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Abstract

A novel, explicit, and efficient forward modelling of the spheroidal harmonic spectra of external
planetary gravitational fields is developed in this article. We introduce the oblate spheroidal
coordinate system and derive the mathematical apparatus for the analysis of the spheroidal
harmonic spectrum from the volumetric bulk density and geometry of a gravitating body. We
discretise the volume integral and formulate a new and efficient numerical algorithm for the
spheroidal forward modelling. We provide complete sets of recursions for calculating the asso-
ciated Legendre functions of the first kind and their integrals in the Supplementary Material.
We also develop a computer program that implements the numerical algorithm and we test its
performance. For this purpose, we consider synthetic gravitational fields of 1 Ceres (a signif-
icantly flattened asteroid) and of the Moon (a nearly spherical body). These tests prove high
numerical accuracy and applicability of the spheroidal forward modelling up to degree and order
2519. We finally apply our spheroidal forward modelling and its simpler spherical counterpart for
computing global gravitational field models up to degree and order 2519 generated by realistic
topographic mass distributions of 1 Ceres and of the Moon. These models are compared in the
spatial and spectral domains to manifest an enhanced applicability of the spheroidal approach
with respect to the spherical one. In particular, we show an extended convergence space when
using the spheroidal forward modelling and the corresponding harmonic representation for the
oblate 1 Ceres.
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1. Introduction

Forward modelling is used for gravitational field determination in geodesy, geophysics and
planetary sciences. It is based on Newton’s (1687) integral for the gravitational potential (e.g.,
Green, 1828; Kellogg, 1929, Chap. 3). The masses can be replaced by the product of volume
and bulk density, thus allowing different geometries and density distributions to be considered.

In the first approximation, most planetary bodies resemble spheres. Accordingly, spherical
forward modelling techniques have been employed to calculate the gravitational potential and
its functionals in the spatial domain. This has been achieved by decomposing Newton’s inte-
gral and its first-, second-, and third-order spatial derivatives into spherical prisms or spherical
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tesseroids (e.g., Anderson, 1976; Asgharzadeh et al., 2007; Heck and Seitz, 2007; Wild-Pfeiffer,
2008; Uieda et al., 2016; Deng and Shen, 2018; Fukushima, 2018). Other spatial forward mod-
elling strategies have considered discretisations by point masses, line masses, right-rectangular
prisms, or polyhedra (e.g., Pohánka, 1988; Grüninger, 1990; Werner and Scheeres, 1996; Nagy
et al., 2000; D’Urso, 2013; Werner, 2017).

Alternatively, the gravitational potential of a spherical gravitating body can be parametrised
by its spherical harmonic spectrum. Practical advantages of the spherical harmonic representa-
tion have resulted in numerous spectral forward modelling techniques (e.g., Lee and Kaula, 1967;
Balmino et al., 1973; Lachapelle, 1976; Rummel et al., 1988; Pavlis and Rapp, 1990; Balmino,
1994; Wieczorek and Phillips, 1998; Wieczorek, 2007; Balmino et al., 2012; Grombein et al.,
2016; Kuhn and Hirt, 2016; Rexer et al., 2016; Tenzer et al., 2016; Šprlák et al., 2018), which
are based on various simplifications on the bulk density and geometry of the gravitating body.

Some planetary bodies, however, tend to be flattened at the poles and their shapes are closer
to oblate spheroids (rotational ellipsoids) than spheres (e.g., Chandrasekhar, 1969; Moritz, 1990).
This has motivated spheroidal (also known as ellipsoidal) formulations of Newton’s integral,
including its first- and second-order spatial derivatives (Ardalan and Safari, 2004; Novák and
Grafarend, 2005; Roussel et al., 2015; Novák and Šprlák, 2018). Spectral approaches have also
been proposed for the forward modelling of the spheroidal harmonic spectra (Wang and Yang,
2013; Hu and Jekeli, 2015; Reimond and Baur, 2016; Sebera et al., 2016).

An alternative to the existing spectral methods for oblate spheroidal bodies may com-
prise spherical modelling followed by transformation of the spherical harmonic spectrum to
its spheroidal counterpart (e.g., Hotine, 1969, pp. 194-195; Jekeli, 1981). This pragmatic proce-
dure, however, is not without difficulties, as discussed by (Lowes and Winch, 2012), and cannot
completely substitute an explicit spheroidal forward modelling in the spectral domain, which is
what we present here.

In this article, we develop, implement, test and demonstrate applicability of the forward
modelling for spheroidal harmonic spectra. Our approach improves and differs from the existing
techniques in several regards: 1) It allows for implementing 3D spatially variable density. In
contrast, the method by Wang and Yang (2013) was developed with the assumption of only
a laterally varying density distribution. 2) It provides the spheroidal harmonic spectrum by
one volume integral. This differs from the hybrid methods by (Hu and Jekeli, 2015; Sebera
et al., 2016), which combine two surface integrals for planetary bodies of constant density and
discretised by polyhedra. 3) It presents an explicit discretisation of the integral representation by
spheroidal tesseroids and, for regularly gridded data, we provide a numerically efficient algorithm
based on the fast/discrete Fourier transform. 4) It uses simple recursion formulas, which are
numerically more efficient than the Laurent series formalism derived by (Wang and Yang, 2013).
5) The former studies such as Wang and Yang (2013) demonstrated the spheroidal computation
up to d/o 180 for the Earth, whereas our spheroidal implementation is demonstrated to be
accurate up to ultra-high d/o 2519, and for the significantly flattened planetary body of 1
Ceres.

We also acknowledge studies on the forward modelling for the even more complex geometry
of a tri-axial ellipsoid (e.g., Garmier and Barriot, 2001; Park et al., 2014; Hu and Jekeli, 2015;
Reimond and Baur, 2016). These have been restricted to d/o less than ∼ 20 due to numerical
problems in calculating the corresponding basis functions, so will not be attempted here.
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2. Forward modelling of the spheroidal harmonic spectrum

In this Section, we summarise the fundamentals for the evaluation of the spheroidal harmonic
spectra from the geometry and bulk density of a gravitating body (e.g., Jekeli, 1981; Moritz,
1990; Grafarend, 2015). As we consider only oblate spheroidal geometry, we use so-called plan-
etocentric oblate spheroidal coordinates u and Ωe = (β, λ). In the geodetic literature, these
are also called one-parametric Jacobi or mixed elliptic-trigonometric elliptic coordinates (Thong
and Grafarend, 1989; Ardalan, 2000). However, in the mathematical and other literature, they
are more commonly called ellipsoidal coordinates.

