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Abstract

Introduction of mechanistic models for chromatography first started for improv-

ing understanding of the mechanism of the process and since then, the focus of

research in chromatography is shifted tomathematics based concepts. Nowadays,

modelling and simulations of chromatography are being conveniently used with

process development tools such as; DoE, QbD, and PAT to enhance research. With

advent of novel molecules at rapid rates and continuously rising market poten-

tial, effective utilisation of time and resources has become very crucial. With up-

coming advanced techniques and their integration, tremendous amount of data

is being generated which needs to be understood in order to use it for process im-

provement and monitoring. This makes simulation driven process optimization

highly significant in the current research era.

Current research presents a systematic methodology of experiments and sim-

ulation of ion exchange chromatography process. Ion exchange chromatography

is chosen for the study considering its wide implementation for capture and in-

termediate polishing steps for variety of protein molecules.

A brief literature review was presented for various aspects of modelling and

simulations of ion exchange process are touched upon along with potential mass

transfer and thermodynamic models which can be implemented. Different facets

of model based process design were introduced to give a brief idea about role of

simulation tools in the overall methodology. Overview of current tools for simula-

tion of chromatography was given further to highlight the advantages and disad-

vantages. Criteria for selecting an experimental system for validation were pre-

sented further to emphasise why whey protein stream was chosen as an experi-

mental system for model validation.

A simulation tool, Extenstible Process Simulator for Ion exchange Chromatog-
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raphy (ExProSim:IC) was introduced further along with its computational frame-

work, data analysis methodology, and different models involved. The tool gives

flexibility of solving equilibriumdispersivemodel (EDM) in combinationwith ther-

modynamicsmodels such as; Langmuir, stericmass action (SMA), andmobile phase

modulator (MPM). Tool verification was presented further by checking function-

ality with respect to change in variation of model constants. The variation was

found to be inline with physical significance of the model constants. Code to

code verification with CADET as a reference tool and mesh independency stud-

ies to get convergent solutions further emphasised the workability of the tool.

The predictions from the tool showed a decent match to experimental and sim-

ulation case studies from the literature as average Coefficient of determination

(CoD) was above 0.95. The cases from the literature were chosen to give a wide ar-

ray of process parameters for a thorough validation of all three thermodynamic

models solved with EDM.

To build data for ExProSim:IC validation based on experiments, binding charac-

teristics ofmajorwheyprotein standards; bovine serumalbumin (BSA),β-Lactoglobulin

(BLG), and α-Lactalbumin (ALA) were studied for both cation and anion exchange

chromatography. Model constants were determined for three thermodynamic

models; Langmuir, SMA, and MPM . Inverse fit method was employed in param-

eter estimation module of ExProSim:IC for determination of the model constants

from batch, gradient, and breakthrough experimental data. It was proved that

anion exchange was a better technique for separation of major whey proteins

considering their electrokinetic potential at operating pH of 6.9. Ability of Ex-

ProSim:IC to predict the breakthrough curves was further examined and effect of

model constants and process parameters on breakthrough curve prediction for all

the thermodynamic models was investigated. Lessons from tool verification ex-

ercise were utilised to make changes in the model constants to fit the simulation

data to breakthrough curve. Changes inmodel constantswas discussed in detail to

understand the importance of physical and chemical properties involved. Higher

error was observed for BSA breakthrough as the experimental unsaturation was

not predicted by ExProSim:IC. The unsaturationwas an outcome of possible weaker

hydrophobic interactions of BSA leading to continuous adsorption-desorption of
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protein which was not efficiently predicted by EDM. Experimental multicompo-

nent breakthrough for cation exchange showed displacement of BLG by BSA due

to higher hydrophobicity of BSA. Predictions of multi component breakthrough

showed inability to accurately predict the overshoot of the protein molecule due

to displacement (CoD values down to 0.85 and DBC errors>10% and errors >20%

at saturation).

The average ’point to point’ error for predictions of single component anion

exchange breakthrough was found to be <5% for all the models and average CoD

wasmore than 0.96. ALA andBSAwere displaced byBLGowing to existence of high

proportions of BLG dimers at the operating pH. Dimerisation increases binding

due to increased ionic strength leading to higher binding capacity. Prediction for

multicomponent breakthrough for anion exchange were better than cation, how-

ever the overshoot was not predicted well (CoD values>0.90 and DBC errors>5%

and errors >20% at saturation).

Similar studies were carried out for minor whey protein standards; Lactofer-

rin (LF) and Lactoperoxidase (LP). Standards obtained were first purified to >98%

in order to use them for adsorption kinetic studies. Experimental data was used

to generate model constants which were utilised further for investigation of ef-

fect of process parameters and variation in model constants on single compo-

nent and multicomponent breakthrough curves. It was observed that the predic-

tions were excellent match to the experimental data for single component break-

through. Multicomponent breakthrough predictions were observed (CoD>0.95

and DBC errors<5% and errors >10% at saturation). That may be due to absence

of overshoot in the data. Potential learning from earlier chapters was imple-

mented in examining the predictability of the tool for simulation of multicom-

ponent breakthrough for crude whey protein concentrate (WPC) on anion ex-

changer. It was observed that BLG, being in high concentration, dominated the

binding pattern, and the accuracy of predictions was compromised (CoD<0.95 and

error>10%) while predicting the overshoot of displaced protein concentration.

The results presented in this thesis lay a systematic methodology towards de-

veloping basic understanding of implementation of modelling and simulation for

ion exchange chromatography. The experimental system developed here for ma-
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jor and minor whey proteins not only served as a comprehensive dataset for ex-

perimental validation but also laid a basic framework for designing a prospective

separation process for individual whey proteins. Experiments and major learn-

ing about model constant calibration formed a preliminary platform for creat-

ing a prospective database of thermodynamic constants for protein molecules for

building a framework for model based process development.
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Nomenclature

Symbols

µf Mean residence time/first moment (min)

Wh Width at half height

dp Resin particle diameter

h Reduced plate height

Re Reynolds number

Pe Peclet number

c Protein concentration in the mobile phase (mg/ml)

q Protein concentration in the solid phase (mg/ml)

δ Variance of the peak

εe Column porosity

εt Total porosity

εp Particle porosity

Dax Dispersion coefficient (cm2/min)

L Length of the column (cm)

F Flow rate (ml/min)

u Flow linear velocity cm/min
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Dm Molecular diffusivity (cm2/min)

M Molecular weight (KDa)

η Viscosity (cP)

T Temperature in Kelvin (K)

rp Radius of particle (cm)

ci,0 Concentration at the inlet (mg/ml)

Qmax Maximum binding capacity for Langmuir (mg/ml resin)

klads Adsorption coefficient in Langnmuir (ml/mg.min)

kldes Desorption coefficient in Langmuir (min−1)

kd Dissociation constant for Langmuir (mg/ml)

ceq Concentration in mobile phase at equilibrium

qe Equilibriumadsorbed concentration in Freundlich isotherm (mg/ml)

Qf Equilibrium adsorption capacity for Freundlich isotherm (mg/ml)

ce Equilibrium concentration in mobile phase (mg/ml)

n Adsorption intensity for Freundlich isotherm

k1 Pseudo first order kinetic constant (min−1)

k2 Pseudo second order kinetic constant (ml/mg.min)

qt Adsorbed concentration at instantaneous time ’t’ (mg/ml)

Λ Ionic capacity of the resin (mM)

σi Steric hindrance factor for SMA

vi Characteristic charge of the protein

keq Equilibrium constant in SMA

ksads,i Adsorption coefficient in SMA
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ksdes,i Desorption coefficient in SMA

cv Volume of column (ml)

vr Retention volume (ml)

vg Gradient volume (ml)

ca,s Salt concentration at gradient begin (mM)

ce,s Salt concentration at gradient end (mM)

c0 Salt concentration in the buffer during breakthrough (mM)

q0 Total salt concentraion in the stationary phase (mM)

q̄0 Salt ion in stationary phase available for exchange (mM)

vb Breakthrough volume at 10% of the complete breakthrough (ml)

tr Retention time (min)

t0 Dead void time (min)

vd Column dead volume (ml)

v0 Breakthrough volume at 10% of a nonretarded tracer (ml)

kads0 Adsorption coefficient in MPM (ml/mg.min)

kdes0 Desorption coefficient in MPM (ml/mg.min)

kmads,i Adsorption coefficient in MPM

kmdes,i Desorption coefficient in MPM

kdmpm Resultant desorption constant for MPM

γi Hydrophobicity index for MPMmodel (ml/mg)

βi Salt interaction index for MPMmodel

t Time (min)

x Axial coordinate (cm)
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T Temperature (◦C)

RL Equilibrium constant in Langmuir

Rmin Minimum radius of protein molecule

ρ Density of the mobile phase (gm/cm3)

cNaOH Concentration of NaOH for titration (mM)

vNaOH Volume required of NaOH for titration (ml)

ψ Phase ratio from chromatography column

v10%bt Breakthrough volume at 10%

Ncomp Number of protein components in a mixture

tp Time of pulse injection (min)

tf Tailing factor

%B % of mobile phase B in chromatography

SBSA slope of BSA curve in the mixture for SEC:HPLC calibration

SBLG slope of BLG curve in the mixture for SEC:HPLC calibration

cBSA concentration of BSA in the mixture for SEC:HPLC calibration

cBLG concentration of BLG in the mixture for SEC:HPLC calibration

Atot Total peak area for the mixture of BSA and BLG

Nx Number of axial mesh points

nt Number of time mesh points

∆x axial grid interval

∆t time grid interval

rmin radius of protein (m)
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Abbreviations

AC Affinity chromatography

ALA α-lactalbumin

ANN Artificial neural network

BLG β-lactoglobulin

BSA Bovine serum albumin

CFD Computational fluid dynamics

CQA Critical quality attributes

CADET Chromtography analysis and design tool

CV Column volume

DBC Dynamic binding capacity

DoE Design of Experiments

EDM Equilibrium dispersive model

FDM Finite difference method

FEM Finite element method

FVM Finite volume method

GALib Genetic algorithm library

GRM General rate model
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IC Ion exchange chromatography
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IgG Immunoglobulin G
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LC Liquid chromatography

LF Lactoferrin

LMA Levenberg-Marquardt algorithm

LP Lactoperoxidase

MBE Model based engineering

MOO Multi objective optimisation

MPM Mobile phase modulator

NGC Next generation chromatography

NMR Nuclear magnetic resonance

NTU Net transfer units

ODEs Ordinary differential equations

PAT Process analytical technology

PDEs Partial differential equations

pI Isoelectric point

POR Pore diffusion model

PVDF Poly vinylidine fluoride

QbD Quality by Design

RPC Reverse phase chromatography

RSM response surface methodology

RV retention volume

SAS Self association model

SBC Static binding capacity

SDM Stoichiometric dispersion model
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SEC Size exclusion chromatography

SMA Steric mass action

SPFF Sulphopropyl sepharose fast flow

SUNDIALS SUite of Nonlinear and DIfferential/ALgebraic Equation

TDM Transport dispersive model

WENO Weighted essentially non oscillatory

WPC Whey protein concentrate

SE Standard error

SD MSE Standard deviation in mean standard error

RMSE Root mean square error

CoD Coefficient of Determination

Subscripts

i : ’i’th component

e : exit

s : salt
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Chapter 1

Introduction

1.1 Introduction

In the past few decades, breakthrough scientific explorations have led to faster

production at upstream processes moving the bottleneck to downstream opera-

tions in food and bio-pharmaceutical industries [7]. Significantly higher process

development rate in upstream processes compared to the downstream processes

is due to multiple steps involved in the purification, where every step needs to

be improved to make a mark on the efficiency [8]. Liquid chromatography (LC)

is one of the most prominent platforms for purification however, its cost effec-

tive design and operation is very challenging. At the same time, increasing raw

material costs and quality constraints on the final products makes it difficult to

design a cost effective and self sufficient process. It is believed that answers must

be sought in the fundamentals of LC in order to solve current problems such as

excessive experimentation, time consuming scale ups, tedious troubleshooting,

and slower implementation of process improvements.

LC is a complex unit operation that has number of different processes occur-

ring in parallel. Along with the complexity of the operation it is also considered

to be one of the most costliest operations in purification assembly. Therefore,

attempts must be made in order to reduce the costs. Mathematical modelling

has proved to be an effective tool for prediction of outputs of numerous oper-

ations. It has been used to efficiently design of multiple unit operations such

as; fluidised beds, distillation columns, dryers, crystallisers etc. This research at-
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tempts to study chromatographymodels and their simulationmethodology in the

hope to reach an effective approach to unravel, understand, and improve the way

chromatography is approached in research and industries.

1.2 Motivation

LC is a unit operation inwhich amixture ofmolecules to be separated, flow through

apacked adsorbent bed alongwith amobile phase. Differentialmigrationofmolecules

takes place depending on their relative interactionwith the bed andmobile phase.

It is crucial to understand these interactions for improving current approaches of

process design. Various key approaches such as; heuristic approach, experimen-

tal approach, platform approach, and combined approach have been practised for

designing of chromatography. In heuristics, decisions are taken based on prior

knowledge and experience about the molecule in consideration [9, 10]. Though it

takes less efforts, heuristic approaches lack new methodologies which can prove

to be a limitation for the capability of the process. Experimental approaches rely

on trial and error based intensive experimentation which consume a lot of time,

efforts, and resources in order to get desired outcomes. Though it is the safest of

all other approaches, limited sample availability and strict time lines for getting

the product do not make it a wise choice. Platform approach relies on designing

a process based on already established data for a similar molecule. This method

is widely used in industries where stringent deadlines are to be followed and the

molecules to be produced are costly species like antibodies [11]. Despite of above

mentioned strategies and their practise in LC over last three decades, further im-

provement in the speed of development is required to keep desired quality and

quantity in check. It is true that, recent introduction of concepts such as; design

of experiments (DoE) and quality by design (QbD) ensure robustness and flexibil-

ity of the process[12], however these approaches involve plentiful experiments

which may be time consuming for a market driven development. Furthermore,

these techniques along with process analytical technology (PAT), generate a lot of

data which needs to be assessed meaningfully to design further steps.

A more strategic approach which has been explored widely, involves model
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based development of chromatographic processes. Various tools for chromatog-

raphy simulation have been proposed and implemented [13, 14, 15] which offer

varying degree of accuracy and efficiency for design. However, it is important

to note that there is a further scope in discussing the implementation of models

based on fundamental understanding of determination of model parameters by

using experimental basis to determine them. This research focuses on building

an understanding about the parametric calibration which is to be done to get the

right predictions and further understand their significance for three thermody-

namic models. It is also important to understand before the actual process de-

velopment, the causes of possible variations in the governing parameters when

different feed streams are involved. Considering this, simplification of the path-

way of understanding what experiments should be performed to pave the way to

implement modelling for simulations of chromatography is what is sought here.

1.3 Research objectives

Major aim of this work is to provide a better outlook of howmodelling and simula-

tions can be used for understanding of ion exchange chromatographic operations.

Following are the objectives of this research;

1. To formulate a simple tool, ExProSim:IC offering flexibility of using various

thermodynamic models for simulation of chromatographic operation.

2. To verify the tool for its functionality by assessing effect of variation in

model constants, code to code verification, and mesh independency

3. To check the predictability and accuracy of the tool based on literature data.

4. To understand separation characteristics of major and minor whey protein

standards for ion exchange chromatography.

5. To establish an experimental system by determining model constants and

validate ExProSim:IC for five whey proteins.

6. Todiscuss in detail how the isothermparameters affect the simulation curves

for better understanding of the process and further assess applicability for
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crude protein systems such as whey protein concentrate.

1.4 Thesis outline

The thesis is divided into 7 chapters based on the research objectives.

1. Chapter 1 gives a brief introduction to the research problem along with the

motivation for the research.

2. Chapter 2 discusses basic concepts of modelling in chromatography. Fur-

ther a comprehensive reviewof literature is given formodelling and simula-

tion of chromatographic operations with emphasis on thermodynamic and

mass transfer models along with their applications. Various tools available

for implementation of these models are discussed further with a brief sum-

mary and their implementation followed by a summary ofmodel based pro-

cess development for chromatography. In addition to this selection of whey

proteins as an experimental system is justified. Furthermore, challenges as-

sociated with implementation of modelling and simulation in chromatog-

raphy is discussed to state significance of the thesis.

3. Chapter 3 discusses summary of formulation of the tool ExProSim:IC includ-

ing data analysis, mathematical models, and mechanistic framework. Ma-

terials and methodology for experiments for chromatography and sample

analysis is discussed in detail. Furthermore, tool verification and literature

based validation is demonstrated for the chosen thermodynamicmodels for

ExProSim:IC.

4. Chapter 4 shows experimental validation of ExProSim:IC in continuation to

the literature based validation from chapter 3. Assessment of experimen-

tal characteristics of major whey proteins for anion and cation exchange

chromatography is performed. This is accompanied by prediction of break-

through curves for single and multicomponent systems using ExProSim:IC

with further explanation pertaining to change of experimental and simula-

tion parameters.

4



5. Chapter 5 continues the experimental validation for ExProSim:IC for basic

whey proteins. Assessment of minor whey proteins for cation exchange

chromatography is performed for finding model parameters. ExProSim:IC

is used further for breakthrough prediction of single and multicomponent

mixture of standard proteins.

6. Chapter 6 shows applicability of ExProSim:IC for prediction of experimen-

tal breakthrough of crude whey protein concentrate (WPC). Furthermore,

comparison of model parameters for standards and crude is discussed in

detail.

7. Chapter 7 summarises the research work by stating important observations

and findings. This is followed by insights on prospective areas of improve-

ments for taking the work forward.
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Chapter 2

Literature review

2.1 Introduction

2.1.1 Liquid chromatography (LC)

Liquid chromatography is one of themost critical operations in the food, pharma-

ceuticals, and biopharmaceutical industries. For optimisation of LC, several steps

should be followedwith careful considerations towards the desired outcomes such

as; type of product, yields, purity, and costs. There are various types of chromatog-

raphy techniques depending on the chemistry used for separation. These include

ion exchange chromatography (IC), reversed phase chromatography (RPC), hy-

drophobic interaction chromatography (HIC), affinity chromatography (AC) etc.

IC uses charge interactions between resin and proteinmolecules for fractionation

based on change in the degree of ionic interactions with a changing salt gradi-

ent. In HIC, hydrophobic interactions between protein and resin are exploited for

fractionation by changing the salt concentration of themobile phase. For RPC, hy-

drophobicity of the protein is explored further for binding to non polar resin un-

der an organic modifier. AC is designed based on specific interactions of a protein

to a ligand which is attached to the resin for enhanced adsorption. Among these,

IC is one of the most widely used chromatographic methods in the industries be-

cause of its simple application at capture, intermediate, and polishing stages of a

separation process.
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2.1.2 Ion Exchange chromatography

IC explores the fact that protein exerts no surface charge at its isoelectric point

(pI) and pH of the solution can be changed in order to change the charges on the

protein molecule. If the pH is higher than the pI of the protein, the net charge

on the protein is negative and it will bind to a positively charged adsorbent. On

the other hand, when the pH is lower than the pI of the protein, it shows positive

charge to further bind to a negatively charged adsorbent. IC can be described

further as follows.

1. IC offers high resolution between the protein peaks as the separation crite-

ria is easy to modify and control, based on pH and salt concentration of the

solution.

2. IC adsorbents offer high protein-binding capacity due to high density of

charged ligands on the adsorbent.

3. IC is operated with aqueous mobile phases which does not raise an extra

concern for removal of organic solvent from the product peaks. The product

peaks are generally concentrated in salt which can be easily addressed by

desalination process if required.

4. IC provides flexibility in terms of processing. It can operate at very high

flow rates. It can be used to separate wide range of protein molecules and

do not have specific criteria as required for size exclusion or affinity chro-

matography. IC is also a non-denaturing technique and it can be used at all

stages and scales of purification. It also serves as a concentration step for

crude stream with high impurities.

5. Modern IC adsorbents offer macroporous structures allowing the processes

to be operated at high flow rates which is an indicative of high productivity.

Considering all these advantages IC has high popularity in enzyme and food indus-

tries [16] and it is chosen for the work in this thesis. Further sections will discuss

modelling aspects of IC.
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2.2 Modelling and simulations in chromatography

Any ion exchange chromatography interaction in the column is an effect of charge

driven thermodynamics between the protein and resin, and mass transfer of the

protein through the porous bed towards or away from the charged ligands. Hy-

drodynamics of the proteins due toflowconditions is another aspectwhich affects

the binding kinetics. It is very difficult to assess and control thesemechanisms by

experimental means hence numerous models are proposed for understanding IC

better. These are presented in the further sections.

2.2.1 Thermodynamic models

Linear model is a simplest adsorption model where the rate of adsorption is lin-

early proportional to the concentration of molecules of the components present

in the mobile phase. As this is the simplest of all kinetics, most of the basic theo-

ries were based on linearmodel [17, 18, 19]. Langmuirmodel based on homogene-

ity of the sites is a monolayer isotherm which follows pseudo second order kinet-

ics [20]. For Langmuir, the physical phenomenawas represented by two constants;

Qmax and kd, where first one gives maximum binding towards the resin and sec-

ond one represents the dissociation equilibrium coefficient or binding strength

(kldes/k
l
ads). Though Langmuir model captures competitive binding of proteins to

the ligand sites, it has certain drawbacks. The isotherm is thermodynamically in-

consistent if the saturation capacities of proteins are not identical [21, 22]. Bind-

ing is considered proportional to the vacant sites on the adsorbent and salt inter-

actions are lumped into a binding constant when they are major driving forces

for the adsorption and desorption [23]. It doesn’t account for the steric effects

between the salt-protein and protein-protein molecules, or hydrophobic surface

interactions because of their conformation. Nevertheless, it has been used widely

for determining chromatographic profiles to certain accuracy [24, 25, 26].

To account for the salt interactions, Langmuir model was further modified to

mobile phase modulator model (MPM). MPM considers both ionic and hydropho-

bic interactions during binding and desorption by modification of the rate con-

stants to; kdes0 and kads0 from Langmuir constants [27]. Karlsson et al. [28] con-
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sidered the factor γ to be zero, to simulate breakthrough curves for insulin and

transferrin successfully. Furthermore, antibody purificationwas studied byKarls-

son to give a perfect prediction for experimental profile due to accurate parame-

ter estimation [29].

Another isotherm referred as stericmass actionmodel (SMA), accounts for the

steric effects based on the electronegativity of the salt ions present with protein

molecules and their effect on the adsorption-desorption kinetics [30]. Isotherm

formalism was based on completely new set of constants such as; λ (Ionic capac-

ity), v (characteristic charge), σ (steric factor), and keq = ksdes/k
s
ads (equilibrium

dissociation constant). SMAhas been implementedwidely for binding predictions

for ion exchange displacement chromatography as it describes the mass transfer

of proteins in exchange of salt ions [31, 32, 33]. The parameter determination for

SMA is explored widely for its easy implementation for any experimental setup

[34, 35, 36]. However, aggregation between the protein molecules is not consid-

ered in SMA. Effects such as aggregation or changes in the secondary and tertiary

structure of the protein can occur because of physical forces like van der Waals

and electrostatic interactions between adsorbed proteins and the salt ions, or

protein-protein interactions[37]. These aremostly applicable tomacro-molecules

and can lead to anti-Langmuir multi layered adsorption at lower concentrations

and Langmurian kinetics at higher concentrations [38]. For such a situation, self

association model (SAS) was proposed [39]. For current chromatography appli-

cations, applicability of linear model is obsolete, whereas Freundlich describes

mostly multilayered adsorption with poor accuracy. SAS is an isotherm which is

applicable in special cases where large molecules are involved. Langmuir, SMA,

andMPM are widely applied isotherms for predicting ion exchange chromatogra-

phy processes hence, these were primarily chosen for further simulation studies

in this work. Further modifications in these basic models for capturing specific

interactions have been proposed based on more complex phenomena such as self

association, unfolding, refolding etc. [40, 41, 42]; however, they are not considered

here.
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2.2.2 Mass transfer models

Alongwith thermodynamics of the interaction, it is also critical to understand the

mass transfer kinetics of a chromatography process. Mass transfer models are

based on certain assumptions in order to make them simple to apply [43]. Var-

ious models are proposed based on the complexity of the process. The general

rate model (GRM) captures all possible mass transfer resistances such as; molec-

ular diffusion, surface diffusion, film diffusion, pore diffusion etc. [44]. All the

equations for implementation of GRM are given in Section A.1.1. GRM is used in

model based process development as it considersmostmass transfer processes in-

volved. GRM is mostly applied for small molecules and slow processes where pore

diffusion is prevalent but it was also successfully applied for big molecules [45].

GRM was successfully implemented for many experimental systems at small and

large scales [46, 47, 48, 49]. However, application of GRM is also complex because

of the relatively large number of parameters needed to characterize the axial dis-

persion, the external mass transfer, and the effective diffusion through the pores

and external bed. These parameters are often difficult tomeasure experimentally

for accurate predictive modelling [50].

Pore diffusion model (POR) is a simplification of GRM where pore and surface

diffusion are neglected by simplifying gradient pore concentration to the average

concentration [51]. Binding kinetics, overall diffusion coefficient at surface and

medium are considered further to assessmass transfer. All the required equations

from formulation of POR to determination of diffusion coefficients are given in

Appendix B SectionA.1.2. Different formulations of PORare applied for simulation

of LC based on pore structure, particle shape, pore diameter and pore distribution

[52, 53, 54, 55, 56].

Further simplificationof POR led to formulationof equilibriumdispersivemodel

(EDM). EDMconsiders that the variability from the equilibriumcanbe represented

by an apparent axial dispersion coefficient (Dax) [57]. Dax is also considered to be

independent of the low protein concentration in less viscous medium. At higher

concentrations and higher velocities, the effect of axial dispersion coefficient was

considered to be zero [58]. However, it was realised that it can be estimated and

even though the value is minimal it is not negligible [59]. Asmost of the processes
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in analytical and industrial scales are relatively fast, EDM is the most widely used

model for simulating chromatography [60, 61]. It is proved that applicability of

EDM is not limited to specific resin structure [62, 63] or chromatography tech-

nique [64, 65], hence it can be applied to a variety of modelling applications. As

EDM is a focus of this work, expressions for EDM are discussed further in section

3.2.1

Transport dispersivemodel (TDM), Idealmodel (IDM) are fewothermass trans-

fer models which have been used for prediction purpose. In the TDM, contribu-

tions of slow mass transport kinetics are lumped into the mass transport rate co-

efficient, km [66, 67]. TDM uses same equation as EDM except that the ∂q
∂t
term is

replaced by equation A.21 [68].

IDM is the simplest of all models, it has been explored since last 3 decades

[69, 70, 71, 72]. It does not consider any diffusion and it was often found that such

is not the case for LC processes [73]. The accuracy of predictions for IDM is ques-

tionable; however, it can be applied for very fast processes. Considering simplicity

of implementation, minor requirements of model constants as compared to other

mass transfer models, and accuracy of predicting industrial processes, EDM was

chosen further for simulation purpose in thiswork. Equations for all othermodels

are given in Appendix A for further reference.

2.2.3 Hydrodynamic approaches

As chromatography is a continuous adsorption and desorption process under a

flowing regime, it is very hard to know what exactly happens inside the column.

Packing and nature of the resin, and velocity and nature of the mobile phase

decide the flow patterns inside the column. Current analysis techniques rely on

inlet and outlet sample analysis and they are insufficient to give complete idea of

how the adsorption happens throughout the column. Studying the flow patterns

inside the column can facilitate in understanding nature of band broadening in

the column and help design bettermatrices. With simultaneousmass transfer be-

tweenmobile and stationary phase along with the flow, it is evident that multiple

resistances are present throughout the columnwhich need to be accounted. Most

analysis techniques rely on inlet and outlet sample analysis and it may not give a
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complete picture of the adsorption phenomena. Non-invasive column visualisa-

tion tools such as; X-rays, Nuclear magnetic resonance (NMR), Computed Tomog-

raphy(CT), and gamma rays were employed for measuring the velocity patterns

inside the packed column under operation [74, 75, 76]. This can help in finding the

governing mechanisms inside the column. Even the scales at which the velocity

changes take place can be understood. Such techniques can help in assessing ra-

dial heterogeneity. Though all the mass transfer models discussed earlier assume

that the column is radially homogeneous, it is worth investigating radial hetero-

geneity of the column for better understanding. This can help assessing irregular

flows, uneven packings, and improve distributor design. Modelling techniques

such as computational fluid dynamics (CFD) were applied for simulation of chro-

matographic column to get further insights of the mechanism of mass transfer

[77].

CFD is defined as study of systems involving fluid flow, heat transfer and asso-

ciated phenomena such as chemical reactions by means of computer simulation.

CFD softwares serve as an easy to use interfaces where process parameters can be

given (pre-processor), processed (solver), and the results can be analysed (post-

processor). For example, for studying fluid flow in a chromatography column, a

packed bed geometry can be created by giving column dimensions, resin particle

specifications such as particle size, pore size, overall porosity, and particle geome-

try [78]. CFD of columns at different scales can be performed and theflowpatterns

can be related for consistency of flow to assess if the scale up is achieved as de-

sired [79]. Even distributor designs can be compared for optimising flow patterns

inside the column [80].

Advanced visualisation andmodelling techniques if combinedwithmechanis-

ticmodelling tool, can give a complete picture of column hydrodynamics in terms

of velocity andmass distribution. Recently, simulating a separationof luteinmolecule

in a preparative chromatography column using CFD was attempted by employ-

ing mass transfer equations such as EDM and IDM [81]. Though it is a good idea

to combine the hydrodynamics and mass transfer models under a collaborative

solver approach, the computational requirements are very high.
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2.2.4 Statistical approaches

Numerousmass transfermodels described earlier can simplify theway chromatog-

raphy process is understood but it is often a case that the solution of these mod-

els becomes computationally intensive. Statistics can provide an easier approach

towards modelling and simulation of chromatography with less intensive compu-

tational requirements. It can either serve as a stand alone model system which

can predict simpler processes or can pave a way for better analysis of traditional

mass transfer models. Major statistical approaches which have been widely used

for modelling and simulation of chemical engineering operations are design of

experiments (DoE) and artificial neural networks (ANN).

2.2.4.1 Design of Experiments (DoE)

DoE provides a combination of statistical techniques based on empirical models

for a process under scrutiny. It describes a relation between input and output vari-

ables, and helps to assess and model the process in a more systematic way. This

helps in faster scanning of the design space and reach to the optimum solution in

terms of quality and yield, in least number of experiments and time. Input vari-

ables are generally called as ’decision variables’ whereas the output variables are

termed as ’response variables’ or ’response functions’. Aim is to achieve the best

possible output for a system by optimizing decision variables to create a model

which can help predict the results. A detailed method of experimental design

for chromatography is reviewed by Hibbert [82]. There are multiple decisions

to be taken when DoE is to be used for LC process optimization. These include,

screening of decision variables, choice of experimental statistical design, choice

of experimental design space, response variables, and regression analysis tech-

niques to be used. Screening of all possible variables is necessary to know what

process parameters affect the process output significantly. For example; Designs

such as factorial designs, Plackett-Burman, Box-behnken can be used a screening

designs where preliminary DoE for screening of important variable is to be per-

formed. More complex designs such as central composite design, D-optimal, and

Dohlert designs can be used for generating the final surface in response surface

methodology (RSM) to get an optimized design space. Details of statistical param-
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eters involved, methodology, and different designs available for DoE-RSM have

been described in detail in a review by Bezerra et al.[83]. An account of various

screening designs for multivariate and multilevel analytical designs, and mixture

designs along with respective data interpretation techniques is described in de-

tail by Dejaegher and Heyden [84]. Designed set of experiments are then carried

out in laboratories. Alternative to this is to make predictions in a validated simu-

lation tool to construct the surface plots for responses. Furthermore, the surface

model equation should be validated by carrying out experiments in the laborato-

ries. It is also important to test the desirability of the design used by comparison

with other competitive designs and optimality of the chosen design [85]. DoEmay

also be used for comparison with results produced from mechanistic models for

further strengthening of the model validation process.

Numerous applications of DoE are seen in LC design and development. Re-

sponse surface methodology is used effectively for designing LC process [86, 87,

88]. Multiobjective optimisation (MOO) is carried out for creating a statistical

models for LC systems; however, most of the work is experimentally driven [89,

90, 91].

DoE definitely helps in narrowing down the experiments towards process op-

timisation; however, it is important to realise that those experiments are still to be

performed for every step of the process. Mechanistic modelling can aid in reduc-

ing the efforts taken for DoE. If a validated tool is available, all the experiments in

experimental designs canbeperformed in the tool and simulated response surface

can be obtained. Validation experiments can be performed further to ensure the

desirability model equation of the surface. Secondly, if the experimental designs

can be compared through a tool, many designs can be comparedwithin short span

of time with ease for their optimality. The data being generated from simulations

can be linked to statistical analysis or probabilistic methods and further analysed

to give an optimal solution in no time[92]. Application of high throughput screen-

ing and simulations together can give a faster way of both experimental as well as

mechanistic model based validation [93, 94].
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2.2.4.2 Artificial neural networks (ANN)

ANN is anetwork of nodes and inter-nodeswhich are interconnected to eachother

defining their interrelations. The system is then trained by adjusting the inter-

links to get close to the desired outputs or minimize the error. During training,

transfer of signal happens to each neuron from the input neurons, its summed up

at intermediate nodes, and passed further after applying a suitable mathemati-

cal function to it which is defined in the hidden layers. Once the training is per-

formed, ANN serves as a goodpredictability tool evenwithout physical and chemi-

cal characteristics of the system. ANN also provides amodel systemwhich can de-

scribe complex relationships between the variables which can be quite useful for

LC process development. Role of ANN in pharmaceutical process and product de-

velopment has been well described [95]. ANN is used for estimation of adsorption

isotherm and mass transfer parameters for TDM and stoichiometric dispersion

model (SDM) for protein chromatography application [96]. The predictability was

further comparedwithmechanisticmodel predictions. The accuracy of estimated

parameters was proved by decent agreement with simulation and experimental

data from two salt gradient experiments. Havel et al. demonstrated that combi-

nation of ANNmodelling with experimental design, experiments required for the

optimal solution were reduced considerably proving ANNs ability of quick opti-

mization [97]. As the major advantage of ANN is to handle large amount of data

effectively, it has been used successfully for modelling of hyphenated techniques

including chromatography and mass spectrometry [98]. It should be noted that

the quality and accuracy of results from ANN depends on the quality of training

data used. This data can be from retrospective experiments or fresh experiments.

For DoE, definitive experimental design is formulated and experiments are car-

ried out to build the model. Though comparison of ANN and DoE is not intended

here, it is important to mention that the computation times for both ANN and

RSM-DoE models are insignificant; however, accuracy of the model solutions may

vary based on training data and experimental design respectively.

Major drawback of ANN is requirement of large amount of data for training

purpose. Getting so much data can be possible for product running in the indus-

try for years but generating the data for new molecules is cumbersome. Typical
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approach for a chromatography process optimization can be carrying out simula-

tion experiments on a validated tool in a multivariate experimental design space

to generate data which can be used for training ANN systems with appropriate

structure specific to the process in consideration. Once the ANN is calibrated for

a system, it can simulate the experimental results in minimal time facilitating the

on-linemonitoring and troubleshooting. Even though, solving complex equations

by using appropriate tool for predictions is making difference in processing, it is

important to make such a complex information accessible in a simpler form.

2.3 Model based process development

Though mechanistic modelling using the mathematical models has been widely

explored in last two decades, it is necessary to understand its implementation in

process development. Major advantage of model simulations is reduction in the

extensive experimentation required to get to the developed process. For process

development at both small and preparative scales, main objectives are maximum

possible loading and highest possible flow rates with desired resolution, quality,

and yield for the target molecules. Traditionally, numerous experiments are per-

formed to find the optimal conditions for achieving required quality product. Re-

cently FDA approved QbD formanufacturing designwhich gives further flexibility

to manufacturers without compromise on the quality requirements. Approaches

like DoE and process analytical technology (PAT) allow the user to optimize the

points in the design space at which the experiments can give desired results [99].

With the help of prediction tools available, it is now possible to assess the whole

design space with more scrutiny. For having confidence in the tools, it should be

made sure that the tools are well validated for the process systems under consid-

eration.

2.3.1 Model validation

Tools discussed ensure accurate implementation of themodelmathematically but

it is also important to ensure that the simulated datamatcheswell with the exper-

imental data. This process is called as model validation. Model validation can be
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carried out in twoways. Primarily, data from the literature can be chosen. Results

obtained from simulations are then compared with the data from the literature

to identify the error. If the error is high, it is attempted to tune the parameters in

order to fit to the target data. This process is also called asmodel calibration. Care

must be taken while choosing the literature data as it should be able to provide

all the required parameters for the execution of simulations. It should also pro-

vide range of variations in the process parameters to ensure that the validation

is robust enough to apply for future predictions. Another type of validation is ex-

perimental validation. In house experiments are performed for finding outmodel

parameters [100]. Experiments which define different aspects of resin-protein in-

teractions are planned in the design space to cover all possible process variations.

Model parameters are determined by fitting the equations to the experimental

data produced. For example, experiments such as batch studies can give model

parameters such as Qmax, kd for Langmuir isotherm or charge value (v), equilib-

rium dissociation constant (keq) for SMA. Column moment analysis with tracers

such as blue dextran or acetone, can be used to determine diffusion and poros-

ity values. Details of such experiment is given in literature which can be referred

further [101, 102, 35]. Once the model parameters are determined, they can be

used in the tools for simulation for a successful prediction. Further tuning of pa-

rametersmight be required and should be performed based on process knowledge

about how the parameters affect the curves to be predicted. Overview of model

validation is shown in Figure 2.1

2.3.2 Optimisation

Process development is a challenging task due to complex interactions in between

adsorption variables. These interactions play an important role in the output of

the system and finding how input affects the output responses becomes impor-

tant. For this, choice of responses and decision variables, and priority given to

them is very importantwhile defining theprocess development objective. Though

it is hard to find generic rules for process optimisation, current approaches in the

industries and academia are mostly influenced by QbD. QbD is a multi-objective

optimisation based approach which is targeted to achieve predefined process ob-
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Figure 2.1: Generalised model calibration and validation philosophy

jectives by using basic knowledge of the process [103]. Tricky part in QbD is set-

ting a measurable objective function which can describe the desired outcomes.

A significant work by Rathore gives an outline of a road map of QbD for process

development of a biotherapeutic products alongwith a detailed case study for pu-

rification of a biosimilar [104]. Principles described by Kanwar et al.[105] about

enablers of QbD implementation for model based development of ion exchange

membrane chromatography apply well for LC. There have been numerous other

case studies on implementation of QbD for process development emphasising its

importance in industries [106, 107]. Recently, QbD principles were implemented

to the development of an analytical chromatographymethod aimed to the quality

control of a vaccine product [108]. Furthermore, McBrien has discussed practical

implications of QbD for chromatography processes [109].

