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 

Abstract— As walking assessment is commonly done 

through visual inspection, it is beneficial to make joint 

angle information available to the clinicians for better 

assessment. The main challenge is that the video camera 

and inertial sensor are usually two separate systems, and 

the recordings are hard to be initialized at the same time 

manually. This creates a problem that the inertial sensor 

data is not temporally synchronized with the video camera. 

This paper proposes a method to synchronize the video and 

sensor data by detecting and matching the maximum 

backward swings of the leg. The proposed method is 

validated by blinking LED and transmitting LED flag to 

the computer at the same time. The synchronization error 

of the proposed method is low at about 0±2 frames 

compared to the validation method.  

 

Index Terms— Angle, inertial sensor, synchronization, 

video.  

I. INTRODUCTION 

N MEDICAL FIELD, walking assessment is performed by 

clinicians to provide optimal care and treatments for patients 

[1]. The fundamental part of walking assessment is the 

estimation of joint position and orientation [2]. At current stage, 

walking assessment is commonly done through visual 

inspection which strongly depends on the experience of 

clinicians [3]. It is beneficial for clinicians to have access to 

joint angle information for better walking inspection. 

 Optical motion capture system such as Vicon [4] and 

OptiTrack [5] can be used to estimate the joint position and 

orientation accurately. However, such system is expensive and 

non-portable. An Inertial Measurement Unit (IMU), on the 

other hand, is an affordable and portable electronic device that 

consists of accelerometers and gyroscopes that can be used to 

estimate joint orientations [6].  

However, IMU cannot capture video of the joint movement 

for visual inspection. A video camera can be used together with 

IMU such that the video and IMU data are recorded 

simultaneously. Some researchers used IMUs and video 

cameras for motion tracking [7], localization [8], and video 
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stabilization [9]. To reduce cost, a smartphone camera is used 

in this research. 

The use of synchronization hardware module is common, so 

that the video and IMU data can be recorded at the same time. 

However, when the video camera and IMU are two separate 

systems and the system clocks are not accessible, the manual 

recordings of video and IMU data are hard to be initialized at 

the same time due to human and software delay [10]. Therefore, 

there is a need to perform temporal synchronization for the 

video and IMU data through some signal processing.  

We proposed to temporally synchronize video and IMU data 

of a person walking on a flat surface by detecting and matching 

the maximum backward swing of the leg from video and IMU. 

The proposed method is validated by blinking LED and sending 

LED flag to computer (PC) at the same time. 

The remaining of this paper is structured as follows. Related 

works are stated in Section II. The methods to collect data are 

stated in Section III. Section IV describes our proposed method 

to synchronize video and IMU data of a person walking on a 

flat surface. Section V is the results and discussion. Conclusion 

and future direction are stated in Section VI. 

II. RELATED WORKS 

In this paper, we proposed to match the maximum backward 

swing of leg detected from video and inertial sensor for 

synchronization. There are several possible methods to detect 

the maximum backward swing of leg from the video. Vicon 

motion capture system [4] is the gold standard in estimating the 

joint position and orientation, but this system is expensive and 

requires multiple cameras. Meribout et al. [11] used a parallel 

hardware architecture to support a parallel Hough transform 

algorithm to recognize the shape of an object. The method can 

be extended to detect the shape of any kind of objects including 

legs, therefore the current angle of legs can be estimated. Other 

edge detection method such as that proposed by Hu et al. [12] 

can also be used to detect the leg. Zhang et al. [13] proposed a 

joint gait–pose manifold-based visual gait generative model to 

estimate 3D gait kinematics from a single video camera. 

Although the proposed method is accurate enough for some 

applications, the estimated joint orientations still deviate 

greatly from the ground-truth at some video frames. On the 

other hand, existing inertial sensor-based orientation estimation 

algorithms have achieved higher accuracies [14] [15].  

There are several advantages of synchronizing video and 

inertial sensor data. Chen et al. [16] recognized 27 different 

human motions such as walking and arm-swinging using a 
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Microsoft Kinect camera and an IMU. The accuracy of activity 

recognition when camera and IMU were fused was about 10% 

higher than that of using camera or IMU alone. Farnoosh et al. 

