
EFFICIENT TRANSFORMATION FROM CARTESIAN TO GEODETIC 1

COORDINATES 2

 3

S.J. Claessens 4

 5

The Institute for Geoscience Research 6

School of Earth and Planetary Sciences 7

Curtin University 8

GPO Box U1987, Perth, WA 6845, Australia 9

Phone: +61 8 9266 3505; Email: s.claessens@curtin.edu.au 10

 11

 12

ABSTRACT 13

 14

The derivation of algorithms for the computation of geodetic coordinates from 3D Cartesian 15

coordinates has been a very active field of research among geodesists for more than forty years. 16

Many authors have sought the most efficient method, i.e. the method that provides the fastest 17

computational speed, which nevertheless yields sufficient accuracy for practical applications. The 18

problem is a special case of a more general mathematical problem that has also been studied by 19

researchers in other fields. This paper investigates the applicability of methods by Sampson (1982, 20

Computer graphics and image processing, 18: 97-108) and Uteshev and Goncharova (2018, Journal 21

of Computational and Applied Mathematics, 328: 232-251) to the computation of geodetic 22

coordinates. Both methods have been modified to make them more suitable for this particular 23

problem. The methods are compared to several commonly used geodetic methods in terms of 24

accuracy and computational efficiency. It is found that a simple modification improves the accuracy 25

of the methods by ~3 orders of magnitude, and the modified method of Uteshev and Goncharova 26

mailto:s.claessens@curtin.edu.au

(2018) achieves an accuracy of <0.1 mm anywhere on the surface of the Earth. The methods are 27

especially efficient in the computation of ellipsoidal height. As an additional result of this study, a 28

new formulation of the well-known method by Bowring (1976, Survey Review, 23: 323-327) is 29

derived, and it is shown to improve the computation speed of Bowring’s method by ~12% to ~27% 30

compared to the conventional formulation. 31

 32

Key words: Coordinate Transformation, Geodetic Coordinates, Cartesian Coordinates 33

 34

 35

1. INTRODUCTION 36

 37

The transformation from 3D Cartesian coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍) to geodetic coordinates (geodetic 38

latitude 𝜙𝜙, longitude 𝜆𝜆, and ellipsoidal height ℎ) is a classical problem in geodesy and its application 39

is extremely common. While the computation of longitude is straightforward, the computation of 40

geodetic latitude and ellipsoidal height is more complicated. Many different methods have been 41

published in the geodetic literature. An overview of many of these methods can be found in 42

(Featherstone and Claessens 2008), and many more have been published since (e.g., Turner 2009, 43

Shu and Li 2010, Civicioglu 2012, Ligas 2012, Soler et al. 2012, Zeng 2013). Most methods focus 44

on the computation of geodetic latitude, after which the ellipsoidal height can readily be found, but 45

it is equally possible to solve for the ellipsoidal height first and geodetic latitude second. 46

 47

Methods for the computation of geodetic coordinates from Cartesian coordinates can be divided into 48

three categories: exact, iterative and approximate methods. Here we define an approximate method 49

as any method that is neither exact nor uses a variable number of iterations. For example, Bowring’s 50

(1976) method is iterative, but when implemented such that only a single iteration is used (as is 51

often the case), we consider it an approximate method. 52

 53

An exact solution involves the solution of a quartic equation (fourth-order polynomial) (e.g. Paul 54

1973, Borkowski 1989, Vermeille 2004, 2011), which inevitably leads to a computationally 55

inefficient algorithm. Geodesists have put much effort into devising more efficient iterative or 56

approximate methods. Some of the simplest and most efficient of these are the methods by Bowring 57

(1976, 1985) and Fukushima (1999, 2006). 58

 59

In other fields, similar problems have been tackled in parallel. For example, in the field of computer 60

vision, a common problem is the estimation of conic sections through scattered data points. To 61

estimate a best fitting ellipse (in the case that the conic section is an ellipse), an approximation of 62

the distance between a point and the ellipse is required. A well-known algorithm for this problem is 63

provided by Sampson (1982), and the approximate distance has become known as Sampson's 64

distance. Meanwhile, mathematicians have worked on more general problems, such as computation 65

of the shortest distance between a point and any degree 2 curve or manifold in ℝ𝑛𝑛. For example, 66

Uteshev and Yashina (2015) provide a method for finding the distance between an ellipsoid and any 67

first- or second-order manifold. Explicit exact and approximate formulas for the distance between a 68

point and an ellipse are provided in Uteshev and Goncharova (2018). 69

 70

The main aim of this paper is to investigate the applicability of approximate solutions by Sampson 71

(1982) and Uteshev and Goncharova (2018), from outside of the geodetic literature, to the 72

computation of geodetic coordinates on or near Earth. These methods are then compared to a 73

selection of geodetic methods in terms of accuracy and computational efficiency. The focus is on 74

simple and efficient (fast) algorithms for the computation of geodetic coordinates that are precise 75

enough for any practical application on the Earth’s surface or at flight altitude. 76

 77

The geodetic transformation problem is briefly defined in section 2. In section 3, Sampson's and 78

Uteshev's methods are outlined. It will be shown that these methods are not sufficiently accurate for 79

geodetic applications, except for points very close to the reference ellipsoid. However, new 80

modifications to these methods to make them more suited to the geodetic coordinate transformation 81

are presented in section 4. In section 5, the geodetic methods of Bowring (1976, 1985), Pollard 82

(2002), and Fukushima (2006) are outlined. The accuracy of the unmodified and modified methods 83

of Sampson (1982) and Uteshev and Goncharova (2018) are compared to these geodetic methods in 84

section 6, and in section 7 a comparison in terms of computational efficiency is provided. An 85

important point is made about the variability in computational efficiency for different hardware, 86

software and implementation. Finally, section 8 provides conclusions and recommendations. 87

 88

2. THE GEODETIC TRANSFORMATION PROBLEM 89

 90

The geodetic transformation problem consists of the transformation between geodetic coordinates 91

(𝜙𝜙, 𝜆𝜆, ℎ) and geocentric Cartesian coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍). The forward transformation ((𝜙𝜙, 𝜆𝜆,ℎ) → 92

(𝑋𝑋,𝑌𝑌,𝑍𝑍)) defines the relation between these coordinates (e.g. Heiskanen and Moritz 1967) 93

𝑋𝑋 = (𝑁𝑁 + ℎ) cos𝜙𝜙 cos 𝜆𝜆

𝑌𝑌 = (𝑁𝑁 + ℎ) cos𝜙𝜙 sin 𝜆𝜆

𝑍𝑍 = [𝑁𝑁(1 − 𝑒𝑒2) + ℎ] sin𝜙𝜙

(1)

where 94

𝑁𝑁 =
𝑎𝑎

�1 − 𝑒𝑒2 sin2 𝜙𝜙
 (2)

