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ABSTRACT 13 

 14 

The derivation of algorithms for the computation of geodetic coordinates from 3D Cartesian 15 

coordinates has been a very active field of research among geodesists for more than forty years. 16 

Many authors have sought the most efficient method, i.e. the method that provides the fastest 17 

computational speed, which nevertheless yields sufficient accuracy for practical applications. The 18 

problem is a special case of a more general mathematical problem that has also been studied by 19 

researchers in other fields. This paper investigates the applicability of methods by Sampson (1982, 20 

Computer graphics and image processing, 18: 97-108) and Uteshev and Goncharova (2018, Journal 21 

of Computational and Applied Mathematics, 328: 232-251) to the computation of geodetic 22 

coordinates. Both methods have been modified to make them more suitable for this particular 23 

problem. The methods are compared to several commonly used geodetic methods in terms of 24 

accuracy and computational efficiency. It is found that a simple modification improves the accuracy 25 

of the methods by ~3 orders of magnitude, and the modified method of Uteshev and Goncharova 26 
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(2018) achieves an accuracy of <0.1 mm anywhere on the surface of the Earth. The methods are 27 

especially efficient in the computation of ellipsoidal height. As an additional result of this study, a 28 

new formulation of the well-known method by Bowring (1976, Survey Review, 23: 323-327) is 29 

derived, and it is shown to improve the computation speed of Bowring’s method by ~12% to ~27% 30 

compared to the conventional formulation.  31 

 32 
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 35 

1. INTRODUCTION 36 

 37 

The transformation from 3D Cartesian coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍) to geodetic coordinates (geodetic 38 

latitude 𝜙𝜙, longitude 𝜆𝜆, and ellipsoidal height ℎ) is a classical problem in geodesy and its application 39 

is extremely common. While the computation of longitude is straightforward, the computation of 40 

geodetic latitude and ellipsoidal height is more complicated. Many different methods have been 41 

published in the geodetic literature. An overview of many of these methods can be found in 42 

(Featherstone and Claessens 2008), and many more have been published since (e.g., Turner 2009, 43 

Shu and Li 2010, Civicioglu 2012, Ligas 2012, Soler et al. 2012, Zeng 2013). Most methods focus 44 

on the computation of geodetic latitude, after which the ellipsoidal height can readily be found, but 45 

it is equally possible to solve for the ellipsoidal height first and geodetic latitude second. 46 

 47 

Methods for the computation of geodetic coordinates from Cartesian coordinates can be divided into 48 

three categories: exact, iterative and approximate methods. Here we define an approximate method 49 

as any method that is neither exact nor uses a variable number of iterations. For example, Bowring’s 50 

(1976) method is iterative, but when implemented such that only a single iteration is used (as is 51 

often the case), we consider it an approximate method. 52 



 53 

An exact solution involves the solution of a quartic equation (fourth-order polynomial) (e.g. Paul 54 

1973, Borkowski 1989, Vermeille 2004, 2011), which inevitably leads to a computationally 55 

inefficient algorithm. Geodesists have put much effort into devising more efficient iterative or 56 

approximate methods. Some of the simplest and most efficient of these are the methods by Bowring 57 

(1976, 1985) and Fukushima (1999, 2006).  58 

 59 

In other fields, similar problems have been tackled in parallel. For example, in the field of computer 60 

vision, a common problem is the estimation of conic sections through scattered data points. To 61 

estimate a best fitting ellipse (in the case that the conic section is an ellipse), an approximation of 62 

the distance between a point and the ellipse is required. A well-known algorithm for this problem is 63 

provided by Sampson (1982), and the approximate distance has become known as Sampson's 64 

distance. Meanwhile, mathematicians have worked on more general problems, such as computation 65 

of the shortest distance between a point and any degree 2 curve or manifold in ℝ𝑛𝑛. For example, 66 

Uteshev and Yashina (2015) provide a method for finding the distance between an ellipsoid and any 67 

first- or second-order manifold. Explicit exact and approximate formulas for the distance between a 68 

point and an ellipse are provided in Uteshev and Goncharova (2018). 69 

 70 

The main aim of this paper is to investigate the applicability of approximate solutions by Sampson 71 

(1982) and Uteshev and Goncharova (2018), from outside of the geodetic literature, to the 72 

computation of geodetic coordinates on or near Earth. These methods are then compared to a 73 

selection of geodetic methods in terms of accuracy and computational efficiency. The focus is on 74 

simple and efficient (fast) algorithms for the computation of geodetic coordinates that are precise 75 

enough for any practical application on the Earth’s surface or at flight altitude.  76 

 77 



The geodetic transformation problem is briefly defined in section 2. In section 3, Sampson's and 78 

Uteshev's methods are outlined. It will be shown that these methods are not sufficiently accurate for 79 

geodetic applications, except for points very close to the reference ellipsoid. However, new 80 

modifications to these methods to make them more suited to the geodetic coordinate transformation 81 

are presented in section 4. In section 5, the geodetic methods of Bowring (1976, 1985), Pollard 82 

(2002), and Fukushima (2006) are outlined. The accuracy of the unmodified and modified methods 83 

of Sampson (1982) and Uteshev and Goncharova (2018) are compared to these geodetic methods in 84 

section 6, and in section 7 a comparison in terms of computational efficiency is provided. An 85 

important point is made about the variability in computational efficiency for different hardware, 86 

software and implementation. Finally, section 8 provides conclusions and recommendations. 87 

 88 

2. THE GEODETIC TRANSFORMATION PROBLEM 89 

 90 

The geodetic transformation problem consists of the transformation between geodetic coordinates 91 

(𝜙𝜙, 𝜆𝜆, ℎ) and geocentric Cartesian coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍). The forward transformation ((𝜙𝜙, 𝜆𝜆,ℎ) → 92 

(𝑋𝑋,𝑌𝑌,𝑍𝑍)) defines the relation between these coordinates (e.g. Heiskanen and Moritz 1967) 93 

𝑋𝑋 = (𝑁𝑁 + ℎ) cos𝜙𝜙 cos 𝜆𝜆 

𝑌𝑌 = (𝑁𝑁 + ℎ) cos𝜙𝜙 sin 𝜆𝜆 

𝑍𝑍 = [𝑁𝑁(1 − 𝑒𝑒2) + ℎ] sin𝜙𝜙 

(1) 

where 94 

𝑁𝑁 =
𝑎𝑎

�1 − 𝑒𝑒2 sin2 𝜙𝜙
 (2) 