[17] fused inertial data and video recorded from a smartphone 

for indoor navigation. The inertial sensor was used to estimate 

the smartphone orientation, and the navigation accuracy was 

improved compared to navigation without orientation 

estimation. Jatesiktat et al. [18] fused a Kinect’s depth camera 

with two IMUs worn on the wrists to improve the accuracy of 

the upper-body joint tracking. Validated against the gold 

standard Vicon system, the authors have successfully improved 

the Kinect’s skeleton tracking by 20%. 

Bae et al. [19] designed a synchronization hardware module 

which connects gyroscope and camera to synchronize them. In 

cases where the video camera and inertial sensors are two 

separate systems without a synchronization hardware module, 

the recordings are hard to be initialized at the same time 

manually. Signal processing needs to be done to synchronize 

the video camera and inertial sensor data. Cippitelli et al. [20] 

synchronized depth cameras connected to a computer and a 

wireless IMU connected via Bluetooth to the same computer. 

The transmission time delay between the cameras and the 

computer was estimated by blinking LEDs controlled by an 

Arduino board connected to the same computer. Plotz et al. 

[21] synchronized camera and accelerometer data using 

cross-correlation based time-delay estimation. The horizontal 

and vertical hand gestures have low average error of 0.5 and 2 

frames, respectively. However, circular and wave-like gestures 

have error more than 10 and 20 frames, respectively. 

Synchronization methods for multiple videos are also 

reviewed. Lin et al. [22] synchronized two videos captured at 

different angles. The authors first detected the upper body of 

the subjects, then compared the brightness of the upper body for 

correlation-matching between the videos. The average 

synchronization error was within 1 frame. Duong et al. [23] 

synchronized multiple versions of the same movie by matching 

the audio tracks.  

 Ryu et al. [24] used a position sensitive detector (PSD) 

camera module to identify the positions of markers attached to 

a moving object. Each marker consists of a radio frequency 

transmitter and an infrared LED. The LED blinked and at the 

same time transmitted a command that consists of the marker’s 

identification number to the PSD to distinguish the identity of 

each marker.  

Ofli et al. [25] introduced Berkeley Multimodal Human 

Action Database which consists of temporally synchronized 

video, audio and accelerometer data of people performing 

activities such as jumping and sitting. The authors mentioned 

that the video, audio, and accelerometer data were recorded 

simultaneously. 

Overall, synchronizing video and inertial sensor data require 

signal processing as the recordings of video and inertial sensor 

data are hard to be initialized at the same time due to human and 

software delay. Besides, the video and inertial sensor may be 

sampled at different rate.  

 

III. DATA COLLECTION 

A. Inertial Measurement Unit (IMU) 

 
Fig. 1. IMU and LED. 

Two inertial measurement units (IMUs), as shown in Fig. 1, 

were constructed. Each IMU consists of a microcontroller 

Arduino Pro Mini 3.3V and a sensor MPU6050. MPU6050 has 

a tri-axis accelerometer with ±2g range and a tri-axis gyroscope 

with ±250º/s range. Both sensors are time-synchronized and 

sampled at 100Hz with 16-bit resolution [26].  

 
Fig. 2. Blinking of LED for validation of proposed method. 

 A red LED is also connected to the IMU through wire. The 

LED blinks for 10ms when there is a positive zero crossing of 

the shank’s angular velocity and the either one of the previous 

10 shank’s angular velocities is lower than -100°/s, as shown in 

Fig. 2. At the same time of the LED blinks, an LED flag = 1 is 

encoded in the IMU wireless data transmission to the PC. 

 Sensor readings from the foot’s IMU are transmitted to the 

shank’s IMU through wires, and then the shank’s IMU 

transmits all raw sensor data and the LED flag to PC through 

wireless transceivers nRF24L01+.  

 The IMUs and the LED are powered by a total of 2 AAA 

batteries.  