ThoughQbD based thinking provides a full proof approach towards highly suc-

cessful process, it requires a detailed understanding of the process mechanism.

Even though QbD approaches along with DoE reduces overall experimentation re-
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quired for optimisation, it is based on statistical guess work based on fundamental

process knowledge [110]. It order to implement QbD based development, numer-

ous experiments are to be performed which take time and efforts. On top of that

if the CQAs are not defined with critical consideration, all the process has to be

repeated which can be laborious. Degerman et al.[111] have demonstrated how

optimisation can be carried out by amalgamating simulation and QbD approaches

and choice of the model is a critical step in such a methodology. Comparison of

DoE andmechanistic modelling is also done to provemechanistic models can give

bettermeaning to the system under process development [112]. This shows that a

simulation tool can not only ease the way for faster QbD implementation but also

can help in controlling it [113].

Before simulation studies can be applied to QbD, the model to be used has to

undergo calibration. This includes testing the tool in a wider design space [114].

Simulations are beneficial in this regard, as lot of time and efforts can be saved.

It is also advised to check the representative simulations by performing exper-

iments for additional validation. In a study by Persson et al. [115], the depen-

dency of flow rate and bead size on the film mass transfer and axial dispersion

coefficient was checked for further calibration of the model for its implementa-

tion for simulations. Teoh et al. tested dynamic model of a high performance LC

unit experimentally [116]. It was further used for optimisation of a preparative

chromatographic separation by use of closed-loop recycling resulting in improved

purity and yield of the process. This is an indicative of model calibration and sim-

ulations aiding in process improvement. For detailed understanding of the model

optimization strategies, it is highly advised to refer to work by Guiochon [43].

2.3.3 Design space characterisation

Design space characterization is a logical selection of input process parameters

and respective ranges which can make the process flexible for operation. It is

very important to understand and thoroughly assess the relationships between

the selected CPPs and responses so that significant CPPs can be picked up to reg-

ister a manufacturing design space. According to U.S. FDA Q8 [117] regulatory

guidelines, ’the process changes inside an authorized or registered design space
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is not considered as a process change as it does not affect the quality of the prod-

uct’. This gives more operational flexibility to the manufacturers. Scanning of

design space can be performed by experimentation [118]; however, modelling and

simulation can accelerate the process and make it more cost effective. This sug-

gests that the overall aim of characterisation is to get to a design space which

provides flexibility for CPPs to operate within wider range without compromis-

ing on the quality. While characterisation, it may happen that experiments may

not be able to access few coordinates in the design space due to practical or fi-

nancial constraints. These inaccessible design points can be examined by sim-

ulations. The only requirement here is a well validated simulation tool for the

protein-adsorbent system which can give accurate predictions.

Simulations also help in repeating the experiments for number of times with-

out further investments throughout the design space. However, the validity of the

simulation tool needs to be further supported by the experimental proof. Experi-

ments for validationmust be chosen in order to cover the entire range of the CPPs.

In fact such intensive simulation exercise can help in ranking process parameters

in the order of their impact and sensitivity. Experiments from the design space for

robust model validation can be planned considering the most sensitive variables.

If the simulation tool is thoroughly validated for the accessible design space, it can

be assumed that it makes accurate predictions for inaccessible part of the space.

For seeking additional proof, experimentation on themaximumaccessible bound-

aries or experiments immediately outside the design space to show failure cases

may be carried out [119]. Degerman et al. usedmathematicalmodels to determine

the impact of design space for purification of IgG from BSA by a hydrophobic in-

teraction purification process [120]. Optimisation was performed for both cost

and quality. Another optimization study was performed by Getaz et al. in order

to optimize linear and bi-linear gradient for purification process of polypeptide

crude mix [121]. Westerberg et al. carried out a design space based sensitivity

analysis for hydrophobic interaction chromatography and reversed phase chro-

matography using mathematical models to optimise purity and optimal pooling

criteria [122]. Shan and Shiedel implemented ANN for design space character-

isation to investigate the effect of parameters for gradient chromatography on
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the productivity of the target compound from a multicomponent mixture. Ex-

perimental design and ANN were used together to compare different modes for

operation such as isocratic and different gradient slopes to identify the effect of

parameters on the shape of the peaks obtained and respective purity [123]. Many

more such implementations have been demonstrated in the literature [124, 124]

2.3.4 Scale up and design

Every process developed in the lab is destined to undergo scale up if it has to reach

to manufacturing stage. A systematic experimental scale up for chromatography

is well defined [125]; however, lot of experimentation is involved in doing so. Ap-

plication of simulation tools for scale up can save a lot of efforts. In fact, inter-

mediate scales can also be assessed for which infrastructure may not be available.

Gerontas et al. [46] demonstrated successful implementation of modelling and

simulation for scale up of two protein processes. They emphasised on the fact

that understanding model parameters and their implementation is the key for

a model based scale up. This can also help in design of columns of appropriate

size based on the product requirements. Furthermore, advanced set-ups of chro-

matography such as; simulated moving bed [126, 127], liquid solid circulating flu-

idised bed [128], and expanded bed [129] can be designed based on understanding

of a single column data.

Model based approach for LC design can provide additional benefits after the

process is optimised. Optimization gives parameter values for which desired re-

sult can be obtained; however, it is important to find a wider design space which

can sustain the desired output. Model based process design can help account for

those variabilities and their effect which cannot be realised in experimentation

[130]. This can further increase the knowledge about the process under develop-

ment which may not happen with experimental approach [131]. For a successful

implementation of the simulation approach, it is important to validate the tool for

such innate changes and account the sensitivity for the same [132]. For a robust

implementation of a modelling tool for uncertainty and sensitivity determina-

tion, it has to be validated exhaustively for range of variables, different scales of

column, adsorbents, different chemistries of a technique such as; cation and an-

21



ion exchange for ion exchange chromatography etc. There are many such tools

available currently which can combine one or more requirements of the model

based process development. These are discussed further.

2.4 Chromatography simulation tools

It is seen that the bottlenecks in the process industries are currently being ad-

dressed to accelerate the time to market; however, industry continues to demand

new technologies in downstream processing [133, 134]. This is an indicative of

the fact that process development still remains a main problem to address to im-

prove on time and investments. With advances in computer technology and im-

proved understanding of chromatographyprocess, many researchers have formu-

lated potential simulation tools for chromatographic predictions. Brief summary

of the tools is given below and details are shown in Table 2.1. It has been claimed

by respective literatures referred here for each tool that they are accurate in pre-

dicting the experimental outcomes to the desired accuracy. In any way, it is not

intended to compare them here for their capabilities as that requires code to code

comparison. This thesis just intends to put forward a short summary of features

of the codes and methodologies implemented in the current tools.

2.4.1 Chromatography Analysis and Design Tool (CADET)

CADET is an acronym for chromatography analysis and design tool which was

formulated by ’ModSim’ group at Forschungszentrum Jülich GmbH, Julich, Ger-

many. The inventor list includes Eric Von Lieres, Joel Anderson, Sebastian Schnit-

tert, Andreas Puttman, Samuel Leweke, and William Heymann (written as Lieres

et al., in Table 2.1). CADET allows implementation of mass transfer models such

as; GRM, POR, EDM, and TDM with isotherms such as; Linear, multi component

Langmuir, MPM, SMA, SAS etc [135]. Finite volume method (FVM) is used for ba-

sic discretisation. To reduce the time required to solve the complex models, sev-

eral scientific computing techniques such as; weighted essentially non-oscillatory

(WENO), suite of nonlinear and differential/algebraic equation solvers (SUNDI-

ALS), and parallel computing have been incorporated [15]. The solver can take up
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variable step-width and order, for space and time integration, based on user de-

finedmesh intervals. While the simulation engine is designed inC++ for the best

possible performance, modelling framework is laid in MATLAB for easy customi-

sation. An easy implementation of CADET can be accessed at (CADET web user

interface) [136]. The interface is capable of solving both single component and

multi component systems along with sensitivity and robustness optimisation. All

the code of CADET is freely available to the research community as an open source

on CADET github website. Here the codes can be downloaded and implemented

in MATLAB or Python without recompiling the code and further modified to the

desired use if required. This allows any researcher across the world to contribute

with their own extension codes in order to enhance the framework of the tool.

Latest release of CADET can solve systems of multiple unit operations such as sim-

ulated moving bed chromatography, stirred tanks, or plug flow systems. CADET

is being used successfully for predicting chromatography process outcomes for

almost 8 years internationally in 15 countries [137, 138]. Diedrich et al. [40] have

presented application of CADET for ion exchange adsorption of monoclonal anti-

body on a tentacle resin with high accuracy using a multistate SMA model which

is an extension of original SMAmodel [139] given by Brooks and Cramer. Complex

peaks and shoulder were predicted under overloaded conditions and the consis-

tency of the model was checked by comparing the simulated salt concentrations

with experimental conductivity data. Freier at al. demonstrated use of CADET

for elution chromatography predictions and its robust multi-objective optimisa-

tion [140]. Recently, Leweke and Lieres described latest updates in CADET with

multiple case studies showcasing extensive capabilities of the tool [135].

2.4.2 ChromX

ChromX provides a customisable simulation tool, in which POR, TDM, EDM, GRM

models can be solved with either Langmuir or SMA adsorption isotherms [141].

Built on finite element method (FEM), tool provides multiple time discretisation

models.ChromX offers interfaces to various libraries for linking the simulations

to heuristics. These include; Levenberg–Marquardt algorithm (LMA), Cminpack,

and the genetic algorithm optimizer GAlib. ChromX also gives a samplingmodule
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for recommended pooling criteria for insilico peak collection. ChromX has been

widely used for laboratory and industrial research. It has been used for insilico

process development of ion exchange chromatography [142, 143] and Hydropho-

bic interaction chromatography [144]. Hahn et al. used ChromXhas formodelling

of industrial level antibody purification [145]. They used TDM and SMA for pre-

diction of profiles at industrial scales. Baumann et al. performed Pareto optimiza-

tion for yield and purity by predicting ion exchange chromatography profiles in

ChromX using TDM and SMA [146]. The simulations were also validated further

by performing chosen experiments. Chromatographic separation using core shell

metal organic frameworks were explored for prediction using multi component

Langmuir and GRM where single component data was found out to give basic pa-

rameters which were further used to predict multi component isotherms [147].

ChromX was used to devise a new method to determine the ionic capacity in col-

umn and batch chromatography, based on the adsorption/desorption of the nat-

ural, uv-detectable amino acid Histidine [148].

2.4.3 Chromulator

Chromulator is built around GRM and provides various modules for solving dif-

ferent chromatography problems. It uses FEM and orthogonal collocation for dis-

cretisation of model equations. The bulk fluid phase PDEs are discretised by FEM,

whereas particle phase equations are discretised by orthogonal collocation. This

gives rise to a coupled ODE systemwhich can be further solved easily using an ODE

solver. As the complete code is implemented in Fortran 77, a Fortran based pub-

lic domain VODE (variable coefficient ODE) solver was used for giving numerical

solution. Chromulator provides several modules such as; Rate.exe, Kinetic.exe,

Gradient.exe, Affinity.exe, and Raterfc.exe. For example; Raterfc.exe and Rate-

cored.exe are same as Rate.exe, except they are used for Radial Flow Chromatog-

raphy (RFC) and superficially porous particles which are different class of resins

[149]. Chromulator was the first tool to capture these kind of simulations. These

modules provide various chromatographic simulations; however, additional op-

erational simulations need editing the code which may not be possible for a re-

searcher from non-coding background. This reduces the flexibility of Chromula-
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tor as compared to CADET or ChromX. It is highly recommended to refer to a book

on Chromulator which provides detailed guidelines for its implementation [150].

2.4.4 Aspen Chromatography

Aspen Chromatography is a highly customizable flow sheet simulator which is

used to design and simulate batch and continuous chromatographic processes

[151]. It is also used to optimize yield, product quality, capacity, and operating

costs. Aspen is highly customisable over other simulation tools for its capability

of linking to various unit operations so that series of operations can be optimized

together. Aspen chromatography accommodates hydrodynamic models such as;

TDM, EDM,GRM, and POR. Aspen provides a huge database to extract parameters

specific to molecules being separated, which can help to configure model con-

stants based on heuristic approach and can incorporate in-line model fitting and

regression analysis with access to database of model constants [152]. Aspen chro-

matography is used widely for continuous chromatography operations like SMB

[153]. Two zone and three zone SMB has been well explored by using Aspen chro-

matography tool [154, 155].

2.4.5 gProms

gProms is another highly customisable tool which can perform modelling and

simulation of series of operations. One of the most attractive modules of gProms

is a model-based engineering (MBE) module which can be used for process devel-

opment of scale up and scale down operations with the help of process models.

MBE relies on three main approaches:

• First principlesmodelling: Processmodels appliedmainly describe in detail

the heat transfer, mass transfer, and kinetics of the the process

• Multiscale modelling: Modelling can be done at various scales of the pro-

cess. For example, in case of chromatography, single particle models can

be used and extrapolated further to simulate flows in the column. Separate

column flow models can also be applied to check the validity
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• Integration with experiments: Data driven from experiments can be used

to modify the model to increase the effectiveness of the experiments being

carried out

MBE has obvious advantages over conventional engineering approaches as it can

accelerate exploration of the design space. It also provides an effective interface

for use of current R&D results into themodel in order to improve further process-

ing by reducing errors [156, 157]. MBE relies on a set of model-based experimen-

tation methodologies for parameter estimation which can help refine the models

being used [158]. gProms has optimization features ranging from single operation

to a whole plant which can be used flexibly for modelling and simulation of series

of chromatography operations [159]

It is discussed here that so many efficient tools are present for modelling var-

ious aspects of LC. Few of them describe the way they are designed and source

codes are shared in an open source platform, while others are marketed software

for industrial and academic use. In academia, effort is made to understand how

these tools operate on the mathematical level; however, in industries, they might

be used as a black box for process design. Understanding these tools provides a

better way to design a process. In addition to this, it also helps in troubleshooting

the process with much ease and confidence.

These tools also demonstrate the fact that a successful simulation tool which

can mimic the experimental systems, needs to undergo number of steps such as;

(i) Mathematical verification of the tool for desired precision and accuracy, (ii)

Exhaustive experimental validation to showcase tha accuracy of simulations is

maintained for wide range of input parameters (iii) Demonstrating that the tool

is robust and shows sensitivity of the process towards process parameters. For

IEX LC, most important parameters from experimental perspective are;

• Properties of protein such as; molecular weight, isoelectric point, amino

acid content which decides the structure, hydrophobicity, and ionicity.

• Process flow properties such as flow rate, protein concentration, total pro-

tein in the feed.

• Thermodynamic properties such as ionic content of themobile phase, resin
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Table 2.1: Comparison of current available tools for simulation of chromatographic operations

Criteria CADET ChromX Chromulator Aspen Chromatography
Aspen Chromatography

Inventor Lieres et al., IBG-1, Germany Dr. Tabias Hahn, Karlsruhe Institute of Technology, Germany Prof. Tinguye Gu,Ohio University,Ohio, USA Aspentech
Hydrodynamic models GRM GRM, TDM, POR, Edm GRM GRM,TDM,POR,EDM
Thermodynamic models Langmuir, SMA, MPM, SAS Langmur, SMA,single and multicomponent Langmuir, first order Langmuir & Freundlich variants
Discretisation scheme Finite volume method finite element method and method of lines Finite element method -

Additional Mathematical solvers
WENO, SUNDIALS, offers additional solvers
like Schur solver

Explicit Euler, Implicit Euler, Crank Nicolson DVODE, Orthogonal collocation -

Coding platform
Simulation codes: C++, MATLAB
Interface:Django based interface
with connection to PostgreSQL database

Simulation codes: C++ Simulation codes: Fortran 77
Interface: C++

-

Interface

1. Web interface available for everyone
for free
2. MATLAB interface and standard
routines for parameter estimation, process
optimization and experimental design

Available in executable software format
Available in executable
software format

Available in executable
software format

Processing modules

1. Interface allows simulation a single
chromatography column with multiple
steps and components
2. DoE simulation allows to run a
simulation by changing a parameter
based on earlier completed simulation
3. loading and elution analysis with
flexible flow an time settings

1. sampling module for collection of the peak
2. Highly customisable flow parameters
3. Provides control on dimensions, flow rates,
buffer concentrations, sample injection
4. ChromX supports direct simulation in [mAU]
instead of molar or mass concentrations.
5.Latin hypercube sampling can be used to evaluate
the robustness of the process and relate them to
CQAs for process optimisation

1. Rate.exe: for Langmuir along
with GRM. Useful for setting
elution with step changes.
2. Kinetic.exe: Uses second order
kinetics instead of langmuir
3. Gradient.exe: gradient elution
in various modes of step,
linear and non linear regime
4. Affinity.exe: specially for
affinity chromatography
5. Raterfc.exe: For radial flow
chromatography

1. Provides tools for fast construction
and configuration of SMB and TMB
2.Flexibility in defining flow rates of
process streams, time cycles,
step or ramped inputs
3. Regression analysis by fitting of
model data to experimental data

Compatibility and Add-ons
Export to Microsoft Excel in both
xlsx and csv file format

Export to Microsoft Excel, VTK format
further to ParaView for 3D visualisation

Highly integrated tool compatible with
various other softwares like excel, MATLAB
where analysis and visualization can be done

Special mentions

1. Allows sensitivity analysis for
all the parameters involved
2. Allows to share simulation
online with other user

DoE, interface to libraries such as LMA,
Cminpack and Galib

provides several methods of
visualizing the solution such as
position-time plots, effluent
histories and several animations.

1. Can be linked to number of different unit
operations for overall process design and simulation
2. Database can provide thermodynamic parameters
to select from for various molecules

Availability Web interface available for free to all
ChromX academic is available free of cost
whereas ChromX industrial version is
a licensed software

Chromulator is available free of
cost for academics whereas
Chromulator-IEX is given on
license to industries.

Marketed software

Tie-ups
AMGEN, GlaxoSmithKline,
Fraunhofer IME, KBI Biopharma,
BOKU

Academic version of ChromX is meanwhile
used in more than 15 countries.

Licensed by 3M, Pfizer,
Genentech, Novo Nordisk,
Milipore

It is being used by many research institutes and
companies for whole process development

References [15, 136, 138, 140, 40, 137] [142, 143, 144, 145, 148] [160, 161, 149] [153, 154, 155, 152]
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ligand density, mode of ion exchange (cation or anion)

This makes the choice of validation system very critical. Next section describes

the experimental system selected in this work.

2.5 Experimental system

2.5.1 Whey proteins

Use of chromatography in biopharmaceuticals is prevalent. In recent times, even

food industries, have adopted chromatography for analysis and purification of

high value enzymes and proteins of therapeutic importance [162, 163]. A review

from Tranchida et al. emphasises on the importance of chromatography in food

analysis [164]. Another review from Mane et al. showcases importance of chro-

matography in purification of anti-diabetic protein γ conglutin from agricultural

sources such as Lupin [165]. Latest techniques such as simulated moving bed

chromatography have also been implemented in food processing industries [166].

Dairy industry is one of the largest food sectors, widely spread out in every cor-

ner of the world. Cheese is one of the major products of dairy industries, which is

manufactured on large scale. Huge amount of waste generated during cheese and

casein manufacturing is called as whey which is a potential source of significant

milk proteins [167]. Whey proteins aremarketed in the form of whey protein con-

centrates (WPC) such as; WPC 35 (35% protein), WPC 80 (80% protein), and WPI

(isolates: 90-95% protein). Detailed literature on recovery of protein concentrates

fromwhey has been discussed in detail in a recent reviewwith emphasis on ultra-

filtration [168]. WPC has multiple proteins with different characteristics. These

include; α-Lactalbumin (ALA) , β-Lactoglobulin , Bovine serum albumin (BSA) ,

Lactoferrin [169], and Lactoperoxidase [170]. Out of these, first three are major

proteins and latter are present in minor quantities. It is important to understand

the protein properties before they can be used for experimental studies. For sepa-

ration of individual whey proteins, most common technique is ion exchange chro-
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matography [171, 172, 173, 174]. Individual proteins are discussed in brief here

and are summarised in Table along with the literature references 2.2.

β-Lactoglobulin (BLG)

BLG is a major protein from whey which is almost 60% by weight of total whey

proteins. It has 162 amino acids all present in one peptide chain. BLG is known

to exist in different molecular forms depending on the pH and ionic strength of

the medium [175]. As the isoelectric point(pI) of BLG is 5.2, the protein is highly

hydrophobic at its pI. A stable dimer is found for pH between 7 and 5 and be-

low that the protein exists as an octamer upto pH 3.5. Two disulfide bonds and a

thiol group exhibits increased reactivity above pH 7 leading to monomer forma-

tion [176]. Such structural changes in the molecule may influence the binding of

the protein to chargedmatrices during chromatography. Purification of BLG from

whey is attempted.

α-Lactalbumin (ALA)

ALA is a major protein roughly 20% of the total whey proteins. It is a globular

protein with 123 amino acids with molecular weight of 14.1 kDA and a pI of 4.2. It

has high affinity for calcium is mostly stabilised by four disulphide bonds [177]. It

is tricky to detect ALA by spectral techniques as the conformation of the protein

changes drastically with slight changes in pH and ionic strength of the buffering

medium making it difficult to monitor the absorbance [178].

Bovine serum albumin (BSA)

BSA is approximately 10-15% of the total whey proteins. It has 582 amino acids

with a molecular weight of 66 kDA and pI of 4.7. The structure of BSA is stabilised

by a highly hydrophobic core with 70%α helices and 17 disulphide bonds [179]. It

is proved that, buffer pH and ionic strength can have a major impact on BSA due

to its highly hydrophobic centre [180].
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Lactoferrin (LF)

Lactoferrin belong to minor proteins from whey which is present about 1-2% of

total whey proteins. It has≈700 amino acidswith amolecularweight of 76-80 kDA

and a pI of 8.2. It has a Fe+2 binding domain a the centre which gives the protein

positive charge naturally which can be used to isolate it on cation exchange resins

[169], whereas the intensity of the charge can be optimised by changing pH and

ionic strength of the solution.

Lactoperoxidase (LP)

LP is a minor protein which is present in 0.5-1% of the total whey proteins. It

is 612 amino acid long protein with molecular weight of 78 kDA. There are five

helices in LP which gives a strero chemistry in the shape of a heme binding centre

which has one ironmolecule per LP [170]. LP has highly active hydrophobic centre

which can interfere in the ionic binding of the protein to an adsorbent [181].

2.5.2 Model calibration system

Following are the reasons why whey proteins are used as an experimental sys-

tem to aid in understanding the model calibration approaches for experimental

validation of a simulation tool.

1. The system should be well explored in the literature as the objective here

is to validate the tool. Basic properties and the standard samples of the

proteins under consideration should be available so that they can be used

easily to find the model parameters when required.

2. The experimental system should provide a complex protein mixture offer-

ing wide variety of proteins, whey protein mixture offers 5 different pro-

teins of wide range of properties which can be used separately and in amix-

ture for validation.

3. It should be possible to explore both cation and anion exchange chromatog-

raphy for separation of individual proteins from the mixture. Major pro-

teins from whey are acidic in nature and minor proteins are basic in nature
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making it possible to explore both ion exchange mechanisms at the same

operating pH at which sweet whey is industrial obtained from the industry.

4. Industrial significance: High value products such as pure individual pro-

teins can improve process economy for dairy industry.
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2.6 Significance of this research

It is clear from the preceding discussion that modelling and simulation can aid in

process development for research and industries. However, there are number of

challenges in the implementation of mechanistic models for simulation and it is

important to understand the gaps between the present status and the futuristic

process development approach.

Two important pillars of simulation driven process development are a simu-

lation tool and experiments assisting in successful simulations. The current state

of chromatography tools provide fast and accurate mathematical solvers. The

codes are well developed for the available models. In order to implement such

tools with more confidence, it is important to understand the model calibration

and experimental validation philosophy in more details. Every model parameter

has a physical/chemical significance which needs to be understood. Few param-

eters highly affect the predictions while rest don’t have significant impact. Once

it is understood which parameters are critical for the process and what kind of

physical or chemical changes they cause, it can help in relating establishing a link

between process and simulations. Also, it is imperative that model results are de-

pendent on the accuracy of model constants. Model constants can be determined

from number of experiments; however, further tuning ofmodel constants is often

required to adequately simulate the experimental data.

Secondly, there are several theoretical models available to simulate a chro-

matographic process. Thesemodels are based onprocess assumptions and a priori

choice of an appropriate model is often challenging for a given chromatographic

process. System specific physical and chemical interactions are described bymass

transfer and thermodynamic models respectively and it should bemade sure that

the model system selected is appropriate for the application under development.

Also, lack of robust database for thermodynamics constants results in increased

uncertainty for application of the model, making the validation challenging.

To correlate the experiments and simulations, Chapter 4 and 5 attempt to

show model calibration and validation methodologies based on exhaustive ex-

periments on major and minor whey protein standards for the model validation.
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These learnings can help in refining the simulation approach on real systems.

Chapter 6 describes how learnings from experimental validation were applied for

crude whey protein concentrate. Figure 2.2 describes the overview of the thesis

in a nutshell. In the current process development paradigm, focus is on using

simulations for efficient reduction of the experiments incurred during develop-

ment, scale up, and operations. Fundamental understanding of chromatography

system parameters for exhaustive experimental validation of the simulation tool

is a prime step in a simulation tool calibration and validation.
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Chapter 3

Materials and Methodology

3.1 Introduction

It has been emphasised earlier that modelling and simulation can aid to acceler-

ate process development of liquid chromatography processes. Numerous mod-

els have been proposed which can help predict the outcomes of the experiments,

hence it is beneficial to compile these models in a tool which be helpful for bet-

ter understanding and application. This chapter discusses a new tool; Extensible

Process Simulator for Ion exchange Chromatography (ExProSim:IC), which can be

efficiently used for predicting outcomes of chromatographic experiments. In the

following sections firstly computational philosophy is described alongwithmath-

ematical models involved in the tool. Outline of the tool is given. Experimental

methods required for parameter estimation and validation experiments for whey

proteins are discussed in the subsequent sections. The chapter closes with tool

verification and literature based validation for ExProSim:IC.

3.2 Computational basis

Simulation of chromatographyhasmatured significantly in last three decades and

several models are available to predict possible outcomes [207]. Depending on

the underlying assumptions, these models range from the simplest ideal model

to most comprehensive GRM, and offer varying degree of accuracy [68, 208]. As-

sumptions which we have made are as follows;
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1. Column is radially homogeneous

Radial heterogeneity is highly dependent on the size of the column and it

has been proved experimentally that columns up to 80 cm diameter can

be as homogeneous as the analytical scale columns present in the market

[68]. This requires input profile of the load and mobile phase to be evenely

distributed across the column area [209]. With developments in design of

distributor plates, homogeneity can be easily achieved [210].

2. Mobile phase velocity remains constant throughout the column

It is rarely seen at preparative scale that the column is being operated at

more than 200 bar. From 0-200 bar, the compressibility of the mobile phase

can be neglected [211]. Thus according to the Darcy’s law, the mobile phase

velocity can be considered as constant as it is a function of pressure gradient

which remains constant throughout the column during the operation [212,

213]

3. Dispersion coefficient remains constant throughout the column

It is proven that the change in dispersion coefficient in mobile phase for

the solutes with respect to pressure is insignificant at lower concentrations,

however at higher concentrations this effect can be significant [214]. This

effectmight be further enhanced in case ofmicro-porous resins, where high

pressure drops are observed with increase in the flow rates [215]. Macrop-

orous resins offer lower pressure drops at higher flow rates, lowering the

variation in dispersion coefficient even at higher concentrations. It is im-

portant to note that the value of dispersion coefficient is not negligible but

the variation can be considered negligible [216].

4. Mobile phase is not adsorbed

Though it is hard to check the mass balance for the mobile phase, it can be

assumed that losses of the mobile phase in th column are negligible [217].

This can be said as systems are in place which deliver the flow consistently

and there is no change in the viscosity and density of the mobile phase at

isothermal and adiabetic conditions at which the columns are operated.
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5. The column is operated under constant conditions of pressure and

temperature

This ensures least variability in the thermodynamics of the adsorption-desorption

process

Though with advances in computers andmathematical algorithms, it has got eas-

ier to solve complex models such as GRM, it is challenging to find the input pa-

rameters for the same by doing experiments. Models like EDM where, diffusion

consideration are relaxed can be handy for predictions as experimental proce-

dures can be used to find lumped parameters to be used in the model equations

[216]. Hence, it was decided to start with EDM. On the other hand thermodynamic

models such as Langmuir, Freundlich, SMA, and MPM are well established to pre-

dict the nature of interactions between proteins and adsorbent. ExProSim:IC, a tool

formulated here incorporates amathematical solver for EDM along with the ther-

modynamic models. Details of these models are given in sections 3.2.1 and 3.2.2.

Mathematical models incorporated in the tool are discussed in the next section.

3.2.1 Mass transfer models

Numerous models have been proposed for chromatography simulations depend-

ing on the diffusion considerations. GRM considers all the possible diffusion phe-

nomena like pore diffusion, filmdiffusion, and surface diffusionwithin the packed

bed[218]. For fast processes, the GRM can be significantly simplified by preferen-

tial selection of extent of slow diffusion processes. EDM used here, is a simple

modification of GRM[219]. In this model, diffusion is represented by a lumped co-

efficient termed as axial dispersion coefficient (Dax)[68]. Pore and surface diffu-

sion areneglected to assume fastermass transfer resulting in lumped coefficient[220].

The mathematical form of EDM is represented by Equation 3.1,

εe
∂ci
∂t

+ (1− εe)
∂qi
∂t

+ u
∂ci
∂x

= εeDax,i
∂2ci
∂2x

(3.1)

Initial conditions alongwith Danckwerts andNeumann boundary conditionswere

used further for solving model equations [221].
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Initial conditions:

ci(t = 0) = ci,0 for x = 0 (3.2)

qi(t = 0) = 0 for 0 ≤ x ≤ L (3.3)

Boundary conditions:

ci(x = 0, t) = ci,inj for 0 ≤ t ≤ tp (3.4)

qi(x = 0, t) = 0 for 0 ≤ t ≤ tp (3.5)

∂ci
∂t

(x = L, t) = 0 for 0 ≤ t ≤ tp (3.6)

∂qi
∂t

(x = L, t) = 0 for 0 ≤ t ≤ tp (3.7)

3.2.2 Thermodynamic models

3.2.2.1 Langmuir model

The Langmuir isotherm takes into consideration consistency of sites where there

are fixed number of adsorption sites having equal energy. This suggests minimal

interactions between adjacent binding sites on a resin and only one molecule is

adsorbed per adsorption site. Equation 3.8 shows a single component generalised

Langmuir model equation. Dissociation constant, kd is defined as the ratio of des-

orption coefficient (kldes) to the adsorption coefficient (k
l
ads). Equation 3.9 shows

a kinetic form of Langmuir isotherm for multicomponent mixtures.

q =
Qmaxceq
kd + ceq

(3.8)

∂qi
∂t

= klads,iciQmax,i

(
1−

Ncomp∑
j=1

qj
Qmax,j

)
− kldes,iqi (3.9)
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As the equation describes the competitive behaviour of the protein molecules, it

has been widely applied for prediction purposes. However, Langmuir isotherm is

a single layer isotherm which may not be able to describe behaviour for all the

proteins. Adsorption is an effect of exchange of salt ions to protein molecules,

which is not separately defined in the isotherm equation. This means that, salt

interactions are considered in the lumped form of experimental constants. Con-

sidering this, it may be tricky to implement Langmuir isotherm for different salt

concentrations based on experiments performed at single salt conditions. In case

of gradient elution, where salt concentration changes with time, model constants

determined from constant salt concentration experiments, may not aid in right

predictions. It further neglects steric effects due to size of the protein and inter-

action of the protein with the adjacent binding sites which might hinder overall

binding.

3.2.2.2 Freundlich isotherm

Freundlich isotherm was proposed to describe non-ideal systems with reversible

adsorption. It is applicable to adsorption on heterogeneous surfaces and accounts

for multilayer nature of the kinetics. Equation for Freundlich isotherm is as given

by 3.10.

qe = Qfc
1/n
eq (3.10)

It suggests that the stronger binding sites are occupied first followed by weak

linkages and multilayer linkages. As the mass of the adsorbed concentration in-

creases, the energy is exponentially decreased for each adsorbed interactions lead-

ing to saturation. Qf is a coefficient of partition and ’1/n’ is an exponent of non-

linearity. ’1/n’ also decides the curvature of the adsorption isotherm across the

protein concentrations range. Value of ‘1/n’ =1 signifies that the relative adsorp-

tion was same across the concentration range. Typical value of ’1/n’ranges be-

tween 0.7-1 which indicates saturation of binding sites with increase in concen-

tration of the protein under investigation. It has been observed that, at higher

concentrations the value of n is large reducing the value of 1/n to zero. In these

conditions adsorption becomes random and independent of the protein concen-

tration. Therefore, Freundlich isotherm is not advisable at high protein concen-
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trations for both experiments or simulations.

3.2.2.3 Steric mass action model (SMA)

SMA overcomes drawbacks of the Langmuir isotherm. It considers salt interac-

tions during ion exchange of proteins onto resin. For electrostatic interactions

during adsorption, the exchangebetween salt andproteinmolecules canbe shown

as Equation 3.11.

ci + vq0 ←→ qi + vc0 (3.11)

Where, charge factor v is a stoichiometric exchange coefficient for salt and pro-

teins. Further, the equilibrium constant can be defined as Equation 3.12;

keq,i =

(
qi
ci

)(
c0
q0

)vi
(3.12)

The total concentrations of the sites in the resin is given by 3.13.

Λ = q̄0 +

Ncomp∑
i=1

(vi + σi)qi (3.13)

Furthermore, from the electroneutrality on the stationary phase, q0 and dq0/dt

can be calculated as Equation 3.14 and 3.15 respectively.

q0 = q̄0 +

Ncomp∑
i=1

σiqi (3.14)

dq0
dt

= −
Ncomp∑
i=1

σi
dqi
dt

(3.15)

Where, q̄0 is salt ions available for exchange, q0 is total salt ions on stationary

phase, c0 is total salt ions in themobile phase,Λ is the ionic capacity (total binding

sites on the resin), andσ is steric hindrance factor [139, 222]. From these, equation

for dq
dt
by SMA model is given by Equation 3.16.

a
∂qi
∂t

= ksads,iciq̄
vi
0 − ksdes,ic

vi
0 qi (3.16)
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Where, a is a quasi-stationarity indicator. a =0 signifies the rapid equilibrium

model and a=1 signifies the kineticmodel. Equilibrium constant keq = ksdes,i/k
s
ads,i

is a measure of the affinity of the macro-molecule towards the resin surface [223].

For a rapid equilibrium model (represented by ‘a=0’), only the value of keq is rel-

evant and not the individual rate constants, whereas kinetic model (represented

by ‘a=1’) is sensitive to both the rate constants. Value of ‘a’ also decides if the

problem is to be solved as algebraic equations (‘a=0’) or as differential equations

(a=1’). In this case, value of a was set to 1 to follow kinetic regime. Equilibrium

formulation of SMA is given by Equation 3.17 and was used further for fitting the

isotherm with experimental data,

ci =

(
qi
keq,i

)(
cs

Λ− (vi + σi)ci

)vi
(3.17)

Multicomponent form of SMA model is represented by Equation 3.18.

∂qi
∂t

= ksads,ici(Λ−
Ncomp∑
j=1

(σi + vi)qj)
vi − ksdes,iqic

vi
0 (3.18)

3.2.2.4 Mobile phase modulator Langmuir model (MPM)

Adsorption and desorption of a protein are regarded as competitive processes

where inclusion of salt shows its effect on the retention of the protein. Salt (S)

is considered inert in MPM isotherm. This means that dqsalt
dt

can be considered as

zero. Adsorption and desorption kinetics were represented by two separate ki-

netic coefficients kmads,i and k
m
des,i respectively as in case of Langmuir isotherm as

shown in Equation 3.19.

dq

dt
= kmads,ici(Qmax.i − qi)− kmdes,iqi (3.19)

The constants were further modified to include effect of hydrophobicity and salt

interactions as shown in Equations 3.20 and 3.21. During the binding step, kads0,i,

the adsorption coefficient of component i (m3/mol/s), ismuch larger than kdes0,i,

the desorption coefficient of component i (1/s), while at elution kdes0,i dominates.
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kmads,i = kads0,ie
γiS (3.20)

kmdes,i = kdes0,iS
βi (3.21)

Main advantage of the MPM model is that it can be applied for both loading and

elution steps as given in Equations 3.20 and 3.21. ’S’ denotes salt concentration of

elution component and kads0,i (ml/mg.min) and kdes0,i(ml/mg.min) are constants.

βi is a constant describing the ion exchange characteristic and γi (ml/mg) de-

scribes the hydrophobic interactions. Under loading conditions adsorption domi-

nates and during elution, desorption dominates. For loading conditions, S is given

by the buffer salt concentration only, i.e. kmads,i= kads0,i and kdes0,i= 0 unlike the elu-

tion conditions (S > 0), where kmads,i is reduced by the factor e
γS and kmdes,i is in-

creased by a factorSβi . In case of ion exchange chromatography, the value of γ can

be assumed to be negligible, however in this work γ was determined by inverse

fitting and is considered to see if it affects the predictions. Overall computational

methodology is shown in Fig. 3.2.

3.3 Experimental methodology

Once the tool is developed and data analysis methods are decided, it is important

to validate the computational methodology for ensuring its applicability. For the

practical validation of ExProSim:IC, experiments were planned which can serve as

a robust system for assuring its usability. Whey protein mixture was chosen for

this purpose as it gives a wide array of protein molecules varying in their electro-

kinetic properties, molecular weights, and structural conformations (Section 2.5).

It is also important to note that along with the validation purpose, separation of

individual whey proteins from industrial whey protein concentrate was targeted

further. Before validating for crude sample, it was easier to handle the standard

protein solutions in order to find out the model constants to be used for predic-

tion. Following Sections will discuss the details of materials, experimental set-

ups, generalmethodologies, and sample analysiswhichwere involved in thework.

As the primary aim was to find the model constants for simulation purpose, the
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methods have been categorised based on their applicability for models in consid-

eration.

3.3.1 Materials

Protein standards for Bovine Serum Albumin (BSA), α-lactalbumin (ALA), and β-

lactoglobulin (BLG) were purchased from Sigma-Aldrich Pty. Ltd. Sydney, Aus-

tralia. Standards for LF, LP, andWPCwere received from Tatua Co-operative Dairy

Company Ltd., Morrinsville, New Zealand. Blue dextran for porosity studies was

procured fromBio-rad laboratories, NewSouthWales, Australia. Acetic acid (CH3COOH),

sodiumacetate (CH3COONa),mono-sodiumphosphate (NaH2PO4), di-sodiumphos-

phate (Na2HPO4), sodiumnitrate (NaNO3), sodiumhydroxide (NaOH), sodiumchlo-

ride (NaCl), acetone (CH3CHO), acetonitrile HPLC grade (CH3CN), trifluoro acetic

acid/TFA (C2HF3O2), and ethanol (C2H5OH) were purchased from Sigma Aldrich,

Pty. Ltd. Sydney, Australia.

