1
m6 outer (i > 18�) – ~24.4 13.7 � 4.2 – – 4.2 � 1.5
Phocaea (i ~ 22�) – 83.2 � 14.6 78.6 � 12.7 36.9 � 15.8 82.8 � 38.2 37.2 � 8.2

Teutonia 4.9 � 1.0 7.5 � 1.3 12.0 � 2.4 3.7 � 0.4 1.3 � 0.1 0.7 � 0.1
8:3 – 17.7 � 7.3 12.5 � 6.4 0.9 � 0.5 1.0 � 0.3 2.4 � 0.7
5:2 (incl. Gefion) – 7.3 � 3.4 9.3 � 7.7 6.3 � 3.7 0.5 � 0.1 0.4 � 0.1

From outer belt:

2:1 – � 10.7 ~10.6 – – 0.7 � 0.5
aWith one collision in last 3–5 Ma.
bCollisional lifetime is based on size and is about 1.4 √r, with r the radius in cm. In Main Belt, based only on size: possibly underestimated by

factor of 3–5 (see text).
cNo model orbits evolved into a Creston-like orbit. Data from: (1) Bischoff et al. (2011), Welten et al. (2016); (2) Halliday (1977), Goswami

et al. (1978), Rubin (1990); (3) Jenniskens et al. (2014); Yin et al. (2014); (4) Bischoff et al. (2013), Llorca et al. (2005); (5) Simon et al. (2004),

and Meier et al. (2017).
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developed that started with 92,449 test asteroids,
distributed across the Main Belt (Granvik et al. 2016,
2017). Of these, 70,708 evolved into NEO orbits.
Typically thousands of test asteroids originated from
each of several source regions. The median lifetime
was calculated and is listed in Table 10. The most
consistent source for Creston would be in the inner
asteroid belt at inclinations above 4�, arriving to
Earth via the m6 resonance. All other source regions
probed tend to produce shorter CRE ages or no
model orbits evolved into a Creston-like orbit.

The three meteorites with high K-Ar ages, Jesenice,
Innisfree, and Creston, are also the meteorites that
approached on short semimajor axis (a <2 AU) orbits
(Fig. 14). This would be consistent in a scenario where
these meteorites come to Earth via the m6 resonance
from a newly identified source region in the inner Main
Belt, but from three different collision events. The CRE
age of Jesenice is uncertain. The nominal 3.8 � 0.3 Ma
CRE age may be underestimated, with signs of prior
exposure for ~15 Ma in a larger object prior to
breaking gently (i.e., perhaps not a collision) 1.6 Ma
ago (Welten et al. 2016). The ~15 Ma age would
correspond better to the 12 Ma dynamical lifetime
expected for a source deep in the inner asteroid belt,
arriving via the m6 resonance (Table 10).

The three meteorites have inclinations of 9.6�, 12.3�,
and 4.2�, suggesting that source has a ~4–13�
inclination. Candidate S-class asteroid families include
the small families associated with 254 Augusta
(aproper = 2.19 AU, iproper = 5�) and 12 km 1646
Rosseland (aproper = 2.36 AU, iproper = 8�), and the large
family associated with 2076 Levin (aproper = 2.27 AU,
iproper = 5�), which has a formation age 366 � 125 Ma
(Spoto et al. 2015). The Flora family was earlier
proposed as an L chondrite parent (Nesvorn�y et al.
2002), but is now thought to be the source of LL
chondrites (Popova et al. 2013; Jenniskens 2014).

The L chondrites with the 470 Ma signature have low
0–6� inclinations, lower than the 8.6–9.6� proper
inclination of the Gefion family. It is possible that another

Fig. 13. U,Th-He and CRE age versus K-Ar age for L
chondrites. Solid circles are data from Crabb and Schultz
(1981), Takaoka et al. (1989), Marti and Graf (1992), Welten
et al. (2001, 2004), Eugster et al. (2007), Kita et al. (2013),
Trigo-Rodriquez et al. (2014), Leya (2015), Mahajan et al.
(2016), and Li et al. (2016). Open circles are U,Th-He and K-
Ar age data from Wasson (2012), for which no CRE age
information is available. Inset shows CRE histogram (range
N = 0–20) from Marti and Graf (1992) and more recent data,
including data with no K-Ar ages available.

