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Abstract: Large deep caves with little relation to surface topography are distinctive karst features on 
the Nullarbor Plain of Australia. The presence of gypsum deposits and chemoautotrophic 
bacteria within the caves have been suggested as evidence for cave formation and (or) 
enlargement via sulfuric acid speleogenesis. To test this hypothesis, the stable sulfur isotope 
compositions (δ34S) of both cave gypsum and surface gypsum were measured. Analyses 
yielded relatively high, positive δ34S values from both cave gypsum and surface gypsum, 
arguing against gypsum genesis via microbial chemoautotrophy, and more broadly, sulfuric 
acid speleogenesis. Instead, the gypsum is interpreted as forming via evaporation of seawater 
during the Quaternary.
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INTRODUCTION

In contrast to the typical genesis of carbonate-
hosted caves that form by epigene karst system 
processes with carbonic acid dissolution, a less well 
studied sub-population of caves can form through 
the activity of sulfuric acid by a process commonly 
termed “sulfuric acid speleogenesis” (SAS). SAS is 
thought to originate most commonly from oxidation 
of sulfide associated with deeper basin fluids (Palmer 
& Hill, 2012) or from activities of chemoautotrophic 
sulfur-oxidizing bacteria (Engel et al., 2004). The 
basic principle of SAS is that sulfide reacts with  
oxygenated meteoric waters to form sulfate in 
an acidic solution, creating large cavities at and 
around the water table (Ford & Williams, 2007). 
Acidic groundwater enriched in sulfide is capable of 
dissolving host carbonate units and taking calcium 
ions into solution. Sulfide becomes oxidized in 
oxygenated groundwater to sulfate and a hydrogen 
ion, with the free sulfate and calcium ions reacting 
and ultimately replacing carbonate minerals with 
gypsum (CaSO4·2H2O) (Thode, 1970, 1991; Zerkle et 
al., 2016 and references therein).

Speleogenesis linked to sulfuric acid has been 
invoked for caves in a variety of settings such as the 

caves in the Guadalupe Mountains of New Mexico, 
USA (Jagnow et al., 2000), the Frasassi caves of 
Ancona, Italy (Galdenzi & Maruoka, 2003), the caves 
in Bahia Province, Brazil (Auler & Smart, 2003), 
the caves of the Cerna Valley, Romania (Onac et al., 
2011), and Baume Galiniére Cave, France (Audra 
et al., 2015). The presence and source of sulfur is a 
key diagnostic feature for confirming/refuting SAS, 
with analyzable sulfur most frequently hosted in  
cave gypsum.

Gypsum is a common mineral in caves (White, 
1976; Hill & Forti, 1997; Onac, 2012) and has been 
reported from Australian caves such as Jenolan and 
Wombeyan Caves in eastern Australia and Exit Cave 
and Mole Creek Caves in Tasmania (Mingaye, 1899; 
Pogson et al., 2011). Gypsum from the caves on the 
Nullarbor Plain has been previously described by 
Caldwell et al. (1982), Goede et al. (1990) and James 
(1991), and new caves with abundant gypsum are 
still being discovered (Jackson, 2018). Gypsum may 
precipitate from supersaturated drip water or during 
water evaporation, with sulfur variously derived from 
meteogenic sources (from sea spray or precipitation), 
decomposition of organic matter in soil or in caves 
(e.g., guano), biotic or abiotic oxidative recycling of 
sulfide from the aquifer, or pyrite in nearby strata 
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(Swezey et al., 2002, 2017; Onac, 2012; Onac et al., 
2011; Pogson et al., 2011, White, 2015).

The presence of cave gypsum may be an indicator 
of SAS processes (Jagnow et al., 2000), or may be 
an indicator of sulfur derived from sulfide minerals 
in nearby strata without necessarily invoking SAS 
processes (e.g., Onac et al., 2011). Stable isotope 
compositions (δ34S) may be used to constrain the 
origin of sulfate in caves, because large isotope 
fractionation occurs in the sulfur biogeochemical 
cycle. In particular, microbially mediated reactions, 
such as bacterial sulfate reduction and sulfide 
oxidation result in significantly lighter δ34S values of 
the reaction products (Thode, 1970, 1991; Zerkle et 
al., 2016). 

