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Abstract 

Remembering to perform a planned action upon encountering a future event requires event-based 

Prospective Memory (PM). PM is required in many human factors settings in which operators 

must process a great deal of complex, uncertain information from an interface. We study event-

based PM in such an environment. Our task, which previous research has found is very 

demanding (Palada et al., 2018), requires monitoring ships as they cross the ocean on a display. 

We applied the Prospective Memory Decision Control Model (Strickland, Loft, Remington & 

Heathcote, 2018) to understand the cognitive mechanisms that underlie PM performance in such 

a demanding environment. We found evidence of capacity sharing between monitoring for PM 

items and performing the ongoing surveillance task, whereas studies of PM in simpler paradigms 

have not (e.g., Strickland et al., 2018). We also found that participants applied proactive and 

reactive control (Braver, 2012) to adapt to the demanding task environment. Our findings 

illustrate the value of human factors simulations to study capacity sharing between competing 

task processes. They also illustrate the value of cognitive models to illuminate the processes 

underlying adaptive behavior in complex environments. 

Keywords: prospective memory, linear ballistic accumulator model, unmanned aerial vehicle 

task, maritime surveillance 
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Public Significance Statement 

We introduce a model that specifies the cognitive processes underlying Prospective Memory 

tasks, which require completion of deferred actions at some point in the future, and we apply it to 

a laboratory simulation of a complex, dynamic maritime surveillance task. Our model identifies 

multiple cognitive mechanisms that underlie performance in complex environments, with several 

clear implications for understanding and work design in practical settings. 
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Often, humans must remember to perform a planned action at some point in the future, a 

task referred to as Prospective Memory (PM; Einstein & McDaniel, 1990). In complex 

industrial-systems such as air traffic control and maritime surveillance with unmanned aerial 

vehicles (UAVs), PM tasks arise frequently, and are commonly reported as a source of human 

error (Dismukes, 2012). One common form of PM is event-based PM, in which the operator 

must perform a planned action when they encounter a particular environmental cue. For 

example, in maritime surveillance, some situations (e.g., military training operations) require the 

formation of temporary safety-zones under an operators’ jurisdiction. In these circumstances, 

operators must remember to deviate from routine vessel classification, and instead remember that 

vessels matching particular features and travelling within the safety-zone must be reclassified 

and flagged for further evaluation (Nilsson, Van Laere, Ziemke, & Edlund, 2008).  

Although field studies have been critical for identifying PM demands in complex 

workplace systems (e.g., Shorrock, 2005; Rothschild et al., 2005; Dismukes, Berman, & 

Loukopoulos, 2007), use-inspired laboratory experiments are also critical to understand the 

specific psychological mechanisms underlying the phenomena identified by field studies 

(Morrow, 2018; Stokes, 2011). For example, simulations of air traffic control have been used to 

identify factors that affect PM and to test the effectiveness of work design interventions such as 

memory aids (see Loft, 2014 for a review). However, applied PM research such as this has relied 

on verbal theorizing about the psychological mechanisms underlying PM. There are many 

potential advantages in extending this approach with quantitative “human performance 

modeling” (Byrne & Pew, 2009). For example, quantitative modeling can provide a unified 

account of disparate performance data, characterize the latent cognitive mechanisms underlying 

performance, and provide insights via simulation, for example by simulating decision making 
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within systems when human in-the-loop testing is not feasible. Recently, a quantitative model of 

event-based PM, “Prospective Memory Decision Control” (PMDC; Strickland, Loft, Remington, 

& Heathcote, 2018), was shown to provide a cohesive and informative account of the cognitive 

processes underpinning event-based PM in a basic laboratory paradigm.  

PMDC may be a suitable basis for human performance modeling of event-based PM in a 

wide range of human factors applications. However, real-world cognitive demands can differ 

greatly from the demands of simple laboratory tasks. Notably, in previous studies, PMDC 

indicated that monitoring for PM items was possible at no cost to the information processing of 

concurrent tasks, suggesting that PM was able to rely upon surplus cognitive resources 

(Strickland et al., 2018). By contrast, in many settings of interest, such as aviation and defense, 

operators must integrate a great volume of complex and transient information from display 

interfaces and operate in dynamic and uncertain environments. Under such demands, cognitive 

resources may not remain in surplus. Indeed, practitioners are often particularly interested in 

identifying the level of cognitive demand that exceeds an operator’s capacity, because further 

demands beyond this point may impede the operator’s ability to perform within safety 

thresholds. This point is known as the 'red zone' (Wickens, Hollands, Banbury, & Parasuraman, 

2015). To date, we do not know if or how PMDC can account for human behavior observed in 

the red zone. In the current study, we attempt to apply PMDC to performance in a simulated 

maritime surveillance task that is more representative of the type of complex task relevant to 

practitioners than the simple paradigm for which PMDC was originally developed. Critically, our 

paradigm is capable of raising task demand to the red zone (Palada, Neal, Tay, & Heathcote, 

2018), and generalizing PMDC to complex tasks with high cognitive demand, thereby bridging 

the gap between basic cognitive research and practical applications of PM theory. Before 
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discussing our study further, we begin by introducing the general paradigm for studying event-

based PM in the laboratory, and relevant previous findings.     

Prospective Memory in the Laboratory 

PM is typically examined in the laboratory using the Einstein and McDaniel (1990) 

paradigm. In this paradigm, participants perform an ongoing task (e.g., lexical decision, deciding 

whether strings of letters are words or non-words), and are asked to make an alternative task 

response at some point in the future (the PM task). In event-based PM, the PM task is to respond 

to items with certain target attributes (e.g., press an alternative key when you see a word 

containing the letter string containing ‘tor’). Often, mean RTs to non-PM items are slower in PM 

blocks of trials than in control blocks, which is referred to as PM cost (e.g., Lourenço, White, & 

Maylor, 2013; Marsh, Hicks, Cook, Hansen, & Pallos, 2003; Smith, 2003). PM cost has been 

central to the development of PM theory, particularly to assessing potential trade-offs between 

monitoring for PM items and ongoing task performance (Smith, 2010; Einstein & McDaniel, 

2010; Heathcote, Loft & Remington, 2015). The majority of detailed process modeling in the 

PM literature, which we review below, has focused on explaining the PM cost effect.  