Fig. 14. The meteorite’s K-Ar age compared to the semimajor
axis (a) of the impact orbit, showing that all meteorites with
high K-Ar ages impacted Earth on a short a <2 AU orbit.
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source than Gefion is responsible for the shock-blackened
L chondrites with the 470 Ma signature.

CONCLUSIONS

Creston and Novato originated from sites on the
same L chondrite parent body that experienced one or
more of the first hits after the Moon-forming event.
Compositionally they are identical. However, CRE age
and approach orbit on impact are different. While
Novato arrived from a collision 9 Ma ago on an orbit
that might be consistent with a collision cascade from
the Gefion family and arriving at Earth via the 3:1
resonance, Creston’s short impact orbit and high
45 � 5 Ma CRE age imply it originated from the inner
asteroid belt and came to Earth via the m6 resonance.

We postulate that the parent body of L chondrites
was disrupted during the impact event recorded in U-Pb
and Pb-Pb ages 4497 � 6 Ma ago, after which two or
more reassembled rubble pile daughter asteroids
dispersed over the asteroid belt. The daughter asteroid
of Novato may have settled in the middle asteroid belt
and disrupted ~470 Ma ago. The daughter asteroid
from which Creston originated ended up in the inner
asteroid belt, not far from the m6 resonance.

The L chondrites with small semimajor axis orbits
(a <2 AU), namely Creston, Innisfree, and Jesenice,
sample three different collision events, perhaps from this
same inner belt source. All three have a K-Ar age
>3 Ga and are not shock-blackened.

Acknowledgments—We thank Dominique Hart at
NASA Ames Research Center for the photography of
the Creston meteorites. We thank Wendy Guglieri,
Nancy Hood, and Kevin Heider for supporting the
recovery of meteorites. We thank the referees’ careful
reading of the manuscript and their helpful comments.
SkySentinel is a joint project with the Florida Institute
of Technology, Melbourne, Florida. P. J., D. O., and
K. B. are supported by the NASA Ames Asteroid
Threat Assessment Program. This work was supported
by NASA grant NNX14-AR92G (PJ) and NNX14-
AM62G and NNX16-AD34G (QZY). Q. Z.
acknowledges NSFC grant 41403055. M. M. M. M., A.
A. P., and H. B. are supported by grants from the Swiss
National Science Foundation. M.G. is supported by
grant #299543 from the Academy of Finland.

Editorial Handling—Dr. Josep M. Trigo-Rodr�ıguez

REFERENCES

Alexeev V. A. 1998. Parent bodies of L and H chondrites:
Times of catastrophic events. Meteoritics & Planetary
Science 33:145–152.

Anders E. 1964. Origin, age, and composition of meteorites.
Space Science Reviews 3:583–714.

Arpesella C. 1996. A low background counting facility at
Laboratori Nazionali del Gran Sasso. Applied Radiation
and Isotopes 47:991–996.

Barboni M., Boehnke P., Keller B., Kohl I. E., Schoene B.,
Young E. D., and McKeegan K. D. 2017. Early formation
of the Moon 4.51 billion years ago. Science Advances 3:
e1602365.

Bhandari N., Bonino G., Callegari E., Cini Castagnoli G.,
Mathew K. J., Padia J. T., and Queirazza G. 1989. The
Torino H6 meteorite shower. Meteoritics 24:29–34.

Bhandari N., Mathew K. J., Rao M. N., Herpers U., Bremer
K., Vogt S., W€olfli W., Hofmann H. J., Michel R.,
Bodemann R., and Lange H.-J. 1993. Depth and size
dependence of cosmogenic nuclide production rates in
stony meteoroids. Geochimica et Cosmochimica Acta
57:2361–2375.

Bischoff A. and Schultz L. 2004. Abundance and meaning of
regolith breccias among meteorites (abstract #5118). 67th
Annual Meeting of the Meteoritical Society.

Bischoff A., Jersek M., Grau T., Mirtic B., Ott U., Kucera J.,
Horstmann M., Laubenstein M., Herrmann S., Randa Z.,
Weber M., and Heusser G. 2011. Jesenice—A new
meteorite fall from Slovenia. Meteoritics & Planetary
Science 46:793–804.

