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Abstract

Introduction of mechanistic models for chromatography first started for improv-
ing understanding of the mechanism of the process and since then, the focus of
research in chromatography is shifted to mathematics based concepts. Nowadays,
modelling and simulations of chromatography are being conveniently used with
process development tools such as; DoE, QbD, and PAT to enhance research. With
advent of novel molecules at rapid rates and continuously rising market poten-
tial, effective utilisation of time and resources has become very crucial. With up-
coming advanced techniques and their integration, tremendous amount of data
is being generated which needs to be understood in order to use it for process im-
provement and monitoring. This makes simulation driven process optimization
highly significant in the current research era.

Current research presents a systematic methodology of experiments and sim-
ulation of ion exchange chromatography process. lon exchange chromatography
is chosen for the study considering its wide implementation for capture and in-
termediate polishing steps for variety of protein molecules.

A brief literature review was presented for various aspects of modelling and
simulations of ion exchange process are touched upon along with potential mass
transfer and thermodynamic models which can be implemented. Different facets
of model based process design were introduced to give a brief idea about role of
simulation tools in the overall methodology. Overview of current tools for simula-
tion of chromatography was given further to highlight the advantages and disad-
vantages. Criteria for selecting an experimental system for validation were pre-
sented further to emphasise why whey protein stream was chosen as an experi-
mental system for model validation.

A simulation tool, Extenstible Process Simulator for Ion exchange Chromatog-
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raphy (ExProSim:IC) was introduced further along with its computational frame-
work, data analysis methodology, and different models involved. The tool gives
flexibility of solving equilibrium dispersive model (EDM) in combination with ther-
modynamics models such as; Langmuir, steric mass action (SMA), and mobile phase
modulator (MPM). Tool verification was presented further by checking function-
ality with respect to change in variation of model constants. The variation was
found to be inline with physical significance of the model constants. Code to
code verification with CADET as a reference tool and mesh independency stud-
ies to get convergent solutions further emphasised the workability of the tool.
The predictions from the tool showed a decent match to experimental and sim-
ulation case studies from the literature as average Coefficient of determination
(CoD) was above 0.95. The cases from the literature were chosen to give a wide ar-
ray of process parameters for a thorough validation of all three thermodynamic
models solved with EDM.

To build data for ExProSim:IC validation based on experiments, binding charac-
teristics of major whey protein standards; bovine serum albumin (BSA), -Lactoglobulin
(BLG), and a-Lactalbumin (ALA) were studied for both cation and anion exchange
chromatography. Model constants were determined for three thermodynamic
models; Langmuir, SMA, and MPM . Inverse fit method was employed in param-
eter estimation module of ExProSim:IC for determination of the model constants
from batch, gradient, and breakthrough experimental data. It was proved that
anion exchange was a better technique for separation of major whey proteins
considering their electrokinetic potential at operating pH of 6.9. Ability of Ex-
ProSim:IC to predict the breakthrough curves was further examined and effect of
model constants and process parameters on breakthrough curve prediction for all
the thermodynamic models was investigated. Lessons from tool verification ex-
ercise were utilised to make changes in the model constants to fit the simulation
data to breakthrough curve. Changes in model constants was discussed in detail to
understand the importance of physical and chemical properties involved. Higher
error was observed for BSA breakthrough as the experimental unsaturation was
not predicted by ExProSim:IC. The unsaturation was an outcome of possible weaker

hydrophobic interactions of BSA leading to continuous adsorption-desorption of



protein which was not efficiently predicted by EDM. Experimental multicompo-
nent breakthrough for cation exchange showed displacement of BLG by BSA due
to higher hydrophobicity of BSA. Predictions of multi component breakthrough
showed inability to accurately predict the overshoot of the protein molecule due
to displacement (CoD values down to 0.85 and DBC errors>10% and errors >20%
at saturation).

The average "point to point’ error for predictions of single component anion
exchange breakthrough was found to be <5% for all the models and average CoD
was more than 0.96. ALA and BSA were displaced by BLG owing to existence of high
proportions of BLG dimers at the operating pH. Dimerisation increases binding
due to increased ionic strength leading to higher binding capacity. Prediction for
multicomponent breakthrough for anion exchange were better than cation, how-
ever the overshoot was not predicted well (CoD values>0.90 and DBC errors>5%
and errors >20% at saturation).

Similar studies were carried out for minor whey protein standards; Lactofer-
rin (LF) and Lactoperoxidase (LP). Standards obtained were first purified to >98%
in order to use them for adsorption kinetic studies. Experimental data was used
to generate model constants which were utilised further for investigation of ef-
fect of process parameters and variation in model constants on single compo-
nent and multicomponent breakthrough curves. It was observed that the predic-
tions were excellent match to the experimental data for single component break-
through. Multicomponent breakthrough predictions were observed (CoD>0.95
and DBC errors<5% and errors >10% at saturation). That may be due to absence
of overshoot in the data. Potential learning from earlier chapters was imple-
mented in examining the predictability of the tool for simulation of multicom-
ponent breakthrough for crude whey protein concentrate (WPC) on anion ex-
changer. It was observed that BLG, being in high concentration, dominated the
binding pattern, and the accuracy of predictions was compromised (CoD<0.95 and
error>10%) while predicting the overshoot of displaced protein concentration.

The results presented in this thesis lay a systematic methodology towards de-
veloping basic understanding of implementation of modelling and simulation for

ion exchange chromatography. The experimental system developed here for ma-
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jor and minor whey proteins not only served as a comprehensive dataset for ex-
perimental validation but also laid a basic framework for designing a prospective
separation process for individual whey proteins. Experiments and major learn-
ing about model constant calibration formed a preliminary platform for creat-
ing a prospective database of thermodynamic constants for protein molecules for

building a framework for model based process development.
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Nomenclature

Symbols

[f Mean residence time/first moment (min)

W, Width at half height

d, Resin particle diameter

h Reduced plate height

Re Reynolds number

Pe Peclet number

c Protein concentration in the mobile phase (mg/ml)
q Protein concentration in the solid phase (mg/ml)
o Variance of the peak

€e Column porosity

€ Total porosity

€p Particle porosity

D,. Dispersion coefficient (cm?/min)

L Length of the column (cm)

F Flow rate (ml/min)

u Flow linear velocity cm/min
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D,, Molecular diffusivity (cm?/min)

M Molecular weight (K Da)
n Viscosity (cP)
T Temperature in Kelvin (K)
T Radius of particle (cm)
Cio Concentration at the inlet (mg/ml)
Qmaz Maximum binding capacity for Langmuir (mg/ml resin)
KL Adsorption coefficient in Langnmuir (ml/mg.min)
Kl Desorption coefficient in Langmuir (min—)
kq Dissociation constant for Langmuir (mg/ml)
Ceq Concentration in mobile phase at equilibrium
e Equilibrium adsorbed concentration in Freundlich isotherm (mg/ml)
Q Equilibrium adsorption capacity for Freundlich isotherm (mg/ml)
Ce Equilibrium concentration in mobile phase (mg/ml)
n Adsorption intensity for Freundlich isotherm
k1 Pseudo first order kinetic constant (min—"')
ko Pseudo second order kinetic constant (ml/mg.min)
s Adsorbed concentration at instantaneous time 't’ (mg/ml)
A Ionic capacity of the resin (mM)
o; Steric hindrance factor for SMA
v; Characteristic charge of the protein
keq Equilibrium constant in SMA
s Adsorption coefficient in SMA
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Breakthrough volume at 10%
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Time of pulse injection (min)

Tailing factor

% of mobile phase B in chromatography

slope of BSA curve in the mixture for SEC:HPLC calibration
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Abbreviations

AC
ALA
ANN
BLG
BSA
CFD
COA
CADET
cv
DBC
DoE
EDM
FDM
FEM
FVM
GALib
GRM
HIC
IC
IDM

IgG

Affinity chromatography

a-lactalbumin

Artificial neural network
B-lactoglobulin

Bovine serum albumin

Computational fluid dynamics

Critical quality attributes
Chromtography analysis and design tool
Column volume

Dynamic binding capacity

Design of Experiments

Equilibrium dispersive model

Finite difference method

Finite element method

Finite volume method

Genetic algorithm library

General rate model

Hydrophobic interaction chromatography
Ion exchange chromatography

Ideal model

Immunoglobulin G
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LC
LF
LMA
LP
MBE
MOO
MPM
NGC
NMR
NTU
ODEs
PAT
PDEs
P!
POR
PVDF
QbD
RPC
RSM
RV
SAS
SBC

SDM

Liquid chromatography
Lactoferrin
Levenberg-Marquardt algorithm
Lactoperoxidase

Model based engineering

Multi objective optimisation
Mobile phase modulator

Next generation chromatography
Nuclear magnetic resonance
Net transfer units

Ordinary differential equations
Process analytical technology
Partial differential equations
Isoelectric point

Pore diffusion model

Poly vinylidine fluoride

Quality by Design

Reverse phase chromatography
response surface methodology
retention volume

Self association model

Static binding capacity

Stoichiometric dispersion model
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SEC Size exclusion chromatography

SMA Steric mass action

SPFF Sulphopropyl sepharose fast flow
SUNDIALS SUite of Nonlinear and Differential /ALgebraic Equation
TDM Transport dispersive model

WENO Weighted essentially non oscillatory

WPC Whey protein concentrate

SE Standard error

SD MSE Standard deviation in mean standard error
RMSE Root mean square error

CoD Coefficient of Determination
Subscripts

i :'i""" component

e : exit

s : salt

eq : equilibrium
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Chapter 1

Introduction

1.1 Introduction

In the past few decades, breakthrough scientific explorations have led to faster
production at upstream processes moving the bottleneck to downstream opera-
tions in food and bio-pharmaceutical industries [7]. Significantly higher process
development rate in upstream processes compared to the downstream processes
is due to multiple steps involved in the purification, where every step needs to
be improved to make a mark on the efficiency [8]. Liquid chromatography (LC)
is one of the most prominent platforms for purification however, its cost effec-
tive design and operation is very challenging. At the same time, increasing raw
material costs and quality constraints on the final products makes it difficult to
design a cost effective and self sufficient process. It is believed that answers must
be sought in the fundamentals of LC in order to solve current problems such as
excessive experimentation, time consuming scale ups, tedious troubleshooting,
and slower implementation of process improvements.

LC is a complex unit operation that has number of different processes occur-
ring in parallel. Along with the complexity of the operation it is also considered
to be one of the most costliest operations in purification assembly. Therefore,
attempts must be made in order to reduce the costs. Mathematical modelling
has proved to be an effective tool for prediction of outputs of numerous oper-
ations. It has been used to efficiently design of multiple unit operations such

as; fluidised beds, distillation columns, dryers, crystallisers etc. This research at-



tempts to study chromatography models and their simulation methodology in the
hope to reach an effective approach to unravel, understand, and improve the way

chromatography is approached in research and industries.

1.2 Motivation

LC is a unit operation in which a mixture of molecules to be separated, flow through
apacked adsorbent bed along with a mobile phase. Differential migration of molecules
takes place depending on their relative interaction with the bed and mobile phase.
It is crucial to understand these interactions for improving current approaches of
process design. Various key approaches such as; heuristic approach, experimen-
tal approach, platform approach, and combined approach have been practised for
designing of chromatography. In heuristics, decisions are taken based on prior
knowledge and experience about the molecule in consideration [[9,10]. Though it
takes less efforts, heuristic approaches lack new methodologies which can prove
to be a limitation for the capability of the process. Experimental approaches rely
on trial and error based intensive experimentation which consume a lot of time,
efforts, and resources in order to get desired outcomes. Though it is the safest of
all other approaches, limited sample availability and strict time lines for getting
the product do not make it a wise choice. Platform approach relies on designing
a process based on already established data for a similar molecule. This method
is widely used in industries where stringent deadlines are to be followed and the
molecules to be produced are costly species like antibodies [11]]. Despite of above
mentioned strategies and their practise in LC over last three decades, further im-
provement in the speed of development is required to keep desired quality and
quantity in check. It is true that, recent introduction of concepts such as; design
of experiments (DoE) and quality by design (QbD) ensure robustness and flexibil-
ity of the process[12], however these approaches involve plentiful experiments
which may be time consuming for a market driven development. Furthermore,
these techniques along with process analytical technology (PAT), generate a lot of
data which needs to be assessed meaningfully to design further steps.

A more strategic approach which has been explored widely, involves model



based development of chromatographic processes. Various tools for chromatog-
raphy simulation have been proposed and implemented [13} [14} [15] which offer
varying degree of accuracy and efficiency for design. However, it is important
to note that there is a further scope in discussing the implementation of models
based on fundamental understanding of determination of model parameters by
using experimental basis to determine them. This research focuses on building
an understanding about the parametric calibration which is to be done to get the
right predictions and further understand their significance for three thermody-
namic models. It is also important to understand before the actual process de-
velopment, the causes of possible variations in the governing parameters when
different feed streams are involved. Considering this, simplification of the path-
way of understanding what experiments should be performed to pave the way to

implement modelling for simulations of chromatography is what is sought here.

1.3 Research objectives

Major aim of this work is to provide a better outlook of how modelling and simula-
tions can be used for understanding of ion exchange chromatographic operations.

Following are the objectives of this research;

1. To formulate a simple tool, ExProSim:IC offering flexibility of using various

thermodynamic models for simulation of chromatographic operation.

2. To verify the tool for its functionality by assessing effect of variation in

model constants, code to code verification, and mesh independency
3. To check the predictability and accuracy of the tool based on literature data.

4. To understand separation characteristics of major and minor whey protein

standards for ion exchange chromatography.

5. To establish an experimental system by determining model constants and

validate ExProSim:IC for five whey proteins.

6. Todiscuss in detail how the isotherm parameters affect the simulation curves

for better understanding of the process and further assess applicability for



crude protein systems such as whey protein concentrate.

1.4 Thesis outline

The thesis is divided into 7 chapters based on the research objectives.

1. Chapter|[l]gives a brief introduction to the research problem along with the

motivation for the research.

2. Chapter 2| discusses basic concepts of modelling in chromatography. Fur-
ther a comprehensive review of literature is given for modelling and simula-
tion of chromatographic operations with emphasis on thermodynamic and
mass transfer models along with their applications. Various tools available
for implementation of these models are discussed further with a brief sum-
mary and their implementation followed by a summary of model based pro-
cess development for chromatography. In addition to this selection of whey
proteins as an experimental system is justified. Furthermore, challenges as-
sociated with implementation of modelling and simulation in chromatog-

raphy is discussed to state significance of the thesis.

3. Chapter[3|discusses summary of formulation of the tool ExProSim:IC includ-
ing data analysis, mathematical models, and mechanistic framework. Ma-
terials and methodology for experiments for chromatography and sample
analysis is discussed in detail. Furthermore, tool verification and literature
based validation is demonstrated for the chosen thermodynamic models for

ExProSim:IC.

4. Chapter |4 shows experimental validation of ExProSim:IC in continuation to
the literature based validation from chapter |3, Assessment of experimen-
tal characteristics of major whey proteins for anion and cation exchange
chromatography is performed. This is accompanied by prediction of break-
through curves for single and multicomponent systems using ExProSim:IC
with further explanation pertaining to change of experimental and simula-

tion parameters.



5. Chapter [5| continues the experimental validation for ExProSim:IC for basic
whey proteins. Assessment of minor whey proteins for cation exchange
chromatography is performed for finding model parameters. ExProSim:IC
is used further for breakthrough prediction of single and multicomponent

mixture of standard proteins.

6. Chapter [ shows applicability of ExProSim:IC for prediction of experimen-
tal breakthrough of crude whey protein concentrate (WPC). Furthermore,
comparison of model parameters for standards and crude is discussed in

detail.

7. Chapter[7lsummarises the research work by stating important observations
and findings. This is followed by insights on prospective areas of improve-

ments for taking the work forward.



Chapter 2

Literature review

2.1 Introduction

2.1.1 Liquid chromatography (LC)

Liquid chromatography is one of the most critical operations in the food, pharma-
ceuticals, and biopharmaceutical industries. For optimisation of LC, several steps
should be followed with careful considerations towards the desired outcomes such
as; type of product, yields, purity, and costs. There are various types of chromatog-
raphy techniques depending on the chemistry used for separation. These include
ion exchange chromatography (IC), reversed phase chromatography (RPC), hy-
drophobic interaction chromatography (HIC), affinity chromatography (AC) etc.
IC uses charge interactions between resin and protein molecules for fractionation
based on change in the degree of ionic interactions with a changing salt gradi-
ent. In HIC, hydrophobic interactions between protein and resin are exploited for
fractionation by changing the salt concentration of the mobile phase. For RPC, hy-
drophobicity of the protein is explored further for binding to non polar resin un-
der an organic modifier. AC is designed based on specific interactions of a protein
to a ligand which is attached to the resin for enhanced adsorption. Among these,
IC is one of the most widely used chromatographic methods in the industries be-
cause of its simple application at capture, intermediate, and polishing stages of a

separation process.



2.1.2 Ion Exchange chromatography

IC explores the fact that protein exerts no surface charge at its isoelectric point
(pI) and pH of the solution can be changed in order to change the charges on the
protein molecule. If the pH is higher than the pI of the protein, the net charge
on the protein is negative and it will bind to a positively charged adsorbent. On
the other hand, when the pH is lower than the pI of the protein, it shows positive
charge to further bind to a negatively charged adsorbent. IC can be described

further as follows.

1. IC offers high resolution between the protein peaks as the separation crite-
ria is easy to modify and control, based on pH and salt concentration of the

solution.

2. 1C adsorbents offer high protein-binding capacity due to high density of
charged ligands on the adsorbent.

3. IC is operated with aqueous mobile phases which does not raise an extra
concern for removal of organic solvent from the product peaks. The product
peaks are generally concentrated in salt which can be easily addressed by

desalination process if required.

4. 1C provides flexibility in terms of processing. It can operate at very high
flow rates. It can be used to separate wide range of protein molecules and
do not have specific criteria as required for size exclusion or affinity chro-
matography. IC is also a non-denaturing technique and it can be used at all
stages and scales of purification. It also serves as a concentration step for

crude stream with high impurities.

5. Modern IC adsorbents offer macroporous structures allowing the processes

to be operated at high flow rates which is an indicative of high productivity.

Considering all these advantages IC has high popularity in enzyme and food indus-
tries [16] and it is chosen for the work in this thesis. Further sections will discuss

modelling aspects of IC.



2.2 Modelling and simulations in chromatography

Any ion exchange chromatography interaction in the column is an effect of charge
driven thermodynamics between the protein and resin, and mass transfer of the
protein through the porous bed towards or away from the charged ligands. Hy-
drodynamics of the proteins due to flow conditions is another aspect which affects
the binding kinetics. It is very difficult to assess and control these mechanisms by
experimental means hence numerous models are proposed for understanding IC

better. These are presented in the further sections.

2.2.1 Thermodynamic models

Linear model is a simplest adsorption model where the rate of adsorption is lin-
early proportional to the concentration of molecules of the components present
in the mobile phase. As this is the simplest of all kinetics, most of the basic theo-
ries were based on linear model [17,/18,[19]. Langmuir model based on homogene-
ity of the sites is a monolayer isotherm which follows pseudo second order kinet-
ics [20]. For Langmuir, the physical phenomena was represented by two constants;
Qmaz and kg, where first one gives maximum binding towards the resin and sec-
ond one represents the dissociation equilibrium coefficient or binding strength
(KLs/ KL 4). Though Langmuir model captures competitive binding of proteins to
the ligand sites, it has certain drawbacks. The isotherm is thermodynamically in-
consistent if the saturation capacities of proteins are not identical [21}22]]. Bind-
ing is considered proportional to the vacant sites on the adsorbent and salt inter-
actions are lumped into a binding constant when they are major driving forces
for the adsorption and desorption [23]. It doesn’t account for the steric effects
between the salt-protein and protein-protein molecules, or hydrophobic surface
interactions because of their conformation. Nevertheless, it has been used widely
for determining chromatographic profiles to certain accuracy (24,25, 26].

To account for the salt interactions, Langmuir model was further modified to
mobile phase modulator model (MPM). MPM considers both ionic and hydropho-
bic interactions during binding and desorption by modification of the rate con-

stants to; kges0 and kqqs0 from Langmuir constants [27]. Karlsson et al. [28] con-



sidered the factor v to be zero, to simulate breakthrough curves for insulin and
transferrin successfully. Furthermore, antibody purification was studied by Karls-
son to give a perfect prediction for experimental profile due to accurate parame-
ter estimation [29)].

Another isotherm referred as steric mass action model (SMA), accounts for the
steric effects based on the electronegativity of the salt ions present with protein
molecules and their effect on the adsorption-desorption kinetics [30]. Isotherm
formalism was based on completely new set of constants such as; A (Ionic capac-
ity), v (characteristic charge), o (steric factor), and k., = k5_./k?,, (equilibrium
dissociation constant). SMA has been implemented widely for binding predictions
for ion exchange displacement chromatography as it describes the mass transfer
of proteins in exchange of salt ions [31,[32,[33]. The parameter determination for
SMA is explored widely for its easy implementation for any experimental setup
[34,35,36]. However, aggregation between the protein molecules is not consid-
ered in SMA. Effects such as aggregation or changes in the secondary and tertiary
structure of the protein can occur because of physical forces like van der Waals
and electrostatic interactions between adsorbed proteins and the salt ions, or
protein-protein interactions[37]. These are mostly applicable to macro-molecules
and can lead to anti-Langmuir multi layered adsorption at lower concentrations
and Langmurian kinetics at higher concentrations [38]. For such a situation, self
association model (SAS) was proposed [39]. For current chromatography appli-
cations, applicability of linear model is obsolete, whereas Freundlich describes
mostly multilayered adsorption with poor accuracy. SAS is an isotherm which is
applicable in special cases where large molecules are involved. Langmuir, SMA,
and MPM are widely applied isotherms for predicting ion exchange chromatogra-
phy processes hence, these were primarily chosen for further simulation studies
in this work. Further modifications in these basic models for capturing specific
interactions have been proposed based on more complex phenomena such as self
association, unfolding, refolding etc. [40,41],42]; however, they are not considered

here.



2.2.2 Mass transfer models

Along with thermodynamics of the interaction, it is also critical to understand the
mass transfer kinetics of a chromatography process. Mass transfer models are
based on certain assumptions in order to make them simple to apply [43]. Var-
ious models are proposed based on the complexity of the process. The general
rate model (GRM) captures all possible mass transfer resistances such as; molec-
ular diffusion, surface diffusion, film diffusion, pore diffusion etc. [44]. All the
equations for implementation of GRM are given in Section[A.1.1l GRM is used in
model based process development as it considers most mass transfer processes in-
volved. GRM is mostly applied for small molecules and slow processes where pore
diffusion is prevalent but it was also successfully applied for big molecules [45].
GRM was successfully implemented for many experimental systems at small and
large scales [46), 47,48, [49]. However, application of GRM is also complex because
of the relatively large number of parameters needed to characterize the axial dis-
persion, the external mass transfer, and the effective diffusion through the pores
and external bed. These parameters are often difficult to measure experimentally
for accurate predictive modelling [50].

Pore diffusion model (POR) is a simplification of GRM where pore and surface
diffusion are neglected by simplifying gradient pore concentration to the average
concentration [51]. Binding kinetics, overall diffusion coefficient at surface and
medium are considered further to assess mass transfer. All the required equations
from formulation of POR to determination of diffusion coefficients are given in
Appendix B Section[A.1.2] Different formulations of POR are applied for simulation
of LC based on pore structure, particle shape, pore diameter and pore distribution
(52,53, 54, 55 56].

Further simplification of POR led to formulation of equilibrium dispersive model
(EDM). EDM considers that the variability from the equilibrium can be represented
by an apparent axial dispersion coefficient (D,,) [57]. D, is also considered to be
independent of the low protein concentration in less viscous medium. At higher
concentrations and higher velocities, the effect of axial dispersion coefficient was
considered to be zero [58]. However, it was realised that it can be estimated and

even though the value is minimal it is not negligible [59]. As most of the processes

10



in analytical and industrial scales are relatively fast, EDM is the most widely used
model for simulating chromatography [60, 61]. It is proved that applicability of
EDM is not limited to specific resin structure [62} 63] or chromatography tech-
nique [64} 65], hence it can be applied to a variety of modelling applications. As
EDM is a focus of this work, expressions for EDM are discussed further in section
B.2.1]

Transport dispersive model (TDM), Ideal model (IDM) are few other mass trans-
fer models which have been used for prediction purpose. In the TDM, contribu-
tions of slow mass transport kinetics are lumped into the mass transport rate co-
efficient, k,, [66,67]. TDM uses same equation as EDM except that the % term is
replaced by equation|A.21][68].

IDM is the simplest of all models, it has been explored since last 3 decades
169,170, [71,,772]]. It does not consider any diffusion and it was often found that such
is not the case for LC processes [73]. The accuracy of predictions for IDM is ques-
tionable; however, it can be applied for very fast processes. Considering simplicity
of implementation, minor requirements of model constants as compared to other
mass transfer models, and accuracy of predicting industrial processes, EDM was
chosen further for simulation purpose in this work. Equations for all other models

are given in Appendix A for further reference.

2.2.3 Hydrodynamic approaches

As chromatography is a continuous adsorption and desorption process under a
flowing regime, it is very hard to know what exactly happens inside the column.
Packing and nature of the resin, and velocity and nature of the mobile phase
decide the flow patterns inside the column. Current analysis techniques rely on
inlet and outlet sample analysis and they are insufficient to give complete idea of
how the adsorption happens throughout the column. Studying the flow patterns
inside the column can facilitate in understanding nature of band broadening in
the column and help design better matrices. With simultaneous mass transfer be-
tween mobile and stationary phase along with the flow, it is evident that multiple
resistances are present throughout the column which need to be accounted. Most

analysis techniques rely on inlet and outlet sample analysis and it may not give a
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complete picture of the adsorption phenomena. Non-invasive column visualisa-
tion tools such as; X-rays, Nuclear magnetic resonance (NMR), Computed Tomog-
raphy(CT), and gamma rays were employed for measuring the velocity patterns
inside the packed column under operation [74,(75}76]. This can help in finding the
governing mechanisms inside the column. Even the scales at which the velocity
changes take place can be understood. Such techniques can help in assessing ra-
dial heterogeneity. Though all the mass transfer models discussed earlier assume
that the column is radially homogeneous, it is worth investigating radial hetero-
geneity of the column for better understanding. This can help assessing irregular
flows, uneven packings, and improve distributor design. Modelling techniques
such as computational fluid dynamics (CFD) were applied for simulation of chro-
matographic column to get further insights of the mechanism of mass transfer
[77].

CFD is defined as study of systems involving fluid flow, heat transfer and asso-
ciated phenomena such as chemical reactions by means of computer simulation.
CFD softwares serve as an easy to use interfaces where process parameters can be
given (pre-processor), processed (solver), and the results can be analysed (post-
processor). For example, for studying fluid flow in a chromatography column, a
packed bed geometry can be created by giving column dimensions, resin particle
specifications such as particle size, pore size, overall porosity, and particle geome-
try [78]. CFD of columns at different scales can be performed and the flow patterns
can be related for consistency of flow to assess if the scale up is achieved as de-
sired [79]. Even distributor designs can be compared for optimising flow patterns
inside the column [80].

Advanced visualisation and modelling techniques if combined with mechanis-
tic modelling tool, can give a complete picture of column hydrodynamics in terms
of velocity and mass distribution. Recently, simulating a separation of lutein molecule
in a preparative chromatography column using CFD was attempted by employ-
ing mass transfer equations such as EDM and IDM [81]. Though it is a good idea
to combine the hydrodynamics and mass transfer models under a collaborative

solver approach, the computational requirements are very high.
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2.2.4 Statistical approaches

Numerous mass transfer models described earlier can simplify the way chromatog-
raphy process is understood but it is often a case that the solution of these mod-
els becomes computationally intensive. Statistics can provide an easier approach
towards modelling and simulation of chromatography with less intensive compu-
tational requirements. It can either serve as a stand alone model system which
can predict simpler processes or can pave a way for better analysis of traditional
mass transfer models. Major statistical approaches which have been widely used
for modelling and simulation of chemical engineering operations are design of

experiments (DoE) and artificial neural networks (ANN).

2.2.4.1 Design of Experiments (DoE)

DoE provides a combination of statistical techniques based on empirical models
for a process under scrutiny. It describes a relation between input and output vari-
ables, and helps to assess and model the process in a more systematic way. This
helps in faster scanning of the design space and reach to the optimum solution in
terms of quality and yield, in least number of experiments and time. Input vari-
ables are generally called as ’decision variables’ whereas the output variables are
termed as 'response variables’ or 'response functions’. Aim is to achieve the best
possible output for a system by optimizing decision variables to create a model
which can help predict the results. A detailed method of experimental design
for chromatography is reviewed by Hibbert [82]. There are multiple decisions
to be taken when DoE is to be used for LC process optimization. These include,
screening of decision variables, choice of experimental statistical design, choice
of experimental design space, response variables, and regression analysis tech-
niques to be used. Screening of all possible variables is necessary to know what
process parameters affect the process output significantly. For example; Designs
such as factorial designs, Plackett-Burman, Box-behnken can be used a screening
designs where preliminary DoE for screening of important variable is to be per-
formed. More complex designs such as central composite design, D-optimal, and
Dohlert designs can be used for generating the final surface in response surface

methodology (RSM) to get an optimized design space. Details of statistical param-
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eters involved, methodology, and different designs available for DoE-RSM have
been described in detail in a review by Bezerra et al.[83]. An account of various
screening designs for multivariate and multilevel analytical designs, and mixture
designs along with respective data interpretation techniques is described in de-
tail by Dejaegher and Heyden [84]. Designed set of experiments are then carried
out in laboratories. Alternative to this is to make predictions in a validated simu-
lation tool to construct the surface plots for responses. Furthermore, the surface
model equation should be validated by carrying out experiments in the laborato-
ries. It is also important to test the desirability of the design used by comparison
with other competitive designs and optimality of the chosen design [85]. DoE may
also be used for comparison with results produced from mechanistic models for
further strengthening of the model validation process.

Numerous applications of DoE are seen in LC design and development. Re-
sponse surface methodology is used effectively for designing LC process [86} 87,
88). Multiobjective optimisation (MOO) is carried out for creating a statistical
models for LC systems; however, most of the work is experimentally driven [89,
90, 91].

DoE definitely helps in narrowing down the experiments towards process op-
timisation; however, it is important to realise that those experiments are still to be
performed for every step of the process. Mechanistic modelling can aid in reduc-
ing the efforts taken for DoE. If a validated tool is available, all the experiments in
experimental designs can be performed in the tool and simulated response surface
can be obtained. Validation experiments can be performed further to ensure the
desirability model equation of the surface. Secondly, if the experimental designs
can be compared through a tool, many designs can be compared within short span
of time with ease for their optimality. The data being generated from simulations
can be linked to statistical analysis or probabilistic methods and further analysed
to give an optimal solution in no time[92]. Application of high throughput screen-
ing and simulations together can give a faster way of both experimental as well as

mechanistic model based validation [[93][94].
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2.2.4.2 Artificial neural networks (ANN)

ANN is a network of nodes and inter-nodes which are interconnected to each other
defining their interrelations. The system is then trained by adjusting the inter-
links to get close to the desired outputs or minimize the error. During training,
transfer of signal happens to each neuron from the input neurons, its summed up
at intermediate nodes, and passed further after applying a suitable mathemati-
cal function to it which is defined in the hidden layers. Once the training is per-
formed, ANN serves as a good predictability tool even without physical and chemi-
cal characteristics of the system. ANN also provides a model system which can de-
scribe complex relationships between the variables which can be quite useful for
LC process development. Role of ANN in pharmaceutical process and product de-
velopment has been well described [95]. ANN is used for estimation of adsorption
isotherm and mass transfer parameters for TDM and stoichiometric dispersion
model (SDM) for protein chromatography application [96]. The predictability was
further compared with mechanistic model predictions. The accuracy of estimated
parameters was proved by decent agreement with simulation and experimental
data from two salt gradient experiments. Havel et al. demonstrated that combi-
nation of ANN modelling with experimental design, experiments required for the
optimal solution were reduced considerably proving ANNs ability of quick opti-
mization [97]. As the major advantage of ANN is to handle large amount of data
effectively, it has been used successfully for modelling of hyphenated techniques
including chromatography and mass spectrometry [98]. It should be noted that
the quality and accuracy of results from ANN depends on the quality of training
data used. This data can be from retrospective experiments or fresh experiments.
For DoE, definitive experimental design is formulated and experiments are car-
ried out to build the model. Though comparison of ANN and DoE is not intended
here, it is important to mention that the computation times for both ANN and
RSM-DoE models are insignificant; however, accuracy of the model solutions may
vary based on training data and experimental design respectively.

Major drawback of ANN is requirement of large amount of data for training
purpose. Getting so much data can be possible for product running in the indus-

try for years but generating the data for new molecules is cumbersome. Typical
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approach for a chromatography process optimization can be carrying out simula-
tion experiments on a validated tool in a multivariate experimental design space
to generate data which can be used for training ANN systems with appropriate
structure specific to the process in consideration. Once the ANN is calibrated for
a system, it can simulate the experimental results in minimal time facilitating the
on-line monitoring and troubleshooting. Even though, solving complex equations
by using appropriate tool for predictions is making difference in processing, it is

important to make such a complex information accessible in a simpler form.

2.3 Model based process development

Though mechanistic modelling using the mathematical models has been widely
explored in last two decades, it is necessary to understand its implementation in
process development. Major advantage of model simulations is reduction in the
extensive experimentation required to get to the developed process. For process
development at both small and preparative scales, main objectives are maximum
possible loading and highest possible flow rates with desired resolution, quality,
and yield for the target molecules. Traditionally, numerous experiments are per-
formed to find the optimal conditions for achieving required quality product. Re-
cently FDA approved QbD for manufacturing design which gives further flexibility
to manufacturers without compromise on the quality requirements. Approaches
like DoE and process analytical technology (PAT) allow the user to optimize the
points in the design space at which the experiments can give desired results [99].
With the help of prediction tools available, it is now possible to assess the whole
design space with more scrutiny. For having confidence in the tools, it should be
made sure that the tools are well validated for the process systems under consid-

eration.

2.3.1 Model validation

Tools discussed ensure accurate implementation of the model mathematically but
it is also important to ensure that the simulated data matches well with the exper-

imental data. This process is called as model validation. Model validation can be

16



carried out in two ways. Primarily, data from the literature can be chosen. Results
obtained from simulations are then compared with the data from the literature
to identify the error. If the error is high, it is attempted to tune the parameters in
order to fit to the target data. This process is also called as model calibration. Care
must be taken while choosing the literature data as it should be able to provide
all the required parameters for the execution of simulations. It should also pro-
vide range of variations in the process parameters to ensure that the validation
is robust enough to apply for future predictions. Another type of validation is ex-
perimental validation. In house experiments are performed for finding out model
parameters [100]. Experiments which define different aspects of resin-protein in-
teractions are planned in the design space to cover all possible process variations.
Model parameters are determined by fitting the equations to the experimental
data produced. For example, experiments such as batch studies can give model
parameters such as Q,,,4., k4 for Langmuir isotherm or charge value (v), equilib-
rium dissociation constant (k.q) for SMA. Column moment analysis with tracers
such as blue dextran or acetone, can be used to determine diffusion and poros-
ity values. Details of such experiment is given in literature which can be referred
further [101, 102, 35]. Once the model parameters are determined, they can be
used in the tools for simulation for a successful prediction. Further tuning of pa-
rameters might be required and should be performed based on process knowledge
about how the parameters affect the curves to be predicted. Overview of model

validation is shown in Figure

2.3.2 Optimisation

Process development is a challenging task due to complex interactions in between
adsorption variables. These interactions play an important role in the output of
the system and finding how input affects the output responses becomes impor-
tant. For this, choice of responses and decision variables, and priority given to
them is very important while defining the process development objective. Though
it is hard to find generic rules for process optimisation, current approaches in the
industries and academia are mostly influenced by QbD. QbD is a multi-objective

optimisation based approach which is targeted to achieve predefined process ob-
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Figure 2.1: Generalised model calibration and validation philosophy

jectives by using basic knowledge of the process [103]]. Tricky part in QbD is set-
ting a measurable objective function which can describe the desired outcomes.
A significant work by Rathore gives an outline of a road map of QbD for process
development of a biotherapeutic products along with a detailed case study for pu-
rification of a biosimilar [104]. Principles described by Kanwar et al.[105] about
enablers of QbD implementation for model based development of ion exchange
membrane chromatography apply well for LC. There have been numerous other
case studies on implementation of QbD for process development emphasising its
importance in industries [106,107]. Recently, QbD principles were implemented
to the development of an analytical chromatography method aimed to the quality
control of a vaccine product [108]. Furthermore, McBrien has discussed practical
implications of QbD for chromatography processes [109].

Though QbD based thinking provides a full proof approach towards highly suc-
cessful process, it requires a detailed understanding of the process mechanism.

Even though QbD approaches along with DoE reduces overall experimentation re-
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quired for optimisation, it is based on statistical guess work based on fundamental
process knowledge [110]. It order to implement QbD based development, numer-
ous experiments are to be performed which take time and efforts. On top of that
if the CQAs are not defined with critical consideration, all the process has to be
repeated which can be laborious. Degerman et al.[111] have demonstrated how
optimisation can be carried out by amalgamating simulation and QbD approaches
and choice of the model is a critical step in such a methodology. Comparison of
DoE and mechanistic modelling is also done to prove mechanistic models can give
better meaning to the system under process development [112]. This shows that a
simulation tool can not only ease the way for faster QbD implementation but also
can help in controlling it [113].