Verbal PM theories claim that PM cost indicates decreased ongoing task capacity due to 

capacity sharing between ongoing task processes and PM monitoring (Einstein et al., 2005; 

Smith, 2003). To test this claim, researchers have applied evidence accumulation models such as 

the "linear ballistic accumulator" (LBA; Brown & Heathcote, 2008) and the "diffusion decision 

model" (Ratcliff, 1978). These models provide a detailed process account of how humans make 

decisions, describing not only mean RT, but also the entire array of observed behavioral data for 

each participant. The models assume that evidence favoring each possible decision accrues 

towards threshold, and the first threshold to be breached determines the decision made. The 
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models estimate values of several latent psychological variables that underlie performance: 

accumulation rates, the speed at which evidence accrues; thresholds, the amount of evidence 

required to make decisions; and non-decision time, the time taken for other processes such as 

perceptual encoding of stimuli and motor responding.  

To examine whether cognitive capacity for the ongoing task differs between PM block 

conditions and control block conditions, recent studies have fitted evidence accumulation models 

to ongoing task performance. Capacity sharing theories of PM cost predict that PM demands 

would have a detrimental effect on non-PM accumulation (Boywitt & Rummel, 2012; Horn, 

Bayen, & Smith, 2011). This follows from the notion in attention theories that processing speed 

is proportional to capacity (e.g., Bundesen, 1990; Gobell et al., 2004; Kahneman, 1973; Navon & 

Gopher, 1979; Wickens, 1980), as well as more recent findings that rates agree with other 

measures of cognitive capacity (Donkin, Little, & Houpt, 2014; Eidels, Donkin, Brown, & 

Heathcote, 2010), and that rates can be manipulated by increasing task demands (Logan, Van 

Zandt, Verbruggen, & Wagenmakers, 2014). In contrast, however, evidence accumulation 

modeling has consistently found there is no cost to non-PM accumulation rates under PM 

conditions (e.g., Ball & Aschenbrenner, 2018; Heathcote, et al., 2015; Horn & Bayen, 2015; 

Strickland, Heathcote, Remington, & Loft, 2017), a finding inconsistent with the capacity-

sharing theories of PM. One recent study (Anderson, Rummel, & McDaniel, 2018) found some 

evidence of capacity sharing using the diffusion decision model, however, a better fitting LBA 

account of the data did not find such effects. 

 All accounts of PM cost to date using standard evidence accumulation models indicate 

that most of the PM cost effect results from an increase in ongoing task decision thresholds 

(Anderson et al.,2018; Ball & Aschenbrenner, 2018; Boywitt & Rummel, 2012; Heathcote et al., 
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2015; Horn & Bayen, 2015; Horn et al., 2011; Horn, Bayen, & Smith, 2013; Strickland et al., 

2017). Thresholds are the locus of strategic control in evidence accumulation models: individuals 

may raise thresholds globally to favor response accuracy over speed or raise the threshold of one 

choice relative to another to bias the decision process against that choice. Recently, Strickland, et 

al. (2018) incorporated this mechanism into PMDC, a process model of event-based PM. PMDC 

proposes that individuals increase ongoing task thresholds under PM conditions due to ‘proactive 

control’, which refers to anticipatory processes deployed in advance of a goal related event to 

assure an appropriate response to that event when it occurs (Braver, 2012).  In the PMDC 

architecture, increasing ongoing task thresholds allows more time for PM accrual when 

processing PM items, increasing the likelihood of a PM decision (Heathcote et al. 2015; Loft & 

Remington, 2013). In addition to proactive control over thresholds, PMDC includes “reactive 

control”, which refers to processes that occur just in time (i.e., when a PM trial is presented), 

during processing of a goal related event, to support appropriate responding to that event 

(Braver, 2012). Strickland et al. (2018) found that in the basic laboratory paradigms they 

examined, PM was supported by proactive and reactive control and not by capacity sharing 

between PM and ongoing task processing. 

Prospective Memory in the Laboratory: Far from the Redline? 

Although the reviewed studies failed to find capacity sharing between PM monitoring 

and ongoing task performance in the laboratory, there is reason to suspect capacity sharing may 

occur in other circumstances. Typical PM paradigms, including those applying evidence 

accumulation models, use simple ongoing tasks that may not fully occupy cognitive capacity, 

leaving 'reserve capacity’ (Young, Brookhuis, Wickens, & Hancock, 2015) available to meet PM 

demands when necessary. This explanation is consistent with resource-based accounts of human 
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cognition, which specify that cognitive processes will only compete for resources when cognitive 

demands are high, and not when cognitive demands are low (e.g., Navon & Gopher, 1979; 

Norman & Bobrow, 1975). Indeed, participants report fewer task unrelated thoughts when they 

have PM demands, indicating greater on-task focus (Rummel, Smeekens, & Kane, 2017). In 

contrast, the types of complex, dynamic tasks that operators face in the real world can impose 

high workload, leaving little reserve capacity. Adding a PM load may then breach cognitive 

capacity limitations, leaving no option but to draw capacity from the ongoing task to support 

PM. In line with this, several simulated air traffic control studies have reported that PM load not 

only decreases the speed of aircraft acceptance and hand-off of aircraft and the speed of conflict 

detection (i.e., costs to ongoing air traffic management tasks), but can also impedes decision 

accuracy on ongoing tasks, for example, causing higher rates of missed conflicts (e.g., Loft, 

2014; Loft, Finnerty, & Remington, 2011; Loft, Smith, & Remington, 2013; Loft & Remington, 

2010; Loft, Smith, & Bhaskara, 2011).  