Limited knowledge of deep cave formation on the 
Nullarbor Plain (Webb & James, 2006), presence of 
chemoautotrophic aquatic microbial communities 
(James & Rogers, 1994; Holmes et al., 2001), little 
or no relation to surface karst geomorphology, and 
the occurrence of gypsum could link deep caves on 
the Nullarbor Plain to SAS. Except for a brief notice 
by Jennings (1983) of similarities between caves 
of the Nullarbor Plain and caves in the Guadalupe 
Mountains of New Mexico, SAS on the Nullarbor Plain 
has not yet been considered or tested. James (1991), 
however, postulated that the major source of sulfate 
in Nullarbor caves was aerosols derived from seawater 
and transported by rain.

The aim of this paper is to provide additional 
constraints on the origin of gypsum in the Nullarbor 
caves. In addition, this paper discusses the hypothesis 
of SAS using the sulfur isotope composition of gypsum.

STUDY AREA – THE NULLARBOR PLAIN

The Nullarbor Plain in central-southern Australia 
(Fig. 1) represents the largest contiguous karst area 
globally (~200,000 km2) and the surface expression of 
the Cenozoic Eucla Basin. The carbonate-dominated 
Eucla Basin overlies Mesozoic siliciclastic strata 
that form the Madura Shelf, which extends offshore 
as part of the rift-related Bight Basin. In turn, the 
Bight Basin partially overlies the southerly extension 
of the Neoproterozoic to early Paleozoic Officer Basin 
in the north and east, as well as enigmatic isolated 
Neoproterozoic to Paleozoic strata in the west 
(Barham et al., 2018). Pre-Cenozoic strata underlying 
the Eucla Basin are sandstone and mudstone that 
are interpreted as recording a gradual transition from 
high-energy fluvio-lacustrine to open marine shelf 
conditions through the Cretaceous (Fig. 2; Lowry, 
1970). The Madura Shelf Mesozoic strata consist 
of a basal unit of spatially discontinuous beds of 
unconsolidated, poorly sorted sand and gravel with 
rarer beds of clay that are mapped collectively as the 
Loongana Formation. This basal unit is overlain by 
beds of finer, commonly charcoal-bearing sandstone 
and siltstone that are mapped collectively as the 
Madura Formation. The Madura Formation is overlain 
by an disconformity, above which lie grey siltstone 
that is mapped as the Toondi Formation. In turn, 
the Toondi Formation is capped by a disconformity, 

above which lie beds of glauconitic and fossiliferous  
siltstone that are mapped collectively as the Nurina 
Formation (Fig. 2; Cockbain & Hocking, 1989). Minor 
pyrite is present throughout parts of the Madura, 
Toondi and Nurina Formations. The combined strata 
of the Bight and Eucla basins beneath the central 
Nullarbor Plain has been estimated to reach a 
maximum thickness of ~800 m, but is more typically 
~400 m thick (Scheib et al., 2016; Barham et al., 
2018). Basement underlying the entire sedimentary 
succession comprises Meso- to Palaeo-proterozoic 
crust (Kirkland et al., 2017).

The Cenozoic strata are predominantly carbonates 
with basal and marginal clastics. The basal Cenozoic 
unit is a poorly consolidated, fossiliferous quartz 
sand that is interpreted to be of marine origin and 
is mapped as the Eocene Hampton Sandstone. This 
sandstone is overlain by carbonate strata that are 
mapped as the Eucla Group, and are subdivided into 
the following three units (from base to top):

(i) A 150 to 300 m thick white to grey bryozoan-rich 
limestone (wackestone to packstone) that is mapped 
as the Middle to Upper Eocene Wilson Bluff Limestone. 
This unit is interpreted as having accumulated on a 
temperate marine shelf (Playford et al., 1975; James 
& Bone, 1991; Benbow et al., 1995).

(ii) A 5 to 100 m thick unit of yellow skeletal- and 
bryozoan-rich limestone (packstone to grainstone) that 
is mapped as the Upper Oligocene to Lower Miocene  
Abrakurrie Limestone. This unit is interpreted as having 
accumulated in cool to temperate marine conditions 
(Playford et al., 1975; James & Bone, 1991; Benbow 
et al., 1995; Miller et al., 2012). 

(iii) A 20 to 35 m thick unit of bioclastic and micritic 
limestone (packstone to rudstone) that is mapped as 
the Middle Miocene Nullarbor Limestone. This unit is 
interpreted as having accumulated in subtropical to 
warm temperate marine environments (Lowry, 1970; 
Playford et al., 1975; James & Bone, 1991; Benbow 
et al., 1995; Webb & James, 2006; Miller et al., 2012; 
O’Connell et al., 2012). The basalt part of the Nullarbor 
Limestone in the center of the basin is mapped as the 
Mullamullang Member, and in the northern part the 
Nullarbor Limestone grades laterally into the quartz 
and carbonate sandstone with minor claystone and 
conglomerate mapped as the Colville Sandstone 
(Lowry, 1968a).