Before simulation studies can be applied to QbD, the model to be used has to
undergo calibration. This includes testing the tool in a wider design space [114].
Simulations are beneficial in this regard, as lot of time and efforts can be saved.
It is also advised to check the representative simulations by performing exper-
iments for additional validation. In a study by Persson et al. [115], the depen-
dency of flow rate and bead size on the film mass transfer and axial dispersion
coefficient was checked for further calibration of the model for its implementa-
tion for simulations. Teoh et al. tested dynamic model of a high performance LC
unit experimentally [116]. It was further used for optimisation of a preparative
chromatographic separation by use of closed-loop recycling resulting in improved
purity and yield of the process. This is an indicative of model calibration and sim-
ulations aiding in process improvement. For detailed understanding of the model

optimization strategies, it is highly advised to refer to work by Guiochon [43].

2.3.3 Design space characterisation

Design space characterization is a logical selection of input process parameters
and respective ranges which can make the process flexible for operation. It is
very important to understand and thoroughly assess the relationships between
the selected CPPs and responses so that significant CPPs can be picked up to reg-
ister a manufacturing design space. According to U.S. FDA Q8 [117] regulatory

guidelines, the process changes inside an authorized or registered design space
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is not considered as a process change as it does not affect the quality of the prod-
uct’. This gives more operational flexibility to the manufacturers. Scanning of
design space can be performed by experimentation [118]; however, modelling and
simulation can accelerate the process and make it more cost effective. This sug-
gests that the overall aim of characterisation is to get to a design space which
provides flexibility for CPPs to operate within wider range without compromis-
ing on the quality. While characterisation, it may happen that experiments may
not be able to access few coordinates in the design space due to practical or fi-
nancial constraints. These inaccessible design points can be examined by sim-
ulations. The only requirement here is a well validated simulation tool for the
protein-adsorbent system which can give accurate predictions.

Simulations also help in repeating the experiments for number of times with-
out further investments throughout the design space. However, the validity of the
simulation tool needs to be further supported by the experimental proof. Experi-
ments for validation must be chosen in order to cover the entire range of the CPPs.
In fact such intensive simulation exercise can help in ranking process parameters
in the order of their impact and sensitivity. Experiments from the design space for
robust model validation can be planned considering the most sensitive variables.
If the simulation tool is thoroughly validated for the accessible design space, it can
be assumed that it makes accurate predictions for inaccessible part of the space.
For seeking additional proof, experimentation on the maximum accessible bound-
aries or experiments immediately outside the design space to show failure cases
may be carried out [119]. Degerman et al. used mathematical models to determine
the impact of design space for purification of IgG from BSA by a hydrophobic in-
teraction purification process [120]. Optimisation was performed for both cost
and quality. Another optimization study was performed by Getaz et al. in order
to optimize linear and bi-linear gradient for purification process of polypeptide
crude mix [121]. Westerberg et al. carried out a design space based sensitivity
analysis for hydrophobic interaction chromatography and reversed phase chro-
matography using mathematical models to optimise purity and optimal pooling
criteria [122]. Shan and Shiedel implemented ANN for design space character-

isation to investigate the effect of parameters for gradient chromatography on
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the productivity of the target compound from a multicomponent mixture. Ex-
perimental design and ANN were used together to compare different modes for
operation such as isocratic and different gradient slopes to identify the effect of
parameters on the shape of the peaks obtained and respective purity [123]. Many

more such implementations have been demonstrated in the literature [124} 124]

2.3.4 Scale up and design

Every process developed in the lab is destined to undergo scale up if it has to reach
to manufacturing stage. A systematic experimental scale up for chromatography
is well defined [[125]; however, lot of experimentation is involved in doing so. Ap-
plication of simulation tools for scale up can save a lot of efforts. In fact, inter-
mediate scales can also be assessed for which infrastructure may not be available.
Gerontas et al. [46] demonstrated successful implementation of modelling and
simulation for scale up of two protein processes. They emphasised on the fact
that understanding model parameters and their implementation is the key for
a model based scale up. This can also help in design of columns of appropriate
size based on the product requirements. Furthermore, advanced set-ups of chro-
matography such as; simulated moving bed [126}127], liquid solid circulating flu-
idised bed [128], and expanded bed [129] can be designed based on understanding
of a single column data.

Model based approach for LC design can provide additional benefits after the
process is optimised. Optimization gives parameter values for which desired re-
sult can be obtained; however, it is important to find a wider design space which
can sustain the desired output. Model based process design can help account for
those variabilities and their effect which cannot be realised in experimentation
[130]. This can further increase the knowledge about the process under develop-
ment which may not happen with experimental approach [131]. For a successful
implementation of the simulation approach, it is important to validate the tool for
such innate changes and account the sensitivity for the same [132]]. For a robust
implementation of a modelling tool for uncertainty and sensitivity determina-
tion, it has to be validated exhaustively for range of variables, different scales of

column, adsorbents, different chemistries of a technique such as; cation and an-
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ion exchange for ion exchange chromatography etc. There are many such tools
available currently which can combine one or more requirements of the model

based process development. These are discussed further.

2.4 Chromatography simulation tools

It is seen that the bottlenecks in the process industries are currently being ad-
dressed to accelerate the time to market; however, industry continues to demand
new technologies in downstream processing [[133} [134]. This is an indicative of
the fact that process development still remains a main problem to address to im-
prove on time and investments. With advances in computer technology and im-
proved understanding of chromatography process, many researchers have formu-
lated potential simulation tools for chromatographic predictions. Brief summary
of the tools is given below and details are shown in Table|2.1] It has been claimed
by respective literatures referred here for each tool that they are accurate in pre-
dicting the experimental outcomes to the desired accuracy. In any way, it is not
intended to compare them here for their capabilities as that requires code to code
comparison. This thesis just intends to put forward a short summary of features

of the codes and methodologies implemented in the current tools.

2.4.1 Chromatography Analysis and Design Tool (CADET)

CADET is an acronym for chromatography analysis and design tool which was
formulated by 'ModSim’ group at Forschungszentrum Jiilich GmbH, Julich, Ger-
many. The inventor list includes Eric Von Lieres, Joel Anderson, Sebastian Schnit-
tert, Andreas Puttman, Samuel Leweke, and William Heymann (written as Lieres
et al., in Table . CADET allows implementation of mass transfer models such
as; GRM, POR, EDM, and TDM with isotherms such as; Linear, multi component
Langmuir, MPM, SMA, SAS etc [135]]. Finite volume method (FVM) is used for ba-
sic discretisation. To reduce the time required to solve the complex models, sev-
eral scientific computing techniques such as; weighted essentially non-oscillatory
(WENO), suite of nonlinear and differential/algebraic equation solvers (SUNDI-

ALS), and parallel computing have been incorporated [15]. The solver can take up
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variable step-width and order, for space and time integration, based on user de-
fined mesh intervals. While the simulation engine is designed in C** for the best
possible performance, modelling framework is laid in MATLAB for easy customi-
sation. An easy implementation of CADET can be accessed at (CADET web user
interface) [136]. The interface is capable of solving both single component and
multi component systems along with sensitivity and robustness optimisation. All
the code of CADET is freely available to the research community as an open source
on CADET github website. Here the codes can be downloaded and implemented
in MATLAB or Python without recompiling the code and further modified to the
desired use if required. This allows any researcher across the world to contribute
with their own extension codes in order to enhance the framework of the tool.
Latest release of CADET can solve systems of multiple unit operations such as sim-
ulated moving bed chromatography, stirred tanks, or plug flow systems. CADET
is being used successfully for predicting chromatography process outcomes for
almost 8 years internationally in 15 countries [137,[138]. Diedrich et al. [40] have
presented application of CADET for ion exchange adsorption of monoclonal anti-
body on a tentacle resin with high accuracy using a multistate SMA model which
is an extension of original SMA model [139] given by Brooks and Cramer. Complex
peaks and shoulder were predicted under overloaded conditions and the consis-
tency of the model was checked by comparing the simulated salt concentrations
with experimental conductivity data. Freier at al. demonstrated use of CADET
for elution chromatography predictions and its robust multi-objective optimisa-
tion [140]. Recently, Leweke and Lieres described latest updates in CADET with

multiple case studies showcasing extensive capabilities of the tool [135].

2.4.2 ChromX

ChromX provides a customisable simulation tool, in which POR, TDM, EDM, GRM
models can be solved with either Langmuir or SMA adsorption isotherms [141].
Built on finite element method (FEM), tool provides multiple time discretisation
models.ChromX offers interfaces to various libraries for linking the simulations
to heuristics. These include; Levenberg-Marquardt algorithm (LMA), Cminpack,

and the genetic algorithm optimizer GAlib. ChromX also gives a sampling module
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for recommended pooling criteria for insilico peak collection. ChromX has been
widely used for laboratory and industrial research. It has been used for insilico
process development of ion exchange chromatography [142}[143] and Hydropho-
bic interaction chromatography [144]. Hahn et al. used ChromX has for modelling
of industrial level antibody purification [145]. They used TDM and SMA for pre-
diction of profiles at industrial scales. Baumann et al. performed Pareto optimiza-
tion for yield and purity by predicting ion exchange chromatography profiles in
ChromX using TDM and SMA [146]]. The simulations were also validated further
by performing chosen experiments. Chromatographic separation using core shell
metal organic frameworks were explored for prediction using multi component
Langmuir and GRM where single component data was found out to give basic pa-
rameters which were further used to predict multi component isotherms [147].
ChromX was used to devise a new method to determine the ionic capacity in col-
umn and batch chromatography, based on the adsorption/desorption of the nat-

ural, uv-detectable amino acid Histidine [[148].

2.4.3 Chromulator

Chromulator is built around GRM and provides various modules for solving dif-
ferent chromatography problems. It uses FEM and orthogonal collocation for dis-
cretisation of model equations. The bulk fluid phase PDEs are discretised by FEM,
whereas particle phase equations are discretised by orthogonal collocation. This
gives rise to a coupled ODE system which can be further solved easily using an ODE
solver. As the complete code is implemented in Fortran 77, a Fortran based pub-
lic domain VODE (variable coefficient ODE) solver was used for giving numerical
solution. Chromulator provides several modules such as; Rate.exe, Kinetic.exe,
Gradient.exe, Affinity.exe, and Raterfc.exe. For example; Raterfc.exe and Rate-
cored.exe are same as Rate.exe, except they are used for Radial Flow Chromatog-
raphy (RFC) and superficially porous particles which are different class of resins
[149]. Chromulator was the first tool to capture these kind of simulations. These
modules provide various chromatographic simulations; however, additional op-
erational simulations need editing the code which may not be possible for a re-

searcher from non-coding background. This reduces the flexibility of Chromula-
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tor as compared to CADET or ChromX. It is highly recommended to refer to a book

on Chromulator which provides detailed guidelines for its implementation [150].

2.4.4 Aspen Chromatography

Aspen Chromatography is a highly customizable flow sheet simulator which is
used to design and simulate batch and continuous chromatographic processes
[151]. 1t is also used to optimize yield, product quality, capacity, and operating
costs. Aspen is highly customisable over other simulation tools for its capability
of linking to various unit operations so that series of operations can be optimized
together. Aspen chromatography accommodates hydrodynamic models such as;
TDM, EDM,GRM, and POR. Aspen provides a huge database to extract parameters
specific to molecules being separated, which can help to configure model con-
stants based on heuristic approach and can incorporate in-line model fitting and
regression analysis with access to database of model constants [152]]. Aspen chro-
matography is used widely for continuous chromatography operations like SMB
[153]. Two zone and three zone SMB has been well explored by using Aspen chro-

matography tool 154} [155].

2.4.5 gProms

gProms is another highly customisable tool which can perform modelling and
simulation of series of operations. One of the most attractive modules of gProms
is a model-based engineering (MBE) module which can be used for process devel-
opment of scale up and scale down operations with the help of process models.

MBE relies on three main approaches:

e First principles modelling: Process models applied mainly describe in detail

the heat transfer, mass transfer, and kinetics of the the process

e Multiscale modelling: Modelling can be done at various scales of the pro-
cess. For example, in case of chromatography, single particle models can
be used and extrapolated further to simulate flows in the column. Separate

column flow models can also be applied to check the validity
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e Integration with experiments: Data driven from experiments can be used
to modify the model to increase the effectiveness of the experiments being

carried out

MBE has obvious advantages over conventional engineering approaches as it can
accelerate exploration of the design space. It also provides an effective interface
for use of current R&D results into the model in order to improve further process-
ing by reducing errors [156,157]. MBE relies on a set of model-based experimen-
tation methodologies for parameter estimation which can help refine the models
being used [158]. gProms has optimization features ranging from single operation
to a whole plant which can be used flexibly for modelling and simulation of series
of chromatography operations [159]

It is discussed here that so many efficient tools are present for modelling var-
ious aspects of LC. Few of them describe the way they are designed and source
codes are shared in an open source platform, while others are marketed software
for industrial and academic use. In academia, effort is made to understand how
these tools operate on the mathematical level; however, in industries, they might
be used as a black box for process design. Understanding these tools provides a
better way to design a process. In addition to this, it also helps in troubleshooting
the process with much ease and confidence.

These tools also demonstrate the fact that a successful simulation tool which
can mimic the experimental systems, needs to undergo number of steps such as;
(i) Mathematical verification of the tool for desired precision and accuracy, (ii)
Exhaustive experimental validation to showcase tha accuracy of simulations is
maintained for wide range of input parameters (iii) Demonstrating that the tool
is robust and shows sensitivity of the process towards process parameters. For

IEX LC, most important parameters from experimental perspective are;

e Properties of protein such as; molecular weight, isoelectric point, amino

acid content which decides the structure, hydrophobicity, and ionicity.

e Process flow properties such as flow rate, protein concentration, total pro-

tein in the feed.

e Thermodynamic properties such as ionic content of the mobile phase, resin
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Table 2.1: Comparison of current available tools for simulation of chromatographic operations

Criteria CADET ChromX Chromulator Aspen Chromatography
Aspen Chromatography

Inventor Lieres et al., IBG-1, Germany Dr. Tabias Hahn, Karlsruhe Institute of Technology, Germany Prof. Tinguye Gu,Ohio University,Ohio, USA  Aspentech
Hydrodynamic models GRM GRM, TDM, POR, Edm GRM GRM,TDM,POR,EDM

Thermodynamic models
Discretisation scheme

Additional Mathematical solvers

Coding platform

Interface

Processing modules

Compatibility and Add-ons

Special mentions

Availability

Tie-ups

References

Langmuir, SMA, MPM, SAS

Finite volume method

WENO, SUNDIALS, offers additional solvers
like Schur solver

Simulation codes: C*+, MATLAB
Interface:Django based interface

with connection to PostgreSQL database

1. Web interface available for everyone

for free

2. MATLAB interface and standard
routines for parameter estimation, process
optimization and experimental design

1. Interface allows simulation a single
chromatography column with multiple
steps and components

2. DoE simulation allows to run a
simulation by changing a parameter
based on earlier completed simulation
3. loading and elution analysis with
flexible flow an time settings

Export to Microsoft Excel in both
xlsx and csv file format

1. Allows sensitivity analysis for
all the parameters involved

2. Allows to share simulation
online with other user

Web interface available for free to all

AMGEN, GlaxoSmithKline,
Fraunhofer IME, KBI Biopharma,
BOKU

[151[A36! 138140l 40 137]

Langmur, SMA,single and multicomponent
finite element method and method of lines

Explicit Euler, Implicit Euler, Crank Nicolson

Simulation codes: C**

Available in executable software format

1. sampling module for collection of the peak

2. Highly customisable flow parameters

3. Provides control on dimensions, flow rates,
buffer concentrations, sample injection

4, ChromX supports direct simulation in [mAU]
instead of molar or mass concentrations.

5.Latin hypercube sampling can be used to evaluate
the robustness of the process and relate them to
CQAs for process optimisation

Export to Microsoft Excel, VTK format
further to ParaView for 3D visualisation

DOE, interface to libraries such as LMA,
Cminpack and Galib

ChromX academic is available free of cost
whereas ChromX industrial version is
a licensed software

Academic version of ChromX is meanwhile

used in more than 15 countries.

[1421[1431([144][145[148]

Langmuir, first order
Finite element method

DVODE, Orthogonal collocation

Simulation codes: Fortran 77
Interface: C+t+

Available in executable

software format

1. Rate.exe: for Langmuir along
with GRM. Useful for setting
elution with step changes.

2. Kinetic.exe: Uses second order
kinetics instead of langmuir

3. Gradient.exe: gradient elution
in various modes of step,

linear and non linear regime

4, Affinity.exe: specially for
affinity chromatography

5. Raterfc.exe: For radial flow
chromatography

provides several methods of
visualizing the solution such as
position-time plots, effluent
histories and several animations.
Chromulator is available free of
cost for academics whereas
Chromulator-IEX is given on
license to industries.

Licensed by 3M, Pfizer,
Genentech, Novo Nordisk,
Milipore

[1601[161)149]

Langmuir & Freundlich variants

Available in executable

software format

1. Provides tools for fast construction
and configuration of SMB and TMB
2.Flexibility in defining flow rates of
process streams, time cycles,

step or ramped inputs

3. Regression analysis by fitting of
model data to experimental data

Highly integrated tool compatible with

various other softwares like excel, MATLAB

where analysis and visualization can be done

1. Can be linked to number of different unit
operations for overall process design and simulation
2. Database can provide thermodynamic parameters
to select from for various molecules

Marketed software

It is being used by many research institutes and

companies for whole process development

[1531[154]1[155![152]
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ligand density, mode of ion exchange (cation or anion)

This makes the choice of validation system very critical. Next section describes

the experimental system selected in this work.

2.5 Experimental system

2.5.1 Whey proteins

Use of chromatography in biopharmaceuticals is prevalent. In recent times, even
food industries, have adopted chromatography for analysis and purification of
high value enzymes and proteins of therapeutic importance [162}[163]. A review
from Tranchida et al. emphasises on the importance of chromatography in food
analysis [164]. Another review from Mane et al. showcases importance of chro-
matography in purification of anti-diabetic protein ~ conglutin from agricultural
sources such as Lupin [165]. Latest techniques such as simulated moving bed
chromatography have also been implemented in food processing industries [166].
Dairy industry is one of the largest food sectors, widely spread out in every cor-
ner of the world. Cheese is one of the major products of dairy industries, which is
manufactured on large scale. Huge amount of waste generated during cheese and
casein manufacturing is called as whey which is a potential source of significant
milk proteins [167]. Whey proteins are marketed in the form of whey protein con-
centrates (WPC) such as; WPC 35 (35% protein), WPC 80 (80% protein), and WPI
(isolates: 90-95% protein). Detailed literature on recovery of protein concentrates
from whey has been discussed in detail in a recent review with emphasis on ultra-
filtration [168]. WPC has multiple proteins with different characteristics. These
include; a-Lactalbumin (ALA) , 8-Lactoglobulin , Bovine serum albumin (BSA) ,
Lactoferrin [[169], and Lactoperoxidase [170]. Out of these, first three are major
proteins and latter are present in minor quantities. It is important to understand
the protein properties before they can be used for experimental studies. For sepa-

ration of individual whey proteins, most common technique is ion exchange chro-
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matography (171, 172, 173, [174]. Individual proteins are discussed in brief here

and are summarised in Table along with the literature references

[-Lactoglobulin (BLG)

BLG is a major protein from whey which is almost 60% by weight of total whey
proteins. It has 162 amino acids all present in one peptide chain. BLG is known
to exist in different molecular forms depending on the pH and ionic strength of
the medium [175]]. As the isoelectric point(pI) of BLG is 5.2, the protein is highly
hydrophobic at its pl. A stable dimer is found for pH between 7 and 5 and be-
low that the protein exists as an octamer upto pH 3.5. Two disulfide bonds and a
thiol group exhibits increased reactivity above pH 7 leading to monomer forma-
tion [176]. Such structural changes in the molecule may influence the binding of
the protein to charged matrices during chromatography. Purification of BLG from

whey is attempted.

a-Lactalbumin (ALA)

ALA is a major protein roughly 20% of the total whey proteins. It is a globular
protein with 123 amino acids with molecular weight of 14.1 kDA and a pI of 4.2. It
has high affinity for calcium is mostly stabilised by four disulphide bonds [177]. It
is tricky to detect ALA by spectral techniques as the conformation of the protein
changes drastically with slight changes in pH and ionic strength of the buffering

medium making it difficult to monitor the absorbance [178].

Bovine serum albumin (BSA)

BSA is approximately 10-15% of the total whey proteins. It has 582 amino acids
with a molecular weight of 66 kDA and pI of 4.7. The structure of BSA is stabilised
by a highly hydrophobic core with 70% « helices and 17 disulphide bonds [179]. 1t
is proved that, buffer pH and ionic strength can have a major impact on BSA due

to its highly hydrophobic centre [180].
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Lactoferrin (LF)

Lactoferrin belong to minor proteins from whey which is present about 1-2% of
total whey proteins. It has ~700 amino acids with a molecular weight of 76-80 kDA
and a pI of 8.2. It has a Fe™? binding domain a the centre which gives the protein
positive charge naturally which can be used to isolate it on cation exchange resins
[169]], whereas the intensity of the charge can be optimised by changing pH and

ionic strength of the solution.

Lactoperoxidase (LP)

LP is a minor protein which is present in 0.5-1% of the total whey proteins. It
is 612 amino acid long protein with molecular weight of 78 kDA. There are five
helices in LP which gives a strero chemistry in the shape of a heme binding centre
which has one iron molecule per LP [170]. LP has highly active hydrophobic centre

which can interfere in the ionic binding of the protein to an adsorbent [181].

2.5.2 Model calibration system

Following are the reasons why whey proteins are used as an experimental sys-
tem to aid in understanding the model calibration approaches for experimental

validation of a simulation tool.

1. The system should be well explored in the literature as the objective here
is to validate the tool. Basic properties and the standard samples of the
proteins under consideration should be available so that they can be used

easily to find the model parameters when required.

2. The experimental system should provide a complex protein mixture offer-
ing wide variety of proteins, whey protein mixture offers 5 different pro-
teins of wide range of properties which can be used separately and in a mix-

ture for validation.

3. It should be possible to explore both cation and anion exchange chromatog-
raphy for separation of individual proteins from the mixture. Major pro-

teins from whey are acidic in nature and minor proteins are basic in nature
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making it possible to explore both ion exchange mechanisms at the same

operating pH at which sweet whey is industrial obtained from the industry.

4, Industrial significance: High value products such as pure individual pro-

teins can improve process economy for dairy industry.
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2.6 Significance of this research

It is clear from the preceding discussion that modelling and simulation can aid in
process development for research and industries. However, there are number of
challenges in the implementation of mechanistic models for simulation and it is
important to understand the gaps between the present status and the futuristic
process development approach.

Two important pillars of simulation driven process development are a simu-
lation tool and experiments assisting in successful simulations. The current state
of chromatography tools provide fast and accurate mathematical solvers. The
codes are well developed for the available models. In order to implement such
tools with more confidence, it is important to understand the model calibration
and experimental validation philosophy in more details. Every model parameter
has a physical/chemical significance which needs to be understood. Few param-
eters highly affect the predictions while rest don’t have significant impact. Once
it is understood which parameters are critical for the process and what kind of
physical or chemical changes they cause, it can help in relating establishing a link
between process and simulations. Also, it is imperative that model results are de-
pendent on the accuracy of model constants. Model constants can be determined
from number of experiments; however, further tuning of model constants is often
required to adequately simulate the experimental data.

Secondly, there are several theoretical models available to simulate a chro-
matographic process. These models are based on process assumptions and a priori
choice of an appropriate model is often challenging for a given chromatographic
process. System specific physical and chemical interactions are described by mass
transfer and thermodynamic models respectively and it should be made sure that
the model system selected is appropriate for the application under development.
Also, lack of robust database for thermodynamics constants results in increased
uncertainty for application of the model, making the validation challenging.

To correlate the experiments and simulations, Chapter 4| and |5 attempt to
show model calibration and validation methodologies based on exhaustive ex-

periments on major and minor whey protein standards for the model validation.
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These learnings can help in refining the simulation approach on real systems.
Chapter|6|describes how learnings from experimental validation were applied for
crude whey protein concentrate. Figure|2.2|describes the overview of the thesis
in a nutshell. In the current process development paradigm, focus is on using
simulations for efficient reduction of the experiments incurred during develop-
ment, scale up, and operations. Fundamental understanding of chromatography
system parameters for exhaustive experimental validation of the simulation tool

is a prime step in a simulation tool calibration and validation.
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Chapter 3

Materials and Methodology

3.1 Introduction

It has been emphasised earlier that modelling and simulation can aid to acceler-
ate process development of liquid chromatography processes. Numerous mod-
els have been proposed which can help predict the outcomes of the experiments,
hence it is beneficial to compile these models in a tool which be helpful for bet-
ter understanding and application. This chapter discusses a new tool; Extensible
Process Simulator for Ion exchange Chromatography (ExProSim:IC), which can be
efficiently used for predicting outcomes of chromatographic experiments. In the
following sections firstly computational philosophy is described along with math-
ematical models involved in the tool. Outline of the tool is given. Experimental
methods required for parameter estimation and validation experiments for whey
proteins are discussed in the subsequent sections. The chapter closes with tool

verification and literature based validation for ExProSim:IC.

3.2 Computational basis

Simulation of chromatography has matured significantly in last three decades and
several models are available to predict possible outcomes [207]. Depending on
the underlying assumptions, these models range from the simplest ideal model
to most comprehensive GRM, and offer varying degree of accuracy [68}[208]. As-

sumptions which we have made are as follows;
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1. Column is radially homogeneous

Radial heterogeneity is highly dependent on the size of the column and it
has been proved experimentally that columns up to 80 cm diameter can
be as homogeneous as the analytical scale columns present in the market
[68]. This requires input profile of the load and mobile phase to be evenely
distributed across the column area [209]. With developments in design of

distributor plates, homogeneity can be easily achieved [210].

2. Mobile phase velocity remains constant throughout the column

It is rarely seen at preparative scale that the column is being operated at
more than 200 bar, From 0-200 bar, the compressibility of the mobile phase
can be neglected [211]. Thus according to the Darcy’s law, the mobile phase
velocity can be considered as constant as it is a function of pressure gradient
which remains constant throughout the column during the operation [212,

213]]

3. Dispersion coefficient remains constant throughout the column

It is proven that the change in dispersion coefficient in mobile phase for
the solutes with respect to pressure is insignificant at lower concentrations,
however at higher concentrations this effect can be significant [214]. This
effect might be further enhanced in case of micro-porous resins, where high
pressure drops are observed with increase in the flow rates [215]. Macrop-
orous resins offer lower pressure drops at higher flow rates, lowering the
variation in dispersion coefficient even at higher concentrations. It is im-
portant to note that the value of dispersion coefficient is not negligible but

the variation can be considered negligible [216].

4, Mobile phase is not adsorbed

Though it is hard to check the mass balance for the mobile phase, it can be
assumed that losses of the mobile phase in th column are negligible [217].
This can be said as systems are in place which deliver the flow consistently
and there is no change in the viscosity and density of the mobile phase at

isothermal and adiabetic conditions at which the columns are operated.
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5. The column is operated under constant conditions of pressure and

temperature

This ensures least variability in the thermodynamics of the adsorption-desorption

process

Though with advances in computers and mathematical algorithms, it has got eas-
ier to solve complex models such as GRM, it is challenging to find the input pa-
rameters for the same by doing experiments. Models like EDM where, diffusion
consideration are relaxed can be handy for predictions as experimental proce-
dures can be used to find lumped parameters to be used in the model equations
[216]. Hence, it was decided to start with EDM. On the other hand thermodynamic
models such as Langmuir, Freundlich, SMA, and MPM are well established to pre-
dict the nature of interactions between proteins and adsorbent. ExProSim:IC, a tool
formulated here incorporates a mathematical solver for EDM along with the ther-
modynamic models. Details of these models are given in sections and[3.2.2}

Mathematical models incorporated in the tool are discussed in the next section.

3.2.1 Mass transfer models

Numerous models have been proposed for chromatography simulations depend-
ing on the diffusion considerations. GRM considers all the possible diffusion phe-
nomena like pore diffusion, film diffusion, and surface diffusion within the packed
bed[218]. For fast processes, the GRM can be significantly simplified by preferen-
tial selection of extent of slow diffusion processes. EDM used here, is a simple
modification of GRM[219]. In this model, diffusion is represented by a lumped co-
efficient termed as axial dispersion coefficient (D, )[68]. Pore and surface diffu-
sion are neglected to assume faster mass transfer resulting in lumped coefficient[220].
The mathematical form of EDM is represented by Equation3.1]
dc; 9q; dc; 9%c;

e a, ]-_e_ :eDaxi_
e TGy Tugy = Py

(3.1)

Initial conditions along with Danckwerts and Neumann boundary conditions were

used further for solving model equations [[221].

38



Initial conditions:

Cl<t = O) = Ci0 for =0

(t=0)=0 for 0<az<L

Boundary conditions:

gi(r=0,t)=0 for 0<t<t,

8 C;
ot

(x=L,t)=0 for 0<t<t,

dq;
ot

(x=L,t)=0 for 0<t<t¢,

3.2.2 Thermodynamic models

3.2.2.1 Langmuir model

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

The Langmuir isotherm takes into consideration consistency of sites where there

are fixed number of adsorption sites having equal energy. This suggests minimal

interactions between adjacent binding sites on a resin and only one molecule is

adsorbed per adsorption site. Equation[3.8)shows a single component generalised

Langmuir model equation. Dissociation constant, &, is defined as the ratio of des-

orption coefficient (kY,,) to the adsorption coefficient (k). Equation 3.9 shows

ads

a kinetic form of Langmuir isotherm for multicomponent mixtures.

o Qmaz Ceq

1= kd—l-Ceq

a Ncomp
i ! Z 4 I
=k iCildmaz,i - —k iq;
ot ads;i Q 7 < j=1 Qm ) des,lq

az,j

39

(3.8)

(3.9)



As the equation describes the competitive behaviour of the protein molecules, it
has been widely applied for prediction purposes. However, Langmuir isotherm is
a single layer isotherm which may not be able to describe behaviour for all the
proteins. Adsorption is an effect of exchange of salt ions to protein molecules,
which is not separately defined in the isotherm equation. This means that, salt
interactions are considered in the lumped form of experimental constants. Con-
sidering this, it may be tricky to implement Langmuir isotherm for different salt
concentrations based on experiments performed at single salt conditions. In case
of gradient elution, where salt concentration changes with time, model constants
determined from constant salt concentration experiments, may not aid in right
predictions. It further neglects steric effects due to size of the protein and inter-
action of the protein with the adjacent binding sites which might hinder overall

binding.

3.2.2.2 Freundlich isotherm

Freundlich isotherm was proposed to describe non-ideal systems with reversible
adsorption. It is applicable to adsorption on heterogeneous surfaces and accounts
for multilayer nature of the kinetics. Equation for Freundlich isotherm is as given
by[3.10

ge = Qs (3.10)

It suggests that the stronger binding sites are occupied first followed by weak
linkages and multilayer linkages. As the mass of the adsorbed concentration in-
creases, the energy is exponentially decreased for each adsorbed interactions lead-
ing to saturation. Q) is a coefficient of partition and '1/n’ is an exponent of non-
linearity. "1/n’ also decides the curvature of the adsorption isotherm across the
protein concentrations range. Value of ‘1/n’ =1 signifies that the relative adsorp-
tion was same across the concentration range. Typical value of "1/n’ranges be-
tween 0.7-1 which indicates saturation of binding sites with increase in concen-
tration of the protein under investigation. It has been observed that, at higher
concentrations the value of n is large reducing the value of 1/n to zero. In these
conditions adsorption becomes random and independent of the protein concen-

tration. Therefore, Freundlich isotherm is not advisable at high protein concen-
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trations for both experiments or simulations.

3.2.2.3 Steric mass action model (SMA)

SMA overcomes drawbacks of the Langmuir isotherm. It considers salt interac-
tions during ion exchange of proteins onto resin. For electrostatic interactions

during adsorption, the exchange between salt and protein molecules can be shown

as Equation

ci +vqo g + vey (3.11)

Where, charge factor v is a stoichiometric exchange coefficient for salt and pro-

teins. Further, the equilibrium constant can be defined as Equation|[3.12}

keqi = (% (3.12)
’ ¢i /) \qo

The total concentrations of the sites in the resin is given by

Ncomp

A=qp+ Y (vito)a (3.13)
i=1

Furthermore, from the electroneutrality on the stationary phase, ¢o and dqo/dt

can be calculated as Equation and respectively.

Necomp
do = qo + Z 0:qi (3.14)
i—1
Ncom
dqo ’ dg;
o _ _ L 3.15
dt Z Tt (3.15)

1=

Where, q is salt ions available for exchange, ¢ is total salt ions on stationary
phase, ¢, is total salt ions in the mobile phase, A is the ionic capacity (total binding
sites on the resin), and o is steric hindrance factor [139,222]. From these, equation

for % by SMA model is given by Equation

ot

= Sds,iciq_gi - kfles,icgiqi (316)
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Where, a is a quasi-stationarity indicator. a =0 signifies the rapid equilibrium
model and a=1 signifies the kinetic model. Equilibrium constant k., = kj. /K54,
is a measure of the affinity of the macro-molecule towards the resin surface [223].
For a rapid equilibrium model (represented by ‘a=0’), only the value of ., is rel-
evant and not the individual rate constants, whereas kinetic model (represented
by ‘a=1’) is sensitive to both the rate constants. Value of ‘a’ also decides if the
problem is to be solved as algebraic equations (‘a=0") or as differential equations
(a=1’). In this case, value of a was set to 1 to follow kinetic regime. Equilibrium

formulation of SMA is given by Equation[3.17/and was used further for fitting the

isotherm with experimental data,

_ [ % Cs vi
Ci = (keq,i) (A - (U’i + UZ>Cz> (3.17)

Multicomponent form of SMA model is represented by Equation 3.18]

N,

an S - v; s U

E = ads,ici(A - Z (Ui + U’i)qj> t = kdes,iQ’iCOZ (318)
j=1

3.2.2.4 Mobile phase modulator Langmuir model (MPM)

Adsorption and desorption of a protein are regarded as competitive processes
where inclusion of salt shows its effect on the retention of the protein. Salt (.S)
is considered inert in MPM isotherm. This means that % can be considered as

zero. Adsorption and desorption kinetics were represented by two separate ki-

netic coefficients &7, ; and kjj. ; respectively as in case of Langmuir isotherm as
shown in Equation

dq

i tts,iCi(Qmaz.i — @) — Kgos i (3.19)

The constants were further modified to include effect of hydrophobicity and salt
interactions as shown in Equations and During the binding step, k4450,
the adsorption coefficient of component i (m?*/mol/s), is much larger than k.0 ;,

the desorption coefficient of component i (1/s), while at elution k4.0 ; dominates.
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m
ads,i

= Kads0,i€"” (3.20)

kgzs,i = kdeso,isﬁi (3.21)

Main advantage of the MPM model is that it can be applied for both loading and
elution steps as given in Equations[3.20|and[3.21] S’ denotes salt concentration of
elution component and k450, (ml/mg.min) and k.50 ;(ml/mg.min) are constants.
f; is a constant describing the ion exchange characteristic and ~; (ml/mg) de-
scribes the hydrophobic interactions. Under loading conditions adsorption domi-
nates and during elution, desorption dominates. For loading conditions, S is given
by the buffer salt concentration only, i.e. &y, ;= Kadso,s and kges0,5= 0 unlike the elu-
tion conditions (S > 0), where £, ; is reduced by the factor ¢® and &7, ; is in-
creased by a factor S”. In case of ion exchange chromatography, the value of y can
be assumed to be negligible, however in this work v was determined by inverse
fitting and is considered to see if it affects the predictions. Overall computational

methodology is shown in Fig.

3.3 Experimental methodology

Once the tool is developed and data analysis methods are decided, it is important
to validate the computational methodology for ensuring its applicability. For the
practical validation of ExProSim:IC, experiments were planned which can serve as
a robust system for assuring its usability. Whey protein mixture was chosen for
this purpose as it gives a wide array of protein molecules varying in their electro-
kinetic properties, molecular weights, and structural conformations (Section.
It is also important to note that along with the validation purpose, separation of
individual whey proteins from industrial whey protein concentrate was targeted
further. Before validating for crude sample, it was easier to handle the standard
protein solutions in order to find out the model constants to be used for predic-
tion. Following Sections will discuss the details of materials, experimental set-
ups, general methodologies, and sample analysis which were involved in the work.

As the primary aim was to find the model constants for simulation purpose, the
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methods have been categorised based on their applicability for models in consid-

eration.

3.3.1 Materials

Protein standards for Bovine Serum Albumin (BSA), a-lactalbumin (ALA), and 3-
lactoglobulin (BLG) were purchased from Sigma-Aldrich Pty. Ltd. Sydney, Aus-
tralia. Standards for LF, LP, and WPC were received from Tatua Co-operative Dairy
Company Ltd., Morrinsville, New Zealand. Blue dextran for porosity studies was
procured from Bio-rad laboratories, New South Wales, Australia. Acetic acid (CH3COOH),
sodium acetate (CH3COONa), mono-sodium phosphate (NaH,PO,), di-sodium phos-
phate (Na;HPO,), sodium nitrate (NaNO3), sodium hydroxide (NaOH), sodium chlo-

ride (NaCl), acetone (CH3CHO), acetonitrile HPLC grade (CH3CN), trifluoro acetic
acid/TFA (CoHF30,), and ethanol (CoH;0H) were purchased from Sigma Aldrich,

Pty. Ltd. Sydney, Australia.