 

B. Video camera 

 The video camera used in this research was the front 

camera of an iPhone 6 Plus, which records 720p HD video with 

a resolution of 1280 × 720 pixels at a frame rate of 30fps [27]. 

 

C. Experimental setup 

Transceiver nRF24L01+ Sensor MPU6050

Microcontroller Arduino Pro Mini 3.3VRed LED
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Fig. 3. IMU placement.  

 Fig. 3 show that the IMUs were strapped in front of the 

right shank using Velcro straps, and on top of the right foot 

using double-sided tape without any skin penetration. The red 

LED was placed at the bottom left of the video. 

 10 healthy adults (male: 7; female: 3; age: 21-49; height: 

151-182cm) participated in the data collection. Each person 

was asked to walk self-pace on a flat surface for about 3 meters. 

In the first 5 trials, the participants were asked to start walking 

with their right legs. In the next 5 trials, the participants were 

asked to start walking with their left legs. A total of 100 

walking trials was collected.  

 Ethical approval for this research is granted by Curtin 

University ethical review committee with approval number 

HRE2017-0834. 

IV. DATA PROCESSING 

A. IMU data processing 

 
Fig. 4. IMU data processing. 

 Fig. 4 shows the flowchart to detect maximum backward 

swing of leg using IMU. 
 

  
(a) (b) 

Fig. 5. Estimated angle. (a) Shank angle. (b) Foot angle. 

 Fig. 5 shows the shank and foot angle estimated using IMU 

data. The angle estimation algorithm used in this research is 

based on our previous research [28]. This angle estimation 

algorithm has been validated against gold standard Vicon 

optical motion capture system. 

 As the IMU is sampled at 100Hz while the video is captured 

at 30Hz, we need to resample the estimated angle to 30Hz so 

that the IMU and video can be time-synchronized. The total 

number of resampled angles can be calculated according to (1). 

The angle can be resampled according to (2). 

𝑁𝐼𝑀𝑈 = 𝑁𝐼𝑀𝑈 ×
𝑓𝑣

𝑓𝐼𝑀𝑈

= 𝑁𝐼𝑀𝑈 ×
30

100
 

(1) 

 

𝜃̅𝑗 = 𝜃⌈𝑛⌉(𝑛 − ⌈𝑛⌉ + 1) − 𝜃⌊𝑛⌋(𝑛 − ⌈𝑛⌉) (2) 

                    for {
𝑛 =  1, 1 +

𝑁𝐼𝑀𝑈−1

𝑁𝐼𝑀𝑈−1
, 1 + 2

𝑁𝐼𝑀𝑈−1

𝑁𝐼𝑀𝑈−1
, …  , 𝑁𝐼𝑀𝑈

𝑗 = 1,2,3,… , 𝑁𝐼𝑀𝑈

 

Where 𝑁𝐼𝑀𝑈 denotes the total number of resampled angles, and 

𝑁𝐼𝑀𝑈 denotes the total number of samples collected by IMU. 

𝑓𝐼𝑀𝑈  and 𝑓𝑣  denote the sampling frequency of the IMU and 

video camera, respectively. 𝜃̅  denotes the resampled angle. 

⌈ ⌉  and ⌊ ⌋  are the ceiling and flooring functions, 

respectively. 

 

 
(a) 

 
(b) 

Fig. 6. First maximum backward swing detection. (a) Shank 

angle. (b) Foot angle. 

 The first maximum backward swing of the shank and foot 

can be detected by finding the first minimum of the shank and 

foot angles, respectively. Fig. 6 illustrates the first maximum 

backward swing can be detected by finding the minimum angle 

between x1 and x2, where x1 and x2 are the first and second angle 

that cross the threshold 𝜆1 = min(𝜃̅)/2. 

 

B. Video Processing 

 
Fig. 7. Video processing flowchart. 

 Fig. 7 shows the flowchart to detect the maximum backward 

swing of leg from video.  
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(a) 

  
(b) (c) 

Fig. 8. Video paused at a frame. (a) RGB video 𝑣. (b) 

Gray-scaled video 𝑔. (c) Detected motion 𝑀 in black and 

white. 