A unit of sandy clay with a few thin beds of dolomite 
and oolitic and shelly limestone is mapped as the 
Princess Royal Spongolite on the western margin of the 
Nullarbor Plain and is correlated with the terrigenous 
(a supply of non-carbonate material in the form of a 
delta at the edge of the Eucla Basin) upper part of the 
Wilson Bluff Limestone in the Kitchener area (Jones, 
1990). A number of other marginal carbonate units 
have been described around and west of the Kitchener 
area (Fig 1), but these details are outside the scope of 
this paper.

Unconsolidated sand, clay and calcrete represent 
the youngest surface sediment. Limited to the 
southern low-lying Roe and Isrealite Plains (Fig. 1),  
the late Pliocene poorly cemented molluscan 
calcarenite is mapped as the Roe Calcarenite (James 
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Fig. 1. Locality map of Nullarbor Plain in Australia. DEM downloaded from Shuttle Radar Topography Mission website (NASA, 2002), geology based 
on Surface Geology of Australia, 1:1 000 000 scale, 2012 edition (Geoscience Australia, 2012). AL = Oligocene-Miocene Abrakurrie Limestone;  
C = colluvium and residual deposits; CS = Miocene Colville Sandstone; D = dunes; NL = Miocene Nullarbor Limestone; NLm = Mullamullang 
Member of the Nullarbor Limestone; SP = sand plain; RC = Pliocene-Pleistocene Roe Calcarenite; RSC = residual sediments and calcrete;  
SSM = Holocene Semaphore Sand Member of the Saint Kilda Formation.

et al., 2006), while Holocene aeolian and beach quartz-
carbonate sand is mapped as the Sempahore Sand 
member of the Saint Kilda Formation (Stewart et al.,  
2008).

The Nullarbor Plain became emergent as a result 
of falling sea-levels and regional uplift during the 
Middle Miocene, approximately 15 Ma ago (Lowry, 
1970; Sandiford, 2007). Since this time, the carbonate 
strata have been exposed to chemical weathering, 
denudation, and meteoric diagenesis (Miller et al., 2012).

The surface relief of the Nullarbor Plain is generally 
subdued with isolated local disruptions from small-
scale fault scarps with a maximum of a few tens of 
meters vertical offset (Clark et al., 2012), vestiges of 
ancient river drainage (Hou et al., 2008), and areas 
of ridge and corridor topography (Jennings, 1983). 
Karst features on the Nullarbor Plain include closed 
depressions of various sizes such as dayas (Goudie, 
2010), dongas (Gillieson & Spate, 1992), blowholes 
(Lowry, 1968b), and collapse dolines (Grozdicki, 1985; 
Gillieson & Spate, 1992) that can lead to underground 
cave passages and chambers.

The Nullarbor caves are typically categorized 
as “shallow” or “deep” (Jennings, 1963; Lowry & 
Jennings, 1974), extending <30 m and 50-150 m 
below the surface, respectively (Webb & James, 2006). 
Shallow cave passages range in length from 0.25 to  
20 m (Miller et al., 2012) and are characterized by low 
passages above collapsed chambers with abundant 
deposits of dark brown calcite, as well as halite and 
gypsum (Webb & James, 2006). These shallow caves 
are associated with pocket valleys in the Hampton 
and Wylie Scarps (Fig. 1; Lipar & Ferk, 2015), and 
their genesis is associated with mixing corrosion 
during the Pliocene sea-level highstand (Burnett et  
al., 2013).

Fig. 2. A generalized stratigraphic column of the western and central 
Nullarbor Plain (after Jones, 1990; Benbow et al., 1995; Hou et al., 2008).
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Fig. 3. Photographs of analyzed samples and their localities.