Resin SP sepharose FastFlow (SPFF™), Capto Q™, and Capto S™ resin in both
free form and in the form of prepacked columns of HiTrap (2.5 x 0.7 cm) were
bought from GE Healthcare, Sweden. XK-16/20 from GE Healthcare was used as a
column for higher scale processing. Column for size exclusion chromatography,
BIO-SEC 3 (30x0.45 cm) was purchased from Agilent technologies, Victoria. These
columns, packed with 3 y silica particles are coated with hydrophilic layer with
pore size of 100 A° are ideal for high pressure size based separation of proteins
ranging within 0.1-100 kDa. High performance liquid chromatography (HPLC)
column zorbax 300SB (4.5 x300 mm), with 5um particle size was purchased from
Agilent technologies, Victoria. Larger pore size of the column is advantageous
for separating proteins and peptides above 4000 Daltons with a good resolution.
Column chromatography experiments were performed on NGC Bio-Rad system.
HPLC experiments for SEC was performed on Varian ProStar system, whereas,
HPLC for analytical resolution of proteins was performed on Agilent 1260LC sys-

tem. Details of the methodologies have been explained in Section[3.3.2}
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3.3.2 Sample analysis

3.3.2.1 Spectrophotometric analysis

Spectrophotometry can be used for chemicals and bio-molecules which show ab-
sorbance or transmittance of the intense light beam passing through the solution.
The wavelengths at which the maximum absorbance is obtained is a property of
the molecule and its constituents. Protein molecules are shown to show maxi-
mum absorbance at UV 280 nm due to presence of aromatic amino acids. It is im-
perative to understand that the absorbance shown by a specific protein is a prop-
erty of its amino acid sequence and structural conformation. It has been stated by
Beer-Lambert law that there is a linear relationship between the absorbance and
the concentration of a sample, however this is valid only at lower concentration
corresponding to absorbance less than 1 absorbance unit. Beer-Lambert law can
be stated as Equation[3.22}

A=Ay xlxc (3.22)

UV-vis spectrophotometer Jasco V-670 was used for analysis of protein samples
generated during batch studies. Path length chosen was 1 cm and the absorbance

was measured using quartz cuvettes.

3.3.2.2 Elemental analysis

Elemental analysis was performed to find out total protein based on carbon, hy-
drogen, and nitrogen content of the sample. It is often the most crude methods
of protein analysis as it gives the total protein and not concentrations of specific
proteins as HPLC does. Sample kept for analysis undergoes combustion and ele-
ments in the sample get oxidised into their gaseous forms. Carbon is converted to
carbon dioxide, hydrogen to water, nitrogen to nitrogen gas/ oxides of nitrogen,
and sulphur to sulphur dioxide. For a protein sample, as the peptide bond is made
of CON H linkage, % nitrogen is considered for further calculations. For a class
of protein, multipliers have been defined to convert total nitrogen content into
protein content. For whey proteins, multiplier used is 6.25. This is based on the
assumption that total protein content in food is 16% and all the nitrogen in wpc

is protein bound [224].

45



3.3.2.3 SDS-PAGE analysis

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was performed to
separate proteins based on their molecular weights. The techniques was used as
a qualitative tool to check if the protein standards are in their usual state or not.
The bands misplaced from the expected place, suggest that the sample is either
degraded or has formed aggregates [225]. Mini-Protean TGX 12% acrylamide gels
(Bio-Rad Laboratories, New South Wales, Australia) were used for loading protein
samples on fixed amount basis and further run in Mini-PROTEAN Tetra Cell Sys-
tem (Bio-Rad Laboratories, New South Wales, Australia) for conducting the elec-
trophoresis at a voltage of 150 mV. Staining was carried out by silver staining [226]
method to visualise presence and removal of impurities in the successive process

step samples.

3.3.2.4 SEC-HPLC

Size exclusion chromatography (SEC) of molecules is mainly based on their molec-
ular weights (size) and particle size of the resin used for the permeation. SE-HPLC
provides a better solution for analytical purpose as it provides size exclusion and
better resolutions. Here, SEC-HPLC was used for finding concentrations of BLG
(16kDa) and BSA (66kDa) from multicomponent breakthrough samples for major
proteins. Varian ProStar HPLC system was used for carrying out chromatography
experiments and data anlysis was performed in ’Galaxie’ tool from Varian.Inc. Ag-
ilent Bio SEC-3 HPLC (4.6 x 300mm) columns with a particle size of 3 zm and pore
size of 100 was used for the analysis. These columns have proven to give higher
loading capacity, higher stability for salt based injections, and reproducibility for
the size based separation. They also provide faster separations than large particle

columns for a size range of 0.1 kDa to 100 kDa.

3.3.2.5 HPLC analysis

HPLC analysis method was developed for finding unknown concentrations of whey
proteins form the experimental samples. Samples generated in multicomponent
breakthrough experiments for both acidic and basic proteins, and optimisation

experiments for crude whey separation. Two different HPLC methods (HPLC method
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1 and method 2) were used for the analysis of basic proteins and acidic proteins.
Method 1 was developed to resolve basic proteins and method 2 was used for acidic
protein as well as crude whey analysis. As method development was based on the
molecules involved, details of method development and analysis is given in re-
spective sections. 1260 Infinity Micro-Scale purification system purchased from
Agilent Technologies, Victoria was used for HPLC analysis. Zorbax 300SB-C18 5
pm (4.6 x 250mm) column for HPLC analysis was procured from Agilent Tech-
nologies, Victoria, Australia. These columns have 5 1 silica particles coated with
highly hydrophobic c18 stationary phase. With a wide pore size of 300 , these
columns are ideal for high pressure analysis and separation of proteins and pep-

tides based on their hydrophobicity irrespective of their molecular size [227].

3.3.3 Determination of Langmuir isotherm parameters

Langmuir isotherm parameters were obtained by performing batch experiments
on a smaller scale. Resin was washed thoroughly with water to remove storage
solution (20% ethanol) and then contacted with equilibration buffer twice to en-
sure ionic consistency throughout the resin. Resin quantities were carefully por-
tioned by making a slurry of 50% resin to buffer and then pipetting out twice the
amount of volume that of required. The resin was then allowed to settle naturally,
supernatant was carefully removed, and then the tubes were weighed to ensure

equivalent weight of resin for all the tubes used (with <2% error).

3.3.3.1 Batch experiment

For adsorption isotherm experiment, 0.2 ml of pre-equilibrated resin was taken in
a centrifuge tube and was contacted with 5 ml of individual protein solutions of
different concentrations. The tubes were kept for mixing on a rocker shaker for
minimum of 3 hours at 25°C and allowed to achieve equilibrium. Once the equi-
librium was achieved, tubes were centrifuged at 4000 rpm for 10 min to take the
samples out for further analysis of protein concentration. All the samples were
kept in triplicates to ensure the accuracy of the experiment. Further the plot of
adsorbed concentration to equilibrium concentration in the mobile phase for all

samples was estimated. All the constants (Q,., and k, for Langmuir, Q s and n for
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Freundlich) in the isotherm models were found out by non-linear optimization us-
ing MATLAB R2014b (MathWorks, Inc., Massachusetts, USA). The curve also served

in determination of SMA and MPM isotherm parameters by inverse fitting.

3.3.3.2 Uptake kinetics

Uptake experiments were conducted in equilibration buffer in a centrifuge tube.
Pre-equilibrated 0.5 ml of resin was taken in a 50 ml centrifuge tube and contacted
with 25 ml of individual protein solutions of fixed concentration. The mixture was
kept on a rocker shaker for mixing and sample of 200 il were withdrawn, cen-
trifuged at 10000 rpm, and analysed by spectrophotometry for finding the con-
centration at every time point. Analysis and withdrawal was done in parallel so
that sampling could be stopped after saturation was reached. Total reduction in
the volume was found to be less than 5% therefore a constant volume was assumed
throughout the experiment. Experimental data was further used to fit pseudo first
order and pseudo second order models to check which one describes the kinetics
better. The obtained constants were used further in simulations. Same kinetic
constant were used in SMA isotherm parameters for representing adsorption rate

constant.

3.3.4 Determination of steric mass action parameters

C™ medium pressure chromatography system (NGC)

For column experiments, NG
was used. The system provides automated buffer blending systems with a flow
rate as high as 20 ml/min. Conductivity and pH can be measured on-line along
with UV-visible absorbance giving a better control on the experimental progres-
sion. Automatic sampler provides an error free continuous sampling of longer
chromatography runs such as breakthrough experiments. ChromLab™ software
was used for data collection and continuous monitoring of pH and conductivity

during the runs. The system was utilised for pulse experiment, gradient experi-

ments on HiTrap columns, and breakthrough experiments.
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3.3.4.1 Gradient elution experiments

Gradient experiments were performed to estimate the charge constant v; and
equilibrium constant k., ;. Column was equilibrated with the buffer. Protein so-
lutions at specific concentrations and fixed injection volume were injected on a
HiTrap column (0.96 ml) packed with the chosen resin. the column was washed
with 4 CV wash buffer to remove losely bound proteins. Bound protein was fur-
ther eluted by gradient elution at varying gradient slopes such as 5, 10, 15, 20, and
30 column volumes (CV) between 0-100% of the mobile phase B. The values of v
and k., were determined by fitting experimental data to Equation(3.23|for various
gradient lengths[228]]. Standard deviation was found out for the same and mean
of the fitted constants were carried forward for prediction. Repeating the experi-
ments at different gradients lengths was needed to ensure that the constants are

valid for faster as well as slower changes in the elution mobile phase.

1
ke eAv 1 e,s — La,s vt
v, = ((cgj;l  Ddfed @+ D{es =~ ca, )> — ca,s) (3.23)

Vg

Where; ¢, s is concentration of protein in mobile phase at the inlet, c. ; is concen-

tration of protein in mobile phase at column exit, v, is column dead volume.

3.3.4.2 Breakthrough experiments

Breakthrough experiments are needed to determine the steric hindrance factor
for proteins (o;). Therefore, breakthrough profiles for respective proteins were
obtained at operating pH at different flow rates to ensure accurate estimation of
;. Breakthrough curves were also used further for validation of ExProSim:IC. In-
let concentrations were chosen for major proteins based on their actual concen-
trations in crude whey as they were high enough for breakthrough analysis. On
the other hand, as the concentration of minor proteins is very low in the crude
whey, higher concentration solutions of standard minor proteins were preferred
in order to achieve the individual breakthroughs. Breakthrough curves were per-
formed at different flow rates (linear velocities) in order gauge if the simulation
tool can make predictions, consistent with experimental data at different flow

rate conditions. Time and volumes for breakthrough point, 10% breakthrough,
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halfway concentration and exhaustion were recorded for comparison with simu-
lations to assess accuracy of prediction. Steric hindrance factor, o; was estimated

by using Equation 229].

Y

o, = —
' Cin,i(z—g —1)

A—=c (@) K — (3 24)
s wkeq 7 .
(1—ece)

Where, v is the phase ratio; = Breakthrough curves were further used to find
out dynamic binding capacity (DBC) of the proteins towards the resin. DBC was
found out as given in Equation

(Um%bt - Ud) X Co
cv

DBC = (3.25)

It was important to assess the competitiveness of the proteins during adsorption
and hence multicomponent protein breakthrough were performed for both ma-
jor and minor proteins. It was expected to find the changes in relative affinity
and hence dynamic binding capacity of the individual proteins due to presence
of the other contenders for the binding sites. For multicomponent breakthrough,
solutions of major and minor proteins were prepared based on their percentage
contribution in whey, and loaded continuously on to HiTrap column at 0.5 ml/min
flow rate. Samples were collected throughout the experiment till the saturation.
Few samples were selected based on the shape of the curve towards saturation
and used for further analysis by using HPLC method developed for resolution of

whey proteins. Injection volume for all the samples was 100 pl.

3.3.5 Column physical parameters

3.3.5.1 Column evaluation:

Though most of the columns used were freshly bought pre-packed columns and
were already tested for the integrity at the factories, it was decided to check the
asymmetry and Number of transfer units(NTU) before and after usage of the col-
umn. 2% acetone was injected (2% CV) on a water equilibrated column at 20

cm/hr linear velocity and the peak was analysed for its symmetry. NTU was found

50



tratio
_L'\
[=3

W,

Bl CONCENL

1 T

B 10

=

| )
4 b
Roun tirne [mim)

Figure 3.1: An example of a typical chromatography peak analysis

out by Equation
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Where, W), is the peak width at half height, v, is retention volume, i and o are
first and second moments, and L is length of the column. Height equivalent to
theoretical plates (HETP) was simply given by L/NTU. Furthermore, reduced
plate height was given by H ET P/d,,. found out by using Equation[3.27}

(3.27)

LW
~ 5.54d, | Vg

Where, d, is the resin particle diameter. A typical chromatography can be seen in

Figure

3.3.5.2 Pulse experiments:

Porosity of the column was determined by injecting pulses of tracers blue dex-
tran (0.5 mg/ml) and sodium nitrate (100 mM). 200 pl of these tracers were in-
jected and detected at 640 nm for blue dextran and 310 nm for sodium nitrate to
determine external(e.) and particle porosity (e,) respectively. Moment analysis
(Equations for the peaks obtained at different flow rates ranging
from 0.2 ml/min to 1 ml/min was done in order to ensure accurate estimation of
diffusion coefficient (equation 5]. The column was washed and equilibrated

thoroughly after every run to target least possible tailing for blue dextran. Most
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of the experiments showed tailing factor of 1.6-2.05. The recommendation by FDA
for tailing factor for analytical purpose is ¢ ;<2 [230]. For sodium nitrate, the peak
tailing factors were close to 1 showing gaussian behaviour. Total porosity ¢, was
then obtained using the values of ¢, and ¢, (Equation 231]). This process was
repeated for all the columns used in the work for breakthrough analysis (SPFF,
Capto S™, and Capto Q™).

t
t.dt
= _fotc (3.28)
J, cdt
t 2
At — pup)?dt
6:f00(t 1) (3.29)
J, cdt
L
W= (€e + (1 — €)epbo) (3.30)
a=c¢c+(l—€)Xe (3.31)
2
o = (3.32)
w2

This gives a dispersion coefficient for the tracer elements. Furthermore, to
find the fluid properties specific to the protein, Peclet and Reynolds number were
estimated. Peclet number (Equation[3.34) gives the ratio of convective mass trans-
fer to the diffusive mass transfer, whereas Reynolds number (Equation3.33) gives
the ratio of convective forces in the medium to the viscous forces. To find out dis-
persion coefficient of the protein molecules, Reynolds number and Peclet number

were determined using Equation

_upeed,

Re (3.33)
n
1
Pe = 5(0.2 +0.011Re%®) (3.34)
ud
Pe= -2 3.35
“~ D (3.35)
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Molecular diffusivity was found out by Equation [3.36|to compare the diffusiv-
ity of different protein molecules through the medium. Though there are numer-
ous equations to find the diffusivity, this was chosen as it was proposed specifically

for proteins and has been validated for more than 150 proteins [232].

834 x1075T

D,, = 05 (3.36)

3.3.5.3 Ionic capacity

Ionic capacity is a representation of ligand density for the resin. To estimate ionic

S™ a displacement experiment was carried out. Initially col-

capacity of Capto
umn was saturated with 0.5 M HCl ions to ensure all the cationic sites are blocked
by H* ions. Further column was washed by 0.1 M NaOH to displace H™ ions by
Na* ions[229]. Conductivity and pH were monitored to detect the presence of
pure NaOH at the outlet. The value of ionic capacity, A was calculated using Equa-

tion Ionic capacity was measured for all the HiTrap columns in the work
(SPFF, Capto S™, and Capto Q™)

CNaOHUNa
A _ NaOHVYNaOH (3.37)
cvx (1—¢)

3.3.6 Buffer preparation

Buffers being an integral part of the experimental systems used here, were pre-
cisely prepared in ultra pure water (resistivity 18.4M — e¢m). pH of the buffer
was chosen based on isoelectric points of both the proteins to ensure enough bind-
ing on the resin. Equilibration and wash buffer were prepared at the chosen pH.
De-ionized water was used for ionic capacity determination. All the buffers were
filtered by using 0.45 ym Whatman filter paper using vacuum filtration. Protein
solutions for all experiments were filtered through Pall Biosciences PVDF filters

of 0.45 um syringe filter.

53



3.3.7 Crude whey processing

Breakthrough experiment of crude whey protein concentrate was performed on
HiTrap Capto Q column at 0.5 ml/min. 4 mg/ml concentration of WPC was pre-
pared. As the solution was turbid, it was centrifuged at 10000 rpm and further

filtered through 0.45 um filter before loading on the column.

3.4 ExProSim:IC

Overview of ExProSim:IC is shown in Figure ExProSim:IC is designed to gain
basic understanding of the process, in order to practice goal oriented separa-
tion. ExProSim:IC is a customisable numerical tool for solving various kinds of
binding models such as; Langmuir isotherm, Freundlich isotherm, steric mass ac-
tion isotherm (SMA), and mobile phase modulator isotherm (MPM), which can be
solved in combination with mass transfer models such as Equilibrium dispersive
model (EDM). Details of the models included are discussed in Section and
B.2.2

ExProSim:IC has two different modules. First module is a "parameter estima-
tion’ module in which curve fitting is performed for models and experimental re-
sults for determination of coefficients. Second stage is "prediction’ module which
can be used for predicting the experimental profiles using model constants from

the first module.

3.4.1 Parameter estimation module

The models have coefficients, which govern the behaviour of the phenomena they
describe, and signify physical or chemical characteristic of the proteins. These
coefficients or model constants are found out by performing basic experiments.
These include experiments such as; pulse flow to determine porosity’s and col-
umn consistency, adsorption and uptake experiments to find basic binding char-
acteristics of the protein-resin interaction, breakthrough experiments for flow
kinetics of the protein through the resin column. Detailed methodology of exper-

iments carried out for finding model constants is given in Section It can be
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Figure 3.2: Schematic representation of data analysis and computational method-
ology

said that substantial amount of experiments may be required for parameter esti-
mation and question can be is it worth to follow such methodology rather than

investing resources directly onto developmental experiments. As parameter esti-
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mation experiments lead towards a platform for accurate prediction, it can help
in reducing number of experiments during process development phase of the sys-
tem. Experiments performed for parameter estimation are described in Section
B33ltoB3.5

In the first stage, data from number of experiments were further used in Ex-
ProSim:IC for data fitting to equilibrium models in order to find model constants.
Estimation of parameters for Langmuir, Freundlich, and MPM model was done by
‘inverse fitting’ the model equation parameters by using curve fitting application
in MATLAB 2014b to fit the equation to the experimental data (Q, 4., k4 for Lang-
muir, ) r and n for Freundlich, and Q ., K5, kI, v for MPM). The error between
the fitted curve and experimental curve was minimised based on equation [3.38}
Parameters for SMA were found by two different methods and compared for their
predictability. First method was an experimental approach as discussed in Sec-
tion[3.3.4) Second method was "inverse fitting’ where, patternsearch optimisation
tool was used to fit the Equation to the adsorption data. Curve fitting was
performed to minimise the error where y.,,, is an experimental value and v is
value obtained from the model fit. model constants were changed strategically to

get the best fit.
N

Errpun = _[Yeap — Yearc]” (3.38)

=1

The minimisation function fminsearch was chosen for optimisation. Logical ini-
tial guesses were made in order to start the iterative estimation for minimum.
Considering the learning’s from one of the research works about error induced
because of initial guesses [229], global optimisation tool was used to avoid the ef-
fect of local minimal during the iterations and hence to reduce the dependency
on the initial guesses. 3000 iterations were done for the minimisation algorithm
along with use of GPS Positive basis 2N and Nelder-Mead methods to ensure min-
imum error. Uptake kinetics experimental data was used to fit the unadsorbed
concentration c vs time for pseudo first order (Equation 3.39) and pseudo second
order equations (Equation [3.40). The model constant for a better fit was chosen
further (k; or k»).

In(ge — q) = Inge — kut (3.39)
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L. (L i) (3.40)
q ka@?  qe
Where, ¢. is stationary phase concentration at equilibrium and ¢, is stationary
phase concentration at any time ¢ from start of contact to saturation of the sta-
tionary phase.

The values of the model constants obtained here were used further for break-

through predictions in ExProSim:IC.

3.4.2 Prediction module

Parameters from the chosen models, for all the proteins in the mixture to be frac-
tionated are put into input matrix in the tool. This is followed by defining the
experimental system including column configuration, flow conditions, proper-
ties of mobile and stationary phases. Column is further divided into number of
intersections called meshes at which the model equations are solved (N, for ax-
ial coordinate and N, for time coordinate). ExProSim:IC uses ‘method of lines’
[233] which is implemented in ’pdepe’ function in MATLAB. ’pdepe’ solves initial-
boundary value problems in the one space variable 'x’ and time ’t’ for system of
parabolic or and elliptic equations. Functions for system parameters, inlet con-
ditions, boundary conditions were solved together using this function. Accord-
ing to ‘method of lines’, axial coordinate is discretised first to convert the partial
differential equations into ordinary differential algebraic equations in time. Fur-
ther discretisation in the time domain is performed using ‘ode15s” which ensures
efficient treatment of Jacobian matrices. This reduces the differential algebraic
equations into simple algebraic equations which can be easily solved for the solu-
tion on axial mesh as defined in the program. Solution at any point in the column
can be extracted from the program and a profile for breakthrough at given time

points can be plotted.

3.4.3 Tool verification

There are two methods to validate a code. Firstly, code to code validation can

be done where predictions from the current code are compared with another al-
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ready established code for same experimental and model constants. This can be
performed exhaustively on numerous datasets to gain more confidence. Another
way of validation is experimental validation, where at least 3 experiments for a
system of proteins are used as a framework for calibrating model constants in it-
erative way by minimising the errors to least possible value. This section is called
as code verification and not code validation as preliminary work on verification
of the workability of the tool is presented.

Initially, an assessment of model constants is carried out for gaining more
understanding about the effectiveness of the tool to handle and represent these
model constants. This was followed by a basic comparison of simulations from the
tool to CADET simulations in order to check if it is workable for simulating chro-
matography processes. For the tool, meshing is a critical step in the discretisation
process as it affects the accuracy and computational time. High number of mesh
points give higher accuracy but they also increase the computational time. On the
other hand, accuracy is compromised when mesh points are too low. Here, aim
was to find out criteria for optimum mesh size which will give required accuracy
without compromising on computational time. To gauge the criteria for mesh in-
dependency, number of meshes along axial and time coordinate are varied, and
predictions obtained at consecutive mesh points were compared for root mean
square error and coefficient of determination between the curves. Value of Ax
and At were found out from this exercise for which the RMSE and CoD remained
constant for further change. These values of Ax and At were considered for sim-
ulating rest of the scenarios in the thesis. In case of change in column length or
run time, Ax and At were adjusted back to obtained values by changing number

of discretisation intervals.

3.4.4 Experimental validation

As the thesis is also to gain insights about the separation of whey proteins, ex-
haustive code to code validation is not carried out and more emphasis is given on
experimental validation. Initial experimental validation of the tool was carried
out with experimental and simulation data from the literature. Each model com-

bination was validated for minimum of three literature cases which are discussed
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further in Section Exhaustive experimental validation was carried out on
experiments performed for major and minor whey proteins in Chapters [4/ and
respectively. Errors between predicted and experimental breakthrough curves
were determined by calculating mean square error (MSE), standard deviation of
mean square error (SDMSE), root mean square error (RMSE), and coefficient of
determination (CoD) between the curves. Standard error is defined as standard
deviation divided by the square root of the sample size. This is shown in equation
The standard error is also a measure of variability as the standard deviation
(SD). As the data sets chosen are processed by interpolation of data for experi-
mental time data, standard error gives a better estimate of the variability of the

chosen data set from the curve predicted curve with respect to experiments.
(y—y)
SE = —_— 3.41
> - (3.41)

Where, y and y’ are values of respective points of two data sets being compared
and n is number of points. Important error parameters used here for comparing
the curves were RMSE which gives the variability of the predictions with respect
to experimental data. This was calculated by equation It can be said that

lower the RMSE value, closer are the two curves to each other.
(y—y')?
RMSE = ~ = 3.42
E - (3.42)

It is also true that RMSE is a function of the sample size and may not give a sta-
tistically significant picture. If the number of points under consideration are too
many, standard error automatically goes down which may not reflect the com-
plete variability of the sample. For making the comparison independent of the
sample size, correlation coefficient between experimental and predicted data sets
was determined. The squared value of correlation coefficient is called as CoD.
Higher the value of CoD towards 1, shows higher overlap between the data sets.

CoD was determined as in Equation

(1D -7\
CoD = (EZ 5D, D ) (3.43)
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Where, SD is standard deviation. 7 and 7/’ are mean values of the datasets.

3.5 Results and discussions

For ion exchange chromatographic processes, factors such as; protein concentra-
tion, flow velocity, column dimensions, resin characteristics, and properties of
proteins play an important role. Their effect on separation characteristics is pre-
dominant [234), [235]. It is important to know if the tool developed can predict
the changes induced by variation of these parameters. Easiest way to check that
was to pick cases from the literature and assess if they are predicted well by Ex-
ProSim:IC. Minimum of three cases were chosen for each model combination in
order to confirm if the predictability of the tool is acceptable however, few pre-
liminary checks for the verification of the tool were required before its implemen-

tation.

3.5.1 Tool verification

3.5.1.1 Assessment of model constants

It was important to assess if the code developed is solving the model equations
correctly. As thermodynamic model constants are important in solving the equa-
tions accurately, it is important to know if the code is sensitive to changes in the
model constants. Hence, effect of model constants on breakthrough curves was
determined by choosing extreme values (three values; low, middle and high) of
the model constants in the context of the protein data sets chosen from litera-
ture. Values of other model constants were kept at reported values when one
parameter was varied during these verification runs. For Langmuir isotherm, an
example of BLG from the literature was chosen to see if changes in 4z, k4, and k;
brings any change in the breakthrough profile or not [1]. For SMA, Insulin break-
through profile from Karlsson et al was chosen and changes in charge value v, o,
keq, and ionic capacity A were checked for changes in the breakthrough profiles.
For MPM, changes in Transferrin breakthrough profiles were analysed for respec-
tive changes in k,4s0, kaeso, 3, and «y. The representative values at which the data

is presented here, are given in Table
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Table 3.1: Representative values at which the tool verification was performed for

all three isotherms

Langmuir BLG SMA Insulin MPM Transferin
Qmaz  ka ky v o keg A Kadgso  Kaeso B Y
Low 0 0.008 0 0 351 054 0 0 0 058 0
Mid 339 0.8 0.035 1.25 1755 54 1050 0.055 5 2.9 2
High 678 8 3.5 2.5 351 540 2100 0.55 50 11.6 4
Langmuir Isotherm verification
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Figure 3.3: Tool verification for variation in Langmuir isotherm model constants
based on data from Elsayed et al. [1]. @) Q42 b) kg ) k1

For Langmuir isotherm values optimised in the literature were taken as refer-

ence. For (..., value seemed very high, hence it was doubled to achieve a high
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value and set to zero to see what happens at lowest possible binding capacity. Fig-
ure[3.3(a)shows a steep breakthrough for the lowest values of Q),.,.. suggesting no
binding in the column. For a higher value of binding capacity, prolonged reten-
tion of the protein was observed and breakthrough was achieved much later. For
k4, it was expected that with increase in the value, the desorption should increase
leading to earlier breakthrough. As k; value from the paper is very low, it was
decided to consider it as a low and multiply it 100 and 1000 times for a middle and
high values. Figure shows an expected trend. For values of k;, optimised
value was considered as a mid value. For higher value it was multiplied by 100
and lowest value was set to zero. k; value shows the adsorption rate coefficient
so it is expected that with increase in k; value, the breakthrough point should
move farther. It was also observed in Figure that the breakthrough slope
became steeper with increase in adsorption rate coefficient. At zero k; value the

adsorption was found to be zero.

SMA Isotherm verification

For SMA, charge values are used in exponential function. The charge value re-
ported in the literature was very high hence it was considered as the highest value.
The lowest value was set to zero and middle value was considered at 50% of the
reported value. It can be seen in Figure [3.4(a)| that variation in charge value is di-
rectly proportional to the binding capacity of the protein. It is obvious that the
relation is not linear as the function is exponential. As the charge value decides
the binding strength of the protein, this is an expected outcome. It can also be ob-
served that the slope of breakthrough did not change with change in the charge
value. The equilibrium constant for SMA is a ratio of desorption constant to ad-
sorption constant, hence it is expected that with increase in the value of k., the
breakthrough capacity should decline. It was necessary to gauge an effect of equi-
librium constant in a wider range as the adsorption and desorption rate constants
can vary in multiples of 10 with respect to each other even with a smaller change
in the process conditions. Hence, the value from the literature was considered as
a middle point and lowest and highest values were defined at a factor of 10.

Figure shows a similar profile. High value of equilibrium constant can
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Figure 3.4: Tool verification for variation in SMA isotherm model constants based
on data from Karlsson et al. [4]. a) Charge v b) k, c) o d)A

mean either higher desorption constant or lower adsorption constant. It is ex-
pected that if the desorption rate changes, the slope of the breakthrough should
change, however, change in adsorption constant might only reflect in change in
binding capacity. Steric hindrance factor works against the binding of the protein
as higher the resistance of protein against each other, lower will be their binding
on the resin.

The trend shown in Figure[3.4(c)|supports this hypothesis. The range of values
for o were derived by considering the data from the referred literature as the min-
imum. Furthermore, ionic capacity gives an estimate of number of binding sites
on the resin. It is obvious that more number of binding sites can allow higher

binding for the proteins. The values selected for A were based on ion capacity
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values of resins available in the market. The resin used in the work referred, of-
fered very high capacity hence it was set at high level. Lowest was defined as zero
and middle values were derived as 50% of the highest. As shown in Figure
expected decline in binding capacity was observed with decline in ionic capacity

constant.

MPM Isotherm verification
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Figure 3.5: Tool verification for variation in MPM isotherm model constants based
on data from Karlsson et al. [4]]. @) k450 b) kgeso ©) 5 d)y

For MPM isotherm, the optimised values of k4.0 and k4.5 were considered as
middle values. Lowest values were set to zero and highest values were set to 10
times the reported values. It can be observed in Figure[3.5(a)|that with increase in

Kads0, the binding capacity was improved. At zero k40, no protein was adsorbed
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as expected. In contrast to this, when the value of k4., was set to zero, the binding
capacity was very high. At highest k.50, binding capacity reduced to almost zero.
This is expected from the definition of the rate constants. It was expected that
the slope would also vary with change in desorption constant, however, it was not
observed. Variation of kg variation can be seen in Figure

[ value is defined for a factor responsible for ionic interactions. It is analo-
gous to v in SMA isotherm hence, similar behaviour was expected for [ as well.
It can be observed in Figure that binding capacity increased with increase
in the value of 5. § is indirectly involved in determination of 7, and is an ex-
ponent of salt concentration (S”) as given in Equation its effect cannot be
directly compared with charge value from SMA. As the salt concentrations are
generally very low, 8 may not be as sensitive as the charge value. ~y value cap-
tures hydrophobic interactions for the proteins. The variation in y values is often
overlooked in case of ion exchange chromatography, however, as shown in Figure
it has significant impact on the breakthrough curves. When the curves for
lowest value of y (zero) and middle value of v were compared, it was observed that
hydrophobic interactions play significant part in the binding process. For higher
~v higher binding was observed. + is used in determination of adsorption constant

™ in an exponential function as given in equation [3.20} Effect of v may also be
dependent on salt concentration of the medium.

This exercise gave a picture of how the model constants are related in location
and shape of the breakthrough curve. It was repeated for all the experimental sys-
tems used in this work (Not shown here). The knowledge gained can be used in
adjusting the parameters for the experimental validation studies. Extent of effect
of these parameters are system specific and the numerical change in the param-
eters may be based on trial and error till an expected fit for simulation curves is
achieved. Ideally once the parameters are determined for a system by performing
this exercise, it should establish a successful set of thermodynamic constant for

the system to make future predictions.
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Figure 3.6: Comparison with CADET simulations using Langmuir isotherm model
constants. a)initial comparison b) post Q... and k4 modification

3.5.1.2 Verification against a reference tool

To assess ExProSim:IC for its predictability, it was decided to compare the simula-
tion results to an established tool such as CADET. Comparison with CADET is not
intended here. As both the codes have different framework, direct comparison is
not possible. CADET is also a well validated tool hence, intention is to use it as a
reference. Overview of features of CADET were discussed in Section Simu-
lations for CADET can be run on a web interface (CADET web user interface) [136].
It was tricky to find examples from the literature which can provide constants
for simulation in CADET, as framework of CADET is detailed and many model con-
stants are required for GRM simulations. For ease of comparison, three examples
from the CADET web interface, one for each isotherm were chosen for comparison.
Model and system parameters were extracted, used as inputs for ExProSim:IC, and
the simulations were compared. For Langmuir isotherm, huge error was obtained
when compared with CADET simulations as seen in Figure[3.6(a)} The difference in
number of model constants, mass transfer model, and implementation method-
ology may be responsible for the error. Also the diffusion coefficient considered
here was an overall diffusion coefficient in GRM. Input parameters in ExProSim:IC
were further modified to fit the simulations to CADET simulations as shown in
Figure The change in model constants was derived from the lessons from

earlier sections. For example, as the ExProSim:IC simulation curve was farther than
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Figure 3.7: Comparison with CADET simulations using SMA isotherm model con-
stants. a)initial comparison b) post v modification c) post k¢, modification

ads

CADET, value of Q... was adjusted (RMSE 3.65E-3, CoD 0.8921). k, was further
modified to adjust the slope (RMSE 8.26E-4, CoD 0.9867). These modifications were
done on trial and error basis and errors for every simulation fit was measured.
Similarly, for SMA isotherm it can be observed in Figure that CADET sim-
ulation was over predicted by ExProSim:IC (RMSE 3.08E-3, CoD 0.9034). In order
to fit the data, charge value was reduced and improved result were obtained as
shown in Figure (RMSE 3.41E-4, CoD 0.9567). To further adjust the slope,
value of kZ,, was adjusted and better results were obtained (RMSE 5.64E-7, CoD
0.9903). In case of MPM isotherm, huge difference in the preliminary predictions

was observed (RMSE 5.90E-2, CoD 0.8712). To fit the curves, the value of (), was
reduced to reduce the binding capacity (RMSE 8.03E-7, CoD 0.9867). Figure
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Figure 3.8: Comparison with CADET simulations using MPM isotherm model con-
stants. a)initial comparison b) post Q.. modification

shows the final fit. Initial and final parameters for all three isotherms are given
in Table

It can be said that enough understanding about the model constants is gained
through a tool verification exercise. However, adjustment of these parameters on
atrial and error basis may take a long time to reach to the best fit. More confidence

should be gained based on exercising data fitting for different protein systems.

3.5.1.3 Mesh independence study

Literature data of El-sayed and Chase [1] was used for mesh dependency studies.
For finding out dependency of mesh parameters on the solution. Initially axial
mesh points were varied by keeping time mesh points to 50. Once the number of
axial mesh points for least variation was optimised, time mesh points were varied
from 10-100. Error between the curves were found out and plotted against the
mesh points as shown in Figure[3.9/and[3.10} It can be seen that the error for axial
coordinate were reduced to minimal at NV, value of 20 and error for time coordi-
nate was reduced to least at NV, value of 50. From these values, Ax and At values
were found out for the column and were kept constants for all the simulations in

this thesis by varying number of mesh points for a different lengths of the column.

Error tables for mesh study are given in Appendix B, Tables and[B.12
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Table 3.2: System and model constants from CADET web interface for ExProSim:IC
code verification

System parameters

Length (m) 0.014
Velocity (m/s) 5.75E-4
porosity 0.37

Dispersion coefficient (m2/s) 5.75E-08

Model constants CADET Modified
Langmuir

Cin (Mol/m3) 7.14E-03  7.14E-03

Qmaz (mol/m3) 4,88 2.44

ki (1/s) 1.14 1.14

k4 (mol/m3) 0.002 0.001
SMA

¢in (mol/m3) 1 1

v 4.7 1.88

o 11.83 11.83

A (molm3) 1200 1200
5 s (mol/(m3/s)) 35.5 42.6

k5., (mol/(m3/s)) 1000 1000

s (mol/m3) 50 50
MPM

¢in (mol/m3) 7.14E-03  7.14E-03

Qmaz (mol/m3) 4.88 2.44

6] 1 1

¥ 1 1

k™ (m3/mol.s) 1.14 1.14

k. (m3/mol.s) 0.002 0.002

s (mol/m3) 100 100

3.5.2 Preliminary experimental predictions

Initial predictions were made using experimental parameters from the research
paper [1]. It can visually be said that there is high error in predictions based on
experimental factors, however errors were determined for predicted curve to ex-
perimental curve and are shown in Table Even if the overall curve to curve
error were low (the RMSE values were low and CoD values close to 1 showing an
accurate fit), it was observed that the curves differed highly in their shape and
nature. For a realistic comparison from experimental perspective, it was decided

to compare important experimental events on the breakthrough curve such as
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Figure 3.9: Mesh independency study for ExProSim: IC code for axial coordinate.
'RMSE’ and ’CoD’ show root mean square error and Coefficient of determination
between consecutive curves respectively. 'Nx range’ shows shows consecutive
number of discretisation intervals for axial coordinate between which the error

is measured. (a) ALA and (b)BLG
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Figure 3.10: Mesh independency study for ExProSim: IC code for time coordinate.
'RMSE’ and ’CoD’ show root mean square error and Coefficient of determination
between consecutive curves respectively. "Nt range’ shows consecutive number of
discretisation intervals for time coordinate between which the error is measured.
(a) ALA and (b)BLG

0%, 10%, 50%, and 100%. Table [3.4|shows presence of higher error between the
predicted and experimental curves suggesting that the change in the model con-
stants is required for a better fit. For CoD values of even 0.8 are considered as
good fit for modelling purpose, however in this case, 0.9254 did not show signifi-

cant match for the predictions. This also shows that the RMSE values of the order
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of 1072 do not represent a good fit. It was decided to practise the same compar-
ison method for rest of the breakthrough curves so that predicted results can be

compared from experimental perspective.
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Figure 3.11: Comparison of ExProSim:IC predictions with experimental parameters
and simulation data from literature [1](a) ALA and (b)BLG

Table 3.3: Errors for Langmuir:EDM single component breakthrough prediction
using experimental data from El Sayed and Chase [1]

ALA BLG
Exprosim sim Exprosim sim
MSE  0.0116 0.0051 0.0039 0.0041
CoD  0.0191 0.0070 0.0074 0.0066
RMSE 0.0005 0.0039 0.0000 0.0007
CoD  0.9399 0.9254 0.9538 0.9649

3.5.3 Literature based validation

3.5.3.1 EDM with Langmuir isotherm

1. ALA and BLG breakthrough
Literature data of El-sayed and Chase [1] was used as a first case study. The
work focuses on use of EDM and Langmuir isotherm for prediction of single
and multicomponent breakthrough curves for major whey proteins, ALA

and BLG. ExProSim:IC was used further with modified constants in order to
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Table 3.4: Two sets of simulations from ExProSim:IC and El-Sayed and Chase [1] by
using experimental parameters compared with experimental data

Protein BT% Experimental E.l Say ed' % error ExProSim:IC % error
simulations
BLG 0 47.06 9.63 79.54 47.89 -1.76
10 60.25 46.34 23.09 65.83 -9.26
50 98.61 95.41 3.25 99.34 -0.74
100  241.63 228.45 5.45 144 40.40
ALA 0 205.01 53.45 73.93 173.41 15.41
10 246.34 131.36 46.68 195.42 20.67
50 361.23 245.77 31.96 236.74 34.46
100  877.98 497.84 43.30 351.35 59.98

fit the experimental data available in the paper for both single and multi-
component systems and the data is compared with experimental as well as

simulation curves from the paper.