Resin SP sepharose FastFlow (SPFFTM), Capto QTM, and Capto STM resin in both

free form and in the form of prepacked columns of HiTrap (2.5 × 0.7 cm) were

bought from GE Healthcare, Sweden. XK-16/20 from GE Healthcare was used as a

column for higher scale processing. Column for size exclusion chromatography,

BIO-SEC 3 (30×0.45 cm)was purchased fromAgilent technologies, Victoria. These

columns, packed with 3 µ silica particles are coated with hydrophilic layer with

pore size of 100 A0 are ideal for high pressure size based separation of proteins

ranging within 0.1-100 kDa. High performance liquid chromatography (HPLC)

column zorbax 300SB (4.5×300 mm), with 5µm particle size was purchased from

Agilent technologies, Victoria. Larger pore size of the column is advantageous

for separating proteins and peptides above 4000 Daltons with a good resolution.

Column chromatography experiments were performed on NGC Bio-Rad system.

HPLC experiments for SEC was performed on Varian ProStar system, whereas,

HPLC for analytical resolution of proteins was performed on Agilent 1260LC sys-

tem. Details of the methodologies have been explained in Section 3.3.2.
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3.3.2 Sample analysis

3.3.2.1 Spectrophotometric analysis

Spectrophotometry can be used for chemicals and bio-molecules which show ab-

sorbance or transmittance of the intense light beampassing through the solution.

The wavelengths at which the maximum absorbance is obtained is a property of

the molecule and its constituents. Protein molecules are shown to show maxi-

mum absorbance at UV 280 nm due to presence of aromatic amino acids. It is im-

perative to understand that the absorbance shown by a specific protein is a prop-

erty of its amino acid sequence and structural conformation. It has been stated by

Beer-Lambert law that there is a linear relationship between the absorbance and

the concentration of a sample, however this is valid only at lower concentration

corresponding to absorbance less than 1 absorbance unit. Beer-Lambert law can

be stated as Equation 3.22.

A = A0 × l × c (3.22)

UV-vis spectrophotometer Jasco V-670 was used for analysis of protein samples

generated during batch studies. Path length chosen was 1 cm and the absorbance

was measured using quartz cuvettes.

3.3.2.2 Elemental analysis

Elemental analysis was performed to find out total protein based on carbon, hy-

drogen, and nitrogen content of the sample. It is often the most crude methods

of protein analysis as it gives the total protein and not concentrations of specific

proteins as HPLC does. Sample kept for analysis undergoes combustion and ele-

ments in the sample get oxidised into their gaseous forms. Carbon is converted to

carbon dioxide, hydrogen to water, nitrogen to nitrogen gas/ oxides of nitrogen,

and sulphur to sulphur dioxide. For a protein sample, as the peptide bond is made

of CONH linkage, % nitrogen is considered for further calculations. For a class

of protein, multipliers have been defined to convert total nitrogen content into

protein content. For whey proteins, multiplier used is 6.25. This is based on the

assumption that total protein content in food is 16% and all the nitrogen in wpc

is protein bound [224].
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3.3.2.3 SDS-PAGE analysis

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was performed to

separate proteins based on their molecular weights. The techniques was used as

a qualitative tool to check if the protein standards are in their usual state or not.

The bands misplaced from the expected place, suggest that the sample is either

degraded or has formed aggregates [225]. Mini-Protean TGX 12% acrylamide gels

(Bio-Rad Laboratories, New South Wales, Australia) were used for loading protein

samples on fixed amount basis and further run in Mini-PROTEAN Tetra Cell Sys-

tem (Bio-Rad Laboratories, New South Wales, Australia) for conducting the elec-

trophoresis at a voltage of 150mV. Stainingwas carried out by silver staining [226]

method to visualise presence and removal of impurities in the successive process

step samples.

3.3.2.4 SEC-HPLC

Size exclusion chromatography (SEC) ofmolecules ismainly based on theirmolec-

ular weights (size) and particle size of the resin used for the permeation. SE-HPLC

provides a better solution for analytical purpose as it provides size exclusion and

better resolutions. Here, SEC-HPLC was used for finding concentrations of BLG

(16kDa) and BSA (66kDa) from multicomponent breakthrough samples for major

proteins. Varian ProStar HPLC system was used for carrying out chromatography

experiments and data anlysis was performed in ’Galaxie’ tool fromVarian.Inc. Ag-

ilent Bio SEC-3 HPLC (4.6×300mm) columns with a particle size of 3 µmand pore

size of 100 was used for the analysis. These columns have proven to give higher

loading capacity, higher stability for salt based injections, and reproducibility for

the size based separation. They also provide faster separations than large particle

columns for a size range of 0.1 kDa to 100 kDa.

3.3.2.5 HPLC analysis

HPLCanalysismethodwas developed forfindingunknownconcentrations ofwhey

proteins form the experimental samples. Samples generated in multicomponent

breakthrough experiments for both acidic and basic proteins, and optimisation

experiments for crudewhey separation. TwodifferentHPLCmethods (HPLCmethod
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1 and method 2) were used for the analysis of basic proteins and acidic proteins.

Method 1 was developed to resolve basic proteins andmethod 2 was used for acidic

protein as well as crude whey analysis. As method development was based on the

molecules involved, details of method development and analysis is given in re-

spective sections. 1260 Infinity Micro-Scale purification system purchased from

Agilent Technologies, Victoria was used for HPLC analysis. Zorbax 300SB-C18 5

µm (4.6 × 250mm) column for HPLC analysis was procured from Agilent Tech-

nologies, Victoria, Australia. These columns have 5 µ silica particles coated with

highly hydrophobic c18 stationary phase. With a wide pore size of 300 , these

columns are ideal for high pressure analysis and separation of proteins and pep-

tides based on their hydrophobicity irrespective of their molecular size [227].

3.3.3 Determination of Langmuir isotherm parameters

Langmuir isotherm parameters were obtained by performing batch experiments

on a smaller scale. Resin was washed thoroughly with water to remove storage

solution (20% ethanol) and then contacted with equilibration buffer twice to en-

sure ionic consistency throughout the resin. Resin quantities were carefully por-

tioned by making a slurry of 50% resin to buffer and then pipetting out twice the

amount of volume that of required. The resin was then allowed to settle naturally,

supernatant was carefully removed, and then the tubes were weighed to ensure

equivalent weight of resin for all the tubes used (with <2% error).

3.3.3.1 Batch experiment

For adsorption isotherm experiment, 0.2 ml of pre-equilibrated resin was taken in

a centrifuge tube and was contacted with 5 ml of individual protein solutions of

different concentrations. The tubes were kept for mixing on a rocker shaker for

minimum of 3 hours at 25◦C and allowed to achieve equilibrium. Once the equi-

librium was achieved, tubes were centrifuged at 4000 rpm for 10 min to take the

samples out for further analysis of protein concentration. All the samples were

kept in triplicates to ensure the accuracy of the experiment. Further the plot of

adsorbed concentration to equilibrium concentration in the mobile phase for all

samples was estimated. All the constants (Qmax and kd for Langmuir,Qf andn for
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Freundlich) in the isothermmodelswere found out by non-linear optimization us-

ingMATLABR2014b (MathWorks, Inc., Massachusetts, USA). The curve also served

in determination of SMA and MPM isotherm parameters by inverse fitting.

3.3.3.2 Uptake kinetics

Uptake experiments were conducted in equilibration buffer in a centrifuge tube.

Pre-equilibrated 0.5ml of resinwas taken in a 50ml centrifuge tube and contacted

with 25ml of individual protein solutions of fixed concentration. Themixturewas

kept on a rocker shaker for mixing and sample of 200 µl were withdrawn, cen-

trifuged at 10000 rpm, and analysed by spectrophotometry for finding the con-

centration at every time point. Analysis and withdrawal was done in parallel so

that sampling could be stopped after saturation was reached. Total reduction in

the volumewas found to be less than 5% therefore a constant volumewas assumed

throughout the experiment. Experimental datawas further used tofit pseudofirst

order and pseudo second order models to check which one describes the kinetics

better. The obtained constants were used further in simulations. Same kinetic

constant were used in SMA isotherm parameters for representing adsorption rate

constant.

3.3.4 Determination of steric mass action parameters

For column experiments, NGCTMmediumpressure chromatography system (NGC)

was used. The system provides automated buffer blending systems with a flow

rate as high as 20 ml/min. Conductivity and pH can be measured on-line along

with UV-visible absorbance giving a better control on the experimental progres-

sion. Automatic sampler provides an error free continuous sampling of longer

chromatography runs such as breakthrough experiments. ChromLabTM software

was used for data collection and continuous monitoring of pH and conductivity

during the runs. The system was utilised for pulse experiment, gradient experi-

ments on HiTrap columns, and breakthrough experiments.
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3.3.4.1 Gradient elution experiments

Gradient experiments were performed to estimate the charge constant vi and

equilibrium constant keq,i. Column was equilibrated with the buffer. Protein so-

lutions at specific concentrations and fixed injection volume were injected on a

HiTrap column (0.96 ml) packed with the chosen resin. the column was washed

with 4 CV wash buffer to remove losely bound proteins. Bound protein was fur-

ther eluted by gradient elution at varying gradient slopes such as 5, 10, 15, 20, and

30 column volumes (CV) between 0-100% of the mobile phase B. The values of v

and keq were determined by fitting experimental data to Equation 3.23 for various

gradient lengths[228]. Standard deviation was found out for the same and mean

of the fitted constants were carried forward for prediction. Repeating the experi-

ments at different gradients lengths was needed to ensure that the constants are

valid for faster as well as slower changes in the elution mobile phase.

vr =

((
cv+1
a,s +

vdkeqεeΛ
v(v + 1)(ce,s − ca,s)

vg

) 1
v+1

− ca,s

)
(3.23)

Where; ca,s is concentration of protein in mobile phase at the inlet, ce,s is concen-

tration of protein in mobile phase at column exit, vd is column dead volume.

3.3.4.2 Breakthrough experiments

Breakthrough experiments are needed to determine the steric hindrance factor

for proteins (σi). Therefore, breakthrough profiles for respective proteins were

obtained at operating pH at different flow rates to ensure accurate estimation of

σi. Breakthrough curves were also used further for validation of ExProSim:IC. In-

let concentrations were chosen for major proteins based on their actual concen-

trations in crude whey as they were high enough for breakthrough analysis. On

the other hand, as the concentration of minor proteins is very low in the crude

whey, higher concentration solutions of standard minor proteins were preferred

in order to achieve the individual breakthroughs. Breakthrough curves were per-

formed at different flow rates (linear velocities) in order gauge if the simulation

tool can make predictions, consistent with experimental data at different flow

rate conditions. Time and volumes for breakthrough point, 10% breakthrough,
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halfway concentration and exhaustion were recorded for comparison with simu-

lations to assess accuracy of prediction. Steric hindrance factor, σi was estimated

by using Equation 3.24[229].

σi =
ψ

cin,i(
vb
v0
− 1)

[
Λ− cs

(
( vb
v0
− 1)

ψkeq

) 1
vi

]
− vi (3.24)

Where, ψ is the phase ratio; (1−εe)
εe

. Breakthrough curves were further used to find

out dynamic binding capacity (DBC) of the proteins towards the resin. DBC was

found out as given in Equation 3.25

DBC =
(v10%bt − vd)× c0

cv
(3.25)

It was important to assess the competitiveness of the proteins during adsorption

and hence multicomponent protein breakthrough were performed for both ma-

jor and minor proteins. It was expected to find the changes in relative affinity

and hence dynamic binding capacity of the individual proteins due to presence

of the other contenders for the binding sites. For multicomponent breakthrough,

solutions of major and minor proteins were prepared based on their percentage

contribution inwhey, and loaded continuously on toHiTrap column at 0.5ml/min

flow rate. Samples were collected throughout the experiment till the saturation.

Few samples were selected based on the shape of the curve towards saturation

and used for further analysis by using HPLC method developed for resolution of

whey proteins. Injection volume for all the samples was 100 µl.

3.3.5 Column physical parameters

3.3.5.1 Column evaluation:

Though most of the columns used were freshly bought pre-packed columns and

were already tested for the integrity at the factories, it was decided to check the

asymmetry and Number of transfer units(NTU) before and after usage of the col-

umn. 2% acetone was injected (2% CV) on a water equilibrated column at 20

cm/hr linear velocity and the peakwas analysed for its symmetry. NTUwas found
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Figure 3.1: An example of a typical chromatography peak analysis

out by Equation 3.26.

NTU =
µ2
f

δ2
= 5.54

[
vr
Wh

]2
(3.26)

Where, Wh is the peak width at half height, vr is retention volume, µ and σ are

first and second moments, and L is length of the column. Height equivalent to

theoretical plates (HETP) was simply given by L/NTU . Furthermore, reduced

plate height was given byHETP/dp. found out by using Equation 3.27.

h =
L

5.54dp

[
Wh

VR

]2
(3.27)

Where, dp is the resin particle diameter. A typical chromatography can be seen in

Figure 3.1

3.3.5.2 Pulse experiments:

Porosity of the column was determined by injecting pulses of tracers blue dex-

tran (0.5 mg/ml) and sodium nitrate (100 mM). 200 µl of these tracers were in-

jected and detected at 640 ηm for blue dextran and 310 ηm for sodium nitrate to

determine external(εe) and particle porosity (εp) respectively. Moment analysis

(Equations 3.28,3.29,3.30) for the peaks obtained at different flow rates ranging

from 0.2 ml/min to 1 ml/min was done in order to ensure accurate estimation of

diffusion coefficient (equation 3.32[5]. The column was washed and equilibrated

thoroughly after every run to target least possible tailing for blue dextran. Most
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of the experiments showed tailing factor of 1.6-2.05. The recommendation by FDA

for tailing factor for analytical purpose is tf<2 [230]. For sodium nitrate, the peak

tailing factors were close to 1 showing gaussian behaviour. Total porosity εt was

then obtained using the values of εe and εp (Equation 3.31[231]). This process was

repeated for all the columns used in the work for breakthrough analysis (SPFF,

Capto STM, and Capto QTM).

µf =

∫ t
0
c.t.dt∫ t

0
c.dt

(3.28)

δ =

∫ t
0
c.(t− µf )2dt∫ t

0
cdt

(3.29)

µf =
L

u
(εe + (1− εe)εpb0) (3.30)

εt = εe + (1− εe)× εp (3.31)

Dax =
δ2

µ2

Lu

2
(3.32)

This gives a dispersion coefficient for the tracer elements. Furthermore, to

find the fluid properties specific to the protein, Peclet and Reynolds number were

estimated. Peclet number (Equation 3.34) gives the ratio of convectivemass trans-

fer to the diffusive mass transfer, whereas Reynolds number (Equation 3.33) gives

the ratio of convective forces in themedium to the viscous forces. To find out dis-

persion coefficient of the proteinmolecules, Reynolds number and Peclet number

were determined using Equation 3.35.

Re =
uρεedp
η

(3.33)

Pe =
1

2
(0.2 + 0.011Re0.48) (3.34)

Pe =
udp
Dax

(3.35)
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Molecular diffusivity was found out by Equation 3.36 to compare the diffusiv-

ity of different protein molecules through the medium. Though there are numer-

ous equations tofind the diffusivity, thiswas chosen as itwas proposed specifically

for proteins and has been validated for more than 150 proteins [232].

Dm =
8.34× 10−8T

ηM0.33
(3.36)

3.3.5.3 Ionic capacity

Ionic capacity is a representation of ligand density for the resin. To estimate ionic

capacity of Capto STM, a displacement experiment was carried out. Initially col-

umn was saturated with 0.5 M HCl ions to ensure all the cationic sites are blocked

by H+ ions. Further column was washed by 0.1 M NaOH to displace H+ ions by

Na+ ions[229]. Conductivity and pH were monitored to detect the presence of

pure NaOH at the outlet. The value of ionic capacity,Λwas calculated using Equa-

tion 3.37. Ionic capacity was measured for all the HiTrap columns in the work

(SPFF, Capto STM, and Capto QTM)

Λ =
cNaOHvNaOH
cv × (1− εt)

(3.37)

3.3.6 Buffer preparation

Buffers being an integral part of the experimental systems used here, were pre-

cisely prepared in ultra pure water (resistivity 18.4MΩ − cm). pH of the buffer

was chosen based on isoelectric points of both the proteins to ensure enoughbind-

ing on the resin. Equilibration and wash buffer were prepared at the chosen pH.

De-ionized water was used for ionic capacity determination. All the buffers were

filtered by using 0.45 µmWhatman filter paper using vacuum filtration. Protein

solutions for all experiments were filtered through Pall Biosciences PVDF filters

of 0.45 µm syringe filter.
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3.3.7 Crude whey processing

Breakthrough experiment of crude whey protein concentrate was performed on

HiTrap Capto Q column at 0.5 ml/min. 4 mg/ml concentration of WPC was pre-

pared. As the solution was turbid, it was centrifuged at 10000 rpm and further

filtered through 0.45 µm filter before loading on the column.

3.4 ExProSim:IC

Overview of ExProSim:IC is shown in Figure 3.2. ExProSim:IC is designed to gain

basic understanding of the process, in order to practice goal oriented separa-

tion. ExProSim:IC is a customisable numerical tool for solving various kinds of

binding models such as; Langmuir isotherm, Freundlich isotherm, steric mass ac-

tion isotherm (SMA), and mobile phase modulator isotherm (MPM), which can be

solved in combination with mass transfer models such as Equilibrium dispersive

model (EDM). Details of the models included are discussed in Section 3.2.1 and

3.2.2.

ExProSim:IC has two different modules. First module is a ’parameter estima-

tion’ module in which curve fitting is performed for models and experimental re-

sults for determination of coefficients. Second stage is ’prediction’ module which

can be used for predicting the experimental profiles using model constants from

the first module.

3.4.1 Parameter estimation module

Themodels have coefficients, which govern the behaviour of the phenomena they

describe, and signify physical or chemical characteristic of the proteins. These

coefficients or model constants are found out by performing basic experiments.

These include experiments such as; pulse flow to determine porosity’s and col-

umn consistency, adsorption and uptake experiments to find basic binding char-

acteristics of the protein-resin interaction, breakthrough experiments for flow

kinetics of the protein through the resin column. Detailed methodology of exper-

iments carried out for finding model constants is given in Section 3.3. It can be
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Figure 3.2: Schematic representation of data analysis and computational method-
ology

said that substantial amount of experiments may be required for parameter esti-

mation and question can be is it worth to follow such methodology rather than

investing resources directly onto developmental experiments. As parameter esti-
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mation experiments lead towards a platform for accurate prediction, it can help

in reducing number of experiments during process development phase of the sys-

tem. Experiments performed for parameter estimation are described in Section

3.3.3 to 3.3.5

In the first stage, data from number of experiments were further used in Ex-

ProSim:IC for data fitting to equilibrium models in order to find model constants.

Estimation of parameters for Langmuir, Freundlich, and MPMmodel was done by

’inverse fitting’ the model equation parameters by using curve fitting application

in MATLAB 2014b to fit the equation to the experimental data (Qmax, kd for Lang-

muir,Qf andn for Freundlich, andQmax, kmdes, k
m
ads, γ forMPM). The error between

the fitted curve and experimental curve was minimised based on equation 3.38.

Parameters for SMAwere found by two different methods and compared for their

predictability. First method was an experimental approach as discussed in Sec-

tion 3.3.4. Second method was ’inverse fitting’ where, patternsearch optimisation

tool was used to fit the Equation 3.17 to the adsorption data. Curve fitting was

performed to minimise the error where yexp is an experimental value and ycalc is

value obtained from the model fit. model constants were changed strategically to

get the best fit.

Errfun =
N∑
i=1

[yexp − ycalc]2 (3.38)

The minimisation function fminsearch was chosen for optimisation. Logical ini-

tial guesses were made in order to start the iterative estimation for minimum.

Considering the learning’s from one of the research works about error induced

because of initial guesses [229], global optimisation tool was used to avoid the ef-

fect of local minimal during the iterations and hence to reduce the dependency

on the initial guesses. 3000 iterations were done for the minimisation algorithm

along with use of GPS Positive basis 2N and Nelder-Mead methods to ensure min-

imum error. Uptake kinetics experimental data was used to fit the unadsorbed

concentration c vs time for pseudo first order (Equation 3.39) and pseudo second

order equations (Equation 3.40). The model constant for a better fit was chosen

further (k1 or k2).

ln(qe − qt) = lnqe − k1t (3.39)
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t

qt
=

(
1

k2q2e
+

t

qe

)
(3.40)

Where, qe is stationary phase concentration at equilibrium and qt is stationary

phase concentration at any time t from start of contact to saturation of the sta-

tionary phase.

The values of the model constants obtained here were used further for break-

through predictions in ExProSim:IC.

3.4.2 Prediction module

Parameters from the chosenmodels, for all the proteins in the mixture to be frac-

tionated are put into input matrix in the tool. This is followed by defining the

experimental system including column configuration, flow conditions, proper-

ties of mobile and stationary phases. Column is further divided into number of

intersections called meshes at which the model equations are solved (Nx for ax-

ial coordinate and Nt for time coordinate). ExProSim:IC uses ‘method of lines’

[233] which is implemented in ’pdepe’ function in MATLAB. ’pdepe’ solves initial-

boundary value problems in the one space variable ’x’ and time ’t’ for system of

parabolic or and elliptic equations. Functions for system parameters, inlet con-

ditions, boundary conditions were solved together using this function. Accord-

ing to ‘method of lines’, axial coordinate is discretised first to convert the partial

differential equations into ordinary differential algebraic equations in time. Fur-

ther discretisation in the time domain is performed using ’ode15s’ which ensures

efficient treatment of Jacobian matrices. This reduces the differential algebraic

equations into simple algebraic equations which can be easily solved for the solu-

tion on axial mesh as defined in the program. Solution at any point in the column

can be extracted from the program and a profile for breakthrough at given time

points can be plotted.

3.4.3 Tool verification

There are two methods to validate a code. Firstly, code to code validation can

be done where predictions from the current code are compared with another al-
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ready established code for same experimental and model constants. This can be

performed exhaustively on numerous datasets to gain more confidence. Another

way of validation is experimental validation, where at least 3 experiments for a

system of proteins are used as a framework for calibrating model constants in it-

erative way by minimising the errors to least possible value. This section is called

as code verification and not code validation as preliminary work on verification

of the workability of the tool is presented.

Initially, an assessment of model constants is carried out for gaining more

understanding about the effectiveness of the tool to handle and represent these

model constants. This was followed by a basic comparison of simulations from the

tool to CADET simulations in order to check if it is workable for simulating chro-

matography processes. For the tool, meshing is a critical step in the discretisation

process as it affects the accuracy and computational time. High number of mesh

points give higher accuracy but they also increase the computational time. On the

other hand, accuracy is compromised when mesh points are too low. Here, aim

was to find out criteria for optimum mesh size which will give required accuracy

without compromising on computational time. To gauge the criteria for mesh in-

dependency, number of meshes along axial and time coordinate are varied, and

predictions obtained at consecutive mesh points were compared for root mean

square error and coefficient of determination between the curves. Value of ∆x

and∆t were found out from this exercise for which the RMSE and CoD remained

constant for further change. These values of∆x and∆t were considered for sim-

ulating rest of the scenarios in the thesis. In case of change in column length or

run time,∆x and∆t were adjusted back to obtained values by changing number

of discretisation intervals.

3.4.4 Experimental validation

As the thesis is also to gain insights about the separation of whey proteins, ex-

haustive code to code validation is not carried out and more emphasis is given on

experimental validation. Initial experimental validation of the tool was carried

out with experimental and simulation data from the literature. Each model com-

bination was validated for minimum of three literature cases which are discussed
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further in Section 3.5.3. Exhaustive experimental validation was carried out on

experiments performed for major and minor whey proteins in Chapters 4 and 5

respectively. Errors between predicted and experimental breakthrough curves

were determined by calculating mean square error (MSE), standard deviation of

mean square error (SDMSE), root mean square error (RMSE), and coefficient of

determination (CoD) between the curves. Standard error is defined as standard

deviation divided by the square root of the sample size. This is shown in equation

3.41. The standard error is also a measure of variability as the standard deviation

(SD). As the data sets chosen are processed by interpolation of data for experi-

mental time data, standard error gives a better estimate of the variability of the

chosen data set from the curve predicted curve with respect to experiments.

SE =
∑ (y − y′)2

n
(3.41)

Where, y and y’ are values of respective points of two data sets being compared

and n is number of points. Important error parameters used here for comparing

the curves were RMSE which gives the variability of the predictions with respect

to experimental data. This was calculated by equation 3.42. It can be said that

lower the RMSE value, closer are the two curves to each other.

RMSE =

√∑ (y − y′)2
n

(3.42)

It is also true that RMSE is a function of the sample size and may not give a sta-

tistically significant picture. If the number of points under consideration are too

many, standard error automatically goes down which may not reflect the com-

plete variability of the sample. For making the comparison independent of the

sample size, correlation coefficient between experimental and predicted data sets

was determined. The squared value of correlation coefficient is called as CoD.

Higher the value of CoD towards 1, shows higher overlap between the data sets.

CoD was determined as in Equation 3.43.

CoD =

(
1

n

∑ (y − ȳ)(y′ − ȳ′)
SDexp.SDpred

)2

(3.43)
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Where, SD is standard deviation. ȳ and ȳ′ are mean values of the datasets.

3.5 Results and discussions

For ion exchange chromatographic processes, factors such as; protein concentra-

tion, flow velocity, column dimensions, resin characteristics, and properties of

proteins play an important role. Their effect on separation characteristics is pre-

dominant [234, 235]. It is important to know if the tool developed can predict

the changes induced by variation of these parameters. Easiest way to check that

was to pick cases from the literature and assess if they are predicted well by Ex-

ProSim:IC. Minimum of three cases were chosen for each model combination in

order to confirm if the predictability of the tool is acceptable however, few pre-

liminary checks for the verification of the tool were required before its implemen-

tation.

3.5.1 Tool verification

3.5.1.1 Assessment of model constants

It was important to assess if the code developed is solving the model equations

correctly. As thermodynamic model constants are important in solving the equa-

tions accurately, it is important to know if the code is sensitive to changes in the

model constants. Hence, effect of model constants on breakthrough curves was

determined by choosing extreme values (three values; low, middle and high) of

the model constants in the context of the protein data sets chosen from litera-

ture. Values of other model constants were kept at reported values when one

parameter was varied during these verification runs. For Langmuir isotherm, an

example of BLG from the literaturewas chosen to see if changes inQmax, kd, and k1

brings any change in the breakthrough profile or not [1]. For SMA, Insulin break-

through profile from Karlsson et al was chosen and changes in charge value v, σ,

keq, and ionic capacity λ were checked for changes in the breakthrough profiles.

For MPM, changes in Transferrin breakthrough profiles were analysed for respec-

tive changes in kads0, kdes0, β, and γ. The representative values at which the data

is presented here, are given in Table 3.1.
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Table 3.1: Representative values at which the tool verification was performed for
all three isotherms

Langmuir BLG SMA Insulin MPM Transferin

Qmax kd k1 v σ keq λ kads0 kdes0 β γ

Low 0 0.008 0 0 35.1 0.54 0 0 0 0.58 0
Mid 339 0.8 0.035 1.25 175.5 5.4 1050 0.055 5 2.9 2
High 678 8 3.5 2.5 351 540 2100 0.55 50 11.6 4

Langmuir Isotherm verification

(a) (b)

(c)

Figure 3.3: Tool verification for variation in Langmuir isotherm model constants
based on data from Elsayed et al. [1]. a)Qmax b) kd c) k1

For Langmuir isotherm values optimised in the literature were taken as refer-

ence. For Qmax, value seemed very high, hence it was doubled to achieve a high
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value and set to zero to see what happens at lowest possible binding capacity. Fig-

ure 3.3(a) shows a steep breakthrough for the lowest values ofQmax suggesting no

binding in the column. For a higher value of binding capacity, prolonged reten-

tion of the protein was observed and breakthrough was achieved much later. For

kd, it was expected that with increase in the value, the desorption should increase

leading to earlier breakthrough. As kd value from the paper is very low, it was

decided to consider it as a low andmultiply it 100 and 1000 times for a middle and

high values. Figure 3.3(b) shows an expected trend. For values of k1, optimised

value was considered as a mid value. For higher value it was multiplied by 100

and lowest value was set to zero. k1 value shows the adsorption rate coefficient

so it is expected that with increase in k1 value, the breakthrough point should

move farther. It was also observed in Figure 3.3(c), that the breakthrough slope

became steeper with increase in adsorption rate coefficient. At zero k1 value the

adsorption was found to be zero.

SMA Isotherm verification

For SMA, charge values are used in exponential function. The charge value re-

ported in the literaturewas very highhence itwas considered as the highest value.

The lowest value was set to zero and middle value was considered at 50% of the

reported value. It can be seen in Figure 3.4(a) that variation in charge value is di-

rectly proportional to the binding capacity of the protein. It is obvious that the

relation is not linear as the function is exponential. As the charge value decides

the binding strength of the protein, this is an expected outcome. It can also be ob-

served that the slope of breakthrough did not change with change in the charge

value. The equilibrium constant for SMA is a ratio of desorption constant to ad-

sorption constant, hence it is expected that with increase in the value of keq, the

breakthrough capacity should decline. It was necessary to gauge an effect of equi-

librium constant in a wider range as the adsorption and desorption rate constants

can vary in multiples of 10 with respect to each other even with a smaller change

in the process conditions. Hence, the value from the literature was considered as

a middle point and lowest and highest values were defined at a factor of 10.

Figure 3.4(b) shows a similar profile. High value of equilibrium constant can
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(a) (b)

(c) (d)

Figure 3.4: Tool verification for variation in SMA isothermmodel constants based
on data from Karlsson et al. [4]. a) Charge v b) keq c) σ d)λ

mean either higher desorption constant or lower adsorption constant. It is ex-

pected that if the desorption rate changes, the slope of the breakthrough should

change, however, change in adsorption constant might only reflect in change in

binding capacity. Steric hindrance factor works against the binding of the protein

as higher the resistance of protein against each other, lower will be their binding

on the resin.

The trend shown in Figure 3.4(c) supports this hypothesis. The range of values

forσwere derived by considering the data from the referred literature as themin-

imum. Furthermore, ionic capacity gives an estimate of number of binding sites

on the resin. It is obvious that more number of binding sites can allow higher

binding for the proteins. The values selected for λ were based on ion capacity
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values of resins available in the market. The resin used in the work referred, of-

fered very high capacity hence it was set at high level. Lowest was defined as zero

and middle values were derived as 50% of the highest. As shown in Figure 3.4(d),

expected decline in binding capacity was observed with decline in ionic capacity

constant.

MPM Isotherm verification

(a) (b)

(c) (d)

Figure 3.5: Tool verification for variation inMPM isothermmodel constants based
on data from Karlsson et al. [4]. a) kads0 b) kdes0 c) β d)γ

For MPM isotherm, the optimised values of kads0 and kdes0 were considered as

middle values. Lowest values were set to zero and highest values were set to 10

times the reported values. It can be observed in Figure 3.5(a) that with increase in

kads0, the binding capacity was improved. At zero kads0, no protein was adsorbed
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as expected. In contrast to this, when the value of kdes0was set to zero, the binding

capacity was very high. At highest kdes0, binding capacity reduced to almost zero.

This is expected from the definition of the rate constants. It was expected that

the slope would also vary with change in desorption constant, however, it was not

observed. Variation of kdes0 variation can be seen in Figure 3.5(b).

β value is defined for a factor responsible for ionic interactions. It is analo-

gous to v in SMA isotherm hence, similar behaviour was expected for β as well.

It can be observed in Figure 3.5(c) that binding capacity increased with increase

in the value of β. β is indirectly involved in determination of kmdes and is an ex-

ponent of salt concentration (Sβ) as given in Equation 3.21, its effect cannot be

directly compared with charge value from SMA. As the salt concentrations are

generally very low, β may not be as sensitive as the charge value. γ value cap-

tures hydrophobic interactions for the proteins. The variation in γ values is often

overlooked in case of ion exchange chromatography, however, as shown in Figure

3.5(d), it has significant impact on the breakthrough curves. When the curves for

lowest value of γ (zero) andmiddle value of γ were compared, it was observed that

hydrophobic interactions play significant part in the binding process. For higher

γ higher binding was observed. γ is used in determination of adsorption constant

kmads in an exponential function as given in equation 3.20. Effect of γ may also be

dependent on salt concentration of the medium.

This exercise gave a picture of how themodel constants are related in location

and shape of the breakthrough curve. It was repeated for all the experimental sys-

tems used in this work (Not shown here). The knowledge gained can be used in

adjusting the parameters for the experimental validation studies. Extent of effect

of these parameters are system specific and the numerical change in the param-

eters may be based on trial and error till an expected fit for simulation curves is

achieved. Ideally once the parameters are determined for a system by performing

this exercise, it should establish a successful set of thermodynamic constant for

the system to make future predictions.
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(a) (b)

Figure 3.6: Comparison with CADET simulations using Langmuir isotherm model
constants. a)initial comparison b) postQmax and kd modification

3.5.1.2 Verification against a reference tool

To assess ExProSim:IC for its predictability, it was decided to compare the simula-

tion results to an established tool such as CADET. Comparison with CADET is not

intended here. As both the codes have different framework, direct comparison is

not possible. CADET is also a well validated tool hence, intention is to use it as a

reference. Overview of features of CADET were discussed in Section 2.4.1. Simu-

lations for CADET can be run on a web interface (CADET web user interface) [136].

It was tricky to find examples from the literature which can provide constants

for simulation in CADET, as framework of CADET is detailed and manymodel con-

stants are required for GRM simulations. For ease of comparison, three examples

from theCADETweb interface, one for each isothermwere chosen for comparison.

Model and system parameters were extracted, used as inputs for ExProSim:IC, and

the simulations were compared. For Langmuir isotherm, huge error was obtained

when comparedwith CADET simulations as seen in Figure 3.6(a). The difference in

number of model constants, mass transfer model, and implementation method-

ology may be responsible for the error. Also the diffusion coefficient considered

here was an overall diffusion coefficient in GRM. Input parameters in ExProSim:IC

were further modified to fit the simulations to CADET simulations as shown in

Figure 3.6(b). The change in model constants was derived from the lessons from

earlier sections. For example, as the ExProSim:IC simulation curvewas farther than
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(a) (b)

(c)

Figure 3.7: Comparison with CADET simulations using SMA isotherm model con-
stants. a)initial comparison b) post v modification c) post ksads modification

CADET, value of Qmax was adjusted (RMSE 3.65E-3, CoD 0.8921). kd was further

modified to adjust the slope (RMSE 8.26E-4, CoD 0.9867). Thesemodificationswere

done on trial and error basis and errors for every simulation fit was measured.

Similarly, for SMA isotherm it can be observed in Figure 3.7(a) that CADET sim-

ulation was over predicted by ExProSim:IC (RMSE 3.08E-3, CoD 0.9034). In order

to fit the data, charge value was reduced and improved result were obtained as

shown in Figure 3.7(b) (RMSE 3.41E-4, CoD 0.9567). To further adjust the slope,

value of ksads was adjusted and better results were obtained (RMSE 5.64E-7, CoD

0.9903). In case of MPM isotherm, huge difference in the preliminary predictions

was observed (RMSE 5.90E-2, CoD 0.8712). To fit the curves, the value ofQmax was

reduced to reduce the binding capacity (RMSE 8.03E-7, CoD 0.9867). Figure 3.8(b)
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(a) (b)

Figure 3.8: Comparison with CADET simulations using MPM isothermmodel con-
stants. a)initial comparison b) postQmax modification

shows the final fit. Initial and final parameters for all three isotherms are given

in Table 3.2.

It can be said that enough understanding about the model constants is gained

through a tool verification exercise. However, adjustment of these parameters on

a trial and error basismay take a long time to reach to the best fit. More confidence

should be gained based on exercising data fitting for different protein systems.

3.5.1.3 Mesh independence study

Literature data of El-sayed and Chase [1] was used for mesh dependency studies.

For finding out dependency of mesh parameters on the solution. Initially axial

mesh points were varied by keeping time mesh points to 50. Once the number of

axial mesh points for least variation was optimised, timemesh points were varied

from 10-100. Error between the curves were found out and plotted against the

mesh points as shown in Figure 3.9 and 3.10. It can be seen that the error for axial

coordinate were reduced to minimal atNx value of 20 and error for time coordi-

nate was reduced to least atNt value of 50. From these values,∆x and∆t values

were found out for the column and were kept constants for all the simulations in

this thesis by varying number ofmesh points for a different lengths of the column.

Error tables for mesh study are given in Appendix B, Tables B.11 and B.12.
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Table 3.2: System and model constants from CADET web interface for ExProSim:IC
code verification

System parameters

Length (m) 0.014
Velocity (m/s) 5.75E-4
porosity 0.37
Dispersion coefficient (m2/s) 5.75E-08

Model constants CADET Modified

Langmuir
cin (mol/m3) 7.14E-03 7.14E-03
Qmax (mol/m3) 4.88 2.44
k1 (1/s) 1.14 1.14
kd (mol/m3) 0.002 0.001
SMA
cin (mol/m3) 1 1
v 4.7 1.88
σ 11.83 11.83
λ (molm3) 1200 1200
ksads (mol/(m3/s)) 35.5 42.6
ksdes (mol/(m3/s)) 1000 1000
s (mol/m3) 50 50
MPM
cin (mol/m3) 7.14E-03 7.14E-03
Qmax (mol/m3) 4.88 2.44
β 1 1
γ 1 1
kmads (m3/mol.s) 1.14 1.14
kmdes (m3/mol.s) 0.002 0.002
s (mol/m3) 100 100

3.5.2 Preliminary experimental predictions

Initial predictions were made using experimental parameters from the research

paper [1]. It can visually be said that there is high error in predictions based on

experimental factors, however errors were determined for predicted curve to ex-

perimental curve and are shown in Table 3.3. Even if the overall curve to curve

error were low (the RMSE values were low and CoD values close to 1 showing an

accurate fit), it was observed that the curves differed highly in their shape and

nature. For a realistic comparison from experimental perspective, it was decided

to compare important experimental events on the breakthrough curve such as
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(a) (b)

Figure 3.9: Mesh independency study for ExProSim: IC code for axial coordinate.
’RMSE’ and ’CoD’ show root mean square error and Coefficient of determination
between consecutive curves respectively. ’Nx range’ shows shows consecutive
number of discretisation intervals for axial coordinate between which the error
is measured. (a) ALA and (b)BLG

(a) (b)

Figure 3.10: Mesh independency study for ExProSim: IC code for time coordinate.
’RMSE’ and ’CoD’ show root mean square error and Coefficient of determination
between consecutive curves respectively. ’Nt range’ shows consecutive number of
discretisation intervals for time coordinate between which the error is measured.
(a) ALA and (b)BLG

0%, 10%, 50%, and 100%. Table 3.4 shows presence of higher error between the

predicted and experimental curves suggesting that the change in the model con-

stants is required for a better fit. For CoD values of even 0.8 are considered as

good fit for modelling purpose, however in this case, 0.9254 did not show signifi-

cant match for the predictions. This also shows that the RMSE values of the order
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of 10−3 do not represent a good fit. It was decided to practise the same compar-

ison method for rest of the breakthrough curves so that predicted results can be

compared from experimental perspective.