Deep caves, formed primarily in Wilson Bluff 
Limestone, extend upwards through collapses and are 
several kilometers long (the longest - Old Homestead 
Cave - has >30 km of explored passages) with passages 
tens of meters wide and high (Webb & James, 2006). 
Abrakurrie Cave, as an example, has the largest 
chamber in Australia at approximately 150,000 m3 
(Webb & James, 2006). Besides the significant size 
of their passages and chambers, the deep caves are 
characterized by extensive collapses, the absence of 
calcite deposits, and continuation below the water 
table. The exact genesis of the deep caves is complex, 
and the following several processes, which may have 
occurred simultaneously, have been implicated: (1) 
crystal weathering (e.g., salt, gypsum; Lowry, 1968a; 
Gillieson & Spate, 1992); (2) mixing corrosion (James, 
1992); (3) biospeleogenesis (James et al., 2012); and 
(4) dissolution during wetter climate intervals, such 
as the warm-wet of the Oligocene (Webb & James, 
2006) or late Miocene (Miller et al., 2012).

METHODS

Cave gypsum (Fig. 3) was collected in Mullamullang 
Cave, the deepest (135 m) and second longest cave 
(˃13 km) on the Nullarbor Plain (Fig. 1; James et al., 
2012). Naturally broken fragments of gypsum were 
found and collected ~2.5 km inside from the cave 
entrance (north-east direction) near the underground 
White Lake.

Dry lake beds and other topographic depressions 
were located using satellite and TanDEM-X data, and 
later investigated in the field to search for gypsum. 
The nearest surface gypsum was found and collected 
in the dry lake bed of Boonderoo near Kitchener  
(Fig. 1).

Back-scattered electron imaging was performed 
on a Hitachi TM3030 scanning electron microscope 
(SEM) to investigate compositional heterogeneity in 
the samples. Energy dispersive x-ray spectrometry 
(EDS) using an Oxford Swift ED3000 connected to a 
Hitachi TM3030 at Curtin University (Perth, Australia) 
was employed to obtain semiquantitative data on the 
elemental compositions of sampled crusts. Imaging 
and analyses were carried out on uncoated rough 
samples attached to a carbon adhesive tab on a 25 
mm aluminum stub, with an accelerating voltage of 15 
kV, a working distance of 10 mm, and at low vacuum. 
EDS spectra were obtained on areas varying between 
10x10 µm and 200x200 µm with 60 s acquisition 
time. Beam alignment and calibration of the EDS 
detectors were undertaken prior to the analytical 
session following standard procedures.

Sulfur isotope analyses were performed at the 
Jožef Stefan Institute (Ljubljana, Slovenia). Gypsum 
crystals and gypsum in carbonate crusts were 
manually crushed and pulverized in an agate mortar. 
The carbonate crusts containing gypsum were 
dissolved in 3 M HCl and filtered through a 0.2 µm 
membrane filter (Sartorius). Sulfate was precipitated 
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as BaSO4 after addition of 10% BaCl2. The precipitate 
was repeatedly washed with MiliQ water, filtered, 
and oven dried. For the isotope analysis, samples 
of 0.3 mg of gypsum and 0.4 mg BaSO4 were mixed 
with tungsten oxide and packed into tin capsules. 
An IsoPrime 100 isotope ratio mass spectrometer 
with elemental analyzer (PyroCube) was used for the 
analysis. Results are reported as relative delta (δ) 
values (i.e., the difference of the isotope 34S/32S ratio 
of the sample and the standard expressed in per mil). 
Measured values are given relative to the Vienna-
Canyon Diablo Troilite (VCDT). The IAEA SO-5, IAEA 
SO-6, and NBS 127 reference materials with δ34SVCDT 
values of 0.5‰, -34.1‰, and 20.3‰, respectively, 
were used for calibration. All samples and reference 
materials were analyzed in triplicate, with standard 
deviation equal to or less than 0.25‰.

RESULTS

The δ34S values of gypsum samples are high (from 
+17.1‰ to +21.6‰, Table 1) with a 4.5‰ variation 

Sample Number Description δ34SVCDT (‰) 
NB_01 Gypsum flower – Mullamullang Cave +17.1
NB_02 Gypsum containing crust – Mullamullang Cave +21.6
NB_03 Gypsum sponge-work – dry lake (surface) +18.4
NB_04 Gypsum crystals – dry lake (surface) +18.0

recorded in cave gypsum. The two crystals of surface 
gypsum returned less variable results (Table 1).