Single component breakthrough prediction

Modified parameters were compared with the reported parameters obtained
from experiments and simulations as shown in Table Fig. shows
comparison of ExProSim:IC predictions to experimental and simulated data
for individual proteins. The data for comparison for predicted profiles is
shown in Table It can be said that ExProSim:IC predicted the experi-
mental data for both the proteins with less than 5%error throughout the
breakthrough curve.

Table 3.5: Comparison of modified parameters for ExProSim:IC simulations with ex-

perimental data and simulation data from [1] for single component breakthrough
predictions

BLG ALA
E im:IC: E im:IC:
Parameter Exp El-Sayed I():cProSIm ¢ Exp El-Sayed IécPro&m ¢
Qmaz (mg/mlresin) 113 113 113 147  220.5 220.5
kq (mg/ml) 0.008 0.008 0.008 0.029 0.029 0.029
k1 (ml/mg.min) 0.035 0.055 0.025 0.030 0.030 0.025

Exp:Experimental, El-Sayed: El-Sayed and Chase simulations,
ExProSim:IC: Simulations from ExProSim:IC
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Figure 3.12: Comparison of ExProSim:IC predictions with experimental and simu-

lation data from literature [I](a) ALA and (b)BLG

Table 3.6: Comparison of breakthrough curves for Exprosim:IC simulations with ex-
perimental data and simulation data from [1]] for single component breakthrough

predictions
. . El-Sayed .
Protein BT% Experimental _, aye . % error Exprosim:IC % error
Simulations

BLG 0 47.06 47.75 -1.47 47.89 -1.76
10 60.25 62.63 -3.95 63.06 -4.66
50 98.61 96.23 2.41 97.65 0.97
100 241.63 182.54 24.45 181.65 24.82

ALA 0 205.01 187.69 8.45 195.92 4.43
10 246.34 233.35 5.27 264.32 -7.30
50 361.23 349.67 3.20 364.56 -0.92
100  877.98 630.52 28.19 653.06 25.62

Multicomponent breakthrough prediction

Figure shows comparison of ExProSim:IC predictions with experimen-

tal data and simulations from El-Sayed and Chase [1] for multicomponent

breakthrough curves. Simulations were performed by adjusting the param-

eters for multicomponent experimental data. Modified parameters are men-

tioned in Table

Simulations performed for breakthrough curves were further compared based

on the breakthrough points at 0%, 10%, 50% and 100% to have a closer look
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Figure 3.13: comparison of ExProSim:IC predictions for multicomponent break-
through with experimental and simulation data from the literature

Table 3.7: Comparison of modified parameters for ExProSim:IC simulations with ex-
perimental data and simulation data from [1] for multicomponent breakthrough
predictions

BLG ALA
ExProSim:IC: ExProSim:IC:
Parameter Exp El-Sayed I()ZC rosim:IC Exp El-Sayed I()ZC roSim:IC
Qmaz (mg/mlresin) 113 339 339 147  220.5 220.5
kq (mg/ml) 0.008 4.8 4.8 0.029 0.029 0.029
k1 (ml/mg.min) 0.035 0.035 0.035 0.030 0.030 0.030

Exp:Experimental, El-Sayed: El-Sayed and Chase simulations,
ExProSim:IC: Simulations from ExProSim:IC

at the predictive ability of ExProSim:IC for multicomponent systems and is
shown in Table It can be observed that the profiles obtained using Ex-
ProSim:IC show ~5% error for most part of the breakthrough however, for
100% breakthrough point the error was high for ExProSim:IC simulations as
well as for simulations from El-Sayed and Chase [I]. This can be due to
slower diffusion of BLG and ALA which may not be captured by EDM due

to lumped diffusion coefficient.

2. Immunoglobulin-G breakthrough

H. Bak et al. studied the effect of varying inlet concentrations on the break-

through profile [2]. Though binding of 1gG with different resins have been
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Table 3.8: Comparison of breakthrough curves for Exprosim:IC simulations with ex-
perimental data and simulation data from [1]] for multicomponent breakthrough

predictions
. ) El-Sayed .
Protein BT% Experimental _. 4 . % error Exprosim:IC % error
Simulations

BLG 0 66.06 68.2 -3.24 65.97 0.14
10 69.65 74.36 -6.76 71.2 -2.23
50 92.1 93.2 -1.19 91.6 0.54
100 110.21 101.2 8.18 103.92 5.71

ALA 0 196.30 185.89 5.30 179.18 8.72
10 272.45 246.67 9.46 258.45 5.14
50 335.47 356.34 -6.22 332.53 0.88
100  548.85 576.04 -4.95 576.73 -5.08

explored in the paper, this work describes the profiles for MabSelect resin.

It can be observed in Figure that, ExProSim:IC predicts the experimental

profile better than lumped parameter model which is used in the paper. This

is due to the fact that the lumped parameter model considers axial disper-

sion to be negligible whereas it is well accounted in ExProSim:IC. The input

parameters from the paper were adjusted with an appropriate multiplier in

order to fit the experimental data better. The adjusted parameters can be

seen as in Table[3.9] The predictions were found to be consistent throughout

the range of concentration from 20% to 100%. This shows that the simula-

tions performed by ExProSim:IC is sensitive to change in concentration of

the protein and shows consistent predictions.

Table 3.9: Adjusted model constants for prediction of breakthrough for IgG at
varying inlet concentration

Parameter Experimental multiplier Modified value
Qmaz (mg/ml) 57.5 0.6 34.5

kq (mg/ml) 3.0 0.5 1.5

k1 (ml.mg/min) 0.0501 1 0.0501

3. BSA and Lysozyme breakthrough

The case study was chosen to see how proteins of different sizes (lysozyme-

14kDa and BSA-66 kDa) impact on the predictions using simple model such

as EDM. Two proteins which are distant in molecular weights [3]. This is
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Figure 3.14: Prediction of breakthrough curves for IgG on MabSelect at different
inlet concentrations showcasing the prediction accuracy for ExProSim:IC. "% Ex-
perimental’ shows Rabbit IgG antiserum strength diluted in equilibration buffer

important to check, as the diffusion through resin is dependent on the size

of the protein. Table shows the modified parameters for simulation to

fit the data to experiments. For lysozyme, very good fit was observed as

shown in Figure[3.15(a), whereas for BSA (shown in Figure|3.15(b)) both the

simulations were not able to predict the experimental data till saturation,

though the breakthrough point was well predicted.

As both the models, kinetic model from the paper and ExProSim:IC: EDM

show close predictions with a CoD of 0.9617 and 0.9845 respectively for lysozyme,

it can be said that both were able to predict the lysozyme behaviour. Experi-

ment for BSA shows the inability to reach saturation which was attributed to
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Figure 3.15: Prediction of breakthrough curves for lysozyme (14 kDa) (a) and
Bovine serum albumin (66kDa) (b) covering range of molecular weight proteins
for the prediction validity for ExProSim:IC

multilayer adsorption of BSA. As EDM:Langmuir model in ExProSim: IC does

not take into account the multilayer adsorption, it was not able to predict

the BSA experimental profile. Even the kinetic model shown in the litera-

ture 3] could not predict the data well.

Table 3.10: Adjusted model constants for prediction of breakthrough for BSA and

Lysozyme
Parameter Experimental multiplier Modified value
Lysozyme

Qmaz (mg/ml) 120 1 120

kq (mg/ml) 0.019 1 0.019

k1 (ml.mg/min) 0.0017 60 0.102

BSA

Qmaz (mg/ml) 113 0.929 105

kq (mg/ml) 0.133 0.2 0.0266

k1 (ml.mg/min) 0.0005 60 0.030

3.5.3.2 EDM with SMA isotherm

First two breakthrough case studies for SMA validation are taken from the work of

Karlsson et al. [4]. The work uses EDM with SMA to predict the breakthrough pro-

files for proteins such as Transferrin (80kDa) and Insulin (6kDa) which differ con-

siderably in the molecular weights. Figure shows the comparison of exper-
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imental and simulated breakthroughs compared to ExProSim:IC predictions. The
profiles were well predicted by ExProSim:IC. Slight variation in the simulation pro-
files was found due to use of Robin boundary conditions in the paper as compared
to Dirichlet in ExProSim:IC. For Insulin, similar observation can be made where pro-
files till 50% of the breakthrough were predicted perfectly whereas slight varia-
tion was seen during the saturation of the curve. The modifications done in the

input parameters are shown in Table
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Figure 3.16: Prediction of breakthrough for Transferrin (80kDa) (a) and Insulin
(6kDa) (b) by using EDM and SMA isotherm.

Table 3.11: Modified model constants for prediction of breakthrough for Trans-
ferrin and Insulin

Parameter  Experimental multiplier Modified value

Transferrin
keq 190 0.5 95
v 5.2 0.385 2
o 97 0.8 77.6
A (mmol/ml) 2100 1 2100
Insulin

keq 0.54 10 5.4
v 2.5 1 2.5
o 7.8 4.5 35.1
A (mmol/ml) 2100 1 2100

Another literature case study chosen is cytochrome C (12kDa) on UNO S1 mono-

lith column [5] to see if ExProSim:IC can predict the data for monolith column at
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Figure 3.17: Prediction of breakthrough for cytochrome C (12kDa) by using EDM
and SMA isotherm at different salt concentrations a) 120mM+0% salt b) 120mM
+1% NacCl ¢) 120mM +3% NacCl d) 120mM + 5% salt

different mobile phase salt concentration.. It can be observed in Figure [3.17]that
the breakthrough point was not predicted by both simulation datasets. The pro-
file after the 10% breakthrough was predicted to accuracy of 0.9822 correlation
coefficient using ExProSim:IC. This can give a precise idea about the binding and
elution kinetics in the dynamic conditions at varying salt concentration. Exper-
imental data was predicted more accurately by simulations from Jozwik et al. as
the model used was a POR model which considers pore and surface diffusion in-

teractions. The modifications in the parameters is given in Table
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Table 3.12: Modified model constants for prediction of breakthrough for cy-
tochrome C at changing salt concentration

Parameter  Experimental multiplier Modified value

keq 25.5 0.04 1.2

v 0.75 1 0.75
o 4900 0.8 3920
A (mmol/ml) 445 0.9 400.5

3.5.3.3 EDM with MPM isotherm

A work from Karlsson et al. was chosen in order to check if the tool can repro-
duce the experimental and simulation data for various protein molecules varying
in chemical properties and molecular weights [4]. Breakthrough curves for all the
proteins at 20 mM salt concentration are presented in the literature along with
predictions using MPM and EDM models. Transferrin and Insulin breakthrough
predictions using ExProSim:IC to the experimental and simulation breakthrough
profiles to validate its usability have been demonstrated here. ExProSim:IC pre-
dicted the experimental as well as simulation profiles for both the proteins suc-
cessfully with < 5% error at 0%, 10%, 50%, and 100% breakthrough points as can
be seen in Figure and Figure This was achieved by modifying the
model constants as shown in Table in order to minimize the error between
two curves. The simulations in the paper follows different boundary conditions
as compared to ExProSim:IC (Robin condition instead of Dirichlet condition) which
may reflect in different parameters being used to fit the same experimental curve
effectively.

Table 3.13: Comparison of model constants from literature and modified model

constants for ExProSim:IC simulations using EDM and MPM models for transferrin
and insulin breakthrough prediction

Parameter Transferrin Insulin
Karlsson Multiplier*  ExProSim:IC** Karlsson —Multiplier* ExProSim:IC*
Qmaz (mol/m3) 0.770 1 0.770 57.2 1.4 80.08
kaaso (m3/mol.sec) 10 0.2 2 0.0275 2 0.055
kgeso (m3/mol.sec) 4000 0.2 800 5 1 5
B 3.0 0.01 0.03 2.9 0.2 0.58
~ (m3/mol) 0 - 3 0 - 2
D, (m2/sec) 4.4x10-6 1 4.4x10-6 45x10-6 1 4,5x10-6

ExProSim:IC**: model constants modified by a multiplier* used for ExProSim:IC simulations for the best fit
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Figure 3.18: Prediction of breakthrough for Transferrin (80kDa) (a) and Insulin
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Figure 3.19: Prediction of breakthrough for 1gG (150 kDa) (a) and Insulin (6kDa)
(b) by using EDM and MPM isotherm.

Breakthrough curve for IgG was not given in this paper so another work by
Karlsson et al. was considered further [6]]. It describes the model based optimisa-
tion for preparative separation of IgG by using a simulation approach which uses
EDM, MPM, and particle diffusion model. Breakthrough at high flow rate was per-
formed for IgG which was further predicted by ExProSim:IC and compared here.
The change in parameters are as shown in Table It is often the case that
high velocity experiments are more convection driven and are difficult to match
by simulations. The comparison of ExProSim:IC predicted breakthrough curves to
the literature data is shown in Figure It can be said that it predicted the

experimental and simulation profiles quite effectively. The predictions obtained
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Table 3.14: Comparison of literature and modified model constants for ExProSim:IC
simulations for IgG

Parameter IgG
Karlsson — Multiplier ExProSim:IC**
Qmaz (mol/m3) 1.1 1 1.1
kaaso (m3/mol.sec)  0.065 0.2 0.0130
Egeso (m3/kmol.sec) 50 0.2 10
6] 1.12 0.1 0.112
~ (m3/mol) 0 - 0
D,. (m2/sec) 44x10-6 1 4.4x10-6

ExProSim:IC**: model constants modified by a multiplier used for
ExProSim:IC simulations for the best fit

were equally effective as the simulations from the literature and provided com-

paratively simpler simulation approach to the problem.

3.6 Conclusion

The chapter provides a detailed summary of computational, data analysis, and
experimental philosophies practised throughout this work. Initially models im-
plemented in this work are discussed in detail. Experimental methodology which
is used for estimation of model constants is discussed further. Overview of ex-
perimental methods for separation of major and minor whey proteins was given,
however, specific details were discussed in respective chapters. ExProSim:IC was
introduced along with description of various aspects such as coding methodology,
parameter estimation module, tool verification, mesh independence, and experi-
mental validation.

Tool verification was specifically performed to understand how the simula-
tion profiles vary with respect to model constants. It was realised that Langmuir
isotherm parameters follow an expected trend according to their physical signif-
icance. Variation in @), affected the binding capacity and k; affected the slope
and binding capacity of the protein. k, impacted on both slope and binding ca-
pacity as it defines the equilibrium of the process. In case of SMA, variation in
charge factor, v was found very critical. Minor changes in v led to large variation

in location and shape of the curve. The equilibrium constant, k., showed similar

82



behaviour as that of Langmuir k4 value. Steric hindrance showed inverse rela-
tion to the binding capacity as expected. For MPM, /3 showed a high sensitivity as
compared to other parameters and influenced binding capacity. Adsorption and
desorption constants showed similar behaviour to that of Langmuir model rate
constants, however, variation in slope of the curves is expected when the con-
stants k. and k!, are varied. It was important to note that all these relations
were not linear and were reliant highly on variation in the model constants. Also
the variation studies were performed one factor at a time where rest of the model
constants were kept at optimised values when one was varied on three levels. Even
though this exercise gives a fair estimate of how individual constants affect the
breakthrough curve, it can be tricky to gauge the effect when more than one fac-
tors are varied together. However, these insights are used further in the literature
based validation and in experimental validation later.

Further, a comparison with CADET simulations showed that the accuracy of
simulations for preliminary simulations were not good (CoD<0.9). Lessons from
model constants assessment section were applied further to change the parame-
ters for a better fit. Modifications performed in the model constants were able to
match the CADET simulation data well. As the modifications were performed on
trial and error basis, it might take a long time to obtain the best fit. Mesh indepen-
dence studies carried out for the tool ensured that it gives a convergent solution.
Mesh independency can be case specific hence it is important to practise for every
system under consideration.

Literature based validation was carried further by choosing the case studies
to check the effect of varying process parameters on the prediction ability of Ex-
ProSim:IC. The tool establishes a reasonable accuracy with changing process con-
ditions and for various protein molecules ranging from 6kDa to 150kDa. ’Curve to
curve’ error were determined using RMSE and CoD, however they were not effi-
cient enough to give accurate comparison between experiments and simulations.
Method of "point to point’ comparison was practised instead where important ex-
perimental points were selected and the error was determined for them. Data
reproduced for all the thermodynamic models showed good agreement (average

error<5%) with the simulations and experimental data from the respective litera-
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ture. It is thus can be concluded here that mathematical models were successfully
incorporated in a tool, ExProSim:IC for predicting the outcomes of the data from
the literature.

Furthermore, it is important to look at limitations at this stage of research. It is
very difficult to mimic the non-equilibrium interactions in the real process while
determining the model constants from equilibrium assumptions and models. Not
all the parameters can be directly derived from the experiments and some of them
need mathematical approximations based on physical assumptions. This was seen
when, parameters were to be adjusted for matching the simulations to the exper-
imental data. Choice of EDM looked appropriate as there are lesser parameters
which are empirically derived, however it also comes at a cost of overlooking de-
tailed diffusion phenomena happening in the resin. Such diffusion considerations
can be critical while scale up of the process as scale dependent parameters may be
left out without adjustment. This makes EDM not an ideal choice for simulations
of development data at large scales. In the subsequent chapters experimental
validation is presented where more data based conclusions can be derived on the

applicability of EDM.
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Chapter 4

Major whey proteins separation

4.1 Introduction

Most important aspect to consider before implementation of a simulation tool is
its reliability and robustness. For achieving these criteria, it is important to ex-
haustively validate the tool. Literature based validation of ExProSim:IC with vari-
ations in process parameters specific to thermodynamic models is discussed in
Chapter [3|. However, literature based validation can be limiting in developing
an understanding about, how the model constants were determined from exper-
iments performed and their further implementation. Even if the code is working
fine mathematically, the results produced can be questionable if the model con-
stants aren’t well determined. Hence, it was decided to perform in house exper-
iments to find out model constants. This ensured availability of reliable data for
validation. Overall experimental validation is divided into three chapters. Exper-
iments performed on separation of major whey proteins and their simulation is
covered in this chapter. The chapter discusses implementation of both anion and
cation exchange chromatography techniques by experimental and simulations,

and compares them with each other to find out which one is more advantageous.

[

1t is important to note that, extensive resin screening was not included in the scope of the
research. Choice of the resin was completely based on the popularity of the resin in the current
industries, based on their performance, and usage.
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4.2 Methodology

4.2.1 Experimental

4.2.1.1 Materials and Methodology

All the protein standards and buffers required for cation and anion exchange chro-
matography and sample analysis are mentioned in Section For cation ex-
change at pH 4.5, BSA and BLG were used as standards and resin chosen was SPFF™.
For anion exchange at pH 6.9, BSA, BLG, and ALA were used as standards and Capto
Q™ was used as resin. Column chromatography experiments were performed
on NGC Bio-Rad system. SEC was used for analysis of cation exchange samples,

however HPLC was used for analysis of anion exchange samples. Details of the

methodologies for sample analysis are explained in Section[3.3.2}

Buffers and protein samples

Buffers used for cation and anion exchange chromatography are shown in Table
1 M NaOH was used for regeneration of the resin after the run and it was
stored in 20% ethanol when not in use. Standard curves were prepared for all the
proteins by taking absorbance at 280 nm for concentrations between 0-1 mg/ml
on a UV-vis spectrophotometer, Jasco V-670. After experiments in triplicates (ex-
cept for breakthrough), mean values and standard deviation were determined for

further analysis.

Table 4.1: Overview of experimental systems

Technique System Buffer A Buffer B
. NGC medium 10 mM sodium acetate 1 M NaCl in 10 mM sodium acetate
Cation exchange
pressure system PpH 4.5 PH 4.5
. NGC medium 25 mM sodium phosphate 1 M NacCl in 25 mM sodium phosphate
Anion Exchange
pressure system PH 6.9 PH 6.9
SEC-HPLC Varian Protar HPLC sysetm 10 mM sodium acetate 10 mM sodium acetate
PpH 4.5 PpH 4.5

0.1% TFA in 100% purified

0.1% TFA in 100% acetonitrile
water

HPLC Agilent 1260 HPLC system
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Sample analysis

UV-vis spectrophotometry All the samples from batch studies for adsorption
kinetics and uptake kinetics were analysed on a UV spectrophotometer. Standard
curve was prepared for the proteins ranging from 0-1 mg/ml concentrations in
order to find out the concentration for the unknown samples. Samples from the
experiments were diluted so as to keep the absorbance below 1.0 to meet to the

linear equation of the standard curve.

SEC-HPLC For cation exchange chromatography with two proteins BSA and
BLG, the column was equilibrated with 10 mM sodium acetate buffer at pH 4.5 till a
stable baseline was achieved. Initially a mixture of standards was run at different
flow rates in order to optimise flow rate to achieve faster and resolved peak sepa-
ration. Then the standard curve was prepared for injecting known concentration

of mixtures at optimised flow rate.

HPLC In case of anion exchange, it was impossible to resolve ALA and BLG
using SEC-HPLC as they have very minute difference in their molecular weights
(Table [2.2). Hence, alternative HPLC method was developed by injecting a mix-
ture of all the whey proteins (BSA, BLG, ALA, LF, and LP; 1 mg/ml each in equal
amounts). Mobile phases used are as given in Table Initially baseline was
achieved for the column with buffer A. Optimisation of gradient was done for get-
ting maximum resolution possible between proteins from crude whey. This was
called as HPLC method 2. Furthermore, once the method was optimised, standards
of each proteins (ranging in 0-1 mg/ml) were injected at different concentrations
to determine the standard curve for the proteins. Multicomponent breakthrough
samples were analysed and individual protein concentrations were determined
from the standard curves. Injection volume for all the runs was 100ul. It was
decided not to perform SDS-PAGE if the standards are pure enough for the ad-

sorption studies.

Chromatography experiments
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Adsorption isotherm experiment For cation exchange adsorption equilibrium,
experiments were carried out for SPFF resin as given in Section Protein
load was (BLG and BSA) 3-8 mg/ml. Similar experiments were repeated for Capto
Q for anion exchange chromatography for all three major whey proteins. All the
constants (@4, and k, for Langmuir, Q)¢ and n for Freundlich) in the isotherm

models were determined.

Uptake kinetics 4 mg/ml of each protein solutions were used for the uptake
kinetics experiment as given in Section[3.3.3.2} Experiments were carried out for
both SPFF and Capto Q. pseudo first order and pseudo second order models were
checked for the best kinetic fit. Method for estimation of parameters has been
given in Section [3.4.1} Uptake kinetics constant k' ;, was found out from the best

ads

fit.

Column physical parameters Column physical parameters for both columns,
HiTrap SPFF and HiTrap Capto Q were determined by methods mentioned in Sec-
tion These include porosity (e, €,, €;), column asymmetry factor, HETP, NTU,

dead volume (vg), molecular diffusivity, diffusion coefficient, and ionic capacity.

Gradient elution experiments Detailed method for gradient elution is described
in Section For cation exchange chromatography, 3 mg/ml solutions of
both BSA and BLG were prepared in buffer. For anion exchange chromatography,

3 mg/ml solutions of all the proteins were prepared in equilibration buffer. Injec-
tion volume was set to 400 pl. Equationwas used to estimate v; and k., ; for
SMA isotherm.

Breakthrough experiments Breakthrough experiments of BSA, ALA, and BLG
were carried out as per the procedure given in Section at similar condi-
tions that of gradient experiments. For cation exchange experiments, both pro-
tein samples were continuously loaded at 3 mg/ml concentration until the ex-
haustion point of the curve was achieved. Breakthrough was performed at 0.5
ml/min and 1 ml/min for BSA, and 0.4 ml/min and 1 ml/min for BLG. For anion

exchange experiments, breakthrough was performed by loading 3 mg/ml BLG, 2
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mg/ml ALA, and 1.5 mg/ml of BSA at 0.5 and 1 ml/min flow rates till the column
was saturated with the respective proteins.

For multicomponent breakthrough studies on cation exchange columns, BSA
and BLG 3 mg/ml each were mixed in 100 ml buffer. The mixture was loaded
continuously at 1 ml/min till the column was saturated. Multicomponent break-
through for anion exchange was performed by loading a mixture of all acidic pro-
teins (2 mg/ml each) at 0.5 ml/min till the column reaches saturation. All the
fractions were collected in 1 ml volumes and then further analysed to find out

individual breakthrough curves. Injection volume for analysis runs was 20l.

Determination of Model parameters

Langmuir parameters )., and k, were determined from inverse fitting the data
of the adsorption isotherm to Equation Uptake kinetics rate constant was
determined by fitting both pseudo first order (Equation and pseudo sec-
ond order equations (Equation to the uptake kinetics data obtained. MPM
constants (kqqs0, kaeso, 7> and ) were determined by inverse fitting the adsorp-
tion isotherm data to Equation[3.19} SMA parameter o; was determined from the
breakthrough curves (Equation[3.24), whereas values of charge factor and equilib-
rium dissociation constant were determined from gradient elution experiments
(Equation[3.24). Inverse fitting was performed for minimisation of error function
from Equation[3.38] The parameters were used as it is or modified into ExProSim:IC
for simulating the breakthrough curves. If the error with respect to experiments
was found to be more than +5%, model constants were revised logically depend-
ing on the error obtained and the simulations were repeated until an acceptable
fit was obtained. Detailed computational methodology implemented for simula-

tions and data analysis is given in Chapter

4.3 Results and Discussions

Current Section discusses the results from the experiments carried out for cation
and anion exchange chromatography along with estimation of model parameters,

their importance in binding and elution kinetics, followed by comparison with the
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simulation of breakthrough curves using ExProSim:IC. For cation exchange chro-
matography, where adsorbent is negatively charged, protein has to be positively
charged. For protein to have a positive charge, the pH of the solution should be
lower than the isoelectric point of the protein. For cation exchange chromatog-
raphy initial batch binding experiments were performed at pH 3.5 to 4.2 to keep
positive charge on all the proteins. It was observed that at such lower pH, elution
of BLG and BSA was not eluted completely with strong elution buffers such as 1 M
sodium chloride. Hence pH was further increased to 4.5. As the isoelectric point
of ALA is 4.2, at pH 4.5 the protein has negative charge which is not suitable for
cation exchange chromatography. Binding of ALA on cation exchange resin was
checked at pH 4.5 and high losses of protein was found in batch studies showing
very low binding capacity and strength. Taking this into account, cation exchange
was studied for BSA and BLG. On the other hand anion exchange chromatography

features all the proteins as they showed complete elution at pH 6.9.

4.3.1 Sample analysis

4.3.1.1 UV-spectrophotometer

Standard curves plotted for the standard protein samples are as shown in Figure
The regression coefficient was found to be more than 0.99 for all the standard
curves supporting an acceptable linear fit. Corresponding equations for the fit
are displayed in the Figures which were used for estimation of unknown protein

samples from batch adsorption studies.

4.3.1.2 SEC-HPLC

HPLC-SEC was used to exploit the difference in the molecular weights of BSA and
BLG to find out the individual fractions in the combined breakthrough curve. Flow
rate 0.5 ml/min was chosen for processing the samples as the peaks showed max-
imum possible separability. As expected, BSA was eluted first followed by BLG.
Complete resolution between the proteins was difficult to achieve as dimeric form
of BLG is prevalent at pH 4.5 [236]. This can be seen in Figure[4.2} Hence, the peak

areas were not directly used to get the concentrations from the standard curves.
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Figure 4.2: Overlay of BSA and BLG chromatograms from SEC-HPLC showing the
overlapping area

Calibration method from work of El-Sayed and Chase was used further to get

the calibration curves [188]. Several protein mixtures with different proportions
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Figure 4.3: SEC-HPLC standard curves for BSA (a) and BLG (b)

of BSA and BLG were run on the column. For all the samples run, total protein
loaded and concentration of individual proteins were known. The area of mix-
ture was plotted against the individual concentrations in the mixture as shown in
Fig. |4.3] The curves show linearly increasing profile with regression values of 0.99
for both BSA and BLG. Equation [4.1and [4.2| were used to find individual concen-

trations in the unknown mixtures.

Atot - SBLGCtot
Spsa — SsrLa

(4.1)

CBSA =

Asot — SBsaCrot
Spsa — SeLa

CBLG = (4.2)

4.3.1.3 HPLC

Optimised method is shown in Table[4.2] Standard curves of the proteins were esti-
mated by injecting varying concentrations of standard proteins. Clear resolution
was obtained for all the protein except BSA and ALA. hence flow rate was lowered
at 39% buffer B to further resolve ALA and BSA. Figure |4.5| shows the standard
curves obtained for BSA, BLG, and ALA. The curves show linearly increasing pro-
files with regression coefficient more than 0.99, supporting a linear fit. Though
the hplc method was developed for all five whey protein resolutions, mixture of

major proteins is shown here in Figure It can be observed that the peak for
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Table 4.2: HPLC method optimised for resolution of five whey proteins, BSA, BLG,
ALA, LF, and LP

Time Flow rate
. %B .
(min) (ml/min)
0 0 1
2 0 1
4 39 1
11.5 39 1

12 39 05
20 41 05

20.5 41 1
24 46 1
32 70 1
34 100 1
38 100 1
39 0 1
44 0

BLG shows a dual peak in Figure 4.4. This was attributed to presence of two iso-
forms of BLG which differ in their Ala/Val contents[237]. The first isoform has 13
Ala and 12 Val, whereas second isoform has 12 Ala and 13 Val [238]. Separation of
these isoforms was not attempted further as that was not the primary goal of this
thesis. Standard curves were used further to calculate individual proteins from
the multicomponent breakthrough mixture and is discussed later in the chapter.
SDS-PAGE was not performed as the standards were pure enough to proceed for
adsorption studies.

Further discussions on the results obtained is categorised by chromatography
type and discussed with respect to the isotherm parameter determination those
results were used for. Initially cation exchange chromatography is discussed fol-
lowed by anion exchange. At the end of the chapter they are compared for their

suitability in separation of major proteins.
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4.3.2 Cation exchange chromatography

4.3.2.1 Determination of Langmuir parameters
Adsorption isotherm

Table [4.3| summarises the adsorption characteristics of BSA and BLG. In order to
check which basic isotherm describes the data well, Langmuir, SMA, MPM and Fre-
undlich were fitted to the experimental data as shown in the Fig. The values
of regression coefficients for Langmuir isotherm suggested a better fit to both the
experimental data as compared to others. Furthermore, the value of Langmuirian
equilibrium constant or separation factor, R, lay between 0 and 1 for entire range
of concentrations indicating reversible binding [239] which is favourable for chro-

matographic interactions [[240].
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Figure 4.6: Adsorption isotherms for BSA (a) and BLG (b) on SPFF™ for fitting
three isotherms ; Langmuir (—), Freundlich (- - -), SMA (:-), and MPM (---)

For any globular protein, a thumb rule of surface distribution is 45% hydropho-
bic patches to remaining 55% ionic or hydrophilic patches. Distribution of these
surfaces is interpreted in terms of protein folding suggesting that none of the
chromatography techniques are purely based on a single principle such as; ion
exchange, affinity, or hydrophobic interactions. There is always a combination of
multiple interactions which causes the adsorption; however, one of the interac-
tion principles dominates the binding making it a preliminary cause. From the

calculation of Gibb’s free energy of interaction, each such secondary interaction
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Table 4.3: Summary of adsorption parameters for BSA and BLG

Parameter BSA BLG

Langmuir model
Adsorption capacity @,
(mg/ml of resin)
Dissociation constant &,

132.51 106.72

4, .
(x10-5M) 56  6.065
kdes,L*y
(x 103 min-1) 0.517 1.88
Ry at 3 mg/ml 0.5078 0.293
Ry at 8 mg/ml 0.3066 0.158
R? 0.981  0.9875
Freundlich model
A . .

dsorption capac1ty Qy 9735 92.98
(mg/ml of resin)
Adsorption intensity, n 3.610  8.764
Inverse of adsorption intensity, 1/n 0.277  0.1176
R? 0.829  0.9401
MPM Langmuir model
@rmaa . 132.4  106.4
(mg/ml of resin)
Fadso . 0.9455 0.2163
(ml/mg.min)
Faeso 0.4515 0.037
(ml/mg.ml)
B 0.1011 0.1233
y(x1071) 0.951  2.163
R? 0.9901 0.989

R;: Langmuirian equilibrium constant,

is said to contribute around 1 kcal/mol of energy of interaction and a k4 value
of 107 M gives binding energy of 7 kcal/mol in standard conditions which can
prove to be sufficient for a sustainable binding [241]. The values of &, for affinity
chromatography processes lie between 107® M and 10~* M [242]. Similarly for a
sustained adsorption and desorption in ion exchange chromatography, the values
of k4 can be assumed to lie in the same range. If the value is outside this range, it
either indicates very strong or weak binding which is not suitable for chromato-
graphic interactions. Ideally, the binding should be strong enough to retain the

target protein on the resin but also be reversible enough to release the protein
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during elution without application of very harsh elution conditions which may
affect protein of interest. The values of k; obtained for BSA and BLG lie within
the permissible range suggesting the suitability of chromatographic process. It
can be observed that the value of &, for BLG is higher than that for BSA showing
faster desorption for BLG as compared to BSA.

For (Qnaz, it is reasonable to expect value for BSA to be lower than for BLG as
the net charge on BSA is smaller than the net charge on BLG due to its high elec-
trophoretic mobility. Surprisingly, Q,,.. value was found to be higher for BSA.
This might be due to non-uniform charge distribution on the surface of BSA and
comparatively higher exposure of highly hydrophobic patches in case of BSA. Jey-
achandran et al [243] have studied conformational changes in the protein molecule
during adsorption and have shown that the hydrophobic patches influence the
binding of BSA. 50% of hydrophobic patches showed influence on the binding
of BSA due to conformational changes in the protein molecule upon adsorption.
Effect of resin matrix on the binding of the protein is worth understanding fur-
ther. Base matrix of SPFF™ is hydrophilic agarose (6% by volume). Molecules like
BSA which have a tendency to change conformation when adsorbed on a solid hy-
drophilic surface leading to conversion of « helices into § sheets exposing more
hydrophobic patches on the surface [244]. Increase in hydrophobicity at the sur-
face promotes protein-protein binding reflecting in apparent binding capacity of
BSA. Furthermore, not only the conformation but also the orientation of binding
seem to play a role in binding capacity. BSA can also have different orientation
while binding depending on the pH and salt concentration of the medium, affect-
ing and changing the binding capacity [245]. It was also found in another article
that the binding orientation can also be a function of concentration of BSA [244].
The Q... value of BSA here further suggests that the binding can be a multilayer
binding which may not be exactly predicted by Langmuir isotherm. On the other
hand the BLG which has higher charge as compared to BSA, can be assumed to be
under the strong electrostatic interaction between hydrophilic resin surface and
ionic groups on the protein [246]. This is in support to the fact that under ionic
or charged state, proteins tend to retain their structure which prevents unfolding

[247]). BSA adsorption is generally limited to monolayer below 10 mg/ml concen-
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tration for an exposure time of 2 hours [[248]. BSA molecules have a tendency of
crowding, upon longer exposure leading to undergo conformational changes. Due
to considerably high molecular size and mostly surface diffusion due to competi-
tive adsorption with BLG, multimeric structures of BSA can get formed showing an
apparent maximum binding capacity. Moreover, the secondary structure of pro-
tein tends to hide the polar surfaces while exposing the hydrophobic patches on
outer surface which is further involved in direct resin-protein along with protein-
protein interaction [249]. If the values of Q,,.. are estimated in molar terms, it
can be observed that the value for BLG is much higher than that of BSA (BSA:
2.02 x 107 and BLG: 6.66 x 1073). This suggests that the overall occupancy on
the resin of BLG molecules is much higher than BSA. This is self explanatory as
the molecular size of BSA is much higher than that of BLG. Value of %, for BLG was
found to be higher than BSA showing lower ionic binding strength as compared

to BSA. This is also reflected in Q,,,42.