The reviewed findings pose a challenge to the generalizability of basic PM paradigms to 

the real world. Evidence accumulation models offer by far the most detailed account of ongoing 

task performance data for simple laboratory tasks to date. However, in doing so, they indicate a 

lack of capacity sharing between PM and ongoing tasks in simple laboratory paradigms, and 

there is reason to suspect this lack of capacity sharing will not generalize to practical settings of 

interest. This calls for a careful analysis of when we would expect capacity sharing between PM 

and concurrent activities. As previously mentioned, the region in which additional task demands 

may consume capacity from other concurrent tasks has been referred to as the red zone (Wickens 

et al., 2015). The exact point at which additional task demands will lead not only to capacity 

sharing, but to rapid performance decrements and task failures is known as the ‘redline’ (Hart & 
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Wickens, 2010). We use the term ‘red zone’ to refer to the general region of task demand in 

which multiple tasks may compromise performance on single tasks, depending upon variability 

across individuals, and variability in task demand, whereas we use the term ‘redline’ to refer to 

the levels of task demand beyond which drastic task failures are very likely. System developers 

are often greatly interested in redlines, so that they can assure that their systems avoid them. 

However, redlines are difficult to identify in actual workplace settings, because humans will 

employ counter measures (e.g., get assistance from another operator) or adjust task processing 

strategies to avoid them (Loft, Sanderson, Neal, & Mooij, 2007). It is easier to identify redlines 

in the laboratory experiments where access to counter measures can be controlled. For example, 

Palada et al., (2018) recently identified and characterized the effects of a performance redline in 

a laboratory simulation of maritime surveillance. This paradigm forms the basis of the current 

study, and below we outline the relevant details of their paradigm, and how Palada et al. (2018) 

identified the red line level of demand. 

Maritime Surveillance at the Redline 

Palada et al. (2018)’s paradigm was designed to simulate the role of an unmanned aerial 

vehicle pilot monitoring the ocean with a camera view. Participants made decisions about 

multiple ships as they crossed the camera view (i.e., moved across the screen). They were 

required to classify ships as targets or non-targets based on the number of features on the ships. 

Ships with a certain number of features (e.g., more than four) were to be classified as targets, and 

ships with less features to be classified as non-targets. Several features of the task emulated 

realistic demands. First, the task emulated the naturalistic situation in which operators must 

respond to multiple stimuli presented together. Second, decisions were made in the presence of 

significant visual noise, emulating bandwidth limitations between ground control and 



PROSPECTIVE MEMORY IN THE RED ZONE                                                                       11 

 

 

surveillance equipment. Third, participants were placed under time pressure, being required to 

make several responses before a ‘trial deadline’, the time at which all ships had crossed from one 

side of the screen to the other. Palada et al., manipulated two factors relevant to task demands: 

the number of ships participants needed to respond to per trial (trial load), and the amount of 

time participants had to respond to a group of ships (trial deadline). To measure the latent 

processes underlying their data, they fit the LBA, which provides a good account of decision 

making in this task despite it being applied to slower decision RTs than typically fit by evidence-

accumulation models (see also Palada et al., 2016).  

Palada et al. (2018) found that participants were able to maintain acceptable performance 

under high levels of trial load (5 ships on screen), with only a small increase in non-response rate 

(the number of ships not responded to before trial deadline). LBA parameter estimates indicated 

that participants did so by reducing the evidence required to make each decision (i.e., reducing 

threshold) as trial load increased. This control over thresholds implies strategic adaptations to 

task demand (i.e., cognitive control), rather than capacity-driven impairments from high task 

loads. However, participants were unable to employ strategies to adapt to tight trial deadlines. 

When deadlines were short – specifically, when there was only 6 seconds per trial – participants 

could no longer identify target ships reliably, with accuracy for target ships reducing to around 

chance. The LBA characterized these effects in terms of changes in accumulation rates. Under 

short trial deadlines, there were large increases in accumulation towards the incorrect decision 

for target ships. In contrast, non-target accuracy (correctly deciding that ships had less than the 

required number of features) remained in-tact at these deadlines. The costs to manifest accuracy, 

and latent accumulation, being specific to target ships may owe to the nature of evidence 

required for detection decisions. Detection decisions require the presence of a sufficient number 
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of target features, and lower capacity may lead to some features being missed. In summary, 

Palada et al. (2018)’s findings are consistent with severely reduced capacity for target detection, 

consistent with a capacity ‘redline’ for trial deadlines of 6 seconds.  

The Current Study: Prospective Memory in the Red Zone 

In the current study, we used the Palada et al. (2018) paradigm to study PM because it is 

a validated simulation of a complex and dynamic task that is also amenable to fine-grained 

analyses using evidence accumulation models. This paradigm is a micro-world simulation in 

which we can model performance under capacity demands that are potentially representative of a 

wide range of industrial settings. We do not instantiate PM beyond the ‘red line’ of maritime 

surveillance task demand, where demands would be so great that participants would fail at the 

primary task altogether. It is not clear what the practical or theoretical relevance would be of 

identifying capacity sharing between PM and ongoing tasks when primary task performance is 

already near chance. Instead, we add PM to an ongoing task to respond to 3 ships in 9 seconds, a 

level of demand that allowed adequate performance in Palada et al., (2018), but is still close to 

the 6 second ‘redline’ that they identified (which held whether participants were presented 2, 3, 

or 4 ships). In our paradigm, the three ships on each trial are presented concurrently. This multi-

stimulus procedure may allow for potentially important phenomena that cannot be detected in 

single stimulus tasks (e.g., simultaneous encoding aspects of all three ships before orienting 

attention towards one specific ship).  Our ongoing task uses a ‘7 feature rule’, corresponding to 

Palada et al. (2018)’s most complex decision rule. This requires deciding whether ships 

travelling by the screen had 4 or more of the 7 possible features (target), or less than 4 (non-

target).  
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 Following the standard PM design, we include control blocks, in which participants only 

make ongoing task decisions on non-PM ships, and also PM blocks, that also include ships that 

require a PM response (PM ships). The PM task is to make an alternative response (e.g., right 

click one of two response boxes) instead of the ongoing task response (e.g., left click a response 

box), to ships which have both of two particular features (a life boat and a flag). We applied the 

PMDC model to understand the observed performance data. The reasons for this are twofold. 