Compositional contrast imaging using backscattered 
electrons (BSE) indicates relatively simple mineralogies 
of the crystalline material sampled, with gypsum 
identified as the major calcium sulfate phase on the 
basis of elevated proportions of oxygen to calcium and 
sulfur (~6:1:1; CaSO4·2H2O) (Fig. 4). Sample NB_1 
comprises the most pure gypsum identified among the 
samples, featuring well-defined crystals with a platy 
cleavage and a Ca:S:O atomic ratio of 1:1:5.7. Sample 
NB_2 was dominated by low-Mg calcium carbonate 
with at least two distinct phases of growth and only 
a minor gypsum component internally. Rounded 
detrital carbonate and siliciclastic grains (quartz and 
plagioclase being the most significant on the basis 
of Si and Al peaks in spectra) are clearly visible in 
sample NB_4. Minor spectral peaks for Si and Al (in 
particular) in sample NB_3 are also interpreted to 
represent EDS activation volumes including minor 
detrital phases contributing <1% to the overall sample 
composition.

Table 1. Sulfur isotope values of analyzed samples.

Fig. 4. Back-scattered electron images and associated energy dispersive x-ray spectra 
(EDS) of samples analyzed herein. Red boxes indicate area analyzed via EDS, with 
black dashed lines and boxes corresponding to relevant enlarged insets. a) sample NB_1 
gypsum crystal fragment; b) surface of carbonate sample NB_2; c) gypsum sample NB_3 
with inset platy morphology highlighted; d) gypsum sample NB_4 with inset detrital grain.

DISCUSSION

All four samples of gypsum are characterized by δ34S 
values that range from +17.1‰ to +21.6‰ (Table 1; 
Fig. 5). This range of sulfur isotope values resembles 
the ranges of marine sulfate (Thode, 1970, 1991; 

to -10‰ in Corkscrew Cave, Arizona, USA (Onac 
et al., 2007); from -8‰ to +1‰ in Cave Provalata, 
Macedonia (Temovski et al., 2013, 2018); from -15‰ 
to -24‰ in Kinderlinsk Cave, Russia (Chervyatsova et 
al., 2016); and from -18‰ to -1‰ in several caves in 
Virginia and West Virginia, USA (Swezey et al., 2002, 

Claypool et al., 1980).
Sulfur isotope data alone cannot 

distinguish between a seawater source 
and (or) a bedrock source of sulfur 
in the analyzed gypsum. However, 
several possible sources of sulfur may 
be eliminated from consideration. 
Gypsum derived from microbiological 
or hydrothermal processes in sulfuric 
acid caves yield significantly lighter 
δ34S values than either group of gypsum 
samples from the Nullarbor Plain. 
Hydrocarbon-related sulfide may have 
a large range of positive δ34S values 
(Hoşgörmez et al., 2014; Zhu et al., 2017), 
but is nevertheless usually several ‰ 
lighter than the evaporites (Krouse et 
al., 1988); considering the geology of the 
area, such an origin is unlikely. 

A comparison with sulfur isotope data 
from gypsum in other caves throughout 
the world is useful. For example, sulfur 
isotope values range from -16‰ to 
-23‰ in Kraushöhle Cave, Austria 
(Puchelt & Blum, 1989); from -8‰ to 
-24‰ in the Frasassi cave system, Italy 
(Galdenzi & Maruoka, 2003); from -8‰ 
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White, 2015). However, a relatively wider range of δ34S 
values (from -28‰ to +19‰) were reported by Onac 
et al. (2011) from the caves in the Cerna Valley of 
southwestern Romania.

For example, the sulfur isotope compositions of 
gypsum from the Nullarbor Plain are similar to reported 
values from surface gypsum in southern Western 
Australia and South Australia, where the highest δ34S 
values (~+21‰) occur near coastlines and decrease 
to δ34S values of ~+14‰ further inland (Chivas 
et al., 1991). This systematic variation of isotope 
values suggests a seawater source for the sulfur, 
with aerosols being a viable ionic supply mechanism 
in the hydrochemistry of modern continental arid-
zone systems up to a thousand kilometers from the 
coast (Warren, 2016). The results are therefore in 
agreement with James (1991), who postulated that 
the major source of sulfate in Nullarbor caves was 
aerosols derived from seawater.

Fig. 5. Variable δ34S values from different sources. Modified from Seal 
(2006) with added SAS gypsum values from Puchelt & Blum (1989), 
Galdenzi & Maruoka (2003), Onac et al. (2011), Temovski et al. (2013), 
and Chervyatsova et al. (2016).