The coordinate triplet we use is defined by the semi-minor axis u ∈ [0,∞), the reduced
latitude β ∈ [−90◦,+90◦], and the longitude λ ∈ [0◦,+360◦), see Fig. 1. If the geometry
and density distribution are expressed in terms of spherical or geodetic coordinates, they can be
transformed to u and Ωe = (β, λ) using closed-form algorithms (e.g., Featherstone and Claessens,
2008). The use of planetocentric oblate spheroidal coordinates is essential because separation of
variables can be performed in this coordinate triplet when solving Laplace’s equation (Moon and
Spencer, 1953). Consequently, the gravitational potential can be represented by the spheroidal
harmonic series of Eq. (5) that makes formulation of the spectral forward modelling possible.
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Figure 1: Graphical illustration of the planetocentric oblate spheroidal coordinates u and Ωe = (β, λ) at the point
P. The grey-shaded oblate spheroidal surface represents the oblate reference spheroid with the semi-major axis
a0 and the semi-minor axis b0. The oblate spheroidal surface bounded by the dark blue elliptical curves is the
oblate confocal spheroid with the semi-major axis

√
u2 + ε2 (being the radius of the red quarter circle) and the

semi-minor axis u (being the radius of the green quarter circle). O is the origin of the planetocentric Cartesian
reference frame and PN is the North pole.

The spheroidal Newton integral transforms the bulk density ρ and the geometry of the grav-
itating body (defined by integration limits) to the gravitational potential V as follows (Moritz,
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1990, Sect. 5):

V (u,Ωe) = G

∫
Ω′e

∫
u′
ρ(u′,Ω′e) KN (u,Ωe, u

′,Ω′e)
(
u′

2
+ ε2 sin2 β′

)
du′ dΩ′e , (1)

where G is the universal gravitational constant, (u,Ωe) refer to the position of the computation
point and (u′,Ω′e) specify the position of the integration element. The linear eccentricity ε =√
a2

0 − b20 is related to the semi-major axis a0 and the semi-minor axis b0 of the oblate reference
spheroid. The term

(
u′2 + ε2 sin2 β′

)
under the integral originates from the metric coefficients

of the planetocentric oblate spheroidal coordinate system (Thong and Grafarend, 1989). The
explicit form of the oblate spheroidal surface element is dΩ′e = cosβ′ dβ′ dλ′.

The reciprocal distance KN in Eq. (1), also known as Newton’s kernel, is a function of the
positions of both the computation point and the integration element. It is defined by (Neumann,
1848; Hobson, 1965, pp. 424-430):

KN (u,Ωe, u
′,Ω′e) =

[(√
u2 + ε2 cosβ cosλ−

√
u′2 + ε2 cosβ′ cosλ′

)2

+
(√

u2 + ε2 cosβ sinλ−
√
u′2 + ε2 cosβ′ sinλ′

)2
+
(
u sinβ − u′ sinβ′

)2
]−1/2

=
i

ε

∞∑
n=0

+n∑
m=−n

(−1)|m|
(n− |m|)!
(n+ |m|)!

Qn,|m|

(
i
u

ε

)
Pn,|m|

(
i
u′

ε

)
Ȳn,m(Ωe) Ȳn,m(Ω′e) . (2)

The expression after the first equality in Eq. (2) is the closed-form of Newton’s kernel in
terms of the planetocentric oblate spheroidal coordinates. The spectral form of Newton’s kernel
is given by the last expression of Eq. (2) and is uniformly convergent in the domain u > u′. The
symbol i =

√
−1 is the imaginary unit. The complex mathematical functions Pn,|m| and Qn,|m|

are respectively the un-normalised associated Legendre functions of the first and second kinds
of the complex arguments of degree n and order m. They determine the vertical variation of the
Newton kernel. The horizontal variation of Newton’s kernel is described by the scalar spheroidal
harmonic (Abramowitz and Stegun, 1972, Sect. 8):

Ȳn,m(Ωe) = P̄n,|m|(sinβ)

{
cosmλ , ∀m ≥ 0
sin |m|λ , ∀m < 0

, (3)

where P̄n,|m| is the 4π fully normalised associated Legendre function of the first kind for the real
argument.

The spectral form of KN allows for transformation of the Newton integral into a series
representation. This is achieved by: 1) substituting the right-hand-side of Eq. (2) into Eq. (1);
and 2) interchanging the order of summation and integration. This interchange is permitted with
the assumption of the uniform convergence, which holds ∀u > u′. The gravitational potential
then reads:

V (u,Ωe) = i
G

ε

∞∑
n=0

+n∑
m=−n

(−1)|m|
(n− |m|)!
(n+ |m|)!

Qn,|m|

(
i
u

ε

)
Ȳn,m(Ωe)
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×
∫

Ω′e

∫
u′
ρ(u′,Ω′e) Ȳn,m(Ω′e) Pn,|m|

(
i
u′

ε

) (
u′

2
+ ε2 sin2 β′

)
du′ dΩ′e . (4)

The spheroidal harmonic spectrum is composed of the dimensionless fully-normalised spheroidal
harmonic coefficients C̄en,m. These arise from the spheroidal harmonic expansion of the gravita-
tional potential (Heiskanen and Moritz, 1967, Sect. 1-20):

V (u,Ωe) =
GM

a

∞∑
n=0

+n∑
m=−n

Qn,|m|(i
u
ε )

Qn,|m|(i
b
ε)

C̄en,m Ȳn,m(Ωe) , (5)

where M is the mass of the gravitating body. This expansion is a solution of Laplace’s equa-
tion ∇2V = 0 for the planetocentric oblate spheroidal coordinate system and only holds true
outside the gravitating masses. Equation (5) is absolutely convergent outside the oblate Bril-
louin spheroid (e.g., Hobson, 1965, p. 432). Such a spheroid is one that encloses all gravitating
masses and is confocal to the oblate reference spheroid. Thus, the oblate Brillouin spheroid is
geometrically defined by the semi-minor axis b and the semi-major axis a =

√
b2 + ε2.

Equations (4) and (5) are different representations of the same gravitational potential. By
equating these two expressions and considering u = b > u′, we obtain the desired formula for
the forward-modelled spheroidal harmonic spectrum in the form:

C̄en,m = i
a

M ε
(−1)|m|

(n− |m|)!
(n+ |m|)!