Bischoff A., Dyl K., Horstmann M., Ziegler K., and Young
E. 2013. Reclassification of Villalbeto de la Pe~na—
Occurrence of a Winonaite-related fragment in a
hydrothermally metamorphosed polymict L-chondritic
breccia. Meteoritics & Planetary Science 48:628–640.

Bonino G., Bhandari N., Murty S. V. S., Mahajan R. R.,
Suthar K. M., Shukla A. D., Shukla P. N., Cini
Castagnoli G., and Taricco C. 2001. Solar and galactic
cosmic ray records of the Fermo (H) chondrite regolith
breccia. Meteoritics & Planetary Science 36:831–839.

Borovicka J., Spurny P., and Keclikova J. 1995. A new
positional astrometric method for all-sky cameras.
Astronomy & Astrophysics Supplement 112:173–178.

Bottke W. F., Durda D. D., Nesvorny D., Jedicke R.,
Morbidelli A., Vokrouhlicky D., and Levison H. F. 2005.
Linking the collisional history of the main asteroid belt to
its dynamical excitation and depletion. Icarus 179:63–94.

Bottke W. F., Vokrouhlicky D., Marchi S., Swindle T., Scott
E. R. D., Weirich J. R., and Levison H. 2015. Dating the
Moon-forming impact event with asteroidal meteorites.
Science 348:321–323.

Bouvier A. and Wadhwa M. 2010. The age of the solar system
redefined by the oldest Pb-Pb age of a meteoritic inclusion.
Nature Geoscience 3:637–641.

Bouvier A., Gattacceca J., Agee C., Grossman J., and Metzler
K. 2017. The Meteoritical Bulletin, No. 104. Meteoritics &
Planetary Science 52. https://doi.org/10.1111/maps.12930.

Bryson K. L. and Ostrowski D. R. 2017. Meteorite fractures
and scaling for asteroid atmospheric entry (abstract
#2501). 48th Lunar and Planetary Science Conference.
CD-ROM.

Clayton R. N., Mayeda T. K., Olsen E. J., and Goswami J.
N. 1991. Oxygen isotope studies of ordinary chondrites.
Geochimica et Cosmochimica Acta 55:2317–2337.

Crabb J. and Schultz L. 1981. Cosmic-ray exposure ages of
the ordinary chondrites and their significance for parent
body stratigraphy. Geochimica et Cosmochimica Acta
45:2151–2160.

The Creston, California, meteorite fall 19

Appendix B H. A. R. DEVILLEPOIX 439



Dalcher N., Caffee M. W., Nishiizumi K., Welten K. C.,
Vogel N., Wieler R., and Leya I. 2013. Calibration of
cosmogenic noble gas production in ordinary chondrites
based on 36Cl- 36Ar Ages. Part 1: Refined produced rates
for cosmogenic 21 Ne and 38 Ar. Meteoritics & Planetary
Science 48:1841–1862.

Eberhardt P., Geiss J., and Lutz H. 1963. Neutrons in
meteorites. In Earth science and meteoritics, edited by
Geiss J. and Goldberg E. D. Amsterdam, the Netherlands:
North Holland. pp. 143–168.

Eugster O., Herzog G. F., Marti K., and Caffee M. W. 2006.
Irradiation records, cosmic-ray exposure ages, and transfer
times of meteorites. In Meteorites and the early solar
system II, edited by Lauretta D. S. and McSween H. Y.
Jr. Tucson, Arizona: The University of Arizona Press. pp.
829–851.

Eugster O., Lorenzetti S., Kr€ahenb€uhl U., and Marti K. 2007.
Comparison of cosmic-ray exposure age and trapped noble
gases in chondrule and matrix samples of ordinary,
enstatite, and carbonaceous chondrites. Meteoritics &
Planetary Science 42:1351–1371.

Fieber-Beyer S. K. and Gaffey M. J. 2015. Near-infrared
spectroscopy of 3:1 Kirkwood Gap asteroids III. Icarus
257:113–125.

Fries M., Fries J., Hankey M., and Matson R. 2016.
Meteorite falls observed in U.S. Weather radar data in
2015 and 2016 (to date). 79th Meteoritical Society
meeting, Berlin, Germany. Abstract. 1 p.