 The video captured from the smartphone is in RGB, as 

shown in Fig. 8(a). In order to detect the human motion, the 

video is first gray-scaled, as shown in Fig. 8(b), using 

MATLAB function ‘rgb2gray’ (3).  

𝑔𝑓 = rgb2gray(𝑣𝑓) (3) 

Where 𝑔  denotes the gray-scaled video, 𝑣  denotes the RGB 

video, and f denotes the f-th frame of the video. 

 The human motion can be detected by calculating the 

difference between the current and previous frames, and then 

convert it to black and white using MATLAB function ‘im2bw’ 

(4). Fig. 8(c) shows the detected motion. 

𝑀𝑓 = im2bw ((𝑔𝑓 − 𝑔𝑓−1)
 
, 𝜆 ) (4) 

Where M denotes the detected motion in black and white, and 

𝜆  denotes the threshold. In this research, 𝜆  is set to be 0.95. 

 

  
(a) (b) 

Fig. 9. Upper U and lower L part separation. (a) RGB. (b) 

Detected motion 𝑀. 

 As shown in Fig. 9, the captured video is split into upper- 

and lower-parts equally (5) (6). This is to detect the maximum 

backward swing of the leg. We ignored the first 100 columns of 

the video because the first 100 columns are reserved for 

validation of proposed method using blinking LED, as stated in 

Section III C. In MATLAB, the first pixel was at the upper 

leftmost. 

𝑈 = 𝑣
(1 to 

𝑅
 
 ,100 to 𝐶)

 (5) 

𝐿 = 𝑣
(
𝑅
 
 to 𝑅 ,100 to 𝐶)

 (6) 

Where U denotes the upper part of the video v, and L denotes 

the lower part of the video v. R = 720 and C = 1280 denotes the 

number of rows and columns of the video at any one frame, 

respectively.  

 

 
Fig. 10. Approximate extension E of leg at frame f. 

 Fig. 10 shows the proposed method to approximate the 

extension of leg in horizontal axis. The number of white pixels 

at each column of the detected motion M is counted by 

summing up M column by column (7) (8), as shown in Fig. 10.  

𝑊𝑈,𝑐 = ∑𝑀𝑈,𝑐 (7) 

𝑊𝐿,𝑐 = ∑𝑀𝐿,𝑐 
(8) 

Where 𝑀𝑈 and 𝑀𝐿 are the detected motion M at upper U and 

lower L parts, respectively. 𝑊𝑈,𝑐  and 𝑊𝐿,𝑐  denote the total 

number of white pixels at each column c of 𝑀𝑈  and 𝑀𝐿 , 

respectively. 

 The leftmost column of the detected human can be 

approximated by finding the first value of W that is greater than 

a threshold 𝜆3 (9) (10). As shown in Fig. 10, 𝜆3 can be safely 

set as 20 in this research, so that the background reflections can 

be ignored. 

for (𝑐 = 100 to 1279) do 

      if 𝑊𝑈,𝑐 > 𝜆3 and 𝑊𝑈,𝑐+1 > 𝜆3 then 

   𝑐𝑈 = 𝑐 

   break 

 end if 

end for 

(9) 

for (𝑐 = 100 to 1279) do 

  if 𝑊𝐿,𝑐 > 𝜆3 and 𝑊𝐿,𝑐+1 > 𝜆3 then 

   𝑐𝐿 = 𝑐 

   break 

  end if 

end for 

(10) 

Where 𝑐𝑈  and 𝑐𝐿  denote the leftmost column of detected 

human at upper U and lower L part, respectively. 

 

Upper-part U

Lower-part L

Upper-part U

Lower-part L

N
u
m

b
er

 o
f 

w
h
it

e 
p
ix

el
s,

 

W

Column of detected motion M

Upper part

Lower part

λ3=10

cL cU

cL − cU

cL : Leftmost column c of detected human at lower-part L

cU : Leftmost column c of detected human at upper-part U

Approximate backward extension of leg E = cL − cU

Detected motion M

T
o

ta
l 

n
u

m
b

er
 o

f 
w

h
it

e 

p
ix

el
s,

 W

Upper part

Lower part

λ4=1000



1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2019.2916163, IEEE Sensors
Journal

Fig. 11. Total number of white pixels W in the detected motion 

M at all frames. 