(a) (b)

Figure 3.11: Comparison of ExProSim:IC predictions with experimental parameters
and simulation data from literature [1](a) ALA and (b)BLG

Table 3.3: Errors for Langmuir:EDM single component breakthrough prediction
using experimental data from El Sayed and Chase [1]

ALA BLG

Exprosim sim Exprosim sim
MSE 0.0116 0.0051 0.0039 0.0041

CoD 0.0191 0.0070 0.0074 0.0066

RMSE 0.0005 0.0039 0.0000 0.0007

CoD 0.9399 0.9254 0.9538 0.9649

3.5.3 Literature based validation

3.5.3.1 EDM with Langmuir isotherm

1. ALA and BLG breakthrough

Literature data of El-sayed and Chase [1] was used as a first case study. The

work focuses on use of EDM and Langmuir isotherm for prediction of single

and multicomponent breakthrough curves for major whey proteins, ALA

and BLG. ExProSim:IC was used further with modified constants in order to
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Table 3.4: Two sets of simulations from ExProSim:IC and El-Sayed and Chase [1] by
using experimental parameters compared with experimental data

Protein BT% Experimental
El sayed
simulations % error ExProSim:IC % error

BLG 0 47.06 9.63 79.54 47.89 -1.76
10 60.25 46.34 23.09 65.83 -9.26
50 98.61 95.41 3.25 99.34 -0.74
100 241.63 228.45 5.45 144 40.40

ALA 0 205.01 53.45 73.93 173.41 15.41
10 246.34 131.36 46.68 195.42 20.67
50 361.23 245.77 31.96 236.74 34.46
100 877.98 497.84 43.30 351.35 59.98

fit the experimental data available in the paper for both single and multi-

component systems and the data is compared with experimental as well as

simulation curves from the paper.

Single component breakthrough prediction

Modifiedparameterswere comparedwith the reportedparameters obtained

from experiments and simulations as shown in Table 3.5. Fig. 3.12 shows

comparison of ExProSim:IC predictions to experimental and simulated data

for individual proteins. The data for comparison for predicted profiles is

shown in Table 3.6. It can be said that ExProSim:IC predicted the experi-

mental data for both the proteins with less than 5%error throughout the

breakthrough curve.

Table 3.5: Comparison ofmodifiedparameters for ExProSim:IC simulationswith ex-
perimental data and simulation data from [1] for single component breakthrough
predictions

BLG ALA

Parameter Exp El-Sayed
ExProSim:IC:
IC Exp El-Sayed

ExProSim:IC:
IC

Qmax (mg/ml resin) 113 113 113 147 220.5 220.5
kd (mg/ml) 0.008 0.008 0.008 0.029 0.029 0.029
k1 (ml/mg.min) 0.035 0.055 0.025 0.030 0.030 0.025
Exp:Experimental, El-Sayed: El-Sayed and Chase simulations,
ExProSim:IC: Simulations from ExProSim:IC
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(a) (b)

Figure 3.12: Comparison of ExProSim:IC predictions with experimental and simu-
lation data from literature [1](a) ALA and (b)BLG

Table 3.6: Comparison of breakthrough curves for Exprosim:IC simulationswith ex-
perimental data and simulation data from [1] for single component breakthrough
predictions

Protein BT% Experimental
El-Sayed
Simulations % error Exprosim:IC % error

BLG 0 47.06 47.75 -1.47 47.89 -1.76
10 60.25 62.63 -3.95 63.06 -4.66
50 98.61 96.23 2.41 97.65 0.97
100 241.63 182.54 24.45 181.65 24.82

ALA 0 205.01 187.69 8.45 195.92 4.43
10 246.34 233.35 5.27 264.32 -7.30
50 361.23 349.67 3.20 364.56 -0.92
100 877.98 630.52 28.19 653.06 25.62

Multicomponent breakthrough prediction

Figure 3.13 shows comparison of ExProSim:IC predictions with experimen-

tal data and simulations from El-Sayed and Chase [1] for multicomponent

breakthrough curves. Simulations were performed by adjusting the param-

eters formulticomponent experimental data. Modifiedparameters aremen-

tioned in Table 3.7.

Simulations performed for breakthrough curveswere further comparedbased

on the breakthrough points at 0%, 10%, 50% and 100% to have a closer look
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Figure 3.13: comparison of ExProSim:IC predictions for multicomponent break-
through with experimental and simulation data from the literature

Table 3.7: Comparison ofmodifiedparameters for ExProSim:IC simulationswith ex-
perimental data and simulation data from [1] for multicomponent breakthrough
predictions

BLG ALA

Parameter Exp El-Sayed
ExProSim:IC:
IC Exp El-Sayed

ExProSim:IC:
IC

Qmax (mg/ml resin) 113 339 339 147 220.5 220.5
kd (mg/ml) 0.008 4.8 4.8 0.029 0.029 0.029
k1 (ml/mg.min) 0.035 0.035 0.035 0.030 0.030 0.030
Exp:Experimental, El-Sayed: El-Sayed and Chase simulations,
ExProSim:IC: Simulations from ExProSim:IC

at the predictive ability of ExProSim:IC for multicomponent systems and is

shown in Table 3.8. It can be observed that the profiles obtained using Ex-

ProSim:IC show ≈5% error for most part of the breakthrough however, for

100% breakthrough point the error was high for ExProSim:IC simulations as

well as for simulations from El-Sayed and Chase [1]. This can be due to

slower diffusion of BLG and ALA which may not be captured by EDM due

to lumped diffusion coefficient.

2. Immunoglobulin-G breakthrough

H. Bak et al. studied the effect of varying inlet concentrations on the break-

through profile [2]. Though binding of IgG with different resins have been
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Table 3.8: Comparison of breakthrough curves for Exprosim:IC simulationswith ex-
perimental data and simulation data from [1] for multicomponent breakthrough
predictions

Protein BT% Experimental
El-Sayed
Simulations % error Exprosim:IC % error

BLG 0 66.06 68.2 -3.24 65.97 0.14
10 69.65 74.36 -6.76 71.2 -2.23
50 92.1 93.2 -1.19 91.6 0.54
100 110.21 101.2 8.18 103.92 5.71

ALA 0 196.30 185.89 5.30 179.18 8.72
10 272.45 246.67 9.46 258.45 5.14
50 335.47 356.34 -6.22 332.53 0.88
100 548.85 576.04 -4.95 576.73 -5.08

explored in the paper, this work describes the profiles for MabSelect resin.

It can be observed in Figure 3.14 that, ExProSim:IC predicts the experimental

profile better than lumpedparametermodelwhich is used in thepaper. This

is due to the fact that the lumped parameter model considers axial disper-

sion to be negligible whereas it is well accounted in ExProSim:IC. The input

parameters from the paper were adjusted with an appropriate multiplier in

order to fit the experimental data better. The adjusted parameters can be

seen as in Table 3.9. The predictionswere found to be consistent throughout

the range of concentration from 20% to 100%. This shows that the simula-

tions performed by ExProSim:IC is sensitive to change in concentration of

the protein and shows consistent predictions.

Table 3.9: Adjusted model constants for prediction of breakthrough for IgG at
varying inlet concentration

Parameter Experimental multiplier Modified value
Qmax (mg/ml) 57.5 0.6 34.5
kd (mg/ml) 3.0 0.5 1.5
k1 (ml.mg/min) 0.0501 1 0.0501

3. BSA and Lysozyme breakthrough

The case study was chosen to see how proteins of different sizes (lysozyme-

14kDa and BSA-66 kDa) impact on the predictions using simple model such

as EDM. Two proteins which are distant in molecular weights [3]. This is
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(a) (b)

(c) (d)

Figure 3.14: Prediction of breakthrough curves for IgG on MabSelect at different
inlet concentrations showcasing the prediction accuracy for ExProSim:IC. ’% Ex-
perimental’ shows Rabbit IgG antiserum strength diluted in equilibration buffer

important to check, as the diffusion through resin is dependent on the size

of the protein. Table 3.10 shows the modified parameters for simulation to

fit the data to experiments. For lysozyme, very good fit was observed as

shown in Figure 3.15(a), whereas for BSA (shown in Figure 3.15(b)) both the

simulations were not able to predict the experimental data till saturation,

though the breakthrough point was well predicted.

As both the models, kinetic model from the paper and ExProSim:IC: EDM

showclose predictionswith aCoDof 0.9617 and0.9845 respectively for lysozyme,

it can be said that bothwere able to predict the lysozyme behaviour. Experi-

ment for BSA shows the inability to reach saturationwhichwas attributed to
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(a) (b)

Figure 3.15: Prediction of breakthrough curves for lysozyme (14 kDa) (a) and
Bovine serum albumin (66kDa) (b) covering range of molecular weight proteins
for the prediction validity for ExProSim:IC

multilayer adsorption of BSA. As EDM:Langmuir model in ExProSim: IC does

not take into account the multilayer adsorption, it was not able to predict

the BSA experimental profile. Even the kinetic model shown in the litera-

ture [3] could not predict the data well.

Table 3.10: Adjusted model constants for prediction of breakthrough for BSA and
Lysozyme

Parameter Experimental multiplier Modified value

Lysozyme
Qmax (mg/ml) 120 1 120
kd (mg/ml) 0.019 1 0.019
k1 (ml.mg/min) 0.0017 60 0.102

BSA
Qmax (mg/ml) 113 0.929 105
kd (mg/ml) 0.133 0.2 0.0266
k1 (ml.mg/min) 0.0005 60 0.030

3.5.3.2 EDM with SMA isotherm

First two breakthrough case studies for SMA validation are taken from thework of

Karlsson et al. [4]. The work uses EDMwith SMA to predict the breakthrough pro-

files for proteins such as Transferrin (80kDa) and Insulin (6kDa) which differ con-

siderably in the molecular weights. Figure 3.16 shows the comparison of exper-
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imental and simulated breakthroughs compared to ExProSim:IC predictions. The

profiles were well predicted by ExProSim:IC. Slight variation in the simulation pro-

files was found due to use of Robin boundary conditions in the paper as compared

toDirichlet in ExProSim:IC. For Insulin, similar observation can bemadewhere pro-

files till 50% of the breakthrough were predicted perfectly whereas slight varia-

tion was seen during the saturation of the curve. The modifications done in the

input parameters are shown in Table 3.11

(a) (b)

Figure 3.16: Prediction of breakthrough for Transferrin (80kDa) (a) and Insulin
(6kDa) (b) by using EDM and SMA isotherm.

Table 3.11: Modified model constants for prediction of breakthrough for Trans-
ferrin and Insulin

Parameter Experimental multiplier Modified value

Transferrin
keq 190 0.5 95
v 5.2 0.385 2
σ 97 0.8 77.6
λ (mmol/ml) 2100 1 2100

Insulin
keq 0.54 10 5.4
v 2.5 1 2.5
σ 7.8 4.5 35.1
λ (mmol/ml) 2100 1 2100

Another literature case study chosen is cytochromeC (12kDa) onUNOS1mono-

lith column [5] to see if ExProSim:IC can predict the data for monolith column at
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(a) (b)

(c) (d)

Figure 3.17: Prediction of breakthrough for cytochrome C (12kDa) by using EDM
and SMA isotherm at different salt concentrations a) 120mM+0% salt b) 120mM
+1% NaCl c) 120mM +3% NaCl d) 120mM + 5% salt

different mobile phase salt concentration.. It can be observed in Figure 3.17 that

the breakthrough point was not predicted by both simulation datasets. The pro-

file after the 10% breakthrough was predicted to accuracy of 0.9822 correlation

coefficient using ExProSim:IC. This can give a precise idea about the binding and

elution kinetics in the dynamic conditions at varying salt concentration. Exper-

imental data was predicted more accurately by simulations from Jozwik et al. as

the model used was a POR model which considers pore and surface diffusion in-

teractions. The modifications in the parameters is given in Table 3.12
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Table 3.12: Modified model constants for prediction of breakthrough for cy-
tochrome C at changing salt concentration

Parameter Experimental multiplier Modified value

keq 25.5 0.04 1.2
v 0.75 1 0.75
σ 4900 0.8 3920
λ (mmol/ml) 445 0.9 400.5

3.5.3.3 EDM with MPM isotherm

A work from Karlsson et al. was chosen in order to check if the tool can repro-

duce the experimental and simulation data for various protein molecules varying

in chemical properties andmolecular weights [4]. Breakthrough curves for all the

proteins at 20 mM salt concentration are presented in the literature along with

predictions using MPM and EDM models. Transferrin and Insulin breakthrough

predictions using ExProSim:IC to the experimental and simulation breakthrough

profiles to validate its usability have been demonstrated here. ExProSim:IC pre-

dicted the experimental as well as simulation profiles for both the proteins suc-

cessfully with < 5% error at 0%, 10%, 50%, and 100% breakthrough points as can

be seen in Figure 3.18(a) and Figure 3.18(b). This was achieved by modifying the

model constants as shown in Table 3.13 in order to minimize the error between

two curves. The simulations in the paper follows different boundary conditions

as compared to ExProSim:IC (Robin condition instead of Dirichlet condition) which

may reflect in different parameters being used to fit the same experimental curve

effectively.

Table 3.13: Comparison of model constants from literature and modified model
constants for ExProSim:IC simulations using EDM and MPMmodels for transferrin
and insulin breakthrough prediction

Parameter Transferrin Insulin

Karlsson Multiplier* ExProSim:IC** Karlsson Multiplier* ExProSim:IC*
Qmax (mol/m3) 0.770 1 0.770 57.2 1.4 80.08
kads0 (m3/mol.sec) 10 0.2 2 0.0275 2 0.055
kdes0 (m3/mol.sec) 4000 0.2 800 5 1 5
β 3.0 0.01 0.03 2.9 0.2 0.58
γ (m3/mol) 0 - 3 0 - 2
Dax (m2/sec) 4.4 x 10-6 1 4.4 x 10-6 4.5 x 10-6 1 4.5 x 10-6

ExProSim:IC**: model constants modified by a multiplier* used for ExProSim:IC simulations for the best fit
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(a) (b)

Figure 3.18: Prediction of breakthrough for Transferrin (80kDa) (a) and Insulin
(6kDa) (b) by using EDM and mpm isotherm.

Figure 3.19: Prediction of breakthrough for IgG (150 kDa) (a) and Insulin (6kDa)
(b) by using EDM and MPM isotherm.

Breakthrough curve for IgG was not given in this paper so another work by

Karlsson et al. was considered further [6]. It describes the model based optimisa-

tion for preparative separation of IgG by using a simulation approach which uses

EDM,MPM, and particle diffusionmodel. Breakthrough at high flow rate was per-

formed for IgG which was further predicted by ExProSim:IC and compared here.

The change in parameters are as shown in Table 3.14. It is often the case that

high velocity experiments are more convection driven and are difficult to match

by simulations. The comparison of ExProSim:IC predicted breakthrough curves to

the literature data is shown in Figure 3.19. It can be said that it predicted the

experimental and simulation profiles quite effectively. The predictions obtained
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Table 3.14: Comparison of literature andmodifiedmodel constants for ExProSim:IC
simulations for IgG

Parameter IgG

Karlsson Multiplier ExProSim:IC**
Qmax (mol/m3) 1.1 1 1.1
kads0 (m3/mol.sec) 0.065 0.2 0.0130
kdes0 (m3/kmol.sec) 50 0.2 10
β 1.12 0.1 0.112
γ (m3/mol) 0 - 0
Dax (m2/sec) 4.4 x 10-6 1 4.4 x 10-6

ExProSim:IC**: model constants modified by a multiplier used for
ExProSim:IC simulations for the best fit

were equally effective as the simulations from the literature and provided com-

paratively simpler simulation approach to the problem.

3.6 Conclusion

The chapter provides a detailed summary of computational, data analysis, and

experimental philosophies practised throughout this work. Initially models im-

plemented in this work are discussed in detail. Experimental methodology which

is used for estimation of model constants is discussed further. Overview of ex-

perimental methods for separation of major and minor whey proteins was given,

however, specific details were discussed in respective chapters. ExProSim:IC was

introduced alongwith description of various aspects such as codingmethodology,

parameter estimation module, tool verification, mesh independence, and experi-

mental validation.

Tool verification was specifically performed to understand how the simula-

tion profiles vary with respect to model constants. It was realised that Langmuir

isotherm parameters follow an expected trend according to their physical signif-

icance. Variation inQmax affected the binding capacity and k1 affected the slope

and binding capacity of the protein. kd impacted on both slope and binding ca-

pacity as it defines the equilibrium of the process. In case of SMA, variation in

charge factor, v was found very critical. Minor changes in v led to large variation

in location and shape of the curve. The equilibrium constant, keq showed similar
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behaviour as that of Langmuir kd value. Steric hindrance showed inverse rela-

tion to the binding capacity as expected. For MPM, β showed a high sensitivity as

compared to other parameters and influenced binding capacity. Adsorption and

desorption constants showed similar behaviour to that of Langmuir model rate

constants, however, variation in slope of the curves is expected when the con-

stants kmads and k
m
des are varied. It was important to note that all these relations

were not linear and were reliant highly on variation in the model constants. Also

the variation studies were performed one factor at a time where rest of the model

constantswere kept at optimised valueswhenonewas varied on three levels. Even

though this exercise gives a fair estimate of how individual constants affect the

breakthrough curve, it can be tricky to gauge the effect when more than one fac-

tors are varied together. However, these insights are used further in the literature

based validation and in experimental validation later.

Further, a comparison with CADET simulations showed that the accuracy of

simulations for preliminary simulations were not good (CoD<0.9). Lessons from

model constants assessment section were applied further to change the parame-

ters for a better fit. Modifications performed in the model constants were able to

match the CADET simulation data well. As the modifications were performed on

trial and error basis, it might take a long time to obtain the best fit. Mesh indepen-

dence studies carried out for the tool ensured that it gives a convergent solution.

Mesh independency can be case specific hence it is important to practise for every

system under consideration.

Literature based validation was carried further by choosing the case studies

to check the effect of varying process parameters on the prediction ability of Ex-

ProSim:IC. The tool establishes a reasonable accuracy with changing process con-

ditions and for various protein molecules ranging from 6kDa to 150kDa. ’Curve to

curve’ error were determined using RMSE and CoD, however they were not effi-

cient enough to give accurate comparison between experiments and simulations.

Method of ’point to point’ comparison was practised instead where important ex-

perimental points were selected and the error was determined for them. Data

reproduced for all the thermodynamic models showed good agreement (average

error<5%) with the simulations and experimental data from the respective litera-
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ture. It is thus can be concluded here thatmathematical models were successfully

incorporated in a tool, ExProSim:IC for predicting the outcomes of the data from

the literature.

Furthermore, it is important to look at limitations at this stage of research. It is

very difficult to mimic the non-equilibrium interactions in the real process while

determining the model constants from equilibrium assumptions andmodels. Not

all the parameters can be directly derived from the experiments and some of them

needmathematical approximations based on physical assumptions. Thiswas seen

when, parameters were to be adjusted for matching the simulations to the exper-

imental data. Choice of EDM looked appropriate as there are lesser parameters

which are empirically derived, however it also comes at a cost of overlooking de-

tailed diffusion phenomena happening in the resin. Such diffusion considerations

can be critical while scale up of the process as scale dependent parametersmay be

left out without adjustment. This makes EDM not an ideal choice for simulations

of development data at large scales. In the subsequent chapters experimental

validation is presented where more data based conclusions can be derived on the

applicability of EDM.
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Chapter 4

Major whey proteins separation

4.1 Introduction

Most important aspect to consider before implementation of a simulation tool is

its reliability and robustness. For achieving these criteria, it is important to ex-

haustively validate the tool. Literature based validation of ExProSim:IC with vari-

ations in process parameters specific to thermodynamic models is discussed in

Chapter 3 . However, literature based validation can be limiting in developing

an understanding about, how the model constants were determined from exper-

iments performed and their further implementation. Even if the code is working

fine mathematically, the results produced can be questionable if the model con-

stants aren’t well determined. Hence, it was decided to perform in house exper-

iments to find out model constants. This ensured availability of reliable data for

validation. Overall experimental validation is divided into three chapters. Exper-

iments performed on separation of major whey proteins and their simulation is

covered in this chapter. The chapter discusses implementation of both anion and

cation exchange chromatography techniques by experimental and simulations,

and compares them with each other to find out which one is more advantageous.
1

1It is important to note that, extensive resin screening was not included in the scope of the
research. Choice of the resin was completely based on the popularity of the resin in the current
industries, based on their performance, and usage.
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4.2 Methodology

4.2.1 Experimental

4.2.1.1 Materials and Methodology

All the protein standards andbuffers required for cation and anion exchange chro-

matography and sample analysis are mentioned in Section 3.3.1. For cation ex-

change at pH4.5, BSAandBLGwereused as standards and resin chosenwas SPFFTM.

For anion exchange at pH 6.9, BSA, BLG, and ALAwere used as standards and Capto

QTM was used as resin. Column chromatography experiments were performed

on NGC Bio-Rad system. SEC was used for analysis of cation exchange samples,

however HPLC was used for analysis of anion exchange samples. Details of the

methodologies for sample analysis are explained in Section 3.3.2.

Buffers and protein samples

Buffers used for cation and anion exchange chromatography are shown in Table

4.1. 1 M NaOH was used for regeneration of the resin after the run and it was

stored in 20% ethanol when not in use. Standard curves were prepared for all the

proteins by taking absorbance at 280 ηm for concentrations between 0-1 mg/ml

on a UV-vis spectrophotometer, Jasco V-670. After experiments in triplicates (ex-

cept for breakthrough), mean values and standard deviation were determined for

further analysis.

Table 4.1: Overview of experimental systems

Technique System Buffer A Buffer B

Cation exchange
NGC medium
pressure system

10 mM sodium acetate
pH 4.5

1 M NaCl in 10 mM sodium acetate
pH 4.5

Anion Exchange
NGC medium
pressure system

25 mM sodium phosphate
pH 6.9

1 M NaCl in 25 mM sodium phosphate
pH 6.9

SEC-HPLC Varian ProStar HPLC sysetm
10 mM sodium acetate
pH 4.5

10 mM sodium acetate
pH 4.5

HPLC Agilent 1260 HPLC system
0.1% TFA in 100% purified
water 0.1% TFA in 100% acetonitrile
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Sample analysis

UV-vis spectrophotometry All the samples from batch studies for adsorption

kinetics and uptake kinetics were analysed on a UV spectrophotometer. Standard

curve was prepared for the proteins ranging from 0-1 mg/ml concentrations in

order to find out the concentration for the unknown samples. Samples from the

experiments were diluted so as to keep the absorbance below 1.0 to meet to the

linear equation of the standard curve.

SEC-HPLC For cation exchange chromatography with two proteins BSA and

BLG, the columnwas equilibratedwith 10mMsodium acetate buffer at pH 4.5 till a

stable baseline was achieved. Initially a mixture of standards was run at different

flow rates in order to optimise flow rate to achieve faster and resolved peak sepa-

ration. Then the standard curve was prepared for injecting known concentration

of mixtures at optimised flow rate.

HPLC In case of anion exchange, it was impossible to resolve ALA and BLG

using SEC-HPLC as they have very minute difference in their molecular weights

(Table 2.2). Hence, alternative HPLC method was developed by injecting a mix-

ture of all the whey proteins (BSA, BLG, ALA, LF, and LP; 1 mg/ml each in equal

amounts). Mobile phases used are as given in Table 4.1. Initially baseline was

achieved for the columnwith buffer A. Optimisation of gradient was done for get-

ting maximum resolution possible between proteins from crude whey. This was

called as HPLC method 2. Furthermore, once the method was optimised, standards

of each proteins (ranging in 0-1 mg/ml) were injected at different concentrations

to determine the standard curve for the proteins. Multicomponent breakthrough

samples were analysed and individual protein concentrations were determined

from the standard curves. Injection volume for all the runs was 100µl. It was

decided not to perform SDS-PAGE if the standards are pure enough for the ad-

sorption studies.

Chromatography experiments
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Adsorption isotherm experiment For cation exchange adsorption equilibrium,

experiments were carried out for SPFF resin as given in Section 3.3.3.1. Protein

load was (BLG and BSA) 3-8 mg/ml. Similar experiments were repeated for Capto

Q for anion exchange chromatography for all three major whey proteins. All the

constants (Qmax and kd for Langmuir, Qf and n for Freundlich) in the isotherm

models were determined.

Uptake kinetics 4 mg/ml of each protein solutions were used for the uptake

kinetics experiment as given in Section 3.3.3.2. Experiments were carried out for

both SPFF and Capto Q. pseudo first order and pseudo second order models were

checked for the best kinetic fit. Method for estimation of parameters has been

given in Section 3.4.1. Uptake kinetics constant klads was found out from the best

fit.

Column physical parameters Column physical parameters for both columns,

HiTrap SPFF and HiTrap Capto Q were determined by methods mentioned in Sec-

tion 3.3.5. These includeporosity (εe, εp, εt), columnasymmetry factor, HETP,NTU,

dead volume (v0), molecular diffusivity, diffusion coefficient, and ionic capacity.

Gradient elution experiments Detailedmethod for gradient elution is described

in Section 3.3.4.1. For cation exchange chromatography, 3 mg/ml solutions of

both BSA and BLG were prepared in buffer. For anion exchange chromatography,

3 mg/ml solutions of all the proteins were prepared in equilibration buffer. Injec-

tion volume was set to 400 µl. Equation 3.23 was used to estimate vi and keq,i for

SMA isotherm.

Breakthrough experiments Breakthrough experiments of BSA, ALA, and BLG

were carried out as per the procedure given in Section 3.3.4.2. at similar condi-

tions that of gradient experiments. For cation exchange experiments, both pro-

tein samples were continuously loaded at 3 mg/ml concentration until the ex-

haustion point of the curve was achieved. Breakthrough was performed at 0.5

ml/min and 1 ml/min for BSA, and 0.4 ml/min and 1 ml/min for BLG. For anion

exchange experiments, breakthrough was performed by loading 3 mg/ml BLG, 2
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mg/ml ALA, and 1.5 mg/ml of BSA at 0.5 and 1 ml/min flow rates till the column

was saturated with the respective proteins.

For multicomponent breakthrough studies on cation exchange columns, BSA

and BLG 3 mg/ml each were mixed in 100 ml buffer. The mixture was loaded

continuously at 1 ml/min till the column was saturated. Multicomponent break-

through for anion exchange was performed by loading a mixture of all acidic pro-

teins (2 mg/ml each) at 0.5 ml/min till the column reaches saturation. All the

fractions were collected in 1 ml volumes and then further analysed to find out

individual breakthrough curves. Injection volume for analysis runs was 20µl.

Determination of Model parameters

Langmuir parametersQmax and kd were determined from inverse fitting the data

of the adsorption isotherm to Equation 3.8. Uptake kinetics rate constant was

determined by fitting both pseudo first order (Equation 3.39) and pseudo sec-

ond order equations (Equation 3.40) to the uptake kinetics data obtained. MPM

constants (kads0, kdes0, γ, and β) were determined by inverse fitting the adsorp-

tion isotherm data to Equation 3.19. SMA parameter σi was determined from the

breakthrough curves (Equation 3.24), whereas values of charge factor and equilib-

rium dissociation constant were determined from gradient elution experiments

(Equation 3.24). Inverse fitting was performed for minimisation of error function

from Equation 3.38. The parameters were used as it is or modified into ExProSim:IC

for simulating the breakthrough curves. If the error with respect to experiments

was found to be more than±5%, model constants were revised logically depend-

ing on the error obtained and the simulations were repeated until an acceptable

fit was obtained. Detailed computational methodology implemented for simula-

tions and data analysis is given in Chapter 3.

4.3 Results and Discussions

Current Section discusses the results from the experiments carried out for cation

and anion exchange chromatography alongwith estimation ofmodel parameters,

their importance in binding and elution kinetics, followed by comparisonwith the
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simulation of breakthrough curves using ExProSim:IC. For cation exchange chro-

matography, where adsorbent is negatively charged, protein has to be positively

charged. For protein to have a positive charge, the pH of the solution should be

lower than the isoelectric point of the protein. For cation exchange chromatog-

raphy initial batch binding experiments were performed at pH 3.5 to 4.2 to keep

positive charge on all the proteins. It was observed that at such lower pH, elution

of BLG and BSA was not eluted completely with strong elution buffers such as 1 M

sodium chloride. Hence pH was further increased to 4.5. As the isoelectric point

of ALA is 4.2, at pH 4.5 the protein has negative charge which is not suitable for

cation exchange chromatography. Binding of ALA on cation exchange resin was

checked at pH 4.5 and high losses of protein was found in batch studies showing

very low binding capacity and strength. Taking this into account, cation exchange

was studied for BSA and BLG. On the other hand anion exchange chromatography

features all the proteins as they showed complete elution at pH 6.9.

4.3.1 Sample analysis

4.3.1.1 UV-spectrophotometer

Standard curves plotted for the standard protein samples are as shown in Figure

4.1. The regression coefficient was found to bemore than 0.99 for all the standard

curves supporting an acceptable linear fit. Corresponding equations for the fit

are displayed in the Figures which were used for estimation of unknown protein

samples from batch adsorption studies.

4.3.1.2 SEC-HPLC

HPLC-SEC was used to exploit the difference in the molecular weights of BSA and

BLG tofind out the individual fractions in the combined breakthrough curve. Flow

rate 0.5 ml/min was chosen for processing the samples as the peaks showed max-

imum possible separability. As expected, BSA was eluted first followed by BLG.

Complete resolution between the proteins was difficult to achieve as dimeric form

of BLG is prevalent at pH 4.5 [236]. This can be seen in Figure 4.2. Hence, the peak

areas were not directly used to get the concentrations from the standard curves.
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(a) (b)

(c)

Figure 4.1: Standard curves on UV spectrophotometer at 280 nm for BSA (a), BLG
(b), and ALA (c)

Figure 4.2: Overlay of BSA and BLG chromatograms from SEC-HPLC showing the
overlapping area

Calibration method from work of El-Sayed and Chase was used further to get

the calibration curves [188]. Several protein mixtures with different proportions
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(a) (b)

Figure 4.3: SEC-HPLC standard curves for BSA (a) and BLG (b)

of BSA and BLG were run on the column. For all the samples run, total protein

loaded and concentration of individual proteins were known. The area of mix-

ture was plotted against the individual concentrations in the mixture as shown in

Fig. 4.3. The curves show linearly increasing profile with regression values of 0.99

for both BSA and BLG. Equation 4.1 and 4.2 were used to find individual concen-

trations in the unknown mixtures.

cBSA =
Atot − SBLGCtot
SBSA − SBLG

(4.1)

cBLG =
Atot − SBSACtot
SBSA − SBLG

(4.2)

4.3.1.3 HPLC

Optimisedmethod is shown inTable 4.2. Standard curves of the proteinswere esti-

mated by injecting varying concentrations of standard proteins. Clear resolution

was obtained for all the protein except BSA and ALA. hence flow rate was lowered

at 39% buffer B to further resolve ALA and BSA. Figure 4.5 shows the standard

curves obtained for BSA, BLG, and ALA. The curves show linearly increasing pro-

files with regression coefficient more than 0.99, supporting a linear fit. Though

the hplc method was developed for all five whey protein resolutions, mixture of

major proteins is shown here in Figure 4.4. It can be observed that the peak for
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Figure 4.4: HPLC chromatogram for ALA, BSA, and BLG analysis

(a) (b)

(c)

Figure 4.5: Standard curves for major whey proteins by HPLC method 2, BSA (a),
BLG (b), and ALA (c)
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Table 4.2: HPLC method optimised for resolution of five whey proteins, BSA, BLG,
ALA, LF, and LP

Time
(min) %B

Flow rate
(ml/min)

0 0 1
2 0 1
4 39 1
11.5 39 1
12 39 0.5
20 41 0.5
20.5 41 1
24 46 1
32 70 1
34 100 1
38 100 1
39 0 1
44 0

BLG shows a dual peak in Figure 4.4. This was attributed to presence of two iso-

forms of BLG which differ in their Ala/Val contents[237]. The first isoform has 13

Ala and 12 Val, whereas second isoform has 12 Ala and 13 Val [238]. Separation of

these isoforms was not attempted further as that was not the primary goal of this

thesis. Standard curves were used further to calculate individual proteins from

the multicomponent breakthrough mixture and is discussed later in the chapter.

SDS-PAGE was not performed as the standards were pure enough to proceed for

adsorption studies.

Further discussions on the results obtained is categorised by chromatography

type and discussed with respect to the isotherm parameter determination those

results were used for. Initially cation exchange chromatography is discussed fol-

lowed by anion exchange. At the end of the chapter they are compared for their

suitability in separation of major proteins.
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4.3.2 Cation exchange chromatography

4.3.2.1 Determination of Langmuir parameters

Adsorption isotherm

Table 4.3 summarises the adsorption characteristics of BSA and BLG. In order to

checkwhich basic isothermdescribes the datawell, Langmuir, SMA,MPMand Fre-

undlich were fitted to the experimental data as shown in the Fig. 4.6. The values

of regression coefficients for Langmuir isotherm suggested a better fit to both the

experimental data as compared to others. Furthermore, the value of Langmuirian

equilibrium constant or separation factor,RL lay between 0 and 1 for entire range

of concentrations indicating reversible binding [239] which is favourable for chro-

matographic interactions [240].

(a) (b)

Figure 4.6: Adsorption isotherms for BSA (a) and BLG (b) on SPFFTM for fitting
three isotherms ; Langmuir (—), Freundlich (- - -), SMA (··), and MPM (-·-)

For anyglobular protein, a thumb rule of surface distribution is 45%hydropho-

bic patches to remaining 55% ionic or hydrophilic patches. Distribution of these

surfaces is interpreted in terms of protein folding suggesting that none of the

chromatography techniques are purely based on a single principle such as; ion

exchange, affinity, or hydrophobic interactions. There is always a combination of

multiple interactions which causes the adsorption; however, one of the interac-

tion principles dominates the binding making it a preliminary cause. From the

calculation of Gibb’s free energy of interaction, each such secondary interaction
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Table 4.3: Summary of adsorption parameters for BSA and BLG

Parameter BSA BLG

Langmuir model
Adsorption capacityQm

(mg/ml of resin) 132.51 106.72

Dissociation constant kd,
(×10−6M) 4.56 6.065

kdes,L∗,
(×10−3 min−1) 0.517 1.88

RL at 3 mg/ml 0.5078 0.293
RL at 8 mg/ml 0.3066 0.158
R2 0.981 0.9875

Freundlich model
Adsorption capacityQf

(mg/ml of resin) 97.35 92.98

Adsorption intensity, n 3.610 8.764
Inverse of adsorption intensity, 1/n 0.277 0.1176
R2 0.829 0.9401

MPM Langmuir model
Qmax

(mg/ml of resin) 132.4 106.4

kads0
(ml/mg.min) 0.9455 0.2163

kdes0
(ml/mg.ml) 0.4515 0.037

β 0.1011 0.1233
γ(×10−1) 0.951 2.163
R2 0.9901 0.989
RL: Langmuirian equilibrium constant,

is said to contribute around 1 kcal/mol of energy of interaction and a kd value

of 10−5 M gives binding energy of 7 kcal/mol in standard conditions which can

prove to be sufficient for a sustainable binding [241]. The values of kd for affinity

chromatography processes lie between 10−8 M and 10−4 M [242]. Similarly for a

sustained adsorption and desorption in ion exchange chromatography, the values

of kd can be assumed to lie in the same range. If the value is outside this range, it

either indicates very strong or weak binding which is not suitable for chromato-

graphic interactions. Ideally, the binding should be strong enough to retain the

target protein on the resin but also be reversible enough to release the protein
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during elution without application of very harsh elution conditions which may

affect protein of interest. The values of kd obtained for BSA and BLG lie within

the permissible range suggesting the suitability of chromatographic process. It

can be observed that the value of kd for BLG is higher than that for BSA showing

faster desorption for BLG as compared to BSA.

For Qmax, it is reasonable to expect value for BSA to be lower than for BLG as

the net charge on BSA is smaller than the net charge on BLG due to its high elec-

trophoretic mobility. Surprisingly, Qmax value was found to be higher for BSA.

This might be due to non-uniform charge distribution on the surface of BSA and

comparatively higher exposure of highly hydrophobic patches in case of BSA. Jey-

achandran et al [243] have studied conformational changes in theproteinmolecule

during adsorption and have shown that the hydrophobic patches influence the

binding of BSA. 50% of hydrophobic patches showed influence on the binding

of BSA due to conformational changes in the protein molecule upon adsorption.

Effect of resin matrix on the binding of the protein is worth understanding fur-

ther. Basematrix of SPFFTM is hydrophilic agarose (6% by volume). Molecules like

BSAwhich have a tendency to change conformation when adsorbed on a solid hy-

drophilic surface leading to conversion of α helices into β sheets exposing more

hydrophobic patches on the surface [244]. Increase in hydrophobicity at the sur-

face promotes protein-protein binding reflecting in apparent binding capacity of

BSA. Furthermore, not only the conformation but also the orientation of binding

seem to play a role in binding capacity. BSA can also have different orientation

while binding depending on the pH and salt concentration of the medium, affect-

ing and changing the binding capacity [245]. It was also found in another article

that the binding orientation can also be a function of concentration of BSA [244].

TheQmax value of BSA here further suggests that the binding can be a multilayer

binding which may not be exactly predicted by Langmuir isotherm. On the other

hand the BLG which has higher charge as compared to BSA, can be assumed to be

under the strong electrostatic interaction between hydrophilic resin surface and

ionic groups on the protein [246]. This is in support to the fact that under ionic

or charged state, proteins tend to retain their structure which prevents unfolding

[247]. BSA adsorption is generally limited to monolayer below 10mg/ml concen-
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tration for an exposure time of 2 hours [248]. BSA molecules have a tendency of

crowding, upon longer exposure leading to undergo conformational changes. Due

to considerably high molecular size and mostly surface diffusion due to competi-

tive adsorptionwith BLG,multimeric structures of BSA can get formed showing an

apparent maximum binding capacity. Moreover, the secondary structure of pro-

tein tends to hide the polar surfaces while exposing the hydrophobic patches on

outer surface which is further involved in direct resin-protein alongwith protein-

protein interaction [249]. If the values of Qmax are estimated in molar terms, it

can be observed that the value for BLG is much higher than that of BSA (BSA:

2.02 × 10−3 and BLG: 6.66 × 10−3). This suggests that the overall occupancy on

the resin of BLG molecules is much higher than BSA. This is self explanatory as

themolecular size of BSA is much higher than that of BLG. Value of kd for BLG was

found to be higher than BSA showing lower ionic binding strength as compared

to BSA. This is also reflected inQmax.