Goswami J. N., Lal D., Rao M. N., Sinha N., and
Venkatesan T. R. 1978. Particle track and rare gas studies
of Innisfree meteorite. Meteoritics 13:481–484.

Granvik M., Morbidelli A., Jedicke R., Bolin B., Bottke W.
F., Beshore E., Vokrouhlicky D., Delbo M., and Michel P.
2016. Super-catastrophic disruption of asteroids at small
perihelion distances. Nature 530:303–305.

Granvik M., Morbidelli A., Vokrouhlicky D., Bottke W. F.,
Nesvorny D., and Jedicke R. 2017. Escape of asteroids
from the main belt. Astronomy & Astrophysics 598:A52.

Haack H., Farinella P., Scott E. R. D., and Keil K. 1996.
Meteoritic, asteroidal, and theoretical constraints on the
500 Ma disruption of the L chondrite parent body. Icarus
119:182–191.

Halliday I. 1977. Photographic observations and orbit of the
Innisfree meteorite. Meteoritics & Planetary Science
12:248–249.

Jenniskens P. 2014. Recent documented meteorite falls, a
review of meteorite—Asteroid links. In Meteoroids 2013,
edited by Jopek T., Rietmeijer F. J. M., Watanabe J., and
Williams I. P. Proceedings of the astronomical conference
held at A.M. University, Poznan, Poland, Aug 26–30,
2013. Poznan: A. M. University Press. pp. 57–68.

Jenniskens P., Gural P. S., Dynneson L., Grigsby B. J.,
Newman K. E., Borden M., Koop M., and Holman D.
2011. CAMS: Cameras for Allsky Meteor Surveillance to
establish minor meteor showers. Icarus 216:40–61.

Jenniskens P., Fries M. C., Yin Q.-Z., Zolensky M., Krot A.
N., Sandford S. A., Sears D., Beauford R., Ebel D. S.,
Friedrich J. M., Nagashima K., Wimpenny J., Yamakawa
A., Nishiizumi K., Hamajima Y., Caffee M. W., Welten
K. C., Laubenstein M., Davis A. M., Simon S. B., Heck
P. R., Young E. D., Kohl I. E., Thiemens M. H., Nunn
M. H., Mikouchi T., Hagiya K., Ohsumi K., Cahill T. A.,
Lawton J. A., Barnes D., Steele A., Burton A. S.,
Dworkin J. P., Elsila J. E., Pizzarello S., Ogliore R.,

Smitt-Kopplin P., Harir M., Hertkorn N., Verchovsky A.,
Grady M., Nagao K., Okazaki R., Takechi H., Hiroi T.,
Smith K., Silber E. A., Brown P. G., Albers J., Klotz D.,
Hankey M., Matson R., Fries J. A., Walker R. J., Puchtel
I., Lee C. A., Erdman M. E., Eppich G. R., Roeske S.,
Gabelica Z., Lerche M., Nuevo M., Girten B., and
Worden S. P. (the Sutter’s Mill Meteorite Consortium).
2012. Radar-enabled recovery of the Sutter’s Mill
Meteorite, a carbonaceous chondrite regolith breccia.
Science 338:1583–1587.

Jenniskens P., Rubin A. E., Yin Q.–Z., Sears D. W. G.,
Sandford S. A., Zolensky M. E., Krot A. N., Blair L.,
Kane D., Utas J., Verish R., Friedrich J. M., Wimpenny
J., Eppich G. R., Ziegler K., Verosub K. L., Rowland D.
J., Albers J., Gural P. S., Grigsby B., Fries M. D., Matson
R., Johnston M., Silber E., Brown P., Yamakawa A.,
Sanborn M. E., Laubenstein M., Welten K. C., Nishiizumi
K., Meier M. M. M., Busemann H., Clay P., Caffee M.
W., Schmitt–Kopplin P., Hertkorn N., Glavin D. P.,
Callahan M. P., Dworkin J. P., Wu Q., Zare R. N., Grady
M., Verchovsky S., Emel’yanenko V., Naroenkov S.,
Clark D. L., Girten B., and Worden P. S. 2014. Fall,
recovery and characterization of the Novato L6 Chondrite
Breccia. Meteoritics & Planetary Science 49:1388–1425.