 In cases where the motion is very low, such as the person is 

standing still at frame 𝑓 in Fig. 9, 𝑐𝑈 and 𝑐𝐿 follow the previous 

values at frame 𝑓 − 1. The initial 𝑐𝑈 and 𝑐𝐿 at the first frame 

are both set as 0. As shown in Fig. 11, the motion can be 

considered low when the total number of white pixels is lower 

than a threshold 𝜆4 = 1000. 

if ∑𝑊𝑈,𝑓 < 𝜆4 then 

  𝑐𝑈,𝑓 = 𝑐𝑈,𝑓−1 

end if 

(11) 

if ∑𝑊𝐿,𝑓 < 𝜆4 then 

  𝑐𝐿,𝑓 = 𝑐𝐿,𝑓−1 

end if 

(12) 

Where ∑𝑊𝑈,𝑓 and ∑𝑊𝐿,𝑓 are the total number of white pixels 

in MU and ML at frame f, respectively.  

 The backward extension E of the leg is estimated by finding 

the difference between 𝑐𝑈 and 𝑐𝐿 (13). 

𝐸 = 𝑐𝐿 − 𝑐𝑈  (13) 

 

 
Fig. 12. Estimated maximum backward swings of leg at all 

frames. 

 Fig. 12 shows the approximated extension of leg at all 

frames based on proposed method. The first minimum of E can 

be detected by finding the minimum value between x1 and x2, 

while the second minimum of E can be detected by finding the 

minimum value between x3 and x4, where x1 to x4 denote the 

first to the forth crossing of the threshold 𝜆5 = min(E)/2.  

 

C. Synchronization of video and IMU data 

 
Fig. 13. Flowchart to synchronize video and IMU data. 

Fig. 13 shows the flowchart to synchronize video and IMU 

data. As the approximated leg extension E includes both the 

extension of right and left legs, we need to identify whether the 

person starts to walk with right or left leg before 

synchronization. 

 

 
Fig. 14. Synchronize video and IMU data using the second 

minimum of E when the person starts to walk with right leg. 

 

 
Fig. 15. Synchronize video and IMU data using the first 

minimum of E when the person starts to walk with left leg. 

 When the IMU is attached to the right leg, and the person 

starts to walk with right leg, there is a forward swing before the 

first maximum backward swing, as shown in the shank and foot 
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angle waveforms in Fig. 14. However, as shown in Fig. 15, 

when the person starts to walk with left leg, there is no forward 

swing before the first maximum backward swing.  

Therefore, we find the maximum angle between the first 

sample and the maximum backward swing B. When there is no 

forward swing before the first maximum backward swing, the 

maximum angle between the first sample and B approaches 

zero (15).  

if max(𝜃̅1 to 𝐵) → 0 then 
   The person starts to walk with left leg. 

else 

   The person starts to walk with right leg. 

end if 

(15) 

The video v and IMU resampled angle 𝜃̅  can be 

synchronized such that the video at frame A is synchronized 

with the IMU at sample 𝐵 minus a constant k (16). The constant 

k is to reduce the error. We found out that using the validation 

method in Section IV D, k = 3 for shank angle, while k = 2 for 

foot angle. Fig. 14 and Fig. 15 show the synchronized video and 

IMU data. 

𝑣𝐴+𝑖 ≡ 𝜃̅𝐵−𝑘+𝑖    for i = 0, 1, 2, … (16) 

If the person starts to walk with right leg, A = second minimum 

of E. If the person starts to walk with left leg, A = first minimum 

of E. The symbol ‘≡’ denotes synchronization. 

 In (2), the IMU signal is down-sampled to 30Hz. This 

sampling rate is considered fast enough for human’s visual 

inspection. However, in case some applications such as 

automatic activity recognition may require higher sampling rate, 

the original angle 𝜃 can be synchronized with the video starting 

from sample C (17). 