A bedrock source of sulfur is also possible for the 
gypsum samples analyzed for this study. Average 
δ34S values of marine evaporitic and structurally 
substituted sulfate in carbonates from 30 to 55 Ma 
ago (Eocene through Early Oligocene) range from 
+18.7‰ to +22.0‰, and the δ34S values from 10 to 
20 Ma ago (Miocene) range from +20.4‰ to +22.2‰ 
(Kampschulte & Strauss, 2004; similar values are 
also reported by Claypool et al., 1980). These time 
intervals are approximately equivalent to the time of 
accumulation of the Wilson Bluff Limestone (Eocene) 
and the Nullarbor Limestone (Miocene), respectively. 
However, there is no evidence for evaporitic units or 
aquatic restriction in any of the underlying successions 
encountered in drillcore beneath the Nullarbor Plain.

Hill & Forti (1997) regarded oxidation of pyrite as a 
common source of sulfate minerals in caves. No pyrite 
inclusions in the Eucla Group carbonates are known 
to the authors, although pyrite was reported in the 
Princess Royal Spongolite (Jones, 1990). Furthermore, 
pyrite is present in the siltstone of the Madura, Toondi 
and Nurina Formations (Lowry, 1970). The δ34S values 
from this pyrite have not been published, and therefore 
this pyrite cannot be excluded as the source of sulfur 
in the cave gypsum. It is noteworthy, however, that 
δ34S values of pyrite in siliciclastic rocks are most 

commonly much lighter than the values obtained 
from the Nullarbor Plain (Ohmoto & Goldhaber, 1997; 
Hofman et al., 2009). Furthermore, finer claystone 
units within the Madura, Toondi and Nurina 
Formations are unlikely to facilitate large-scale fluid 
migration, with onshore drilling encountering difficult 
swelling clays, and offshore lithological equivalents 
being recognized as seals that inhibit fluid migration 
(Totterdell et al., 2000). A lack of cementation in the 
Hampton Sandstone between the Cretaceous Madura 
Shelf strata and Cenozoic Eucla Group carbonates 
further argues against significant fluid mobilization 
at depth. 

The only published age from gypsum of the Nullarbor 
Plain is a ~185 ka U/Th date obtained by Goede 
et al. (1990) from Thampanna Cave (Fig. 1). This 
relatively recent age (Late Quaternary) from the gypsum 
contrasts with much older (Pliocene) ages of calcite 
deposition (Woodhead et al., 2006; Blyth et al., 2010), 
and is consistent with the occurrence of substantial 
speleothems of gypsum superimposed on carbonate 
speleothems (Goede et al., 1990). Consequently, these 
ages suggest that the gypsum, found in the caves of 
the Nullarbor Plain today, may post-date the cave 
formation and consequently may not be a recorder 
of speleogenesis. Gypsum also is notably fragile and 
soluble, which means that an absence of deposits 
proven contemporaneous with cave genesis cannot 
exclude the possibility of SAS. 

Although further research is needed to confirm/
refute the unlikely correlation of cave sulfate minerals 
with pyrite in underlying Madura Formation, the 
similar δ34S values for cave and surface gypsum, and 
young age of gypsum in Thampanna Cave, strongly 
suggest that sulfate minerals in the Nullarbor caves 
are evaporites derived ultimately from seawater. The 
gypsum analyzed during this study most probably 
formed by evaporation of seawater, with evaporation 
during increased aridity driving the increased salinity 
and mineral saturation of saline groundwater already 
influenced by marine aerosols. Strongly positive δ34S 
values do not indicate sulfuric acid speleogenesis 
of deep caves on the Nullarbor Plain, nor activity of 
chemoautotrophic sulfur-oxidizing bacteria. 

CONCLUSIONS

Possible sulfuric acid speleogenesis of the deep caves 
on the Nullarbor Plain of Australia is suggested by 
several features such as little or no relation to surface 
karst topography, a presence of chemoautotrophic 
bacteria, and gypsum deposits. Stable sulfur isotope 
compositions of cave and surface gypsum on the 
Nullarbor Plain were analyzed in an attempt to 
test cave origin via sulfuric acid speleogenesis. The 
analysis of both cave gypsum and surface gypsum 
yielded sulfur isotope values ranging from +17.1‰ 
to +21.6‰. Such heavy δ34S values for the gypsum, 
and the similarity of values from both cave gypsum 
and surface gypsum, suggest that sulfuric acid 
speleogenesis was not a process involved in the cave 
formation. Instead, gypsum in caves of the Nullarbor 
Plain is considered to be an evaporite deposit of 
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Quaternary age derived from saline groundwaters 
influenced by seawater.
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