Uptake kinetics

The uptake kinetics signifies the rate of adsorption of a protein. Equations[3.39)
and represent the pseudo first order kinetic model and pseudo second order

kinetic model respectively. To ensure usage of these models over film, pore and
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Figure 4.7: Uptake kinetics comparison for BSA and BLG. a) Comparison of pseudo
1%t order and pseudo 2"? order for BSA b) Comparison of pseudo 1% order and
pseudo 24 order for BLG

surface diffusion models, molecular size of protein was compared with the pore
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size of the resin. The resin exclusion limit is 4000 kDa which translates into pore
size of 500-1000A. The radius of protein of size of BSA and BLG were estimated to
be 25.57 A and 16.57 A by using Equation [250].

i = 0.066 M3 (4.3)

As it can be clearly noticed that sizes of proteins in discussion (BSA 66 kDa and BLG
16 kDa) are very small as compared to the pore size of the macro porous resin un-
der consideration. This shows that pore diffusion may contribute in mass trans-
fer. However, it was decided to ignore it for this work to see if more simplistic and

basic models can predict the experimental data.

Table 4.4: Analysis of uptake kinetics

Parameter BSA BLG

Pseudo first order
~9

kl.(xm ) 9.19  5.68
(min-1)
R? 0.969  0.759
Correlation

. . .984 872
Coefficient 0.9847 087

Pseudo second order

-3
ko (x10 ) Lot
(ml/mg.min)
R? 0.9837 0.9872
Correlation
Coefficient ~ 0-2°18 09936

Fig. [4.7|shows the model fitting for uptake kinetics along with the experimen-
tal data. The representative parameters for the same are shown in Table It
has been proved experimentally that pseudo first order kinetics supports physi-
cal adsorption and second order kinetics indicates chemical adsorption. As in case
of chemical adsorption, the strength of the bonds is highest between the surface
and the protein molecules, once the monolayer is occupied, the adsorption at the
second layer is not promoted. This monolayer adsorption is well described by
Langmuir isotherm. For first order kinetics, where physical forces are involved in
adsorption, multimeric adsorption mechanism can be seen. This is also reflected

from the equation for pseudo first order kinetics which has exponential term. It
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can be seen that the pseudo second order kinetics fits the kinetic data better (bet-
ter regression coefficient and correlations coefficient).

As shown in Table (4.4} it can be observed that for pseudo second order kinet-
ics, uptake kinetic constants for BSA and BLG show almost same values. Value of
uptake kinetic constant depends on diffusivity of the protein in the medium, ac-
cessibility for number of molecules to the surface, and charge interactions [251].
Molecular diffusivity is a characteristic of molecular size as mentioned earlier.
When two molecules have same kinetic constant, number of factors can be con-
sidered. First being, they have same molecular diffusivity (same molecular radius)
and secondly they have equivalent access to the surface available in order to react
or bind to the surface [252]. As it is known that BSA (66 kDa) is a bigger molecule
as compared to BLG dimer (36 kDa), the diffusivity for BLG is higher than BSA at
both the surfaces and internal pores. The value of &, represents a lumped kinetic
constant for both surface and internal pores, hence it is not a surprise that the
values are closer. This means that accessibility for both the molecules is close. It
also suggest that more number of BLG molecules are interacting with the surface
in order to occupy equivalent surface as BSA. Higher accessibility of the surface
due to higher diffusivity can also mean uptake of one protein by displacement of
the other, however further inference about displacement can be drawn when two
molecules compete for adsorption later in this chapter. Even though pseudo 1%
order shows a good fit, it is an exponential function and its use directs to mul-
timeric form of a BSA getting adsorbed or a multilayer adsorption which can be
confirmed by breakthrough studies further. It is well known that multilayer or

multimeric adsorption is not predicted well by Langmuir isotherm [253].

4.3.2.2 Determination of MPM parameters

As MPM model is derived from Langmuir model, the parameters were found to be
analogous to Langmuir. Binding capacity values were closer to Langmuir isotherm.
Parameters k,qs0 and kg0 describe the rate of adsorption and desorption of the
protein respectively. Adsorption rate constant was found to be higher for BSA
and compared to BLG as additional hydrophobic interactions might be helping in

adsorption. Whilst comparing the values of £’ , it was realised that the desorp-
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tion is higher for BSA. This can be attributed to hydrophobicity of BSA interfering
in the strength of ionic interactions. Molar kg, values were calculated to be
5.73x107% M and 5.05x 107 M respectively for BSA and BLG which were found
comparable to k, values estimated from Langmuir isotherm. Value of 3 repre-
sents an extent of ionic interactions happening during the protein binding. This
can be interpreted as, higher the value of 3, stronger is the interaction of the pro-
tein with the matrix. BLG shows higher § value than BSA which can be an effect

of the electrophoretic mobility.

4.3.2.3 Determination of SMA parameters
Column physical parameters

Based on moment analysis of the pulse injections, external porosity of the col-
umn was determined to 0.363+0.024 whereas the particle porosity was estimated
to be 0.880+0.018. Total porosity for column was determined to be 0.92340.012.
Column packing showed asymmetry factor of 1.12 (acceptable criteria is 0.8-1.2).
Height equivalent to theoretical plates was found to be 0.00131 cm and net trans-
fer units were observed to be 1315.69. Asymmetry of the column was 1.16 which
was acceptable. Ionic capacity was determined to be 2345.7420.32 mM/ml resin
which compares to the reported value for SP sepharose from GE is 1800-2400 mM/ml
resin [254].

Gradient elution

The values of retention volume and gradient volumes were used in Equation|3.23]
and parameters for different gradient lengths were obtained. Table[B.1|shows the
summary of gradient runs and Figure [4.8shows the gradient runs. It can be seen
that the retention volume increases with decrease in the slope of gradient dur-
ing elution. Retention time was observed to move forward as well due to slower
change in the salt concentration.

When the gradients of 0-100% were run, it was observed that BSA and BLG
eluted at 21% and 68% of the salt concentration respectively. This supports slow
desorption of BSA. Table [4.5{shows the comparison of SMA parameters obtained

from experiments. In the fitted parameters, both proteins show significant dif-
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Figure 4.8: Comparison of elution profiles for (a) BSA and (b) BLG at different gra-
dient lengths

ference in charge and equilibrium constant values. As the charge value defines
the number of salt ions being displaced by a protein molecule in order to adsorb
onto the resin, double the charge value along with th equilibrium constant sug-
gests stronger adsorption for BLG as compared to BSA. Conversely, BSA was eluted
later than BLG showing slower desorption. Steric hindrance factor is a property
influenced by molecular weight of protein which can cause screening of charges
available for exchange. BSA having higher o value emphasizes on this concept.
Similar trend is seen in parameters determined from empirical equations.

The values differed considerably from those which were derived by inverse
curve fitting method. The reason can be, difference of interactions between static

to dynamic studies. Parameters found from experiments were less than those ob-
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Table 4.5: Comparison of SMA isotherm parameters for BSA and BLG from gradient
experiments and isotherm fitting

Protein Method v keq o

BSA Exp 1.349+0.093 0.5166+0.075  2.475+0.292
Fit 2.176 0.914 12.415

BLG Exp 1.45£0.106  0.0776£0.0121 1.399£0.127
Fit 3.219 0.101 6.948

Exp=Experimental, Fit= adsorption curve fit

tained by fitting. Comparing these parameters may not be wise as the adsorption
experiment assesses continuous adsorption-desorption phenomena for 3 hours
which is much higher than the cycle time of the longest gradient run. Another
factor to consider is the difference between the buffer environments of the two
experiments where first has just the equilibration buffer whereas second has elu-
tion buffer gradient. The effect of continuous flow can reduce the residence time
of the protein around the resin particle reducing the steric effects and charges
displaced. The decrease in residence time also reflected in decrease in equilib-
rium constant for dynamic conditions for both the molecules. Another reason for
this can be limited loading done in column operations which might lead to high
adsorption rates decreasing the overall equilibrium constant. Estimation of steric
hindrance factors for BSA and BLG was done from the respective breakthrough

curves using the breakthrough volume in Equation[3.24}

4.3.2.4 Single component breakthrough: Experimental

Figure [4.9) and show the breakthrough for BSA and BLG at different loading
velocities respectively and the prediction using ExProSim:IC.

It is wise to discuss experimental breakthrough curves first before compar-
ing them with the predicted data. There are two main characteristic features of
breakthrough curve which should be looked at. First is the breakthrough point
which shows the maximum binding capacity of the resin for the protein molecule
and second being the steepness of the breakthrough curve which determines the
extent to which the capacity of an adsorbent bed can be utilised. This helps in

determining dynamic binding capacity (DBC) which shows maximum amount of
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Figure 4.9: Comparison of predicted vs experimental data for breakthrough of BSA
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Figure 4.10: Comparison of predicted vs experimental data for breakthrough of
BLG at various linear velocities, a) 0.5 ml/min (77.95 cm/hr) b) 1 ml/min (155.9
cm/hr); Langmuir(-), MPM (---), SMA (-), experimental (o)

protein which can be loaded onto the column without any unnecessary loss.

Breakthrough curves for both BSA and BLG follow a logical pattern showing
decrease in the breakthrough time as the velocity increases. Even the slope of
breakthrough curve was found to increase with increase in velocity showing early
saturation of the column. The error for 10% of the breakthrough point was less
than 5% for both BSA and BLG. This can be interpreted as very minute error for
the range of variation in the velocity under consideration.

Further dynamic binding capacities for both proteins were determined from
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10% breakthrough volume and is shown in Table [4.6|[255].
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Figure 4.11: DBC versus flow velocity for two proteins a)BSA (-0-) and b)BLG (-A\-)
at 77.94 and 155.88 cm/hr

Fig. shows the effect of flow velocity on DBC of proteins. As expected
the DBC was found to decrease slightly with increase in the velocity. This can be
accounted for decrease in the residence time for the interaction of proteins with
the resin. It is evident that DBC is less than SBC because of the amount of time

and loading which is available during the experiments.

Table 4.6: Comparison of DBC for BSA and BLG on cation exchanger SPFF

10% BT volume DBC

Protein

(ml) (mg/ml)
BSA 22.75+0.2 45,37+0.5
BLG 31.84+0.8 98.61+42.49

10% BT=Breakthrough volume for 10% of breakthrough
achieved. The values are averaged for all the flow rates and
standard deviation is mentioned.

On comparison with the @,,., from static studies, the values for DBC of BLG
were found to be 5% less than SBC which is a reasonable estimate suggesting that
the binding for BLG is quick and firm. On the other hand, DBC for BSA was found
to be significantly lower than SBC (= 66% lower) which suggests multimeric ad
sorption. In case of static binding the adsorption could sustain as the sample col-
lection after ensuring that the equilibrium was established. However, DBC was

found during operating conditions on column for just enough residence time for
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protein-resin binding leading to continuous equilibrium-non equilibrium condi-
tions. Breakthrough curve shows continuous release of BSA from the column ow-
ing to its inability to sustain the hydrophobic binding under dynamic conditions
leading to non-saturation. The observed behaviour can be supported further con-
sidering conformational composition of BSA of 54% a-helix and 40% [-sheets
[256] and its ability to convert from « helical structure to 3 sheets [257] on ad-
sorption. Experimental breakthrough curve also provides proof for expected be-
haviour of BSA on ion exchange column in close proximity to its isoelectric point.

Such an observation has also been made by Skidmore et al [3].

4.3.2.5 Breakthrough simulations with ExProSim:IC

Experimental profiles were compared further with the simulation outputs for both
BSA and BLG breakthrough for different loading velocities as shown in Fig.
and Simulations were performed with two thermodynamic models Lang-
muir and SMA along with EDM. The results are discussed further.

EDM-Langmuir model

When predicted with experimental parameters as inputs, the breakthrough curves
overestimated the maximum binding capacity for both BSA and BLG. This might
be because of different adsorption times and mechanism in static studies as com-
pared to dynamic studies. As experimental profiles were not matched by both
curves, it was decided to adjust the input parameters in order to fit to the experi-
mental curves. It was logical to use the values of @, same as DBC predicted from
breakthrough profiles. Values of k; were increased for both the proteins ensuring
the resultant &, of BSA stays higher than BLG as BSA shows continuous desorption
and slower binding. Equilibrium dissociation constant were kept constant as equi-
librium constants are generally independent of the residence time. The values of
k1 were also increased further to ensure faster adsorption. Resultant k; value for
BLG was three times of BSA as faster adsorption is expected for ionic interactions
for BLG than BSA. The modifications done in the parameters for both BSA and BLG
are shown in Table

It is observed from Figure[4.9and[4.10|that the onset of breakthrough was pre-
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Table 4.7: Modified model parameters for major whey proteins simulation using
EDM:Langmuir models for SPFF cation exchanger

Multiplication

Protein Constant Value Modified value
factor
Qmax
BSA ) 132.5 3 397.5
(mg/ml of resin)
kq
(XlOfﬁM) 4,566 20 91.3
ky
(x10~3ml/mg.min) 13615 20.4
BLG Qrmaz . 106.72 1.8 191.52
(mg/ml of resin)
kq
(>< 10_6M) 6.065 12 72.81
k1 1.51 40 60.4

(x1073 ml/mg.min)

dicted successfully by the simulation tool with 10% breakthrough at more than
95% accuracy for both BSA and BLG for both flowrates. For all BSA breakthrough
curves, no saturation was observed which has been explained earlier in the chap-
ter. As the curves for BSA progressed at a very slow rate, it could not be captured
completely by the model simulations. This can be attributed to absence of hy-
drophobicity considerations in the model used. Apparent value of @, for BSA
was increased by three times in order to match to the experimental curve. This
proves that there is a continuous release of BSA from the resin which does not let
the resin to saturate allowing more protein to adsorb continuously. Best fit was
obtained when the binding capacity was set to the DBC value determined from
experimental data. It also appeared that the binding capacity of BSA might be
higher than the estimated values from the static experiments but the overall ca-
pacity could not be calculated because of the unsaturation. Breakthrough was pre-
dicted successfully up to 50% saturation but further slow desorption could not be
predicted and the error was higher before the saturation was predicted correctly
towards saturation. Further attempts were made to achieve a better fit to the
experimental profile by changing the kinetic constants further but it caused mis-
match in the earlier part of the breakthrough curves. As estimation of DBC was a

focus here, predictions were concluded to satisfy the accuracy of the early part of
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breakthrough curves. For BLG breakthrough, it is important to notice that the ex-
perimental curve showed an unexpected dip in the slope around 40% saturation

which was not predicted by Langmuir isotherm.

EDM-MPM model

Table 4.8: Modified model parameters for major whey protein simulation using
EDM:MPM models for cation exchange

Protein Parameter Value Multiplier Modified value
Qmax
BSA . 132.4 2 264.69
(mg/mlofresin)
k
des0 . 0.4515 0.35 0.158
(ml/mg.min)
Kaaso . 0.9455 0.05 0.0473
(ml/mg.min)
ﬂ 0.1011 1 0.1011
y 0.951 1 0.951
BLG Qrmaz , 106.4 1.8 191.52
(mg/mlofresin)
Faeso 4 0.037 1.8 0.066
(ml/mg.min)
Fadso . 0.2163 0.25 0.0541
(ml/mg.min)
ﬁ 0.1233 1 0.1233
y 0.2163 1 0.2163

Comparison between experimental breakthrough and MPM simulations is shown
in Figures[4.9)and [4.10} Modified MPM parameters are shown in Table[4.8] Model
performed better than Langmuir and SMA for prediction of both BSA and BLG
at lower flow rate of 0.5 ml/min. Error throughout the curve was found to be
less than 5% which is an excellent match. Similar fit was obtained at 1 ml/min
flow rate showing accuracy of the tool at changing flowrates. The adjustment in
parameters reflected similar trend as in case of Langmuir predictions. Adjusted
parameters for BSA showed lower adsorption and higher desorption rates sup-
porting the continuous release of BSA from the resin. This proves weaker bind-
ing which was also reflected from the k, values of Langmuir isotherm. Values
for kgpmpm determined from resultant constants (2.08 and 0.691 for BSA and BLG

respectively) and compared with kg, values before modifications (0.297 and
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0.097, for BSA and BLG respectively). It was seen that BLG had lower equilibrium
dissociation value indicating stronger binding. Relative change in the kg, val-
ues before and after modifications was a reflective of shift in the desorption curves

for both the proteins.

EDM-SMA model

As primary SMA parameters were determined by two different methods which
further can serve as initial guesses for breakthrough predictions, it was impor-
tant to decide which ones should be used for simulations. As inverse fit method
provides an easier way and lesser experiments, it was chosen over gradient exper-
imental method. Parameters were further adjusted in order to fit to the experi-

mental data.

Table 4.9: Modified model parameters for major whey proteins simulation using
EDM:SMA models for cation exchange

Fitted

Protein Value Multiplier Modified value
Parameters
BSA v 2.176 0.6 1.31
keg (x1072)  91.4 0.05 4.57
o 12.415 0.2 2.475
BLG v 3.219 0.15 0.487
keg (x1072)  10.1 0.38 3.83
o 6.948 0.372 2.589

Modified parameters are shown in Table SMA isotherm predictions were
seen to predict breakthrough curves better than Langmuir isotherm. For BLG,
SMA performed better than Langmuir throughout the curve at both velocities. In
order to match the curve for BSA, steric hindrance factor was reduced. Other pa-
rameter modifications show that the charge value is lower supporting more ionic
interactions and higher k., value looser binding as compared to BLG. Adjusted o
values are same for both proteins suggesting no significant effect of steric factors
on difference in binding of proteins to resin. Compilation of curve to curve errors
for breakthrough predictions are showed in Table RMSE values for BSA are
higher than that for BLG for all the isotherms. Moreover, predictions for MPM

were found to be better than other two isotherms. This can be attributed to more
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number of parameters for predicting the breakthrough. However, comparison
based on point by point comparison is more relatable for correlating experimen-
tal data.

4.3.2.6 Multicomponent breakthrough: Experimental

Experimental breakthrough

The combined breakthrough profile and individual profiles obtained from the
HPLC-SEC analysis of the samples collected are shown in Figure
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Figure 4.12: Experimental breakthrough curves for multicomponent system and
individual breakthrough curves from HPLC-SEC for BSA and BLG for 1 ml/min flow
rate, (BSA /\, BLG o and combined x)

The experiment for multicomponent breakthrough was stopped when the mix-
ture reached saturation concentration. Interestingly when individual concentra-
tions were determined, it was observed that BSA was almost reaching saturation

and BLG was over saturated. As explained in the earlier section, BSA has a ten-
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Figure 4.13: Comparison of SEC-HPLC profiles of samples at different break-
through points on multicomponent breakthrough curve of BSA and BLG for cation
exchange

dency to show linear profile due to continuous adsorption and desorption. It can

also be seen in Figure that slow release of both the proteins happen with

time. Figure[4.13(a)|to [4.13(d)|show the individual SEC-HPLC profiles at 0%, 10%,

50%, and 100% breakthrough points. As suggested by the SEC-HPLC profiles, BLG
profile shows rapid increase in concentration whereas BSA was seen to increase
slowly as compared to BLG. It can be seen that the breakthrough for BLG in multi-
component system shifted from 28 min to 12 minutes as compared to single com-
ponent BLG breakthrough, whereas breakthrough for BSA increased from 7 to 15
min. This is also supported by the SEC-HPLC profiles where BLG was found to
saturate faster than BSA. This can be attributed to different mechanisms of mass

transfer in the column for the two proteins in consideration. As BLG reaches satu-
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ration faster, it can be considered to be electrokinetically transported whereas the
transfer for BSA can be considered to be diffusion driven. This potentially raised
the possibility of BSA displacing BLG due to relatively slower transport through
the column. Increased desorption rates and early saturation of BLG, indicated
clear displacement. Concentration of BLG was observed to reach over the inlet
concentration and which can be attributed to increase in concentration locally
due to displacement of the protein. On the other hand curve for BSA was not sat-
urated till the end of breakthrough. This might be due to slow intermolecular
hydrophobic interactions for BSA as explained in Section[4.3.2.1}

4.3.2.7 Breakthrough simulations with ExProSim:IC

EDM-Langmuir model ExProSim:IC was used further to predict the compet-
itive breakthrough profiles. The simulations profiles are shown in Figure [4.14]
The predictions obtained from experiments under-predicted the breakthrough
curves. Obvious decrease in the binding capacity was attributed to competition
between the molecules for the binding sites in the resins. The competition be-
tween the proteins affected the kinetics by increasing the desorption rates. Des-
orption constants for BLG and BSA were increased by 100 times and 20 times re-
spectively. Higher increase in BLG desorption can be attributed to the displace-

ment phenomena. Modified model parameters are summarised in Table

Table 4.10: Modified model parameters for EDM-Langmuir model system for mul-
ticomponent breakthrough predictions of BSA and BLG using ExProSim:IC

Protein Constant Value Multiplier Modified value
BSA @maa . 1325  0.25 33.125
(mg/ml of resin)
kq
(>< 10_6M) 4,566 15 68.49
ky
(x10~*ml/mg.min) 136 20 27.2
BLG @ . 106.72 0.25 26.68
(mg/ml of resin)
kq
(x 10_6M) 6.065 100 606.5
k1 1.5132 100 151.32

(x10~*ml/mg.min)
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Figure 4.14: Comparison of ExProSim:IC simulations with EDM vs experimental
breakthrough curves for multicomponent system of BSA and BLG for 1 ml/min
flow rates. Predicted curves for BSA; Langmuir —, SMA - -, MPM - -, and BLG;
Langmuir —, SMA - -, MPM ---, Experimental (BSA ¢, BLG 0)

For the best match, values of adsorption rate constant for BLG was also changed
by 100 times assuming fast adsorption and desorption for it due to high charge
and rapid displacement. It is important to notice that @,,.. values were reduced
to 25%of SBC for getting the best fit and it can be said that multicomponent sys-
tems led to huge decline in the binding capacity of both proteins. 75% decline
in BSA capacity was from apparent value of binding capacity whereas actual de-
crease from DBC was 24%. On the other hand, decrease in BLG from DBC was 72%.
This further supports displacement effect in the column. Breakthrough curves
were predicted using ExProSim:IC with decent accuracy for multicomponent sys-
tem. Breakthrough point of 10% breakthrough value was predicted to 95% accu-

racy.

EDM-MPM model MPM parameters from adsorption inverse fit were used ini-

tially to predict the multicomponent breakthrough but the results obtained were
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Figure 4.15: Zoomed version for a better comparison of breakthrough points in
multicomponent breakthrough predictions using ExProSim:IC for all the models
for BSA and BLG at 1 ml/min. Predicted curves for BSA; Langmuir —, SMA - -,
MPM - --, and BLG; Langmuir —, SMA - -, MPM ---, Experimental (BSA ¢, BLG o)

not satisfactory. Hence, parameters were modified as shown in Table Both
the curves were well predicted up to 50% of breakthrough. Better predictions
were obtained for BSA by MPM models as compared to predictions obtained us-
ing earlier models. Expected decline in the binding capacity was observed which
can be attributed to competition of the proteins for binding sites. Values of des-
orption constants were increased for both the proteins with higher change in des-
orption rate of BLG suggesting its displacement. The overshoot of BLG due to dis-
placement was predicted by MPM model unlike earlier models, however it was
predicted earlier than the experimental data. Modified equilibrium constant for
Langmuir was lesser by 10 fold than that of MPM. It can be said that the overshoot
was a reflection of high increase in equilibrium constant for MPM isotherm due

to increase in desorption constant.

EDM-SMA model Furthermore, multicomponent breakthrough was predicted
by performing simulations using EDM and SMA isotherm. This is as shown in Fig.
Modified parameters for SMA are shown in Table[4.12}

Charge values were reduced reflecting change in binding capacity for both

proteins. BLG binding was considerably reduced as compared to BSA support-
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Table 4.11: Modified model parameters for EDM-MPM model system for multi-
component breakthrough predictions of BSA and BLG using ExProSim:IC

Protein Parameter Value Multiplier Modified value
Qmax
BSA . 132.4 0.22 29.1
(mg/mlofresin)
Keso . 0.4515 5 2.26
(ml/mg.min)
Kadso . 0.9455 1 0.9455
(ml/mg.min)
3 0.1011 15 1.52
Y 0.951 1 0.951
Qmaw
BLG ) 106.4 0.3 31.9
(mg/mlofresin)
k
des0 . 0.037 10 0.37
(ml/mg.min)
ka
@0 4 0.2163 1 0.2163
(ml/mg.min)
15} 0.1233 1 0.1233
Y 0.2163 1 0.2163

Table 4.12: Modified model parameters for EDM-SMA model system for multicom-
ponent breakthrough predictions of BSA and BLG using ExProSim:IC

Protein Parameter Value Multiplier Modified value
BSA v 2.176 0.124 0.27
keq 0.914 0.8 0.7312
ka
. 1. 2 272
(x1073ml/mg.min) 36 000 0
o 12.415 0.2 2.483
BLG v 3.219 0.033 0.0106
Eeq 0.101 5.3 0.535
kq
. 1.51 50000 75500
(x1073ml/mg.min)
o 6.948 0.36 2.49

ing the displacement effect. Modified adsorption constant values suggested high

rates of adsorption for BLG whereas equilibrium constant showed continuous des-

orption for BSA. It can be observed that 10% breakthrough was predicted accu-

rately for both BSA and BLG with -3.4% and 1.79% error. The simulation curve for

BLG followed the experimental profile further very closely within 5% error till

saturation but overshoot of the experimental profile was not predicted. Simula-
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tion curve for BSA followed up experimental profile till 50% inlet concentration
and further reached saturation quickly. When compared with predictions from
Langmuir, SMA gave better match to the experimental data for both proteins. A
better comparison of "curve to curve errors can be seen in Table

This exercise gives an example that adjustment of constants becomes more
logical if the experimental phenomena can be understood. Fitting the curves to
minimise the errors would be another way to adjust constants; however, it was
more useful to rely on molecular and experimental knowledge. This can also help
in troubleshooting the problems in the process.

Details point by point errors are shown in Table Table shows the
errors based on curve to curve comparison. It can be said that SMA and MPM
showed a better performance as compared to Langmuir isotherm.

This concludes the cation exchange chromatography for major whey proteins.
As the process was operated above the isoelectric point of ALA, the discussed
methodology did not serve the objective of assessment of all major proteins. This
was due to stronger binding at lower pH values making the process less feasible

for operation.
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4.3.3 Anion exchange chromatography

As it was important to know which among cation and anion is better for major
whey proteins, further section describes experimental studies on anion exchange.
Simulation studies were also carried out which serve as additional experimental
validation platform for ExProSim:IC. The structure of the section is similar to cation

exchange studies carried out earlier.

4.3.3.1 Determination of Langmuir parameters
Adsorption isotherm

To find out the adsorption behaviour of protein molecules, different isotherms
were fitted to the experimental data. The parameters obtained from the best
isotherm fit of all the proteins are presented in Table[4.13 Obtained fits are shown
in Figure[4.16] Regression coefficients were slightly better for Langmuir and MPM
isotherm as compared to Freundlich suggesting monolayer adsorption for all the
proteins. Langmuir isotherm showed the best match to experimental data for
BSA, BLG, and ALA. The values of Langmuirian equilibrium constant, R; were
found to be between 0 and 1 for entire range of inlet concentrations for all the
proteins indicating favourable single layer reversible adsorption [240].

As discussed in earlier Sections, any globular protein has a combination of hy-
drophilic and hydrophobic regions on its surface which contribute when a protein
binds to an adsorbent. The binding strength due to these multiple interactions is
denoted by an equilibrium constant &, whereas extent of binding is referred as
Qmaz- Values of k, for all the proteins lie within 1078 M and 10~* M showing suit-
ability of adsorption for chromatography [242]. It can be observed that the value
of k4 for BLG is lower than ALA and BSA. Higher k, value can mean either higher
desorption rate or lesser adsorption rate. The adsorption rate kinetic constant
is determined by uptake kinetics section hence further discussion on kg is given
there. It is reasonable to assume that interactions happening are mostly ionic in-
teractions as the operating pH used here is 6.9 which is considerably higher than
the isoelectric points of all the proteins. Farther the isoelectric point of the pro-

tein, greater are the charges on the protein leading to more potential for ionic
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Figure 4.16: Adsorption isotherms for major whey proteins on Capto Q anion ex-
changer; a) BSA, b) BLG, and c) ALA

interactions. The order of extent of binding based on electrokinetic potential can
be seen as expected (BLG<BSA<ALA). Q... for ALA was highest amongst the pro-
teins. However, value of (), for BLG was found to be higher than expected. This
was attributed to formation of dimer of BLG which can cause stronger binding
leading to slower but higher retention [258} 259]. It has been reported that BLG
dimeric form is prevalent at neutral pH [236]. Furthermore, it has been proved by
Mercadante et al. that BLG dimer exerts strong ionic properties in its native struc-
tural form [260]. Adsorption capacity is underestimated by Freundlich model with

less regression coefficients and hence it was not considered further.
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Table 4.13: Summary of adsorption parameters for major whey proteins on Cap-
toQ anion exchanger

Parameter BSA BLG ALA

Langmuir model

@maa . 128.8  125.09 139.4

(mg/ml of resin)

ka,

(>< 10_6M) 2.92 0.3187 2.052
es?

(><10_2 min- 1) 1.46 0.106 0.229

Ry at 3 mg/ml 0.0578 0.132  0.0.098

Ry at 8 mg/ml 0.0213 0.061  0.0232

R? 0.991 0.981 0.987

Freundlich model

@y . 101.7  75.69 103.4
(mg/ml of resin)

n 478 2662 4.175
1/n 0.209 0376  0.239
R? 0.956  0.949  0.962
MPM Langmuir model

Qmam

(mg/ml of resin) 1272 96.88 1015

kadsO

(ml/mg.min) 1.606 1.206  1.299

Faeso 2.271  1.818  0.4933
(ml/mg.ml)

B 0.029 0.064 0.605
v 1.457 1386  1.802
D, (x1072) 4791 484  3.21
R? 0.9834 0.9856 0.9821

Ry : Langmuirian equilibrium constant,
*estimated from pseudo 2™¢
order uptake kinetic values

Uptake kinetics

The uptake kinetics signifies the rate of adsorption of a protein. Although adsorp-
tion process happens at a particle and pore surfaces or in the films at the surfaces,
here lumped kinetic models are implemented. The Equations and [3.40 were
used to find if the adsorption in physical or chemical respectively.

Fig. represents the model fitting for uptake kinetics along with the ex-

perimental data. The representative parameters for the same have been shown
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in Table It can be seen that the pseudo second order kinetics fits the kinetic
data better for all the proteins (better regression coefficient and correlations co-

efficient). This means that the adsorption is a chemical adsorption.
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Figure 4.17: Uptake kinetics for major whey proteins on CaptoQ anion exchanger,
a) Comparison of pseudo 1! order and pseudo 2" order for BSA b) Comparison of
pseudo 1% order and pseudo 2"¢ order for BLG c) Comparison of pseudo 1 order
and pseudo 2"¢ order for ALA

It can be observed that for pseudo second order kinetics, uptake kinetic con-
stants, ko for BSA and ALA were almost same. Even though there are differences
in the molecular size of the proteins, the uptake rate was observed to be the same.
It is fair to assume that BSA can get adsorbed at the surface easily because of its
larger size than ALA. ALA on the other hand, has higher net charge making its ad-
sorption rate higher due to ionic attractions. Adsorption constant for BLG is very

low as compared to both BSA and ALA in spite of the dimeric configuration. This
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Table 4.14: Parameters for uptake kinetics of major whey proteins for CaptoQ an-
ion exchanger

Parameter BSA BLG ALA

Pseudo first order

1 —2
ky '(>< 072) 019 . .
(min-1)
R 0.749 0.759  0.8072
Correlation
Coefficient ~ 02847 0872 0.9023

Pseudo second order

-3
ka(x10 ). 756  1.81  7.86
(ml/mg.min)
R? 0.9907 0.9832 0.991
1 .
Corre.a.tlon 0.9918 0.9936 0.9897
Coefficient

can be attributed to stronger binding due to protein-protein interaction making
it difficult for other BLG molecules to move through the medium. Desorption con-
stants were determined for all the proteins using &, and k, values. The desorption
rate was found to be very low for BLG (0.0032 min—') as compared to 0.039 for BSA
and 0.0273 for ALA. This shows that desorption rate constants follow the order
as BLG<ALA<BSA as supported by the breakthrough curve later in this chapter.
Least desorption rate confirms strongest binding for BLG dimer due to additional
charge interactions. It is important to note that the constants are fitted to the
experimental curve from empirical models and may not give exact idea of what is
happening during the binding kinetics. Further, it is important to consider effect

of salt during the adsorption and hence further models are explored.

4.3.3.2 Determination of MPM parameters

MPM isotherm accounts for the salt as inert entity and includes the modified equi-
librium coefficient based on salt concentration. Farther the isoelectric point of
the protein, greater are the charges on the protein leading to more potential for
ionic interactions. Parameters k450 and k4.0 describe the resultant rate of uptake
and release of the protein. The values obtained suggest higher rate of adsorption
for BSA with comparable rates for ALA and BLG. However, the rate of desorption

is very less for ALA as compared to BSA and BLG, confirming stronger binding to
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the resin in batch conditions. Value of 3 represents an extent of ionic interac-
tions happening during the protein binding. This can be interpreted as, higher
the value of /3, higher is the interaction of the protein with the matrix. It can be
seen that ALA shows highest interaction with the adsorbent in the batch studies
followed by BLG and BSA respectively. BLG shows higher 5 value than BSA which
is in contrast to its electrophoretic mobility. This can be attributed to the dimer

formation at the operating pH of 6.9.

4.3.3.3 Determination of SMA parameters

The fit for SMA isotherm was not as good as Langmuir or MPM as the regression
coefficient was less than 0.97 for all the proteins. However, SMA isotherm con-
siders salt interactions while adsorption is happening hence it was considered for
the further parameter estimation. For determination of SMA parameters, column

parameters were estimated.

Column physical parameters

Based on moment analysis of the pulse injections, external porosity of the col-
umn was determined to 0.41+0.014 whereas the particle porosity was estimated
to be 0.860+0.0183. Total porosity for column was determined to be 0.913+0.010.
Height equivalent to theoretical plates was found to be 3.01 x 10~ cm and net
transfer units were observed to be 8211.66. Asymmetry of the column was 1.08
which was acceptable. Ionic capacity was determined to be 1868.96+25.62 mM/ml
resin which compares to the reported value for CaptoQ from GE is 1600-2200 mM/ml
resin [254].

Gradient elution

BSA, BLG, and ALA eluted at 35%, 47% and 55% respectively on the salt gradient.
The gradient experiments were further performed for all the proteins between
0% to 100% for different gradient slopes to find out SMA parameters from the

retention volumes. The gradient curves for the proteins are as shown in Figure

Table[B.2|shows the summary of gradient runs.
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Figure 4.18: Comparison of elution profiles for (a) BSA, (b) BLG, and (c) ALA at
different gradient lengths

It can be seen that the retention volume increases with decrease in the slope
of gradient during elution. Retention time was observed to move forward due to

slower change in the salt concentration. Table shows the comparison of SMA
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parameters obtained from experiments and inverse fit method. As the charge
value in SMA defines the number of salt ions being displaced by a protein molecule
in order to adsorb onto the resin. Higher values of v and least k., for ALA sup-
ports strongest binding amongst proteins. Steric hindrance factor is a property
influenced by molecular weight of protein which can cause screening of charges
available for exchange. BSA having higher o value shows highest steric factor.
Similar trend is seen in experimental parameters as well except the values vary
with different multiplier. This trend is seen for both experimental and inverse
fit values. Values for experimental and inverse fit were distant from each other.
The reason can be difference of interactions between static to dynamic studies.
Comparing these parameters may not be wise considering different set-ups and
environments used for them. As these parameters are to be used for simulation
initial guesses, any of the sets can work well. Inverse fit parameters were chosen

for initial guesses as they are obtained with lesser experimental efforts.

Table 4.15: Comparison of SMA isotherm parameters for BSA, ALA, and BLG from
gradient experiments and isotherm fitting

Protein Method v keq o

BSA Exp 0.223£0.018 0.550+£0.023 6.71140.273
Fit 1.931 0.193 9.715

BLG Exp 0.505+0.026 0.071+0.001 4.84840.35
Fit 1.737 0.069 5.612

ALA Exp 0.97240.009 0.002+£0.001 4.70240.076
Fit 3.27 0.0015 4.015

Exp=Experimental, Fit= adsorption curve inverse fit

4.3.3.4 Single component breakthrough: Experimental

First experimental curves are discussed to understand how the proteins interact

with the resin in dynamic conditions of over-loading. Figures|4.19}|4.20| and [4.21|

show the breakthrough for BSA, BLG, and ALA at different loading velocities re-
spectively along with the prediction using ExProSim:IC. The slope of breakthrough
curve was found to increase with increase in velocity showing early saturation of

the column. Breakthrough for BSA was obtained the earliest followed by ALA and

124



s Exp=rmental Lamgmuir & Experimental Langmuir
12T MM M o L SMA
14 1 é
0E 4 0.8 E
206 S 06
04 04 3
0.z 4 0.2
0 30 %EIIJntirEE [mi-ll'll%n 150 180 0 30 Ell:lljuntil'?l% [mi'ln%ﬂ 150 1B0
(a) (b)

Figure 4.19: Comparison of experimental breakthrough curves for BSA at two ve-
locities a) 77.95 cm/hr b) 155.9 cm/hr with simulated breakthrough curves using
three thermodynamic models Langmuir (—), MPM (- - -), SMA (- -)
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Figure 4.20: Comparison of experimental breakthrough curves for BLG at two ve-
locities a) 77.95 cm/hr b) 155.9 cm/hr with simulated breakthrough curves using
three thermodynamic models Langmuir (—), MPM (- - -), SMA (- -)

BLG respectively.