Uptake kinetics

The uptake kinetics signifies the rate of adsorption of a protein. Equations 3.39

and 3.40 represent the pseudo first order kinetic model and pseudo second order

kinetic model respectively. To ensure usage of these models over film, pore and

(a) (b)

Figure 4.7: Uptake kinetics comparison for BSA and BLG. a) Comparison of pseudo
1st order and pseudo 2nd order for BSA b) Comparison of pseudo 1st order and
pseudo 2nd order for BLG

surface diffusion models, molecular size of protein was compared with the pore

98



size of the resin. The resin exclusion limit is 4000 kDa which translates into pore

size of 500-1000Å. The radius of protein of size of BSA and BLG were estimated to

be 25.57 Å and 16.57 Å by using Equation 4.3 [250].

rmin = 0.066M1/3 (4.3)

As it can be clearly noticed that sizes of proteins in discussion (BSA 66 kDa and BLG

16 kDa) are very small as compared to the pore size of the macro porous resin un-

der consideration. This shows that pore diffusion may contribute in mass trans-

fer. However, it was decided to ignore it for this work to see if more simplistic and

basic models can predict the experimental data.

Table 4.4: Analysis of uptake kinetics

Parameter BSA BLG

Pseudo first order
k1 (×10−2)
(min-1) 9.19 5.68

R2 0.969 0.759
Correlation
Coefficient 0.9847 0.872

Pseudo second order
k2 (×10−3)
(ml/mg.min) 1.36 1.51

R2 0.9837 0.9872
Correlation
Coefficient 0.9918 0.9936

Fig. 4.7 shows the model fitting for uptake kinetics along with the experimen-

tal data. The representative parameters for the same are shown in Table 4.4. It

has been proved experimentally that pseudo first order kinetics supports physi-

cal adsorption and second order kinetics indicates chemical adsorption. As in case

of chemical adsorption, the strength of the bonds is highest between the surface

and the protein molecules, once the monolayer is occupied, the adsorption at the

second layer is not promoted. This monolayer adsorption is well described by

Langmuir isotherm. For first order kinetics, where physical forces are involved in

adsorption, multimeric adsorption mechanism can be seen. This is also reflected

from the equation for pseudo first order kinetics which has exponential term. It
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can be seen that the pseudo second order kinetics fits the kinetic data better (bet-

ter regression coefficient and correlations coefficient).

As shown in Table 4.4, it can be observed that for pseudo second order kinet-

ics, uptake kinetic constants for BSA and BLG show almost same values. Value of

uptake kinetic constant depends on diffusivity of the protein in the medium, ac-

cessibility for number of molecules to the surface, and charge interactions [251].

Molecular diffusivity is a characteristic of molecular size as mentioned earlier.

When two molecules have same kinetic constant, number of factors can be con-

sidered. First being, they have samemolecular diffusivity (samemolecular radius)

and secondly they have equivalent access to the surface available in order to react

or bind to the surface [252]. As it is known that BSA (66 kDa) is a bigger molecule

as compared to BLG dimer (36 kDa), the diffusivity for BLG is higher than BSA at

both the surfaces and internal pores. The value of k2 represents a lumped kinetic

constant for both surface and internal pores, hence it is not a surprise that the

values are closer. This means that accessibility for both the molecules is close. It

also suggest that more number of BLG molecules are interacting with the surface

in order to occupy equivalent surface as BSA. Higher accessibility of the surface

due to higher diffusivity can also mean uptake of one protein by displacement of

the other, however further inference about displacement can be drawn when two

molecules compete for adsorption later in this chapter. Even though pseudo 1st

order shows a good fit, it is an exponential function and its use directs to mul-

timeric form of a BSA getting adsorbed or a multilayer adsorption which can be

confirmed by breakthrough studies further. It is well known that multilayer or

multimeric adsorption is not predicted well by Langmuir isotherm [253].

4.3.2.2 Determination of MPM parameters

AsMPMmodel is derived from Langmuir model, the parameters were found to be

analogous to Langmuir. Binding capacity valueswere closer to Langmuir isotherm.

Parameters kads0 and kdes0 describe the rate of adsorption and desorption of the

protein respectively. Adsorption rate constant was found to be higher for BSA

and compared to BLG as additional hydrophobic interactions might be helping in

adsorption. Whilst comparing the values of kmdes, it was realised that the desorp-
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tion is higher for BSA. This can be attributed to hydrophobicity of BSA interfering

in the strength of ionic interactions. Molar kdmpm values were calculated to be

5.73×10−6 M and 5.05×10−6 M respectively for BSA and BLG which were found

comparable to kd values estimated from Langmuir isotherm. Value of β repre-

sents an extent of ionic interactions happening during the protein binding. This

can be interpreted as, higher the value of β, stronger is the interaction of the pro-

tein with the matrix. BLG shows higher β value than BSA which can be an effect

of the electrophoretic mobility.

4.3.2.3 Determination of SMA parameters

Column physical parameters

Based on moment analysis of the pulse injections, external porosity of the col-

umn was determined to 0.363±0.024 whereas the particle porosity was estimated

to be 0.880±0.018. Total porosity for column was determined to be 0.923±0.012.

Column packing showed asymmetry factor of 1.12 (acceptable criteria is 0.8-1.2).

Height equivalent to theoretical plates was found to be 0.00131 cm and net trans-

fer units were observed to be 1315.69. Asymmetry of the column was 1.16 which

was acceptable. Ionic capacity was determined to be 2345.7±20.32 mM/ml resin

which compares to the reported value for SP sepharose fromGE is 1800-2400mM/ml

resin [254].

Gradient elution

The values of retention volume and gradient volumes were used in Equation 3.23

and parameters for different gradient lengths were obtained. Table B.1 shows the

summary of gradient runs and Figure 4.8 shows the gradient runs. It can be seen

that the retention volume increases with decrease in the slope of gradient dur-

ing elution. Retention time was observed to move forward as well due to slower

change in the salt concentration.

When the gradients of 0-100% were run, it was observed that BSA and BLG

eluted at 21% and 68% of the salt concentration respectively. This supports slow

desorption of BSA. Table 4.5 shows the comparison of SMA parameters obtained

from experiments. In the fitted parameters, both proteins show significant dif-
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(a)

(b)

Figure 4.8: Comparison of elution profiles for (a) BSA and (b) BLG at different gra-
dient lengths

ference in charge and equilibrium constant values. As the charge value defines

the number of salt ions being displaced by a protein molecule in order to adsorb

onto the resin, double the charge value along with 1
9
th equilibrium constant sug-

gests stronger adsorption for BLG as compared to BSA. Conversely, BSAwas eluted

later than BLG showing slower desorption. Steric hindrance factor is a property

influenced by molecular weight of protein which can cause screening of charges

available for exchange. BSA having higher σ value emphasizes on this concept.

Similar trend is seen in parameters determined from empirical equations.

The values differed considerably from those which were derived by inverse

curve fittingmethod. The reason can be, difference of interactions between static

to dynamic studies. Parameters found from experiments were less than those ob-

102



Table 4.5: Comparison of SMA isothermparameters for BSA andBLG fromgradient
experiments and isotherm fitting

Protein Method v keq σ

BSA Exp 1.349±0.093 0.5166±0.075 2.475±0.292
Fit 2.176 0.914 12.415

BLG Exp 1.45±0.106 0.0776±0.0121 1.399±0.127
Fit 3.219 0.101 6.948

Exp=Experimental, Fit= adsorption curve fit

tained by fitting. Comparing these parameters may not be wise as the adsorption

experiment assesses continuous adsorption-desorption phenomena for 3 hours

which is much higher than the cycle time of the longest gradient run. Another

factor to consider is the difference between the buffer environments of the two

experiments where first has just the equilibration buffer whereas second has elu-

tion buffer gradient. The effect of continuous flow can reduce the residence time

of the protein around the resin particle reducing the steric effects and charges

displaced. The decrease in residence time also reflected in decrease in equilib-

rium constant for dynamic conditions for both themolecules. Another reason for

this can be limited loading done in column operations which might lead to high

adsorption rates decreasing the overall equilibrium constant. Estimation of steric

hindrance factors for BSA and BLG was done from the respective breakthrough

curves using the breakthrough volume in Equation 3.24.

4.3.2.4 Single component breakthrough: Experimental

Figure 4.9 and 4.10 show the breakthrough for BSA and BLG at different loading

velocities respectively and the prediction using ExProSim:IC.

It is wise to discuss experimental breakthrough curves first before compar-

ing them with the predicted data. There are two main characteristic features of

breakthrough curve which should be looked at. First is the breakthrough point

which shows themaximum binding capacity of the resin for the protein molecule

and second being the steepness of the breakthrough curve which determines the

extent to which the capacity of an adsorbent bed can be utilised. This helps in

determining dynamic binding capacity (DBC) which shows maximum amount of
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(a) (b)

Figure 4.9: Comparison of predicted vs experimental data for breakthrough of BSA
at various linear velocities, a) 0.5ml/min (77.95 cm/hr) b) 1ml/min (155.9 cm/hr);
Langmuir(-), MPM (-·-), SMA (–), experimental (�)

(a) (b)

Figure 4.10: Comparison of predicted vs experimental data for breakthrough of
BLG at various linear velocities, a) 0.5 ml/min (77.95 cm/hr) b) 1 ml/min (155.9
cm/hr); Langmuir(-), MPM (-·-), SMA (–), experimental (�)

protein which can be loaded onto the column without any unnecessary loss.

Breakthrough curves for both BSA and BLG follow a logical pattern showing

decrease in the breakthrough time as the velocity increases. Even the slope of

breakthrough curve was found to increase with increase in velocity showing early

saturation of the column. The error for 10% of the breakthrough point was less

than 5% for both BSA and BLG. This can be interpreted as very minute error for

the range of variation in the velocity under consideration.

Further dynamic binding capacities for both proteins were determined from
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10% breakthrough volume and is shown in Table 4.6 [255].

Figure 4.11: DBC versus flow velocity for two proteins a)BSA (-�-) and b)BLG (-4-)
at 77.94 and 155.88 cm/hr

Fig. 4.11 shows the effect of flow velocity on DBC of proteins. As expected

the DBC was found to decrease slightly with increase in the velocity. This can be

accounted for decrease in the residence time for the interaction of proteins with

the resin. It is evident that DBC is less than SBC because of the amount of time

and loading which is available during the experiments.

Table 4.6: Comparison of DBC for BSA and BLG on cation exchanger SPFF

Protein
10% BT volume
(ml)

DBC
(mg/ml)

BSA 22.75±0.2 45.37±0.5
BLG 31.8±0.8 98.61±2.49
10% BT=Breakthrough volume for 10% of breakthrough
achieved. The values are averaged for all the flow rates and
standard deviation is mentioned.

On comparison with the Qmax from static studies, the values for DBC of BLG

were found to be 5% less than SBC which is a reasonable estimate suggesting that

the binding for BLG is quick and firm. On the other hand, DBC for BSA was found

to be significantly lower than SBC (≈ 66% lower) which suggests multimeric ad

sorption. In case of static binding the adsorption could sustain as the sample col-

lection after ensuring that the equilibrium was established. However, DBC was

found during operating conditions on column for just enough residence time for
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protein-resin binding leading to continuous equilibrium-non equilibrium condi-

tions. Breakthrough curve shows continuous release of BSA from the column ow-

ing to its inability to sustain the hydrophobic binding under dynamic conditions

leading to non-saturation. The observed behaviour can be supported further con-

sidering conformational composition of BSA of 54% α-helix and 40% β-sheets

[256] and its ability to convert from α helical structure to β sheets [257] on ad-

sorption. Experimental breakthrough curve also provides proof for expected be-

haviour of BSA on ion exchange column in close proximity to its isoelectric point.

Such an observation has also been made by Skidmore et al [3].

4.3.2.5 Breakthrough simulations with ExProSim:IC

Experimental profileswere compared furtherwith the simulationoutputs for both

BSA and BLG breakthrough for different loading velocities as shown in Fig. 4.9

and 4.10. Simulations were performed with two thermodynamic models Lang-

muir and SMA along with EDM. The results are discussed further.

EDM-Langmuir model

Whenpredictedwith experimental parameters as inputs, the breakthrough curves

overestimated the maximum binding capacity for both BSA and BLG. This might

be because of different adsorption times and mechanism in static studies as com-

pared to dynamic studies. As experimental profiles were not matched by both

curves, it was decided to adjust the input parameters in order to fit to the experi-

mental curves. It was logical to use the values ofQmax same as DBC predicted from

breakthrough profiles. Values of kd were increased for both the proteins ensuring

the resultant kd of BSA stays higher than BLG as BSA shows continuous desorption

and slower binding. Equilibriumdissociation constantwere kept constant as equi-

librium constants are generally independent of the residence time. The values of

k1 were also increased further to ensure faster adsorption. Resultant k1 value for

BLG was three times of BSA as faster adsorption is expected for ionic interactions

for BLG than BSA. Themodifications done in the parameters for both BSA and BLG

are shown in Table 4.7.

It is observed from Figure 4.9 and 4.10 that the onset of breakthroughwas pre-
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Table 4.7: Modified model parameters for major whey proteins simulation using
EDM:Langmuir models for SPFF cation exchanger

Protein Constant Value
Multiplication
factor Modified value

BSA Qmax

(mg/ml of resin) 132.5 3 397.5

kd
(×10−6M) 4.566 20 91.3

k1
(×10−3ml/mg.min) 1.36 15 20.4

BLG Qmax

(mg/ml of resin) 106.72 1.8 191.52

kd
(×10−6M) 6.065 12 72.81

k1
(×10−3 ml/mg.min) 1.51 40 60.4

dicted successfully by the simulation tool with 10% breakthrough at more than

95% accuracy for both BSA and BLG for both flowrates. For all BSA breakthrough

curves, no saturation was observed which has been explained earlier in the chap-

ter. As the curves for BSA progressed at a very slow rate, it could not be captured

completely by the model simulations. This can be attributed to absence of hy-

drophobicity considerations in the model used. Apparent value of Qmax for BSA

was increased by three times in order to match to the experimental curve. This

proves that there is a continuous release of BSA from the resin which does not let

the resin to saturate allowing more protein to adsorb continuously. Best fit was

obtained when the binding capacity was set to the DBC value determined from

experimental data. It also appeared that the binding capacity of BSA might be

higher than the estimated values from the static experiments but the overall ca-

pacity couldnot be calculated because of theunsaturation. Breakthroughwas pre-

dicted successfully up to 50% saturation but further slow desorption could not be

predicted and the error was higher before the saturation was predicted correctly

towards saturation. Further attempts were made to achieve a better fit to the

experimental profile by changing the kinetic constants further but it caused mis-

match in the earlier part of the breakthrough curves. As estimation of DBC was a

focus here, predictions were concluded to satisfy the accuracy of the early part of
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breakthrough curves. For BLG breakthrough, it is important to notice that the ex-

perimental curve showed an unexpected dip in the slope around 40% saturation

which was not predicted by Langmuir isotherm.

EDM-MPM model

Table 4.8: Modified model parameters for major whey protein simulation using
EDM:MPMmodels for cation exchange

Protein Parameter Value Multiplier Modified value

BSA Qmax

(mg/mlofresin) 132.4 2 264.69

kdes0
(ml/mg.min)

0.4515 0.35 0.158

kads0
(ml/mg.min)

0.9455 0.05 0.0473

β 0.1011 1 0.1011
γ 0.951 1 0.951

BLG Qmax

(mg/mlofresin) 106.4 1.8 191.52

kdes0
(ml/mg.min)

0.037 1.8 0.066

kads0
(ml/mg.min)

0.2163 0.25 0.0541

β 0.1233 1 0.1233
γ 0.2163 1 0.2163

Comparisonbetween experimental breakthroughandMPMsimulations is shown

in Figures 4.9 and 4.10. Modified MPM parameters are shown in Table 4.8. Model

performed better than Langmuir and SMA for prediction of both BSA and BLG

at lower flow rate of 0.5 ml/min. Error throughout the curve was found to be

less than 5% which is an excellent match. Similar fit was obtained at 1 ml/min

flow rate showing accuracy of the tool at changing flowrates. The adjustment in

parameters reflected similar trend as in case of Langmuir predictions. Adjusted

parameters for BSA showed lower adsorption and higher desorption rates sup-

porting the continuous release of BSA from the resin. This proves weaker bind-

ing which was also reflected from the kd values of Langmuir isotherm. Values

for kdmpm determined from resultant constants (2.08 and 0.691 for BSA and BLG

respectively) and compared with kdmpm values before modifications (0.297 and
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0.097, for BSA and BLG respectively). It was seen that BLG had lower equilibrium

dissociation value indicating stronger binding. Relative change in the kdmpm val-

ues before and aftermodificationswas a reflective of shift in the desorption curves

for both the proteins.

EDM-SMA model

As primary SMA parameters were determined by two different methods which

further can serve as initial guesses for breakthrough predictions, it was impor-

tant to decide which ones should be used for simulations. As inverse fit method

provides an easier way and lesser experiments, it was chosen over gradient exper-

imental method. Parameters were further adjusted in order to fit to the experi-

mental data.

Table 4.9: Modified model parameters for major whey proteins simulation using
EDM:SMA models for cation exchange

Protein
Fitted
Parameters Value Multiplier Modified value

BSA v 2.176 0.6 1.31
keq (×10−2) 91.4 0.05 4.57
σ 12.415 0.2 2.475

BLG v 3.219 0.15 0.487
keq (×10−2) 10.1 0.38 3.83
σ 6.948 0.372 2.589

Modified parameters are shown in Table 4.9. SMA isotherm predictions were

seen to predict breakthrough curves better than Langmuir isotherm. For BLG,

SMA performed better than Langmuir throughout the curve at both velocities. In

order to match the curve for BSA, steric hindrance factor was reduced. Other pa-

rameter modifications show that the charge value is lower supporting more ionic

interactions and higher keq value looser binding as compared to BLG. Adjusted σ

values are same for both proteins suggesting no significant effect of steric factors

on difference in binding of proteins to resin. Compilation of curve to curve errors

for breakthrough predictions are showed in Table B.20. RMSE values for BSA are

higher than that for BLG for all the isotherms. Moreover, predictions for MPM

were found to be better than other two isotherms. This can be attributed to more
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number of parameters for predicting the breakthrough. However, comparison

based on point by point comparison is more relatable for correlating experimen-

tal data.

4.3.2.6 Multicomponent breakthrough: Experimental

Experimental breakthrough

The combined breakthrough profile and individual profiles obtained from the

HPLC-SEC analysis of the samples collected are shown in Figure 4.12.

Figure 4.12: Experimental breakthrough curves for multicomponent system and
individual breakthrough curves fromHPLC-SEC for BSA andBLG for 1ml/minflow
rate, (BSA4, BLG ◦ and combined×)

The experiment formulticomponent breakthroughwas stoppedwhen themix-

ture reached saturation concentration. Interestingly when individual concentra-

tions were determined, it was observed that BSA was almost reaching saturation

and BLG was over saturated. As explained in the earlier section, BSA has a ten-
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(a) (b)

(c) (d)

Figure 4.13: Comparison of SEC-HPLC profiles of samples at different break-
through points onmulticomponent breakthrough curve of BSA and BLG for cation
exchange

dency to show linear profile due to continuous adsorption and desorption. It can

also be seen in Figure 4.13 that slow release of both the proteins happen with

time. Figure 4.13(a) to 4.13(d) show the individual SEC-HPLC profiles at 0%, 10%,

50%, and 100% breakthrough points. As suggested by the SEC-HPLC profiles, BLG

profile shows rapid increase in concentration whereas BSA was seen to increase

slowly as compared to BLG. It can be seen that the breakthrough for BLG in multi-

component system shifted from 28 min to 12 minutes as compared to single com-

ponent BLG breakthrough, whereas breakthrough for BSA increased from 7 to 15

min. This is also supported by the SEC-HPLC profiles where BLG was found to

saturate faster than BSA. This can be attributed to different mechanisms of mass

transfer in the column for the two proteins in consideration. As BLG reaches satu-
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ration faster, it can be considered to be electrokinetically transportedwhereas the

transfer for BSA can be considered to be diffusion driven. This potentially raised

the possibility of BSA displacing BLG due to relatively slower transport through

the column. Increased desorption rates and early saturation of BLG, indicated

clear displacement. Concentration of BLG was observed to reach over the inlet

concentration and which can be attributed to increase in concentration locally

due to displacement of the protein. On the other hand curve for BSA was not sat-

urated till the end of breakthrough. This might be due to slow intermolecular

hydrophobic interactions for BSA as explained in Section 4.3.2.1.

4.3.2.7 Breakthrough simulations with ExProSim:IC

EDM-Langmuir model ExProSim:IC was used further to predict the compet-

itive breakthrough profiles. The simulations profiles are shown in Figure 4.14.

The predictions obtained from experiments under-predicted the breakthrough

curves. Obvious decrease in the binding capacity was attributed to competition

between the molecules for the binding sites in the resins. The competition be-

tween the proteins affected the kinetics by increasing the desorption rates. Des-

orption constants for BLG and BSA were increased by 100 times and 20 times re-

spectively. Higher increase in BLG desorption can be attributed to the displace-

ment phenomena. Modified model parameters are summarised in Table 4.10.

Table 4.10: Modifiedmodel parameters for EDM-Langmuir model system for mul-
ticomponent breakthrough predictions of BSA and BLG using ExProSim:IC

Protein Constant Value Multiplier Modified value

BSA Qmax

(mg/ml of resin) 132.5 0.25 33.125

kd
(×10−6M) 4.566 15 68.49

k1
(×10−3ml/mg.min) 1.36 20 27.2

BLG Qmax

(mg/ml of resin) 106.72 0.25 26.68

kd
(×10−6M) 6.065 100 606.5

k1
(×10−3ml/mg.min) 1.5132 100 151.32
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Figure 4.14: Comparison of ExProSim:IC simulations with EDM vs experimental
breakthrough curves for multicomponent system of BSA and BLG for 1 ml/min
flow rates. Predicted curves for BSA; Langmuir —, SMA · ·, MPM - ·-, and BLG;
Langmuir —, SMA · ·, MPM -·-, Experimental (BSA �, BLG o)

For the bestmatch, values of adsorption rate constant for BLGwas also changed

by 100 times assuming fast adsorption and desorption for it due to high charge

and rapid displacement. It is important to notice thatQmax values were reduced

to 25%of SBC for getting the best fit and it can be said that multicomponent sys-

tems led to huge decline in the binding capacity of both proteins. 75% decline

in BSA capacity was from apparent value of binding capacity whereas actual de-

crease from DBCwas 24%. On the other hand, decrease in BLG from DBCwas 72%.

This further supports displacement effect in the column. Breakthrough curves

were predicted using ExProSim:IC with decent accuracy for multicomponent sys-

tem. Breakthrough point of 10% breakthrough value was predicted to 95% accu-

racy.

EDM-MPMmodel MPMparameters fromadsorption inversefitwere used ini-

tially to predict the multicomponent breakthrough but the results obtained were
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Figure 4.15: Zoomed version for a better comparison of breakthrough points in
multicomponent breakthrough predictions using ExProSim:IC for all the models
for BSA and BLG at 1 ml/min. Predicted curves for BSA; Langmuir —, SMA · ·,
MPM - ·-, and BLG; Langmuir —, SMA · ·, MPM -·-, Experimental (BSA �, BLG o)

not satisfactory. Hence, parameters were modified as shown in Table 4.11. Both

the curves were well predicted up to 50% of breakthrough. Better predictions

were obtained for BSA by MPM models as compared to predictions obtained us-

ing earlier models. Expected decline in the binding capacity was observed which

can be attributed to competition of the proteins for binding sites. Values of des-

orption constants were increased for both the proteins with higher change in des-

orption rate of BLG suggesting its displacement. The overshoot of BLG due to dis-

placement was predicted by MPM model unlike earlier models, however it was

predicted earlier than the experimental data. Modified equilibrium constant for

Langmuir was lesser by 10 fold than that of MPM. It can be said that the overshoot

was a reflection of high increase in equilibrium constant for MPM isotherm due

to increase in desorption constant.

EDM-SMAmodel Furthermore,multicomponent breakthroughwaspredicted

by performing simulations using EDM and SMA isotherm. This is as shown in Fig.

4.14. Modified parameters for SMA are shown in Table 4.12.

Charge values were reduced reflecting change in binding capacity for both

proteins. BLG binding was considerably reduced as compared to BSA support-
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Table 4.11: Modified model parameters for EDM-MPM model system for multi-
component breakthrough predictions of BSA and BLG using ExProSim:IC

Protein Parameter Value Multiplier Modified value

BSA Qmax

(mg/mlofresin) 132.4 0.22 29.1

kdes0
(ml/mg.min)

0.4515 5 2.26

kads0
(ml/mg.min)

0.9455 1 0.9455

β 0.1011 15 1.52
γ 0.951 1 0.951

BLG Qmax

(mg/mlofresin) 106.4 0.3 31.9

kdes0
(ml/mg.min)

0.037 10 0.37

kads0
(ml/mg.min)

0.2163 1 0.2163

β 0.1233 1 0.1233
γ 0.2163 1 0.2163

Table 4.12: Modifiedmodel parameters for EDM-SMAmodel system formulticom-
ponent breakthrough predictions of BSA and BLG using ExProSim:IC

Protein Parameter Value Multiplier Modified value

BSA v 2.176 0.124 0.27
keq 0.914 0.8 0.7312
ka
(×10−3ml/mg.min)

1.36 2000 2720

σ 12.415 0.2 2.483

BLG v 3.219 0.033 0.0106
keq 0.101 5.3 0.535
ka
(×10−3ml/mg.min)

1.51 50000 75500

σ 6.948 0.36 2.49

ing the displacement effect. Modified adsorption constant values suggested high

rates of adsorption for BLGwhereas equilibrium constant showed continuous des-

orption for BSA. It can be observed that 10% breakthrough was predicted accu-

rately for both BSA and BLG with -3.4% and 1.79% error. The simulation curve for

BLG followed the experimental profile further very closely within 5% error till

saturation but overshoot of the experimental profile was not predicted. Simula-
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tion curve for BSA followed up experimental profile till 50% inlet concentration

and further reached saturation quickly. When compared with predictions from

Langmuir, SMA gave better match to the experimental data for both proteins. A

better comparison of ’curve to curve errors can be seen in Table B.21

This exercise gives an example that adjustment of constants becomes more

logical if the experimental phenomena can be understood. Fitting the curves to

minimise the errors would be another way to adjust constants; however, it was

more useful to rely onmolecular and experimental knowledge. This can also help

in troubleshooting the problems in the process.

Details point by point errors are shown in Table B.4. Table B.21 shows the

errors based on curve to curve comparison. It can be said that SMA and MPM

showed a better performance as compared to Langmuir isotherm.

This concludes the cation exchange chromatography formajorwhey proteins.

As the process was operated above the isoelectric point of ALA, the discussed

methodology did not serve the objective of assessment of all major proteins. This

was due to stronger binding at lower pH values making the process less feasible

for operation.
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4.3.3 Anion exchange chromatography

As it was important to know which among cation and anion is better for major

whey proteins, further section describes experimental studies on anion exchange.

Simulation studies were also carried out which serve as additional experimental

validation platform for ExProSim:IC. The structure of the section is similar to cation

exchange studies carried out earlier.

4.3.3.1 Determination of Langmuir parameters

Adsorption isotherm

To find out the adsorption behaviour of protein molecules, different isotherms

were fitted to the experimental data. The parameters obtained from the best

isothermfit of all the proteins are presented in Table 4.13. Obtained fits are shown

in Figure 4.16. Regression coefficients were slightly better for Langmuir andMPM

isotherm as compared to Freundlich suggesting monolayer adsorption for all the

proteins. Langmuir isotherm showed the best match to experimental data for

BSA, BLG, and ALA. The values of Langmuirian equilibrium constant, RL were

found to be between 0 and 1 for entire range of inlet concentrations for all the

proteins indicating favourable single layer reversible adsorption [240].

As discussed in earlier Sections, any globular protein has a combination of hy-

drophilic and hydrophobic regions on its surfacewhich contributewhen a protein

binds to an adsorbent. The binding strength due to these multiple interactions is

denoted by an equilibrium constant kd, whereas extent of binding is referred as

Qmax. Values of kd for all the proteins lie within 10−8Mand 10−4M showing suit-

ability of adsorption for chromatography [242]. It can be observed that the value

of kd for BLG is lower than ALA and BSA. Higher kd value can mean either higher

desorption rate or lesser adsorption rate. The adsorption rate kinetic constant

is determined by uptake kinetics section hence further discussion on kd is given

there. It is reasonable to assume that interactions happening are mostly ionic in-

teractions as the operating pH used here is 6.9 which is considerably higher than

the isoelectric points of all the proteins. Farther the isoelectric point of the pro-

tein, greater are the charges on the protein leading to more potential for ionic
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(a) (b)

(c)

Figure 4.16: Adsorption isotherms for major whey proteins on Capto Q anion ex-
changer; a) BSA, b) BLG, and c) ALA

interactions. The order of extent of binding based on electrokinetic potential can

be seen as expected (BLG<BSA<ALA).Qmax for ALA was highest amongst the pro-

teins. However, value ofQmax for BLG was found to be higher than expected. This

was attributed to formation of dimer of BLG which can cause stronger binding

leading to slower but higher retention [258, 259]. It has been reported that BLG

dimeric form is prevalent at neutral pH [236]. Furthermore, it has been proved by

Mercadante et al. that BLG dimer exerts strong ionic properties in its native struc-

tural form [260]. Adsorption capacity is underestimated by Freundlichmodelwith

less regression coefficients and hence it was not considered further.
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Table 4.13: Summary of adsorption parameters for major whey proteins on Cap-
toQ anion exchanger

Parameter BSA BLG ALA

Langmuir model
Qmax

(mg/ml of resin) 128.8 125.09 139.4

kd,
(×10−6M) 2.92 0.3187 2.052

*kldes,
(×10−2 min−1) 1.46 0.106 0.229

RL at 3 mg/ml 0.0578 0.132 0.0.098
RL at 8 mg/ml 0.0213 0.061 0.0232
R2 0.991 0.981 0.987

Freundlich model
Qf

(mg/ml of resin) 101.7 75.69 103.4

n 4.78 2.662 4.175
1/n 0.209 0.376 0.239
R2 0.956 0.949 0.962

MPM Langmuir model
Qmax

(mg/ml of resin) 127.2 96.88 101.5

kads0
(ml/mg.min) 1.606 1.206 1.299

kdes0
(ml/mg.ml) 2.271 1.818 0.4933

β 0.029 0.064 0.605
γ 1.457 1.386 1.802
Dax(×10−2) 4.791 4.84 3.21
R2 0.9834 0.9856 0.9821
RL: Langmuirian equilibrium constant,
*estimated from pseudo 2nd

order uptake kinetic values

Uptake kinetics

The uptake kinetics signifies the rate of adsorption of a protein. Although adsorp-

tion process happens at a particle and pore surfaces or in the films at the surfaces,

here lumped kinetic models are implemented. The Equations 3.39 and 3.40 were

used to find if the adsorption in physical or chemical respectively.

Fig. 4.17 represents the model fitting for uptake kinetics along with the ex-

perimental data. The representative parameters for the same have been shown
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in Table 4.14. It can be seen that the pseudo second order kinetics fits the kinetic

data better for all the proteins (better regression coefficient and correlations co-

efficient). This means that the adsorption is a chemical adsorption.

(a) (b)

(c)

Figure 4.17: Uptake kinetics for major whey proteins on CaptoQ anion exchanger,
a) Comparison of pseudo 1st order and pseudo 2nd order for BSA b) Comparison of
pseudo 1st order and pseudo 2nd order for BLG c) Comparison of pseudo 1st order
and pseudo 2nd order for ALA

It can be observed that for pseudo second order kinetics, uptake kinetic con-

stants, k2 for BSA and ALA were almost same. Even though there are differences

in themolecular size of the proteins, the uptake rate was observed to be the same.

It is fair to assume that BSA can get adsorbed at the surface easily because of its

larger size than ALA. ALA on the other hand, has higher net charge making its ad-

sorption rate higher due to ionic attractions. Adsorption constant for BLG is very

low as compared to both BSA and ALA in spite of the dimeric configuration. This
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Table 4.14: Parameters for uptake kinetics of major whey proteins for CaptoQ an-
ion exchanger

Parameter BSA BLG ALA

Pseudo first order
k1 (×10−2)
(min-1) 9.19 2.35 2.35

R2 0.749 0.759 0.8072
Correlation
Coefficient 0.9847 0.872 0.9023

Pseudo second order
k2(×10−3)
(ml/mg.min) 7.56 1.81 7.86

R2 0.9907 0.9832 0.991
Correlation
Coefficient 0.9918 0.9936 0.9897

can be attributed to stronger binding due to protein-protein interaction making

it difficult for other BLGmolecules tomove through themedium. Desorption con-

stants were determined for all the proteins using kd and k2 values. The desorption

rate was found to be very low for BLG (0.0032min−1) as compared to 0.039 for BSA

and 0.0273 for ALA. This shows that desorption rate constants follow the order

as BLG<ALA<BSA as supported by the breakthrough curve later in this chapter.

Least desorption rate confirms strongest binding for BLG dimer due to additional

charge interactions. It is important to note that the constants are fitted to the

experimental curve from empirical models and may not give exact idea of what is

happening during the binding kinetics. Further, it is important to consider effect

of salt during the adsorption and hence further models are explored.

4.3.3.2 Determination of MPM parameters

MPM isothermaccounts for the salt as inert entity and includes themodified equi-

librium coefficient based on salt concentration. Farther the isoelectric point of

the protein, greater are the charges on the protein leading to more potential for

ionic interactions. Parameters kads0 and kdes0 describe the resultant rate of uptake

and release of the protein. The values obtained suggest higher rate of adsorption

for BSA with comparable rates for ALA and BLG. However, the rate of desorption

is very less for ALA as compared to BSA and BLG, confirming stronger binding to
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the resin in batch conditions. Value of β represents an extent of ionic interac-

tions happening during the protein binding. This can be interpreted as, higher

the value of β, higher is the interaction of the protein with the matrix. It can be

seen that ALA shows highest interaction with the adsorbent in the batch studies

followed by BLG and BSA respectively. BLG shows higher β value than BSA which

is in contrast to its electrophoretic mobility. This can be attributed to the dimer

formation at the operating pH of 6.9.

4.3.3.3 Determination of SMA parameters

The fit for SMA isotherm was not as good as Langmuir or MPM as the regression

coefficient was less than 0.97 for all the proteins. However, SMA isotherm con-

siders salt interactions while adsorption is happening hence it was considered for

the further parameter estimation. For determination of SMA parameters, column

parameters were estimated.

Column physical parameters

Based on moment analysis of the pulse injections, external porosity of the col-

umn was determined to 0.41±0.014 whereas the particle porosity was estimated

to be 0.860±0.0183. Total porosity for column was determined to be 0.913±0.010.

Height equivalent to theoretical plates was found to be 3.01 × 10−4 cm and net

transfer units were observed to be 8211.66. Asymmetry of the column was 1.08

whichwas acceptable. Ionic capacitywas determined to be 1868.96±25.62mM/ml

resinwhich compares to the reported value for CaptoQ fromGE is 1600-2200mM/ml

resin [254].

Gradient elution

BSA, BLG, and ALA eluted at 35%, 47% and 55% respectively on the salt gradient.

The gradient experiments were further performed for all the proteins between

0% to 100% for different gradient slopes to find out SMA parameters from the

retention volumes. The gradient curves for the proteins are as shown in Figure

4.18. Table B.2 shows the summary of gradient runs.
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(a)

(b)

(c)

Figure 4.18: Comparison of elution profiles for (a) BSA, (b) BLG, and (c) ALA at
different gradient lengths

It can be seen that the retention volume increases with decrease in the slope

of gradient during elution. Retention time was observed to move forward due to

slower change in the salt concentration. Table 4.15 shows the comparison of SMA
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parameters obtained from experiments and inverse fit method. As the charge

value in SMAdefines the number of salt ions being displaced by a proteinmolecule

in order to adsorb onto the resin. Higher values of v and least keq for ALA sup-

ports strongest binding amongst proteins. Steric hindrance factor is a property

influenced by molecular weight of protein which can cause screening of charges

available for exchange. BSA having higher σ value shows highest steric factor.

Similar trend is seen in experimental parameters as well except the values vary

with different multiplier. This trend is seen for both experimental and inverse

fit values. Values for experimental and inverse fit were distant from each other.

The reason can be difference of interactions between static to dynamic studies.

Comparing these parameters may not be wise considering different set-ups and

environments used for them. As these parameters are to be used for simulation

initial guesses, any of the sets can work well. Inverse fit parameters were chosen

for initial guesses as they are obtained with lesser experimental efforts.

Table 4.15: Comparison of SMA isotherm parameters for BSA, ALA, and BLG from
gradient experiments and isotherm fitting

Protein Method v keq σ

BSA Exp 0.223±0.018 0.550±0.023 6.711±0.273
Fit 1.931 0.193 9.715

BLG Exp 0.505±0.026 0.071±0.001 4.848±0.35
Fit 1.737 0.069 5.612

ALA Exp 0.972±0.009 0.002±0.001 4.702±0.076
Fit 3.27 0.0015 4.015

Exp=Experimental, Fit= adsorption curve inverse fit

4.3.3.4 Single component breakthrough: Experimental

First experimental curves are discussed to understand how the proteins interact

with the resin in dynamic conditions of over-loading. Figures 4.19, 4.20, and 4.21

show the breakthrough for BSA, BLG, and ALA at different loading velocities re-

spectively along with the prediction using ExProSim:IC. The slope of breakthrough

curve was found to increase with increase in velocity showing early saturation of

the column. Breakthrough for BSA was obtained the earliest followed by ALA and
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(a) (b)

Figure 4.19: Comparison of experimental breakthrough curves for BSA at two ve-
locities a) 77.95 cm/hr b) 155.9 cm/hr with simulated breakthrough curves using
three thermodynamic models Langmuir (−), MPM (- · -), SMA (- -)

(a) (b)

Figure 4.20: Comparison of experimental breakthrough curves for BLG at two ve-
locities a) 77.95 cm/hr b) 155.9 cm/hr with simulated breakthrough curves using
three thermodynamic models Langmuir (−), MPM (- · -), SMA (- -)

BLG respectively.