Qn,|m|

(
i
b

ε

)

×
∫

Ω′e

∫
u′
ρ(u′,Ω′e) Ȳn,m(Ω′e) Pn,|m|

(
i
u′

ε

) (
u′

2
+ ε2 sin2 β′

)
du′ dΩ′e . (6)

Equation (6) is of importance when studying the physical meaning of the spheroidal har-
monic coefficients (e.g., Grafarend and Ardalan, 1999). However, it is not suitable for numerical
purposes, as it requires computing the factorials and the complex mathematical functions Pn,|m|
and Qn,|m|. To avoid these practical limitations, Jekeli (1981, Eqs. (3.32) and (3.44)) introduced
the following expressions for the un-normalised associated Legendre functions of the first and
second kinds:

Pn,|m|

(
i
u′

ε

)
= in

(
b

ε

)n (2n)!

2n n! (n− |m|)!
pn,|m|

(
u′

ε

)
, (7)

Qn,|m|

(
i
u

ε

)
=

(−1)|m|

in+1

(
ε

b

)n+1 2n n! (n+ |m|)!
(2n+ 1)!

qn,|m|

(
u

ε

)
, (8)

where the symbols pn,|m| and qn,|m| stand for two real mathematical functions of the real ar-
guments. These are referred to as the modified associated Legendre functions of the first and
second kinds, respectively. By substituting Eqs. (7) and (8) into Eq. (6), we get an alternative
formula for forward modelling to generate spheroidal harmonic coefficients:

C̄en,m =
a

M b (2n+ 1)
qn,|m|

(
b

ε

)

×
∫

Ω′e

∫
u′
ρ(u′,Ω′e) Ȳn,m(Ω′e) pn,|m|

(
u′

ε

) (
u′

2
+ ε2 sin2 β′

)
du′ dΩ′e . (9)
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Equation (9) is discretised and numerically implemented in Sects. 3 and 4. This mathematical
prescription is more general than the one used by (Wang and Yang, 2013), who restricted
theirs to only horizontal variations of density. In addition, the simpler spherical harmonic
spectrum (Heiskanen and Moritz, 1967, p. 59-60; Burša and Pěč, 1993, Sect.2-9) can be obtained
from Eq. (9) by setting ε → 0. In this degenerate case, u′ → r′ and β′ → ϕ′, where r′ is
the planetocentric spherical radius and ϕ′ is the planetocentric spherical latitude. The oblate
Brillioun spheroid becomes the Brillouin sphere of radius a = b = R, and the modified associated
Legendre functions of the first and second kinds change to qn,|m|

(
b
ε

)
→ 1 and pn,|m|

(
u′

ε

)
→
(
r′

R

)n
.

Thus, Eq. (9) also embeds the spherical spectral forward modelling as a degenerate case.

3. Practical calculation of the spheroidal harmonic spectrum

The geometry of the gravitating body and its bulk density distribution are commonly de-
scribed by digital elevation models (DEMs) and digital density models (DDMs). To exploit
these data for the computation of the spheroidal gravitational spectrum, the 3D volume integral
in Eq. (9) has to be discretised.

The discretisation starts by dividing the volume of the gravitating body into what we term
spheroidal tesseroids. We assign to every spheroidal tesseroid three indices (µ, ν, τ), and with
the oblate spheroidal coordinates in the intervals β′ ∈

[
β′µ, β

′
µ + ∆β′

]
, λ′ ∈

[
λ′ν , λ

′
ν + ∆λ′

]
, and

u′ ∈
[
u′τ , u

′
τ + ∆u′τ

]
. Thus, a spheroidal tesseroid is a 3D finite element bounded by two oblate

confocal spheroids (u′τ = const. and u′τ +∆u′τ = const.), two one-sheet hyperboloids (β′µ = const.
and β′µ + ∆β′ = const.), and two half-planes (λ′ν = const. and λ′ν + ∆λ′ = const.), see Fig. 2.
Such geometric interpretation is an extension of the spherical tesseroid formed by two concentric
spheres, two half-cones, and two half-planes (Anderson, 1976, p. 48).

The discretisation steps ∆β′ and ∆λ′ are governed by the spatial resolutions of the DEMs
and DDMs. The discretisation results in spheroidal gravitational spectra up to the maximum
d/o Nmax = 180◦/MAX(∆β′,∆λ′). The meaning of the discretisation step ∆u′τ is twofold: 1)
∆u′τ = ∆u′(β′, λ′), i.e., it is a variable value determined by a DEM/DDM for all spheroidal
tesseroids adjacent to the topographic surface of the gravitating body; 2) ∆u′τ = ∆u′, i.e., it is
a fixed length for the other spheroidal tesseroids.

Each spheroidal tesseroid is specified by a bulk density represented by its mean value
ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
. Different mean density values can be assigned to each spheroidal tesseroid, thus

permitting a full 3D implementation. Then, we can approximate the volume integral in Eq. (9)
by the triple summation

∑
µ,ν,τ =

∑
µ

∑
ν

∑
τ over all spheroidal tesseroids in 3D:

C̄en,m ≈
a

M b (2n+ 1)
qn,|m|

(
b

ε

) ∑
µ,ν,τ

ρ̄
(
u′τ , β

′
µ, λ
′
ν

) ∫ λ′ν+∆λ′

λ′ν

{
cosmλ′

sin |m|λ′
}

dλ′

×
[ ∫ β′µ+∆β′

β′µ

P̄n,|m|(sinβ
′) cosβ′ dβ′

∫ u′τ+∆u′τ

u′τ

pn,|m|

(
u′

ε

)
u′

2
du′

+ ε2

∫ β′µ+∆β′

β′µ

P̄n,|m|(sinβ
′) sin2 β′ cosβ′ dβ′

∫ u′τ+∆u′τ

u′τ

pn,|m|

(
u′

ε

)
du′
]
,
∀m ≥ 0
∀m < 0

. (10)

To employ the discretised volume integral in practical calculations, we provided formulas for
the modified associated Legendre function of the second kind qn,|m| and solved the five integrals
over the oblate spheroidal coordinates u′, β′, and λ′.
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Figure 2: Graphical illustration of a spheroidal tesseroid. The red half-lines are asymptotes of the hyperbolas
defining all points with β′µ = const. or β′µ + ∆β′ = const. in the half-plane λ′ν .