𝑒𝑒2 =
𝑎𝑎2 − 𝑏𝑏2

𝑎𝑎2
 (3) 

and 𝑎𝑎 and 𝑏𝑏 are the semi-major and semi-minor axes of the reference ellipsoid, respectively. The 95 

reference ellipsoid is an oblate spheroid (ellipsoid of revolution). 96 

 97 



In the inverse problem ((𝑋𝑋,𝑌𝑌,𝑍𝑍) → (𝜙𝜙, 𝜆𝜆,ℎ)), it follows directly from Eq. (1) that longitude can be 98 

computed from the 𝑋𝑋- and 𝑌𝑌-coordinates in a straightforward manner (e.g., Bomford 1971) 99 

𝜆𝜆 = arctan
𝑌𝑌
𝑋𝑋

= 2 arctan
𝑌𝑌

𝑋𝑋 + 𝑊𝑊
 (4) 

where  100 

𝑊𝑊 = �𝑋𝑋2 + 𝑌𝑌2 (5) 

The form on the right-hand side of Eq. (4) is often used for reasons of numerical stability.  101 

 102 

Upon the computation of 𝜆𝜆, the inverse problem is reduced to a problem in ℝ2, more specifically a 103 

problem in the 𝑊𝑊𝑍𝑍-plane ((𝑊𝑊,𝑍𝑍) → (𝜙𝜙,ℎ)). The section of the reference ellipsoid and the 𝑊𝑊𝑍𝑍-104 

plane is an ellipse. The geodetic latitude 𝜙𝜙 can be interpreted geometrically as the angle between 105 

the 𝑊𝑊-axis and the normal to the ellipse through the point with coordinates (𝑊𝑊,𝑍𝑍), and the 106 

ellipsoidal height ℎ as the shortest distance between the point with coordinates (𝑊𝑊,𝑍𝑍) and the 107 

ellipse. 108 

 109 

3. SAMPSON’S AND UTESHEV’S METHODS 110 

 111 

The inverse geodetic transformation problem can be solved in an approximate fashion by applying 112 

Sampson’s distance formula (Sampson 1982). Sampson’s distance is often thought of as a first-order 113 

approximation of the distance from a point to a curve, but to be more exact, it is the exact geometric 114 

distance from a point to the first-order approximation of the curve (Harker and O’Leary 2006).  115 

 116 

Sampson’s method is defined for the distance between a point and any curve of degree 2, which is 117 

given by the equation 118 

𝑄𝑄(𝑤𝑤, 𝑧𝑧) = 𝐴𝐴𝑤𝑤2 + 𝐵𝐵𝑤𝑤𝑧𝑧 + 𝐶𝐶𝑧𝑧2 + 𝐷𝐷𝑤𝑤 + 𝐸𝐸𝑧𝑧 + 𝐹𝐹 = 0 (6) 



where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸 and 𝐹𝐹 are constants. Sampson (1982) approximates the shortest distance between 119 

a point with coordinates (𝑊𝑊,𝑍𝑍) and the curve 𝑄𝑄(𝑤𝑤, 𝑧𝑧) by 120 

𝑑𝑑 ≈
𝑄𝑄(𝑊𝑊,𝑍𝑍)

|∇𝑄𝑄(𝑊𝑊,𝑍𝑍)| (8) 

where ∇𝑄𝑄(𝑊𝑊,𝑍𝑍) is the magnitude of the norm of the gradient of 𝑄𝑄(𝑊𝑊,𝑍𝑍) at the point (𝑊𝑊,𝑍𝑍), 121 

defined by 122 

|∇𝑄𝑄(𝑊𝑊,𝑍𝑍)|2 = (2𝐴𝐴𝑊𝑊 + 𝐵𝐵𝑍𝑍 + 𝐷𝐷)2 + (2𝐶𝐶𝑍𝑍 + 𝐵𝐵𝑊𝑊 + 𝐸𝐸)2 (8) 

 123 

In the geodetic transformation problem, the curve is an ellipse, and the distance to the curve 𝑑𝑑 is the 124 

height of the computation point ℎ. The ellipse is defined by the implicit equation 125 

𝐺𝐺(𝑤𝑤, 𝑧𝑧) =
𝑤𝑤2

𝑎𝑎2
+
𝑧𝑧2

𝑏𝑏2
− 1 = 0 (9) 

and is thus a special case of the curve 𝑄𝑄(𝑤𝑤, 𝑧𝑧) with 126 

𝐴𝐴 =
1
𝑎𝑎2

,   𝐶𝐶 =
1
𝑏𝑏2

,   𝐹𝐹 = −1   and   𝐵𝐵 = 𝐷𝐷 = 𝐸𝐸 = 0 (10) 

The magnitude of the norm of the gradient for the case of the ellipse is then 127 

|∇𝑄𝑄(𝑊𝑊,𝑍𝑍)|2 = 4�
𝑊𝑊2

𝑎𝑎4
+
𝑍𝑍2

𝑏𝑏4
� ≡ 4𝑆𝑆4 (11) 

We can therefore write Sampson’s method for the inverse geodetic transformation problem as 128 

ℎ𝑆𝑆 =
𝐺𝐺(𝑊𝑊,𝑍𝑍)

2�𝑆𝑆4
 (12) 

Equation (12) provides an approximation of the ellipsoidal height, and the subscript 𝑆𝑆 indicates that 129 

this is the ellipsoidal height according to Sampson’s formula. Once the ellipsoidal height is known, 130 

the geodetic latitude 𝜙𝜙 can also be computed, but Sampson’s method is not concerned with latitude. 131 

We will return to the computation of latitude at the end of this section. 132 

 133 



Another approximate method for the inverse geodetic transformation problem is herein called 134 

Uteshev’s method. Uteshev and Yashina (2015) showed that the squared distance ℎ2 between a 135 

point and the ellipse is one of the positive zeros of the distance equation 136 

ℱ(ℎ,𝑊𝑊,𝑍𝑍) = 𝐷𝐷𝜇𝜇 �ℎ2𝜇𝜇3 −
𝐴𝐴2
𝑎𝑎2𝑏𝑏2

𝜇𝜇2 −
𝐴𝐴1
𝑎𝑎2𝑏𝑏2

𝜇𝜇 −
1

𝑎𝑎2𝑏𝑏2
� (13) 

where 𝐷𝐷𝜇𝜇{. } indicates the discriminant of the function and  137 

𝐴𝐴1 = 𝑊𝑊2 + 𝑍𝑍2 − ℎ2 − 𝑎𝑎2 − 𝑏𝑏2 

𝐴𝐴2 = 𝑎𝑎2𝑏𝑏2 ��
1
𝑎𝑎2

+
1
𝑏𝑏2
� ℎ2 − 𝐺𝐺(𝑊𝑊,𝑍𝑍)� 

(14) 