Further 10% breakthrough values were used for each protein curve to find the
dynamic binding capacity using Equation The values of DBC for BLG were
highest followed by ALA and BSA. Figure shows the effect of flow velocity on
DBC of proteins. As expected the DBC was found to decrease slightly with increase
in the velocity. This can be accounted for decrease in the residence time for the in-
teraction of proteins with the resin. It is evident that DBC is less than SBC because

of the amount of time and loading which is available during the experiments. On
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Figure 4.21: Comparison of experimental breakthrough curves for ALA at two ve-
locities a) 77.95 cm/hr b) 155.9 cm/hr with simulated breakthrough curves using
three thermodynamic models Langmuir (—), MPM (- - -), SMA (-)

comparison with the Q... for static studies, the values for DBC of BSA, ALA, and
BLG were found to be very low than SBC which shows a looser binding in dynamic
conditions. On the other hand, DBC for BLG was found to be very high as com-
pared to its SBC. This shows stronger binding of BLG to the resin. The rise is very
high as compared to ionic interactions BLG can exert which means there might be

few physical forces such as hydrophobic interactions involved in the binding.

4.3.3.5 Breakthrough simulations with ExProSim:IC
EDM-Langmuir model

The values obtained from experimental fits of adsorption isotherm were used to
predict the breakthrough curves for the first time. For all the proteins the match
was far from the acceptable error criteria of 5% for experimental points and even
curve to curve regression was 0.8. The parameters from experiments were ad-
justed further to fit the simulation curves to experimental curves. Changes in
() maz Were made according to the DBC values obtained from breakthrough curve,
whereas for k; and k; were adjusted to match to the slope of the breakthrough
curve based on the understanding we have gained from static experiments. The
modifications done in the parameters for both BSA and BLG are shown in Table

4.16]
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Figure 4.22: DBC versus flow velocity (77.94 and 155.88, cm/hr) for major whey
proteins for CaptoQ anion exchanger; BSA (¢), BLG (o), and ALA (A)

Table [B.5| in Appendix B shows the error estimated with respect to various
points on the breakthrough curve. Table shows comparison of regression
and RMSE error values. It can be said that the onset and 10% breakthrough of all
the breakthrough curves was predicted successfully by the simulation tool with
more than 95% accuracy for all the proteins. Increase in error was observed as the
curve progressed further but it remained below 10% throughout the curve even at
higher velocity. All the curves showed complete saturation when compared with
experimental data. From the experimental profiles it was realised that the param-
eters, mainly @, will need a major change for BLG in order to accommodate
the dimer effect. Hence it was increased by two times. Along with that, the ad-
sorption constant was increased and desorption constant was decreased to show
higher binding. Change in rate constant k, changed the slope of the breakthrough
curve, whereas change in ;... and k; changes the location of the breakthrough
point. When k4. was calculated from the values of k,; and k;; ALA showed slightly

higher desorption rate than other proteins.

EDM-MPM model

As the initial simulations obtained using inverse fit MPM parameters were far
from satisfactory, model parameters were modified further. The changed param-

eters are shown in Table Simulations carried out using MPM-EDM models
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Table 4.16: Modified model parameters for major whey proteins simulation using
EDM:Langmuir models for Capto Q anion exchanger

Protein Constant Value Multiplier Modified value
BSA @maa 128.8  0.75 96.6
(mg/ml of resin)
kq
(>< 10_6M) 2.924 0.5 1.462
ki 756 15 113.4
(x1073ml/mg.min) '
BLG Qmaz 125.09 2.4 300.22
(mg/ml of resin)
kq
(>< 10_6M) 3.187 0.5 1.594
k1 137 40 54.8
(x107® ml/mg.min) ‘
ALA @rmag 139.4 1 139.4
(mg/ml of resin)
kq
(>< 10*6M) 20.52 0.2 4,105
k1 10 78.1

(x107% ml/mg.min)

were as accurate as that of Langmuir isotherm in predicting the onset and 10%
breakthrough. As it can be seen in Table[B.5|in Appendix B, error for MPM predic-
tions remained below 5% throughout the curve even at higher velocity making
it a better isotherm model than Langmuir for breakthrough prediction. Changed
parameters revealed that desorption rate was lowest for BLG suggesting stronger
binding. The value of 3 suggested weaker binding for BSA than other two proteins
resulting in earlier breakthrough. It was observed that change in ~ value did not
affect the shape of the breakthrough curve. This might be due to major modifica-
tions made in k.50 values which makes the effect of change in gamma negligible.
On the other hand, ~ is multiplied by salt concentration which is quite low (0.025
M) so very small change in it wont reflect in the breakthrough curve. Modified 3
values for the proteins were compared further. As /3 for both BLG and ALA show

high values as compared to BSA, comment can be made about binding strength

kdesOx SP

being higher for both. Overall dissociation constant & ;y,pm= <W

) was

determined for MPM isotherm to relate to Langmuir isotherm to Figure out why
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ALA showed early breakthrough in spite of stronger binding. £gy,pm values for
ALA was found to be very high as compared to both BLG and BSA suggesting faster

adsorption-desorption. kg,m for BLG was very low indicating stronger binding.

Table 4.17: Modified model parameters for major whey proteins simulation using
EDM:MPM models for Capto Q anion exchanger

Protein Parameter Value Multiplier Modified value
BSA @rma : 127.2 0.7 89.53
(mg/mlofresin)
Kteso . 2.27 0.013 2.95%1072
(ml/mg.min)
Fadso . 1.61 0.1 0.1606
(ml/mg.min)
15} 0.029 1 0.029
¥ 1.457 2 2.914
Do (x1072) 4.791 4 19.3
BLG Qrmaz . 96.88 1.5 145.32
(mg/mlofresin)
k
des0 . 1.818 0.001 1.818x1073
(ml/mg.min)
Kadso . 1.21 0.1 0.121
(ml/mg.min)
15} 0.064 10 0.64
ol 1.386 1 1.386
Do (x1072) 4,84 3 14.5
Qmaa:
ALA . 101.5 1 101.5
(mg/mlofresin)
Kaeso . 0.493 0.018 9.076x1073
(ml/mg.min)
Faaso . 1.29 0.1 0.129
(ml/mg.min)
15} 0.61 1.05 0.635
¥ 1.802 1 1.802
Da(x1072) 3.21 2 6.42

EDM-SMA model

As SMA parameters were determined by two different methods, it was important
to decide which ones should be used for simulations. As inverse fit method pro-
vides an easier way and lesser experiments, it was chosen over gradient experi-

mental method. Parameters were further adjusted in order to fit to the experi-
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mental data.

Table 4.18: Modified model parameters for major whey proteins simulation using
EDM:SMA models for Capto Q anion exchanger

. Fitted . q. . r
Protein e Value Multiplier Modified value
Parameters
BSA v 1.931 0.61 1.772
keg (x1072)  19.26 1.5 28.89
o 9.715 0.8 7.772
BLG v 1.737 0.91 1.58
keg (x1072)  6.85 0.25 1.7125
o 5.612 1 5.612
ALA v 3.27 0.385 1.259
keg (x1072)  0.156 10 1.56
o 4.015 1 4.015

Modified parameters are shown in Table Furthermore, Table [B.5]in Ap-
pendix B shows errors at different breakthrough points throughout the curves
at different velocities. SMA isotherm predictions were able to match the exper-
imental breakthrough curves at all velocities with less than 5% error for all the
proteins. Major change in the modified parameters was in charge value for all the
proteins. When these values were compared with experimentally obtained charge
values, large differences were observed. This shows obvious error in estimation of
charge value experimentally. As experiments were performed at ambient temper-
ature of 23+2°c, even small changes in temperature can affect the charge. Major
variations were observed when breakthrough was estimated at charge values ob-
tained from experiments indicating high sensitivity to charge. Hence, fitting of
this parameter was utmost necessary for getting a better fit. Charge values were
compared for all the proteins. BLG showed highest value considering its strongest
binding. On the other hand, k., values for BLG and ALA were comparable. It was
also noticed that steric factor did not influence much for the to the shape of the
curve for the low molecular weight proteins, hence it was kept constant.

Even though the comparisons were based on point to point comparison for
better experimental understanding, errors for curve to curve comparison are shown

in Table Predictions with MPM model give better regression coefficients as
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Table 4.19: Comparison of experimental dynamic binding capacity with simula-
tion models for BSA, BLG, and ALA for Capto Q anion exchanger

Inlet conc.

Protein DBC (mg/ml Langmuir MPM SMA
Experimental value % error value % error value % error
BSA 1.5 74.40040.2 73.313  1.46% 72.338  2.77% 75.038  -0.86%
BLG 3 232.950+1.45 232350 0.26% 234.675 -0.74% 230.625 1.00%
ALA 2 100.7504+2.175 97.105  3.62% 100.710 0.04% 97.300 3.42%

compared to other thermodynamic models. Table further shows the com-
parison of DBC values estimated by predicted curves from the various isotherm
models to the DBC obtained from experimental breakthrough. The DBC values
obtained by breakthrough are far less than the SBC values obtained by Langmuir
model using adsorption experiment data. On the other hand, DBC for BLG was
found to be very high. All the DBC values determined from predicted breakthrough
curves matches well with the experimental DBC showing consistency of predic-

tion using ExProSim:IC.

4.3.3.6 Multicomponent breakthrough: Experimental

It was expected that when all three proteins were injected together, the compe-
tition for the sites should further decrease the extent of binding of the proteins
in the column. Figure shows the multicomponent breakthrough obtained
for the mixture of proteins injected (The zoomed Section in the Figure can be
looked at to get a closer look). The breakthrough is achieved earlier than any of
the single component breakthrough showing obvious reduction in the binding of
all three proteins. Figure shows HPLC analysis of the samples taken at on-
set, 10%, 50%, and 100% of breakthrough curve. It can be seen that the increase
in BSA and ALA starts with steeper increase in ALA at 10%, whereas at 50%, BSA
shows values above its saturation with ALA still increasing further. Till 50% of
the breakthrough, BLG was not seen at the column outlet. Furthermore, at 100%
breakthrough, BLG reaches to its saturation value, whereas BSA and ALA show
decreasing profile from the saturation value. This may be attributed to displace-
ment of BSA and ALA happening due to BLG. Dimer of BLG might be responsible
for the slow retention of BLG.

It can be seen that the breakthrough onset for BSA, shifted from 88.6 for single
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Figure 4.23: Experimental breakthrough curves for multicomponent system and
individual breakthrough curves from HPLC-SEC for BSA and BLG for 1 ml/min flow
rate, (BSA ¢, BLG -, ALA A and combined -x-)

component to 52 minutes. For ALA, it shifted from 68.87 to 48, and for BLG it
shifted from 138.6 to 78 showing decrease in binding capacity for all the proteins

due to competition.

4.3.3.7 Breakthrough simulations with ExProSim:IC
EDM-Langmuir model

Combination of EDM-Langmuir models was implemented further to predict the
competitive breakthrough profiles. Predictions obtained at parameters obtained
from adsorption experiments were far from satisfactory hence further modifica-
tions were done to fit to individual experimental breakthrough curves. Modified
model parameters are summarised in Table

Simulation profiles obtained for modified parameters are shown in Fig.
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Figure 4.24: Comparison of hplc profiles of breakthrough samples taken at a) 0%bt,
b) 10%bt, c) 50%bt, and d) 100%bt

Kinetics of adsorption and desorption was also affected because of the competi-
tion between the proteins showing higher desorption rates. For the best match,
values of adsorption rate constant for BSA, ALA, and BLG were increased by 100,100,
and 300. On the other hand, k, value was also increased for all of them. Higher
increase in k,qs value with marginal increase in k, value suggests higher desorp-
tion rates for all proteins. This might be due to presence of higher number of
molecules for binding leading to rapid displacement. Breakthrough curve was
predicted well for BSA till 40% breakthrough but after that the error increased
towards saturation. For BLG and ALA, Langmuir isotherm could predict the break-
through data well but higher error was observed towards the end of the curve.

The overshoot of BSA was best predicted by Langmuir as compared to other two
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Figure 4.25: Comparison of simulated breakthrough curves with multicomponent
breakthrough for major whey proteins for all the model combinations. Predicted
curves for BLG; Langmuir —, SMA - -, MPM - - -, and BSA; Langmuir —, SMA - -,
MPM - - -, ALA; Langmuir —, SMA - -, MPM - - -, Experimental (BSA o, ALA A\, BLG
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Figure 4.26: Zoomed version for a better comparison of breakthrough points in
multicomponent breakthrough predictions using ExProSim:IC for all the models
for BSA, ALA, and BLG at 1 ml/min. Predicted curves for BLG; Langmuir —, SMA
-+, MPM - - -, and BSA;Langmuir —, SMA - -, MPM - - -, ALA ;Langmuir —, SMA - -,
MPM - - -, Experimental (BSA o, ALA A\, BLG o)
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Table 4.20: Modified model parameters for major whey proteins multicomponent
simulation using EDM:Langmuir model for Capto Q anion exchanger

Protein Constant Value Multiplier Modified value

BSA @maa 128.8  0.65 83.72
(mg/ml of resin)
kq
(>< 10_6M) 2.924 2 5.848
k1 756 100 756
(x1073ml/mg.min)

BLG @rmag 125.09 1.5 187.635
(mg/ml of resin)
kq
(XlO_GM) 3.187 5 15.934
k1 137 300 411
(x107® ml/mg.min)

ALA @rmag 139.4  0.45 62.73
(mg/ml of resin)
kq
(>< 10*6M) 20.52 1 20.52
1 7.81 100 781
(x107® ml/mg.min)

isotherms.

EDM-MPM model

Furthermore, multicomponent breakthrough data was predicted using ExProSim:IC.
Table shows the modified parameters for fitting of the simulation curves to
experimental data. Breakthrough point and 10% breakthrough was successfully
predicted by ExProSim:IC, whereas the error was high above 80% breakthrough and
beyond for all three proteins. Slight overshoot of BSA because of displacement
by BLG was predicted by simulations but it couldn’t match to the experimental
overshoot. Error was as high as 26% for BSA because of inability to predict the
overshoot. Comparison of model constants helped further in understanding the
breakthrough profiles. @, value was highest for BLG, showing higher reten-
tion in the resin bed. Values of [ signifies the strength of the interaction. Highest
value of § for BLG supported its retention in the column, however even ALA shows

higher value of 5 which should reflect in increased binding strength. Earlier exit
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Table 4.21: Modified model parameters for major whey proteins multicomponent
simulation using EDM:MPM model for Capto Q anion exchanger

Protein Parameter Value Multiplier Modified value
BSA @rmaa . 127.2 0.7 89.53
(mg/mlofresin)
Kaeso . 2.27 0.5 1.135
(ml/mg.min)
k
ads0 . 1.606 1 1.606
(ml/mg.min)
s 0.029 1 0.029
~y 1.457 1 1.457
D,.(x1072) 4,791 5 23.95
BLG @rmaa . 96.88 1.5 145.32
(mg/mlofresin)
k
des0 . 1.818 1 1.818
(ml/mg.min)
Fadso . 1.21 0.1 0.121
(ml/mg.min)
5 0.064 10 0.64
v 1.386 1 1.386
Do (x1072) 4.84 3 14.52
Qmax
ALA . 101.5 1 101.5
(mg/mlofresin)
Kaeso ) 0.493 10 4.93
(ml/mg.min)
k
ads0 . 1.29 0.2 0.258
(ml/mg.min)
s 0.61 0.5 0.305
~y 1.802 1 1.802
Do (x1072) 3.21 3 9.63

of ALA might be attributed to very high desorption constant. Values of kg, were
found out for all the proteins. ALA showed highest value for resultant desorption
constant (4.6) which explains faster release from the resin. Though the value of

K dmpm for BSA was least, lower /5 value showed weaker binding to the resin.

4.3.3.7.1 EDM-SMA model

Furthermore, multicomponent breakthrough was predicted by performing simu-

lations using EDM and SMA isotherm. This is as shown in Figure Modified
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parameters for SMA are shown in Table It can be seen that charge values
were reduced to account for the possible reduction in the adsorption capacity of
the proteins. Charge value for BLG was decreased marginally as compared to ma-
jor decline in the charge values for ALA and BSA. This suggests displacement of
ALA and BSA by BLG. Fast adsorption desorption was taken into account by in-
creasing k., values. High increase in resultant k., supports rapid desorption for
all the proteins as compared to single component breakthrough. Least value of
k., was found for BLG, showing most stable binding amongst three proteins. SMA

predictions showed lesser accuracy when compared with Langmuir and MPM.

Table 4.22: Modified model parameters for major whey proteins multicomponent
simulation using EDM:SMA model for Capto Q anion exchanger

Fitted

Protein Value Multiplier Modified value
Parameters

BSA v 1.931 0.38 0.734
keq (x107%)  19.26 15 288.9
o 9.715 0.1 0.9715

BLG v 1.737 0.81 1.407
keg (x107%)  6.85 5 34.25
o 5.612 1 5.612

ALA v 3.27 0.13 0.4251
keg (x1072)  0.156 500 78
o 4,015 1 4,015

It can be observed that onset and 10% breakthrough were predicted accurately
for all the proteins. Error in SMA predictions was higher for BSA towards the end
of the curve as the overshoot was not predicted by SMA isotherm. Error was found
to be more than 40% from halfway through of the curve.

Table B.6|shows the overall error at different time points in the breakthrough
for all the models. Dynamic binding capacity values from multicomponent break-
through experiment were further compared with simulations as shown in Table
It can be seen that overall performance of MPM is best amongst all three

models as the overall error in breakthrough and DBC was the least for MPM.
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Table 4.23: Comparison of DBC from multicomponent breakthrough for anion ex-
change of major whey proteins

Exp Langmuir MPM SMA
Proteins value value %error value %error value %error
BSA 57.958 61.292 -5.75% 59.208 -2.16% 55.771 3.77%
BLG 86.292 84.625 1.93% 86.500 -0.24% 79.573  7.79%
ALA 55.875 58.375 -4.47% 58.375 -4.47% 57.958 -3.73%

4.3.4 Comparison of cation and anion exchange chromatogra-
phy

We have seen that major whey proteins can be separated by implementing both
cation and anion exchange chromatography techniques. However, it should be
decided which performs better for separating all three proteins for future pro-
cess development. In case of cation exchange, the window for selection of pH for
operation is very low. At pH lower than 4.2, very harsh salt conditions are required
for elution of the bound proteins which may affect the structure and properties
of the proteins. Additionally, pH higher than 4.2, ALA cannot be purified as it has
almost no electrokinetic potential at its isoelectric point. BSA remains slightly
hydrophobic at pH 4.5, which affected its binding in a cation exchanger.

In case of anion exchange, operation window was found to be flexible enough
to allow reversible binding of all the proteins to the resin. Furthermore, for cation
exchange, the process has to be operated at lower pH which is not the pH of the
sweet whey which is generally obtained from the industry for separating major
proteins from crude stream. Sweet whey pH is generally between 6.6-7.2 which
is used here for anion exchange[261]. Binding capacities obtained for anion ex-
changer are comparable to the binding capacities mentioned by the manufacturer
for the standard proteins indicating optimum usage of the resin at the selected
pH. Comparing both chromatographic methods for ease pf operation and further
feasibility for scaling up, it can be inferred that anion exchange chromatography
gives clear advantages over cation exchange. Hence, anion exchange was finalised
for major whey protein purification studies and minor proteins were studied only

for cation exchange process in Chapter|5|
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4.4 Conclusion

This chapter presents a methodological approach to experimental validation of
the tool ExProSim:IC. Experimental system for validation of the tool presented an
important aspect of whey processing for high value products. Major whey protein
adsorption and breakthrough were discussed in detail for both cation and anion
exchange chromatography. Data generated from both experimental approaches
was used for finding out parameters of the models used for simulations in Ex-
ProSim:IC for expeirmental validation. Cation exchange chromatography was ex-
plored for BSA and BLG, however due to restrictions imparted by operating pH,
ALA was not considered. On the other hand, anion exchange chromatography
was successfully implemented for all three proteins. For both methodologies,
respective proteins were successfully assessed for their adsorption kinetics and
model parameters were obtained by performing basic experiments such as; ad-
sorption, column porosity, ionicity determination, and uptake kinetics. Further-
more, breakthrough experiments were performed at different velocities. Break-
through for BSA for cation exchange was not seen to reach saturation because of
prevalent hydrophobic interactions showing apparent @Q,,,.for BSA. On the other
hand, electrokinetic transfer through the column was observed for BLG showing
comparable values of SBC and DBC.

For anion exchange, all the proteins reached the saturation values with consis-
tency in SBC and DBC values. Langmuir, SMA, and MPM models were along with
EDM were examined and compared for their predictability of the experimental
data produced for both cation and anion exchange. All models accurately pre-
dicted the breakthrough point and 10% breakthrough which was further used in
finding DBC. For most part of the curve, the predictions showed less than 5% error
showing early saturation towards the end. Uneven predictions were obtained for
Langmuir isotherm for both cation and anion exchange processes as compared to
MPM and SMA. This can be attributed to higher number of parameters available
for fitting the data. For SMA isotherm, determination of 'charge’ value was not ac-
curate experimentally. As 'Charge’ has an exponential presence in the equation,

its accuracy is paramount, and probably a better method for the same should be
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devised. Parameters obtained from inverse fit were used successfully for predic-
tions for both MPM and SMA eliminating the need of performing gradient exper-
iments.

Errors shown by curve to curve comparison by determination of RMSE and
coefficient of determination did not give correct representation of the fit. Even if
the errors at important experimental points was high, error seemed low showing a
good fit. Hence, point to point comparison was practised so that significance with
respect to experiments can be derived. Point to point comparison also allowed de-
termination and comparison of DBCs of the resin towards the proteins and their
change when in competition with each other. DBC certainly gave idea about resin
capacity but not performance. Also in case the resin becomes old, it will be dif-
ficult to predict even the capacity with respect to ageing of the resin. Additional
considerations may be required. Comparison at 50% and 100% breakthrough gave
a better idea about shape of the breakthrough and desorption of protein describ-
ing resin performance. It was observed that simulations using EDM were not ef-
ficient to predict end of the breakthrough suggesting better considerations on
diffusion of the protein through the resin may be required. Higher accuracy and
consistency can be obtained in predictions if POR and GRM can be implemented.
For predictions of multicomponent systems by ExProSim:IC, Langmuir and SMA
showed reasonable accuracy, whereas MPM proved to be most accurate. This can
be attributed to more number of parameters to fit the data. SMA can be a better
isotherm in case of prediction peaks at changing salt concentrations which is not
attempted here.

Overall, it can be said that the methodology for calibration of model constants
was established here and implemented in the tool. The tool developed is capable
of predicting preliminary experimental outputs for proteins with wide range of

properties for application of both anion and cation exchange chromatography.
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Chapter 5

Minor whey protein separation

5.1 Introduction

Whey consists of major proteins such as a-lactalbumin (ALA), 3-lactoglobulin(BLG),
and bovine serum albumin(BSA) (<90% of total proteins) which are acidic in na-
ture. Additionally, few minor proteins such as lactoferrin (LF) and lactoperoxidase
(LP) are basic in nature and show promising therapeutic activities [262} 263} 264].
Adsorption and separation studies for major proteins have already been discussed
in detail in Chapter |4|along with the respective simulation studies. This chapter
focuses on studying binding characteristics of minor whey proteins on a cation
exchanger for additional experimental validation of ExProSim:IC. Choice of cation
exchange chromatography was based on two factors. Firstly, considering isoelec-
tric points (pI) of LF and LP, anion exchangers will need pH higher than 9.5 for
sufficient binding of minor proteins which is too harsh for the stability of LF and
LP. Secondly, as the major proteins showed better performance towards anion ex-
changers at pH 6.9, flow-through having minor proteins can be directly processed

on cation exchangers at the same pH giving a possible tandem separation.

5.2 Methodology

Along with Experiments, ExProSim:IC was used further to implement equilibrium
dispersive model (EDM) along with various isotherm models such as Langmuir,

steric mass action(SMA) and mobile phase modulator(MPM) for prediction of sin-
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gle and multicomponent breakthrough curves. Methods for computation were
implemented as given in Section[3.2} Data obtained from adsorption experiments
was used to obtain the model constants for Langmuir, MPM, and Freundlich isotherms
by inverse fitting. Once, all the model constants were determined, they were used
as input for ExProSim:IC for simulating the breakthrough curves. For validation of
simulations, predicted profiles were compared with the experimental curves and
error was determined at a number of points (0%, 10%, 50%, and 100% of satura-
tion concentration) on the curve. If the error was out of acceptable criteria (+5%
for 0 and 10% BT), model constants were revised logically depending on the er-
ror obtained and the simulations were repeated until the successful match was
obtained. Also, curve to curve error was determined for all simulation and exper-

imental curves.

5.2.1 Experimental

5.2.1.1 Materials and Methodology

All the protein standards and buffers required for cation sample analysis are men-
tioned in Section LP and LF were used as model proteins and the adsorption

was carried out on loose and prepacked Capto S™

resin. According to the resin
manufacturer, Capto S™ offers 15-20% higher binding capacity as compared to its
predecessor SPFF which was used for cation exchange studies of acidic proteins.
Along with higher loading, it has high chemical stability, shows better pressure
response, and processes can be operated at higher flow rates saving resultant op-
erating times [254].

All the samples generated from batch studies were analysed at 280 ym on UV-
vis spectrophotometer. Samples generated from NGC Bio-Rad for multicompo-
nent breakthrough curve were analysed by using HPLC method 1. As mentioned in
Section3.3.2.5 method 1 was developed for sufficient resolution and clarity of the
peaks for LF and LP. 1 mg/ml mixture of ALA, BLG, BSA, LF, and LP was injected
at different gradients of mixture of mobile phase A (0.1% TFA in 100 % ultra-pure
water) and mobile phase B (0.1% TFA in 100 % ACN) in order to get maximum

resolution between LF and LP. For low pressure cation exchange equilibration and
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wash buffer used was 25 mM sodium phosphate buffer at pH 6.9. 0.5 M NaCl in
equilibration buffer at pH 6.9 was used for elution whereas 1 M NaOH was used

for regeneration of the resin.

5.2.1.2 Sample Analysis

Total protein content of the samples from the reports received by Tatua was based
on analysis from elemental analyser hence C-H-N analysis was performed for the
samples. Further to check their qualitative and quantitative purity, samples were

subjected to multiple assessment techniques.

Column profiles using NGC

LF and LP, 3 mg/ml and 4 mg/ml respectively were prepared in equilibra-
tion buffer. 300 ul of sample was injected onto the column to check the peak
profile of the standard samples for impurity profiling. Resolution between
multiple peaks (if any) was assessed. Individual breakthroughs of the sam-
ples were run at 0.5 ml/min flow rate to check if any impurities elute dur-
ing flow-through to influence pure protein breakthrough profiles. For low
pressure cation exchange column experiments, prepacked HiTrap Capto S
column was used for frontal chromatography experiments using NGC. All

the column experiments were performed at ambient temperature of 25°C.

HPLC analysis
To check purity of the samples and find out probable nature of impurities,
HPLC analysis was done by injecting standard samples of the protein. HPLC

purity was determined by method 1.

SDS-PAGE
For qualitative profiling of protein samples at various stages of column ex-

periments as well as for the standards, SDS-PAGE was performed.

5.2.1.3 Chromatography experiments

Adsorption isotherm experiment For cation exchange adsorption, experiments
were carried out for binding on Capto S resin as given in Section|3.3.3.1|and further

fitted using ExProSim:IC to find model constants using inverse fit method.
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Uptake kinetics 4 mg/ml solutions for each protein were used for the uptake
kinetics experiment as given in Section(3.3.3.2| Pseudo first order and pseudo sec-
ond order models were checked as given in Section Uptake kinetics constant

k.q4s was found out from the best fit.

Column physical parameters Column physical parameters such as porosity

and ionic capacity for SMA isotherm were determined by method mentioned in

Section[3.3.5

Gradient elution experiments Gradient experiments were performed to es-
timate the charge constant v; and equilibrium constant k., ;. LF and LP, each 3
mg/ml were prepared and 300 ul was injected on an equilibrated column for dif-
ferent gradient slopes of 0.5 M sodium chloride. The values of v and k., were

determined by fitting experimental data to Equation [3.23|[228].

Breakthrough experiments For LF the breakthrough was obtained at 3 mg/ml
and 6 mg/ml at flow rates of 0.5, 0.75, and 1 ml/min. For LP, Breakthrough were
performed at 4 mg/ml concentration at 0.5, 0.75, and 1 ml/min flow rates. Inlet
parameters such as flow rate and concentration were varied to check their ef-
fect on prediction ability of ExProSim:IC. Breakthrough was further analysed for
accuracy of predictions. Time and volumes for breakthrough point, 10% break-
through, halfway concentration and exhaustion were recorded for comparison

with simulations. o; was estimated by using Equation 229].

Multicomponent breakthrough For multicomponent breakthrough, LF and
LP were mixed together in 4.5 mg/ml and 3 mg/ml concentrations respectively
making the overall concentration of the protein solution to 3.75 mg/ml. The
breakthrough was carried out in a similar fashion at 0.5 ml/min. Samples were
collected throughput the experiment till the saturation. Furthermore, standard
curves were prepared for LF and LP by injecting different concentrations of the
protein on to the column to assess unknown sample concentrations. The samples

collected from NGC were analysed on HPLC with 20 pl injection volume.
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5.3 Results and Discussion

5.3.1 Sample analysis

The total protein content by C-H-N analysis based on total nitrogen was found to
be 94.026% for LF and 93.88% for LP. HPLC method was finalised by comparing
number of gradient runs. Two representative gradient runs are shown here in
Figure (5.1l As the mixture of all the proteins was injected, initial expectation was
to resolve all the proteins for analysis but then it was decided to go ahead with
maximum resolution for LF and LP for this specific analysis was preferred
over[5.1(a)). HPLC Method 1 is shown in Table[5.1] Figure[5.2(a)]and[5.2(b) show the

standard curves determined from hplc analysis and can be used for finding out

concentrations of unknown samples from multicomponent breakthrough exper-

iment.

Table 5.1: HPLC method 1 for LF and LP resolution (%B in the table is acenotnitrile
concentration in mobile phase). Flowrate is 1 ml/min

Run time (min) %B

0 0

2 0

4 35
6 37
24 43
32 70
36 100
40 100
42 0
45 0

When assessment of the obtained protein samples using cation exchange chro-
matography was performed, no impurities were seen in LF sample as shown in
Figure[5.3(a)l However, chromatography run for LP showed a major impurity peak
in wash fraction as can be observed in Figure The SDS-PAGE as shown in
Figure further confirmed the presence of impurities in the LP sample. This
was further confirmed by collecting the peak and loading on hplc column (Fig-
ure[5.5(b)). As breakthrough and other column experiments required a pure sam-

ple, the retained peak from multiple column experiments on a xk-16/20 (20 ml)
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Figure 5.2: Standard curves for (a) LF and (b) LP determined from HPLC

column was collected in order to separate pure fraction of LP. The elution frac-
tions were further concentrated and desalted using a 10 kDa minimate membrane
filtration cassette. Qualitative and quantitative purity of the generated sample
was checked using SDS-PAGE, NGC, and HPLC. For SDS-PAGE, the gels were over-
stained to ensure visibility of minor impurities. Figure SDS-PAGE well 7
confirms the removal of impurity. Removal of the impurity was further confirmed
by NGC (Figure and HPLC profile (Figure for LP sample. The purity
of LP was improved from 88% to 97%.
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Figure 5.3: LF (a) and LP (b) standard profiles on Capto S HiTrap 1 ml column

116
97.2

66.4

45.0

31

21.5

14.4
6.5

'

et

6 7 8

5
—
e
—
.

45.0

1.

(b)

Figure 5.4: a) SDS-PAGE for LF and LP at different concentrations: 1. LP 0.5 mg/ml
2. LP 0.25 mg/ml 3.LP 0.125 mg/ml 4. LP 0.0625 mg/ml 5. Broad range marker 6.
LF 0.5 mg/ml 7. Blank 8. LF 0.25 mg/ml 9. LF 0.125 mg/ml 10. LF 0.0625 mg/ml
b) Comparison of SDS-PAGE for LP before and after purification: 1.Broad range
marker 2. LP tatua standard 3. LP sigma standard 4. Blank 5. LP fraction 1 6. LP
fraction 2 7. LP elute 8. bovine serum albumin

5.3.2 Cation exchange chromat

ography

5.3.2.1 Determination of Langmuir parameters

Adsorption isotherms

For both the proteins, Langmuir isotherm exhibited good fit with experimental

data as shown in Figure Langmuir equilibrium constant R; was estimated
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Figure 5.5: a) LP profile on NGC after purification b) Comparison of HPLC profiles
for LP before and after purification

in between 0 to 1 for all the inlet concentrations indicating a reversible hence
favourable adsorption. Langmuir isotherm was favoured over Freundlich isotherm
suggesting mono-layered adsorption. The exponent of Freundlich was estimated
to be more than unity which was an underestimation of binding capacity as shown

in Table[5.2l
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Figure 5.6: Langmuir, Freundlich and SMA adsorption isotherm fit with experi-

mental data for LF (a) and LP (b)

It is important to understand the properties of protein and how they can af-
fect the binding kinetics before further discussion. It is known that the charges on

the protein surfaces primarily take part in the ion exchange with the resin. As ex-
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Table 5.2: Summary of Langmuir, Freundlich, and MPM adsorption parameters for
LF and LP

Parameter LF LP
Langmuir model
@maa . 93.88 132.5
(mg/ml of resin)
ks

1. 41
(x10-M) 86
Ry at 3 mg/ml 0.352  0.123
Ry at 8 mg/ml 0.134  0.0581
R? 0.9932 0.9982
Freundlich model
@ . 79.66  89.32
(mg/ml of resin)
n 8.315  3.893
1/n 0.1192 0.2568
R? 0.990  0.982
MPM Langmuir model
@maa 93.95  132.05

(mg/ml of resin)

kadsO

(ml/mg.min) 0.8098 0.1244

?rief;mg ) 0.0818 0.0209
3 0.0119 0.2812
(x10-%) 6.44  0.59

2 0.9929 0.9901

Ry : Langmuirian equilibrium constant,

plained in Section[4.3.2.1] binding is a result of combination of forces with charged
attraction as dominating force for ion exchange [241]. The k4 values obtained for
LF and LP lie within this range 108 M and 10~* M, indicating the suitability of
the ion exchange process [242].

Ghosal and Gupta have given analytical proof that Langmuir constant can be
related directly to thermodynamic equilibrium constant, K., using Vant Hoff
equation [25] (Equation [5.1). Where, R is a universal gas constant (8.314 J.mol-
1.K-1), AHY and AS? are standard changes in enthalpy and entropy respectively.

Relation between k,; and K., is derived in the work by Ghosal and Gupta, hence
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it was not discussed in detail here. The work states that value of &, is depen-
denton Ky.,. Ky, is a generalised thermodynamic equilibrium constant, whereas
kq is specified as adsorption equilibrium constant expressed in terms of kinet-
ics of the process. Positive and negative A H° values represent endothermic and
exothermic reaction. Positive value of AS? indicates the affinity of the sorbent
towards the sorbate as the randomness near the solid liquid interface is high giv-
ing more chances for adsorption to take place. This means that change in K.,
value changes the extent of adsorption. This change can be accounted by measur-
ing k4 value which also represents kinetics of adsorption. This supports that the
change in k, value shifts the equilibrium of the adsorption process which directly

affects the extent of adsorption happening. k, is mathematically represented as

k €S ka S
oo/ s AH° n AS°
RT R

INKioy = — (5.1)

Lower value of k, suggests higher adsorption or lower desorption rate indicating
stronger binding, whereas increase in the value of &, suggests weaker binding.
The dissociation constants obtained for LP was almost 4 times of that of LF sug-
gesting loose binding for LP. On the other hand, the electrophoretic mobility de-
pends on how far the pI lies from the pH of operation. pI further denotes the pH
at which protein has minimum effective volume. At operating pH of 6.9, LF with
pI of 7.8-8.2 should have a lesser adsorption capacity than LP having pI of 9.2-9.5
which was further supported by Q... values as shown in Table This means

even if LF has lesser binding, it has firm adsorption on the column.

Uptake kinetics

As the uptake of protein depends on the sites at which it interacts with the resin,
lumped kinetic models such as; Pseudo first order (Equation and pseudo sec-
ond order (Equation 3.40) were chosen to fit the data. As the molecular size is sig-
nificantly smaller than the exclusion limit of the resin, we did not consider film
theory for diffusional uptake. Concentrations used in experiments were consider-
ably higher, therefore slow diffusion was ignored. The molecular size of the pro-
tein was determined in terms of their molecular radius using Equation [4.3|[250].

The radius of LF and LP were estimated to 32.01 and 30.21 suggesting that it was
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safe to ignore additional diffusion during uptake kinetics.
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Figure 5.7: Psuedo 1° and 2" order uptake kinetics for LF (a) and LP (b)

Table 5.3: Uptake kinetics parameters for LF and LP

parameter LF P
Psuedo first order

-2
k1 .(>< 1072) .63 oor
(min-1)
R 0.9842 0.9647
Correlation
Coefficient 0.8133  0.9407
Psuedo second order

-3
ko(x 10 )' 040 L
(ml/mg.min)
R 0.9581 0.9857
Corre'la:tlon 0.9521 0.9837
coefficient

It can be seen in Figure[5.7]that the uptake of LF and LP were better described
by pseudo 2"? order kinetics. Parameters for the fitting are shown in Table
Uptake kinetic constant ks, for LP was found to be 2.5 times higher than that for
LF. Considering higher charges on LP due to its pl, the faster uptake was justi-
fied. When desorption constant, k!, was determined based on k, and k,, it was
seen that LP had very high desorption constant. This explains higher slope in the

breakthrough curves.
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5.3.2.2 Determination of MPM parameters

Adsorption isotherm fitted by MPM was found to coincide with that of Langmuir
isotherm (Figure[5.6). Parameters obtained for MPM isotherm are shown in Table
It is evident that the values of (),,,. are same for both isotherms. To com-
pare the difference in dissociation between Langmuir and MPM, cumulative ki-
netic constants (k" and k7 ) for MPM were calculated to determine equilibrium
dissociation constant, kgypm. For LF, the value (1.27E — 6 M) was considerably
higher than LP (7.67F — 7 M), showing difference in desorption kinetics. This
means that LP has stronger attraction towards the resin as compared to LF. The
values of /3 further concurs this observation as /3 value for LP was almost 10 times

that for LF. Values of &, and k g, were almost same which explains the closeness

of the fit.