First, PMDC can potentially provide a quantitatively adequate, and theoretically informative, 

account of performance in our task. Specifically, it enables examination of the latent 

psychological constructs underlying PM performance in the red zone. A more general aim is to 

examine whether PMDC can generalize to more complex and dynamic task environments. To 

this end, the study was designed to collect enough data (trials per participant) to provide robust 

fits using PMDC while maintaining a relatively low frequency of PM target presentations. We 

now introduce PMDC in detail and describe how it will apply to our experiment. 

Testing Capacity and Control: Prospective Memory Decision Control (PMDC) 

PMDC is an instance of Brown and Heathcote (2008)’s LBA, which assumes that 

evidence accumulates linearly for each possible decision until the total evidence of one 

accumulator reaches threshold, determining the response made. PMDC uses three racing LBA 

accumulators: two for the ongoing binary choice task responses (e.g., target and non-target) and 

a third for the PM task response. This architecture, as it applies to the maritime surveillance task, 

is depicted in Figure 1. The two-accumulator ongoing task variant of this model (applied to 

performance in control conditions) is similar to the LBA applied by Palada et al. (2018). The 

architecture models the decision-making process to each ship, with evidence accumulating 

towards three possibilities: that the ship is a target (has more than four features), a non-target 
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(less than four features), or is a PM ship (has both a life boat and a flag). For each decision, 

evidence begins at a random start point (uniformly in the range 0-A) and increases linearly as 

determined by a sample from a normal accumulation rate distribution with mean v and standard 

deviation sv. Accumulation to all possible responses runs independently until one of them 

reaches its threshold (b), and the first accumulator reaching threshold determines the response 

made. The total time to respond includes the time for the accumulation process plus a non-

decision time constant. For each new ship for which a decision is made, evidence is reset and 

another decision process runs as just described. Below we describe in detail how, when applied 

to our task, the parameters of PMDC correspond to the degree of capacity sharing between PM 

and ongoing task processing, as well as the degree of cognitive control over PM and ongoing-

task processes, in terms of Braver (2012)’s proactive control and reactive control.  

Capacity sharing. We measure capacity sharing by comparing the accumulation rates to 

non-PM items (i.e., target and non-target ships without the PM feature configuration) in PM 

blocks with the accumulation rates to non-PM items in control blocks. PMDC estimates an 

accumulation rate towards the correct ongoing task decision (the ‘match’ accumulation rate, e.g., 

accumulation towards the target decision for target ships), and an accumulation rate towards the 

incorrect ongoing task decision (the ‘mismatch’ accumulation rate, e.g., accumulation towards 

the non-target decision for a target ship). Match and mismatch accumulation may be combined 

into two measures of overall processing (Palada et al., 2018), processing quality and processing 

quantity. Processing quality is given by match accumulation rate minus mismatch accumulation 

rate. Previous capacity sharing theories of PM cost have argued that capacity sharing would 

decrease the ‘drift rate’ parameter of the diffusion decision model, which indexes quality of 

processing (Boywitt & Rummel, 2012; Horn et al., 2011). Quantity of processing refers to the 
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sum of accumulation rates (match + mismatch). Note that decreased quantity of ongoing task 

processing under PM conditions could lead to slower ongoing task decisions, and thus also may 

potentially underlie the PM cost effect.  

As reviewed, PM demands generally do not affect non-PM accumulation rates in simple 

paradigms, in terms of either the quality or quantity of ongoing task processing. However, in 

contrast to previous simple PM paradigms, the current study's demanding ongoing task may limit 

available cognitive capacity. Thus, in our study, PM conditions may induce a cost to 

accumulation to non-PM ships under PM conditions as compared with control conditions. This 

cost may affect processing quality, quantity or perhaps both. 

Proactive control.  PMDC proposes that participants may apply proactive control to 

increase ongoing task thresholds in PM blocks, so that when PM stimuli are presented ongoing 

task decisions do not pre-empt the PM decision. PMDC also includes control over the PM 

threshold, which may be adjusted based on factors such as the importance of the PM task, but 

our study does not manipulate such a factor. As reviewed, many studies find evidence for 

increased ongoing task thresholds in PM blocks, consistent with proactive control. Our task 

differs from previous studies in that it requires time-critical ongoing-task responding. Slow 

ongoing task responses can lead to failures to respond to all ships before trial deadlines, and 

Palada et al. (2018) found that with increased trial load participants reduced their thresholds in an 

attempt to meet trial deadlines. Therefore, if participants are concerned about non-responding, 

they may avoid proactive control over ongoing task decisions in our paradigm.   

Reactive control. Reactive control occurs right when a PM related event is processed, to 

facilitate appropriate responding to that event. In the current context, this would be expected to 

occur when participants process PM ships (i.e., ships with both a life boat and flag). Under 
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PMDC, reactive processes do not affect thresholds, because thresholds are set prior to each 

decision beginning. Instead, reactive control affects accumulation rates. PMDC’s reactive 

architecture is presented in Figure 2. As PM stimulus inputs are processed, they activate 

detectors for the possible decisions. For example, when PM items are processed, this can directly 

excite the PM accumulator (pathway A1 in Figure 2), leading to faster PM accumulation speed 

on PM items than non-PM items.  

PM stimulus inputs can also inhibit the accumulation rates of ongoing task processes 

(pathways B1 and B2 in Figure 2), slowing ongoing task accumulation. This reactive inhibition 

would cause slower ongoing task accumulation when processing PM ships (which contain PM 

stimulus input), as compared with non-PM ships. Thus, to test for reactive inhibitory control, we 

compare ongoing task accumulation between PM ships and non-PM ships. Lower ongoing task 

accumulation to the PM ships indicates reactive inhibition. In simple paradigms, there is strong 

evidence for such reactive inhibition (Strickland et al., 2018), and it is critical to PM accuracy. 