Uteshev and Goncharova (2018) approximate the relevant zero of this equation by a power series 138 

of the form 139 

ℓ1𝐺𝐺(𝑊𝑊,𝑍𝑍) + ℓ2𝐺𝐺2(𝑊𝑊,𝑍𝑍) + ℓ3𝐺𝐺3(𝑊𝑊,𝑍𝑍) + ⋯ (15) 

where the coefficients ℓ1, ℓ2, and ℓ3 are coefficients that can be determined exactly as a function 140 

of 𝑎𝑎, 𝑏𝑏, 𝑊𝑊 and 𝑍𝑍. They show that, when this power series is truncated after the quadratic term, the 141 

resulting formula for ellipsoidal height ℎ is Sampson’s formula (Eq. 12). When the cubic term in 142 

Eq. (15) is also taken into account, a more precise approximation is found 143 

ℎ𝑈𝑈 = ℎ𝑆𝑆�1 +
𝑆𝑆6

2𝑆𝑆42
𝐺𝐺(𝑊𝑊,𝑍𝑍) (16) 

where the subscript 𝑈𝑈 indicates this is Uteshev’s formula for ellipsoidal height, and 144 

𝑆𝑆6 =
𝑊𝑊2

𝑎𝑎6
+
𝑍𝑍2

𝑏𝑏6
 (17) 

 145 

Uteshev and Goncharova (2018) also provide elegant formulas for the coordinates of the point on 146 

the ellipse nearest to the computation point, i.e. the point with the same geodetic latitude as the 147 

computation point and an ellipsoidal height of zero 148 

𝑊𝑊0 =
𝑎𝑎2𝑊𝑊
𝑎𝑎2 − 𝜇𝜇∗

   and   𝑍𝑍0 =
𝑏𝑏2𝑍𝑍

𝑏𝑏2 − 𝜇𝜇∗
 (18) 

where 149 



𝜇𝜇∗ =
−9𝑎𝑎2𝑏𝑏2ℎ2 − 𝐴𝐴1𝐴𝐴2

2(𝐴𝐴12 − 3𝐴𝐴2)  (19) 

While Uteshev and Goncharova (2018) do not mention it, once 𝑊𝑊0 and 𝑍𝑍0 are known, the geodetic 150 

latitude 𝜙𝜙 can be found through 151 

𝜙𝜙 = arctan
𝑍𝑍 − 𝑍𝑍0
𝑊𝑊 −𝑊𝑊0

= arctan
(𝑎𝑎2 − 𝜇𝜇∗)𝑍𝑍
(𝑏𝑏2 − 𝜇𝜇∗)𝑊𝑊

 (20) 

This method for the computation of geodetic latitude is exact if the ellipsoidal height ℎ is known 152 

exactly, and will provide an approximate geodetic latitude if ℎ𝑈𝑈 (Eq. 16) or ℎ𝑆𝑆 (Eq. 12) are used 153 

instead. 154 

 155 

4. MODIFIED SAMPSON’S AND UTESHEV’S METHODS 156 

 157 

Sampson’s and Uteshev’s methods have been created for general curves of degree 2 and not 158 

specifically for the inverse geodetic transformation problem. This means these methods have a 159 

disadvantage when compared to approximate methods derived specifically for geodetic purposes, 160 

which typically make use of the fact that the Earth’s reference ellipsoid has only a small eccentricity.  161 

 162 

A crucial insight is that Sampson’s and Uteshev’s methods are not exact when the curve is a circle, 163 

and can therefore not be expected to perform well in the inverse geodetic transformation. The height 164 

of a point above a circle with radius 𝑅𝑅 and centre in the origin of the coordinate system is easily 165 

derived as 166 

ℎ = 𝑟𝑟 − 𝑅𝑅 (21) 

where 𝑟𝑟 is the distance from the point to the origin of the coordinate system 167 

𝑟𝑟 = �𝑊𝑊2 + 𝑍𝑍2 (22) 



It can easily be seen that Sampson’s method is not exact when the distance to a circle is sought, by 168 

comparing the result for ℎ𝑆𝑆 (Eq. 12) for the case 𝑎𝑎 = 𝑏𝑏 = 𝑅𝑅 to Eq. (21). Sampson’s method for the 169 

case of a circle gives 170 

ℎ𝑆𝑆(circle) =
𝑟𝑟2
𝑅𝑅2 − 1

2�𝑟𝑟
2

𝑅𝑅4

=
𝑟𝑟2 − 𝑅𝑅2

2𝑟𝑟
 (23) 

The error of Sampson’s method for the case of a circle is therefore 171 

𝜖𝜖𝑆𝑆 =
𝑟𝑟2 − 𝑅𝑅2

2𝑟𝑟
− (𝑟𝑟 − 𝑅𝑅) = −

ℎ2

2𝑟𝑟
 (24) 

where use was made of the substitution 𝑅𝑅 = 𝑟𝑟 − ℎ from Eq. (21). This suggests that Sampson’s 172 

method can be improved for the case of a near-circular ellipse by applying a simple correction, 173 

which leads us to suggest the following solution for ellipsoidal height: 174 

ℎ𝑀𝑀𝑆𝑆 = ℎ𝑆𝑆 +
ℎ𝑆𝑆2

2𝑟𝑟
 (25) 

where the subscript 𝑀𝑀𝑆𝑆 stands for Modified Sampson. Thanks to the correction, Eq. (25) is exact 175 

when the curve is a circle, and expectedly a good approximation of the true height when the curve 176 

is an ellipse with small eccentricity. The accuracy of both the modified and unmodified methods is 177 

examined in section 6. 178 

 179 

Uteshev’s method can be modified in the same way. For the case of a circle (𝑎𝑎 = 𝑏𝑏 = 𝑅𝑅), Uteshev’s 180 

method (Eq. 16) gives 181 

ℎ𝑈𝑈(circle) =
(𝑟𝑟2 − 𝑅𝑅2)√6𝑟𝑟2 − 2𝑅𝑅2

4𝑟𝑟2
 (26) 

The error of Uteshev’s method for the case of a circle is therefore 182 

𝜖𝜖𝑈𝑈 =
(𝑟𝑟2 − 𝑅𝑅2)√6𝑟𝑟2 − 2𝑅𝑅2

4𝑟𝑟2
− (𝑟𝑟 − 𝑅𝑅) =

ℎ(2𝑟𝑟 − ℎ)�(2𝑟𝑟 + ℎ)2 − 3ℎ2

4𝑟𝑟2
− ℎ (27) 