𝐶 = (𝐵 − 𝑘) ×
𝑓𝐼𝑀𝑈

𝑓𝑣
= (𝐵 − 𝑘) ×

100

30
 

(17) 

 

 

D. Validation of Proposed Method using Blinking LED 

 
Fig. 16. Blinking LED to evaluate proposed method.  

Inspired from the method in [24] which used blinking LEDs 

and RF transmitters to synchronize video and markers, we 

utilized a blinking LED and a RF transmitter to synchronize 

video and IMU data, for validation of our proposed method. 

As stated in Fig. 16, the IMU blinks LED and at the same 

time, encodes LED flag = 1 in its data transmission to the PC. 

The video and IMU data can then be synchronized using the 

first blink of the LED and the first LED flag = 1. 

 

 
Fig. 17. LED blink detection. 

The motion detection method in (4) is used to detect the 

blinking of LED. As shown in Fig. 17, when the LED is off, the 

number of white pixels in the detected motion is very low. 

When the LED blinks, the number of white pixels is very high. 

Therefore, the blinking of LED can be detected when the 

number of white pixels is more than a threshold 𝜆6 = 500. 

 

 
Fig. 18. Synchronize video and IMU data using first LED flag 

and the first blink of LED. 

The video and IMU data can then be synchronized such that 

the first LED flag is matched with the first blink of LED, as 

shown in Fig. 18. 

V. RESULTS AND DISCUSSION 

TABLE I 

AVERAGE SYNCHRONIZATION ERROR (IN FRAMES) OF PROPOSED METHOD. 

Subject 

Based on Shank Angle Based on Foot Angle 

Mean 

absolute error 
Max error 

Mean  

absolute error 
Max error 

1 0.8 1.0 0.5 2.0 

2 0.9 2.0 1.0 2.0 

3 1.0 2.0 1.0 2.0 

4 0.6 2.0 0.3 2.0 

5 0.7 2.0 1.4 3.0 

6 1.1 2.0 1.3 2.0 

7 0.3 1.0 0.5 2.0 

8 0.9 1.0 0.8 2.0 

9 0.7 2.0 1.3 2.0 

10 1.0 1.0 1.0 2.0 

Average 0.8 1.6 0.9 2.1 

 

Table I shows the synchronization error of the proposed 

method based on the maximum backward swings of leg 

detected using shank and foot angles. The synchronization error 

(in frames) is the difference between the video frame with the 

first blink of LED and the synchronized time generated by the 

LED blinks
Encode LED flag = 1 

in IMU data transmission

IMU
At time t At time t

Video camera PC

Synchronize 

the first blink of LED 

with first LED flag = 1.

LED OFF

RGB        Blink detection

LED ON

RGB        Blink detection
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proposed algorithm. The synchronization of video and IMU 

data using either shank or foot angles is very reliable with low 

mean absolute error of less than 1 frame. The maximum error is 

also low at about 2 frames.  

As shown in the third plots of Fig. 14 and Fig. 15, the 

extension of leg E approximated in this research is noisy, but it 

can be used to detect the maximum backward swings of legs 

accurately. 

 
TABLE II 

COMPARISON OF VIDEO-INERTIAL SENSOR SYNCHRONIZATION METHODS 

AMONG LITERATURES. 

Reference Method  
Mean absolute error  

(in frames) 

[19] Hardware Not reported 

[20] Estimate camera-PC and 

sensor-PC transmission delay 

<1 

[21] Cross-correlation 0.5 (horizontal gesture) 

>10 (circular gesture) 

[29] Record sensor data right after 

Kinect SDK software receives 

Kinect signal 

Not reported 

Proposed 
Method  

Maximum backward swing 
detection 

0.8 – 0.9 

 

Table II shows several existing methods to synchronize 

video and inertial sensors. Bae et al. [19] used a 

synchronization hardware module to synchronize video camera 

and gyroscope signal. The main limitation is that the video 

camera and gyroscope signal must be connected through the 

hardware. However, in our case, the smartphone and the IMU 

are two separate systems and not connected together. The 

method by Cippitelli et al. [20] had achieved very low error, but 

it also requires an external hardware, i.e. an Arduino board 

connected to PC to control seven LEDs for transmission time 

delay estimation.  