Kita N. T., Welten K. C., Valley J. W., Spicuzza M. J.,
Nakashima D., Tenner T. J., Ushikubo T., MacPherson
G. J., Welzenbach L., Heck P. R., Davis A., Caffee M.
W., Laubenstein M., and Nishiizumi K. 2013.
Fall, classification, and exposure history of the Mifflin
L5 chondrite. Meteoritics & Planetary Science 48:
641–655.

Kohman T. P. and Bender M. L. 1967. Nuclide production by
cosmic rays in meteorites and on the Moon. In High-
energy nuclear reactions in astrophysics—A collection of
articles, edited by Shen B. S. P. New York: W. A.
Benjamin Inc. pp. 169–245.

Korochantseva E. V., Trieloff M., Lorenz C. A., Buykin A. I.,
Ivanova M. A., Schwarz W. H., Hopp J., and Jessberger E.
K. 2007. L-chondrite asteroid breakup tied to Ordovician
meteorite shower by multiple isochron 40Ar-39Ar dating.
Meteoritics & Planetary Science 42:113–130.

Leya I. 2015. Data from the Noble Gas Cosmochemistry
group at the University of Bern, Switzerland. Website:
http://archive.space.unibe.ch/noblegas/data.html. Last accessed
November 30, 2017.

Leya I. and Masarik J. 2009. Cosmogenic nuclides in stony
meteorites revisited. Meteoritics & Planetary Science
44:1061–1086.

Li S. and Hsu W. 2016. U-Pb dating of the shock melt veins
in two L6 chondrites. 79th Annual Meeting of the
Meteoritical Society, 7–12 Aug, 2016, Berlin, Germany,
A6057.

Li S. J., Leya I., Wang S. J., and Smith T. 2016. Cosmic-ray
exposure ages of chondrites collected in Grove Mountains,
Antarctica. 79th Annual Meeting of the Meteoritical
Society, 7–12 Aug, 2016, Berlin, Germany, A6356.

Li Q.-L., Li X.-H., Liu Y., Tang G.-Q., Yang J.-H., and Zhu
W.-G. 2010. Precise U-Pb and Pb-Pb dating of
phanerozoic baddeleyite by SIMS with oxygen flooding
technique. Journal of Analytical Atomic Spectrometry
25:1107–1113.

Llorca J., Trigo-Rodr�ıguez J. M., Ortiz J. L., Docobo J. A.,
Garc�ıa-Guinea J., Castro-Tirado A. J., Rubin A. E.,
Eugster O., Edwards W., Laubesntein M., and Casanova

20 P. Jenniskens et al.

440 H. A. R. DEVILLEPOIX



I. 2005. The Villalbeto de La Pe~na meteorite fall: I.
Fireball energy, meteorite recovery, strewn field, and
petrography. Meteoritics & Planetary Science 40:795–804.

Lodders K. 2003. Solar system abundances and condensation
temperatures of the elements. The Astrophysical Journal
591:1220–1247.

Lodders K., Palme H., and Gail H. P. 2009. Abundances of
the elements in the solar system. In Solar system, edited by
Truemper J. E. Berlin, Germany: Springer. pp. 560–630.

Ludwig K. R. 1998. On the treatment of concordant uranium-
lead ages. Geochimica et Cosmochimica Acta 62:665–676.

Mahajan R. R., Varela M. E., and Joron J. L. 2016. Santa
Lucia (2008) (L6) chondrite, a recent fall: Composition,
noble gases, nitrogen and cosmic ray exposure age. Earth,
Moon, and Planets 117:65–76.

Marti K. and Graf T. 1992. Cosmic-ray exposure history of
ordinary chondrites. Annual Review of Earth and Planetary
Sciences 20:221–243.

McGraw A. M., Reddy V., and Sanchez J. A. 2017. Do L-
chondrites come from the Gefion asteroid family? (abstract
#1778). 48th Lunar and Planetary Science Conference.
CD-ROM.

Meier M. M. M., Welten K. C., Riebe M. E., Riebe I.,
Caffee M. W., Gritsevich M., Maden C., and Busemann
H. 2017. Park Forest (L5) and the asteroidal source of
shocked L chondrites. Meteoritics & Planetary Science
52:1561–1576.