This equation is not as elegant as the equivalent in Sampson’s method (Eq. 24), but it can be 183 

simplified considerably for the case |ℎ| ≪ 𝑟𝑟 by a series of approximations. First, we apply a Taylor 184 

series expansion to the square root in Eq. (27) 185 

𝜖𝜖𝑈𝑈 ≈
ℎ(2𝑟𝑟 − ℎ) �(2𝑟𝑟 + ℎ) − 3ℎ2

2(2𝑟𝑟 + ℎ)�

4𝑟𝑟2
− ℎ 

(28) 

Since the second term within the curly brackets is very small compared to the first term, we can 186 

safely approximate (2𝑟𝑟 + ℎ) in the denominator by 2𝑟𝑟 187 

𝜖𝜖𝑈𝑈 ≈
ℎ(2𝑟𝑟 − ℎ) �(2𝑟𝑟 + ℎ) − 3ℎ2

4𝑟𝑟 �

4𝑟𝑟2
− ℎ =

−5
2ℎ

3 + 3
4𝑟𝑟 ℎ

4

4𝑟𝑟2
 (29) 

Finally, the second term in the numerator on the right-hand side of Eq. (29) is much smaller than 188 

the first term for the case |ℎ| ≪ 𝑟𝑟, so if this term is ignored, 𝜖𝜖𝑈𝑈 is approximated by 189 

𝜖𝜖𝑈𝑈 ≈ −
5ℎ3

8𝑟𝑟2
 (30) 

The error due to the approximations introduced here is quantified in section 6. The modified Uteshev 190 

method reads 191 

ℎ𝑀𝑀𝑈𝑈 = ℎ𝑈𝑈 +
5ℎ𝑈𝑈3

8𝑟𝑟2
 (31) 

where the subscript 𝑀𝑀𝑈𝑈 stands for Modified Uteshev. The geodetic latitude can then be found using 192 

Eq. (20) with ℎ𝑀𝑀𝑈𝑈 inserted for ℎ in Eqs. (14) and (19). 193 

 194 

5. GEODETIC METHODS 195 

 196 

As mentioned in the introduction, geodesists have derived a large number of algorithms for the 197 

computation of geodetic coordinates. Here, some of the most efficient approximate methods are 198 

listed. These serve as a benchmark for the numerical performance of Sampson’s and Uteshev’s 199 

methods. 200 

 201 



Since in most geodetic applications the points of interest are situated in the proximity of the surface 202 

of the reference ellipsoid (h=0), approximate transformation methods must provide high accuracy 203 

in this region. Arguably the simplest transformation formula follows from the exact relation between 204 

the geodetic latitude 𝜙𝜙 and spherical latitude 𝜃𝜃 on the ellipsoid (e.g., Laskowski 1991) 205 

tan𝜙𝜙 =
𝑎𝑎2

𝑏𝑏2
tan𝜃𝜃 (32) 

It follows from the definition of the spherical coordinates (e.g., Paul 1973) that  206 

tan𝜃𝜃 = 𝑍𝑍 𝑊𝑊⁄ , and the geodetic latitude of points on the ellipsoid can thus be computed from 207 

𝜙𝜙 = atan
𝑎𝑎2𝑍𝑍
𝑏𝑏2𝑊𝑊

 (33) 

which can be used as an approximate solution for points outside the ellipsoid and is here called the 208 

spherical method. Equation (33) is used as a starting point for many iterative solutions (e.g., 209 

Bomford 1971, Borkowski 1989). Due to its simplicity, the spherical method is the most efficient 210 

transformation method, but its accuracy for points away from the ellipsoidal surface is poor.  211 

 212 

A more accurate transformation is the well-known method of Bowring (1976). In Bowring’s 213 

method, geodetic latitude is computed through the approximate expression 214 

𝜙𝜙 = arctan
𝑍𝑍 + 𝑒𝑒′2𝑏𝑏 sin3 𝑢𝑢
𝑊𝑊 − 𝑒𝑒2𝑎𝑎 cos3 𝑢𝑢

 (34) 

where 215 

𝑢𝑢 = arctan
𝑎𝑎𝑍𝑍
𝑏𝑏𝑊𝑊

 (35) 

and 𝑒𝑒′2 is the second numerical eccentricity of the ellipse. Once latitude is known, the ellipsoidal 216 

height can be computed through (Bowring 1985) 217 

ℎ = 𝑊𝑊 cos𝜙𝜙 + 𝑍𝑍 sin𝜙𝜙 −
𝑎𝑎2

𝑁𝑁
 (36) 

 218 



Two other geodetic methods have been selected for comparison. The method of Fukushima (2006), 219 

variation (f), has been selected, as it is one of the most efficient geodetic methods known (e.g. Zeng 220 

2013). Fukushima’s method has, for example, been implemented in the International Earth Rotation 221 

and Reference Systems Service (IERS) Conventions software collection. The first method of Pollard 222 

(2002) has also been selected for comparison, because it is one of the few geodetic methods in 223 

which, like in Sampson’s and Uteshev’s methods, ellipsoidal height is computed first, and geodetic 224 

latitude second based on the ellipsoidal height. Both Fukushima (2006) and Pollard (2002) state that 225 

their methods have a faster computation speed than Bowring’s (1976) method. The algorithms of 226 

both methods can be found in Appendix A. 227 

 228 

6. ACCURACY OF METHODS 229 

 230 

The accuracy of Sampson’s and Uteshev’s methods, in unmodified and modified form, is compared 231 

here to the geodetic methods by Bowring (1976, 1985), Pollard (2002) and Fukushima (2006). These 232 

geodetic methods have been selected as they are among the simplest and computationally most 233 

efficient of the geodetic methods.  234 

 235 

The main aim of this section is to test the methods for use on or near the Earth’s surface. A numerical 236 

closed-loop experiment is conducted for heights in the range from -11,000 m to +15,000 m and 237 

latitudes from the equator to the North Pole. Results on the southern hemisphere are identical but 238 

with opposite sign, and are therefore not shown. A regular, equidistant grid of geodetic latitudes and 239 

heights was created with a resolution of 10ˊ in latitude and 50 m in height. This grid was then 240 

transformed to geocentric Cartesian coordinates using Eq. (1) and the parameters of the GRS80 241 

reference ellipsoid (Moritz 2000). Subsequently, the geocentric Cartesian coordinates were 242 

transformed back into geodetic coordinates using the various methods. Longitude does not 243 

significantly affect the accuracy of the recovered latitude and height (𝜆𝜆 was set to 0°). 244 