Compared to the existing methods above, an advantage of 

our proposed method is that it does not require external device 

or LED for synchronization. Validated against the 

LED-blinking method, our proposed method achieves very low 

synchronization error at an average of 0.9 frames. There are 

also existing synchronization methods which do not require 

external hardware. Plotz et al. [21] used cross-correlation 

method to synchronize video and accelerometer data. Although 

horizontal hand gesture had very low synchronization error, the 

circular hand gesture had very high error. Liu et al. [29] 

recorded the inertial sensor data right after the Kinect SDK 

software received signal from the Kinect camera. Although 

[29] did not report the synchronization error, the method most 

likely consists of synchronization error due to the transmission 

time delay as stated in [20]. 
 

TABLE III 

AVERAGE EXECUTION TIME AND SYNCHRONIZATION ERROR OF PROPOSED 

METHOD AT DIFFERENT FRAME RATES. 

Frame rate (frame/s) 15 30 

Average execution time (s) 1.12 2.05 

Mean absolute 

synchronization error (ms) 

Shank 32 27 

Foot 25 30 

The original video (30 frame/s) is down-sampled to 15 frame/s for comparison.  

 

 As shown in Table III, the average execution time to 

synchronize the video and inertial sensor data is 1.12 and 2.05 

seconds for 15 frame/s and 30 frame/s videos, respectively, 

while the synchronization error is almost the same. The 

computation time is considered long, and it is mainly because 

our proposed method requires all video frames to be processed 

to obtain the threshold = min(E)/2 as shown in Fig. 12. The 

frame-by-frame reading of the video in MATLAB consumes 

most of the computation time, compared to the processing of 

the algorithms.  

There are several methods to reduce the computation time 

drastically, such as by calculating the threshold = min(E1N/2)/2 

instead of threshold = min(E1N)/2 where N is the total number 

of frames. However, the 2-second computation time is not a 

problem as our method is designed to assist clinicians in 

walking assessment, which does not require real-time 

processing. 

 

 
Fig. 19. Synchronized output for visual inspection paused at 

100th frame. 

 Fig. 19 shows a paused video of a person walking with the 

synchronized shank and foot angle shown at the right side. This 

allows the clinicians to know the shank and foot angles for 

possibly better visual inspection of the gait. The full video of 

Fig. 19 is attached as multimedia with this journal. 

In this research, we used only two IMUs, but more inertial 

sensors can be added for full body tracking as long as they are 

temporally synchronized. Besides, synchronized force sensitive 

resistors (FSRs) used in [30] can be added for gait phase 

detection. With 3-D angle estimation algorithm such as [14], 

[15], and [28], the 3-D joint angle information could also be 

provided to the clinicians for visual inspection. Other than 

providing the joint angle information, we could add gait phase 

information to the video [30].  

A limitation of our proposed method is that the video in our 

proposed method must be captured from the side of the user for 

maximum backward swing detection. The proposed method 

cannot be used to detect maximum backward swing of the 

subject if the video is captured from the front. Besides, our 

method can only support only one user. If there are two people 

moving in the video, the proposed method cannot differentiate 

which user is wearing the IMUs. 

VI. CONCLUSION 

A method to temporally synchronize video and IMU data 

was proposed. The proposed method is based on motion 

detection, and it has achieved very low errors without accessing 

to the camera and inertial sensor’s internal system clock. The 

main idea of the proposed method is to detect and match the 

maximum backward swing of the leg for synchronization. The 

synchronized joint angle information obtained from the inertial 

sensors can be placed side-by-side to the video for clinicians to 

perform better visual inspection. The main limitation is that the 
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video must be captured from the side of human for maximum 

backward swing detection. The proposed method cannot be 

used to detect maximum backward swing of the subject if the 

video is captured from the front. In future, we plan to 

temporally synchronize the video and IMU data when the video 

is captured from the front. More synchronized sensors can also 

be added for full body tracking. 
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