We expect to replicate these reaction inhibition findings in the current study. 

Multiple stimulus processes. Each trial presents participants three stimuli they must 

respond to before trial deadline (9 seconds). Although participants appear to make ongoing task 

decisions one at a time in our paradigm (Palada et al., 2016), there may be initial parallel 

encoding of the three ships. Moreover, participants will likely engage additional processes such 

as eye saccades to orient attention to the initial ship and orienting the motor response. To allow 

for this, we include a ‘response order’ factor in our analyses, which tracks whether each decision 

was the first, second, or third decision made within a trial. Following Palada et al. (2018), the 

model reported in text will include a different non-decision time for the first response relative to 

the other two.  We expect to replicate Palada et al. (2018)'s finding that non-decision time is 
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longer for the first response than the others, and we examine whether this effect of response 

order can improve overall model fit.  

Method 

Participants 

The study was approved by the Tasmania Social Sciences Human Research Ethics 

Committee. Thirty-six undergraduate students (12 females) from the University of Western 

Australia and the University of Tasmania participated in the study in exchange for course credit. 

Mean age was 21.6 (SD = 3.7). Due to a power failure, for one participant we did not record the 

data for one half of a control block (of 120 ship presentations). Another participant closed the 

program during a control block, resulting in missing data for the last 12 ships of that block. As 

we collected thousands of responses per participant, we were able to include the remaining data 

from these participants in all subsequent analyses. We excluded one participant from analyses 

entirely because they did not make a PM response to any of the 128 PM trials over the course of 

the experiment. One participant closed their practice trials early on both sessions, and another did 

not respond to a high proportion of practice trials (67% session one, 32% session two). 

Nonetheless, their data from the subsequent experimental trials appeared typical, so were 

retained for analysis.  

Materials 

Figure 3 depicts the maritime surveillance task environment. The task display comprised 

five horizontal channels of equal height. On each trial, three ships appeared and moved across 

the screen from right to left. The three ships were directly above and below each other (as in 

Figure 3), but the position of the group was otherwise random (i.e., the bottom ship could be in 

either the 1st, 2nd, or 3rd, lane). The ongoing task was to classify the ships based on how many 
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features each ship displayed. Figure 4 shows a ship with all seven possible features. Ships with 

four or more of these features were ongoing task targets, and ships with less than four of these 

features were ongoing task non-targets. Above each stimulus there were red and green response 

boxes, which participants left clicked to indicate their response (green for target, red for non-

target). The PM task was to make an alternate response (right click) if a ship displayed both of 

two specific features (the flag and the life boat). The PM task always required right clicking the 

same response box, regardless of how whether the ship was an ongoing task target or ongoing 

task non-target (e.g., always right click the red response box for PM ships regardless of other 

ship features).  Whether PM responses were right clicks to the red or green box was 

counterbalanced across participants (Table 1). We increased the difficulty of the task by 

obscuring each ship with a fog cloud overlay set at 50% opacity and by adding visual noise to the 

entire display.   

To generate the stimuli, we created a list of all possible ships with 4 or more features 

(target ship list) and a list of all possible ships with less than four features (non-target ship list). 

Ship features were evenly represented across the ship lists (the ‘crane’ feature was just as likely 

as the ‘mast’ feature, and so forth). Both the target and non-target ship lists were further divided 

into two: PM ships (i.e., ships with both the flag and life boat features), and non-PM ships (i.e., 

ships that did not have both a flag and life boat). To fill the design as described below, ships 

were drawn randomly from these lists of ships, for example, for a control block, 126 non-PM 

target ships were drawn randomly from the non-PM, target ship list, and 126 non-PM non-targets 

were drawn from the non-PM, non-target ship list. 
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Design 

Testing was split over two sessions. In each session, participants were given both PM and 

control ‘blocks’ of trials. Control blocks included 252 ships (84 trials), 126 non-PM target ships 

and 126 non-PM non-target ships. PM blocks included 252 ships, with 110 non-PM target ships, 

110 non-PM non-target ships, 16 PM non-target ships and 16 PM target ships. Each block 

included a one-minute break in the middle, to reduce possible effects of fatigue. Stimuli numbers 

were split evenly across each half of the block for each stimulus type. Within each half block, 

stimulus presentation order was randomized. To collect a sufficient number of PM observations, 

each of the two sessions of the experiment included two PM blocks and one control block. 

Across the two PM blocks we observed responses to 504 ships (168 trials), 64 of which were PM 

ships (32 PM targets, 32 PM non-targets).  

The two PM blocks were always presented sequentially. Thus, the order in which control 

and PM blocks were presented for each session was either control-PM-PM or PM-PM-control. 

Assignment of block order to session was counterbalanced across participants, resulting in two 

possible block order schemes: either control-PM-PM/PM-PM-control or PM-PM-

control/control-PM-PM.  In summary, participants were assigned to one of four conditions (see 

Table 1) which determined: (1) the order in which they performed experimental blocks (PM-PM-

control vs. control-PM-PM) and (2) the response button used for PM responses (red vs. green). 

These factors were orthogonally counterbalanced as displayed in Table 1. Across 32 participants, 

we achieved a full counterbalance: an equal distribution of subjects in each cell of our counter-

balancing scheme (with eight participants in each condition as can be seen in Table 1). Across 

our two testing sites we ended up with 3 more participants than planned for, resulting in an 

additional 2 participants in counterbalance group 1, and 1 extra participant in counterbalance 
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group 2.  Our analyses below included all our data, but the conclusions held even if we excluded 

the last three participants tested (for a full counterbalance).      