 245 

Approximation errors are the differences between the original and transformed geodetic coordinates. 246 

For the latitudes, the approximation error in radians was converted to an equivalent approximation 247 

error in metres through multiplication by the distance to the origin (𝑟𝑟). In order to properly assess 248 

the approximation error in each method without the influence of numerical rounding errors, 249 

extended precision arithmetic (variable precision arithmetic) was used. The results are shown 250 

visually in Figures 1 and 2, and the maximum error for each method in the test area is shown in 251 

Table 1. 252 

 253 



 254 

Figure 1. Approximation error in the computation of ellipsoidal height (left) and geodetic latitude 255 

(right) using the unmodified Sampson method (top row), modified Sampson method (second row), 256 

unmodified Uteshev method (third row), and modified Uteshev method (bottom row) (units: m; 257 

scale bars show the logarithm of the error; errors in latitude were converted from radians to metres 258 

through multiplication by 𝑟𝑟) 259 

 260 



 261 

Figure 2. Approximation error in the computation of ellipsoidal height (left) and geodetic latitude 262 

(right) using the spherical method (top row), Bowring method (second row), Pollard method (third 263 

row) and Fukushima method (bottom row) (units: m; scale bars show the logarithm of the error; 264 

note that the scale bar for the left figures has a larger range to properly indicate the accuracy of all 265 

methods; errors in latitude were converted from radians to metres through multiplication by 𝑟𝑟) 266 

 267 



 Error in height 
direction (m) 

Error in latitudinal 
direction (m) 

Sampson 1.77E+01 9.73E-04 
Modified Sampson 4.17E-02 2.30E-06 
Uteshev 5.18E-02 2.86E-06 
Modified Uteshev 7.27E-05 3.92E-09 
Spherical 1.98E-04 5.03E+01 
Bowring 3.13E-19 2.00E-06 
Pollard 3.96E-07 5.83E-04 
Fukushima 3.31E-29 2.05E-11 

Table 1. Maximum absolute error in height and latitudinal direction for the transformation 268 
methods listed in the test range covering all latitudes and heights heights in the range from -11,000 269 

m to +15,000 m  270 
 271 

Figure 1 shows that the unmodified Sampson and Uteshev methods for the computation of 272 

ellipsoidal height are not of sufficient accuracy for most geodetic applications. However, the 273 

modified Uteshev method produces sub-millimetre accuracy in the whole test area. In fact, while it 274 

is not shown in Figure 1 and Table 1, the modified Sampson method can yield a comparable 275 

accuracy to the modified Uteshev method if the correction term (Eq. 25) is applied twice instead of 276 

once. In the computation of latitude, both Sampson’s and Uteshev’s methods produce sub-277 

millimetre accuracy. This shows that Eq. (20), which in both methods computes geodetic latitude 278 

when ellipsoidal height is known, is insensitive to approximation errors in the ellipsoidal height. 279 

Equation (20) is therefore a very useful formula, however it appears to be (almost) completely 280 

unknown within the geodetic community. 281 

 282 

Figure 2 shows that the spherical method should not be used for any points that are not on the surface 283 

of the ellipsoid. Even at a height of only 50 m, the error in latitudinal direction reaches 0.168 m. All 284 

other geodetic methods produce a level of accuracy that is sufficient for any practical application in 285 

the test range. The method of Fukushima (2006) is the most precise of the methods tested.  286 

 287 

It is also interesting that in the geodetic methods the accuracy of the ellipsoidal height is higher than 288 

the equivalent accuracy of the latitude, whereas for Sampson’s and Uteshev’s method the opposite 289 



holds. This is thanks to the fact that Eq. (36), which computes geodetic latitude when ellipsoidal 290 

height is known in Bowring’s and Fukushima’s methods, is insensitive to approximation errors in 291 

the geodetic latitude. A final observation is that the modified Uteshev method produces more precise 292 

geodetic latitudes over most of the Earth’s surface than any of the tested geodetic methods. 293 

 294 

The numerical stability of the methods in regions near singularities, for example close to the poles, 295 

has not been studied here. A discussion on this can be found in many other publications (e.g., 296 

Bowring 1985, Borkowski 1989, Fukushima 1999). 297 

 298 

7. NUMERICAL EFFICIENCY OF METHODS 299 

 300 

Many researchers have compared computation times of various methods for the inverse geodetic 301 

transformation problem (e.g., Laskowski 1991, Gerdan and Deakin 1999, Seemkooei 2002, Fok and 302 

Iz 2003, Bajorek et al. 2014). However, studies do often not agree on the relative computation speed 303 

of different methods. The main reason for this is that computation time is highly dependent on 304 

various aspects, including hardware specifications, programming language, compiler, and 305 

implementation of the method. Therefore, the fastest method in one test setup will not necessarily 306 

be the fastest in another.  307 

 308 

Fukushima (1999) has suggested comparing the various methods by an operation count instead. 309 

Methods that limits the use of computationally expensive operations such as divisions, square roots, 310 

and trigonometric functions, are generally computationally efficient. Fukushima (1999) provides 311 

relative computation times required for various operations. However, these also vary across different 312 

platforms and depend heavily on floating point precision. An operation count can give an indication 313 

of the computational efficiency of a method, but it can’t definitively and reliably rank methods based 314 



on their efficiency under all circumstances. Nevertheless, it is the best method available for 315 

providing an indication of computational efficiency. 316 

 317 

No matter whether methods are compared through a test of computational speed or through an 318 

operation count, it is important that each of the methods is implemented in an optimal sense. This 319 

is best illustrated using Bowring’s (1976) method (Eqs. 34-35) as an example. It can be implemented 320 

naively as, for example, in the following snippet of code: 321 

 322 

u=atan(a*Z/(b*W)) 323 

phi=atan((Z+ep2*b*sin(u))/(W-e2*a*cos(u)) 324 

 325 

This implementation requires two calls of the atan function, one of the sin function and one of 326 

the cos function, which is generally computationally expensive. Bowring’s original implementation 327 

instead made use of the fact that the variable 𝑢𝑢 does not need to be computed, because sin𝑢𝑢 and 328 

cos𝑢𝑢 can be computed directly from tan𝑢𝑢 using trigonometric identities. Additional minor savings 329 

can be made by avoiding on-the-fly use of operations between constants. For example, in the snippet 330 

of code above, the values of ep2*b and e2*a could have been stored in memory, avoiding two 331 

multiplications. A more efficient implementation of Bowring’s method is (cf. Fukushima 1999, 332 