𝑒𝑒2 =
𝑎𝑎2 − 𝑏𝑏2

𝑎𝑎2
 (3)

and 𝑎𝑎 and 𝑏𝑏 are the semi-major and semi-minor axes of the reference ellipsoid, respectively. The 95

reference ellipsoid is an oblate spheroid (ellipsoid of revolution). 96

 97

In the inverse problem ((𝑋𝑋,𝑌𝑌,𝑍𝑍) → (𝜙𝜙, 𝜆𝜆,ℎ)), it follows directly from Eq. (1) that longitude can be 98

computed from the 𝑋𝑋- and 𝑌𝑌-coordinates in a straightforward manner (e.g., Bomford 1971) 99

𝜆𝜆 = arctan
𝑌𝑌
𝑋𝑋

= 2 arctan
𝑌𝑌

𝑋𝑋 + 𝑊𝑊
 (4)

where 100

𝑊𝑊 = �𝑋𝑋2 + 𝑌𝑌2 (5)

The form on the right-hand side of Eq. (4) is often used for reasons of numerical stability. 101

 102

Upon the computation of 𝜆𝜆, the inverse problem is reduced to a problem in ℝ2, more specifically a 103

problem in the 𝑊𝑊𝑍𝑍-plane ((𝑊𝑊,𝑍𝑍) → (𝜙𝜙,ℎ)). The section of the reference ellipsoid and the 𝑊𝑊𝑍𝑍-104

plane is an ellipse. The geodetic latitude 𝜙𝜙 can be interpreted geometrically as the angle between 105

the 𝑊𝑊-axis and the normal to the ellipse through the point with coordinates (𝑊𝑊,𝑍𝑍), and the 106

ellipsoidal height ℎ as the shortest distance between the point with coordinates (𝑊𝑊,𝑍𝑍) and the 107

ellipse. 108

 109

3. SAMPSON’S AND UTESHEV’S METHODS 110

 111

The inverse geodetic transformation problem can be solved in an approximate fashion by applying 112

Sampson’s distance formula (Sampson 1982). Sampson’s distance is often thought of as a first-order 113

approximation of the distance from a point to a curve, but to be more exact, it is the exact geometric 114

distance from a point to the first-order approximation of the curve (Harker and O’Leary 2006). 115

 116

Sampson’s method is defined for the distance between a point and any curve of degree 2, which is 117

given by the equation 118

𝑄𝑄(𝑤𝑤, 𝑧𝑧) = 𝐴𝐴𝑤𝑤2 + 𝐵𝐵𝑤𝑤𝑧𝑧 + 𝐶𝐶𝑧𝑧2 + 𝐷𝐷𝑤𝑤 + 𝐸𝐸𝑧𝑧 + 𝐹𝐹 = 0 (6)

where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸 and 𝐹𝐹 are constants. Sampson (1982) approximates the shortest distance between 119

a point with coordinates (𝑊𝑊,𝑍𝑍) and the curve 𝑄𝑄(𝑤𝑤, 𝑧𝑧) by 120

𝑑𝑑 ≈
𝑄𝑄(𝑊𝑊,𝑍𝑍)

|∇𝑄𝑄(𝑊𝑊,𝑍𝑍)| (8)

where ∇𝑄𝑄(𝑊𝑊,𝑍𝑍) is the magnitude of the norm of the gradient of 𝑄𝑄(𝑊𝑊,𝑍𝑍) at the point (𝑊𝑊,𝑍𝑍), 121

defined by 122

|∇𝑄𝑄(𝑊𝑊,𝑍𝑍)|2 = (2𝐴𝐴𝑊𝑊 + 𝐵𝐵𝑍𝑍 + 𝐷𝐷)2 + (2𝐶𝐶𝑍𝑍 + 𝐵𝐵𝑊𝑊 + 𝐸𝐸)2 (8)

 123

In the geodetic transformation problem, the curve is an ellipse, and the distance to the curve 𝑑𝑑 is the 124

height of the computation point ℎ. The ellipse is defined by the implicit equation 125

𝐺𝐺(𝑤𝑤, 𝑧𝑧) =
𝑤𝑤2

𝑎𝑎2
+
𝑧𝑧2

𝑏𝑏2
− 1 = 0 (9)

and is thus a special case of the curve 𝑄𝑄(𝑤𝑤, 𝑧𝑧) with 126

𝐴𝐴 =
1
𝑎𝑎2

, 𝐶𝐶 =
1
𝑏𝑏2

, 𝐹𝐹 = −1 and 𝐵𝐵 = 𝐷𝐷 = 𝐸𝐸 = 0 (10)

The magnitude of the norm of the gradient for the case of the ellipse is then 127

|∇𝑄𝑄(𝑊𝑊,𝑍𝑍)|2 = 4�
𝑊𝑊2

𝑎𝑎4
+
𝑍𝑍2

𝑏𝑏4
� ≡ 4𝑆𝑆4 (11)

We can therefore write Sampson’s method for the inverse geodetic transformation problem as 128

ℎ𝑆𝑆 =
𝐺𝐺(𝑊𝑊,𝑍𝑍)

2�𝑆𝑆4
 (12)

Equation (12) provides an approximation of the ellipsoidal height, and the subscript 𝑆𝑆 indicates that 129

this is the ellipsoidal height according to Sampson’s formula. Once the ellipsoidal height is known, 130

the geodetic latitude 𝜙𝜙 can also be computed, but Sampson’s method is not concerned with latitude. 131

We will return to the computation of latitude at the end of this section. 132

 133

Another approximate method for the inverse geodetic transformation problem is herein called 134

Uteshev’s method. Uteshev and Yashina (2015) showed that the squared distance ℎ2 between a 135

point and the ellipse is one of the positive zeros of the distance equation 136

ℱ(ℎ,𝑊𝑊,𝑍𝑍) = 𝐷𝐷𝜇𝜇 �ℎ2𝜇𝜇3 −
𝐴𝐴2
𝑎𝑎2𝑏𝑏2

𝜇𝜇2 −
𝐴𝐴1
𝑎𝑎2𝑏𝑏2

𝜇𝜇 −
1

𝑎𝑎2𝑏𝑏2
� (13)

where 𝐷𝐷𝜇𝜇{. } indicates the discriminant of the function and 137

𝐴𝐴1 = 𝑊𝑊2 + 𝑍𝑍2 − ℎ2 − 𝑎𝑎2 − 𝑏𝑏2

𝐴𝐴2 = 𝑎𝑎2𝑏𝑏2 ��
1
𝑎𝑎2

+
1
𝑏𝑏2
� ℎ2 − 𝐺𝐺(𝑊𝑊,𝑍𝑍)�

(14)

Uteshev and Goncharova (2018) approximate the relevant zero of this equation by a power series 138

of the form 139

ℓ1𝐺𝐺(𝑊𝑊,𝑍𝑍) + ℓ2𝐺𝐺2(𝑊𝑊,𝑍𝑍) + ℓ3𝐺𝐺3(𝑊𝑊,𝑍𝑍) + ⋯ (15)

where the coefficients ℓ1, ℓ2, and ℓ3 are coefficients that can be determined exactly as a function 140

of 𝑎𝑎, 𝑏𝑏, 𝑊𝑊 and 𝑍𝑍. They show that, when this power series is truncated after the quadratic term, the 141

resulting formula for ellipsoidal height ℎ is Sampson’s formula (Eq. 12). When the cubic term in 142