Nesvorn�y D., Morbidelli A., Vokrouhlick�y D., Bottke W.
F., and Broz M. 2002. The Flora family: A case of the
dynamically dispersed collisional swarm? Icarus 157:
155–172.

Nesvorn�y D., Vokrouhlick�y D., Morbidelli A., and Bottke W.
F. 2009. Asteroidal source of L chondrite meteorites.
Icarus 200:698–701.

Ostrowski D. R. and Bryson K. L. 2016. Physical properties
comparison of ordinary chondrite classes. 79th Annual
Meeting of the Meteoritical Society, 7–12 Aug, 2016,
Berlin. LPI Contribution No. 1921, id. 6510.

Popova O. P., Jenniskens P., Emel’yanenko V., Kartashova
A., Biryukov E., Khaibrakhmanov S., Shuvalov V.,
Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D.
D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers
L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y.
S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov
M. Y., Glazachev D., Mayer A. E., Gisler G., Gladkovsky
S. V., Wimpenny J., Sanborn M. E., Yamakawa A.,
Verosub K., Rowland D. J., Roeske S., Botto N. W.,
Friedrich J. M., Zolensky M., Le L., Ross D., Ziegler K.,
Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-
L., Liu Y., Tang G.-Q., Hiroi T., Sears D., Weinstein I.
A., Vokhmintsev A. S., Ishchenko A. V., Schmitt-Kopplin
P., Hertkorn N., Nagao K., Haba M. K., Komatsu M.,
and Mikouchi T. 2013. Chelyabinsk airburst, damage
assessment, meteorite recovery, and characterization.
Science 342:1069–1073.

Rochette P., Gattacceca J., and Lewandrowski M. 2012.
Magnetic classification of meteorites and application to the
Soltmany fall. Meteorites 2:67–71.

Rubin A. E. 1990. Kamacite and olivine in ordinary
chondrites: Intergroup and intragroup relationships.
Geochimica et Cosmochimica Acta 54:1217–1232.

Sano Y., Oyama T., Terada K., and Hidaka H. 1999. Ion
microprobe U-Pb dating of apatite. Chemical Geology
153:249–258.

Schmitz B., Tassinari M., and Peucker-Ehrenbrink B. 2001. A
rain of ordinary chondritic meteorites in the early
Ordovician. Earth and Planetary Science Letters 194:1–15.

Schmitz B., Yin Q.-Z., Sanborn M. E., Tassinari M., Caplan
C. E., and Huss G. R. 2016. A new type of solar system
material recovered from Ordovician marine limestone.
Nature Communications 7:11,851–11,858.

Scott E. R. D. 2002. Meteorite evidence for the accretion and
collisional evolution of asteroids. In Asteroids III, edited by
Bottke W., Cellino A., Paolicchoi P., and Binzel R. Tucson,
Arizona: The University of Arizona Press. pp. 697–709.

Shima M., Okada A., and Nagao K. 1993. The chondrite
Mihonoseki: New observed fall. Proceedings, 24th Lunar
and Planetary Science Conference. pp. 1297–1298.

Simon S. B., Grossman L., Clayton R. N., Mayeda T. K.,
Schwade J. R., Sipiera P. P., Wacker J. F., and Wadhwa M.
2004. The fall, recovery, and classification of the Park Forest
meteorite.Meteoritics & Planetary Science 39:625–634.

Spergel M. S., Reedy R. C., Lazareth O. W., Levy P. W., and
Slatest L. A. 1986. Cosmogenic neutron-capture-produced
nucleides in stony meteorites. Proceedings, 16th Lunar and
Planetary Science Conference. Journal of Geophysical
Research Supplement 91:D483–D494.

Spoto F., Milani A., and Knezevic Z. 2015. Asteroid family
ages. Icarus 257:275–289.

Stacey J. S. and Kramers J. D. 1975. Approximation of
terrestrial lead isotope evolution by a two-stage model.
Earth and Planetary Science Letters 26:207–221.

St€offler D., Keil K., and Scott E. R. D. 1991. Shock
metamorphism of ordinary chondrites. Geochimica et
Cosmochimica Acta 55:3845–3867.

Takaoka N., Wakabayashi F., Shima M., and Wakabayashi
F. 1989. Noble gas record of Japanese chondrites. Z.
Naturforshung 44a:935–944.