Appendix C) 333 

 334 

T=c1*Z/W                  %T=tan(u) 335 

C=1/sqrt(1+T*T)           %C=cos(u) 336 

S=C*T                     %S=sin(u) 337 

phi=atan((Z+c2*S*S*S)/(W-c3*C*C*C)) 338 

 339 



where c1=a/b, c2=ep2*b and c3=e2*a. This avoids one atan, one sin and one  cos at the 340 

expense of one sqrt, one extra division, three extra multiplications and one extra addition.  341 

 342 

We can optimise the implementation of Bowring’s (1976) method even further. Using Pythagoras’s 343 

theorem, alternative expressions for the sine and cosine of the auxiliary parameter 𝑢𝑢 can be found 344 

sin𝑢𝑢 =
𝑎𝑎𝑍𝑍

√𝑎𝑎2𝑍𝑍2 + 𝑏𝑏2𝑊𝑊2
   and   cos𝑢𝑢 =

𝑏𝑏𝑊𝑊
√𝑎𝑎2𝑍𝑍2 + 𝑏𝑏2𝑊𝑊2

 (37) 

Inserting these equations into Eq. (34) gives an alternative form of Bowring’s formula 345 

𝜙𝜙 = arctan
𝑍𝑍 + 𝑎𝑎4𝑏𝑏−4𝐿𝐿𝑍𝑍3

𝑊𝑊 − 𝐿𝐿𝑊𝑊3  (38) 

where  346 

𝐿𝐿 = 𝑒𝑒2𝑎𝑎4 �
𝑊𝑊2

𝑎𝑎2
+
𝑍𝑍2

𝑏𝑏2
�
−32

 (39) 

This can be implemented as follows: 347 

 348 

W2=W*W 349 

Z2=Z*Z 350 

K=W2+c1*Z2 351 

L=c2/(K*sqrt(K)) 352 

phi=atan((Z+c3*Z2*Z*L)/(W-W2*W*L)) 353 

 354 

where c1=a*a/(b*b), c2=e2*a and c3=c1*c1. Compared to the previous implementation 355 

above, this saves one division while the number of all other operations is identical. In most 356 

situations, this will be the most efficient implementation.  357 

 358 

Likewise, the computation of height (Eq. 36) can be optimised by removing the need to compute 359 

the sine and cosine of latitude, using the following equation instead 360 



ℎ =
𝑊𝑊 + |𝑍𝑍| tan𝜙𝜙 − 𝑎𝑎�1 + (1 − 𝑒𝑒2) tan2 𝜙𝜙

�1 + tan2 𝜙𝜙
 (40) 

 361 

The implementation of all methods used in this study is summarised in Appendix A. Table 2 shows 362 

the operation count in the computation of geodetic latitude and height from Cartesian coordinates. 363 

All methods necessarily require one arctangent operation to compute the latitude, but do not require 364 

the evaluation of any other trigonometric functions. The most efficient method is then in theory the 365 

method that minimises the number of operations, but in particular the computationally expensive 366 

square root and division operations (cf. Fukushima 1999, Appendix C). Table 3 shows the same for 367 

the computation of ellipsoidal height only. It can, for example, be concluded from Table 3 that for 368 

the computation of ellipsoidal height only, Sampson’s method would be expected to be the fastest 369 

method in any test because it has the lowest operation count for each type of operation. 370 

 371 
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Addition/subtraction 5 8 8 12 13 14 15 11 12 
Multiplication 7 15 14 16 18 23 26 31 14 
Division 2 4 3 3 4 3 4 2 5 
Square root 3 4 4 2 3 2 2 4 4 
Arctangent 1 1 1 1 1 1 1 1 1 

Table 2. Operation count for the computation of geodetic latitude and height from 3D Cartesian 372 
coordinates in various inverse transformation methods 373 
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Addition/subtraction 5 8 8 4 6 6 8 11 10 
Multiplication 7 15 14 7 9 14 17 31 12 
Division 2 4 3 1 2 1 2 1 4 
Square root 3 4 4 1 2 1 1 4 3 
Arctangent 0 0 0 0 0 0 0 0 0 

Table 3. Operation count for the computation of ellipsoidal height only from 3D Cartesian 381 
coordinates in various inverse transformation methods 382 

 383 

It appears from Tables 2 and 3 that the methods of Sampson and Uteshev are computationally very 384 

efficient especially in the computation of ellipsoidal height. This is confirmed in a numerical test of 385 

computation times. The average computation time for each method was measured by performing 386 

more than 108 transformations of points regularly distributed in the test area. All methods were 387 

coded in Fortran95 with double precision arithmetic (selected_real_kind(15,307)). To test 388 

the variability in computation time, the code was compiled with different compilers (with and 389 

without code optimisation), and run on four different machines with different hardware 390 

specifications and operating systems. The specifications of the four machines used are shown in 391 

Table 4. 392 

 393 

Machine Operating system Processor RAM 

M1 Red Hat Linux 6.10 40 Intel Xeon E5-2690 CPUs @ 3.00 GHz 378 GB 

M2 Red Hat Linux 3.10 32 Intel Xeon E5-2690 CPUs @ 2.90 GHz 251 GB 

M3 Windows 10 Enterprise Intel Core i7-7700 CPU @ 3.60 GHz 16.0 GB 

M4 Windows 10 Pro Intel Core i5-6200U CPU @ 2.30 GHz 8.00 GB 

Table 4. Hardware specifications of four machines (herein named M1, M2, M3, M4) used for 394 
computational speed tests 395 
 396 



Table 5 shows the difference in relative computation time between the different transformation 397 

methods. The computation times are normalised relative to the conventional implementation of 398 

Bowring’s method for the computation of latitude and height. In all cases, the code was compiled 399 

using the GNU compiler gfortran with optimisation flag O3. It can be seen that, in the computation 400 

of latitude and height, the spherical method is the fastest, but as seen in section 6 it is not sufficiently 401 

precise for most applications. The new implementation of Bowring’s method (Eqs. 37-39) provides 402 

a significant advantage over the conventional implementation and is the fastest of the other methods 403 

tested across all machines used, but only marginally faster than Fukushima’s method. Sampson’s 404 

and Uteshev’s method do not improve on the speed of Fukushima’s method for the computation of 405 

latitude and height. However, when only the ellipsoidal height is of interest, Sampson’s and 406 

Uteshev’s methods, in unmodified or modified form, are faster than all other methods tested. 407 

 408 

 Latitude and height Height only 
 M1 M2 M3 M4 M1 M2 M3 M4 
Spherical 
 

0.60 0.64 0.77 0.76 0.32 0.35 0.08 0.07 

Bowring 
(conv.) 