3.1. Efficiency gains through recursions

The function qn,|m| can be computed efficiently by recursive formulas. To avoid possible
numerical instabilities, an operational approach that combines forward and backward recursions
was suggested by (Gil and Segura, 1988). Alternatively, one may exploit the hypergeometric
representation of qn,|m| of the form (Hobson, 1965, p. 108):

qn,|m|

(
u

ε

)
=

(
b√

u2 + ε2

)n+1

2F1

(
n+ |m|+ 1

2
,
n− |m|+ 1

2
,

2n+ 3

2
,

ε2

u2 + ε2

)
. (11)

We prefer to use Eq. (11) as it preserves the numerical accuracy of qn,|m| for arbitrary d/o. In this
article, the Gauss hypergeometric function 2F1 was calculated by the routine gsl sf hyperg 2F1,
one of the mathematical functions of the GNU Scientific Library (Galassi et al., 2013).

The integrals over the longitude λ′ are the simplest, as we can find exactly:∫ λ′ν+∆λ′

λ′ν

{
cosmλ′

sin |m|λ′
}

dλ′ =

{
Am cos

(
mν∆λ′

)
+Bm sin

(
mν∆λ′

)
, ∀m ≥ 0

A|m| sin
(
|m| ν∆λ′

)
−B|m| cos

(
|m| ν∆λ′

)
, ∀m < 0

. (12)

Equations (10) and (12) were obtained by assigning λ′ν = ν∆λ′, which is valid for regularly
sampled data. The ancillary coefficients Am and Bm read:

Am =

{
∆λ′ , m = 0
sin(m∆λ′)

m , ∀m ≥ 1
, Bm =

{
0 , m = 0
cos(m∆λ′)−1

m , ∀m ≥ 1
. (13)
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The two integrals of P̄n,|m| in Eq. (10) are more complicated. Their analytical expressions
can be derived for low ds/os. However, this is not feasible when Nmax reaches several hundreds
or thousands. Recursions are therefore used in our practical calculations, see the Supplementary
Material. To calculate these integrals up to ultra-high ds/os without numerical problems, we
used the computational procedure based on the X-number formulation (e.g., Fukushima, 2012,
2014). We abbreviate the two integrals as:∫ β′µ+∆β′

β′µ

P̄n,|m|(sinβ
′) cosβ′ dβ′ = IP

µ
n,|m| , (14)

∫ β′µ+∆β′

β′µ

P̄n,|m|(sinβ
′) sin2 β′ cosβ′ dβ′ = IPS

µ
n,|m| . (15)

Similarly, the two integrals of pn,|m| in Eq. (10) are calculated by recursive formulas. These
integrals are defined by the shorthand notation:∫ u′τ+∆u′τ

u′τ

pn,|m|

(
u′

ε

)
du′ = ip

τ
n,|m| , (16)

∫ u′τ+∆u′τ

u′τ

pn,|m|

(
u′

ε

)
u′

2
du′ = ipu

τ
n,|m| . (17)

To the best of our knowledge, recursions for ip
τ
n,|m| and ipu

τ
n,|m| have not been presented before.

We derive these recursion formulas and investigate their numerical behaviour in the Supplemen-
tary Material.

Equations (12) and (14)-(17) allow the discretised volume integral of Eq. (10) to be written
more compactly as:

C̄en,m =
a

M b (2n+ 1)
qn,|m|

(
b

ε

)

×
∑
µ,ν,τ

ρ̄
(
u′τ , β

′
µ, λ
′
ν

) { Am cos
(
mν∆λ′

)
+Bm sin

(
mν∆λ′

)
A|m| sin

(
|m| ν∆λ′

)
−B|m| cos

(
|m| ν∆λ′

) }

×
[
IP

µ
n,|m| ipu

τ
n,|m| + ε2 IPS

µ
n,|m| ip

τ
n,|m|

]
,
∀m ≥ 0
∀m < 0

. (18)

This expression can be exploited for numerical evaluation. However, summations over the three
indices (µ, ν, τ) may be computationally challenging, particularly for small discretisation steps.

3.2. Efficiency gains through Fourier transform

We can speed up the numerical evaluation further by introducing the Fourier coefficients:

Dµ
n,m

Eµn,m

}
=
∑
ν

[∑
τ

ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ip
τ
n,m

]{
cos
(
mν∆λ′

)
sin
(
mν∆λ′

)
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=

{ <{F[∑τ ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ip
τ
n,m

]}
=
{
F
[∑

τ ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ip
τ
n,m

]} , ∀m ≥ 0 . (19)

The two summations over the indices ν and τ have been transferred into the real part < and
imaginary part = of the Fourier image F of

∑
τ ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ip
τ
n,m. Computational acceleration

comes from the fact that the right-hand-side of Eq. (19) can efficiently be computed by using
1D fast/discrete Fourier transform algorithms (Cooley and Tukey, 1965). In a similar way, we
define the Fourier coefficients corresponding to the integrals ipu

τ
n,|m|, i.e.:

DUµn,m

EUµn,m

}
=
∑
ν

[∑
τ

ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ipu

τ
n,m

]{
cos
(
mν∆λ′

)
sin
(
mν∆λ′

)

=

{ <{F[∑τ ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ipu

τ
n,m

]}
=
{
F
[∑

τ ρ̄
(
u′τ , β

′
µ, λ
′
ν

)
ipu

τ
n,m

]} , ∀m ≥ 0 . (20)

Making use of the Fourier coefficients of Eqs. (19) and (20), the efficient discretised volume
integral for calculating the spheroidal harmonic spectrum reads:

C̄en,m =
a

M b (2n+ 1)
qn,|m|

(
b

ε

) ∑
µ

[
IP

µ
n,|m|

{
Am DUµn,m +Bm EUµn,m

A|m| EU
µ
n,|m| −B|m| DU

µ
n,|m|

}

+ ε2 IPS
µ
n,|m|

{
Am Dµ

n,m +Bm Eµn,m

A|m| E
µ
n,|m| −B|m| D

µ
n,|m|

}]
,
∀m ≥ 0

∀m < 0
. (21)

An equivalent application of the 1D fast/discrete Fourier transform was proposed for forward
modelling of spherical harmonic coefficients (Šprlák et al., 2018). It is computationally less
expensive than that presented here, however, because the corresponding Fourier coefficients
depend only on the spherical harmonic degree n and the longitude index µ.

We emphasise that the key aspect of the discretisation is the explicit separation into the
five integrals, see Eq. (10). Each of these integrals includes mathematical functions of only one
variable, i.e., u′, β′, or λ′, and allows for recursions. In contrast, Wang and Yang (2013) did
not separate the integrals over the individual variables. Namely, they considered the variable
β′ in the integrals over u′, see (Wang and Yang, 2013, Eq. (32)) and suggested using Laurent
series for practical calculation of these integrals. However, in comparison to recursions, accurate
computation of the Laurent series includes an extra loop and many series terms may be required
for ultra-high ds/os. Thus, the formulation by (Wang and Yang, 2013) is computationally more
demanding than our explicit formalism with simple recursions.