Tatsumoto M., Knight R. J., and Allegre C. J. 1973. Time
differences in the formation of meteorites as determined from
the ratio of Lead-207 to Lead-206. Science 180:1279–1283.

Trigo-Rodriquez J. M., Llorca J., Weyrauch M., Bischoff A.,
Moyano-Cambero C. E., Keil K., Laubenstein M., Pack
A., Madiedo J. M., Alonso-Azc�arate J., Riebe M., Wieler
R., Ott U., Tapia M., and Mestres N. 2014. Ard�on: A
long hidden L6 chondrite fall. 77th Annual Meeting of the
Meteoritical Society, id. 5068.

Trinquier A., Birck J.-L., and All�egre C. J. 2007. Widespread
54Cr heterogeneity in the inner solar system. The
Astrophysical Journal 655:1179–1185.

Troiano J., Rumble D. III, Rivers M. L., and Friedrich J. M.
2011. Compositions of three low-FeO ordinary chondrites:
Indications of a common origin with the H chondrites.
Geochimica et Cosmochimica Acta 75:6511–6519.

Trotter J. A. and Eggins S. M. 2006. Chemical systematics of
conodont apatite determined by laserablation ICPMS.
Chemical Geology 223:196–216.

Vernazza P., Zanda B., Binzel R. P., Hiroi T., DeMeo F. E.,
Birlan M., Hewins R., Ricci L., Barge P., and Lockhart
M. 2014. Multiple and fast: The accretion of ordinary
chondrite parent bodies. The Astrophysical Journal
791:120–142.

Wasson J. T. 2012. Meteorites: Classification and properties,
2nd ed. London, UK: Springer. 205 p.

Wasson J. T. and Kallemeyn G. W. 1988. Compositions of
chondrites. Philosophical Transactions of the Royal Society
of London Series A, Mathematical and Physical Sciences
325:535–544.

The Creston, California, meteorite fall 21

Appendix B H. A. R. DEVILLEPOIX 441



Weirich J. R., Swindle T. D., Isachsen C. E., Sharp T. G., Li
C., and Downs R. T. 2012. Source of potassium in
shocked ordinary chondrites. Geochmicia et Cosmochimica
Acta 98:125–139.

Welten K. C., Nishiizumi K., and Caffee M. W. 2001. The
search for meteorites with complex exposure histories
among ordinary chondrites with low 3He/21Ne ratios
(abstract #2148). 32nd Lunar and Planetary Science
Conference. CD-ROM.

Welten K. C., Nishiizumi K., Finkel R. C., Hillegonds D. J.,
Jull A. J. T., Franke L., and Schultz L. 2004. Exposure
history and terrestrial ages of ordinary chondrites from the
Dar al Gani region, Libya. Meteoritics & Planetary
Science 39:481–498.

Welten K. C., Caffee M. W., and Nishiizumi K. 2016. The
complex cosmic ray exposure history of Jesenice (L6):
Possible evidence for ejection from parent body by tidal
disruption or YORP related effects (abstract #2924). 47th
Lunar and Planetary Science Conference. CD-ROM.

Wendt I. 1989. Geometric considerations of the three
dimensional U/Pb data presentation. Earth and Planetary
Science Letters 94:231–235.

Wendt I. and Carl C. 1984. U/Pb dating of discordant 0.1 Ma
old secondary U minerals. Earth and Planetary Science
Letters 73:278–284.

Wu Y. and Hsu W. 2017. Petrology, mineralogy and in situ
U-Pb dating of Northwest Africa 11042. 80th Annual
Meeting of the Meteoritical Society (LPI Contribution
Number 1987) A6190.

Yamakawa A., Yamashita K., Makishima A., and Nakamura
E. 2009. Chemical separation and mass spectrometry of
Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial
materials using thermal ionization mass spectrometry.
Analytical Chemistry 81:9787–9794.

Yin Q.-Z., Zhou Q., Li Q.-L., Li X.-H., Liu Y., Tan G.-Q.,
Krot A. N., and Jenniskens P. 2014. Records of the
Moon-forming impact and the 470 Ma disruption of the L
chondrite parent body in the asteroid belt from U-Pb
apatite ages of Novato (L6). Meteoritics & Planetary
Science 49:1426–1439.