Procedure 

Training required participants to read through a slideshow of task instructions. They were 

informed that they were required to classify ships as either targets or non-targets using a 7-

feature classification rule. Under this rule, ships with 4 or more features needed to be classified 

as target by left-clicking the green response box above that ship. Ships with less than 4 features 

were to be classified as non-target by left-clicking the red response button above that ship. They 

were told that multiple ships would appear on-screen in adjacent positions, and that the ships 

would enter and leave the screen at the same time. Participants then practiced classifying ships. 

For each response, they received feedback: a red cross next to the ship for an incorrect response, 

or a green tick next to the ship for a correct response (no feedback was provided in the 

experimental phase). Participants completed 36 training trials (108 ships) each testing day. 

After training, participants received instructions for the experimental blocks. Participants 

were informed that the experimental phase would last 40 minutes. For control blocks, 

participants were instructed to perform the target/non-target classification task. For the PM 

blocks, participants were instructed to continue performing the target/non-target classification 

task; however, they were also instructed that if a ship had both a life boat and a flag, they should 

right click on the green/red response box (which depended on the counterbalance of the 

participant) above the ship instead of making a left click classification response. We chose the 

life boat and flag features because they were both quite distinct from the grey noise overlay 

added to the task. This avoids a situation where the PM task required greater perceptual effort 

than the ongoing task. After receiving PM instructions, participants then viewed an image of a 
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ship with labels and arrows indicating the life boat and flag features (similar to Figure 4). As has 

been common practice in the PM literature, we included a ‘filler’ task after the PM instructions, 

before the commencement of the ongoing task. Before beginning the experimental blocks, 

participants were told that they would have 2 minutes to complete a puzzle using pen and paper. 

After the puzzle, they began the experimental block.  

Results 

Before discussing the PMDC model fits to our data, we report conventional analyses of 

RTs and accuracy. Our analyses were conducted with the use of the R programming language (R 

Development Core Team, 2018). We used linear mixed models, the recommended method for 

repeated measures data (Pinheiro & Bates, 2000) as implemented in the R LME4 package (Bates, 

Mächler, Bolker, & Walker, 2015). Post hoc analyses were performed using glht from the R 

MULTCOMP package (Hothorn, Bretz, & Westfall, 2008) with Tukey adjusted p-values. We 

analyzed PM condition (PM block, control block), stimulus type (non-PM target ships, non-PM 

non-target ships, PM target ships, PM non-target ships), response order (response 1, response 2, 

response 3) and session (session one, session two) as fixed effects, and subject as a random 

effect. All responses with RT < 0.2 s (0.03%) were excluded from subsequent manifest and 

model analysis. 

Separate models were fit for ongoing task RTs, ongoing task accuracy, PM task RTs, PM 

task accuracies, and PM false alarms. Each model was built by including each factor separately 

and comparing against a null model (with subject as a random effect) to check for significant (p 

<.05) improvement in model fit (using Wald chi-square tests). We built each model by stepwise 

addition of each significant factor, retaining those which provided significant improvement in 

model fit as a main effect or interacting with other factors. Detailed results of the Wald chi-
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square tests and post hoc comparisons are provided in the supplementary materials. AIC-based 

model selection yielded the same models to the method described. In text, we focus on effects 

that were statistically significant, unless specified otherwise.   

Ongoing task responses were scored as correct if the participant correctly identified the 

stimulus. PM responses were scored as correct if the participant right-clicked the stimulus on a 

PM trial. Occasionally (0.31% of responses to non-PM ships, 11.9% of responses to PM ships), 

participants right-clicked a stimulus, but on the response box which they were not assigned for 

their PM task (e.g., a participant told to right click green for PM right clicking red instead). 

These were scored as PM responses, on the assumption that this was more likely to reflect a 

procedural response error (in which participants intended to respond PM), than a PM error.   

False Alarms 

PM false alarms, that is PM responses to non-PM ships, occurred to 1.4% of non-PM 

ships in PM blocks. The false alarm rate decreased from session one (M = 2.1%) to session two 

(M = 0.6%). We observed some false alarms in control blocks (14 responses, 0.08% of the total 

observed), despite participants being instructed before control blocks that they did not have to 

monitor for PM items. More than half of these (8) came from a single participant. No other 

participant made more than one false alarm during control blocks. As there were very few of 

these false alarm responses in control blocks, they are excluded from all further analysis, 

including the subsequent PMDC model fitting.  

PM Costs 

The results of PM cost analysis are presented in Table 2. For the ongoing task (feature 

classification), correct RTs for target and non-target ships in PM blocks were longer than in 

control blocks, except for non-target ships in the first session. Accuracy was consistently lower 
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in PM blocks for both target and non-targets; however, the reduction in accuracy for targets in 

the first session (7%) was substantially greater than non-targets in session one (1.3%), targets in 

session two (0.8%), and non-targets in session two (0.7%). Responses to target ships were less 

accurate than responses to non-targets, except for the control block in the first session, where 

there was no significant difference in accuracy between target and non-target ships.   

PM Task Performance 

Other than response order (which will be covered in the next section) only “session” 

affected correct PM RTs, which decreased from the first session (M = 1.90, SE = .03) to the 

second session (M = 1.72, SE = .03). PM task accuracy for targets and non-targets is shown in 

Table 3. PM accuracy was higher for target ships than for non-target ships both sessions. PM 

accuracy to target ships decreased from session one to session two.  

Response Order 

To determine whether response order within a trial affected performance, we compared 

correct RTs and accuracy of the first, second and third responses. RTs and accuracies by 

response order are presented in Table 3. For the ongoing task, the first RT on each trial was 

longer in both control and PM conditions, but there was no significant difference in RTs between 

the second and third response in either session. For the PM task, correct RTs followed a similar 

pattern to the ongoing task: the first response took substantially longer, but there was no 

difference in RT between the second and third response. For the ongoing task, accuracy 

decreased with response order, except for PM blocks in session two, where accuracy for the first 
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and second ongoing task response did not significantly differ. Overall, response order did not 

affect PM accuracy.  