Eq. (15) is also taken into account, a more precise approximation is found 143

ℎ𝑈𝑈 = ℎ𝑆𝑆�1 +
𝑆𝑆6

2𝑆𝑆42
𝐺𝐺(𝑊𝑊,𝑍𝑍) (16)

where the subscript 𝑈𝑈 indicates this is Uteshev’s formula for ellipsoidal height, and 144

𝑆𝑆6 =
𝑊𝑊2

𝑎𝑎6
+
𝑍𝑍2

𝑏𝑏6
 (17)

 145

Uteshev and Goncharova (2018) also provide elegant formulas for the coordinates of the point on 146

the ellipse nearest to the computation point, i.e. the point with the same geodetic latitude as the 147

computation point and an ellipsoidal height of zero 148

𝑊𝑊0 =
𝑎𝑎2𝑊𝑊
𝑎𝑎2 − 𝜇𝜇∗

 and 𝑍𝑍0 =
𝑏𝑏2𝑍𝑍

𝑏𝑏2 − 𝜇𝜇∗
 (18)

where 149

𝜇𝜇∗ =
−9𝑎𝑎2𝑏𝑏2ℎ2 − 𝐴𝐴1𝐴𝐴2

2(𝐴𝐴12 − 3𝐴𝐴2) (19)

While Uteshev and Goncharova (2018) do not mention it, once 𝑊𝑊0 and 𝑍𝑍0 are known, the geodetic 150

latitude 𝜙𝜙 can be found through 151

𝜙𝜙 = arctan
𝑍𝑍 − 𝑍𝑍0
𝑊𝑊 −𝑊𝑊0

= arctan
(𝑎𝑎2 − 𝜇𝜇∗)𝑍𝑍
(𝑏𝑏2 − 𝜇𝜇∗)𝑊𝑊

 (20)

This method for the computation of geodetic latitude is exact if the ellipsoidal height ℎ is known 152

exactly, and will provide an approximate geodetic latitude if ℎ𝑈𝑈 (Eq. 16) or ℎ𝑆𝑆 (Eq. 12) are used 153

instead. 154

 155

4. MODIFIED SAMPSON’S AND UTESHEV’S METHODS 156

 157

Sampson’s and Uteshev’s methods have been created for general curves of degree 2 and not 158

specifically for the inverse geodetic transformation problem. This means these methods have a 159

disadvantage when compared to approximate methods derived specifically for geodetic purposes, 160

which typically make use of the fact that the Earth’s reference ellipsoid has only a small eccentricity. 161

 162

A crucial insight is that Sampson’s and Uteshev’s methods are not exact when the curve is a circle, 163

and can therefore not be expected to perform well in the inverse geodetic transformation. The height 164

of a point above a circle with radius 𝑅𝑅 and centre in the origin of the coordinate system is easily 165

derived as 166

ℎ = 𝑟𝑟 − 𝑅𝑅 (21)

where 𝑟𝑟 is the distance from the point to the origin of the coordinate system 167

𝑟𝑟 = �𝑊𝑊2 + 𝑍𝑍2 (22)

It can easily be seen that Sampson’s method is not exact when the distance to a circle is sought, by 168

comparing the result for ℎ𝑆𝑆 (Eq. 12) for the case 𝑎𝑎 = 𝑏𝑏 = 𝑅𝑅 to Eq. (21). Sampson’s method for the 169

case of a circle gives 170

ℎ𝑆𝑆(circle) =
𝑟𝑟2
𝑅𝑅2 − 1

2�𝑟𝑟
2

𝑅𝑅4

=
𝑟𝑟2 − 𝑅𝑅2

2𝑟𝑟
 (23)

The error of Sampson’s method for the case of a circle is therefore 171

𝜖𝜖𝑆𝑆 =
𝑟𝑟2 − 𝑅𝑅2

2𝑟𝑟
− (𝑟𝑟 − 𝑅𝑅) = −

ℎ2

2𝑟𝑟
 (24)

where use was made of the substitution 𝑅𝑅 = 𝑟𝑟 − ℎ from Eq. (21). This suggests that Sampson’s 172

method can be improved for the case of a near-circular ellipse by applying a simple correction, 173

which leads us to suggest the following solution for ellipsoidal height: 174

ℎ𝑀𝑀𝑆𝑆 = ℎ𝑆𝑆 +
ℎ𝑆𝑆2

2𝑟𝑟
 (25)

where the subscript 𝑀𝑀𝑆𝑆 stands for Modified Sampson. Thanks to the correction, Eq. (25) is exact 175

when the curve is a circle, and expectedly a good approximation of the true height when the curve 176

is an ellipse with small eccentricity. The accuracy of both the modified and unmodified methods is 177

examined in section 6. 178

 179

Uteshev’s method can be modified in the same way. For the case of a circle (𝑎𝑎 = 𝑏𝑏 = 𝑅𝑅), Uteshev’s 180

method (Eq. 16) gives 181

ℎ𝑈𝑈(circle) =
(𝑟𝑟2 − 𝑅𝑅2)√6𝑟𝑟2 − 2𝑅𝑅2

4𝑟𝑟2
 (26)

The error of Uteshev’s method for the case of a circle is therefore 182

𝜖𝜖𝑈𝑈 =
(𝑟𝑟2 − 𝑅𝑅2)√6𝑟𝑟2 − 2𝑅𝑅2

4𝑟𝑟2
− (𝑟𝑟 − 𝑅𝑅) =

ℎ(2𝑟𝑟 − ℎ)�(2𝑟𝑟 + ℎ)2 − 3ℎ2

4𝑟𝑟2
− ℎ (27)

This equation is not as elegant as the equivalent in Sampson’s method (Eq. 24), but it can be 183

simplified considerably for the case |ℎ| ≪ 𝑟𝑟 by a series of approximations. First, we apply a Taylor 184

series expansion to the square root in Eq. (27) 185

𝜖𝜖𝑈𝑈 ≈
ℎ(2𝑟𝑟 − ℎ) �(2𝑟𝑟 + ℎ) − 3ℎ2

2(2𝑟𝑟 + ℎ)�

4𝑟𝑟2
− ℎ

(28)

Since the second term within the curly brackets is very small compared to the first term, we can 186

safely approximate (2𝑟𝑟 + ℎ) in the denominator by 2𝑟𝑟 187

𝜖𝜖𝑈𝑈 ≈
ℎ(2𝑟𝑟 − ℎ) �(2𝑟𝑟 + ℎ) − 3ℎ2

4𝑟𝑟 �

4𝑟𝑟2
− ℎ =

−5
2ℎ

3 + 3
4𝑟𝑟 ℎ

4

4𝑟𝑟2
 (29)

Finally, the second term in the numerator on the right-hand side of Eq. (29) is much smaller than 188

the first term for the case |ℎ| ≪ 𝑟𝑟, so if this term is ignored, 𝜖𝜖𝑈𝑈 is approximated by 189

𝜖𝜖𝑈𝑈 ≈ −
5ℎ3

8𝑟𝑟2
 (30)