5.3.2.3 Determination of SMA parameters

The value of external porosity from moment analysis of blue dextran peaks was
0.412+0.0182 and particle porosity obtained from moment analysis was 0.834+0.022.
Total porosity was further calculated from these two values by using Equation
and was estimated to be 0.896+0.015. The lumped coefficient for axial dis-
persion was found to be 4.21x1072 cm?/min. Further the ionic capacity calcu-
lated from the titration experiment was 1345.7 mM/ml resin. The reported value
for Capto S from GE is 1100-1400 mM/ml resin[254].

SMA model shows a precise fit to the adsorption experimental data for both
the proteins as shown in Figure SMA parameters were estimated experimen-
tally as well as by data fitting. When the gradients of 0-100% were run, it was
observed that LF and LP eluted at 21% and 34% of the salt concentration respec-
tively which is in support with the electrophoretic mobility. Summary of gradient
runs is shown in Table It can be seen that the results of gradient elution ex-
periments were consistent over the range as the area under the curve was repro-
ducible. RT for LF were found to be lesser than that of LP at all gradient lengths
supporting their electrokinetic potential at operating pH. With increase in num-
ber of CVs, retention time (RT) of the protein was found to be increased. This was

because of slower gradient with increase in number of gradient column volumes.
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Figure 5.8: Comparison of gradient profiles for (a) LF and (b) LP at different gra-
dient lengths

The values of v and k., were estimated from the retention volume (RV) values of
the gradient experiments performed at various gradient lengths (Equation[3.23).
These values were compared with the inverse fit method parameters obtained
from the patternsearch analysis. The parameters obtained by both methods are
shown in Table

Ideally more the charge value for a protein, better is the binding strength. For
the parameters obtained from elution studies, the value for characteristic charge
for LF was found to be less than that of LP which supports the elution order of the
proteins. However, the value of experimentally determined equilibrium constant
was same for both molecules which could not be justified. In case of inverse fit

method, the charge value was calculated to be higher by 23% for LF whereas it
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Table 5.4: Comparison of SMA isotherm parameters from gradient experiments
and isotherm fitting for LF and LP

Protein v keq o

LF Exp 1.7+ 0.105 0.026+0.001 2.492+0.05
Fit 2.093 0.27 9.701

LP Exp 2.15540.141 0.027+0.001 2.095=0.03
Fit 0.696 17.102 10.035

Exp=Experimental, Fit= inverse fit method

decreased significantly (by 67.7%) for LP. On the other hand, equilibrium constant
was found to be 10-fold higher for LF and increased to 17.102 for LP from 0.0269.
The steric hindrance factor from experiments showed a 4-fold lesser value
than that of inverse fit method. Steric hindrance factor as obtained from break-
through curves showed higher value for LF than LP which can be attributed to
slight difference in the molecular weights. Values obtained by inverse fit were
also very close to each other. The steric factor is a molecular weight and size based
parameter which shows how much repulsive effect the size of the protein can have
on adjacent binding molecules. As molecular weight of LF and LP are very close
(80 and 76-78 kDa respectively), the steric factors ideally should not differ much
unless there are major differences in the structure. When the structures of LF and
LP were compared, it was observed that LP has a more compact structure with 2
beta sheets among « helices[170] as compared to LF which has 2 globular lobes
which are linked with 3 alpha helices between them [169]. The molecular radii
of the two molecules do not show much difference (compared in Section5.3.2.1).
The obvious reason of the difference in parameters of two approaches is that the
base data used for 1°! approach was a dynamic column data; whereas, for the 2™,
approach was a static adsorption data. Comparing these parameters may not be
wise considering the differences in the experimental conditions. As there are two
sets of parameters obtained for SMA isotherm, it was important to check the pre-
dictability depending on both sets. As inverse fit method was dependent on basic
experiments, it was decided to take it as a reference for adjustment of parame-
ters for simulations. Upon adjustment for best fit, parameters were very close to

experimentally determined parameters suggesting validity of inverse fit method
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for simulations.

5.3.2.4 Single component breakthrough: Experimental

The simulated and experimental breakthrough curves at different inlet concen-
trations and velocities for LF and different loading velocities for LP are shown
in Figure [5.9| and Figure respectively. Simulated breakthrough curves for
Langmuir, SMA, and MPM isotherms as predicted by ExProSim:IC are shown in re-
spective figures. Experimental breakthroughs are discussed first and then further
compared with the predicted data. For LF, a prominent shift of breakthrough point
can be observed with increase in velocity which can be attributed to decreasing
residence time. With increase in concentration at the inlet, breakthrough was
obtained earlier, suggesting crowding of molecules in the column. For LP, similar
behaviour was seen where breakthrough point lowered with increase in velocity.
The slope of all the curves became steeper with increase in both concentration
and velocity suggesting faster saturation. All the profiles reached saturation for
both the proteins suggesting steady adsorption-desorption phenomena in the col-
umn., It is noticeable that breakthrough for LP took a longer time in every case as
compared to breakthrough for LF showing higher retention for LP. Further, 10%
breakthrough volume was used to determine the DBC of the proteins. Figure
shows the variation in DBC with flow rate and inlet concentration. The variation
in DBC values with changing concentration and a comparison of DBC for break-
through experiments with Q,,,, obtained from Langmuir adsorption isotherm
experiment is given in Table[5.5] Experimental results were found to be very con-
sistent as the variation in 10% breakthrough volumes for different velocities was
found to be less than 5% for both proteins suggesting minimal effect of changing
velocity on estimated values of DBC. Whereas, DBC was under-predicted at higher
concentrations of LF suggesting crowding of the protein molecules resulting in

reduced residence time in the column leading to early breakthrough [255].
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Table 5.5: Comparison of DBC with Langmuir adsorption capacity at different ve-
locities and inlet concentrations for LF and LP

. Inlet Conc. 10% BT volume DBC % error from
Protein .
(mg/ml) (ml) (mg/ml) Langmuir
LF 3 32.07+£2.22 92.09+6.41 1.95
6 16.58+1.45 47.38+1.45 49,53
LP 4 44,79+0.58 128.80+1.67 2.79

10% BT=Breakthrough volume for 10% of breakthrough achieved.
The values are averaged for all the flow rates and
standard deviation is mentioned.

5.3.2.5 Breakthrough simulations with ExProSim:IC

Experimental breakthrough data was then compared with simulated curves from
ExProSim:IC for Langmuir, SMA and MPM models. Input parameters for all the
isotherms were adjusted in order to fit to the experimental data as the error at
original model constants was very high. For a better comparison point by point
comparison was used and is shown in Appendix B Table B.7|for LF and Table

for LP. However, curve to curve comparison is also performed and demonstrated

in Table

EDM-Langmuir model

Simulations using Langmuir-EDM were consistently close to experimental data af-
ter the parameters were adjusted to values as shown in Table[5.6, Modified model
constants were assessed further to see the effect of changes in constants on the
profiles. k, value for LF was decreased by 50%, whereas LP k, value was retained
to original value. This states that the apparent dissociation constant in dynamic
conditions was lesser for LF showing lesser binding strength towards resin. Resul-
tant k, values for both proteins showed almost 10 fold difference stating the huge
difference in strength of binding. This does not support the electrophoretic mo-
bility of the proteins suggesting presence of additional unknown interactions for
decreasing desorption for LF. )., values on the other hand were increased for
both proteins in order to predict the breakthrough in dynamic conditions. This

suggests that additional adsorption processes are happening in the packed bed

157



L3 Fxperimenta Langmuir o Experimenta

Langmuir

------- SMA — - - — mpm -=====-3Ma — - = mpm
1.2 1.2

1

0.8 0.8

O 0.6 20.6

0.4 0.4

0.2 0.2

0 %6 5 0 T T
0 30 60 90 120 150 180 0 3 _60 90 120 150
Run time {min) Run time {min)
(a) (b)
¢ Experimenta Langmuir
------- sma — - —mpm
1.2 1
1 u
0.8 7
20,6 3
0.4 ]
02 3
0 4
0 30 60 90 120
Run time (min)
(c)
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and adsorption capacity was underestimated for both proteins during batch stud-
ies. Furthermore, modified kinetic rate constants suggested higher strength of
binding for LP. It can be said that, experimentally determined Langmuir isotherm
constants were not successful in relating to the nature of the protein and its bind-
ing to the resin.

For LF, 3 mg/ml inlet concentration data was predicted well at 0%, 10% and
100% for all velocities. 50% data showed higher error as the simulations over-
predicted the experimental data. For inlet concentration of 6 mg/ml, faster adsorption-
desorption phenomena was well-predicted by simulations but the accuracy was
compromised for middle part of the curve as represented by higher error at 50%
breakthrough. This can be accounted for inaccuracy of capturing the competi-
tiveness of the protein molecules at high concentration. Similar trend was seen
at all the velocities. For LP, error obtained using Langmuir-EDM was high for ve-
locity of 1 ml/min. Errors for lower velocities were acceptable for 0%, 10%, and
100% breakthrough but 50% breakthrough was not predicted accurately. General
trends of simulated breakthrough curves were observed to move farther from ex-

perimental data as the concentration and velocity were increased.

Table 5.6: Modified model parameters for single component breakthrough pre-
dictions using Langmuir isotherm

Protein Constant Value Multiplier Modified value
LF @maa . 93.88 1.5 140.82
(mg/ml of resin)
kq
(x 10_6M) 1.366 0.5 0.683
ko
(x 10*3ml/mg.min) 0.49 100 49
LP @maa . 132.51 1.9 251.75
(mg/ml of resin)
kq
(% 10-6n) 5567 1 5.567
s 20 24

(x107* ml/mg.min)
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EDM-SMA model

Initial predictions based on experimental parameters were not a good match to
the experimental curves for both LF and LP (data not shown here). Parameters
were further modified to fit the simulated data to breakthrough experimental
data are shown in Table[5.7} The charge value signifies the ionic interactions hap-
pening during adsorption. Change in model constants suggested better binding
strength for LP over LF, as the charge value was higher for LP. Along with charge,
steric factor was modified further. Very high value of steric factor underestimated
the adsorption in the column suggesting additional adsorption happening in the
column.

Tuned parameters for the best fit when compared with both inverse fit param-
eters and parameters obtained from gradient experiments showed closer match
to later suggesting better ability of gradient experiments to obtain SMA parame-
ters. However, tuned parameters required for accurate predictions were obtained
precisely by adjusting inverse fit parameters. Using inverse fit method over gra-
dient experiments for determination of parameters can save time and resources
spent in experiments. Simulations carried out by SMA-EDM model over-predicted
the experimental data at 0%, 10%, and 50% for 6 mg/ml inlet concentration of LF.
Error at 100% breakthrough was found minimal. For 3 mg/ml concentration, 0%,
10%, and 100% were well predicted whereas 50% showed higher error. Similar
trends were obtained for LP at 4 mg/ml concentration. Accuracy of prediction

using SMA-EDM was clearly lesser than Langmuir-EDM.

EDM-MPM model

Changes made to the model parameters for MPM are shown in Table It was
known from earlier results that the binding strength for LP is higher than LF.
Parameters were adjusted starting from the dissociation constant. k4., was ad-
justed for only LF to ensure there is considerable difference between equilibrium
dissociation constants (kgynpm values LF: 0.9714 and LP: 0.0843). Values of 3 shows
the contribution of salt in desorption constant. Higher the value of 5, lower is
the desorption rate constant which increases the binding strength of the protein

towards the adsorbent. Hence changes were done in /3 value for LF to increase
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Table 5.7: Modified model parameters for single component breakthrough pre-
dictions using SMA isotherm

Fitted SMA
Protein Value Multiplier Modified value Experimental

Parameters

Parameters

LF v 2.093 0.55 1.674 1.7

Feq

2 A 4, 2.

(x1 0,2) 7 0.15 05 66

Ka 0.49 9 4,41 -

(x1073) ' '

o 9.701 0.5 4.851 2.492
LP v 0.696 3 2.08 2.155

Keq —4

(>< 10_2) 1710.2 8 x 10 1.36 2.69

Fa 1.2 2.1 2.52 -

(x107%) ' ' '

o 10.035 0.25 2.51 2.095

it further. Though value of 8 was slightly higher for LP, not much effect on the
binding was observed. On the other hand value of +S contributes into adsorption
kinetics. Higher the value of gamma, higher is the adsorption kinetic rate con-
stant (k,qs0) but at lower salt concentration as in this case, not much effect is seen
in the profiles.

Once the logical adjustments in the parameters were made to predict the break-
through profiles, the curves were compared with other isotherm models for their
accuracy. Simulations carried out using MPM-EDM models were the most accu-
rate predictions among the three cases compared. Breakthrough curves for LF, 3
mg/ml concentration showed accurate prediction of 0%, 10%, and 100%, whereas,
middle part of the curve was not predicted well. For 6 mg/ml, predictions followed
similar trend as Langmuir-EDM model with marginally better accuracy. For LP,
data predicted using MPM-EDM was most accurate among all the isotherms and
breakthrough curve was completely predicted up to 50% saturation and then at
100%.

Experimental results for high protein concentration shows crowding and self
competition of the protein molecules not letting them bind to the matrix. Depic-

tions made with ExProSim:IC were not able to predict the crowding of molecules.
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Table 5.8: Modified model parameters for single component breakthrough pre-
dictions using Langmuir MPM isotherm

Protein Parameter Value Multiplier Modified value
LF @maa . 93.95 1.1 103.345
(mg/ml of resin)
Feso . 0.0817 15 1.225
(ml/mg.min)
Fadso . 0.8098 1 0.8098
(ml/mg.min)
8 0.012 10 0.12
¥(x1073) 6.44 2 12.88
LP Qmax . 132.5 0.9 119.25
(mg/ml of resin)
Fdeso . 0.0296 1 0.0296
(ml/mg.min)
Kadso . 0.1244 1 0.1244
(ml/mg.min)
5 0.2812 1 0.2812
¥(x1073) 0.59 1 0.59

Experiments at higher velocities provided lesser time for the molecules to bind
to the matrix resulting in earlier and faster breakthrough from the column. The
change in the profiles with velocity was closely predicted by ExProSim:IC. The com-
parison between three isotherms is further shown in the form of error estimation
at different concentration of the breakthrough curve. As the comparison is al-
ready discussed in earlier sections and data presented is self explanatory, it is not

discussed in detail with respect to % errors.

5.3.2.6 Multicomponent breakthrough: Experimental

Figure shows experimental and simulated breakthrough curves. During mul-
ticomponent adsorption, both the proteins compete for the sites to adsorb on the
resin, the concentration shown at any point during breakthrough curve is a cu-
mulative concentration of the proteins together. HPLC analysis was performede
to segregate the proteins further into individual profiles. (The standard curves for
LF and LP, and final chromatogram for maximum possible resolution of whey pro-
teins are given in Section[5.3.1). When the DBC values of multicomponent break-

through were compared to single component DBCs, 40% increase was observed
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in DBC of LF; whereas, exact decline in DBC of LP was noted suggesting increase
and decrease in residence times for LF and LP respectively (Table . Q maz for
LF was higher as compared to LP in spite of higher electrophoretic mobility of LP
suggesting displacement phenomenon for LP by LF. Lower rate of adsorption for
LF and higher concentration of LF molecules can be the underlined causes for dis-
placement of LP. It can be seen that the displacement was not prominent enough
to lead to overshoot in local concentration of LP. This might be due to close &, val-

ues for the protein when they interact with the resin in presence of each other.

Table 5.9: Comparison of DBC for single and multicomponent breakthrough ex-
periment

. 0% BT 10% BT Time 10% BV Time DBC,,tipie DBCyingie
Protein . . . . .
(min) (min) (min) (mg/ml resin) (mg/ml resin)
LF 35 60.3 30.25 130.17 93.58
LP 25 49 24,5 93.25 131.73

BT: Breakthrough time, BV: Breakthrough volume, DBC: Dynamic binding capacity

5.3.2.7 Multicomponent breakthrough: simulations

Furthermore, ExProSim:IC was used to predict the breakthrough data using vari-
ous models. In order to capture the effect of competition between the two pro-
teins, the model parameters were further adjusted. For predictions using Lang-
muir isotherm, adjustment of model parameter Q,,.. was based on the DBC ob-
tained from the experimental profile. Values of k; and &, were further adjusted
to fit the curves as shown in Table The adjusted value of k; showed that
desorption was higher for LP than LF. The values were also close to each other
showing their competitive behaviour. Minor difference between the k, values
also explains why the displacement did not lead to overshoot as in Chapter[d] The
modified values for k; for LF was 2-fold higher than LP. Higher value of %, for LF
suggested lower desorption in the column as compared to LP supporting the dis-
placement. The predictability using Langmuir isotherm precisely predicted 10%
onwards, however the start of the breakthrough could not be correctly predicted

for both proteins.
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Table 5.10: Modified parameters for Langmuir-EDM for multicomponent break-

through prediction

Protein Parameter

Value Multiplier Modified Value

Qmax

LF (mg/ml of resin)
(x107* ml/mg.min)

Qmax

Lp (mg/ml of resin)

(x 1073 ml/mg.min)

93.88

1.366

0.49

132.5

5.567

1.2

1.3 122
50 68.3
300 147
0.7 92.75
14 77.94
60 72

SMA-EDM predictions for LP showed early breakthrough and highest error

amongst all the isotherms. However, brealthrough for LF was predicted accu-

rately. The parameters modified are given in Table and the fit is shown in

Figure Charge value was modified for both proteins to account for loss of
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Table 5.11: Modified parameters for SMA-EDM for multicomponent breakthrough

prediction

Protein Parameter

Value Multiplier Modified value

LF

LP

v 1.7
keq 0.0266
ka

(x107% ml/mg.min)

o 2.492
v 2.154
Feq 0.0269
ka

(x107% ml/mg.min)

o 2.095

0.85
1

600
1

0.75

150

1.445
0.0266

294
2.492
1.615

0.0269

180

2.095

Table 5.12: Modified parameters for the MPM-EDM for multicomponent break-

through prediction
Protein Parameter Value Multiplier Modified value
LF @rmaa . 93.95 1.5 140.925
(mg/ml of resin)
k
desO . 0817 90 7.353
(ml/mg.min)
k
acs0 . 8098 1 0.8098
(ml/mg.min)
B 0.012 10 0.12
¥(x1073) 6.44 1 6.44
LP @rmaa . 132.5 0.7 92.75
(mg/ml of resin)
Faeso . 0.0296 500 14.8
(ml/mg.min)
Kaaso . 0.1244 1 0.1244
(ml/mg.min)
s 0.2812 0.6 0.168
y(x1073) 0.59 1 0.59

binding capacity. It can be seen that charge value for LP was decreased by 25%

as compared to 15% for LF. The modified values of forward rate constants suggest

that the adsorption rate for LF was much higher (x~8-fold) than that of LP which

could displace LP easily even if it was electrophoretically favoured for stronger

interaction with resin. Higher uptake rate could be an effect of high inlet con-

centration of LF as compared to LP as elucidated by Langmuir-EDM predictions.
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Table 5.13: Comparison of DBC from multiple component breakthrough curve pre-
dictions for different isotherm

Protein Isotherm 0% BT (min) 10% BT (min) 10% BT volume (ml) DBC (mg/ml) % variation

Langmuir 35 63.45 31.725 136.56 3.66%
LF SMA 29 61.64 30.82 132.64 0.69%
MPM 50.5 61.8 30.9 132.99 0.95%
LP Langmuir 25 53.7 26.85 102.63 9.66%
SMA 40.8 46.7 23.35 89.16 -4.73%
MPM 39 54.2 27.1 103.59 10.69%

Predictions using MPM isotherm were similar to Langmuir isotherm. Modified
parameters showed lesser desorption and higher adsorption rate for LF over LP
supporting the displacement phenomena. [ values were also changes showing
increase in strength for LF and decrease in strength for LP. This also supports dis-
placement of LP by LF. Early saturation was observed for LF; however, L break-
through was predicted with accuracy. The details for errors are given in Table
in Appendix B. As Langmuir and MPM are necessarily based on similar con-
cepts, the salt factor included for MPM gave slight variation in the predictions.
On the other hand, SMA based on mass action principle and steric hindrance of
molecules, gave higher error in predictions. This might be due to sensitivity of
charge factor because of exponential function. A better way of adjusting parame-
ters for SMA may be required to get better fit. Perhaps a simple least square error
method can give better estimate of SMA constants.

To compare all three isotherms, DBC was determined and compared with ex-
perimental data. The DBCs as shown in Table matched well with the values
obtained from multicomponent experimental data from Table[5.9} DBC values pre-
dicted by Langmuir were the farthest for LF. SMA and MPM gave accurate predic-
tions, however, MPM showed higher error throughout the further curve. For LP,
errors for DBC were high for all the isotherms. Even though, SMA showed early
breakthrough as compared to others, it gave best predictions of DBC. Other two
isotherms on the other hand, predicted rest of the curve very accurately. This can

also be seen from RMSE and CoD values for the curves as given in Table
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5.4 Conclusion

This chapter provides a detailed analysis of adsorption and breakthrough studies
for separation of two minor whey proteins, LF and LP with experiments and pro-
cess simulations. Basic adsorption data was used to determine model constants by
inverse fitting which could efficiently predict the experimental breakthrough for
single component systems for both LF and LP. Inverse fit method was found to be
useful for estimating parameters required for simulations which is an indicative
of reduction in the number of experiments required to obtain model parameters.
Single component experimental breakthrough curves showed expected trend of
earlier breakthrough with increase in experimental factors like concentration at
inlet and process flow rate. All isotherms were able to predict the experimental
data for most of the curves at lower velocities for both proteins. However, desorp-
tion kinetics was not predicted accurately for higher velocities and concentration
of LF. 1t is ideally expected that at higher velocities, the predictions should be
better for EDM, however this anomaly suggested necessity of additional diffusion
considerations for more accuracy. MPM-EDM predictions were marginally more
accurate when compared with Langmuir-EDM, SMA-EDM, considering there were
more parameters to fit the data. For single component systems, breakthrough
predictions were accurate for Langmuir-EDM and MPM-EDM with latter being
marginally more precise. SMA-EDM isotherm predictions over-predicted the ex-
perimental data with higher error percentage midway of the curve. It was realised
that adjustments in the charge values was crucial to get accurate prediction due to
its sensitivity. Perhaps, the experiments from which the charge values are deter-
mined can be improved. The sensitivity of equilibrium constant was found very
low while adjustment. If the constants were adjusted by least squares method,
this would have been easily overlooked.

Furthermore, multicomponent experiments showed clear displacement of LP
by LF, reducing DBC of LP by ~ 30% with equivalent increment for LF. This was
unexpected as the electrophoretic mobility for LP was higher at operating pH. In
case of multicomponent simulations, LF breakthrough was completely predicted

by SMA, however, for LP SMA could only predict the onset and DBC well. Lang-
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muir and MPM isotherms predicted the LP isotherm better than SMA. Objective
here was to find an isotherm which can predict the results for the whole system,
however, none of the isotherms:EDM combination predicted all the protein pro-
files accurately at different processing conditions. This serves as a limitation for
choosing a single isotherm for single system. A combination of isotherms can
serve the purpose, however, that will need exhaustive experimental validation.
With the current results, preliminary predictions made with ExProSim:IC can help
in assessing the protein binding inside the column, its competitive ability, and na-
ture of desorption. The chapter also serves as a template for making strategies for

calibration of parameters.
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Chapter 6

Crude whey processing

6.1 Introduction

It has been established that ExProSim:IC is an efficient tool for for predicting out-
comes of single and multicomponent protein standards. Further to check the us-
ability of the tool, it is important to validate it on crude streams. Such an exer-
cise will help to seek the areas of improvements if any. Furthermore, for a com-
plex mixture such as whey with multiple proteins of industrial importance, un-
derstanding how proteins behave in presence of known and unknown proteins is
essential for further separation. Earlier chapters have discussed in detail adsorp-
tion characteristics of major and minor proteins on anion and cation exchange
chromatography respectively and it was observed that when the streams are mul-
ticomponent, the adsorption of proteins is affected by the competition with each
other which can potentially affect the desired separation.

This chapter discusses experimental breakthrough studies and respective sim-
ulations of crude industrial sample of WPC. Learnings from earlier chapters were

carried forward here to showcase the importance of step-wise model validation.
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6.2 Methodology

6.2.1 Experimental

6.2.1.1 Materials

Respective buffer solutions were prepared as given in Chapter [4, where system
was established for major proteins. Crude WPC samples were obtained from two
different industries. Tatua cooperative dairy company, Morrinville, New Zealand
and Warrnambool cheese and butter factory, central Victoria. HiTrap(2.5x0.7 cm)
was used for ion exchange studies. Materials for UV spectrophotomentry, HPLC,

SDS-PAGE, and elemental analysis are described in detail in Chapter|3]

6.2.1.2 Methods
6.2.1.3 Sample analysis
Crude sample assessment

Both samples were assessed qualitatively as well as quantitatively for the total
protein content and individual protein fractions. Total protein content was de-
termined using elemental analyser. One of the two samples which performed
better in the analysis was carried forward for further studies. All other inter-
mediate protein samples were assessed on UV-Vis spectrophotometer for finding

their concentration based on standard curves provided in Figure

HPLC

Firstly, standard curves for all the proteins were found out at optimised method
by injecting different concentrations of standard protein samples (0-1 mg/ml).
Method 2 was further used to find the unknown concentrations of the samples ob-
tained from WPC breakthrough curve. Purity and concentration of sample peaks
obtained from chromatography experiments was found out by running the sam-

ples on HPLC. Details for HPLC method 2 are given in Chapter[4]
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SDS-PAGE

SDS-PAGE analysis was performed for feed analysis. Standard proteins were in-
jected in the PAGE along with WPC samples from both industries. Electrophoresis
runs were carried out for 120 minutes at 100 mv and further stained by silver
staining method for visualisation of the protein bands. All the sample concentra-
tions for SDS-PAGE were measured on UV-Vis spectrophotometer first and then
were diluted to keep the concentration per well to 3-5 ug for consistent staining

profile.

6.2.1.4 Chromatography

Column physical parameters such as porosity, ionic capacity, vy were found out us-
ing method given in Section Column evaluation was performed by injecting

2 % acetone at 20 cm/hr velocity and the peak was analysed for asymmetry.

Sample preparation

WPC sample for breakthrough was prepared by dissolving known amount of WPC
powder in phosphate buffer at pH 6.9. As the samples were turbid visibly, they
were centrifuged at 10000 rpm and then filtered through a 0.45 um filter in or-
der to remove the suspended solids if any. UV spectrophotometric analysis was

carried out before and after clarification to find out the losses.

Breakthrough experiment

Breakthrough curve for crude whey protein mixture was determined by injecting
4 mg/ml of WPC continuously onto HiTrap CaptoQ column. The breakthrough
curve was performed for anion exchange as the quantity of major proteins was
found to be way higher than minor proteins. As achieving breakthrough for mi-
nor proteins was time consuming considering their low concentration in the WPC,
sample analysis was focused only on major proteins. Breakthough was ended
when WPC sample showed a saturation at the column outlet. Samples were taken
throughout the breakthrough and were analysed on HPLC for finding out individ-

ual protein concentrations.
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6.3 Results and discussion

6.3.1 Basic analysis

Crude sample assessment

WPC samples obtained from Tatua and Warrnambool are compared here. Elemen-
tal analysis of crude samples showed 73.95% and 74.21% total protein based on to-
tal nitrogen content for Tatua and Warrnambool respectively. SDS-PAGE of both

crudes compared against the standard proteins is shown in Figure
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Figure 6.1: Comparison of two WPC crude samples with standard proteins; 1: BRM,
2: BSA std, 3: BLG std, 4: LF std, 5: ALA std, 6: LP std, 7: Tatua WPC, 8: Warrnambool

WPC

It can be seen that the two WPC crude samples compare well with each other
with prominent concentration of BLG in both of them. Low intensity bands of
ALA and BSA were observed in both the samples and they show same impurity
profile as well. This means that the choice of crude sample will not make much
difference. As the protein standards for minor proteins were obtained from Tatua

Dairy Cooperative Company, it was decided to use Tatua WPC sample for further

studies.
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Column evaluation

Column characteristics such as; porosity and ionic capacity for all the columns
were determined in the earlier chapters. As it is important to check columns for
their consistency of packing every time they are run after storage, they were eval-
uated to ensure desired performance [265]. Column evaluation for HiTrap column
was performed and the results showed asymmetry factor of 0.93 which was ac-

ceptable to go ahead for breakthrough experiments.

HPLC analysis

Sample analysis of five whey proteins from WPC needed a robust method which
can handle varying concentration of proteins and have a sensitivity to detect minute
concentrations as well. Table[4.2)in Chapter[4]shows the optimised method for res-
olution of all the five whey proteins. Figure[6.2|demonstrates that the proteins are
well separated from each other and can be analysed for their purity without inter-
ference from other proteins. Standard curves for individual proteins are shown in
Figure Equations from the standard curves were linear in nature and regres-
sion coefficient of >0.99 shows a promising fit. These equations were further used
for finding the unknown concentrations of samples obtained from breakthrough

experiment.
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Figure 6.2: Optimised HPLC method for analysis of five whey proteins
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6.3.2 WPC crude breakthrough: Experimental

Separated experimental breakthrough curves are shown in Figure 6.4/ along with
the zoomed Figure for better view. Early breakthrough were obtained for
BSA and ALA, followed by delayed breakthrough for BLG. It can be said that dimer
of BLG might be responsible for its higher binding leading to late breakthrough.
LP and LF were found to elute from the 15 CV showing no binding to the resin at
operating pH 6.9. This is obvious as the charge on minor proteins is same as the
charge on the resin. Concentration of unbound LF and LP was very low hence they

are not considered here for breakthrough purpose.
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Figure 6.3: Comparison of breakthrough curve samples at different time points of
the breakthrough curve for WPC

Figure[6.3|shows HPLC analysis of the samples taken at onset, 10%, 50%, and

100% of breakthrough curve. At onset, none of the major protein components
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could be seen, whereas LF and LP were observed in minute quantities. At 10%,
increase in both BSA and ALA were observed, whereas BLG was still in adsorption
phase. At 50%, BLG slightly showed it presence at the outlet, whereas ALA and
BSA were almost saturated by then. At end point of breakthrough, all the proteins
were found at constant concentration, indicating complete saturation of the bed.
Impurity was found consistently at retention time of 9.2 min. As it was insignif-
icant for objectives of this thesis and minute concentration leading to unlikely
interference with proteins, the impurity was left unidentified.

Experimental analysis of breakthrough curve for WPC showed similar behaviour
to that of breakthrough data obtained for mixture of major proteins as given in
Section Figure |6.4| compares the two experimental data-sets. The only dif-
ference in the experimental conditions were concentrations of ALA and BSA be-
ing very low in WPC as compared to 2 mg/ml each in case of standard protein
breakthrough. BLG concentration was comparable in both cases with WPC hav-
ing slightly higher BLG concentration. When a protein is low in concentration,
ideally it should take longer time to reach breakthrough, but in this case it was
seen that breakthrough for ALA and BLG is achieved earlier as compared to stud-
ies with standards. This behaviour can be attributed to very high concentration
of BLG in the medium which may interfere with ALA and BSA binding, leading
to their early displacement out of the column. It is also observed tat BLG break-
through from WPC was extended farther in spite of higher concentration as com-
pared BLG breakthrough from standard proteins. Ideally, with higher concentra-
tion, early breakthrough should be achieved. In case of standard proteins, there
was a healthy competition of BLG from ALA and BSA as they were in high concen-
tration, whereas in case of WPC, very less competition was offered for BLG towards
binding sites. This might have lead to higher breakthrough time. Breakthrough
profile for the mixture of standards and WPC were compared further. WPC break-
through showed early onset of the breakthrough. This can be attributed to other
minor impurities in WPC which may be responsible for changing the dynamics of
binding in the column as well as obscuring the UV absorbance of the experimen-
tal breakthrough curve [266]. In addition to this, early exit of ALA and BLG would

have contributed in the faster concentration front at the column outlet.
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Figure 6.4: Comparison of experimental multi component breakthrough curves
for WPC to that of standard proteins. WPC breakthrough; BSA -o-, BLG ---, ALA
-/\- and combined - x-. Mixture of major protein standards; BSA -o-, BLG ---, ALA
-A-and combined - x-. b) Zoomed version of the same data for better view

6.3.3 Breakthrough simulations with ExProSim:IC

Furthermore, ExProSim:IC was implemented for prediction of the curves. Adjusted
model parameters from the multicomponent breakthrough of major proteins on

Capto Q were used to simulate the results. As the model constants have already
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predicted breakthrough for standard proteins, it was expected that no further
changes will be required in them in order to predict the experimental outcomes.
When the simulations were performed, the breakthrough showed a delayed pro-
file for ALA and BSA, due to such a low concentration of two proteins (Data not
shown here). This is unlike the experimental data. Hence, minor modifications
were done in the model constants to fit the data. The fitted simulations for all
the model combinations are shown in Figure Errors between experimental
and simulated breakthrough for all isotherms is shown in Table The curve
to curve error is presented in Table

EDM-Langmuir model

It can be seen in Table [6.1|that only parameters which were changed from model
constants from Table for simulating the experimental data using Langmuir
model were the binding capacities. As accurate breakthrough was not obtained for
all 3 proteins, focus was given for maintaining accuracy for the slowest desorbing
protein, BLG. As observed from Figure [6.5), the onset of the breakthrough for ALA
and BLG was predicted very accurately, whereas for BSA it was over-predicted. It
can be seen that fit for BLG was accurate upto saturation. Ideally the parameters
derived from multicomponent breakthrough of standard acidic proteins should
have been able to predict the breakthrough, however adjustments in the binding
capacities were required to achieve the best fits. Binding capacity for BSA and
ALA were decreased by 55% and 80% respectively in order to fit to the curve. It
is realised that high competition due to excess amount of the BLG, might have
lead to decreased binding capacities which was also supported by simulations.
This is because of difference in the concentrations profiles between two experi-
ments. Overall desorption profiles for all the proteins were predicted correctly as
no change in the adsorption or desorption profile was seen as compared to major
protein standards breakthrough. Overshoot of BSA and ALA due to displacement

were also predicted but high error was observed in the overshoot part.
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Figure 6.5: Comparison of experimental vs simulated breakthrough for WPC
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EDM-MPM model

The modified parameters from multicomponent breakthrough simulations for ma-

jor proteins were used for carrying out simulations (Table[4.21), however predic-

179



Table 6.1: Modified model parameters for WPC breakthrough simulation using
EDM:Langmuir model for Capto Q anion exchanger

Protein Constant Value Multiplier Modified value
BSA @maa 83.72  0.35 29.302

(mg/ml of resin)

kq

(><10_6M) 5.848 1 5.848

k1

(x1073ml/mg.min) 756 1 756
BLG Qmaz 187.64 1 187.64

(mg/ml of resin)

kq

(x 10_6M) 15934 1 15.934

k1

(x1072 ml/mg.min) 411 1 411
ALA Qrmaz 62.73 0.35 21.96

(mg/ml of resin)

kq

(x 10*6M) 20.52 1 20.52

1 781 1 781

(x107% ml/mg.min)

tions were not accurate. Slight fine tuning of parameters was required with the
binding capacity parameters such as Q.. and (5 as shown in Table For BSA
and ALA, MPM model showed better performance in predicting the experimen-
tal data as compared to Langmuir isotherm. The overshoots were predicted bet-
ter showing displacement. Breakthrough points were accurately predicted for all
three proteins. On the other hand, breakthrough of BLG was very well predicted
up to 20% concentration and then saturated later than experimental data. Figure
shows the simulated data. Changes in )., values were expected due to com-
petition of the proteins with each other. Large decrease in binding capacities for
ALA were observed. Rate of adsorption of BLG was adjusted further to meet the
experimental curve. This shows higher affinity of BLG towards the resin and a ten-
dency to occupy sites available as fast as possible which might have lead to early
exit of BSA and ALA. Slight decrease of binding capacity of BLG was also observed.
This might be attributed to presence of impurities in the medium. Even though

electrokinetically ALA has most charges amongst three, early breakthrough was
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Table 6.2: Modified model parameters for multicomponent breakthrough predic-
tions using Langmuir MPM isotherm

Protein Parameter

Value Multiplier Modified value

BSA Qrmaz . 89.53 0.30 26.9
(mg/mlofresin)
Faeso . 1.135 1 1.135
(ml/mg.min)
k
ads0 . 1.606 1 1.606
(ml/mg.min)
A3 0.029 0.61 0.0177
~ 1.457 1 1.457
Dor(x1072) 23.95 1 23.95
BLG Qrmaz . 145.32 0.85 123.52
(mg/mlofresin)
Faeso . 1.818 1 1.818
(ml/mg.min)
Fadso ‘ 0.121 8 0.968
(ml/mg.min)
3 0.64 1 0.64
v 1.386 1 1.386
D,,(x107?) 14.52 1 14.52
ALA Qrmaz . 101.5 0.25 25.375
(mg/mlofresin)
Faeso . 4,93 1 4.93
(ml/mg.min)
Fadso 4 0.258 0.24 0.0516
(ml/mg.min)
5 0.305 0.42 0.128
~ 1.802 1 1.802
D, (x107?) 9.63 1 9.63

a result of high concentration of BLG in the medium. As the value of 5 signifies

strength of binding to the resin, values for the best fit were found to be lower

for both ALA and BSA, whereas /3 for BLG was kept the same suggesting stronger

interactions.