Consistent with the higher mean RT on the first response of each trial, we suspected that 

individuals were engaging in additional non-decisional processes at the start of each trial (Palada 

et al., 2018), as a result of parallel encoding of stimuli, motor response orientation and eye 

saccades. In order to justify the inclusion of a separate non-decision time parameter for the first 

response in the subsequent PMDC modeling, we first checked for further differences in the 

manifest data, by examining the 0.1 quantiles of RT for each participant. Because non-decision 

time is a constant time added to each trial, the fastest responses (i.e., those with relatively small 

decision times), should be sensitive to shifts in non-decision time.  We found that the 0.1 

quantiles of RTs were longer for the first responses on each trial (M = 1.17, SE = .016) relative to 

other responses, suggesting that we should include a difference in non-decision time in 

subsequent model analysis.  In contrast, there was only a small difference between the second (M 

= 0.95, SE = .003) and third (M = 0.94, SE = .003) responses.  

To conclude, we found PM costs not only to ongoing task RT, but also to ongoing task 

decision accuracy. This is consistent with findings from PM in simulations of air traffic control 

(e.g., for a review see Loft, 2014). These data suggest that our simulation of maritime 

surveillance is sufficiently cognitively demanding to place participants in the ‘red zone’, in 

which PM monitoring and ongoing task performance must trade-off. In contrast to previous 

studies, our design is sufficiently high powered and controlled to also apply the PMDC model, 

which allows us examine the cognitive control and capacity related mechanisms that underlie 

task processing trade-offs and PM errors in the red zone.    
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Model Results 

We apply the PMDC model, as described in the introduction and depicted in Figure 1. 

We report thresholds in terms of B > 0 (equal to b - A).  Our design included several factors that 

parameters could conceivably vary over: PM condition (control vs PM), stimulus type, latent 

response accumulator (non-target, target, PM), response order, and session of experiment. In 

order to constrain the flexibility of the model so that it would remain a ‘measurement model’ 

with parameters that can be accurately estimated from the data, we applied several a priori 

constraints on which parameters were allowed vary with design factors.  

We constrained A to be the same across all accumulators and all conditions. To account 

for the possibility that participants took extra time to encode the locations of the three ships in 

parallel, and to orient their attention and motor response (mouse cursor) to the first ship, we 

allowed a different non-decision time for the first response in each trial relative to the other 

response orders. Consistent with Palada et al. (2018), we did not allow any additional flexibility 

over response order, as doing so would risk too little data for acceptable parameter estimation 

(recall that we only observe responses to 64 PM target ships and 64 PM non-target ships for each 

participant). We fixed non-decision time over all other factors. We estimated thresholds 

separately for each accumulator, for each PM condition (PM vs. control), and for each session of 

the experiment. Following results and precedent from simple laboratory paradigms (Strickland et 

al., 2017, 2018), we relied on thresholds alone to capture the effects of session. We did not 

estimate separate thresholds in response to stimulus type. As stimuli were randomly presented, 

estimating thresholds based on stimulus type would be circular: if participants could change 

adjust thresholds in contingent on stimulus identity, then they must have already known what 

that stimulus would be, and the decision process would not need to occur. We allowed mean 
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accumulation rates to vary over PM condition and stimulus type. As is common in applications 

of the LBA, we included only two accumulation rate standard deviations: a ‘matching’ standard 

deviation parameter for correct decisions and ‘mismatching’ standard deviation parameter for 

errors. We fixed the standard deviation of the ‘mismatch’ accumulator at 1, so that the model 

was identifiable (Donkin, Brown, & Heathcote, 2009). From these aforementioned constraints, 

the ‘top’ most flexible model we fit comprised 29 free parameters – one start-point noise 

parameter, 10 thresholds, 15 mean accumulation rates, 1 standard deviation for ‘match’ 

accumulation rates, and 2 non-decision times.  

Sampling 

We estimated model parameters using Bayesian estimation, which produces a probability 

distribution for each parameter value. We used the Differential Evolution Markov Chain Monte 

Carlo algorithm (DE-MCMC; Turner, Sederberg, Brown, & Steyvers, 2013), an algorithm that is 

effective in Bayesian estimation even when parameters are highly correlated, as implemented in 

the DMC suite of R functions (Heathcote et al., in press). Bayesian estimation requires 

specifying ‘prior’ distributions, which specify beliefs about parameter values prior to modelling 

the data. As this was the first application of PMDC to our task, we specified fairly non-

informative priors, which are listed in Table 1. Our priors were similar to the priors used by 

Strickland et al., (2018). However, in order to account for the longer RTs observed in our task, 

we doubled the prior means of the B parameters (the amount of evidence required for a decision) 

and increased the upper bound on non-decision time to 3 seconds.  

The DE-MCMC algorithm requires running many parallel chains, which share 

information to efficiently converge to the posterior distribution. We ran three times as many 

chains as parameters (e.g., for the most complex model with 29 parameters we ran 87 chains). To 
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reduce computational requirements, we ‘thinned’ during sampling, only retaining one out of 

every twenty iterations that we ran. We ran 3600 iterations at a time, retaining 180 of them after 

thinning. We continued to run more iterations (replacing the samples from the previous 180) 

until all samples were stationary, mixed, and converged, which we evaluated both with Gelman’s 

�̂� statistic (Gelman et al., 2014) and with visual examination of trace plots of the samples.  

Model Fit 

Before interpreting the model, we examine whether it adequately accounts for the 

observed data, using graphs of ‘posterior predictive’ (Meng, 1994) model fit. This involves using 

the posterior parameter samples to simulate data from the model and comparing them with the 

actual data. Figure 5 compares the fit between simulated and observed data across the different 

PM conditions, stimulus types, and responses. Overall, the PMDC architecture provided a good 

fit to accuracies and RTs of the ongoing task and of the PM task. We separately examined fit to 

the ‘response order’ factor, depicted in Figure 6. The model adequately captures the major effect 

of ‘response order’ on RT. There is some miss-fit to the extended tail of RTs for response order 

one, and slight miss-fit for some of the accuracy trends. Although this miss-fit may be addressed 

with more parameters1, it is not very substantial, and we decided that further gains in fit to our 

data would not be worth the added model complexity (i.e., more potential to over-fit to noise in 

our data and thus not generalize well to future data). Next, we describe how the model achieved 

good fits to our observed data in terms of latent psychological quantities. To do so, we first 

explore the possibility of constraining the model further with model selection.  