The error due to the approximations introduced here is quantified in section 6. The modified Uteshev 190

method reads 191

ℎ𝑀𝑀𝑈𝑈 = ℎ𝑈𝑈 +
5ℎ𝑈𝑈3

8𝑟𝑟2
 (31)

where the subscript 𝑀𝑀𝑈𝑈 stands for Modified Uteshev. The geodetic latitude can then be found using 192

Eq. (20) with ℎ𝑀𝑀𝑈𝑈 inserted for ℎ in Eqs. (14) and (19). 193

 194

5. GEODETIC METHODS 195

 196

As mentioned in the introduction, geodesists have derived a large number of algorithms for the 197

computation of geodetic coordinates. Here, some of the most efficient approximate methods are 198

listed. These serve as a benchmark for the numerical performance of Sampson’s and Uteshev’s 199

methods. 200

 201

Since in most geodetic applications the points of interest are situated in the proximity of the surface 202

of the reference ellipsoid (h=0), approximate transformation methods must provide high accuracy 203

in this region. Arguably the simplest transformation formula follows from the exact relation between 204

the geodetic latitude 𝜙𝜙 and spherical latitude 𝜃𝜃 on the ellipsoid (e.g., Laskowski 1991) 205

tan𝜙𝜙 =
𝑎𝑎2

𝑏𝑏2
tan𝜃𝜃 (32)

It follows from the definition of the spherical coordinates (e.g., Paul 1973) that 206

tan𝜃𝜃 = 𝑍𝑍 𝑊𝑊⁄ , and the geodetic latitude of points on the ellipsoid can thus be computed from 207

𝜙𝜙 = atan
𝑎𝑎2𝑍𝑍
𝑏𝑏2𝑊𝑊

 (33)

which can be used as an approximate solution for points outside the ellipsoid and is here called the 208

spherical method. Equation (33) is used as a starting point for many iterative solutions (e.g., 209

Bomford 1971, Borkowski 1989). Due to its simplicity, the spherical method is the most efficient 210

transformation method, but its accuracy for points away from the ellipsoidal surface is poor. 211

 212

A more accurate transformation is the well-known method of Bowring (1976). In Bowring’s 213

method, geodetic latitude is computed through the approximate expression 214

𝜙𝜙 = arctan
𝑍𝑍 + 𝑒𝑒′2𝑏𝑏 sin3 𝑢𝑢
𝑊𝑊 − 𝑒𝑒2𝑎𝑎 cos3 𝑢𝑢

 (34)

where 215

𝑢𝑢 = arctan
𝑎𝑎𝑍𝑍
𝑏𝑏𝑊𝑊

 (35)

and 𝑒𝑒′2 is the second numerical eccentricity of the ellipse. Once latitude is known, the ellipsoidal 216

height can be computed through (Bowring 1985) 217

ℎ = 𝑊𝑊 cos𝜙𝜙 + 𝑍𝑍 sin𝜙𝜙 −
𝑎𝑎2

𝑁𝑁
 (36)

 218

Two other geodetic methods have been selected for comparison. The method of Fukushima (2006), 219

variation (f), has been selected, as it is one of the most efficient geodetic methods known (e.g. Zeng 220

2013). Fukushima’s method has, for example, been implemented in the International Earth Rotation 221

and Reference Systems Service (IERS) Conventions software collection. The first method of Pollard 222

(2002) has also been selected for comparison, because it is one of the few geodetic methods in 223

which, like in Sampson’s and Uteshev’s methods, ellipsoidal height is computed first, and geodetic 224

latitude second based on the ellipsoidal height. Both Fukushima (2006) and Pollard (2002) state that 225

their methods have a faster computation speed than Bowring’s (1976) method. The algorithms of 226

both methods can be found in Appendix A. 227

 228

6. ACCURACY OF METHODS 229

 230

The accuracy of Sampson’s and Uteshev’s methods, in unmodified and modified form, is compared 231

here to the geodetic methods by Bowring (1976, 1985), Pollard (2002) and Fukushima (2006). These 232

geodetic methods have been selected as they are among the simplest and computationally most 233

efficient of the geodetic methods. 234

 235

The main aim of this section is to test the methods for use on or near the Earth’s surface. A numerical 236

closed-loop experiment is conducted for heights in the range from -11,000 m to +15,000 m and 237

latitudes from the equator to the North Pole. Results on the southern hemisphere are identical but 238

with opposite sign, and are therefore not shown. A regular, equidistant grid of geodetic latitudes and 239

heights was created with a resolution of 10ˊ in latitude and 50 m in height. This grid was then 240

transformed to geocentric Cartesian coordinates using Eq. (1) and the parameters of the GRS80 241

reference ellipsoid (Moritz 2000). Subsequently, the geocentric Cartesian coordinates were 242

transformed back into geodetic coordinates using the various methods. Longitude does not 243

significantly affect the accuracy of the recovered latitude and height (𝜆𝜆 was set to 0°). 244

 245

Approximation errors are the differences between the original and transformed geodetic coordinates. 246

For the latitudes, the approximation error in radians was converted to an equivalent approximation 247

error in metres through multiplication by the distance to the origin (𝑟𝑟). In order to properly assess 248

the approximation error in each method without the influence of numerical rounding errors, 249

extended precision arithmetic (variable precision arithmetic) was used. The results are shown 250

visually in Figures 1 and 2, and the maximum error for each method in the test area is shown in 251

Table 1. 252

 253

 254

Figure 1. Approximation error in the computation of ellipsoidal height (left) and geodetic latitude 255

(right) using the unmodified Sampson method (top row), modified Sampson method (second row), 256

unmodified Uteshev method (third row), and modified Uteshev method (bottom row) (units: m; 257

scale bars show the logarithm of the error; errors in latitude were converted from radians to metres 258

through multiplication by 𝑟𝑟) 259

 260

 261

Figure 2. Approximation error in the computation of ellipsoidal height (left) and geodetic latitude 262

(right) using the spherical method (top row), Bowring method (second row), Pollard method (third 263

row) and Fukushima method (bottom row) (units: m; scale bars show the logarithm of the error; 264

note that the scale bar for the left figures has a larger range to properly indicate the accuracy of all 265

methods; errors in latitude were converted from radians to metres through multiplication by 𝑟𝑟) 266

 267

 Error in height
direction (m)

Error in latitudinal
direction (m)

Sampson 1.77E+01 9.73E-04
Modified Sampson 4.17E-02 2.30E-06
Uteshev 5.18E-02 2.86E-06
Modified Uteshev 7.27E-05 3.92E-09
Spherical 1.98E-04 5.03E+01
Bowring 3.13E-19 2.00E-06
Pollard 3.96E-07 5.83E-04
Fukushima 3.31E-29 2.05E-11