Further 10% breakthrough values were used for each protein curve to find the

dynamic binding capacity using Equation 3.25. The values of DBC for BLG were

highest followed by ALA and BSA. Figure 4.22 shows the effect of flow velocity on

DBC of proteins. As expected the DBCwas found to decrease slightly with increase

in the velocity. This can be accounted for decrease in the residence time for the in-

teraction of proteins with the resin. It is evident that DBC is less than SBC because

of the amount of time and loading which is available during the experiments. On
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(a) (b)

Figure 4.21: Comparison of experimental breakthrough curves for ALA at two ve-
locities a) 77.95 cm/hr b) 155.9 cm/hr with simulated breakthrough curves using
three thermodynamic models Langmuir (−), MPM (- · -), SMA (–)

comparison with theQmax for static studies, the values for DBC of BSA, ALA, and

BLG were found to be very low than SBC which shows a looser binding in dynamic

conditions. On the other hand, DBC for BLG was found to be very high as com-

pared to its SBC. This shows stronger binding of BLG to the resin. The rise is very

high as compared to ionic interactions BLG can exert whichmeans theremight be

few physical forces such as hydrophobic interactions involved in the binding.

4.3.3.5 Breakthrough simulations with ExProSim:IC

EDM-Langmuir model

The values obtained from experimental fits of adsorption isotherm were used to

predict the breakthrough curves for the first time. For all the proteins the match

was far from the acceptable error criteria of 5% for experimental points and even

curve to curve regression was 0.8. The parameters from experiments were ad-

justed further to fit the simulation curves to experimental curves. Changes in

Qmax were made according to the DBC values obtained from breakthrough curve,

whereas for kd and k1 were adjusted to match to the slope of the breakthrough

curve based on the understanding we have gained from static experiments. The

modifications done in the parameters for both BSA and BLG are shown in Table

4.16.
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Figure 4.22: DBC versus flow velocity (77.94 and 155.88, cm/hr) for major whey
proteins for CaptoQ anion exchanger; BSA (�), BLG (◦), and ALA (4)

Table B.5 in Appendix B shows the error estimated with respect to various

points on the breakthrough curve. Table B.22 shows comparison of regression

and RMSE error values. It can be said that the onset and 10% breakthrough of all

the breakthrough curves was predicted successfully by the simulation tool with

more than 95% accuracy for all the proteins. Increase in errorwas observed as the

curve progressed further but it remained below 10% throughout the curve even at

higher velocity. All the curves showed complete saturation when compared with

experimental data. From the experimental profiles it was realised that the param-

eters, mainly Qmax will need a major change for BLG in order to accommodate

the dimer effect. Hence it was increased by two times. Along with that, the ad-

sorption constant was increased and desorption constant was decreased to show

higher binding. Change in rate constant kd changed the slope of the breakthrough

curve, whereas change in Qmax and k1 changes the location of the breakthrough

point. When kdes was calculated from the values of kd and k1; ALA showed slightly

higher desorption rate than other proteins.

EDM-MPM model

As the initial simulations obtained using inverse fit MPM parameters were far

from satisfactory, model parameters were modified further. The changed param-

eters are shown in Table 4.17. Simulations carried out using MPM-EDM models
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Table 4.16: Modified model parameters for major whey proteins simulation using
EDM:Langmuir models for Capto Q anion exchanger

Protein Constant Value Multiplier Modified value

BSA Qmax

(mg/ml of resin) 128.8 0.75 96.6

kd
(×10−6M) 2.924 0.5 1.462

k1
(×10−3ml/mg.min) 7.56 15 113.4

BLG Qmax

(mg/ml of resin) 125.09 2.4 300.22

kd
(×10−6M) 3.187 0.5 1.594

k1
(×10−3 ml/mg.min) 1.37 40 54.8

ALA Qmax

(mg/ml of resin) 139.4 1 139.4

kd
(×10−6M) 20.52 0.2 4.105

k1
(×10−3 ml/mg.min) 7.81 10 78.1

were as accurate as that of Langmuir isotherm in predicting the onset and 10%

breakthrough. As it can be seen in Table B.5 in Appendix B, error for MPM predic-

tions remained below 5% throughout the curve even at higher velocity making

it a better isotherm model than Langmuir for breakthrough prediction. Changed

parameters revealed that desorption rate was lowest for BLG suggesting stronger

binding. The value of β suggestedweaker binding for BSA than other two proteins

resulting in earlier breakthrough. It was observed that change in γ value did not

affect the shape of the breakthrough curve. This might be due to major modifica-

tions made in kdes0 values which makes the effect of change in gamma negligible.

On the other hand, γ is multiplied by salt concentration which is quite low (0.025

M) so very small change in it wont reflect in the breakthrough curve. Modified β

values for the proteins were compared further. As β for both BLG and ALA show

high values as compared to BSA, comment can be made about binding strength

being higher for both. Overall dissociation constant kdmpm=
(

kdes0×Sβ
kads0×exp(γ×S)

)
was

determined for MPM isotherm to relate to Langmuir isotherm to Figure out why
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ALA showed early breakthrough in spite of stronger binding. kdmpm values for

ALAwas found to be very high as compared to both BLG and BSA suggesting faster

adsorption-desorption. kdmpm for BLG was very low indicating stronger binding.

Table 4.17: Modified model parameters for major whey proteins simulation using
EDM:MPMmodels for Capto Q anion exchanger

Protein Parameter Value Multiplier Modified value

BSA Qmax

(mg/mlofresin) 127.2 0.7 89.53

kdes0
(ml/mg.min)

2.27 0.013 2.95×10−2

kads0
(ml/mg.min)

1.61 0.1 0.1606

β 0.029 1 0.029
γ 1.457 2 2.914
Dax(×10−2) 4.791 4 19.3

BLG Qmax

(mg/mlofresin) 96.88 1.5 145.32

kdes0
(ml/mg.min)

1.818 0.001 1.818×10−3

kads0
(ml/mg.min)

1.21 0.1 0.121

β 0.064 10 0.64
γ 1.386 1 1.386
Dax(×10−2) 4.84 3 14.5

ALA Qmax

(mg/mlofresin) 101.5 1 101.5

kdes0
(ml/mg.min)

0.493 0.018 9.076×10−3

kads0
(ml/mg.min)

1.29 0.1 0.129

β 0.61 1.05 0.635
γ 1.802 1 1.802
Dax(×10−2) 3.21 2 6.42

EDM-SMA model

As SMA parameters were determined by two different methods, it was important

to decide which ones should be used for simulations. As inverse fit method pro-

vides an easier way and lesser experiments, it was chosen over gradient experi-

mental method. Parameters were further adjusted in order to fit to the experi-
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mental data.

Table 4.18: Modified model parameters for major whey proteins simulation using
EDM:SMA models for Capto Q anion exchanger

Protein
Fitted
Parameters Value Multiplier Modified value

BSA v 1.931 0.61 1.772
keq (×10−2) 19.26 1.5 28.89
σ 9.715 0.8 7.772

BLG v 1.737 0.91 1.58
keq (×10−2) 6.85 0.25 1.7125
σ 5.612 1 5.612

ALA v 3.27 0.385 1.259
keq (×10−2) 0.156 10 1.56
σ 4.015 1 4.015

Modified parameters are shown in Table 4.18. Furthermore, Table B.5 in Ap-

pendix B shows errors at different breakthrough points throughout the curves

at different velocities. SMA isotherm predictions were able to match the exper-

imental breakthrough curves at all velocities with less than 5% error for all the

proteins. Major change in themodified parameters was in charge value for all the

proteins. When these valueswere comparedwith experimentally obtained charge

values, large differences were observed. This shows obvious error in estimation of

charge value experimentally. As experimentswere performed at ambient temper-

ature of 23±2◦c, even small changes in temperature can affect the charge. Major

variations were observed when breakthrough was estimated at charge values ob-

tained from experiments indicating high sensitivity to charge. Hence, fitting of

this parameter was utmost necessary for getting a better fit. Charge values were

compared for all the proteins. BLG showed highest value considering its strongest

binding. On the other hand, keq values for BLG and ALA were comparable. It was

also noticed that steric factor did not influence much for the to the shape of the

curve for the low molecular weight proteins, hence it was kept constant.

Even though the comparisons were based on point to point comparison for

better experimental understanding, errors for curve to curve comparison are shown

in Table B.22. Predictions with MPM model give better regression coefficients as
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Table 4.19: Comparison of experimental dynamic binding capacity with simula-
tion models for BSA, BLG, and ALA for Capto Q anion exchanger

Protein
Inlet conc.
(mg/ml) DBC (mg/ml) Langmuir MPM SMA

Experimental value % error value % error value % error
BSA 1.5 74.400±0.2 73.313 1.46% 72.338 2.77% 75.038 -0.86%
BLG 3 232.950±1.45 232.350 0.26% 234.675 -0.74% 230.625 1.00%
ALA 2 100.750±2.175 97.105 3.62% 100.710 0.04% 97.300 3.42%

compared to other thermodynamic models. Table 4.19 further shows the com-

parison of DBC values estimated by predicted curves from the various isotherm

models to the DBC obtained from experimental breakthrough. The DBC values

obtained by breakthrough are far less than the SBC values obtained by Langmuir

model using adsorption experiment data. On the other hand, DBC for BLG was

found to be veryhigh. All theDBCvalues determined frompredicted breakthrough

curves matches well with the experimental DBC showing consistency of predic-

tion using ExProSim:IC.

4.3.3.6 Multicomponent breakthrough: Experimental

It was expected that when all three proteins were injected together, the compe-

tition for the sites should further decrease the extent of binding of the proteins

in the column. Figure 4.23 shows the multicomponent breakthrough obtained

for the mixture of proteins injected (The zoomed Section in the Figure can be

looked at to get a closer look). The breakthrough is achieved earlier than any of

the single component breakthrough showing obvious reduction in the binding of

all three proteins. Figure 4.24 shows HPLC analysis of the samples taken at on-

set, 10%, 50%, and 100% of breakthrough curve. It can be seen that the increase

in BSA and ALA starts with steeper increase in ALA at 10%, whereas at 50%, BSA

shows values above its saturation with ALA still increasing further. Till 50% of

the breakthrough, BLG was not seen at the column outlet. Furthermore, at 100%

breakthrough, BLG reaches to its saturation value, whereas BSA and ALA show

decreasing profile from the saturation value. This may be attributed to displace-

ment of BSA and ALA happening due to BLG. Dimer of BLG might be responsible

for the slow retention of BLG.

It can be seen that the breakthrough onset for BSA, shifted from 88.6 for single
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Figure 4.23: Experimental breakthrough curves for multicomponent system and
individual breakthrough curves fromHPLC-SEC for BSA andBLG for 1ml/minflow
rate, (BSA �, BLG ·, ALA4 and combined -×-)

component to 52 minutes. For ALA, it shifted from 68.87 to 48, and for BLG it

shifted from 138.6 to 78 showing decrease in binding capacity for all the proteins

due to competition.

4.3.3.7 Breakthrough simulations with ExProSim:IC

EDM-Langmuir model

Combination of EDM-Langmuir models was implemented further to predict the

competitive breakthrough profiles. Predictions obtained at parameters obtained

from adsorption experiments were far from satisfactory hence further modifica-

tions were done to fit to individual experimental breakthrough curves. Modified

model parameters are summarised in Table 4.20.

Simulation profiles obtained for modified parameters are shown in Fig. 4.25.
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(a) (b)

(c) (d)

Figure 4.24: Comparisonof hplc profiles of breakthrough samples taken at a) 0%bt,
b) 10%bt, c) 50%bt, and d) 100%bt

Kinetics of adsorption and desorption was also affected because of the competi-

tion between the proteins showing higher desorption rates. For the best match,

values of adsorption rate constant for BSA, ALA, andBLGwere increasedby 100,100,

and 300. On the other hand, kd value was also increased for all of them. Higher

increase in kads value with marginal increase in kd value suggests higher desorp-

tion rates for all proteins. This might be due to presence of higher number of

molecules for binding leading to rapid displacement. Breakthrough curve was

predicted well for BSA till 40% breakthrough but after that the error increased

towards saturation. For BLG and ALA, Langmuir isotherm could predict the break-

through data well but higher error was observed towards the end of the curve.

The overshoot of BSA was best predicted by Langmuir as compared to other two
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Figure 4.25: Comparison of simulated breakthrough curves with multicomponent
breakthrough for major whey proteins for all the model combinations. Predicted
curves for BLG; Langmuir —, SMA · ·, MPM - · -, and BSA; Langmuir —, SMA · ·,
MPM - · -, ALA; Langmuir —, SMA · ·, MPM - · -, Experimental (BSA �, ALA4, BLG
◦)

Figure 4.26: Zoomed version for a better comparison of breakthrough points in
multicomponent breakthrough predictions using ExProSim:IC for all the models
for BSA, ALA, and BLG at 1 ml/min. Predicted curves for BLG; Langmuir —, SMA
· ·, MPM - · -, and BSA;Langmuir —, SMA · ·, MPM - · -, ALA ;Langmuir —, SMA · ·,
MPM - · -, Experimental (BSA �, ALA4, BLG ◦)
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Table 4.20: Modifiedmodel parameters for major whey proteins multicomponent
simulation using EDM:Langmuir model for Capto Q anion exchanger

Protein Constant Value Multiplier Modified value

BSA Qmax

(mg/ml of resin) 128.8 0.65 83.72

kd
(×10−6M) 2.924 2 5.848

k1
(×10−3ml/mg.min) 7.56 100 756

BLG Qmax

(mg/ml of resin) 125.09 1.5 187.635

kd
(×10−6M) 3.187 5 15.934

k1
(×10−3 ml/mg.min) 1.37 300 411

ALA Qmax

(mg/ml of resin) 139.4 0.45 62.73

kd
(×10−6M) 20.52 1 20.52

k1
(×10−3 ml/mg.min) 7.81 100 781

isotherms.

EDM-MPM model

Furthermore,multicomponent breakthroughdatawas predictedusing ExProSim:IC.

Table 4.21 shows the modified parameters for fitting of the simulation curves to

experimental data. Breakthrough point and 10% breakthrough was successfully

predicted by ExProSim:IC, whereas the errorwas high above 80% breakthrough and

beyond for all three proteins. Slight overshoot of BSA because of displacement

by BLG was predicted by simulations but it couldn’t match to the experimental

overshoot. Error was as high as 26% for BSA because of inability to predict the

overshoot. Comparison of model constants helped further in understanding the

breakthrough profiles. Qmax value was highest for BLG, showing higher reten-

tion in the resin bed. Values of β signifies the strength of the interaction. Highest

value of β for BLG supported its retention in the column, however even ALA shows

higher value of β which should reflect in increased binding strength. Earlier exit
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Table 4.21: Modifiedmodel parameters for major whey proteins multicomponent
simulation using EDM:MPMmodel for Capto Q anion exchanger

Protein Parameter Value Multiplier Modified value

BSA Qmax

(mg/mlofresin) 127.2 0.7 89.53

kdes0
(ml/mg.min)

2.27 0.5 1.135

kads0
(ml/mg.min)

1.606 1 1.606

β 0.029 1 0.029
γ 1.457 1 1.457
Dax(×10−2) 4.791 5 23.95

BLG Qmax

(mg/mlofresin) 96.88 1.5 145.32

kdes0
(ml/mg.min)

1.818 1 1.818

kads0
(ml/mg.min)

1.21 0.1 0.121

β 0.064 10 0.64
γ 1.386 1 1.386
Dax(×10−2) 4.84 3 14.52

ALA Qmax

(mg/mlofresin) 101.5 1 101.5

kdes0
(ml/mg.min)

0.493 10 4.93

kads0
(ml/mg.min)

1.29 0.2 0.258

β 0.61 0.5 0.305
γ 1.802 1 1.802
Dax(×10−2) 3.21 3 9.63

of ALAmight be attributed to veryhighdesorption constant. Values ofkdmpmwere

found out for all the proteins. ALA showed highest value for resultant desorption

constant (4.6) which explains faster release from the resin. Though the value of

kdmpm for BSA was least, lower β value showed weaker binding to the resin.

4.3.3.7.1 EDM-SMA model

Furthermore, multicomponent breakthrough was predicted by performing simu-

lations using EDM and SMA isotherm. This is as shown in Figure 4.25. Modified
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parameters for SMA are shown in Table 4.22. It can be seen that charge values

were reduced to account for the possible reduction in the adsorption capacity of

the proteins. Charge value for BLG was decreased marginally as compared to ma-

jor decline in the charge values for ALA and BSA. This suggests displacement of

ALA and BSA by BLG. Fast adsorption desorption was taken into account by in-

creasing keq values. High increase in resultant keq supports rapid desorption for

all the proteins as compared to single component breakthrough. Least value of

keq was found for BLG, showing most stable binding amongst three proteins. SMA

predictions showed lesser accuracy when compared with Langmuir and MPM.

Table 4.22: Modifiedmodel parameters for major whey proteins multicomponent
simulation using EDM:SMA model for Capto Q anion exchanger

Protein
Fitted
Parameters Value Multiplier Modified value

BSA v 1.931 0.38 0.734
keq (×10−2) 19.26 15 288.9
σ 9.715 0.1 0.9715

BLG v 1.737 0.81 1.407
keq (×10−2) 6.85 5 34.25
σ 5.612 1 5.612

ALA v 3.27 0.13 0.4251
keq (×10−2) 0.156 500 78
σ 4.015 1 4.015

It can be observed that onset and 10% breakthroughwere predicted accurately

for all the proteins. Error in SMA predictions was higher for BSA towards the end

of the curve as the overshootwas not predicted by SMA isotherm. Errorwas found

to be more than 40% from halfway through of the curve.

Table B.6 shows the overall error at different time points in the breakthrough

for all themodels. Dynamic binding capacity values frommulticomponent break-

through experiment were further compared with simulations as shown in Table

4.23. It can be seen that overall performance of MPM is best amongst all three

models as the overall error in breakthrough and DBC was the least for MPM.

137



Table 4.23: Comparison of DBC frommulticomponent breakthrough for anion ex-
change of major whey proteins

Exp Langmuir MPM SMA

Proteins value value %error value %error value %error
BSA 57.958 61.292 -5.75% 59.208 -2.16% 55.771 3.77%
BLG 86.292 84.625 1.93% 86.500 -0.24% 79.573 7.79%
ALA 55.875 58.375 -4.47% 58.375 -4.47% 57.958 -3.73%

4.3.4 Comparison of cation and anion exchange chromatogra-

phy

We have seen that major whey proteins can be separated by implementing both

cation and anion exchange chromatography techniques. However, it should be

decided which performs better for separating all three proteins for future pro-

cess development. In case of cation exchange, the window for selection of pH for

operation is very low. At pH lower than 4.2, very harsh salt conditions are required

for elution of the bound proteins which may affect the structure and properties

of the proteins. Additionally, pH higher than 4.2, ALA cannot be purified as it has

almost no electrokinetic potential at its isoelectric point. BSA remains slightly

hydrophobic at pH 4.5, which affected its binding in a cation exchanger.

In case of anion exchange, operation window was found to be flexible enough

to allow reversible binding of all the proteins to the resin. Furthermore, for cation

exchange, the process has to be operated at lower pH which is not the pH of the

sweet whey which is generally obtained from the industry for separating major

proteins from crude stream. Sweet whey pH is generally between 6.6-7.2 which

is used here for anion exchange[261]. Binding capacities obtained for anion ex-

changer are comparable to the binding capacitiesmentioned by themanufacturer

for the standard proteins indicating optimum usage of the resin at the selected

pH. Comparing both chromatographic methods for ease pf operation and further

feasibility for scaling up, it can be inferred that anion exchange chromatography

gives clear advantages over cation exchange. Hence, anion exchangewas finalised

formajor whey protein purification studies andminor proteins were studied only

for cation exchange process in Chapter 5.
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4.4 Conclusion

This chapter presents a methodological approach to experimental validation of

the tool ExProSim:IC. Experimental system for validation of the tool presented an

important aspect of whey processing for high value products. Majorwhey protein

adsorption and breakthrough were discussed in detail for both cation and anion

exchange chromatography. Data generated from both experimental approaches

was used for finding out parameters of the models used for simulations in Ex-

ProSim:IC for expeirmental validation. Cation exchange chromatography was ex-

plored for BSA and BLG, however due to restrictions imparted by operating pH,

ALA was not considered. On the other hand, anion exchange chromatography

was successfully implemented for all three proteins. For both methodologies,

respective proteins were successfully assessed for their adsorption kinetics and

model parameters were obtained by performing basic experiments such as; ad-

sorption, column porosity, ionicity determination, and uptake kinetics. Further-

more, breakthrough experiments were performed at different velocities. Break-

through for BSA for cation exchange was not seen to reach saturation because of

prevalent hydrophobic interactions showing apparentQmaxfor BSA. On the other

hand, electrokinetic transfer through the column was observed for BLG showing

comparable values of SBC and DBC.

For anion exchange, all the proteins reached the saturation valueswith consis-

tency in SBC and DBC values. Langmuir, SMA, and MPM models were along with

EDM were examined and compared for their predictability of the experimental

data produced for both cation and anion exchange. All models accurately pre-

dicted the breakthrough point and 10% breakthrough which was further used in

finding DBC. Formost part of the curve, the predictions showed less than 5% error

showing early saturation towards the end. Uneven predictions were obtained for

Langmuir isotherm for both cation and anion exchange processes as compared to

MPM and SMA. This can be attributed to higher number of parameters available

for fitting the data. For SMA isotherm, determination of ’charge’ valuewas not ac-

curate experimentally. As ’Charge’ has an exponential presence in the equation,

its accuracy is paramount, and probably a better method for the same should be
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devised. Parameters obtained from inverse fit were used successfully for predic-

tions for both MPM and SMA eliminating the need of performing gradient exper-

iments.

Errors shown by curve to curve comparison by determination of RMSE and

coefficient of determination did not give correct representation of the fit. Even if

the errors at important experimental pointswashigh, error seemed low showing a

good fit. Hence, point to point comparisonwas practised so that significance with

respect to experiments can be derived. Point to point comparison also allowed de-

termination and comparison of DBCs of the resin towards the proteins and their

change when in competition with each other. DBC certainly gave idea about resin

capacity but not performance. Also in case the resin becomes old, it will be dif-

ficult to predict even the capacity with respect to ageing of the resin. Additional

considerationsmay be required. Comparison at 50% and 100% breakthrough gave

a better idea about shape of the breakthrough and desorption of protein describ-

ing resin performance. It was observed that simulations using EDM were not ef-

ficient to predict end of the breakthrough suggesting better considerations on

diffusion of the protein through the resin may be required. Higher accuracy and

consistency can be obtained in predictions if POR and GRM can be implemented.

For predictions of multicomponent systems by ExProSim:IC, Langmuir and SMA

showed reasonable accuracy, whereas MPM proved to be most accurate. This can

be attributed to more number of parameters to fit the data. SMA can be a better

isotherm in case of prediction peaks at changing salt concentrations which is not

attempted here.

Overall, it can be said that themethodology for calibration of model constants

was established here and implemented in the tool. The tool developed is capable

of predicting preliminary experimental outputs for proteins with wide range of

properties for application of both anion and cation exchange chromatography.
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Chapter 5

Minor whey protein separation

5.1 Introduction

Whey consists ofmajor proteins such asα-lactalbumin (ALA),β-lactoglobulin(BLG),

and bovine serum albumin(BSA) (≤90% of total proteins) which are acidic in na-

ture. Additionally, fewminor proteins such as lactoferrin (LF) and lactoperoxidase

(LP) are basic in nature and show promising therapeutic activities [262, 263, 264].

Adsorption and separation studies formajor proteins have already been discussed

in detail in Chapter 4 along with the respective simulation studies. This chapter

focuses on studying binding characteristics of minor whey proteins on a cation

exchanger for additional experimental validation of ExProSim:IC. Choice of cation

exchange chromatography was based on two factors. Firstly, considering isoelec-

tric points (pI) of LF and LP, anion exchangers will need pH higher than 9.5 for

sufficient binding of minor proteins which is too harsh for the stability of LF and

LP. Secondly, as the major proteins showed better performance towards anion ex-

changers at pH 6.9, flow-through havingminor proteins can be directly processed

on cation exchangers at the same pH giving a possible tandem separation.

5.2 Methodology

Along with Experiments, ExProSim:IC was used further to implement equilibrium

dispersive model (EDM) along with various isotherm models such as Langmuir,

steric mass action(SMA) andmobile phase modulator(MPM) for prediction of sin-
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gle and multicomponent breakthrough curves. Methods for computation were

implemented as given in Section 3.2. Data obtained from adsorption experiments

was used to obtain themodel constants for Langmuir,MPM, andFreundlich isotherms

by inverse fitting. Once, all themodel constants were determined, they were used

as input for ExProSim:IC for simulating the breakthrough curves. For validation of

simulations, predicted profiles were compared with the experimental curves and

error was determined at a number of points (0%, 10%, 50%, and 100% of satura-

tion concentration) on the curve. If the error was out of acceptable criteria (±5%

for 0 and 10% BT), model constants were revised logically depending on the er-

ror obtained and the simulations were repeated until the successful match was

obtained. Also, curve to curve error was determined for all simulation and exper-

imental curves.

5.2.1 Experimental

5.2.1.1 Materials and Methodology

All the protein standards and buffers required for cation sample analysis aremen-

tioned in Section 3.3.1. LP and LF were used as model proteins and the adsorption

was carried out on loose and prepacked Capto STM resin. According to the resin

manufacturer, Capto STM offers 15-20% higher binding capacity as compared to its

predecessor SPFF which was used for cation exchange studies of acidic proteins.

Along with higher loading, it has high chemical stability, shows better pressure

response, and processes can be operated at higher flow rates saving resultant op-

erating times [254].

All the samples generated from batch studies were analysed at 280 ηm on UV-

vis spectrophotometer. Samples generated from NGC Bio-Rad for multicompo-

nent breakthrough curve were analysed by using HPLCmethod 1. As mentioned in

Section 3.3.2.5,method 1 was developed for sufficient resolution and clarity of the

peaks for LF and LP. 1 mg/ml mixture of ALA, BLG, BSA, LF, and LP was injected

at different gradients of mixture of mobile phase A (0.1% TFA in 100% ultra-pure

water) and mobile phase B (0.1% TFA in 100 % ACN) in order to get maximum

resolution between LF and LP. For low pressure cation exchange equilibration and
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wash buffer used was 25 mM sodium phosphate buffer at pH 6.9. 0.5 M NaCl in

equilibration buffer at pH 6.9 was used for elution whereas 1 M NaOH was used

for regeneration of the resin.

5.2.1.2 Sample Analysis

Total protein content of the samples from the reports received by Tatuawas based

on analysis from elemental analyser hence C-H-N analysis was performed for the

samples. Further to check their qualitative and quantitative purity, samples were

subjected to multiple assessment techniques.

Column profiles using NGC

LF and LP, 3 mg/ml and 4 mg/ml respectively were prepared in equilibra-

tion buffer. 300µl of sample was injected onto the column to check the peak

profile of the standard samples for impurity profiling. Resolution between

multiple peaks (if any) was assessed. Individual breakthroughs of the sam-

ples were run at 0.5 ml/min flow rate to check if any impurities elute dur-

ing flow-through to influence pure protein breakthrough profiles. For low

pressure cation exchange column experiments, prepacked HiTrap Capto S

column was used for frontal chromatography experiments using NGC. All

the column experiments were performed at ambient temperature of 25◦C.

HPLC analysis

To check purity of the samples and find out probable nature of impurities,

HPLC analysis was done by injecting standard samples of the protein. HPLC

purity was determined by method 1.

SDS-PAGE

For qualitative profiling of protein samples at various stages of column ex-

periments as well as for the standards, SDS-PAGE was performed.

5.2.1.3 Chromatography experiments

Adsorption isotherm experiment For cation exchange adsorption, experiments

were carried out for binding onCapto S resin as given in Section 3.3.3.1 and further

fitted using ExProSim:IC to find model constants using inverse fit method.
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Uptake kinetics 4mg/ml solutions for each protein were used for the uptake

kinetics experiment as given in Section 3.3.3.2. Pseudo first order and pseudo sec-

ond ordermodels were checked as given in Section 3.4.1. Uptake kinetics constant

kads was found out from the best fit.

Column physical parameters Column physical parameters such as porosity

and ionic capacity for SMA isotherm were determined by method mentioned in

Section 3.3.5.

Gradient elution experiments Gradient experiments were performed to es-

timate the charge constant vi and equilibrium constant keq,i. LF and LP, each 3

mg/ml were prepared and 300 µl was injected on an equilibrated column for dif-

ferent gradient slopes of 0.5 M sodium chloride. The values of v and keq were

determined by fitting experimental data to Equation 3.23 [228].

Breakthrough experiments For LF the breakthroughwas obtained at 3mg/ml

and 6 mg/ml at flow rates of 0.5, 0.75, and 1 ml/min. For LP, Breakthrough were

performed at 4 mg/ml concentration at 0.5, 0.75, and 1 ml/min flow rates. Inlet

parameters such as flow rate and concentration were varied to check their ef-

fect on prediction ability of ExProSim:IC. Breakthrough was further analysed for

accuracy of predictions. Time and volumes for breakthrough point, 10% break-

through, halfway concentration and exhaustion were recorded for comparison

with simulations. σi was estimated by using Equation 3.24[229].

Multicomponent breakthrough For multicomponent breakthrough, LF and

LP were mixed together in 4.5 mg/ml and 3 mg/ml concentrations respectively

making the overall concentration of the protein solution to 3.75 mg/ml. The

breakthrough was carried out in a similar fashion at 0.5 ml/min. Samples were

collected throughput the experiment till the saturation. Furthermore, standard

curves were prepared for LF and LP by injecting different concentrations of the

protein on to the column to assess unknown sample concentrations. The samples

collected from NGC were analysed on HPLC with 20 µl injection volume.

144



5.3 Results and Discussion

5.3.1 Sample analysis

The total protein content by C-H-N analysis based on total nitrogen was found to

be 94.026% for LF and 93.88% for LP. HPLC method was finalised by comparing

number of gradient runs. Two representative gradient runs are shown here in

Figure 5.1. As the mixture of all the proteins was injected, initial expectation was

to resolve all the proteins for analysis but then it was decided to go ahead with

maximum resolution for LF and LP for this specific analysis (5.1(b) was preferred

over 5.1(a)). HPLC Method 1 is shown in Table 5.1. Figure 5.2(a) and 5.2(b) show the

standard curves determined from hplc analysis and can be used for finding out

concentrations of unknown samples from multicomponent breakthrough exper-

iment.

Table 5.1: HPLCmethod 1 for LF and LP resolution (%B in the table is acenotnitrile
concentration in mobile phase). Flowrate is 1 ml/min

Run time (min) %B

0 0
2 0
4 35
6 37
24 43
32 70
36 100
40 100
42 0
45 0

Whenassessment of the obtainedprotein samples using cation exchange chro-

matography was performed, no impurities were seen in LF sample as shown in

Figure 5.3(a). However, chromatography run for LP showed amajor impurity peak

in wash fraction as can be observed in Figure 5.3(b). The SDS-PAGE as shown in

Figure 5.4(a) further confirmed the presence of impurities in the LP sample. This

was further confirmed by collecting the peak and loading on hplc column (Fig-

ure 5.5(b)). As breakthrough and other column experiments required a pure sam-

ple, the retained peak from multiple column experiments on a xk-16/20 (20 ml)
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(a) (b)

Figure 5.1: Different gradient method trials to get maximum resolution between
LF and LP. Method (b) was chosen over (a)

(a) (b)

Figure 5.2: Standard curves for (a) LF and (b) LP determined from HPLC

column was collected in order to separate pure fraction of LP. The elution frac-

tions were further concentrated and desalted using a 10 kDaminimatemembrane

filtration cassette. Qualitative and quantitative purity of the generated sample

was checked using SDS-PAGE, NGC, and HPLC. For SDS-PAGE, the gels were over-

stained to ensure visibility of minor impurities. Figure 5.4(b), SDS-PAGE well 7

confirms the removal of impurity. Removal of the impuritywas further confirmed

by NGC (Figure 5.5(a)) and HPLC profile (Figure 5.5(b)) for LP sample. The purity

of LP was improved from 88% to 97%.
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(a) (b)

Figure 5.3: LF (a) and LP (b) standard profiles on Capto S HiTrap 1 ml column

(a) (b)

Figure 5.4: a) SDS-PAGE for LF and LP at different concentrations: 1. LP 0.5 mg/ml
2. LP 0.25 mg/ml 3.LP 0.125 mg/ml 4. LP 0.0625 mg/ml 5. Broad range marker 6.
LF 0.5 mg/ml 7. Blank 8. LF 0.25 mg/ml 9. LF 0.125 mg/ml 10. LF 0.0625 mg/ml
b) Comparison of SDS-PAGE for LP before and after purification: 1.Broad range
marker 2. LP tatua standard 3. LP sigma standard 4. Blank 5. LP fraction 1 6. LP
fraction 2 7. LP elute 8. bovine serum albumin

5.3.2 Cation exchange chromatography

5.3.2.1 Determination of Langmuir parameters

Adsorption isotherms

For both the proteins, Langmuir isotherm exhibited good fit with experimental

data as shown in Figure 5.6. Langmuir equilibrium constant RL was estimated
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(a) (b)

Figure 5.5: a) LP profile on NGC after purification b) Comparison of HPLC profiles
for LP before and after purification

in between 0 to 1 for all the inlet concentrations indicating a reversible hence

favourable adsorption. Langmuir isothermwas favouredover Freundlich isotherm

suggesting mono-layered adsorption. The exponent of Freundlich was estimated

to bemore than unitywhichwas an underestimation of binding capacity as shown

in Table 5.2.

(a) (b)

Figure 5.6: Langmuir, Freundlich and SMA adsorption isotherm fit with experi-
mental data for LF (a) and LP (b)

It is important to understand the properties of protein and how they can af-

fect the binding kinetics before further discussion. It is known that the charges on

the protein surfaces primarily take part in the ion exchange with the resin. As ex-
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Table 5.2: Summary of Langmuir, Freundlich, andMPMadsorption parameters for
LF and LP

Parameter LF LP

Langmuir model
Qmax

(mg/ml of resin) 93.88 132.5

kd,
(×10−6M) 1.58 6.41

RL at 3 mg/ml 0.352 0.123
RL at 8 mg/ml 0.134 0.0581
R2 0.9932 0.9982

Freundlich model
Qf

(mg/ml of resin) 79.66 89.32

n 8.315 3.893
1/n 0.1192 0.2568
R2 0.990 0.982

MPM Langmuir model
Qmax

(mg/ml of resin) 93.95 132.05

kads0
(ml/mg.min) 0.8098 0.1244

kdes0
(ml/mg.ml) 0.0818 0.0209

β 0.0119 0.2812
γ(×10−3) 6.44 0.59
R2 0.9929 0.9901
RL: Langmuirian equilibrium constant,

plained in Section 4.3.2.1, binding is a result of combination of forceswith charged

attraction as dominating force for ion exchange [241]. The kd values obtained for

LF and LP lie within this range 10−8 M and 10−4 M, indicating the suitability of

the ion exchange process [242].

Ghosal and Gupta have given analytical proof that Langmuir constant can be

related directly to thermodynamic equilibrium constant, Kteq using Vant Hoff

equation [25] (Equation 5.1). Where, R is a universal gas constant (8.314 J.mol-

1.K-1),∆H0 and∆S0 are standard changes in enthalpy and entropy respectively.

Relation between kd andKteq is derived in the work by Ghosal and Gupta, hence
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it was not discussed in detail here. The work states that value of kd is depen-

dent onKteq. Kteq is a generalised thermodynamic equilibrium constant, whereas

kd is specified as adsorption equilibrium constant expressed in terms of kinet-

ics of the process. Positive and negative∆H0 values represent endothermic and

exothermic reaction. Positive value of ∆S0 indicates the affinity of the sorbent

towards the sorbate as the randomness near the solid liquid interface is high giv-

ing more chances for adsorption to take place. This means that change in Kteq

value changes the extent of adsorption. This change can be accounted bymeasur-

ing kd value which also represents kinetics of adsorption. This supports that the

change in kd value shifts the equilibrium of the adsorption process which directly

affects the extent of adsorption happening. kd is mathematically represented as

kdes/kads.

lnKteq = −∆H0

RT
+

∆S0

R
(5.1)

Lower value of kd suggests higher adsorption or lower desorption rate indicating

stronger binding, whereas increase in the value of kd suggests weaker binding.

The dissociation constants obtained for LP was almost 4 times of that of LF sug-

gesting loose binding for LP. On the other hand, the electrophoretic mobility de-

pends on how far the pI lies from the pH of operation. pI further denotes the pH

at which protein has minimum effective volume. At operating pH of 6.9, LF with

pI of 7.8-8.2 should have a lesser adsorption capacity than LP having pI of 9.2-9.5

which was further supported by Qmax values as shown in Table 5.2. This means

even if LF has lesser binding, it has firm adsorption on the column.

Uptake kinetics

As the uptake of protein depends on the sites at which it interacts with the resin,

lumped kinetic models such as; Pseudo first order (Equation 3.39) and pseudo sec-

ond order (Equation 3.40) were chosen to fit the data. As the molecular size is sig-

nificantly smaller than the exclusion limit of the resin, we did not consider film

theory for diffusional uptake. Concentrations used in experiments were consider-

ably higher, therefore slow diffusion was ignored. The molecular size of the pro-

tein was determined in terms of their molecular radius using Equation 4.3 [250].

The radius of LF and LP were estimated to 32.01 and 30.21 suggesting that it was
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safe to ignore additional diffusion during uptake kinetics.

(a) (b)

Figure 5.7: Psuedo 1st and 2nd order uptake kinetics for LF (a) and LP (b)

Table 5.3: Uptake kinetics parameters for LF and LP

parameter LF LP

Psuedo first order
k1 (×10−2)
(min-1) 6.63 9.91

R2 0.9842 0.9647
Correlation
Coefficient 0.8133 0.9407

Psuedo second order
k2(×10−3)
(ml/mg.min) 0.49 1.2

R2 0.9581 0.9857
Correlation
coefficient 0.9521 0.9837

It can be seen in Figure 5.7 that the uptake of LF and LP were better described

by pseudo 2nd order kinetics. Parameters for the fitting are shown in Table 5.3.

Uptake kinetic constant k2 for LP was found to be 2.5 times higher than that for

LF. Considering higher charges on LP due to its pI, the faster uptake was justi-

fied. When desorption constant, kldes was determined based on kd and k2, it was

seen that LP had very high desorption constant. This explains higher slope in the

breakthrough curves.
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5.3.2.2 Determination of MPM parameters

Adsorption isotherm fitted by MPM was found to coincide with that of Langmuir

isotherm (Figure 5.6). Parameters obtained for MPM isotherm are shown in Table

5.2. It is evident that the values of Qmax are same for both isotherms. To com-

pare the difference in dissociation between Langmuir and MPM, cumulative ki-

netic constants (kmads and k
m
des) for MPMwere calculated to determine equilibrium

dissociation constant, kdmpm. For LF, the value (1.27E − 6 M) was considerably

higher than LP (7.67E − 7 M), showing difference in desorption kinetics. This

means that LP has stronger attraction towards the resin as compared to LF. The

values of β further concurs this observation as β value for LP was almost 10 times

that for LF. Values of kd and kdmpm were almost samewhich explains the closeness

of the fit.

5.3.2.3 Determination of SMA parameters

The value of external porosity from moment analysis of blue dextran peaks was

0.412±0.0182 andparticle porosity obtained frommoment analysiswas 0.834±0.022.