1.00 1.00 1.00 1.00 0.52 0.62 0.16 0.19 

Bowring 
(new) 

0.84 0.85 0.87 0.88 0.44 0.53 0.13 0.13 

Sampson 
 

0.87 0.90 0.98 0.97 0.12 0.08 0.02 0.02 

Modified 
Sampson 

1.06 1.10 1.08 1.05 0.25 0.17 0.03 0.04 

Uteshev 
 

0.97 0.98 1.04 1.02 0.13 0.14 0.07 0.07 

Modified 
Uteshev 

1.15 1.14 1.13 1.10 0.21 0.17 0.07 0.07 

Fukushima 
 

0.86 0.91 0.98 0.96 0.37 0.40 0.18 0.20 

Pollard 
 

1.23 1.27 1.16 1.15 0.44 0.57 0.14 0.16 

Table 5. Computation time of various methods for the inverse geodetic transformation, relative to 409 
the time required for Bowring’s method in the conventional implementation, on four different 410 
machines (M1, M2, M3, M4) with different hardware specifications and operating systems 411 
 412 



To test the influence of the compiler, the code was also compiled with the Intel compiler ifort, and 413 

with different optimisation flags. The result obtained in these tests on machine M3 (see Table 4) are 414 

shown in Table 6. It can be seen that the choice of compiler and optimisation has a significant 415 

influence on the test results. With the ifort compiler, the improvement of the new implementation 416 

of Bowring’s method is more pronounced than with the gfortran compiler. However, regardless of 417 

the method of compilation, it can be concluded that 1) the new implementation of Bowring’s method 418 

is the fastest method for the inverse geodetic transformation under all tests performed (apart from 419 

the imprecise spherical method), and 2) Sampson’s and Uteshev’s method do not provide a speed 420 

advantage for the complete inverse geodetic transformation, but are the fastest methods for the 421 

computation of ellipsoidal height only. 422 

 423 

 Latitude and height Height only 
 gfortran ifort gfortran ifort 
 O0 O3 O0 O3 O0 O3 O0 O3 
Spherical 
 

0.76 0.77 0.49 0.49 0.10 0.08 0.32 0.13 

Bowring 
(conv.) 

1.00 1.00 1.00 1.00 0.24 0.16 0.61 0.31 

Bowring 
(new) 

0.88 0.87 0.74 0.73 0.18 0.13 0.51 0.23 

Sampson 
 

0.98 0.98 0.78 0.96 0.07 0.02 0.17 0.06 

Modified 
Sampson 

1.06 1.08 0.93 1.16 0.09 0.03 0.27 0.19 

Uteshev 
 

1.06 1.04 0.91 1.09 0.10 0.07 0.28 0.09 

Modified 
Uteshev 

1.16 1.13 1.10 1.36 0.14 0.07 0.39 0.17 

Fukushima 
 

1.02 0.98 1.12 0.92 0.29 0.18 0.80 0.34 

Pollard 
 

1.19 1.16 1.10 1.38 0.20 0.14 0.55 0.29 

Table 6. Computation time of various methods for the inverse geodetic transformation, relative to 424 
the time required for Bowring’s method in the conventional implementation, using the gfortran and 425 
ifort compilers with optimisation flags O0 and O3 (results from machine M3) 426 
 427 

Finally, it is important to note from Tables 5 and 6 that tests for computation speed show great 428 

variability based on compiler and hardware, and results may be different for a setup not tested here. 429 



The test results also depend on the programming language and floating point precision applied (only 430 

Fortran95 with double precision arithmetic was used here). Different floating point precision will 431 

affect methods differently depending on hardware specifications, choice of compiler and compiler 432 

settings. Results from a single test are not ever sufficient to draw definitive conclusions about the 433 

“optimal” transformation method for all situations. 434 

 435 

8. CONCLUSIONS AND RECOMMENDATIONS 436 

 437 

The methods of Sampson (1982) and Uteshev and Goncharova (2018) have been applied to the 438 

inverse geodetic transformation problem. Both methods are not sufficiently accurate for most 439 

geodetic applications, but a minor modification increases the accuracy of the ellipsoidal height by 440 

~3 orders of magnitude. In the common region of application near the Earth’s surface bounded by 441 

heights from -11,000 m to +15,000 m, the maximum error in the modified Sampson method is 42 442 

mm, and the maximum error in the modified Uteshev method is 0.073 mm. In both methods, the 443 

modification consists of a simple additive correction to the height that is a function of the 444 

approximate height and the distance of the point to the geocentre. 445 

 446 

One difference between the (modified) Sampson’s and Uteshev’s methods compared to most 447 

geodetic methods is that ellipsoidal height is estimated first, and geodetic latitude second using the 448 

computed height. In most geodetic methods, geodetic latitude is calculated first and ellipsoidal 449 

height second using the computed latitude. If only the ellipsoidal height is required, Sampson’s and 450 

Uteshev’s methods are therefore computationally more efficient than any of the existing geodetic 451 

methods. If a complete conversion from Cartesian to geodetic coordinates is required, the ranking 452 

of methods in terms of computation time is dependent on hardware, language, floating point 453 

precision, choice of compiler and compiler settings. The main advantage of Sampson’s and 454 



Uteshev’s method is that they require less calls of the expensive square root operation than any other 455 

method. 456 

 457 

A new formulation of Bowring’s formula has also been presented here. It provides a significant 458 

advantage over the conventional formulation, giving between 12% and 27% saving in computation 459 

time in our numerical tests. Based on operation count, the new formulation of Bowring’s method is 460 

also expected to be computationally more efficient than both Pollard’s and Fukushima’s method in 461 

(almost) any situation. However, Fukushima’s (2006) method was only marginally slower in all 462 

tests performed here, and may perform better than the new implementation of Bowring’s method in 463 

some situations. The main advantage of Fukushima’s method is its impressive accuracy, which is 464 

superior to all other methods tested, while still being very computationally efficient. 465 