Table 1. Maximum absolute error in height and latitudinal direction for the transformation 268
methods listed in the test range covering all latitudes and heights heights in the range from -11,000 269

m to +15,000 m 270
 271

Figure 1 shows that the unmodified Sampson and Uteshev methods for the computation of 272

ellipsoidal height are not of sufficient accuracy for most geodetic applications. However, the 273

modified Uteshev method produces sub-millimetre accuracy in the whole test area. In fact, while it 274

is not shown in Figure 1 and Table 1, the modified Sampson method can yield a comparable 275

accuracy to the modified Uteshev method if the correction term (Eq. 25) is applied twice instead of 276

once. In the computation of latitude, both Sampson’s and Uteshev’s methods produce sub-277

millimetre accuracy. This shows that Eq. (20), which in both methods computes geodetic latitude 278

when ellipsoidal height is known, is insensitive to approximation errors in the ellipsoidal height. 279

Equation (20) is therefore a very useful formula, however it appears to be (almost) completely 280

unknown within the geodetic community. 281

 282

Figure 2 shows that the spherical method should not be used for any points that are not on the surface 283

of the ellipsoid. Even at a height of only 50 m, the error in latitudinal direction reaches 0.168 m. All 284

other geodetic methods produce a level of accuracy that is sufficient for any practical application in 285

the test range. The method of Fukushima (2006) is the most precise of the methods tested. 286

 287

It is also interesting that in the geodetic methods the accuracy of the ellipsoidal height is higher than 288

the equivalent accuracy of the latitude, whereas for Sampson’s and Uteshev’s method the opposite 289

holds. This is thanks to the fact that Eq. (36), which computes geodetic latitude when ellipsoidal 290

height is known in Bowring’s and Fukushima’s methods, is insensitive to approximation errors in 291

the geodetic latitude. A final observation is that the modified Uteshev method produces more precise 292

geodetic latitudes over most of the Earth’s surface than any of the tested geodetic methods. 293

 294

The numerical stability of the methods in regions near singularities, for example close to the poles, 295

has not been studied here. A discussion on this can be found in many other publications (e.g., 296

Bowring 1985, Borkowski 1989, Fukushima 1999). 297

 298

7. NUMERICAL EFFICIENCY OF METHODS 299

 300

Many researchers have compared computation times of various methods for the inverse geodetic 301

transformation problem (e.g., Laskowski 1991, Gerdan and Deakin 1999, Seemkooei 2002, Fok and 302

Iz 2003, Bajorek et al. 2014). However, studies do often not agree on the relative computation speed 303

of different methods. The main reason for this is that computation time is highly dependent on 304

various aspects, including hardware specifications, programming language, compiler, and 305

implementation of the method. Therefore, the fastest method in one test setup will not necessarily 306

be the fastest in another. 307

 308

Fukushima (1999) has suggested comparing the various methods by an operation count instead. 309

Methods that limits the use of computationally expensive operations such as divisions, square roots, 310

and trigonometric functions, are generally computationally efficient. Fukushima (1999) provides 311

relative computation times required for various operations. However, these also vary across different 312

platforms and depend heavily on floating point precision. An operation count can give an indication 313

of the computational efficiency of a method, but it can’t definitively and reliably rank methods based 314

on their efficiency under all circumstances. Nevertheless, it is the best method available for 315

providing an indication of computational efficiency. 316

 317

No matter whether methods are compared through a test of computational speed or through an 318

operation count, it is important that each of the methods is implemented in an optimal sense. This 319

is best illustrated using Bowring’s (1976) method (Eqs. 34-35) as an example. It can be implemented 320

naively as, for example, in the following snippet of code: 321

 322

u=atan(a*Z/(b*W)) 323

phi=atan((Z+ep2*b*sin(u))/(W-e2*a*cos(u)) 324

 325

This implementation requires two calls of the atan function, one of the sin function and one of 326

the cos function, which is generally computationally expensive. Bowring’s original implementation 327

instead made use of the fact that the variable 𝑢𝑢 does not need to be computed, because sin𝑢𝑢 and 328

cos𝑢𝑢 can be computed directly from tan𝑢𝑢 using trigonometric identities. Additional minor savings 329

can be made by avoiding on-the-fly use of operations between constants. For example, in the snippet 330

of code above, the values of ep2*b and e2*a could have been stored in memory, avoiding two 331

multiplications. A more efficient implementation of Bowring’s method is (cf. Fukushima 1999, 332

Appendix C) 333

 334

T=c1*Z/W %T=tan(u) 335

C=1/sqrt(1+T*T) %C=cos(u) 336

S=C*T %S=sin(u) 337

phi=atan((Z+c2*S*S*S)/(W-c3*C*C*C)) 338

 339

where c1=a/b, c2=ep2*b and c3=e2*a. This avoids one atan, one sin and one cos at the 340

expense of one sqrt, one extra division, three extra multiplications and one extra addition. 341

 342

We can optimise the implementation of Bowring’s (1976) method even further. Using Pythagoras’s 343

theorem, alternative expressions for the sine and cosine of the auxiliary parameter 𝑢𝑢 can be found 344

sin𝑢𝑢 =
𝑎𝑎𝑍𝑍

√𝑎𝑎2𝑍𝑍2 + 𝑏𝑏2𝑊𝑊2
 and cos𝑢𝑢 =

𝑏𝑏𝑊𝑊
√𝑎𝑎2𝑍𝑍2 + 𝑏𝑏2𝑊𝑊2

 (37)

Inserting these equations into Eq. (34) gives an alternative form of Bowring’s formula 345

𝜙𝜙 = arctan
𝑍𝑍 + 𝑎𝑎4𝑏𝑏−4𝐿𝐿𝑍𝑍3

𝑊𝑊 − 𝐿𝐿𝑊𝑊3 (38)

where 346

𝐿𝐿 = 𝑒𝑒2𝑎𝑎4 �
𝑊𝑊2

𝑎𝑎2
+
𝑍𝑍2

𝑏𝑏2
�
−32

 (39)

This can be implemented as follows: 347

 348

W2=W*W 349

Z2=Z*Z 350

K=W2+c1*Z2 351

L=c2/(K*sqrt(K)) 352

phi=atan((Z+c3*Z2*Z*L)/(W-W2*W*L)) 353

 354

where c1=a*a/(b*b), c2=e2*a and c3=c1*c1. Compared to the previous implementation 355

above, this saves one division while the number of all other operations is identical. In most 356

situations, this will be the most efficient implementation. 357

 358

Likewise, the computation of height (Eq. 36) can be optimised by removing the need to compute 359

the sine and cosine of latitude, using the following equation instead 360

ℎ =
𝑊𝑊 + |𝑍𝑍| tan𝜙𝜙 − 𝑎𝑎�1 + (1 − 𝑒𝑒2) tan2 𝜙𝜙

�1 + tan2 𝜙𝜙
 (40)

 361

The implementation of all methods used in this study is summarised in Appendix A. Table 2 shows 362

the operation count in the computation of geodetic latitude and height from Cartesian coordinates. 363

All methods necessarily require one arctangent operation to compute the latitude, but do not require 364

the evaluation of any other trigonometric functions. The most efficient method is then in theory the 365

method that minimises the number of operations, but in particular the computationally expensive 366

square root and division operations (cf. Fukushima 1999, Appendix C). Table 3 shows the same for 367

the computation of ellipsoidal height only. It can, for example, be concluded from Table 3 that for 368

the computation of ellipsoidal height only, Sampson’s method would be expected to be the fastest 369

method in any test because it has the lowest operation count for each type of operation. 370