Youdin A. N. 2011. On the formation of planetesimals via
secular gravitational instabilities with turbulent stirring.
The Astrophysical Journal 731:99–117.

Zhou Q., Ying Q.-Z., Edward D. Y., Li X.-H., Wu F.-Y., Li
Q.-L., Liu Y., and Tang G.-Q. 2013. SIMS Pb-Pb and U-
Pb age determination of eucrite zircons at <5 micron scale
and the first 50 Ma of the thermal history of Vesta.
Geochimica et Cosmochimica Acta 110:152–175.

22 P. Jenniskens et al.

442 H. A. R. DEVILLEPOIX





BIBLIOGRAPHY

The meteoritical bulletin, no. 106. Meteoritics & Planetary Science, 2017.

I. Andreoni, K. Ackley, J. Cooke, A. Acharyya, J. R. Allison, G. E. Anderson,

M. C. B. Ashley, D. Baade, M. Bailes, K. Bannister, A. Beardsley, M. S. Bessell,

F. Bian, P. A. Bland, M. Boer, T. Booler, A. Brandeker, I. S. Brown, D. A. H.

Buckley, S. W. Chang, D. M. Coward, S. Crawford, H. Crisp, B. Crosse,

A. Cucchiara, M. Cupák, J. S. de Gois, A. Deller, H. A. R. Devillepoix, D. Dobie,

E. Elmer, D. Emrich, W. Farah, T. J. Farrell, T. Franzen, B. M. Gaensler, D. K.

Galloway, B. Gendre, T. Giblin, A. Goobar, J. Green, P. J. Hancock, B. A. D.

Hartig, E. J. Howell, L. Horsley, A. Hotan, R. M. Howie, L. Hu, Y. Hu, C. W.

James, S. Johnston, M. Johnston-Hollitt, D. L. Kaplan, M. Kasliwal, E. F. Keane,

D. Kenney, A. Klotz, R. Lau, R. Laugier, E. Lenc, X. Li, E. Liang, C. Lidman,

L. C. Luvaul, C. Lynch, B. Ma, D. Macpherson, J. Mao, D. E. McClelland,
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meteorite – An LL6 chondrite fragmental breccia recovered soon after precise

prediction of the strewn field. Meteoritics and Planetary Science, 52:1683–1703,

Aug. 2017. doi: 10.1111/maps.12883.

R. C. Blaauw, M. Campbell-Brown, and A. Kingery. Optical meteor fluxes

and application to the 2015 Perseids. MNRAS, 463:441–448, Nov. 2016. doi:

10.1093/mnras/stw1979.

P. A. Bland. Fireball cameras: The Desert Fireball Network. Astronomy and

Geophysics, 45:5.20–5.23, Oct. 2004. doi: 10.1046/j.1468-4004.2003.45520.x.

P. A. Bland and N. A. Artemieva. The rate of small impacts on Earth. Meteoritics

and Planetary Science, 41:607–631, Apr. 2006. doi: 10.1111/j.1945-5100.2006.

tb00485.x.
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J. Borovička. The comparison of two methods of determining meteor trajectories

from photographs. Bulletin of the Astronomical Institutes of Czechoslovakia, 41:

391–396, Dec. 1990.
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J. Borovička, P. Spurný, and P. Brown. Small Near-Earth Asteroids as a Source of

Meteorites, pages 257–280. University of Arizona Press, 2015. doi: 10.2458/

azu uapress 9780816532131-ch014.
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D. Nesvorný, D. Vokrouhlický, A. Morbidelli, and W. F. Bottke. Asteroidal

source of L chondrite meteorites. Icarus, 200:698–701, Apr. 2009. doi: 10.1016/

j.icarus.2008.12.016.

J. Oberst, S. Molau, D. Heinlein, C. Gritzner, M. Schindler, P. Spurny, Z. Ce-

plecha, J. Rendtel, and H. Betlem. The “European Fireball Network”: Current

status and future prospects. Meteoritics and Planetary Science, 33, Jan. 1998.

doi: 10.1111/j.1945-5100.1998.tb01606.x.
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P. Spurný. Exceptional fireballs photographed in central Europe during the

period 1993-1996. Planet. Space Sci., 45:541–555, May 1997. doi: 10.1016/

S0032-0633(97)00006-8.
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