Total porosity was further calculated from these two values by using Equation

3.31, and was estimated to be 0.896±0.015. The lumped coefficient for axial dis-

persion was found to be 4.21×10−2 cm2/min. Further the ionic capacity calcu-

lated from the titration experiment was 1345.7 mM/ml resin. The reported value

for Capto S from GE is 1100-1400 mM/ml resin[254].

SMA model shows a precise fit to the adsorption experimental data for both

the proteins as shown in Figure 5.6. SMA parameters were estimated experimen-

tally as well as by data fitting. When the gradients of 0-100% were run, it was

observed that LF and LP eluted at 21% and 34% of the salt concentration respec-

tively which is in support with the electrophoretic mobility. Summary of gradient

runs is shown in Table B.3. It can be seen that the results of gradient elution ex-

periments were consistent over the range as the area under the curve was repro-

ducible. RT for LF were found to be lesser than that of LP at all gradient lengths

supporting their electrokinetic potential at operating pH. With increase in num-

ber of CVs, retention time (RT) of the protein was found to be increased. This was

because of slower gradient with increase in number of gradient column volumes.
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(a)

(b)

Figure 5.8: Comparison of gradient profiles for (a) LF and (b) LP at different gra-
dient lengths

The values of v and keq were estimated from the retention volume (RV) values of

the gradient experiments performed at various gradient lengths (Equation 3.23).

These values were compared with the inverse fit method parameters obtained

from the patternsearch analysis. The parameters obtained by both methods are

shown in Table 5.4.

Ideally more the charge value for a protein, better is the binding strength. For

the parameters obtained from elution studies, the value for characteristic charge

for LF was found to be less than that of LP which supports the elution order of the

proteins. However, the value of experimentally determined equilibrium constant

was same for both molecules which could not be justified. In case of inverse fit

method, the charge value was calculated to be higher by 23% for LF whereas it
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Table 5.4: Comparison of SMA isotherm parameters from gradient experiments
and isotherm fitting for LF and LP

Protein v keq σ

LF Exp 1.7± 0.105 0.026±0.001 2.492±0.05
Fit 2.093 0.27 9.701

LP Exp 2.155±0.141 0.027±0.001 2.095±0.03
Fit 0.696 17.102 10.035

Exp=Experimental, Fit= inverse fit method

decreased significantly (by 67.7%) for LP. On the other hand, equilibrium constant

was found to be 10-fold higher for LF and increased to 17.102 for LP from 0.0269.

The steric hindrance factor from experiments showed a 4-fold lesser value

than that of inverse fit method. Steric hindrance factor as obtained from break-

through curves showed higher value for LF than LP which can be attributed to

slight difference in the molecular weights. Values obtained by inverse fit were

also very close to each other. The steric factor is amolecularweight and size based

parameterwhich shows howmuch repulsive effect the size of the protein can have

on adjacent binding molecules. As molecular weight of LF and LP are very close

(80 and 76-78 kDa respectively), the steric factors ideally should not differ much

unless there aremajor differences in the structure. When the structures of LF and

LP were compared, it was observed that LP has a more compact structure with 2

beta sheets among α helices[170] as compared to LF which has 2 globular lobes

which are linked with 3 alpha helices between them [169]. The molecular radii

of the two molecules do not show much difference (compared in Section 5.3.2.1).

The obvious reason of the difference in parameters of two approaches is that the

base data used for 1st approach was a dynamic column data; whereas, for the 2nd,

approach was a static adsorption data. Comparing these parameters may not be

wise considering the differences in the experimental conditions. As there are two

sets of parameters obtained for SMA isotherm, it was important to check the pre-

dictability depending on both sets. As inverse fit method was dependent on basic

experiments, it was decided to take it as a reference for adjustment of parame-

ters for simulations. Upon adjustment for best fit, parameters were very close to

experimentally determined parameters suggesting validity of inverse fit method
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for simulations.

5.3.2.4 Single component breakthrough: Experimental

The simulated and experimental breakthrough curves at different inlet concen-

trations and velocities for LF and different loading velocities for LP are shown

in Figure 5.9 and Figure 5.10 respectively. Simulated breakthrough curves for

Langmuir, SMA, and MPM isotherms as predicted by ExProSim:IC are shown in re-

spective figures. Experimental breakthroughs are discussed first and then further

comparedwith the predicted data. For LF, a prominent shift of breakthroughpoint

can be observed with increase in velocity which can be attributed to decreasing

residence time. With increase in concentration at the inlet, breakthrough was

obtained earlier, suggesting crowding of molecules in the column. For LP, similar

behaviour was seen where breakthrough point lowered with increase in velocity.

The slope of all the curves became steeper with increase in both concentration

and velocity suggesting faster saturation. All the profiles reached saturation for

both the proteins suggesting steady adsorption-desorption phenomena in the col-

umn. It is noticeable that breakthrough for LP took a longer time in every case as

compared to breakthrough for LF showing higher retention for LP. Further, 10%

breakthrough volume was used to determine the DBC of the proteins. Figure 5.11

shows the variation in DBC with flow rate and inlet concentration. The variation

in DBC values with changing concentration and a comparison of DBC for break-

through experiments with Qmax obtained from Langmuir adsorption isotherm

experiment is given in Table 5.5. Experimental results were found to be very con-

sistent as the variation in 10% breakthrough volumes for different velocities was

found to be less than 5% for both proteins suggesting minimal effect of changing

velocity on estimated values of DBC. Whereas, DBC was under-predicted at higher

concentrations of LF suggesting crowding of the protein molecules resulting in

reduced residence time in the column leading to early breakthrough [255].

155



(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

Fi
gu
re
5.
9:
Co
m
pa
ri
so
n
of
pr
ed
ic
te
d
vs
ex
pe
ri
m
en
ta
ld
at
a
fo
r
br
ea
kt
hr
ou
gh
of
LF
at
va
ri
ou
s
lin
ea
r
ve
lo
ci
ti
es
fo
r
in
le
tc
on
ce
nt
ra
ti
on
of
3
m
g/
m
l

a)
0.
5
m
l/
m
in
(7
8.
95
cm
/h
r)
b)
0.
75
m
l/
m
in
(1
17
.3
6
cm
/h
r)
c)
1.
0
m
l/
m
in
(1
55
.9
cm
/h
r)
an
d
6
m
g/
m
ld
)0
.5
m
l/
m
in
(7
8.
95
cm
/h
r)
e)
0.
75
m
l/
m
in

(1
17
.3
6
cm
/h
r)
f)
1.
0
m
l/
m
in
(1
55
.9
cm
/h
r)
,L
an
gm
ui
r
(-
),
SM
A
(–
),
M
PM

(-
··-
),
(e
xp
er
im
en
ta
l(
�)
.

156



Table 5.5: Comparison of DBC with Langmuir adsorption capacity at different ve-
locities and inlet concentrations for LF and LP

Protein
Inlet Conc.
(mg/ml)

10% BT volume
(ml)

DBC
(mg/ml)

% error from
Langmuir

LF 3 32.07±2.22 92.09±6.41 1.95
6 16.58±1.45 47.38±1.45 49.53

LP 4 44.79±0.58 128.80±1.67 2.79

10% BT=Breakthrough volume for 10% of breakthrough achieved.
The values are averaged for all the flow rates and
standard deviation is mentioned.

5.3.2.5 Breakthrough simulations with ExProSim:IC

Experimental breakthrough data was then compared with simulated curves from

ExProSim:IC for Langmuir, SMA and MPM models. Input parameters for all the

isotherms were adjusted in order to fit to the experimental data as the error at

original model constants was very high. For a better comparison point by point

comparison was used and is shown in Appendix B Table B.7 for LF and Table B.8

for LP. However, curve to curve comparison is also performed and demonstrated

in Table B.24.

EDM-Langmuir model

Simulations using Langmuir-EDMwere consistently close to experimental data af-

ter the parameters were adjusted to values as shown in Table 5.6. Modified model

constants were assessed further to see the effect of changes in constants on the

profiles. kd value for LF was decreased by 50%, whereas LP kd value was retained

to original value. This states that the apparent dissociation constant in dynamic

conditions was lesser for LF showing lesser binding strength towards resin. Resul-

tant kd values for both proteins showed almost 10 fold difference stating the huge

difference in strength of binding. This does not support the electrophoretic mo-

bility of the proteins suggesting presence of additional unknown interactions for

decreasing desorption for LF. Qmax values on the other hand were increased for

both proteins in order to predict the breakthrough in dynamic conditions. This

suggests that additional adsorption processes are happening in the packed bed
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(a) (b)

(c)

Figure 5.10: Comparison of predicted vs experimental data for breakthrough of LP
4 mg/ml at various linear velocities, a) 0.5 ml/min (78.95 cm/hr) b) 0.75 ml/min
(117.36 cm/hr) c) 1 ml/min (155.9 cm/hr), Langmuir (-), SMA (–), MPM (-··-), (ex-
perimental (�)

Figure 5.11: DBC versus flow velocity for two proteins LF 3 mg/ml (�), LF 6 mg/ml
(4), and LP (◦) at different flow velocities 77.95, 117.36 and 155.9 cm/hr
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and adsorption capacity was underestimated for both proteins during batch stud-

ies. Furthermore, modified kinetic rate constants suggested higher strength of

binding for LP. It can be said that, experimentally determined Langmuir isotherm

constants were not successful in relating to the nature of the protein and its bind-

ing to the resin.

For LF, 3 mg/ml inlet concentration data was predicted well at 0%, 10% and

100% for all velocities. 50% data showed higher error as the simulations over-

predicted the experimental data. For inlet concentrationof 6mg/ml, faster adsorption-

desorption phenomena was well-predicted by simulations but the accuracy was

compromised for middle part of the curve as represented by higher error at 50%

breakthrough. This can be accounted for inaccuracy of capturing the competi-

tiveness of the protein molecules at high concentration. Similar trend was seen

at all the velocities. For LP, error obtained using Langmuir-EDM was high for ve-

locity of 1 ml/min. Errors for lower velocities were acceptable for 0%, 10%, and

100% breakthrough but 50% breakthrough was not predicted accurately. General

trends of simulated breakthrough curves were observed to move farther from ex-

perimental data as the concentration and velocity were increased.

Table 5.6: Modified model parameters for single component breakthrough pre-
dictions using Langmuir isotherm

Protein Constant Value Multiplier Modified value

LF Qmax

(mg/ml of resin) 93.88 1.5 140.82

kd
(×10−6M) 1.366 0.5 0.683

k2
(×10−3ml/mg.min) 0.49 100 49

LP Qmax

(mg/ml of resin) 132.51 1.9 251.75

kd
(×10−6M) 5.567 1 5.567

k2
(×10−3 ml/mg.min) 1.2 20 24
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EDM-SMA model

Initial predictions based on experimental parameters were not a good match to

the experimental curves for both LF and LP (data not shown here). Parameters

were further modified to fit the simulated data to breakthrough experimental

data are shown in Table 5.7. The charge value signifies the ionic interactions hap-

pening during adsorption. Change in model constants suggested better binding

strength for LP over LF, as the charge value was higher for LP. Along with charge,

steric factorwasmodified further. Very high value of steric factor underestimated

the adsorption in the column suggesting additional adsorption happening in the

column.

Tuned parameters for the best fitwhen comparedwith both inverse fit param-

eters and parameters obtained from gradient experiments showed closer match

to later suggesting better ability of gradient experiments to obtain SMA parame-

ters. However, tuned parameters required for accurate predictions were obtained

precisely by adjusting inverse fit parameters. Using inverse fit method over gra-

dient experiments for determination of parameters can save time and resources

spent in experiments. Simulations carried out by SMA-EDMmodel over-predicted

the experimental data at 0%, 10%, and 50% for 6 mg/ml inlet concentration of LF.

Error at 100% breakthrough was found minimal. For 3 mg/ml concentration, 0%,

10%, and 100% were well predicted whereas 50% showed higher error. Similar

trends were obtained for LP at 4 mg/ml concentration. Accuracy of prediction

using SMA-EDM was clearly lesser than Langmuir-EDM.

EDM-MPM model

Changes made to the model parameters for MPM are shown in Table 5.8. It was

known from earlier results that the binding strength for LP is higher than LF.

Parameters were adjusted starting from the dissociation constant. kdes0 was ad-

justed for only LF to ensure there is considerable difference between equilibrium

dissociation constants (kdmpm values LF: 0.9714 and LP: 0.0843). Values of β shows

the contribution of salt in desorption constant. Higher the value of β, lower is

the desorption rate constant which increases the binding strength of the protein

towards the adsorbent. Hence changes were done in β value for LF to increase
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Table 5.7: Modified model parameters for single component breakthrough pre-
dictions using SMA isotherm

Protein
Fitted
Parameters Value Multiplier Modified value

SMA
Experimental
Parameters

LF v 2.093 0.55 1.674 1.7
keq
(×10−2)

27 0.15 4.05 2.66

ka
(×10−3)

0.49 9 4.41 -

σ 9.701 0.5 4.851 2.492

LP v 0.696 3 2.08 2.155
keq
(×10−2)

1710.2 8× 10−4 1.36 2.69

ka
(×10−3)

1.2 2.1 2.52 -

σ 10.035 0.25 2.51 2.095

it further. Though value of β was slightly higher for LP, not much effect on the

binding was observed. On the other hand value of γS contributes into adsorption

kinetics. Higher the value of gamma, higher is the adsorption kinetic rate con-

stant (kads0) but at lower salt concentration as in this case, not much effect is seen

in the profiles.

Once the logical adjustments in theparametersweremade topredict the break-

through profiles, the curves were compared with other isothermmodels for their

accuracy. Simulations carried out using MPM-EDM models were the most accu-

rate predictions among the three cases compared. Breakthrough curves for LF, 3

mg/ml concentration showed accurate prediction of 0%, 10%, and 100%, whereas,

middle part of the curvewas not predictedwell. For 6mg/ml, predictions followed

similar trend as Langmuir-EDM model with marginally better accuracy. For LP,

data predicted using MPM-EDM was most accurate among all the isotherms and

breakthrough curve was completely predicted up to 50% saturation and then at

100%.

Experimental results for high protein concentration shows crowding and self

competition of the protein molecules not letting them bind to the matrix. Depic-

tions made with ExProSim:IC were not able to predict the crowding of molecules.
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Table 5.8: Modified model parameters for single component breakthrough pre-
dictions using Langmuir MPM isotherm

Protein Parameter Value Multiplier Modified value

LF Qmax

(mg/ml of resin) 93.95 1.1 103.345

kdes0
(ml/mg.min) 0.0817 15 1.225

kads0
(ml/mg.min) 0.8098 1 0.8098

β 0.012 10 0.12
γ(×10−3) 6.44 2 12.88

LP Qmax

(mg/ml of resin) 132.5 0.9 119.25

kdes0
(ml/mg.min) 0.0296 1 0.0296

kads0
(ml/mg.min) 0.1244 1 0.1244

β 0.2812 1 0.2812
γ(×10−3) 0.59 1 0.59

Experiments at higher velocities provided lesser time for the molecules to bind

to the matrix resulting in earlier and faster breakthrough from the column. The

change in the profileswith velocitywas closely predicted by ExProSim:IC. The com-

parison between three isotherms is further shown in the form of error estimation

at different concentration of the breakthrough curve. As the comparison is al-

ready discussed in earlier sections and data presented is self explanatory, it is not

discussed in detail with respect to% errors.

5.3.2.6 Multicomponent breakthrough: Experimental

Figure 5.12 shows experimental and simulated breakthrough curves. During mul-

ticomponent adsorption, both the proteins compete for the sites to adsorb on the

resin, the concentration shown at any point during breakthrough curve is a cu-

mulative concentration of the proteins together. HPLC analysis was performede

to segregate the proteins further into individual profiles. (The standard curves for

LF and LP, and final chromatogram formaximum possible resolution of whey pro-

teins are given in Section 5.3.1). When the DBC values of multicomponent break-

through were compared to single component DBCs, 40% increase was observed
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in DBC of LF; whereas, exact decline in DBC of LP was noted suggesting increase

and decrease in residence times for LF and LP respectively (Table 5.9). Qmax for

LF was higher as compared to LP in spite of higher electrophoretic mobility of LP

suggesting displacement phenomenon for LP by LF. Lower rate of adsorption for

LF and higher concentration of LFmolecules can be the underlined causes for dis-

placement of LP. It can be seen that the displacement was not prominent enough

to lead to overshoot in local concentration of LP. This might be due to close kd val-

ues for the protein when they interact with the resin in presence of each other.

Table 5.9: Comparison of DBC for single and multicomponent breakthrough ex-
periment

Protein
0% BT
(min)

10% BT Time
(min)

10% BV Time
(min)

DBCmultiple
(mg/ml resin)

DBCsingle
(mg/ml resin)

LF 35 60.3 30.25 130.17 93.58
LP 25 49 24.5 93.25 131.73

BT: Breakthrough time, BV: Breakthrough volume, DBC: Dynamic binding capacity

5.3.2.7 Multicomponent breakthrough: simulations

Furthermore, ExProSim:IC was used to predict the breakthrough data using vari-

ous models. In order to capture the effect of competition between the two pro-

teins, the model parameters were further adjusted. For predictions using Lang-

muir isotherm, adjustment of model parameter Qmax was based on the DBC ob-

tained from the experimental profile. Values of k1 and kd were further adjusted

to fit the curves as shown in Table 5.10. The adjusted value of kd showed that

desorption was higher for LP than LF. The values were also close to each other

showing their competitive behaviour. Minor difference between the kd values

also explains why the displacement did not lead to overshoot as in Chapter 4. The

modified values for k1 for LF was 2-fold higher than LP. Higher value of k1 for LF

suggested lower desorption in the column as compared to LP supporting the dis-

placement. The predictability using Langmuir isotherm precisely predicted 10%

onwards, however the start of the breakthrough could not be correctly predicted

for both proteins.
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(a)

(b)

Figure 5.12: a) Multicomponent breakthrough for LF and LP at 4.5 mg/ml LP and
3 mg/ml LF ; Experimental LF-4-, LP -◦-. simulated; Langmuir LP —, LF —. MPM
LP -·-, LF -·-. SMA LP -··-, LF -··- , b) Zoomed version of part a)

164



(a) (b)

(c) (d)

Figure 5.13: Multicomponent breakthrough curve HPLC analysis for LF and LP
showing individual fractions at different breakthrough points. a) 0% bt b) 10%
bt c) 50% bt d) 100% bt

Table 5.10: Modified parameters for Langmuir-EDM for multicomponent break-
through prediction

Protein Parameter Value Multiplier Modified Value

LF Qmax

(mg/ml of resin) 93.88 1.3 122

kd
(×10−6 M) 1.366 50 68.3

k1
(×10−3 ml/mg.min) 0.49 300 147

LP Qmax

(mg/ml of resin) 132.5 0.7 92.75

kd
(×10−6 M) 5.567 14 77.94

k1
(×10−3 ml/mg.min) 1.2 60 72

SMA-EDM predictions for LP showed early breakthrough and highest error

amongst all the isotherms. However, brealthrough for LF was predicted accu-

rately. The parameters modified are given in Table 5.11 and the fit is shown in

Figure 5.12. Charge value was modified for both proteins to account for loss of
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Table 5.11: Modified parameters for SMA-EDM formulticomponent breakthrough
prediction

Protein Parameter Value Multiplier Modified value

LF v 1.7 0.85 1.445
keq 0.0266 1 0.0266
ka
(×10−3 ml/mg.min) 0.49 600 294

σ 2.492 1 2.492

LP v 2.154 0.75 1.615
keq 0.0269 1 0.0269
ka
(×10−3 ml/mg.min) 1.2 150 180

σ 2.095 1 2.095

Table 5.12: Modified parameters for the MPM-EDM for multicomponent break-
through prediction

Protein Parameter Value Multiplier Modified value

LF Qmax

(mg/ml of resin) 93.95 1.5 140.925

kdes0
(ml/mg.min) .0817 90 7.353

kads0
(ml/mg.min) .8098 1 0.8098

β 0.012 10 0.12
γ(×10−3) 6.44 1 6.44

LP Qmax

(mg/ml of resin) 132.5 0.7 92.75

kdes0
(ml/mg.min) 0.0296 500 14.8

kads0
(ml/mg.min) 0.1244 1 0.1244

β 0.2812 0.6 0.168
γ(×10−3) 0.59 1 0.59

binding capacity. It can be seen that charge value for LP was decreased by 25%

as compared to 15% for LF. The modified values of forward rate constants suggest

that the adsorption rate for LF was much higher (≈8-fold) than that of LP which

could displace LP easily even if it was electrophoretically favoured for stronger

interaction with resin. Higher uptake rate could be an effect of high inlet con-

centration of LF as compared to LP as elucidated by Langmuir-EDM predictions.
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Table 5.13: Comparison of DBC frommultiple component breakthrough curve pre-
dictions for different isotherm

Protein Isotherm 0% BT (min) 10% BT (min) 10% BT volume (ml) DBC (mg/ml) % variation

LF
Langmuir 35 63.45 31.725 136.56 3.66%
SMA 29 61.64 30.82 132.64 0.69%
MPM 50.5 61.8 30.9 132.99 0.95%

LP Langmuir 25 53.7 26.85 102.63 9.66%
SMA 40.8 46.7 23.35 89.16 -4.73%
MPM 39 54.2 27.1 103.59 10.69%

Predictions using MPM isotherm were similar to Langmuir isotherm. Modified

parameters showed lesser desorption and higher adsorption rate for LF over LP

supporting the displacement phenomena. β values were also changes showing

increase in strength for LF and decrease in strength for LP. This also supports dis-

placement of LP by LF. Early saturation was observed for LF; however, L break-

through was predicted with accuracy. The details for errors are given in Table

B.9 in Appendix B. As Langmuir and MPM are necessarily based on similar con-

cepts, the salt factor included for MPM gave slight variation in the predictions.

On the other hand, SMA based on mass action principle and steric hindrance of

molecules, gave higher error in predictions. This might be due to sensitivity of

charge factor because of exponential function. A better way of adjusting parame-

ters for SMAmay be required to get better fit. Perhaps a simple least square error

method can give better estimate of SMA constants.

To compare all three isotherms, DBC was determined and compared with ex-

perimental data. The DBCs as shown in Table 5.13 matched well with the values

obtained frommulticomponent experimental data fromTable 5.9. DBCvalues pre-

dicted by Langmuir were the farthest for LF. SMA and MPM gave accurate predic-

tions, however, MPM showed higher error throughout the further curve. For LP,

errors for DBC were high for all the isotherms. Even though, SMA showed early

breakthrough as compared to others, it gave best predictions of DBC. Other two

isotherms on the other hand, predicted rest of the curve very accurately. This can

also be seen from RMSE and CoD values for the curves as given in Table B.25.
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5.4 Conclusion

This chapter provides a detailed analysis of adsorption and breakthrough studies

for separation of two minor whey proteins, LF and LP with experiments and pro-

cess simulations. Basic adsorption datawas used to determinemodel constants by

inverse fitting which could efficiently predict the experimental breakthrough for

single component systems for both LF and LP. Inverse fit method was found to be

useful for estimating parameters required for simulations which is an indicative

of reduction in the number of experiments required to obtain model parameters.

Single component experimental breakthrough curves showed expected trend of

earlier breakthrough with increase in experimental factors like concentration at

inlet and process flow rate. All isotherms were able to predict the experimental

data formost of the curves at lower velocities for both proteins. However, desorp-

tion kinetics was not predicted accurately for higher velocities and concentration

of LF. It is ideally expected that at higher velocities, the predictions should be

better for EDM, however this anomaly suggested necessity of additional diffusion

considerations for more accuracy. MPM-EDM predictions were marginally more

accurate when compared with Langmuir-EDM, SMA-EDM, considering there were

more parameters to fit the data. For single component systems, breakthrough

predictions were accurate for Langmuir-EDM and MPM-EDM with latter being

marginally more precise. SMA-EDM isotherm predictions over-predicted the ex-

perimental datawith higher error percentagemidway of the curve. It was realised

that adjustments in the charge valueswas crucial to get accurate prediction due to

its sensitivity. Perhaps, the experiments from which the charge values are deter-

mined can be improved. The sensitivity of equilibrium constant was found very

low while adjustment. If the constants were adjusted by least squares method,

this would have been easily overlooked.

Furthermore, multicomponent experiments showed clear displacement of LP

by LF, reducing DBC of LP by ≈ 30% with equivalent increment for LF. This was

unexpected as the electrophoretic mobility for LP was higher at operating pH. In

case of multicomponent simulations, LF breakthrough was completely predicted

by SMA, however, for LP SMA could only predict the onset and DBC well. Lang-
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muir and MPM isotherms predicted the LP isotherm better than SMA. Objective

here was to find an isotherm which can predict the results for the whole system,

however, none of the isotherms:EDM combination predicted all the protein pro-

files accurately at different processing conditions. This serves as a limitation for

choosing a single isotherm for single system. A combination of isotherms can

serve the purpose, however, that will need exhaustive experimental validation.

With the current results, preliminary predictions made with ExProSim:IC can help

in assessing the protein binding inside the column, its competitive ability, and na-

ture of desorption. The chapter also serves as a template formaking strategies for

calibration of parameters.

169



Chapter 6

Crude whey processing

6.1 Introduction

It has been established that ExProSim:IC is an efficient tool for for predicting out-

comes of single and multicomponent protein standards. Further to check the us-

ability of the tool, it is important to validate it on crude streams. Such an exer-

cise will help to seek the areas of improvements if any. Furthermore, for a com-

plex mixture such as whey with multiple proteins of industrial importance, un-

derstanding how proteins behave in presence of known and unknown proteins is

essential for further separation. Earlier chapters have discussed in detail adsorp-

tion characteristics of major and minor proteins on anion and cation exchange

chromatography respectively and it was observed that when the streams aremul-

ticomponent, the adsorption of proteins is affected by the competition with each

other which can potentially affect the desired separation.

This chapter discusses experimental breakthrough studies and respective sim-

ulations of crude industrial sample of WPC. Learnings from earlier chapters were

carried forward here to showcase the importance of step-wise model validation.
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6.2 Methodology

6.2.1 Experimental

6.2.1.1 Materials

Respective buffer solutions were prepared as given in Chapter 4, where system

was established for major proteins. Crude WPC samples were obtained from two

different industries. Tatua cooperative dairy company, Morrinville, New Zealand

andWarrnambool cheese and butter factory, central Victoria. HiTrap(2.5×0.7 cm)

was used for ion exchange studies. Materials for UV spectrophotomentry, HPLC,

SDS-PAGE, and elemental analysis are described in detail in Chapter 3.

6.2.1.2 Methods

6.2.1.3 Sample analysis

Crude sample assessment

Both samples were assessed qualitatively as well as quantitatively for the total

protein content and individual protein fractions. Total protein content was de-

termined using elemental analyser. One of the two samples which performed

better in the analysis was carried forward for further studies. All other inter-

mediate protein samples were assessed on UV-Vis spectrophotometer for finding

their concentration based on standard curves provided in Figure 4.1.

HPLC

Firstly, standard curves for all the proteins were found out at optimised method

by injecting different concentrations of standard protein samples (0-1 mg/ml).

Method 2was further used to find the unknown concentrations of the samples ob-

tained from WPC breakthrough curve. Purity and concentration of sample peaks

obtained from chromatography experiments was found out by running the sam-

ples on HPLC. Details for HPLC method 2 are given in Chapter 4
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SDS-PAGE

SDS-PAGE analysis was performed for feed analysis. Standard proteins were in-

jected in the PAGE along withWPC samples from both industries. Electrophoresis

runs were carried out for 120 minutes at 100 mv and further stained by silver

staining method for visualisation of the protein bands. All the sample concentra-

tions for SDS-PAGE were measured on UV-Vis spectrophotometer first and then

were diluted to keep the concentration per well to 3-5 µg for consistent staining

profile.

6.2.1.4 Chromatography

Columnphysical parameters such as porosity, ionic capacity, v0were found out us-

ing method given in Section 3.3.5. Column evaluation was performed by injecting

2% acetone at 20 cm/hr velocity and the peak was analysed for asymmetry.

Sample preparation

WPC sample for breakthrough was prepared by dissolving known amount of WPC

powder in phosphate buffer at pH 6.9. As the samples were turbid visibly, they

were centrifuged at 10000 rpm and then filtered through a 0.45 µm filter in or-

der to remove the suspended solids if any. UV spectrophotometric analysis was

carried out before and after clarification to find out the losses.

Breakthrough experiment

Breakthrough curve for crude whey protein mixture was determined by injecting

4 mg/ml of WPC continuously onto HiTrap CaptoQ column. The breakthrough

curve was performed for anion exchange as the quantity of major proteins was

found to be way higher than minor proteins. As achieving breakthrough for mi-

nor proteinswas time consuming considering their low concentration in theWPC,

sample analysis was focused only on major proteins. Breakthough was ended

whenWPC sample showed a saturation at the column outlet. Samples were taken

throughout the breakthrough and were analysed on HPLC for finding out individ-

ual protein concentrations.
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6.3 Results and discussion

6.3.1 Basic analysis

Crude sample assessment

WPC samples obtained fromTatua andWarrnambool are compared here. Elemen-

tal analysis of crude samples showed 73.95% and 74.21% total protein based on to-

tal nitrogen content for Tatua and Warrnambool respectively. SDS-PAGE of both

crudes compared against the standard proteins is shown in Figure 6.1.

Figure 6.1: Comparison of twoWPC crude sampleswith standard proteins; 1: BRM,
2: BSA std, 3: BLG std, 4: LF std, 5: ALA std, 6: LP std, 7: TatuaWPC, 8: Warrnambool
WPC

It can be seen that the two WPC crude samples compare well with each other

with prominent concentration of BLG in both of them. Low intensity bands of

ALA and BSA were observed in both the samples and they show same impurity

profile as well. This means that the choice of crude sample will not make much

difference. As the protein standards for minor proteins were obtained from Tatua

Dairy Cooperative Company, it was decided to use Tatua WPC sample for further

studies.
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Column evaluation

Column characteristics such as; porosity and ionic capacity for all the columns

were determined in the earlier chapters. As it is important to check columns for

their consistency of packing every time they are run after storage, theywere eval-

uated to ensure desired performance [265]. Column evaluation for HiTrap column

was performed and the results showed asymmetry factor of 0.93 which was ac-

ceptable to go ahead for breakthrough experiments.

HPLC analysis

Sample analysis of five whey proteins from WPC needed a robust method which

canhandle varying concentrationof proteins andhave a sensitivity to detectminute

concentrations aswell. Table 4.2 in Chapter 4 shows the optimisedmethod for res-

olution of all the fivewhey proteins. Figure 6.2 demonstrates that the proteins are

well separated from each other and can be analysed for their puritywithout inter-

ference from other proteins. Standard curves for individual proteins are shown in

Figure 4.5. Equations from the standard curves were linear in nature and regres-

sion coefficient of >0.99 shows a promising fit. These equations were further used

for finding the unknown concentrations of samples obtained from breakthrough

experiment.

Figure 6.2: Optimised HPLC method for analysis of five whey proteins
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6.3.2 WPC crude breakthrough: Experimental

Separated experimental breakthrough curves are shown in Figure 6.4 along with

the zoomed Figure 6.4(b) for better view. Early breakthrough were obtained for

BSA and ALA, followed by delayed breakthrough for BLG. It can be said that dimer

of BLG might be responsible for its higher binding leading to late breakthrough.

LP and LF were found to elute from the 1st CV showing no binding to the resin at

operating pH 6.9. This is obvious as the charge on minor proteins is same as the

charge on the resin. Concentration of unbound LF and LPwas very low hence they

are not considered here for breakthrough purpose.

(a) (b)

(c) (d)

Figure 6.3: Comparison of breakthrough curve samples at different time points of
the breakthrough curve for WPC

Figure 6.3 shows HPLC analysis of the samples taken at onset, 10%, 50%, and

100% of breakthrough curve. At onset, none of the major protein components
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could be seen, whereas LF and LP were observed in minute quantities. At 10%,

increase in both BSA and ALA were observed, whereas BLG was still in adsorption

phase. At 50%, BLG slightly showed it presence at the outlet, whereas ALA and

BSAwere almost saturated by then. At end point of breakthrough, all the proteins

were found at constant concentration, indicating complete saturation of the bed.

Impurity was found consistently at retention time of 9.2 min. As it was insignif-

icant for objectives of this thesis and minute concentration leading to unlikely

interference with proteins, the impurity was left unidentified.

Experimental analysis of breakthrough curve forWPC showed similar behaviour

to that of breakthrough data obtained for mixture of major proteins as given in

Section 4.3.3. Figure 6.4 compares the two experimental data-sets. The only dif-

ference in the experimental conditions were concentrations of ALA and BSA be-

ing very low in WPC as compared to 2 mg/ml each in case of standard protein

breakthrough. BLG concentration was comparable in both cases with WPC hav-

ing slightly higher BLG concentration. When a protein is low in concentration,

ideally it should take longer time to reach breakthrough, but in this case it was

seen that breakthrough for ALA and BLG is achieved earlier as compared to stud-

ies with standards. This behaviour can be attributed to very high concentration

of BLG in the medium which may interfere with ALA and BSA binding, leading

to their early displacement out of the column. It is also observed tat BLG break-

through fromWPC was extended farther in spite of higher concentration as com-

pared BLG breakthrough from standard proteins. Ideally, with higher concentra-

tion, early breakthrough should be achieved. In case of standard proteins, there

was a healthy competition of BLG from ALA and BSA as they were in high concen-

tration, whereas in case ofWPC, very less competitionwas offered for BLG towards

binding sites. This might have lead to higher breakthrough time. Breakthrough

profile for themixture of standards andWPCwere compared further. WPC break-

through showed early onset of the breakthrough. This can be attributed to other

minor impurities in WPC which may be responsible for changing the dynamics of

binding in the column as well as obscuring the UV absorbance of the experimen-

tal breakthrough curve [266]. In addition to this, early exit of ALA and BLG would

have contributed in the faster concentration front at the column outlet.
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(a)

(b)

Figure 6.4: Comparison of experimental multi component breakthrough curves
for WPC to that of standard proteins. WPC breakthrough; BSA -�-, BLG -·-, ALA
-4- and combined -×-. Mixture of major protein standards; BSA -�-, BLG -·-, ALA
-4- and combined -×-. b) Zoomed version of the same data for better view

6.3.3 Breakthrough simulations with ExProSim:IC

Furthermore, ExProSim:ICwas implemented for prediction of the curves. Adjusted

model parameters from the multicomponent breakthrough of major proteins on

Capto Q were used to simulate the results. As the model constants have already
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predicted breakthrough for standard proteins, it was expected that no further

changes will be required in them in order to predict the experimental outcomes.

When the simulations were performed, the breakthrough showed a delayed pro-

file for ALA and BSA, due to such a low concentration of two proteins (Data not

shown here). This is unlike the experimental data. Hence, minor modifications

were done in the model constants to fit the data. The fitted simulations for all

the model combinations are shown in Figure 6.5. Errors between experimental

and simulated breakthrough for all isotherms is shown in Table B.10. The curve

to curve error is presented in Table B.26.

EDM-Langmuir model

It can be seen in Table 6.1 that only parameters which were changed from model

constants from Table 4.20 for simulating the experimental data using Langmuir

modelwere the binding capacities. As accurate breakthroughwasnot obtained for

all 3 proteins, focus was given for maintaining accuracy for the slowest desorbing

protein, BLG. As observed from Figure 6.5, the onset of the breakthrough for ALA

and BLG was predicted very accurately, whereas for BSA it was over-predicted. It

can be seen that fit for BLG was accurate upto saturation. Ideally the parameters

derived from multicomponent breakthrough of standard acidic proteins should

have been able to predict the breakthrough, however adjustments in the binding

capacities were required to achieve the best fits. Binding capacity for BSA and

ALA were decreased by 55% and 80% respectively in order to fit to the curve. It

is realised that high competition due to excess amount of the BLG, might have

lead to decreased binding capacities which was also supported by simulations.

This is because of difference in the concentrations profiles between two experi-

ments. Overall desorption profiles for all the proteins were predicted correctly as

no change in the adsorption or desorption profile was seen as compared to major

protein standards breakthrough. Overshoot of BSA and ALA due to displacement

were also predicted but high error was observed in the overshoot part.
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(a)

(b)

Figure 6.5: Comparison of experimental vs simulated breakthrough for WPC
crude, a) experimental data; BLG -◦-, ALA -4-, BSA -�-. Simulated Langmuir; BLG
—, BSA —, ALA —. Simulated MPM; BLG -·-, BSA -·-, ALA -·-. simulated SMA; BLG
–, BSA –, ALA –. b) Zoomed version of the same data for better view

EDM-MPM model

Themodifiedparameters frommulticomponent breakthrough simulations forma-

jor proteins were used for carrying out simulations (Table 4.21), however predic-
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Table 6.1: Modified model parameters for WPC breakthrough simulation using
EDM:Langmuir model for Capto Q anion exchanger

Protein Constant Value Multiplier Modified value

BSA Qmax

(mg/ml of resin) 83.72 0.35 29.302

kd
(×10−6M) 5.848 1 5.848

k1
(×10−3ml/mg.min) 756 1 756

BLG Qmax

(mg/ml of resin) 187.64 1 187.64

kd
(×10−6M) 15.934 1 15.934

k1
(×10−3 ml/mg.min) 411 1 411

ALA Qmax

(mg/ml of resin) 62.73 0.35 21.96

kd
(×10−6M) 20.52 1 20.52

k1
(×10−3 ml/mg.min) 781 1 781

tions were not accurate. Slight fine tuning of parameters was required with the

binding capacity parameters such as Qmax and β as shown in Table 6.2. For BSA

and ALA, MPM model showed better performance in predicting the experimen-

tal data as compared to Langmuir isotherm. The overshoots were predicted bet-

ter showing displacement. Breakthrough points were accurately predicted for all

three proteins. On the other hand, breakthrough of BLG was very well predicted

up to 20% concentration and then saturated later than experimental data. Figure

6.5 shows the simulated data. Changes inQmax values were expected due to com-

petition of the proteins with each other. Large decrease in binding capacities for

ALA were observed. Rate of adsorption of BLG was adjusted further to meet the

experimental curve. This shows higher affinity of BLG towards the resin and a ten-

dency to occupy sites available as fast as possible which might have lead to early

exit of BSA and ALA. Slight decrease of binding capacity of BLG was also observed.