 371

Sp
he

ric
al

B
ow

rin
g

(c
on

ve
nt

io
na

l
im

pl
em

en
ta

tio
n)

B
ow

rin
g

(n

ew

im
pl

em
en

ta
tio

n)

Sa
m

ps
on

M
od

ifi
ed

Sa

m
ps

on

U
te

sh
ev

M
od

ifi
ed

U

te
sh

ev

Fu
ku

sh
im

a

Po
lla

rd

Addition/subtraction 5 8 8 12 13 14 15 11 12
Multiplication 7 15 14 16 18 23 26 31 14
Division 2 4 3 3 4 3 4 2 5
Square root 3 4 4 2 3 2 2 4 4
Arctangent 1 1 1 1 1 1 1 1 1

Table 2. Operation count for the computation of geodetic latitude and height from 3D Cartesian 372
coordinates in various inverse transformation methods 373

 374
 375
 376
 377
 378
 379

 380

Sp
he

ric
al

B
ow

rin
g

(c
on

ve
nt

io
na

l
im

pl
em

en
ta

tio
n)

B
ow

rin
g

(n
ew

im

pl
em

en
ta

tio
n)

Sa
m

ps
on

M
od

ifi
ed

Sa

m
ps

on

U
te

sh
ev

M
od

ifi
ed

U

te
sh

ev

Fu
ku

sh
im

a

Po
lla

rd

Addition/subtraction 5 8 8 4 6 6 8 11 10
Multiplication 7 15 14 7 9 14 17 31 12
Division 2 4 3 1 2 1 2 1 4
Square root 3 4 4 1 2 1 1 4 3
Arctangent 0 0 0 0 0 0 0 0 0

Table 3. Operation count for the computation of ellipsoidal height only from 3D Cartesian 381
coordinates in various inverse transformation methods 382

 383

It appears from Tables 2 and 3 that the methods of Sampson and Uteshev are computationally very 384

efficient especially in the computation of ellipsoidal height. This is confirmed in a numerical test of 385

computation times. The average computation time for each method was measured by performing 386

more than 108 transformations of points regularly distributed in the test area. All methods were 387

coded in Fortran95 with double precision arithmetic (selected_real_kind(15,307)). To test 388

the variability in computation time, the code was compiled with different compilers (with and 389

without code optimisation), and run on four different machines with different hardware 390

specifications and operating systems. The specifications of the four machines used are shown in 391

Table 4. 392

 393

Machine Operating system Processor RAM

M1 Red Hat Linux 6.10 40 Intel Xeon E5-2690 CPUs @ 3.00 GHz 378 GB

M2 Red Hat Linux 3.10 32 Intel Xeon E5-2690 CPUs @ 2.90 GHz 251 GB

M3 Windows 10 Enterprise Intel Core i7-7700 CPU @ 3.60 GHz 16.0 GB

M4 Windows 10 Pro Intel Core i5-6200U CPU @ 2.30 GHz 8.00 GB

Table 4. Hardware specifications of four machines (herein named M1, M2, M3, M4) used for 394
computational speed tests 395
 396

Table 5 shows the difference in relative computation time between the different transformation 397

methods. The computation times are normalised relative to the conventional implementation of 398

Bowring’s method for the computation of latitude and height. In all cases, the code was compiled 399

using the GNU compiler gfortran with optimisation flag O3. It can be seen that, in the computation 400

of latitude and height, the spherical method is the fastest, but as seen in section 6 it is not sufficiently 401

precise for most applications. The new implementation of Bowring’s method (Eqs. 37-39) provides 402

a significant advantage over the conventional implementation and is the fastest of the other methods 403

tested across all machines used, but only marginally faster than Fukushima’s method. Sampson’s 404

and Uteshev’s method do not improve on the speed of Fukushima’s method for the computation of 405

latitude and height. However, when only the ellipsoidal height is of interest, Sampson’s and 406

Uteshev’s methods, in unmodified or modified form, are faster than all other methods tested. 407

 408

 Latitude and height Height only
 M1 M2 M3 M4 M1 M2 M3 M4
Spherical

0.60 0.64 0.77 0.76 0.32 0.35 0.08 0.07

Bowring
(conv.)

1.00 1.00 1.00 1.00 0.52 0.62 0.16 0.19

Bowring
(new)

0.84 0.85 0.87 0.88 0.44 0.53 0.13 0.13

Sampson

0.87 0.90 0.98 0.97 0.12 0.08 0.02 0.02

Modified
Sampson

1.06 1.10 1.08 1.05 0.25 0.17 0.03 0.04

Uteshev

0.97 0.98 1.04 1.02 0.13 0.14 0.07 0.07

Modified
Uteshev

1.15 1.14 1.13 1.10 0.21 0.17 0.07 0.07

Fukushima

0.86 0.91 0.98 0.96 0.37 0.40 0.18 0.20

Pollard

1.23 1.27 1.16 1.15 0.44 0.57 0.14 0.16

Table 5. Computation time of various methods for the inverse geodetic transformation, relative to 409
the time required for Bowring’s method in the conventional implementation, on four different 410
machines (M1, M2, M3, M4) with different hardware specifications and operating systems 411
 412

To test the influence of the compiler, the code was also compiled with the Intel compiler ifort, and 413

with different optimisation flags. The result obtained in these tests on machine M3 (see Table 4) are 414

shown in Table 6. It can be seen that the choice of compiler and optimisation has a significant 415

influence on the test results. With the ifort compiler, the improvement of the new implementation 416

of Bowring’s method is more pronounced than with the gfortran compiler. However, regardless of 417

the method of compilation, it can be concluded that 1) the new implementation of Bowring’s method 418

is the fastest method for the inverse geodetic transformation under all tests performed (apart from 419

the imprecise spherical method), and 2) Sampson’s and Uteshev’s method do not provide a speed 420

advantage for the complete inverse geodetic transformation, but are the fastest methods for the 421

computation of ellipsoidal height only. 422

 423

 Latitude and height Height only
 gfortran ifort gfortran ifort
 O0 O3 O0 O3 O0 O3 O0 O3
Spherical

0.76 0.77 0.49 0.49 0.10 0.08 0.32 0.13

Bowring
(conv.)