EDM-SMA model Furthermore, multicomponent breakthrough was predicted
by performing simulations using EDM and SMA isotherm by taking parameters
from Table Modified parameters for SMA are shown in Table Binding

capacity is generally signified by charge value in SMA isotherm. Reduction in the

181



Table 6.3: Modified model parameters for single component multicomponent
breakthrough predictions using SMA isotherm

Fitted

Protein Value Multiplier Modified value
Parameters

BSA v 0.734 0.95 0.697
keq (x1072)  288.9 1.5 385
o 0.9715 1 0.9715

BLG v 1.407 1 1.407
keg (x1072)  34.25 1.2 41.1
o 5.612 1 5.612

ALA v 0.4251 0.90 0.382
keq (x1072) 78 1.2 93.6
o 4.015 1 4.015

charge values of ALA and BSA were required for fitting the experimental data.
Charge values of proteins suggest displacement of ALA and BSA by BLG. Value
of k., shows the strength of the binding. Higher the value of k.,, weaker is the
binding. BSA showed highest value for k., indicating looser binding as compared
to other two proteins. Furthermore, ALA showed the comparable value of %, to
that of BLG, showing apparently strong binding, which is true electrokinetically
but lower concentration in the overall mixture along with predominant existence
of BLG dimer having high charges on it, might be the cause of resultant displace-

ment.

6.4 Conclusion

Crude industrial stream in the form of whey protein concentrate (WPC) was stud-
ied for breakthrough analysis. WPC sample contained 76% protein constituting
BLG (79%), followed by ALA (11%) and BSA (7%), and traces of minor proteins.
The sample chosen was different in concentration profiles as compared to stan-
dard experiments which were performed in earlier chapters. Breakthrough stud-
ies provided for further exploration for usability of ExProSim:IC. Experimental data
for breakthrough of major proteins in WPC, showed a similar behaviour to that of
major protein breakthrough in Chapter[4] It was observed that ALA and BSA were
displaced by BLG due to its very high concentration with respect to the competi-

tors for binding. In case of experiments with standards, the concentrations of
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proteins were equivalent. In WPC, high concentration of BLG overpowered the
binding sites in the resins leading to very early breakthrough for both ALA and
BSA.

Knowledge gained from earlier experimental validation was implemented here.
Parameters obtained from major protein breakthrough were used for predicting
experimental data. It was expected that no further adjustments will be required
for successful predictions; however, slight change in the parameters was required
for getting the best fit. All three protein breakthroughs were not well predicted
by any of the isotherms, hence it was decided to focus on accuracy of the slow-
est and major component, BLG. Decent fits for other two proteins were obtained
by this method. EDM-Langmuir well predicted the breakthrough onset and DBCs;
however, the error throughout the curve kept was high for both ALA and BSA.
The overshoot was not predicted well by Langmuir isotherm. EDM-MPM model
was successful in predicting the overshoot for ALA and BSA but the desorption
profiles were slightly delayed. EDM-SMA performed best in predicting slowest of
the breakthrough, however, ALA and BSA overshoots were not predicted. All the
thermodynamic models gave a clear idea about the adsorption and desorption
patterns in the column and predicted DBCs of the proteins in WPC suggesting us-
ability of ExProSim:IC in process simulations. The results were good for the models
applied here but use of EDM can be a limitation when handling complex systems,

as additional diffusional considerations are required.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The objective of this study was to formulate a preliminary simulation tool which
can facilitate assessment of adsorption and desorption phenomena for further im-
plementation into process development. Keeping in mind the scarcity of thermo-
dynamic data for proteins, important aim was to seek for methods to determine
thermodynamic model constants for protein molecules and understand their im-
portance in implementation of the models for process development simulations.
To achieve this objective, ExProSim:IC was developed in MATLAB 2014b incorporat-
ing EDM and three thermodynamic models; Langmuir, SMA, and MPM. In order
to assess usability of the tool for design applications, it was necessary to verify its
functionality and validate it. The tool was verified for its functionality by checking
performance of range of model constants through a tool verification exercise. It
was then verified against a well established tool, CADET for workability. Addition-
ally, mesh independency studies were carried out to ensure its accuracy. Further,
literature data was chosen for validation to assess effectiveness of the tool with
variation in multiple process parameters. A potential experimental system, whey
proteins was chosen further for experimental validation. Objective was to under-
stand experimental framework required for model constant determination and
their calibration. To understand and determine model parameters, basic adsorp-
tion and kinetics experiments were performed on major and minor whey proteins.

Data generated from these experiments was used to find model constants by in-
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verse curve fitting. A simple data fitting module was also developed in the tool.
To further understand the physical significance of the model parameters, they
were used in ExProSim:IC for simulation of breakthrough curves for three systems
namely; standards of major whey protein on cation exchange, standards of ma-
jor whey proteins on anion exchange, and standards of minor whey proteins on
cation exchange. To apply the learnings from earlier systems, a complex indus-
trial system of whey protein concentrate (WPC) was chosen to assess the appli-
cability of the tool on crude systems. For each of the simulation and respective
change of model constants, careful observations were made specifically related
to protein behaviour in the column. Specific findings from the entire study are as

follows:

Tool verification

Exercise of tool verification helped in understanding the model constants better.
Basic functionality of the tool was verified for its further use, however, it required
an exhaustive validation to gain confidence on the successful predictability which
was further attempted in the subsequent chapters. Summary of insights from tool

verification is as follows:

e Profiles obtained for all the model constants were according to the physical
significance of the constants. All the simulations were highly dependent on
the concentration ranges chosen based on the systems considered for every
isotherm. No quantitative conclusion could be derived from this exercise
and the exercise was restricted to understanding qualitative changes in the

breakthrough curves with respect to changes in the model constants.

e Assessment of model constants for Langmuir isotherm showed expected in-
crease of binding capacity with increase in Q,,q., k1. Binding capacity was
found to decrease with increase in k4. The slope of the breakthrough was
affected by k; but definite effect could not be derived from such preliminary

simulations.

e For SMA constants, binding of the protein was found to increase with in-

crease in v and A, however it was found to decrease with increase in k.,

185



and o. Large variations in the binding capacity were observed for minute
changes in the charge value hence the adjustments for it should be done
carefully. No conclusion could be derived for the shape of the curve as none

of the model constants showed any effect on the shape in the chosen ranges.

e For MPM isotherm, k450 and /3 showed a positive correlation with binding
capacity. Increase in k4.so showed decrease in binding of protein. v showed
a significant effect on the binding capacity which is often overlooked for
ion exchange operations. It is a property of a protein and is highly system
dependent. 3 was found to be analogous to v in SMA and special attention

should be given for their calibration.

e Major observation from comparison with CADET was that, ExProSim:IC sim-
ulations showed high errors for all preliminary simulations. Obvious differ-
ence of GRM against EDM might also lead to this error. As predictions from
CADET are accurate due to its exhaustive validation, model constants were
modified based on knowledge gained from model constants assessment ex-
ercise to achieve the best fit. As the modifications were done by trial and
error, it can take additional efforts to obtain a best fit. Even though results
were comparable for both tools after modifications, it is just a representa-

tive example and no comparative statements can be derived from this.

e Mesh independency exercise helped in finding meshing parameters for a
convergent solution. It was realised that keeping the time interval and axial
interval below the optimised value helped in consistently getting a conver-

gent solution.

Literature based validation

Understanding gained from tool verification was efficiently used to vary the model
constants to get the best fit. Literature based validation presented further proof
that ExProSim:IC can help generate system specific model constants which can pre-
dict the data to reasonable accuracy. Summary of insights from literature based

validation is as follows;
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e Best fit was decided based on physical and chemical significance of the sim-
ulated curve from the experimental curve. ’point to point’ comparison of
the curves was found to be more efficient in order to relate the data to the
experimental model constants. ’Curve to curve’ error was presented but it

could not give that give physical comparison of the data.

e For Langmuir model, single and multicomponent breakthrough for ALA and
BLG were well predicted. Secondly, IgG breakthrough was predicted at dif-
ferent inlet concentrations showing sensitivity of the tool towards change
in concentration. Simulations for BSA and Lysozyme breakthrough curves
were better fits than the simulations given in the paper showing superiority

of prediction by ExProSim:IC.

e For SMA isotherm, predictions performed for different salt concentrations
matched considerably well (error<5%) with the experimental data showing

ability of the tool to predict at different ionic strengths.

e For MPM model, various protein molecules such as IgG, transferrin, and in-
sulin which have different hydrophobicities were used for validation at dif-
ferent salt concentrations and ExProSim:IC showed accurate results to that

of experimental data (error<3%).

e The variation in parameters was performed strategically for all the simula-
tion runs to get the fit to experimental data. The tool established reason-
able accuracy for all three isotherm models for different proteins at various
processing conditions such as; flow velocity, column configuration, protein
molecular weights (ranging from 6 kDa to 150 kDa), and buffer salt concen-

trations.

Experimental validation

For experimental validation of the tool, major proteins; BSA, ALA, and BLG were
studied for adsorption characteristics and breakthrough on both anion and cation
exchange chromatography, whereas minor proteins were studied for cation ex-

change chromatography. This experimental system provided experimental vali-
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dation of 5 different proteins of range of physical and chemical properties. Sig-

nificant findings of the experimental validation are as follows:

Summary from experiments

e For cation exchange, apparently higher binding was found for BSA in spite
of its low electrokinetic potential. This was due to higher hydrophobic-
ity at pH 4.5 leading to slower release from the column as observed in the
breakthrough. On the other hand, it was not possible to include ALA in the
cation exchange chromatography process because it lay on opposite side
of the binding spectrum at pH 4.5. This suggested that cation exchange
is unfavourable for major protein separation. No saturation was seen for
BSA breakthrough due to continuous release from the resin due to loose
hydrophobic interactions, whereas BLG showed better binding and break-

through kinetics due to strong ionic interactions.

e For anion exchange chromatography binding of protein was found in the
order of their electrokinetic potential suggesting interactions were mostly
ionic. This was also supported by saturation obtained in individual break-
through curves suggesting ionic adsorption-desorption behaviour of pro-
teins. Multicomponent breakthrough showed slight displacement of BSA
and ALA by BLG pertaining to the presence of dimer of BLG at pH 6.9.

e Anion exchange chromatography was found superior for separation of ma-
jor proteins considering the operating pH for crude whey protein stream
is ~ 6-7 and overall binding characteristics explained. As anion exchange
was finalised for major proteins, minor proteins were studied by cation ex-
change chromatography. Adsorption isotherm characteristics showed higher

binding capacity for LP due to higher ionicity at pH 6.9.

e It was observed that crude whey breakthrough showed similar behaviour
to that of major proteins breakthrough except the displacement of ALA and
BSA was higher as reflected in the early rise and overshoot for both. This
was attributed to very high concentration of BLG in the WPC which pre-

dominantly occupied all the sites possible till saturation pushing the low
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concentration protein molecules to saturate earlier than expected.

Simulations

e Parameter estimation module from ExProSim:IC was successfully used to de-
termine the model constants. For all the proteins in discussion, initial guesses
from inverse fit method were successfully used for simulations eliminating
the need of carrying out elution gradient experiments for SMA and MPM
models. Simulations carried out by making adjustments in parameters helped

understand their effect on experimental data.

e For cation exchange of major proteins, most accurate predictions by Ex-
ProSim:IC for BSA was given by MPM isotherm for both the proteins for single
component isotherm, whereas rest of them could predict the breakthrough
up to 50%. For a multicomponent breakthrough BLG was found to be dis-
placed by BSA. Implementation of EDM-MPM model gave best prediction
amongst three isotherms followed by SMA and Langmuir. Better perfor-
mance of MPM can be attributed to consideration of both hydrophobic as
well as salt interactions which play role in case of these two proteins as the
operating pH is very close to the isoelectric points of the proteins. This
suggested that the choice of a model may be dependent on protein-resin

properties.

e Foranion exchange of major proteins, all three thermodynamic models were
used effectively for the predictions with SMA being slightly superior at pre-
dicting breakthrough curves due to highly ionic interactions. This can be
attributed to nature of SMA where exchange of charged proteins with salt
ions is primarily modelled, whereas for Langmuir and MPM the model is
based on proteins binding on the vacant sites rather than actual exchange
of ions. This observation was also made in case of cation exchange for minor
proteins. Having mostly ionic interactions, SMA showed better predictabil-
ity for both single and multicomponent experimental data. However, v was
found to be highly sensitive for the model and its adjustment can be critical

to get correct fit. This also suggested that there is scope in the improve-
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ment for experimental determination of v. It can further be said that MPM
was more useful when hydrophobic interactions were considerable in the

binding, otherwise predictions were almost similar to Langmuir isotherm.

e For crude WPC, simulated breakthrough curves could correctly predict the
breakthrough points for all the proteins using all combinations of the mod-
els. This can help in finding out dynamic binding capacities and retention
patterns of the proteins in the column. It was observed that slower ionic in-
teractions such as BLG adsorption-desorption, was predicted well by EDM-
SMA as the isotherm is designed based on exchange of salt ions for protein

molecules.

e DBC values were successfully predicted for all the simulations in this work,
however shape of the curve was often not predicted to accuracy. DBC values
can be helpful in designing the experiments, however as the resin gets older,
it will be difficult to reply on same set of simulation model constants which

were developed for fresh resin.

e It was concluded from number of simulations that the end of the break-
through was not predicted consistently using any of the isotherms. It can be
said that use of EDM might not be suitable for predicting desorption regime
of the curve as more diffusion considerations may be required. This was
also realised while simulating results for a crude systems such as WPC. This
suggested the need of further extensibility of the tool to incorporate POR
and GRM.

7.2 Future work

The thesis provides a basic framework of implementation of modelling and sim-
ulations for ion exchange chromatography. Nevertheless, there are areas of im-

provement for further validation and extensibility of the tool.
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Tool improvement

A preliminary exercise of tool verification is presented here. In order to improve
the code to handle complex systems, an exhaustive code to code validation can be
attempted with respect to several well established tools such as CADET, ChromX,
and Chromulator. In order to derive more understanding on model constants and
their interrelations if any, a DoE exercise can be run in a tool verification process,
where all the parameters are varied at together. Age of the resin can also be in-
cluded as a variable. This will give optimised thermodynamic constants which can
be robust for simulations at any stage of the process. Even if the quantitative mea-
surements are presented for the errors between simulations and experiments,
model constant modifications are based on educated trial and error guesses, and
error minimisation. Further improvement is required to incorporate quantitative
measurement of effect of model constants on protein profiles. It can be facilitated
by exhaustive simulations for a system of protein and resin.

Experimental validation using ExProSim:IC from chapter [6|showcased that the
accuracy of the tool reduced to <90% for 50% of the curve while predicting the
breakthrough for crude industrial stream. It will be extremely helpful to validate
the tool with other complex feed streams to gain more reliability. Models im-
plemented in current structure of ExProSim:IC, may not describe the underlined
physical phenomena for complex industrial streams with slower diffusion. Fur-
ther extensibility of the tool towards incorporating mass transfer models such as;
POR, GRM can be explored. While ExProSim:IC successfully predicts breakthrough
data, it should be extended to loading and elution studies for peak prediction. The
peak prediction should be aimed at varying lengths of linear gradients, multistep
isocratic gradients, or a combination of both. Following peak prediction, systems
must be chosen or established for validation of peak prediction for different scales
of chromatography to ensure scalability of the tool [46]. Experiments and simu-
lations in this thesis are from 1 ml scale. Further studies on length-wise and dia-
metrical scale up can be taken up to check the predictability at higher flow rates
and loading conditions.

Experiments and simulations in this thesis are carried out at constant pH. As

pH is a critical parameter for ion exchange chromatography, incorporating pH
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based model [267] and validating them will be beneficial for process optimisation

at lab scale.

Tool integration

Importance of DoE and QbD in chromatography process development is mentioned
in chapter[2} Following peak prediction, ExProSim:IC can be implemented for de-
sign space characterisation [120] and process optimisation [114], however for in-
tegration with DoE and QbD tools, will need additional sensitivity and uncertainty
analysis [130]. Recently, statistical tools have been applied in hyphenation of
chromatography operations with analytical techniques for online monitoring [268].
Simulation tools based on mechanistic models are gaining popularity in this field.
Implementation of simulation tools such as ExProSim:IC, can speed up online trou-
bleshooting process. Furthermore, integration with other modelling platforms
such as CFD can give additional insights of the process and equipment design for
chromatography. A lot of improvements related to enrichment of solvers, model
selection based on process requirements, and data processing are required in the

tool before it can be integrated with high end techniques like PAT and CFD.
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Appendix A

A.1 Mass transfer equations

A.1.1 General Rate Model

801» (901 8201‘ 3
T2 D, — _ 21— (c; — ¢y 5 Al
€e at Uax + €y, an Tp( Ee)kext,z(cz Cp,Z) ( )

Where, r is the radius of resin particle. k.,:; corresponds to the fluid to particle
mass transfer coefficient, and D, corresponds to overall dispersion coefficient.
Factor % accounts for the surface to volume ratio of a spherical bead of the resin
particle. Furthermore, the mass transfer in the stationary phase is controlled by

pore diffusion which can be explained by following equation,

(A.2)

anﬂ' - D ‘<82Cp7i gacm) - (1 — Ep)%
ot — T T or ¢, Ot

Where, ¢, ; is the concentration of protein in the pores, D. ;¢ ; represents the effec-
tive particle diffusion coefficient which accounts for both D,, ; and D, ; which are

particle and surface diffusion coefficients where, ¢., gives equilibrium stationary

phase concentration.

aQEq,i

Defri = €pDpi+ (1 — ep)Ds,i By,

(A.3)

! Abbreviations and symbols for appendix A is covered in nomenclature section. Any additional
notations are mentioned below the respective equations
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The Initial conditions are as follows:

Ci(oam) = Cg
¢pi(0,2) =0
q:(0,2) =0

(for0 <z <L) (A4)

In addition to this, two sets of boundary conditions are required, one at the col-
umn inlet and the other at the column outlet. Boundary conditions for equation

are, at the column inlet where x = 0

(%i

u.cp; — upc) = —€,Dp, for t=0 (A5)
: ox

Where, w is velocity at zero time, ¢ ; is feed concentration, and ¢} is initial con-
centration at inlet.

dpy=c) for 0<t<t, (A.6)

7

C/f,i =0 for t,<t (A7)
condition at the column outlet at x=L is,

0 C;
ox

for t<=0 (A.8)

Boundary conditions for the second equation|A.2]are;

86 zit,r
Deff- g’l“ - kext,i [Ci - Cp,i(t,r)]
for t>0 , r=r, (A9)
7 t7
acp’—(r):() for t>0 , r=0 (A.10)

or
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A.1.2 Pore Diffusion Model

e Je; 0?c;
€ + us— €eDL% — (1 —e)kiay(ci — Cpy) (A.11)
86 % 8_1‘ 3
v (1 —ep)a—i = kit (Cps — Cpi) (A.12)

where, a,, is area of particle, ¢, ; and ¢; denote average concentrations in the stag-
nant fluid phase contained in the pores and in the solid phase respectively, and
k; is an overall mass transfer coefficient. The initial and boundary conditions are
similar to GR model. The axial dispersion is further calculated through Gunn cor-

relation [269],

Dy, ReSc )(1—p2)+( ReSc )) p(1 = p)?

66@ - 403(1 — € 403(1 — €

" —40211(1 — ¢,) €e (A13)
p(1 —p)ReSc | yReSc '

where, p = 0.17+0.3310~2%/¢ and Sc and Re are Schmidt and Reynolds numbers

respectively, with Sc = n/pD,, and Re = d,up/n. The value of k; is further given

by,
1 1 11

kea}t,i kint,i

ki = (A.14)

where, k..;; and k;,. ; are the external and the internal mass transfer coefficients,

respectively. The internal mass transfer coefficient can be calculated as follows,

10D€ i . sz
e ith Dy = 2 (A.15)
P Tp

kint,i =

Where, D,y is effective diffusion coefficient and D,,, ; is molecular diffusivity

which can be found out by,

T
Dm,i=9.40 x 107°.——— for MW, > 1000 (A.16)
nMW;}

T
Dy =9.96 x 10710—
V.3

for M, < 1000 (A.17)
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T is the temperature(Kelvin), n the viscosity of the solvent, and M; and V,, ;
are the molecular weight and atomic volume respectively of the component in
question. The tortuosity factor v, was calculated according to v, = (2 — €,)?/¢,,

where ¢, is the particle porosity, which was calculated according to,
& =¢c+(1—e)e (A.18)

where, ¢ is the total column porosity and e, is the external column porosity. The
value of the external mass transfer coefficient was calculated from the Sherwood

number, Sh, according to Wilson-Geankoplis correlation [270],

Keatsdy  1.09

5 - Scl/3 Rel/3 (A.19)

Sh =

where Schmidt number and Reynolds number are given as,

Ui
Sc=——
c Do,
Re = pudy
Ui

(A.20)

A.1.3 Transpot dispersive model

Mass transfer equation for TDM is same as EDM (Equation [3.1). EDM uses equi-
librium form of isotherm for estimation of concentrations. however, following
is equation is used in TDM. The kinetic forms change with change in isotherm.
These models were used together for both equilibrium and kinetic simulations of

the experimental systems in this work.

dq;
ot

- kaeq(Q’) —q; (A21)

here, g, is the concentration in the adsorption monolayer at the adsorbent sur-
face in equilibrium with the concentration ¢, in the mobile phase. D,,, is appar-

ent dispersion coefficient which replaces the axial dispersion coefficient in EDM.
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A.1.4 Ideal model

Ideal model is the simplest form of mass transfer where, no diffusion is consid-

ered.

or "o Tugr =0 (A.22)
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Appendix B

Table B.1: Summary of gradient elution studies for BSA and BLG

Protein Gradient length RT (min) RV (ml) Area

5 3.19 8.18 118.46
10 9.47 9.48 115.66
BSA 15 10.81 10.82 119.14
20 12.04 12.02 119.12
30 14.03 14.04 113.43
5 6.82 6.81 270.01
10 3.19 8.18 273.35
BLG 15 9.44 9.42 263.96
20 10.62 10.61 262.96
30 12.88 12.87 269.28
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Table B.2: Summary of gradient elution studies for major whey proteins on CaptoQ
anion exchanger

Proteins Gradient length (CV) RT (min) RV (ml) Area (ml*mAU)

5 7.22 7.21 171.65
10 8.2 8.18 182.56
BSA 15 9.03 9.02 187.42
20 9.82 9.8 189.72
30 11.35 11.34 181.24
5 7.76 7.745 266.10
10 9.045 9.03 268.89
BLG 15 10.22 10.21 264.12
20 11.37 11.355 266.06
30 13.525 13.515 266.51
5 7.6 7.58 318.57
10 8.52 8.505 322.58
ALA 15 9.34 9.32 325.04
20 10.12 10.1 329.27
30 11.48 11.46 326.06

Table B.3: Summary of gradient elution studies for LF and LP

Protein Gradient length RT (min) RV (ml) Area

5 6.68 6.68 723.77
10 7.87 7.87 733.90
LF 15 8.98 8.98 739.26
20 10.07 10.07 729.54
30 12.13 12.13 717.84
5 8.56 8.56 345.84
10 9.66 9.66 357.37
LP 15 10.71 10.71 363.21
20 11.68 11.68 362.18
30 13.55 13.55 360.95
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Table B.4: Comparison of Exprosim:IC Langmuir, MPM, and SMA simulation to ex-
perimental data at different breakthrough percentage for multicomponent break-

through for BSA and BLG
Langmuir MPM SMA
BT % Experimental sim %error sim %error sim % error
0 15.60 16.10 -3.21 16.00 -2.56 15.10 3.21
BSA 10 16.50 17.20 -4.24 17.10 -3.64 16.30 1.21
50 32.64 37.81 -15.84 31.70 2.88 29.60 9.31
100 - 76.89 - 7450 - 64.60 -
0 14.40 14.20 1.39 14.00 2.78 14.20 1.39
BLG 10 16.30 1590 2.45 16.00 1.84 16.10 1.23
50 23.10 21.80 5.63 22.30 3.46 22.00 4.76
100 34.56 27.73 19.76 3456 22.72 36.70 -6.19
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Table B.9: Comparison of breakthrough points at different breakthrough stages of

multicomponent breakthrough of LF and LP

E i tal
Protein BT % (r)r(lll)r'i; tmenta Langmuir % error SMA % error MPM % error
0% 50 54.2 8.40 49.6  -0.80 50.2 0.40
Lactoferrin 10%  61.22 63.45 3.64 61.64 0.69 61.8 0.95
50% 69 66.8 -3.19 72.56 5.16 66.47 -3.67
100% 90.91 88.89 2.22 97.96 -7.75 93.44 -2.78
0% 28.57 31.6 10.61 278  -2.7 28.5 -0.25
Lactoveroxidase 10% 49 52.9 7.96 46.8  -4.49 53.7 9.59
P 50%  61.6 61.8 0.32 58.8  -4.55 62.3 1.14
100% 73 73.47 0.64 77.55 6.23 70.4 -3.56

Table B.10: Comparison of breakthrough points at different breakthrough stages

of WPC breakthrough
BSA ALA BLG
%BT Exp Sim %Error Exp Sim Exp Sim % Error
Langmuir 0 20 222 11 29 28.1  -3.103 71 71.2  0.281
10 24 274  14.166 32 303 -5.312 86 84.84 -1.348
50 321 36.36 13.271 42 39.93 -4.928 107 106.6 -0.374
100 45.6 45.45 -0.328 55.4 48.7 -12.093 128 142.1 11.015
v10% 24 27.4  14.166 32 303 -53125 86 84.84 -1.348
MPM 0 20 17.3  -13.5 29 25.7 -11.379 71 70.8  -0.282
10 24 27.7  15.416 32 365 14.063 86 87.1  1.279
50 321 35.6 10.903 42 43.8  4.286 107 109.6 2.429
100 45.6 48.5 6.359 55.4 60.67 9.512 128 145.7 13.328
v10% 24 27.7  15.416 32 365 14.0625 86 87.1 1.279
SMA 0 20 15.2  -24 29 241 -16.896 71 72.7  2.394
10 24 2434 1.416 32 29.1  -9.0625 86 86.1 0.116
50 32.1 33.33 3.831 42 38.6 -8.095 107 107 0
100 45.6 55.6  21.929 55.4 72.2 30.324 128 130.2 1.718
v10% 24 2434 1.416 32 29.1  -9.063 86 86.1 0.116
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Table B.11: Summary of errors for axial coordinate mesh number variation

ALA BLG
Nx RMSE CoD RMSE CoD

5-10  9.961E-4 0.9900 6.11E-04 0.9806
10-15 1.853E-09 0.9916 6.28E-09 0.9872
15-20 3.450E-09 0.9917 8.83E-09 0.9917
20-25 2.605E-09 0.9917 6.09E-09 0.9917
25-30 1.730E-09 0.9917 3.88E-09 0.9917
30-35 2.889E-09 0.9917 2.53E-09 0.9917
35-40 7.930E-10 0.9917 1.73E-09 0.9917
40-45 5.666E-10 0.9917 1.17E-09 0.9917
45-50 9.82939E-10 0.9917 1.30E-09 0.9919

Table B.12: Summary of errors for time coordinate mesh number variation

ALA BLG
Nt RMSE CoD RMSE CoD

10-20 1.49E-05 0.946 5.07E-04 0.941
20-30 4.69E-07 0.967 1.81E-07 0.966
30-40 1.51E-07 0.975 6.98E-07 0.975
40-50 2.54E-09 0.990 2.83E-07 0.990
50-60 1.23E-09 0.991 1.20E-07 0.990
60-70 1.43E-09 0.991 1.13E-07 0.989

Table B.26: Compilation of errors for breakthrough prediction for anion exchange
of whey protein concentrate

BSA BLG ALA

Lang MSE 0.0558 0.0060 0.0338
SDMSE 0.0698 0.0119 0.0515
RMSE 0.0006 0.0001 0.0084
CoD 0.9388 0.9523 0.9223
SMA MSE 0.0595 0.0011 0.0436
SDMSE 0.0748 0.0024 0.0588
RMSE 0.0000 0.0000 0.0003
CoD 0.9527 0.9730 0.9162
MPM MSE 0.0597 0.0057 0.0392
SDMSE 0.1030 0.0124 0.0626
RMSE 0.0000 0.0000 0.0000
CoD 0.9189 0.9790 0.9207
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Table B.13: Summary of errors for single component predictions from El Sayed
and Chase et al. [1]

ALA

BLG

ExProSim:IC  ElSayed sim

ExProSim:IC  ElSayed sim

MSE
SD MSE
RMSE
CoD

0.0116 0.0051
0.0191 0.0070
5.06E-04 3.92E-03
0.9399 0.9254

0.0039
0.0074
1.15E-05
0.9538

0.0041
0.0066
7.20E-04
0.9449

Table B.14: Errors for Langmuir:EDM multicomponent breakthrough prediction
from El Sayed and Chase [1]

ALA

BLG

Exprosim:IC  ElSayed sim Exprosim:IC ElSayed sim

MSE
SD MSE
RMSE
CoD

0.0069 0.0062
0.0109 0.0094
1.27E-3 1.08E-2
0.9384 0.9044

0.0065
0.0089
3.09E-5
0.9498

0.0002
0.0003
7.24E-4
0.9318

Table B.15: Errors for Langmuir:EDM prediction from H. Bak et al. [2]

20% 33% 50% 100%
Exprosim sim Exprosim sim Exprosim sim Exprosim sim
MSE  0.0006 0.1349 0.0011 0.0712  0.0002 0.1773 0.0177 0.1610
CoD  0.0010 0.2134 0.0028 0.1076 0.0005 0.2513  0.0486 0.2141
RMSE 0.0020 0.0028 0.0002 0.0005 0.0006 0.0015 0.0000 0.0004
CoD  0.9116 0.8564 0.9812 0.8258 0.9509 0.7216 0.9311 0.6711

Table B.16: Errors for Langmuir:EDM breakthrough prediction from Skidmore and

Chase [3]

BSA Lysozyme
Exprosim sim Exprosim sim
MSE  0.0274 0.0237 0.0042 0.0003
CoD 0.02383 0.0282 0.0107 0.0005
RMSE  0.0004 0.0006  0.0000 0.0001
CoD  0.9801 0.9419 0.9745 0.9517
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Table B.17: Compilation of errors EDM:SMA simulations for Insulin and Transfer-
rin

Insulin Transferrin

Exprosim sim Exprosim sim

MSE  0.0016 0.0005 0.0014 0.0003
CoD 0.0045 0.0010 0.0031 0.0007
RMSE 0.0007 0.0087 0.0005 0.0013
CoD 0.9872 0.9656 0.9867 0.9468

Table B.18: Errors for Langmuir:SMA multicomponent breakthrough prediction
from Jozwik et al. [5]

Salt% 0% 1% 2% 3%
Exprosim sim Exprosim sim Exprosim sim Exprosim sim
MSE 0.0027 0.0081 0.0062 0.0013 0.0467 0.0586 0.0140 0.0716
CoD 0.0052 0.0158 0.0142 0.0017 0.0885 0.0659 0.0301 0.1134
RMSE 0.0002 0.0008 0.0004 0.0008 0.0006 0.0015 0.0004 0.0010
CoD 0.9813 0.9364 0.9760 0.9616 0.3839 0.8844 0.7682 0.8510

Table B.19: Compilation of errors for EDM:MPM simulations for Transferrin, In-
sulin, and IgG

Transferrin Insulin IgG

Exprosim sim Exprosim sim Exprosim sim

MSE  0.0002 0.0008 0.0002 0.0008 0.0001 0.0001
CoD 0.0006 0.0012 0.0006 0.0012 0.0003 0.0001
RMSE 0.0000 0.0001 0.0000 0.0001 0.0000 0.0004
CoD 0.9944 0.9788 0.9944 0.9788 0.9991 0.9823
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Table B.20: Compilation of errors for single component breakthrough prediction
for cation exchange of BSA and BLG

BSA BLG
Flow rate
(ml/min) 1 0-5 1
Lang MSE 0.0001 0.0133 0.0173 0.0100
CoD 0.0002 0.0145 0.0345 0.0156
RMSE 1.43E-4 9.36E-4 1.31E-6 7.01E-7
CoD 0.9858 0.9769 0.9503 0.9639
SMA MSE 0.0020 0.0164 0.0081 0.0036
CoD 0.0043 0.0202 0.0168 0.0063
RMSE 1.39E-3 2.27E-3 1.07E-10 5.34E-6
CoD 0.9631 0.9641 0.9615 0.9674
MPM MSE 0.0061 0.0259 0.0021 0.0057
CoD 0.0121 0.0256 0.0031 0.0105
RMSE 7.95E-4 1.07E-3 1.61E-5 1.12E-4
CoD 0.9714 0.9704 0.9780 0.9605

Table B.21: Compilation of errors for multi component breakthrough prediction
for anion exchange of BSA and BLG

BSA BLG

Lang MSE 0.0046 0.0208
CoD 0.0066 0.0223
RMSE 0.0001 0.0000

CoD 0.9214 0.9197

SMA MSE 0.0219 0.0240
CoD 0.0239 0.0279
RMSE 0.0000 0.0000

CoD 0.9572  0.9502
MPM MSE 0.0026 0.0775
CoD 0.0054 0.1629
RMSE 0.0003 0.0004

CoD 0.9589 0.8670
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Table B.22: Compilation of errors for single component breakthrough prediction
at two flow rates for anion exchange of major whey proteins

BSA BLG ALA
Flow rate
(ml/min) 0.5 1 0.5 1 0.5 1
Lang MSE 0.0026 0.0024 0.0036 0.0046 0.0017 0.0012

CoD 0.0062 0.0068 0.0080 0.0106 0.0050 0.0027
RMSE 0.0008 0.0005 0.0006 0.0027 0.0002 0.0002
CoD 0.9818 0.9677 0.9547 0.9098 0.9518 0.9350
SMA MSE  0.0024 0.0030 0.0049 0.0035 0.0034 0.0040
CoD 0.0067 0.0103 0.0173 0.0076 0.0090 0.0079
RMSE 0.0009 0.0004 0.0006 0.0016 0.0001 0.0006
CoD 0.9831 0.9674 0.9651 0.9517 0.9688 0.9616
MPM MSE  0.0048 0.0004 0.0024 0.0024 0.0010 0.0064
CoD 0.0171 0.0013 0.0092 0.0069 0.0021 0.0192
RMSE 0.0006 0.0025 0.0005 0.0000 0.0001 0.0000
CoD 0.9818 0.9857 0.9785 0.9730 0.9840 0.9687

Table B.23: Compilation of errors for multi component breakthrough prediction
for anion exchange of major whey proteins

BSA BLG ALA

Lang MSE 0.0182 0.0016 0.0100
CoD 0.0447 0.0031 0.0191
RMSE 0.0000 0.0009 0.0000
CoD 0.9491 0.9727 0.9580

SMA MSE 0.0595 0.0061 0.0039
CoD 0.1047 0.0115 0.0087
RMSE 0.0045 0.0009 0.0008
CoD 0.9055 0.9604 0.9616

MPM MSE 0.0734 0.0162 0.0093
CoD 0.1268 0.0357 0.0195
RMSE 0.0000 0.0009 0.0001
CoD 0.9046 0.9712 0.9555
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Table B.24: Compilation of errors for single component breakthrough prediction
for cation exchange of minor whey proteins

LF (3 mg/ml)

LF (6 mg/ml)

LP (4 mg/ml)

Flow Rate

. 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

(ml/min)

Lang MSE 0.0067 0.0118 0.0082 0.0039 0.0107 0.0144 0.0021 0.0035 0.0077
SD MSE 0.0158 0.0245 0.0166 0.0076 0.0244 0.0284 0.0041 0.0055 0.0102
RMSE 0.0002 0.0007 0.0009 0.0013 0.0016 0.0020 0.0000 0.0003 0.0001
CoD 0.9715 0.9604 0.9635 0.9716 0.9510 0.9319 0.9860 0.9761 0.9594

SMA MSE 0.0034 0.0086 0.0060 0.0526 0.0488 0.0532 0.0053 0.0104 0.0134
SD MSE 0.0081 0.0174 0.0119 0.1002 0.0870 0.0825 0.0123 0.0189 0.0185
RMSE 0.0000 0.0006 0.0006 0.0011 0.0011 0.0016 0.0009 0.0008 0.0008
CoD 0.9854 0.9731 0.9757 0.8904 0.8957 0.8819 0.9653 0.9483 0.9360

MPM MSE 0.0014 0.0051 0.0037 0.0073 0.0101 0.0141 0.0010 0.0030 0.0059
SD MSE 0.0031 0.0108 0.0076 0.0173 0.0230 0.0271 0.0013 0.0055 0.0070
RMSE 0.0004 0.0007 0.0008 0.0021 0.0019 0.0017 0.0000 0.0006 0.0011
CoD 0.9831 0.9694 0.9680 0.9618 0.9470 0.9243 0.9858 0.9750 0.9631

Table B.25: Compilation of errors for multi component breakthrough prediction
for cation exchange of minor whey proteins

LF LP
Lang MSE 0.0022  0.0232
SDMSE 0.0038  0.0447
RMSE 2.36E-5 6.28E-7
CoD 0.9623 0.9774
SMA MSE 0.0041 0.0177
SDMSE 0.0088 0.0315
RMSE 3.41E-5 1.34E-4
CoD 0.9714  0.9564
MPM MSE 0.0029  0.0457
SDMSE 0.0065 0.1115
RMSE 6.87E-5 1.68E-8
CoD 0.9699  0.9842
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