This might be attributed to presence of impurities in the medium. Even though

electrokinetically ALA has most charges amongst three, early breakthrough was
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Table 6.2: Modified model parameters for multicomponent breakthrough predic-
tions using Langmuir MPM isotherm

Protein Parameter Value Multiplier Modified value

BSA Qmax

(mg/mlofresin) 89.53 0.30 26.9

kdes0
(ml/mg.min)

1.135 1 1.135

kads0
(ml/mg.min)

1.606 1 1.606

β 0.029 0.61 0.0177
γ 1.457 1 1.457
Dax(×10−2) 23.95 1 23.95

BLG Qmax

(mg/mlofresin) 145.32 0.85 123.52

kdes0
(ml/mg.min)

1.818 1 1.818

kads0
(ml/mg.min)

0.121 8 0.968

β 0.64 1 0.64
γ 1.386 1 1.386
Dax(×10−2) 14.52 1 14.52

ALA Qmax

(mg/mlofresin) 101.5 0.25 25.375

kdes0
(ml/mg.min)

4.93 1 4.93

kads0
(ml/mg.min)

0.258 0.24 0.0516

β 0.305 0.42 0.128
γ 1.802 1 1.802
Dax(×10−2) 9.63 1 9.63

a result of high concentration of BLG in the medium. As the value of β signifies

strength of binding to the resin, values for the best fit were found to be lower

for both ALA and BSA, whereas β for BLG was kept the same suggesting stronger

interactions.

EDM-SMAmodel Furthermore,multicomponent breakthroughwaspredicted

by performing simulations using EDM and SMA isotherm by taking parameters

from Table 4.22. Modified parameters for SMA are shown in Table 6.3. Binding

capacity is generally signified by charge value in SMA isotherm. Reduction in the
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Table 6.3: Modified model parameters for single component multicomponent
breakthrough predictions using SMA isotherm

Protein
Fitted
Parameters Value Multiplier Modified value

BSA v 0.734 0.95 0.697
keq (×10−2) 288.9 1.5 385
σ 0.9715 1 0.9715

BLG v 1.407 1 1.407
keq (×10−2) 34.25 1.2 41.1
σ 5.612 1 5.612

ALA v 0.4251 0.90 0.382
keq (×10−2) 78 1.2 93.6
σ 4.015 1 4.015

charge values of ALA and BSA were required for fitting the experimental data.

Charge values of proteins suggest displacement of ALA and BSA by BLG. Value

of keq shows the strength of the binding. Higher the value of keq, weaker is the

binding. BSA showed highest value for keq indicating looser binding as compared

to other two proteins. Furthermore, ALA showed the comparable value of keq to

that of BLG, showing apparently strong binding, which is true electrokinetically

but lower concentration in the overall mixture along with predominant existence

of BLG dimer having high charges on it, might be the cause of resultant displace-

ment.

6.4 Conclusion

Crude industrial stream in the form of whey protein concentrate (WPC) was stud-

ied for breakthrough analysis. WPC sample contained 76% protein constituting

BLG (79%), followed by ALA (11%) and BSA (7%), and traces of minor proteins.

The sample chosen was different in concentration profiles as compared to stan-

dard experiments which were performed in earlier chapters. Breakthrough stud-

ies provided for further exploration for usability of ExProSim:IC. Experimental data

for breakthrough of major proteins in WPC, showed a similar behaviour to that of

major protein breakthrough in Chapter 4. It was observed that ALA and BSA were

displaced by BLG due to its very high concentration with respect to the competi-

tors for binding. In case of experiments with standards, the concentrations of
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proteins were equivalent. In WPC, high concentration of BLG overpowered the

binding sites in the resins leading to very early breakthrough for both ALA and

BSA.

Knowledge gained fromearlier experimental validationwas implementedhere.

Parameters obtained from major protein breakthrough were used for predicting

experimental data. It was expected that no further adjustments will be required

for successful predictions; however, slight change in the parameters was required

for getting the best fit. All three protein breakthroughs were not well predicted

by any of the isotherms, hence it was decided to focus on accuracy of the slow-

est and major component, BLG. Decent fits for other two proteins were obtained

by this method. EDM-Langmuir well predicted the breakthrough onset and DBCs;

however, the error throughout the curve kept was high for both ALA and BSA.

The overshoot was not predicted well by Langmuir isotherm. EDM-MPM model

was successful in predicting the overshoot for ALA and BSA but the desorption

profiles were slightly delayed. EDM-SMA performed best in predicting slowest of

the breakthrough, however, ALA and BSA overshoots were not predicted. All the

thermodynamic models gave a clear idea about the adsorption and desorption

patterns in the column and predicted DBCs of the proteins in WPC suggesting us-

ability of ExProSim:IC in process simulations. The results were good for themodels

applied here but use of EDM can be a limitation when handling complex systems,

as additional diffusional considerations are required.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The objective of this study was to formulate a preliminary simulation tool which

can facilitate assessment of adsorption anddesorption phenomena for further im-

plementation into process development. Keeping in mind the scarcity of thermo-

dynamic data for proteins, important aim was to seek for methods to determine

thermodynamic model constants for protein molecules and understand their im-

portance in implementation of the models for process development simulations.

To achieve this objective, ExProSim:ICwas developed inMATLAB 2014b incorporat-

ing EDM and three thermodynamic models; Langmuir, SMA, and MPM. In order

to assess usability of the tool for design applications, it was necessary to verify its

functionality and validate it. The toolwas verified for its functionality by checking

performance of range of model constants through a tool verification exercise. It

was then verified against a well established tool, CADET for workability. Addition-

ally, mesh independency studies were carried out to ensure its accuracy. Further,

literature data was chosen for validation to assess effectiveness of the tool with

variation in multiple process parameters. A potential experimental system, whey

proteins was chosen further for experimental validation. Objective was to under-

stand experimental framework required for model constant determination and

their calibration. To understand and determine model parameters, basic adsorp-

tion and kinetics experimentswere performedonmajor andminorwheyproteins.

Data generated from these experiments was used to find model constants by in-
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verse curve fitting. A simple data fitting module was also developed in the tool.

To further understand the physical significance of the model parameters, they

were used in ExProSim:IC for simulation of breakthrough curves for three systems

namely; standards of major whey protein on cation exchange, standards of ma-

jor whey proteins on anion exchange, and standards of minor whey proteins on

cation exchange. To apply the learnings from earlier systems, a complex indus-

trial system of whey protein concentrate (WPC) was chosen to assess the appli-

cability of the tool on crude systems. For each of the simulation and respective

change of model constants, careful observations were made specifically related

to protein behaviour in the column. Specific findings from the entire study are as

follows:

Tool verification

Exercise of tool verification helped in understanding the model constants better.

Basic functionality of the tool was verified for its further use, however, it required

an exhaustive validation to gain confidence on the successful predictability which

was further attempted in the subsequent chapters. Summary of insights from tool

verification is as follows;

• Profiles obtained for all the model constants were according to the physical

significance of the constants. All the simulations were highly dependent on

the concentration ranges chosen based on the systems considered for every

isotherm. No quantitative conclusion could be derived from this exercise

and the exercise was restricted to understanding qualitative changes in the

breakthrough curves with respect to changes in the model constants.

• Assessment ofmodel constants for Langmuir isotherm showed expected in-

crease of binding capacity with increase in Qmax, k1. Binding capacity was

found to decrease with increase in kd. The slope of the breakthrough was

affected by k1 but definite effect could not be derived from such preliminary

simulations.

• For SMA constants, binding of the protein was found to increase with in-

crease in v and λ, however it was found to decrease with increase in keq
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and σ. Large variations in the binding capacity were observed for minute

changes in the charge value hence the adjustments for it should be done

carefully. No conclusion could be derived for the shape of the curve as none

of themodel constants showed any effect on the shape in the chosen ranges.

• For MPM isotherm, kads0 and β showed a positive correlation with binding

capacity. Increase in kdes0 showed decrease in binding of protein. γ showed

a significant effect on the binding capacity which is often overlooked for

ion exchange operations. It is a property of a protein and is highly system

dependent. β was found to be analogous to v in SMA and special attention

should be given for their calibration.

• Major observation from comparison with CADET was that, ExProSim:IC sim-

ulations showed high errors for all preliminary simulations. Obvious differ-

ence of GRM against EDMmight also lead to this error. As predictions from

CADET are accurate due to its exhaustive validation, model constants were

modified based on knowledge gained frommodel constants assessment ex-

ercise to achieve the best fit. As the modifications were done by trial and

error, it can take additional efforts to obtain a best fit. Even though results

were comparable for both tools after modifications, it is just a representa-

tive example and no comparative statements can be derived from this.

• Mesh independency exercise helped in finding meshing parameters for a

convergent solution. It was realised that keeping the time interval and axial

interval below the optimised value helped in consistently getting a conver-

gent solution.

Literature based validation

Understanding gained from tool verificationwas efficiently used to vary themodel

constants to get the best fit. Literature based validation presented further proof

that ExProSim:IC can help generate system specificmodel constantswhich can pre-

dict the data to reasonable accuracy. Summary of insights from literature based

validation is as follows;
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• Best fit was decided based on physical and chemical significance of the sim-

ulated curve from the experimental curve. ’point to point’ comparison of

the curves was found to be more efficient in order to relate the data to the

experimental model constants. ’Curve to curve’ error was presented but it

could not give that give physical comparison of the data.

• For Langmuirmodel, single andmulticomponent breakthrough for ALA and

BLG were well predicted. Secondly, IgG breakthrough was predicted at dif-

ferent inlet concentrations showing sensitivity of the tool towards change

in concentration. Simulations for BSA and Lysozyme breakthrough curves

were better fits than the simulations given in the paper showing superiority

of prediction by ExProSim:IC.

• For SMA isotherm, predictions performed for different salt concentrations

matched considerably well (error<5%) with the experimental data showing

ability of the tool to predict at different ionic strengths.

• For MPMmodel, various protein molecules such as IgG, transferrin, and in-

sulin which have different hydrophobicities were used for validation at dif-

ferent salt concentrations and ExProSim:IC showed accurate results to that

of experimental data (error<3%).

• The variation in parameters was performed strategically for all the simula-

tion runs to get the fit to experimental data. The tool established reason-

able accuracy for all three isothermmodels for different proteins at various

processing conditions such as; flow velocity, column configuration, protein

molecular weights (ranging from 6 kDa to 150 kDa), and buffer salt concen-

trations.

Experimental validation

For experimental validation of the tool, major proteins; BSA, ALA, and BLG were

studied for adsorption characteristics and breakthrough on both anion and cation

exchange chromatography, whereas minor proteins were studied for cation ex-

change chromatography. This experimental system provided experimental vali-
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dation of 5 different proteins of range of physical and chemical properties. Sig-

nificant findings of the experimental validation are as follows:

Summary from experiments

• For cation exchange, apparently higher binding was found for BSA in spite

of its low electrokinetic potential. This was due to higher hydrophobic-

ity at pH 4.5 leading to slower release from the column as observed in the

breakthrough. On the other hand, it was not possible to include ALA in the

cation exchange chromatography process because it lay on opposite side

of the binding spectrum at pH 4.5. This suggested that cation exchange

is unfavourable for major protein separation. No saturation was seen for

BSA breakthrough due to continuous release from the resin due to loose

hydrophobic interactions, whereas BLG showed better binding and break-

through kinetics due to strong ionic interactions.

• For anion exchange chromatography binding of protein was found in the

order of their electrokinetic potential suggesting interactions were mostly

ionic. This was also supported by saturation obtained in individual break-

through curves suggesting ionic adsorption-desorption behaviour of pro-

teins. Multicomponent breakthrough showed slight displacement of BSA

and ALA by BLG pertaining to the presence of dimer of BLG at pH 6.9.

• Anion exchange chromatography was found superior for separation of ma-

jor proteins considering the operating pH for crude whey protein stream

is ≈ 6-7 and overall binding characteristics explained. As anion exchange

was finalised for major proteins, minor proteins were studied by cation ex-

change chromatography. Adsorption isothermcharacteristics showedhigher

binding capacity for LP due to higher ionicity at pH 6.9.

• It was observed that crude whey breakthrough showed similar behaviour

to that of major proteins breakthrough except the displacement of ALA and

BSA was higher as reflected in the early rise and overshoot for both. This

was attributed to very high concentration of BLG in the WPC which pre-

dominantly occupied all the sites possible till saturation pushing the low
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concentration protein molecules to saturate earlier than expected.

Simulations

• Parameter estimation module from ExProSim:ICwas successfully used to de-

termine themodel constants. For all the proteins in discussion, initial guesses

from inverse fit method were successfully used for simulations eliminating

the need of carrying out elution gradient experiments for SMA and MPM

models. Simulations carried out bymaking adjustments in parameters helped

understand their effect on experimental data.

• For cation exchange of major proteins, most accurate predictions by Ex-

ProSim:IC for BSAwas givenbyMPM isotherm for both theproteins for single

component isotherm, whereas rest of them could predict the breakthrough

up to 50%. For a multicomponent breakthrough BLG was found to be dis-

placed by BSA. Implementation of EDM-MPM model gave best prediction

amongst three isotherms followed by SMA and Langmuir. Better perfor-

mance of MPM can be attributed to consideration of both hydrophobic as

well as salt interactions which play role in case of these two proteins as the

operating pH is very close to the isoelectric points of the proteins. This

suggested that the choice of a model may be dependent on protein-resin

properties.

• For anion exchangeofmajor proteins, all three thermodynamicmodelswere

used effectively for the predictions with SMA being slightly superior at pre-

dicting breakthrough curves due to highly ionic interactions. This can be

attributed to nature of SMA where exchange of charged proteins with salt

ions is primarily modelled, whereas for Langmuir and MPM the model is

based on proteins binding on the vacant sites rather than actual exchange

of ions. This observationwas alsomade in case of cation exchange forminor

proteins. Having mostly ionic interactions, SMA showed better predictabil-

ity for both single and multicomponent experimental data. However, v was

found to be highly sensitive for themodel and its adjustment can be critical

to get correct fit. This also suggested that there is scope in the improve-
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ment for experimental determination of v. It can further be said that MPM

was more useful when hydrophobic interactions were considerable in the

binding, otherwise predictions were almost similar to Langmuir isotherm.

• For crude WPC, simulated breakthrough curves could correctly predict the

breakthrough points for all the proteins using all combinations of the mod-

els. This can help in finding out dynamic binding capacities and retention

patterns of the proteins in the column. It was observed that slower ionic in-

teractions such as BLG adsorption-desorption, was predicted well by EDM-

SMA as the isotherm is designed based on exchange of salt ions for protein

molecules.

• DBC values were successfully predicted for all the simulations in this work,

however shape of the curve was often not predicted to accuracy. DBC values

can be helpful in designing the experiments, however as the resin gets older,

it will be difficult to reply on same set of simulation model constants which

were developed for fresh resin.

• It was concluded from number of simulations that the end of the break-

throughwas not predicted consistently using any of the isotherms. It can be

said that use of EDMmight not be suitable for predicting desorption regime

of the curve as more diffusion considerations may be required. This was

also realised while simulating results for a crude systems such as WPC. This

suggested the need of further extensibility of the tool to incorporate POR

and GRM.

7.2 Future work

The thesis provides a basic framework of implementation of modelling and sim-

ulations for ion exchange chromatography. Nevertheless, there are areas of im-

provement for further validation and extensibility of the tool.
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Tool improvement

A preliminary exercise of tool verification is presented here. In order to improve

the code to handle complex systems, an exhaustive code to code validation can be

attempted with respect to several well established tools such as CADET, ChromX,

and Chromulator. In order to derive more understanding onmodel constants and

their interrelations if any, a DoE exercise can be run in a tool verification process,

where all the parameters are varied at together. Age of the resin can also be in-

cluded as a variable. Thiswill give optimised thermodynamic constantswhich can

be robust for simulations at any stage of the process. Even if the quantitativemea-

surements are presented for the errors between simulations and experiments,

model constant modifications are based on educated trial and error guesses, and

errorminimisation. Further improvement is required to incorporate quantitative

measurement of effect ofmodel constants on protein profiles. It can be facilitated

by exhaustive simulations for a system of protein and resin.

Experimental validation using ExProSim:IC from chapter 6 showcased that the

accuracy of the tool reduced to <90% for 50% of the curve while predicting the

breakthrough for crude industrial stream. It will be extremely helpful to validate

the tool with other complex feed streams to gain more reliability. Models im-

plemented in current structure of ExProSim:IC, may not describe the underlined

physical phenomena for complex industrial streams with slower diffusion. Fur-

ther extensibility of the tool towards incorporating mass transfer models such as;

POR, GRM can be explored. While ExProSim:IC successfully predicts breakthrough

data, it should be extended to loading and elution studies for peak prediction. The

peak prediction should be aimed at varying lengths of linear gradients, multistep

isocratic gradients, or a combination of both. Following peak prediction, systems

must be chosen or established for validation of peak prediction for different scales

of chromatography to ensure scalability of the tool [46]. Experiments and simu-

lations in this thesis are from 1 ml scale. Further studies on length-wise and dia-

metrical scale up can be taken up to check the predictability at higher flow rates

and loading conditions.

Experiments and simulations in this thesis are carried out at constant pH. As

pH is a critical parameter for ion exchange chromatography, incorporating pH
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based model [267] and validating them will be beneficial for process optimisation

at lab scale.

Tool integration

Importance ofDoE andQbD in chromatographyprocess development ismentioned

in chapter 2. Following peak prediction, ExProSim:IC can be implemented for de-

sign space characterisation [120] and process optimisation [114], however for in-

tegrationwith DoE and QbD tools, will need additional sensitivity and uncertainty

analysis [130]. Recently, statistical tools have been applied in hyphenation of

chromatographyoperationswith analytical techniques for onlinemonitoring [268].

Simulation tools based onmechanistic models are gaining popularity in this field.

Implementation of simulation tools such as ExProSim:IC, can speed up online trou-

bleshooting process. Furthermore, integration with other modelling platforms

such as CFD can give additional insights of the process and equipment design for

chromatography. A lot of improvements related to enrichment of solvers, model

selection based on process requirements, and data processing are required in the

tool before it can be integrated with high end techniques like PAT and CFD.
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Appendix A

A.1 Mass transfer equations

1

A.1.1 General Rate Model

εe
∂ci
∂t

= −u∂ci
∂x

+ εeDL
∂2ci
∂2x
− 3

rp
(1− εe)kext,i(ci − cp,i) (A.1)

Where, r is the radius of resin particle. kext,i corresponds to the fluid to particle

mass transfer coefficient, and DL corresponds to overall dispersion coefficient.

Factor 3
rp
accounts for the surface to volume ratio of a spherical bead of the resin

particle. Furthermore, the mass transfer in the stationary phase is controlled by

pore diffusion which can be explained by following equation,

∂cp,i
∂t

= Deff,i

(∂2cp,i
∂2r

+
2

r

∂cp,i
∂r

)
− (1− εp)

εp

∂qi
∂t

(A.2)

Where, cp,i is the concentration of protein in the pores,Deff,i represents the effec-

tive particle diffusion coefficient which accounts for bothDp,i andDs,i which are

particle and surface diffusion coefficients where, qeq gives equilibrium stationary

phase concentration.

Deff,i = εpDp,i + (1− εp)Ds,i
∂qeq,i
∂cp,i

(A.3)

1Abbreviations and symbols for appendix A is covered in nomenclature section. Any additional
notations are mentioned below the respective equations
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The Initial conditions are as follows:

ci(0, x) = c0i

cp,i(0, x) = 0

qi(0, x) = 0

(for0 < x < L) (A.4)

In addition to this, two sets of boundary conditions are required, one at the col-

umn inlet and the other at the column outlet. Boundary conditions for equation

are, at the column inlet where x = 0

u.c′f,i − u0c0i = −εeDL
∂ci
∂x

for t = 0 (A.5)

Where, u0 is velocity at zero time, c′f,i is feed concentration, and c
i
0 is initial con-

centration at inlet.

c′f,i = c0i for 0 < t < tp (A.6)

c′f,i = 0 for tp < t (A.7)

condition at the column outlet at x=L is,

∂ci
∂x

for t <= 0 (A.8)

Boundary conditions for the second equation A.2 are;

Deff .
∂cp,it,r
∂r

= kext,i[ci − cp,i(t,r)]

for t > 0 , r = rp (A.9)

∂cp,i(t, r)

∂r
= 0 for t > 0 , r = 0 (A.10)
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A.1.2 Pore Diffusion Model

εe
∂ci
∂t

+ u
∂ci
∂z

= εeDL
∂2ci
∂2z
− (1− εe)kiap(ci − c̄p,i) (A.11)

εp
∂c̄p,i
∂t

+ (1− εp)
∂q̄i
∂t

= kiap(cp,i − c̄p,i) (A.12)

where, ap is area of particle, c̄p,i and q̄i denote average concentrations in the stag-

nant fluid phase contained in the pores and in the solid phase respectively, and

ki is an overall mass transfer coefficient. The initial and boundary conditions are

similar to GRmodel. The axial dispersion is further calculated through Gunn cor-

relation [269],

εe
DL

dpu
=

ReSc

4α2
1(1− ε)

(1− p2) +

(
ReSc

4α2
1(1− ε)

)2

p(1− p)3

×

(
−4α2

111(1− εe)
p(1− p)ReSc

)
εe

γReSc
(A.13)

where, p = 0.17+0.3310−24/Re and Sc and Re are Schmidt and Reynolds numbers

respectively, with Sc = η/ρDm andRe = dpuρ/η. The value of ki is further given

by,

ki =
[ 1

kext,i
+

1

kint,i

]−1
(A.14)

where, kext,i and kint,i are the external and the internal mass transfer coefficients,

respectively. The internal mass transfer coefficient can be calculated as follows,

kint,i =
10Deff,i

dp
with Deff,i =

εpDm,i

γp
(A.15)

Where, Deff,i is effective diffusion coefficient and Dm,i is molecular diffusivity

which can be found out by,

Dm, i = 9.40× 10−15.
T

ηMW
1
3
i

for MWi > 1000 (A.16)

Dm,i = 9.96× 10−16
T

ηV
1
3
m

for Mi < 1000 (A.17)
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T is the temperature(Kelvin), η the viscosity of the solvent, and Mi and Vm,i

are the molecular weight and atomic volume respectively of the component in

question. The tortuosity factor γt was calculated according to γt = (2 − εp)2/εp,

where εp is the particle porosity, which was calculated according to,

εt = εe + (1− εe)εp (A.18)

where, εt is the total column porosity and εe is the external column porosity. The

value of the external mass transfer coefficient was calculated from the Sherwood

number, Sh, according to Wilson-Geankoplis correlation [270],

Sh =
kext,idp
Dm

=
1.09

εe
Sc1/3Re1/3 (A.19)

where Schmidt number and Reynolds number are given as,

Sc =
η

ρDm

Re =
ρudp
η

(A.20)

A.1.3 Transpot dispersive model

Mass transfer equation for TDM is same as EDM (Equation 3.1). EDM uses equi-

librium form of isotherm for estimation of concentrations. however, following

is equation is used in TDM. The kinetic forms change with change in isotherm.

These models were used together for both equilibrium and kinetic simulations of

the experimental systems in this work.

∂qi
∂t

= kmqeq(ci)− qi (A.21)

here, qeq is the concentration in the adsorption monolayer at the adsorbent sur-

face in equilibrium with the concentration qi in the mobile phase. Dapp is appar-

ent dispersion coefficient which replaces the axial dispersion coefficient in EDM.
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A.1.4 Ideal model

Ideal model is the simplest form of mass transfer where, no diffusion is consid-

ered.
∂ci
∂t

+ F
∂qi
∂t

+ u
∂ci
∂x

= 0 (A.22)
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Appendix B

Table B.1: Summary of gradient elution studies for BSA and BLG

Protein Gradient length RT (min) RV (ml) Area

BSA

5 8.19 8.18 118.46
10 9.47 9.48 115.66
15 10.81 10.82 119.14
20 12.04 12.02 119.12
30 14.03 14.04 113.43

BLG

5 6.82 6.81 270.01
10 8.19 8.18 273.35
15 9.44 9.42 263.96
20 10.62 10.61 262.96
30 12.88 12.87 269.28
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Table B.2: Summary of gradient elution studies formajorwheyproteins onCaptoQ
anion exchanger

Proteins Gradient length (CV) RT (min) RV (ml) Area (ml*mAU)

BSA

5 7.22 7.21 171.65
10 8.2 8.18 182.56
15 9.03 9.02 187.42
20 9.82 9.8 189.72
30 11.35 11.34 181.24

BLG

5 7.76 7.745 266.10
10 9.045 9.03 268.89
15 10.22 10.21 264.12
20 11.37 11.355 266.06
30 13.525 13.515 266.51

ALA

5 7.6 7.58 318.57
10 8.52 8.505 322.58
15 9.34 9.32 325.04
20 10.12 10.1 329.27
30 11.48 11.46 326.06

Table B.3: Summary of gradient elution studies for LF and LP

Protein Gradient length RT (min) RV (ml) Area

LF

5 6.68 6.68 723.77
10 7.87 7.87 733.90
15 8.98 8.98 739.26
20 10.07 10.07 729.54
30 12.13 12.13 717.84

LP

5 8.56 8.56 345.84
10 9.66 9.66 357.37
15 10.71 10.71 363.21
20 11.68 11.68 362.18
30 13.55 13.55 360.95
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Table B.4: Comparison of Exprosim:IC Langmuir, MPM, and SMA simulation to ex-
perimental data at different breakthrough percentage formulticomponent break-
through for BSA and BLG

Langmuir MPM SMA

BT % Experimental sim % error sim % error sim % error

BSA

0 15.60 16.10 -3.21 16.00 -2.56 15.10 3.21
10 16.50 17.20 -4.24 17.10 -3.64 16.30 1.21
50 32.64 37.81 -15.84 31.70 2.88 29.60 9.31
100 - 76.89 - 74.50 - 64.60 -

BLG

0 14.40 14.20 1.39 14.00 2.78 14.20 1.39
10 16.30 15.90 2.45 16.00 1.84 16.10 1.23
50 23.10 21.80 5.63 22.30 3.46 22.00 4.76
100 34.56 27.73 19.76 34.56 22.72 36.70 -6.19
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Table B.9: Comparison of breakthrough points at different breakthrough stages of
multicomponent breakthrough of LF and LP

Protein BT %
Experimental
(min) Langmuir % error SMA % error MPM % error

Lactoferrin

0% 50 54.2 8.40 49.6 -0.80 50.2 0.40
10% 61.22 63.45 3.64 61.64 0.69 61.8 0.95
50% 69 66.8 -3.19 72.56 5.16 66.47 -3.67
100% 90.91 88.89 2.22 97.96 -7.75 93.44 -2.78

Lactoperoxidase

0% 28.57 31.6 10.61 27.8 -2.7 28.5 -0.25
10% 49 52.9 7.96 46.8 -4.49 53.7 9.59
50% 61.6 61.8 0.32 58.8 -4.55 62.3 1.14
100% 73 73.47 0.64 77.55 6.23 70.4 -3.56

Table B.10: Comparison of breakthrough points at different breakthrough stages
of WPC breakthrough

BSA ALA BLG

% BT Exp Sim % Error Exp Sim Exp Sim % Error

Langmuir 0 20 22.2 11 29 28.1 -3.103 71 71.2 0.281
10 24 27.4 14.166 32 30.3 -5.312 86 84.84 -1.348
50 32.1 36.36 13.271 42 39.93 -4.928 107 106.6 -0.374
100 45.6 45.45 -0.328 55.4 48.7 -12.093 128 142.1 11.015
v10% 24 27.4 14.166 32 30.3 -5.3125 86 84.84 -1.348

MPM 0 20 17.3 -13.5 29 25.7 -11.379 71 70.8 -0.282
10 24 27.7 15.416 32 36.5 14.063 86 87.1 1.279
50 32.1 35.6 10.903 42 43.8 4.286 107 109.6 2.429
100 45.6 48.5 6.359 55.4 60.67 9.512 128 145.7 13.828
v10% 24 27.7 15.416 32 36.5 14.0625 86 87.1 1.279

SMA 0 20 15.2 -24 29 24.1 -16.896 71 72.7 2.394
10 24 24.34 1.416 32 29.1 -9.0625 86 86.1 0.116
50 32.1 33.33 3.831 42 38.6 -8.095 107 107 0
100 45.6 55.6 21.929 55.4 72.2 30.324 128 130.2 1.718
v10% 24 24.34 1.416 32 29.1 -9.063 86 86.1 0.116
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Table B.11: Summary of errors for axial coordinate mesh number variation

ALA BLG

Nx RMSE CoD RMSE CoD

5-10 9.961E-4 0.9900 6.11E-04 0.9806
10-15 1.853E-09 0.9916 6.28E-09 0.9872
15-20 3.450E-09 0.9917 8.83E-09 0.9917
20-25 2.605E-09 0.9917 6.09E-09 0.9917
25-30 1.730E-09 0.9917 3.88E-09 0.9917
30-35 2.889E-09 0.9917 2.53E-09 0.9917
35-40 7.930E-10 0.9917 1.73E-09 0.9917
40-45 5.666E-10 0.9917 1.17E-09 0.9917
45-50 9.82939E-10 0.9917 1.30E-09 0.9919

Table B.12: Summary of errors for time coordinate mesh number variation

ALA BLG

Nt RMSE CoD RMSE CoD

10-20 1.49E-05 0.946 5.07E-04 0.941
20-30 4.69E-07 0.967 1.81E-07 0.966
30-40 1.51E-07 0.975 6.98E-07 0.975
40-50 2.54E-09 0.990 2.83E-07 0.990
50-60 1.23E-09 0.991 1.20E-07 0.990
60-70 1.43E-09 0.991 1.13E-07 0.989

Table B.26: Compilation of errors for breakthrough prediction for anion exchange
of whey protein concentrate

BSA BLG ALA

Lang MSE 0.0558 0.0060 0.0338
SD MSE 0.0698 0.0119 0.0515
RMSE 0.0006 0.0001 0.0084
CoD 0.9388 0.9523 0.9223

SMA MSE 0.0595 0.0011 0.0436
SD MSE 0.0748 0.0024 0.0588
RMSE 0.0000 0.0000 0.0003
CoD 0.9527 0.9730 0.9162

MPM MSE 0.0597 0.0057 0.0392
SD MSE 0.1030 0.0124 0.0626
RMSE 0.0000 0.0000 0.0000
CoD 0.9189 0.9790 0.9207
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Table B.13: Summary of errors for single component predictions from El Sayed
and Chase et al. [1]

ALA BLG

ExProSim:IC ElSayed sim ExProSim:IC ElSayed sim

MSE 0.0116 0.0051 0.0039 0.0041
SD MSE 0.0191 0.0070 0.0074 0.0066
RMSE 5.06E-04 3.92E-03 1.15E-05 7.20E-04
CoD 0.9399 0.9254 0.9538 0.9449

Table B.14: Errors for Langmuir:EDM multicomponent breakthrough prediction
from El Sayed and Chase [1]

ALA BLG

Exprosim:IC ElSayed sim Exprosim:IC ElSayed sim

MSE 0.0069 0.0062 0.0065 0.0002
SD MSE 0.0109 0.0094 0.0089 0.0003
RMSE 1.27E-3 1.08E-2 3.09E-5 7.24E-4
CoD 0.9384 0.9044 0.9498 0.9318

Table B.15: Errors for Langmuir:EDM prediction from H. Bak et al. [2]

20% 33% 50% 100%

Exprosim sim Exprosim sim Exprosim sim Exprosim sim

MSE 0.0006 0.1349 0.0011 0.0712 0.0002 0.1773 0.0177 0.1610
CoD 0.0010 0.2134 0.0028 0.1076 0.0005 0.2513 0.0486 0.2141
RMSE 0.0020 0.0028 0.0002 0.0005 0.0006 0.0015 0.0000 0.0004
CoD 0.9116 0.8564 0.9812 0.8258 0.9509 0.7216 0.9311 0.6711

Table B.16: Errors for Langmuir:EDMbreakthrough prediction from Skidmore and
Chase [3]

BSA Lysozyme

Exprosim sim Exprosim sim

MSE 0.0274 0.0237 0.0042 0.0003
CoD 0.0283 0.0282 0.0107 0.0005
RMSE 0.0004 0.0006 0.0000 0.0001
CoD 0.9801 0.9419 0.9745 0.9517
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Table B.17: Compilation of errors EDM:SMA simulations for Insulin and Transfer-
rin

Insulin Transferrin

Exprosim sim Exprosim sim

MSE 0.0016 0.0005 0.0014 0.0003
CoD 0.0045 0.0010 0.0031 0.0007
RMSE 0.0007 0.0087 0.0005 0.0013
CoD 0.9872 0.9656 0.9867 0.9468

Table B.18: Errors for Langmuir:SMA multicomponent breakthrough prediction
from Jozwik et al. [5]

Salt% 0% 1% 2% 3%

Exprosim sim Exprosim sim Exprosim sim Exprosim sim

MSE 0.0027 0.0081 0.0062 0.0013 0.0467 0.0586 0.0140 0.0716
CoD 0.0052 0.0158 0.0142 0.0017 0.0885 0.0659 0.0301 0.1134
RMSE 0.0002 0.0008 0.0004 0.0008 0.0006 0.0015 0.0004 0.0010
CoD 0.9813 0.9364 0.9760 0.9616 0.8889 0.8844 0.7682 0.8510

Table B.19: Compilation of errors for EDM:MPM simulations for Transferrin, In-
sulin, and IgG

Transferrin Insulin IgG

Exprosim sim Exprosim sim Exprosim sim

MSE 0.0002 0.0008 0.0002 0.0008 0.0001 0.0001
CoD 0.0006 0.0012 0.0006 0.0012 0.0003 0.0001
RMSE 0.0000 0.0001 0.0000 0.0001 0.0000 0.0004
CoD 0.9944 0.9788 0.9944 0.9788 0.9991 0.9823
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Table B.20: Compilation of errors for single component breakthrough prediction
for cation exchange of BSA and BLG

BSA BLG

Flow rate
(ml/min) 0.5 1 0.5 1

Lang MSE 0.0001 0.0133 0.0173 0.0100
CoD 0.0002 0.0145 0.0345 0.0156
RMSE 1.43E-4 9.36E-4 1.31E-6 7.01E-7
CoD 0.9858 0.9769 0.9503 0.9639

SMA MSE 0.0020 0.0164 0.0081 0.0036
CoD 0.0043 0.0202 0.0168 0.0063
RMSE 1.39E-3 2.27E-3 1.07E-10 5.34E-6
CoD 0.9631 0.9641 0.9615 0.9674

MPM MSE 0.0061 0.0259 0.0021 0.0057
CoD 0.0121 0.0256 0.0031 0.0105
RMSE 7.95E-4 1.07E-3 1.61E-5 1.12E-4
CoD 0.9714 0.9704 0.9780 0.9605

Table B.21: Compilation of errors for multi component breakthrough prediction
for anion exchange of BSA and BLG

BSA BLG

Lang MSE 0.0046 0.0208
CoD 0.0066 0.0223
RMSE 0.0001 0.0000
CoD 0.9214 0.9197

SMA MSE 0.0219 0.0240
CoD 0.0239 0.0279
RMSE 0.0000 0.0000
CoD 0.9572 0.9502

MPM MSE 0.0026 0.0775
CoD 0.0054 0.1629
RMSE 0.0003 0.0004
CoD 0.9589 0.8670
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Table B.22: Compilation of errors for single component breakthrough prediction
at two flow rates for anion exchange of major whey proteins

BSA BLG ALA

Flow rate
(ml/min) 0.5 1 0.5 1 0.5 1

Lang MSE 0.0026 0.0024 0.0036 0.0046 0.0017 0.0012
CoD 0.0062 0.0068 0.0080 0.0106 0.0050 0.0027
RMSE 0.0008 0.0005 0.0006 0.0027 0.0002 0.0002
CoD 0.9818 0.9677 0.9547 0.9098 0.9518 0.9350

SMA MSE 0.0024 0.0030 0.0049 0.0035 0.0034 0.0040
CoD 0.0067 0.0103 0.0173 0.0076 0.0090 0.0079
RMSE 0.0009 0.0004 0.0006 0.0016 0.0001 0.0006
CoD 0.9831 0.9674 0.9651 0.9517 0.9688 0.9616

MPM MSE 0.0048 0.0004 0.0024 0.0024 0.0010 0.0064
CoD 0.0171 0.0013 0.0092 0.0069 0.0021 0.0192
RMSE 0.0006 0.0025 0.0005 0.0000 0.0001 0.0000
CoD 0.9818 0.9857 0.9785 0.9730 0.9840 0.9687

Table B.23: Compilation of errors for multi component breakthrough prediction
for anion exchange of major whey proteins

BSA BLG ALA

Lang MSE 0.0182 0.0016 0.0100
CoD 0.0447 0.0031 0.0191
RMSE 0.0000 0.0009 0.0000
CoD 0.9491 0.9727 0.9580

SMA MSE 0.0595 0.0061 0.0039
CoD 0.1047 0.0115 0.0087
RMSE 0.0045 0.0009 0.0008
CoD 0.9055 0.9604 0.9616

MPM MSE 0.0734 0.0162 0.0093
CoD 0.1268 0.0357 0.0195
RMSE 0.0000 0.0009 0.0001
CoD 0.9046 0.9712 0.9555
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Table B.24: Compilation of errors for single component breakthrough prediction
for cation exchange of minor whey proteins

LF (3 mg/ml) LF (6 mg/ml) LP (4 mg/ml)

Flow Rate
(ml/min) 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

Lang MSE 0.0067 0.0118 0.0082 0.0039 0.0107 0.0144 0.0021 0.0035 0.0077
SD MSE 0.0158 0.0245 0.0166 0.0076 0.0244 0.0284 0.0041 0.0055 0.0102
RMSE 0.0002 0.0007 0.0009 0.0013 0.0016 0.0020 0.0000 0.0003 0.0001
CoD 0.9715 0.9604 0.9635 0.9716 0.9510 0.9319 0.9860 0.9761 0.9594

SMA MSE 0.0034 0.0086 0.0060 0.0526 0.0488 0.0532 0.0053 0.0104 0.0134
SD MSE 0.0081 0.0174 0.0119 0.1002 0.0870 0.0825 0.0123 0.0189 0.0185
RMSE 0.0000 0.0006 0.0006 0.0011 0.0011 0.0016 0.0009 0.0008 0.0008
CoD 0.9854 0.9731 0.9757 0.8904 0.8957 0.8819 0.9653 0.9483 0.9360

MPM MSE 0.0014 0.0051 0.0037 0.0073 0.0101 0.0141 0.0010 0.0030 0.0059
SD MSE 0.0031 0.0108 0.0076 0.0173 0.0230 0.0271 0.0013 0.0055 0.0070
RMSE 0.0004 0.0007 0.0008 0.0021 0.0019 0.0017 0.0000 0.0006 0.0011
CoD 0.9831 0.9694 0.9680 0.9618 0.9470 0.9243 0.9858 0.9750 0.9631

Table B.25: Compilation of errors for multi component breakthrough prediction
for cation exchange of minor whey proteins

LF LP

Lang MSE 0.0022 0.0232
SD MSE 0.0038 0.0447
RMSE 2.36E-5 6.28E-7
CoD 0.9623 0.9774

SMA MSE 0.0041 0.0177
SD MSE 0.0088 0.0315
RMSE 3.41E-5 1.34E-4
CoD 0.9714 0.9564

MPM MSE 0.0029 0.0457
SD MSE 0.0065 0.1115
RMSE 6.87E-5 1.68E-8
CoD 0.9699 0.9842
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