

And Synergies with LNG

Roberto F. Aguilera

Outline

- Hydrogen value chain and applications
- Blue versus Green H2
- Natural gas, liquefied natural gas (LNG) markets & prospects
- Synergies between LNG and H2
- Opportunities and constraints for H2 transition
- Outlook for H2 in energy mix

Hydrogen value chain

Source: CSIRO (2018)

- H2 produced using various sources
- Several H2 transport methods
- Application in many end use sectors

Hydrogen applications

Source: CSIRO (2018)

OIL AND GAS INNOVATION CENTRE

Generation

Conversion

Storage / Transportation

Application

Green/clean hydrogen

Liquefied Hydrogen Gas

Fuel cell cars, trains, public transport

Wind or solar farms generate surplus energy

Electrolysis

Natural Gas terminals

Householding, appliances,

Petrochemicals, steel, refineries

Direct use electricity

Cost: \$4-6 / kg

Natural Gas pipelines

Source: Venture Insights (2017)

Blue hydrogen (sometimes grey)

Source: Energy Information Australia (2019)

Hydrogen competitiveness

Primary energy mix (1850 - 2035)

Low prices

 extend oil &
 gas use for
 longer time
 period

Curtin University OIL AND GAS

Source: Aguilera and Aguilera, Mineral Economics (2018)

Energy demand growth; fuel type & region (2015 - 2040)

OIL AND GAS

INNOVATION CENTRE

Source: OPEC World Oil Outlook (2018)

Unconventional gas

Source: EIA, Advanced Resources International (2015)

OIL AND GAS

INNOVATION CENTRE

Environmental impacts – unconventional gas

- Most concerns relate to hydraulic fracturing:
 - Intensive water use
 - Water contamination
 - Methane leakage
 - Induced seismicity
- There are indeed environmental risks from extraction methods, though often exaggerated by media
- Damage caused by infant industry, but hazards will be overcome as industry matures

H2 links with natural gas: a valuable bridge

Blue hydrogen

- Domestic gas for H2 production, for consumption or export
- Gas pipeline networks can:
 - Supply gas as feedstock for H2
 - Be converted for H2 transport

Qatar

Australia

Malaysia

United States

Nigeria

Russia

Indonesia

Trinidad

Algeria

Oman

Papua New Guinea

Brunei

United Arab Emirates

Norway

Angola

Peru

Equatorial Ginea

Egypt

Cameroon

LNG exports (2018), mtpa

 Source: International Gas Union (2019)

H2 links with LNG

- Export LNG for H2 production abroad
- Some LNG infrastructure works with H2
 - But liquid H2 colder than LNG
- Transferrable expertise and skills
 - Industry, academia, government
- Market structures
 - Short term vs. long term

Spot and short-term vs. total LNG trade

Source: GIIGNL (2019)

- Gas-on-gas pricing growing with global LNG trade
- But progress not so quick

Natural gas price developments

- Regional prices diverged as shale gas supply & oil price rose
- Divergence narrowed with low oil price & expanded global gas trade

Source: IMF, Cedigaz

With low prices, LNG industry bringing costs down

- Improved productivity and operational efficiencies
- Better planning, cooperation, standardisation, simple construction, floating LNG
- On consumption side, floating LNG enables poor countries to increase gas use

Lessons applicable to H2

Australia: \$200 billion investment in LNG projects

- By 2020, Australia
 to export 85 mtpa
 of LNG
- Proximity to Asia makes ideal destination for exports (low shipping costs)
- Plans to leverage
 LNG experience for
 H2 development

INNOVATION CENTRE

Hydrogen development obstacles

Demand

Sufficient H2 demand?

Supply

Commercially competitive H2?

Infrastructure & logistics Sufficient storage & delivery?

Transition

Sizeable share in energy mix?

Hydrogen transition challenges

Scale

Transitions start small, yet scale required

Complexity

Energy market huge, H2 technically complex

End-use limits

Demand-side technical innovation needed

- Policy & technology uncertainty Keeps risk-averse investors away
- Comparative advantages

Speeds or slows transition

Requirements for increased H2 market share

Policy support in coming decades

Eventual shift from policy- to market-based use

Benefit from synergies with established industries

Natural gas & renewables

Cost reduction

Versus fossil fuels & renewable sources

Learning by doing at regional scale
 Regional approaches based on natural strengths

Primary Energy Mix (2000 - 2150)

 Natural gas share peaks near 2050

 Non-fossil energy, like H2, leads market 2H 21st century

Curtin University

INNOVATION CENTRE

OIL AND GAS

Conclusions

- Hydrogen transition takes time
- Policy and technical advance are key
- Utilize gas and LNG links
- H2 as part of energy mix portfolio
- Expect experimentation period

Thank you!

Questions?

r.aguilera@curtin.edu.au