4. Numerical experiments

The purpose of this Section is twofold. Firstly, we test the accuracy of our forward modelling
for the synthetic gravitational field of a homogeneous spheroidal shell. Secondly, we demonstrate
suitability of the spheroidal modelling with respect to its simpler spherical counterpart for
gravitational field generated by a highly eccentric planetary body. We also consider the Earth’s
Moon as the degenerate spherical case.
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We have developed a computer program in C. It implements the discretised volume inte-
gral for calculating the spheroidal harmonic coefficients, see Sect. 3, and the recursions from
the Supplementary Material. A manual for the computer program can also be found in the
Supplementary Material. The program requires a DEM that is composed of regularly sampled
spheroidal heights above an oblate reference spheroid u′(β′, λ′)−b0. This is different from Wang
and Yang (2013), who approximated the spheroidal heights u′(β′, λ′)− b0 by the geodetic (ellip-
soidal) heights h in the geodetic (Gauss ellipsoidal) coordinate system (Grafarend and Engels,
1992).

Among other candidates, we only considered the planetary bodies 1 Ceres and the Moon,
which are different in size and shape, see Table 1. In particular, 1 Ceres is significantly flattened
(f ≈ 0.0747) towards the poles, whereas the Moon is nearly spherical (with flattening f ≈
0.0003). This choice is intentional, because it allows for identification of potential challenges or
benefits of the spheroidal forward modelling for different amounts of flattening. Also, detailed
DEMs of these bodies are available (Preusker et al., 2016; Smith et al., 2010), which makes them
suitable for testing high-resolution spheroidal forward modelling.

Planetary body Parameter Value Reference

a0 482000 m (Preusker et al., 2016)

b0 446000 m (Preusker et al., 2016)

f 0.0746887966804979 -

a 490784.18825487848 m -

b 455479 m -

1 Ceres R0 470000 m (Konopliv et al., 2018)

R 487057 m -

RC 437000 m (Konopliv et al., 2018)

ρ 1400 kg m−3 (Konopliv et al., 2018)

GM 6.26273587422 × 1010 m3 s−2 (Konopliv et al., 2018)

MAX[u′(β′, λ′)− b0] 9478.267 m (Preusker et al., 2016)

a0 1737325 m (Ardalan and Karimi, 2014)

b0 1736789 m (Ardalan and Karimi, 2014)

f 0.0003085202826184 -

a 1748182.66997588123 m -

b 1747650 m -

Moon R0 1737400 m (Smith et al., 2010)

R 1748200 m -

RC 1703400 m (Wieczorek et al., 2013)

ρ 2550 kg m−3 (Wieczorek et al., 2013)

GM 4.9028003055554 × 1012 m3 s−2 (Konopliv et al., 2013)

MAX[u′(β′, λ′)− b0] 10855.977 m (Smith et al., 2010)

Table 1: Summary of the parameters used in the numerical experiments.
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Due to the lack of DDMs, we simply assumed a constant bulk density ρ = ρ(u′,Ω′e) =
const. for all spheroidal tesseroids modelled by the DEM. However, the mathematical framework
presented herein does allow for implementation of a 3D DDM. Values were chosen for 1 Ceres
and the Moon based on the available estimates of the mean crustal densities (Wieczorek et
al., 2013; Konopliv et al., 2018), see Table 1. We also note that the spheroidal coordinate u′

was discretised by only one step, the size of which equals the spheroidal height of the volume
integration element, i.e., ∆u′τ = ∆u′(β′, λ′) = u′(β′, λ′) − b0. We emphasise that our final sets
of computed spheroidal harmonic coefficients always refer to each respective oblate Brillouin
spheroid, see Table 1.

4.1. Gravitational field of a homogeneous spheroidal shell

We begin our numerical experiments with the gravitational field of a homogeneous spheroidal
shell for which there is a closed-form analytical solution. The true spheroidal harmonic coeffi-
cients of the homogeneous spheroidal shell (assigned also with the superscript t) are zero except
for (e.g., Wang, 1988; Pohánka, 2011):

C̄e,t0,0 =
4π ρ a

3 ε M

[
u′32 − u′31 + ε2(u′2 − u′1)

]
arctan

ε

b
, (22a)

C̄e,t2,0 =
2π ρ ε a

3
√

5 M

[
u′2

(
1 +

u′22
ε2

)
− u′1

(
1 +

u′21
ε2

)][(
1 +

3b2

ε2

)
arctan

ε

b
− 3b

ε

]
. (22b)

The analytical expressions in Eqs. (22a) and (22b) show that C̄e,t0,0 and C̄e,t2,0 are given by the
parameters a0, b0, a, b, ρ, M , u′1, and u′2. Numerical values of the first five parameters are
listed in Table 1. The semi-major and semi-minor axes a0 and b0 define the best-fitting oblate
spheroids (Ardalan and Karimi, 2014; Preusker et al., 2016).

The semi-minor axes b of the oblate Brillouin spheroids were obtained by finding the maxima
of the spheroidal coordinate u′(β′, λ′) from the DEMs. The maxima were rounded up to the
nearest metre for 1 Ceres and to the nearest 50 metres for the Moon. This guarantees that all
gravitating masses are enclosed within their oblate Brillouin spheroids. The semi-major axes a
were then calculated from the semi-minor axes b and the linear eccentricities ε.

Table 1 also provides numerical values of the planetocentric products GM . These originate
from the global gravitational field models (Konopliv et al., 2013, 2018). The masses M of the
two planetary bodies, as required by Eqs. (22a) and (22b), were obtained by dividing GM by
the universal gravitational constant G = 6.6742× 10−11 kg−1 m3 s−2 (Mohr and Taylor, 2005).

The lower spheroidal surfaces of the homogeneous spheroidal shells are defined by the semi-
minor axes u′1. We selected these surfaces such that u′1 = b0, i.e., they coincide with the
oblate reference spheroids. The upper spheroidal surfaces are given by the semi-minor axes
u′2 = b0 + MAX[u′(β′, λ′) − b0]. These choices of the lower and the upper spheroidal surfaces
always guaranteed that u′1 ≤ u′2 < b so that the series is uniformly convergent. This is in
agreement with the theoretical requirements in Sects. 2 and 3.