1.00 1.00 1.00 1.00 0.24 0.16 0.61 0.31

Bowring
(new)

0.88 0.87 0.74 0.73 0.18 0.13 0.51 0.23

Sampson

0.98 0.98 0.78 0.96 0.07 0.02 0.17 0.06

Modified
Sampson

1.06 1.08 0.93 1.16 0.09 0.03 0.27 0.19

Uteshev

1.06 1.04 0.91 1.09 0.10 0.07 0.28 0.09

Modified
Uteshev

1.16 1.13 1.10 1.36 0.14 0.07 0.39 0.17

Fukushima

1.02 0.98 1.12 0.92 0.29 0.18 0.80 0.34

Pollard

1.19 1.16 1.10 1.38 0.20 0.14 0.55 0.29

Table 6. Computation time of various methods for the inverse geodetic transformation, relative to 424
the time required for Bowring’s method in the conventional implementation, using the gfortran and 425
ifort compilers with optimisation flags O0 and O3 (results from machine M3) 426
 427

Finally, it is important to note from Tables 5 and 6 that tests for computation speed show great 428

variability based on compiler and hardware, and results may be different for a setup not tested here. 429

The test results also depend on the programming language and floating point precision applied (only 430

Fortran95 with double precision arithmetic was used here). Different floating point precision will 431

affect methods differently depending on hardware specifications, choice of compiler and compiler 432

settings. Results from a single test are not ever sufficient to draw definitive conclusions about the 433

“optimal” transformation method for all situations. 434

 435

8. CONCLUSIONS AND RECOMMENDATIONS 436

 437

The methods of Sampson (1982) and Uteshev and Goncharova (2018) have been applied to the 438

inverse geodetic transformation problem. Both methods are not sufficiently accurate for most 439

geodetic applications, but a minor modification increases the accuracy of the ellipsoidal height by 440

~3 orders of magnitude. In the common region of application near the Earth’s surface bounded by 441

heights from -11,000 m to +15,000 m, the maximum error in the modified Sampson method is 42 442

mm, and the maximum error in the modified Uteshev method is 0.073 mm. In both methods, the 443

modification consists of a simple additive correction to the height that is a function of the 444

approximate height and the distance of the point to the geocentre. 445

 446

One difference between the (modified) Sampson’s and Uteshev’s methods compared to most 447

geodetic methods is that ellipsoidal height is estimated first, and geodetic latitude second using the 448

computed height. In most geodetic methods, geodetic latitude is calculated first and ellipsoidal 449

height second using the computed latitude. If only the ellipsoidal height is required, Sampson’s and 450

Uteshev’s methods are therefore computationally more efficient than any of the existing geodetic 451

methods. If a complete conversion from Cartesian to geodetic coordinates is required, the ranking 452

of methods in terms of computation time is dependent on hardware, language, floating point 453

precision, choice of compiler and compiler settings. The main advantage of Sampson’s and 454

Uteshev’s method is that they require less calls of the expensive square root operation than any other 455

method. 456

 457

A new formulation of Bowring’s formula has also been presented here. It provides a significant 458

advantage over the conventional formulation, giving between 12% and 27% saving in computation 459

time in our numerical tests. Based on operation count, the new formulation of Bowring’s method is 460

also expected to be computationally more efficient than both Pollard’s and Fukushima’s method in 461

(almost) any situation. However, Fukushima’s (2006) method was only marginally slower in all 462

tests performed here, and may perform better than the new implementation of Bowring’s method in 463

some situations. The main advantage of Fukushima’s method is its impressive accuracy, which is 464

superior to all other methods tested, while still being very computationally efficient. 465

 466

REFERENCES 467

 468

Bajorek, M., Kulczycki, M., Ligas, M., 2014. A comparison of iterative methods of the cubic rate 469

convergence in the problem of transformation between Cartesian and geodetic coordinates. 470

Geomatics and Environmental Engineering, 8(2): 15-25. 471

Bomford, G., 1971. Geodesy. 3rd edition. Oxford University Press, UK. 731 pages. 472

Borkowski, K. M., 1989. Accurate algorithms to transform geocentric to geodetic coordinates. 473

Bulletin Géodésique. 63(1): 50-56. 474

Bowring, B. R., 1976. Transformation from spatial to geographical coordinates. Survey Review, 475

23(181): 323-327. 476

Bowring, B. R., 1985. The accuracy of geodetic latitude and height equations. Survey Review, 477

28(218): 202-206. 478

Civicioglu, P., 2012. Transforming geocentric Cartesian coordinates to geodetic coordinates by 479

using differential search algorithm. Computers and Geosciences, 46: 229-247. 480

Featherstone, W. E., Claessens, S. J., 2008. Closed-form transformation between geodetic and 481

ellipsoidal coordinates. Studia Geophysica et Geodaetica, 52: 1-18. 482

Fok, H.S., Iz, H. B., 2003. A comparative analysis of the performance of iterative and non-iterative 483

solutions to the Cartesian to geodetic coordinate transformation. Journal of Geospatial 484

Engineering. 5(2): 61-74. 485

Fukushima, T., 1999. Fast transform from geocentric to geodetic coordinates. Journal of Geodesy. 486

73(11), 603-610. 487

Fukushima, T. 2006. Transformation from Cartesian to geodetic coordinates accelerated by Halley’s 488

method. Journal of Geodesy. 79(12): 689-693. 489

Gerdan, G. P., Deakin, R. E., 1999. Transforming Cartesian coordinates X,Y,Z to geographical 490

coordinates φ, λ, h. The Australian Surveyor, 44(1): 55-63. 491

Harker, M., O’Leary, P., 2006. First order geometric distance (the myth of Sampsonus). BMVC, doi: 492

10.5244/C.20.10 493

Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. W. H. Freeman & Co., San Fransisco, USA. 494

364 pages. 495

Laskowski, P., 1991. Is Newton’s iteration faster than simple iteration for transformation between 496

geocentric and geodetic coordinates? Bulletin Géodésique. 65(1): 14-17. 497

Ligas, M., 2012. Cartesian to geodetic coordinates conversion on a triaxial ellipsoid. Journal of 498

Geodesy, 86: 249-256. 499

Moritz, H., 2000. Geodetic Reference System 1980. Journal of Geodesy 74(1): 128–162. 500

Paul, M. K., 1973. A note on computation of geodetic coordinates from geocentric (Cartesian) 501

coordinates. Bulletin Géodésique. 108(2): 135-139. 502

Pollard, J., 2002. Iterative vector methods for computing geodetic latitude and height from 503

rectangular coordinates. Journal of Geodesy, 76: 36-40. 504

Sampson, P. D., 1982. Fitting conic sections to “very scattered” data: an iterative refinement of the 505

Bookstein algorithm. Computer graphics and image processing, 18: 97-108. 506

Seemkooei, A. A., 2002. Comparison of different algorithms to transform geocentric to geodetic 507

coordinates. Survey Review. 36(286): 627-633. 508

Shu, C., Li, F., 2010. An iterative algorithm to compute geodetic coordinates. Computers and 509

Geosciences, 36: 1145-1149. 510

Soler, T., Han, J. Y., Weston, N. D., 2012. Alternative transformation from Cartesian to geodetic 511

coordinates by least-squares for GPS georeferencing applications. Computers and Geosciences, 512

42: 100-109. 513

Turner, J. D., 2009. A non-iterative and non-singular perturbation solution for transforming 514

Cartesian to geodetic coordinates. Journal of Geodesy, 83(2): 139-145. 515

Uteshev, A. Yu., Goncharova, M. V., 2018. Point-to-ellipse and point-to-ellipsoid distance equation 516

analysis. Journal of Computational and Applied Mathematics, 328: 232-251. 517

Uteshev, A. Yu., Yashina, M. V., 2015. Metric problems for quadrics in multidimensional space. 518

Journal of Symbolic Computation, 68: 287-315. 519

Vermeille, H., 2004. Computing geodetic coordinates from geocentric coordinates. Journal of 520