 466 
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 526 

APPENDIX A: CODE FOR TRANSFORMATION METHODS 527 

 528 

This appendix shows how each of the methods discussed in this paper was implemented for the 529 

transformation from Cartesian coordinates to geodetic latitude and height ((𝑋𝑋,𝑌𝑌,𝑍𝑍) → (𝜙𝜙,ℎ)) over 530 

the study area. Constants to be stored in memory are named c1, c2, etc., and the formulas for 531 

their computation from the semi-major axis 𝑎𝑎 and semi-minor axis 𝑏𝑏 of the reference ellipsoid are 532 



shown underlined at the top of the code. Note that these codes do not include special cases to avoid 533 

singularities and are only applicable to the northern hemisphere; slight modifications would be 534 

required to make them more generally useable. 535 

 536 

Sampson 537 

 538 

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=4*c3*c3, c6=4*c4*c4, c7=c1+c2, 539 

c8=0.5*c1*c2, c9=c3+c4, c10=-4.5*c8 540 

W2=X*X+Y*Y 541 

Z2=Z*Z 542 

G=c3*W2+c4*Z2-1 543 

h=G/sqrt(c5*W2+c6*Z2) 544 

h2=h*h 545 

A1=W2+Z2-h2-c7 546 

hA2=c8*(c9*h2-G) 547 

mu=(c10*h2-A1*hA2)/(A1*A1-6*hA2) 548 

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 549 

 550 

Modified Sampson 551 

 552 

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=4*c3*c3, c6=4*c4*c4, c7=c1+c2, 553 

c8=0.5*c1*c2, c9=c3+c4, c10=-4.5*c8 554 

W2=X*X+Y*Y 555 

Z2=Z*Z 556 

G=c3*W2+c4*Z2-1 557 

h0=G/sqrt(c5*W2+c6*Z2) 558 

r2=W2+Z2 559 

h=h0+h0*h0/(2*sqrt(r2)) 560 



h2=h*h 561 

A1=r2-h2-c7 562 

hA2=c8*(c9*h2-G) 563 

mu=(c10*h2-A1*hA2)/(A1*A1-6*hA2) 564 

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 565 

 566 

Uteshev 567 

 568 

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=2*c3*c3, c6=2*c4*c4, c7=0.5*c3*c5, 569 

c8=0.5*c4*c6, c9=c1+c2, c10=0.5*c1*c2, c11=c3+c4, c12=-9*c10 570 

W2=X*X+Y*Y 571 

Z2=Z*Z 572 

S4=c5*W2+c6*Z2 573 

S42=S4*S4 574 

G=c3*W2+c4*Z2-1 575 

h=G*sqrt((0.5*S42+(c7*W2+c8*Z2)*G)/(S42*S4)) 576 

h2=h*h 577 

A1=W2+Z2-h2-c9 578 

hA2=c10*(c11*h2-G) 579 

mu=(c12*h2-A1*hA2)/(A1*A1-6*hA2) 580 

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 581 

 582 

Modified Uteshev 583 

 584 

c1=a*a, c2=b*b, c3=1/c1, c4=1/c2, c5=2*c3*c3, c6=2*c4*c4, c7=0.5*c3*c5, 585 

c8=0.5*c4*c6, c9=c1+c2, c10=0.5*c1*c2, c11=c3+c4, c12=-9*c10 586 

W2=X*X+Y*Y 587 

Z2=Z*Z 588 



S4=c5*W2+c6*Z2 589 

S42=S4*S4 590 

G=c3*W2+c4*Z2-1 591 

h0=G*sqrt((0.5*S42+(c7*W2+c8*Z2)*G)/(S42*S4)) 592 

r2=W2+Z2 593 

h=h0+0.625*h0*h0*h0/r2 594 

h2=h*h 595 

A1=r2-h2-c9 596 

hA2=c10*(c11*h2-G) 597 

mu=(c12*h2-A1*hA2)/(A1*A1-6*hA2) 598 

phi=atan((c1-mu)*Z/((c2-mu)*sqrt(W2))) 599 

 600 

Spherical 601 

 602 

c1=a*a/(b*b), c2=1/c1, c3=a 603 

W=sqrt(X*X+Y*Y) 604 

tau=c1*Z/W 605 

phi=atan(tau) 606 

tau2=tau*tau 607 

h=(W+Z*tau-c3*sqrt(1+c2*tau2))/sqrt(1+tau2) 608 

 609 

Bowring (conventional implementation) 610 

 611 

c1=b*b/(a*a), c2=sqrt(c1), c3=a*(1-c1), c4=a 612 

W=sqrt(X*X+Y*Y) 613 

T= c1*Z/W 614 

C=1/sqrt(1+T*T) 615 

S=C*T 616 



tau=(Z+c2*S*S*S)/(W-c3*C*C*C) 617 

phi=atan(tau) 618 

tau2=tau*tau 619 

h=(W+Z*tau-c4*sqrt(1+c1*tau2))/sqrt(1+tau2) 620 

 621 

Bowring (new implementation) 622 

 623 

c1=a*a/(b*b), c2=1/c1, c3=c1*c1, c4=a*(1-c2), c5=a 624 

W2=X*X+Y*Y 625 

W=sqrt(W2) 626 

Z2=Z*Z 627 

K=W2+c1*Z2 628 

L=c4/(K*sqrt(K)) 629 

tau=(Z+c3*Z2*Z*L)/(W-W2*W*L) 630 

phi=atan(tau) 631 

tau2=tau*tau 632 

h=(W+Z*tau-c5*sqrt(1+c2*tau2))/sqrt(1+tau2) 633 

 634 

Fukushima 635 

 636 

c1=1/a, c2=b*b/(a*a), c3=1-c2, c4=sqrt(c2), c5=1.5*c3*c3, c6=a 637 

W=sqrt(X*X+Y*Y) 638 

s0=c1*Z 639 

Wn=c1*W 640 

c0=c4*Wn 641 

c02=c0*c0 642 

s02=s0*s0 643 

a02=c02+s02 644 



a0=sqrt(a02) 645 

a03=a02*a0 646 

f0=Wn*a03-c3*c02*c0 647 

b0=c5*s02*c02*Wn*(a0-c4) 648 

s1=(c4*s0*a03+c3*s02*s0)*f0-b0*s0 649 

cc=c4*(f0*f0-b0*c0) 650 

phi=atan(s1/cc) 651 

s12=s1*s1 652 

cc2=cc*cc 653 

h=(W*cc+Z*s1-c6*sqrt(c2*s12+cc2))/sqrt(s12+cc2) 654 

 655 

Pollard 656 

 657 

c1=a*a, c2=c1/(b*b), c3=c2-1, c4=b*c3 658 

W2=X*X+Y*Y 659 

Z2=Z*Z 660 

Zp=Z+c4*Z/sqrt(W2+Z2) 661 

PhN=sqrt(W2+Zp*Zp) 662 

n=Zp/PhN 663 

r=1+c3*n*n 664 

s=W2/PhN+c2*n*Z 665 

t=W2+c2*Z2-c1 666 

h=(s-sqrt(s*s-r*t))/r 667 

Z02=Z-n*h 668 

phi=atan((Z+c3*Z02)/sqrt(W2)) 669 
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