We computed spheroidal harmonic coefficients for the spheroidal shells by our forward mod-
elling software to verify its accuracy. To be consistent with the spheroidal gravitational spec-
trum from the solutions of the analytical expressions in Eqs. (22a) and (22b), all parameters
were set to identical values. The DEM was represented by a constant grid of spheroidal heights
MAX[u′(β′, λ′)− b0], see Table 1. Synthetic grids of the constant spheroidal heights were discre-
tised with the steps ∆β′ = ∆λ′ = 1/14◦. This corresponds to the maximum d/o Nmax = 2519
in the spectral domain.
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The finest-resolution global gravitational field models of 1 Ceres and the Moon were deter-
mined, respectively, up to the maximum ds/os Nmax = 18 (Konopliv et al., 2018) and 1500
(Konopliv et al., 2014). The spectral resolution of the forward-modelled spheroidal harmonic
spectra considered in this study is much higher. It was chosen deliberately to examine the per-
formance of the spheroidal forward modelling for ultra-high harmonic expansions. This was also
allowed by the spatial resolutions of the available DEMs.

The highest spectral resolution has to be set reasonably, because the spheroidal approach
may be computationally challenging for as high as Nmax = 2519. Our high-resolution modelling
was performed at the High Performance Computing Facilities of the University of Newcastle.
We divided the corresponding synthetic grids of the constant spheroidal heights into 90 bands
in the direction of the spheroidal latitude β′. Subsequently, computations were carried out
and completed in approximately less than two days by exploiting 90 processors simultaneously,
i.e., one processor for each latitudinal band. Our further numerical experiments showed that
the spheroidal forward modelling up to Nmax = 359 took only few hours by using an ordinary
desktop computer (equipped with 32 GB of RAM, eight processors of frequency 3.4 GHz, while
exploiting only one processor at a runtime, and with a Linux 64-bit operating system).

To investigate the numerical performance of the spheroidal approach, we firstly determined
the relative accuracy of the coefficients C̄e0,0 and C̄e2,0 by the formula:

δC̄ei,0 =
|C̄e,ti,0 − C̄ei,0|

C̄e,ti,0
, i = 1, 2 . (23)

The superscript t indicates the ”true” synthetic coefficients computed by Eqs. (22a) and (22b),
while the coefficients without the superscript t were calculated by our forward modelling. The
relative accuracy is δC̄e0,0 ≈ 7.4 × 10−14 and δC̄e2,0 ≈ 8.0 × 10−14 for 1 Ceres, approaching
numerical error of double precision computation. Almost identical relative accuracy being
δC̄e0,0 ≈ 6.3× 10−14 and δC̄e2,0 ≈ 6.1× 10−14 was found for the Moon.

We also examined the square root of degree variances, which can be defined for an oblate
spheroidal surface given by the coordinate u and confocal with the oblate reference spheroid as
follows:

σen(u) =

√
u2 + ε2

a

√√√√ +n∑
m=−n

[
Qn,|m|(i

u
ε )

Qn,|m|(i
b
ε)

C̄en,m

]2

. (24)

The rationale for using the degree variances of a spheroidal harmonic spectrum is explained in
(Lowes and Winch, 2012).

The power spectrum σen(b) of Eq. (24) should theoretically be zero for the homogeneous
spheroidal shells (∀n 6= 0, 2), see Fig. 3. The accuracy reaches the lowest values, i.e., highest
square root of degree variances, of ∼ 10−18 for low d/o. Above d/o ∼ 600, the square roots of
degree variances are consistently below ∼ 10−20. This degree-dependence may be explained by
the decreasing magnitudes of the associated Legendre functions of the first kind. We postulate
that the slightly discontinuous behaviour of the two curves in Fig. 3 originates from the X-
number algorithm by (Fukushima, 2012, 2014). However, these are numerically negligible and
do not need any further consideration. Similar numerical performance has been reported for
the spherical forward modelling (Šprlák et al., 2018), but their ”true” analytical solution was
instead inferred by a homogeneous spherical shell.

This numerical experiment with the homogeneous spheroidal shells infers successful imple-
mentation of our algorithm for the spheroidal forward modelling. We simultaneously showed
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Figure 3: Square root of degree variances from the spheroidal harmonic spectra as calculated by the spheroidal
forward modelling for 1 Ceres (red) and the Moon (green). The spheroidal harmonic spectra were computed at
the oblate Brillouin spheroids, i.e., u = b, and inferred by the homogeneous spheroidal shells for each body.

that the spheroidal approach is computationally feasible and accurate even up to d/o 2519 for
the nearly spherical Moon and for the significantly flattened 1 Ceres.

4.2. Gravitational field from a homogeneous crust

We now proceed to compute realistic gravitational fields inferred by the assumed-homogeneous
crusts of 1 Ceres and the Moon. These could be applied for geophysical investigations or space-
craft navigation purposes (e.g., Moritz, 1990; Miller, 2019). However, our primary aim is to
demonstrate the benefit of the spheroidal forward modelling in comparison to its simpler spher-
ical analogue by (Šprlák et al., 2018) for application to highly elliptical bodies.

The numerical experiments were performed similarly to the synthetic one (Sect. 4.1). Thus,
the majority of parameters were preserved. To calculate the global gravitational fields inferred
by the topographic masses of 1 Ceres and of the Moon, only two aspects were changed.

First, both the spherical and the spheroidal forward modelling were performed using DEMs
only, as DDMs are not yet available. The available DEMs of 1 Ceres and of the Moon are
discretised with steps ∆β′ = ∆λ′ = 1/60◦ and 1/64◦, respectively. The original DEMs were
smoothed to the spatial resolution of 1/14◦, which corresponds to Nmax = 2519. The smoothing
was carried out by calculating the blockmean values of the spherical and of the spheroidal heights
using blockmean from the Generic Mapping Tools (Wessel et al., 2013). The spherical heights
are defined as r′(ϕ′, λ′) − R0, where R0 is the radius of the reference sphere. Numerical values
of R0 for 1 Ceres and for the Moon (Smith et al., 2010; Konopliv et al., 2018) are listed in Table
1.

Second, topographic masses were bounded at the base of the spherical radius RC . Values of
RC are different for the two planetary bodies, see Table 1. These originate from the estimates
of the average crustal thickness (Wieczorek et al., 2013; Konopliv et al., 2018), which can be
calculated as R0 − RC . Thus, theoretically, identical topographic masses were considered for
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both forward modelling techniques. Practically, small differences may exist and originate from
the discretisation.

Application of the spherical forward modelling results in spherical harmonic spectra referred
to the Brillouin sphere. We determined the radii of the Brillouin spheres R by: 1) finding the
maxima of the spherical radius r′(ϕ′, λ′), and 2) rounding up to the nearest one metre for 1
Ceres and up to the nearest 50 meters for the Moon, see Table 1. This is in correspondence to
determining the semi-minor axes b of the oblate Brillouin spheroids, see above.