Geodesy. 78(1-2): 94-95. 521

Vermeille, H., 2011. An analytical method to transform geocentric into geodetic coordinates. 522

Journal of Geodesy, 85(2): 105-117. 523

Zeng, H., 2013. Explicitly computing geodetic coordinates from Cartesian coordinates. Earth, 524

Planets and Space, 65(4): 291-298. 525

 526

APPENDIX A: CODE FOR TRANSFORMATION METHODS 527

 528

This appendix shows how each of the methods discussed in this paper was implemented for the 529

transformation from Cartesian coordinates to geodetic latitude and height ((𝑋𝑋,𝑌𝑌,𝑍𝑍) → (𝜙𝜙,ℎ)) over 530

the study area. Constants to be stored in memory are named c1, c2, etc., and the formulas for 531

their computation from the semi-major axis 𝑎𝑎 and semi-minor axis 𝑏𝑏 of the reference ellipsoid are 532

shown underlined at the top of the code. Note that these codes do not include special cases to avoid 533

singularities and are only applicable to the northern hemisphere; slight modifications would be 534

required to make them more generally useable. 535

 536

Sampson 537

 538

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=4*c3*c3, c6=4*c4*c4, c7=c1+c2, 539

c8=0.5*c1*c2, c9=c3+c4, c10=-4.5*c8 540

W2=X*X+Y*Y 541

Z2=Z*Z 542

G=c3*W2+c4*Z2-1 543

h=G/sqrt(c5*W2+c6*Z2) 544

h2=h*h 545

A1=W2+Z2-h2-c7 546

hA2=c8*(c9*h2-G) 547

mu=(c10*h2-A1*hA2)/(A1*A1-6*hA2) 548

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 549

 550

Modified Sampson 551

 552

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=4*c3*c3, c6=4*c4*c4, c7=c1+c2, 553

c8=0.5*c1*c2, c9=c3+c4, c10=-4.5*c8 554

W2=X*X+Y*Y 555

Z2=Z*Z 556

G=c3*W2+c4*Z2-1 557

h0=G/sqrt(c5*W2+c6*Z2) 558

r2=W2+Z2 559

h=h0+h0*h0/(2*sqrt(r2)) 560

h2=h*h 561

A1=r2-h2-c7 562

hA2=c8*(c9*h2-G) 563

mu=(c10*h2-A1*hA2)/(A1*A1-6*hA2) 564

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 565

 566

Uteshev 567

 568

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=2*c3*c3, c6=2*c4*c4, c7=0.5*c3*c5, 569

c8=0.5*c4*c6, c9=c1+c2, c10=0.5*c1*c2, c11=c3+c4, c12=-9*c10 570

W2=X*X+Y*Y 571

Z2=Z*Z 572

S4=c5*W2+c6*Z2 573

S42=S4*S4 574

G=c3*W2+c4*Z2-1 575

h=G*sqrt((0.5*S42+(c7*W2+c8*Z2)*G)/(S42*S4)) 576

h2=h*h 577

A1=W2+Z2-h2-c9 578

hA2=c10*(c11*h2-G) 579

mu=(c12*h2-A1*hA2)/(A1*A1-6*hA2) 580

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 581

 582

Modified Uteshev 583

 584

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=2*c3*c3, c6=2*c4*c4, c7=0.5*c3*c5, 585

c8=0.5*c4*c6, c9=c1+c2, c10=0.5*c1*c2, c11=c3+c4, c12=-9*c10 586

W2=X*X+Y*Y 587

Z2=Z*Z 588

S4=c5*W2+c6*Z2 589

S42=S4*S4 590

G=c3*W2+c4*Z2-1 591

h0=G*sqrt((0.5*S42+(c7*W2+c8*Z2)*G)/(S42*S4)) 592

r2=W2+Z2 593

h=h0+0.625*h0*h0*h0/r2 594

h2=h*h 595

A1=r2-h2-c9 596

hA2=c10*(c11*h2-G) 597

mu=(c12*h2-A1*hA2)/(A1*A1-6*hA2) 598

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 599

 600

Spherical 601

 602

c1=a*a/(b*b), c2=1/c1, c3=a 603

W=sqrt(X*X+Y*Y) 604

tau=c1*Z/W 605

phi=atan(tau) 606

tau2=tau*tau 607

h=(W+Z*tau-c3*sqrt(1+c2*tau2))/sqrt(1+tau2) 608

 609

Bowring (conventional implementation) 610

 611

c1=b*b/(a*a), c2=sqrt(c1), c3=a*(1-c1), c4=a 612

W=sqrt(X*X+Y*Y) 613

T= c1*Z/W 614

C=1/sqrt(1+T*T) 615

S=C*T 616

tau=(Z+c2*S*S*S)/(W-c3*C*C*C) 617

phi=atan(tau) 618

tau2=tau*tau 619

h=(W+Z*tau-c4*sqrt(1+c1*tau2))/sqrt(1+tau2) 620

 621

Bowring (new implementation) 622

 623

c1=a*a/(b*b), c2=1/c1, c3=c1*c1, c4=a*(1-c2), c5=a 624

W2=X*X+Y*Y 625

W=sqrt(W2) 626

Z2=Z*Z 627

K=W2+c1*Z2 628

L=c4/(K*sqrt(K)) 629

tau=(Z+c3*Z2*Z*L)/(W-W2*W*L) 630

phi=atan(tau) 631

tau2=tau*tau 632

h=(W+Z*tau-c5*sqrt(1+c2*tau2))/sqrt(1+tau2) 633

 634

Fukushima 635

 636

c1=1/a, c2=b*b/(a*a), c3=1-c2, c4=sqrt(c2), c5=1.5*c3*c3, c6=a 637

W=sqrt(X*X+Y*Y) 638

s0=c1*Z 639

Wn=c1*W 640

c0=c4*Wn 641

c02=c0*c0 642

s02=s0*s0 643

a02=c02+s02 644

a0=sqrt(a02) 645

a03=a02*a0 646

f0=Wn*a03-c3*c02*c0 647

b0=c5*s02*c02*Wn*(a0-c4) 648

s1=(c4*s0*a03+c3*s02*s0)*f0-b0*s0 649

cc=c4*(f0*f0-b0*c0) 650

phi=atan(s1/cc) 651

s12=s1*s1 652

cc2=cc*cc 653

h=(W*cc+Z*s1-c6*sqrt(c2*s12+cc2))/sqrt(s12+cc2) 654

 655

Pollard 656

 657

c1=a*a, c2=c1/(b*b), c3=c2-1, c4=b*c3 658

W2=X*X+Y*Y 659

Z2=Z*Z 660

Zp=Z+c4*Z/sqrt(W2+Z2) 661

PhN=sqrt(W2+Zp*Zp) 662

n=Zp/PhN 663

r=1+c3*n*n 664

s=W2/PhN+c2*n*Z 665

t=W2+c2*Z2-c1 666

h=(s-sqrt(s*s-r*t))/r 667

Z02=Z-n*h 668

phi=atan((Z+c3*Z02)/sqrt(W2)) 669

	S.J. Claessens