The parameters a, b, and R in Table 1 show the geometric relationship between the Brillouin
surfaces. The deviations between the oblate Brillouin spheroid of 1 Ceres and its spherical
equivalent reach ∼ +4.7 km at the equator and ∼ −31.6 km at the poles. The positive and
negative signs indicate whether the oblate Brillouin spheroid is located above or below the
Brillouin sphere. For the Moon, the Brillouin sphere completely envelopes the oblate Brillouin
spheroid. These two lunar Brillouin surfaces differ by ∼ −18 m at the equator and ∼ −550 m
at the poles.

The oblate Brillouin spheroids of 1 Ceres and of the Moon have smaller volumes than the
corresponding Brillouin spheres. This indicates a larger convergence space above the topography
and, eventually, preference of the spheroidal modelling, especially for highly elliptical bodies.
Below, we quantified performance of the spherical and the spheroidal forward modelling by
examining convergence/divergence properties of their power spectra. We selected the power
spectra as metric because they are a useful tool to represent the energy in gravitational field
(e.g., Watts and Moore, 2017).

The power spectrum of the spherical harmonic coefficients C̄sn,m implied by the topographic
masses is:

σsn(r) =

(
R

r

)n√√√√ +n∑
m=−n

(
C̄sn,m

)2
. (25)

We calculated σsn by Eq. (25) at three distinct spherical surfaces: 1) slightly above the Brillouin
sphere (r = R + 1 m), 2) at the reference sphere (r = R0), and 3) at the sphere given by
the minimum spherical radius of the topography (r = MIN[r′(ϕ′, λ′)]), where MIN[r′(ϕ′, λ′)] =
442049 m for 1 Ceres and MIN[r′(ϕ′, λ′)] = 1728277 m for the Moon.

Equation (24) specifies the power spectrum of the spheroidal harmonic coefficients C̄en,m.
Correspondingly to the spherical case, we evaluated spheroidal power spectra at three different
spheroidal surfaces, i.e.: 1) slightly above the oblate Brillouin spheroid (u = b + 1 m), 2) at
the oblate reference spheroid (u = b), and 3) at the oblate spheroid given by the minimum
spheroidal coordinate u determined from the DEMs (u = MIN[u′(β′, λ′)]) and confocal with the
oblate reference spheroid. We found the minimum values MIN[u′(β′, λ′)] = 438080 m for 1 Ceres
and MIN[u′(β′, λ′)] = 1728217 m for the Moon.

Rigorously, harmonic series uniformly converge only above the Brillouin surfaces. Despite
of this fact, harmonic expansions have been widely used for synthesising the functionals of
the gravitational field below the respective fundamental surfaces, e.g., on the reference sphere,
on the oblate reference spheroid, or on the topographic surface. Here, convergence cannot be
guaranteed as extensively discussed for the spherical harmonic expansion of the gravitational
field at the Earth’s surface (e.g., Sjöberg, 1980; Colombo, 1983; Jekeli, 1983; Moritz, 1989,
Sects. 6 and 7). Nevertheless, we intentionally selected the surfaces below the Brillouin ones,
and within the range of the topographic heights, to identify possible divergence behaviour for
the gravitational fields of 1 Ceres and of the Moon.

We note that the conventional spherical harmonic series have been modified such that they
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converge inside the Brillouin sphere (e.g., Takahashi and Scheeres, 2014). This has been achieved
by expressing the gravitational potential as a function of spherical Bessel functions and spherical
harmonic coefficients. However, any discussion or exploitation of these harmonic series is out of
the scope of this study.

The square root of degree variances of the topographic gravitational field for the Moon
are depicted in Fig. 4a. The spherical and spheroidal power spectra are indistinguishable when
calculated at r = R+1 m and at u = b+1 m (black curves), and monotonically decrease. On the
other hand, the power spectra calculated at the respective reference surfaces (red curves) increase
above harmonic d/o ∼ 800. This is in agreement with (Hirt and Kuhn, 2017; Šprlák et al., 2018),
who also reported the diverging behaviour of the spherical harmonic spectra inferred by the lunar
topography at the reference sphere. Similarly, the power spectra diverge at r = MIN[r′(ϕ′, λ′)]
and at u = MIN[u′(β′, λ′)] (green curves). However, the increase of the square root of the degree
variances already starts at harmonic d/o ∼ 300. We note that the rate of convergence/divergence
is almost identical for both the spherical and the spheroidal representations in case of the lunar
gravitational field.

Figure 4b illustrates the square root of degree variances for 1 Ceres. The power spectra
again monotonically decrease above the Brillouin surfaces (black curves) and diverge for the
other surfaces (red and green curves). In contrast to the Moon, the spheroidal square root of
degree variances start to increase at higher ds/os as compared to their spherical counterparts. For
example, the spherical power spectrum at the reference sphere r = R0 diverges from harmonic
d/o ∼ 100 (dotted red curve), while the same phenomenon can be seen for the spheroidal power
spectrum at the oblate reference spheroid u = b0 above harmonic d/o ∼ 270 (solid red curve).
Thus, the spheroidal spectra show an improved convergence rate with respect to its spherical
equivalents. This proves an enhanced applicability of the spheroidal forward modelling approach
for the oblate planetary body of 1 Ceres.

Alternatively to the examinations in the spectral domain, we also compared performance
of the spherical and the spheroidal harmonic expansions in the spatial domain. We restricted
to the gravitational fields implied by the highly-elliptical topographic masses of 1 Ceres. We
synthesised the magnitude of the gravitational vector

∥∥g∥∥, which is invariant with respect to its
mathematical representation. The spherical harmonic synthesis was carried out by the formula:∥∥gs(r,Ωs)

∥∥ =
∥∥∇V (r,Ωs)

∥∥
=

{[
∂V (r,Ωs)

∂r

]2

+
1

r2

[
∂V (r,Ωs)

∂ϕ

]2

+
1

r2 cos2 ϕ

[
∂V (r,Ωs)

∂λ

]2
}1/2

. (26)

The gravitational potential in Eq. (26) was parametrised by the spherical harmonic series
(Heiskanen and Moritz, 1967, Eq. 2-39):

V (r,Ωs) =
GM

R

∞∑
n=0

+n∑
m=−n

(
R

r

)n+1

C̄sn,m Ȳn,m(Ωs) , (27)

where the coordinate triplet r and Ωs = (ϕ, λ) represents the planetocentric spherical coordinates
of the computational point, i.e., the spherical radius r ∈ [0,∞), the spherical latitude ϕ ∈
[−90◦,+90◦], and the spherical longitude λ ∈ [0◦,+360◦). As we assume that the spherical and
the spheroidal coordinate triplets refer to the same planetocentric Cartesian coordinate system,
longitudes in both curvilinear systems are identical. On the other hand, the spheroidal harmonic
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Figure 4: Square root of degree variances from the harmonic spectra for: a) the Moon and b) 1 Ceres. The
spherical power spectra (dotted curves) σsn(r) were calculated for r = R + 1 m (black), r = R0 (red), and
r = MIN[r′(ϕ′, λ′)] (green). The spheroidal power spectra (solid curves) σen(u) were computed for u = b + 1 m
(black), u = b0 (red), and u = MIN[u′(β′, λ′)] (green).

synthesis was performed by the expression:

∥∥ge(u,Ωe)
∥∥ =

∥∥∇V (u,Ωe)
∥∥ =

{
u2 + ε2

u2 + ε2 sin2 β

[
∂V (u,Ωe)

∂u

]2

+
1

u2 + ε2 sin2 β

[
∂V (u,Ωe)

∂β

]2
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+
1

(u2 + ε2) cos2 β

[
∂V (u,Ωe)

∂λ

]2
}1/2

, (28)

where the gravitational potential is defined by the series of Eq. (5).
We calculated the magnitudes of the gravitational vector at the same computational point

given by the coordinates r = u = b+ 1 m, ϕ = β = 90◦, and λ = 0◦, i.e., 1 m above the oblate
Brillouin spheroid at the North pole. Thus, we considered a point with the largest deviation
between the corresponding Brillouin surfaces. Here, uniform convergence is still guaranteed
for the spheroidal harmonic expansion, while convergence of the spherical harmonic series is
questionable.

Both harmonic syntheses were evaluated from d/o 0 up to the variable maximum d/o
Nmax ∈ [0, 2519]. In such a way, the convergence/divergence can be tested for the whole spectral
range. When synthesising the gravitational vector components at the poles or their proximity,
singularities may occur due to the terms 1/ cosϕ and 1/ cosβ and due to the derivatives with
respect to the variables ϕ and β, see Eqs. (26) and (28). To avoid this problem, we implemented
the non-singular expressions for the components of the gravitational vector (e.g., Eshagh, 2008).
In addition, we used the X-number algorithm (Fukushima, 2012) for computing the associated
Legendre functions of the first kind to avoid any numerical problems at ultra-high ds/os.

Common logarithm of
∥∥g∥∥ as a function of the harmonic d/o is depicted in Fig. 5. Values

of this quantity are close for both the spherical (red curve) and the spheroidal (black curve)
harmonic representations below Nmax ≈ 100. Beyond d/o 100, however, the spherical expansion
completely fails and provides unrealistically high values, e.g., by more than 60 orders of magni-
tude at d/o 2519. In contrast, the value of

∥∥g∥∥ by the spheroidal harmonic series is stable for
all ds/os and does not show any signs of divergence.
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Figure 5: Common logarithm of the magnitude of the gravitational vector as synthesised by the spherical harmonic
expansion of Eq. (26) (red) and by the spheroidal harmonic expansion of Eq. (28) (black).

Overall, our numerical experiments demonstrate an extended convergence space of the spheroidal
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harmonic expansion. This encourages for exploiting the spheroidal harmonic parametrisation
and the spheroidal forward modelling in case of oblate planetary bodies like 1 Ceres. This con-
clusion is in conformity with the recent studies by (Hu and Jekeli, 2015; Sebera et al., 2016;
Reimond and Baur, 2016), whose results also favour spheroidal (ellipsoidal) harmonic parametri-
sations to the simple spherical one for smaller planetary bodies, such as the Martian moons,
asteroids Bennu and Castallia, or the comet 67P/Churyumov-Gerasimenko.

Summary and Concluding Remarks

A new method for forward modelling of global topographic gravitational fields is presented.
Our so-called spheroidal forward modelling approach (Eq. (9)) is devoid of any postulates about
the volumetric density and geometry of the gravitating body. We discretised the volume inte-
gral in Eq. (9) by finite spheroidal tesseroids that resulted in simple and numerically efficient
recursions for the integrals of the associated Legendre functions of the first kind; see the Sup-
plementary Material. We also presented a numerical algorithm in Eq. (21) that exploits the
1D discrete Fourier transform for more efficient computation, but the highest resolution models
may require the use of a supercomputer.

Our algorithm was implemented in computer program and tested numerically. We considered
two planetary bodies with contrasting flattening, namely the Moon (f ≈ 0.0003, i.e., nearly
spherical) and 1 Ceres (f ≈ 0.0747, i.e., highly elliptical). We calculated the spheroidal harmonic
spectra up to high degree and order 2519 inferred by the homogeneous spheroidal shells and
compared them with analytical spectra. This synthetic test confirmed high numerical accuracy,
stability, and applicability of the numerical algorithm.

We also employed the spheroidal forward modelling and its spherical counterpart to calculate
realistic global gravitational field models of the Moon and 1 Ceres. These realistic models were
inferred by the homogeneous crusts of 1 Ceres and of the Moon and calculated up to degree and
order 2519. The spherical and the spheroidal models were compared in the spectral and in the
spatial domains. We showed that performance of both parametrisations was almost identical for
the lunar gravitational field. On the other hand, we numerically proved an improved convergence
rate when using the spheroidal parametrisation for the oblate planetary body of 1 Ceres. Thus,
the spheroidal forward modelling and the corresponding harmonic representation should be
preferred for oblate planetary bodies.

The new spheroidal forward modelling can be exploited by others for geophysical and plan-
etary investigations (e.g., for calculating Bouguer anomalies, solving the inverse gravimetric
problem, estimating crustal thickness and Moho depth or testing isostatic hypotheses), geodetic
problems (e.g., for solving boundary value problems, geoid determination or upward/downward
continuation of various gravitational field observables) or spacecraft navigation near highly el-
liptical planetary bodies. Parts of our spheroidal approach may even find application in other
disciplines that deal with the analysis of elliptical geometries, such as in engineering or medicine
(e.g., Dassios and Kariotou, 2003; Konstantinides et al., 2009; Kraiger and Schnizer, 2013).

The high-resolution gravitational field models of 1 Ceres and the Moon, and the computer
program will be publicly available to potential users.
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