                                                

1 We experimented with more complex models (e.g., thresholds and rates varying by trial position, 78 parameters) 

and found that they could fit response order effects more closely, for example helping in fitting the longer 0.9 

quantile for first responses. Although these models added extra mechanisms by response order, their average effects 

across PM conditions were very similar to those reported in text.  
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Model Selection 

In addition to the a priori constraints on the model, we tested whether the deviance 

information criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) suggested any 

further constraint would be appropriate. DIC measures how ‘good’ a model is by considering 

both complexity and goodness of fit to the data. A lower DIC indicates a better model. DIC 

values were summed across participants. We tested three models. The first was the ‘top’, most 

flexible model, that allowed both capacity sharing and proactive control in the PM and control 

conditions. The top model had 29 parameters and a DIC value of 110468. We tested an ‘only 

capacity sharing model’, in which thresholds were fixed across PM conditions, precluding 

proactive control. Although this model was simpler, with only 25 parameters, it had a 

substantially larger DIC than the top model (DIC difference = 1140), indicating support for the 

top model. We tested an ‘only proactive control’ model, in which accumulation rates to non-PM 

stimuli did not vary across PM and control conditions. This model had 25 parameters and was 

also rejected in favor of the top model, (DIC difference = 322), suggesting that changes in non-

PM accumulation rates were required to fit the data. Thus, overall, the model selection is in favor 

of both thresholds and rates varying across PM and control blocks. We now test the direction and 

magnitudes of these variations in thresholds and rates. 

Model Summary 

Parameters 

To summarize model parameters, we created a group-averaged posterior distribution, 

which averaged every posterior sample across participants. To test differences between 

parameters, we took the differences between the parameters for each posterior sample, and then 

averaged the result across participants, giving a group averaged posterior difference distribution. 
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To summarize the difference distributions, we report the proportion of posterior samples of the 

difference that were above or below 0 (p). So that p values are consistent (with smaller ps 

evidencing an effect), we report the posterior p against effects running in the observed direction. 

Thus, if a tested difference in parameters is most often sampled above 0, we report the p that it is 

below 0, and if a difference is most often sampled below 0, we report the p that it is above 0. We 

also report Z, the mean of the difference distribution divided by the standard deviation (similar to 

a Z score because the difference distributions of posterior samples are approximately normal). 

We include the latter because many of our observed effects were ‘significant’ in that p = 0, and 

so we needed some way to compare their relative size. For t0, we found an effect of position in 

trial, with the t0 to the first response on each trial much higher (M = 0.77s, SD =0.004) than t0 to 

the subsequent two (M = 0.12s, SD = 0.003s), Z = 222.7, p = 0. This non-decision time effect is 

consistent with greater encoding time at the start of each trial, in which participants have to 

locate the three ships, and perhaps have to move their mouse to the first ship. The values of non-

decision time are similar to those reported by Palada et al., (2018). The posterior mean of the 

standard deviation in rates for the matching accumulator was 0.65 (SD = 0.01). As the standard 

deviation for the mismatching accumulator was fixed at 1, this replicates most previous modeling 

with the LBA where the match accumulator is generally found to have lower variability than the 

mismatching accumulator. The posterior mean of the A parameter was 2.71 (SD = 0.05). 

Capacity Sharing 

We tested capacity sharing by comparing accumulation rates to non-PM ships across 

control blocks and PM blocks, with slower non-PM accumulation in PM blocks indicating 

capacity sharing. Figure 7 shows the accumulation rates for non-PM ships broken down by 

accumulator type (matching vs. mismatching) and stimulus type (target vs. non-target). The rate 
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for the matching accumulator was lower for targets in PM blocks (M = 2.32, SD = 0.03) than in 

control blocks (M = 2.48, SD = 0.03), Z = 7.37, p = 0 (top right panel). Although the effect was 

smaller, the rate for the matching accumulator was also lower for non-targets in PM blocks (M = 

2.25, SD =0.03) than control blocks (M = 2.30, SD =0.03), Z = 2.45, p = .007 (top left panel). 

The rate for the mismatching accumulator was not appreciably different in PM blocks (M 

= -0.30, SD = 0.05) than control blocks (M= -0.33, SD = 0.06), Z = 0.36, p = .361, when targets 

were presented (bottom right panel). However, the rate for the mismatching accumulator was 

marginally higher for non-targets in PM blocks (M = -1.07, SD = 0.07) than control blocks (M = 

-1.22, SD = 0.08), Z =1.6 p = .06 (bottom left panel).  

We also combined the rate measures to test changes across condition in processing 

quality (match accumulation – mismatch accumulation) and processing quantity (match 

accumulation + mismatch accumulation) for non-PM ships. We found lower processing quality 

under PM conditions for both targets, Z = 2.66, p = .004, and non-targets, Z = 2.06, p = .02. We 

found lower processing quantity for targets, Z = 1.98, p = .03, but not non-targets, Z = -1.08, p = 

.14. Overall then, with three effects on accumulation rates consistent with lower ongoing task 

capacity, and one rate not affected by PM condition, these results suggest lower ongoing capacity 

in PM blocks than control blocks. These effects were modest in size compared to some other 

effects in the model, but in the ‘Model Exploration’ section we will demonstrate that they were 

important in accounting for PM costs.   

Proactive Control 

To test for proactive control, we compared ongoing task thresholds in PM blocks with 

control blocks; with higher ongoing task thresholds in PM blocks being indicative of proactive 

control. Thresholds are plotted in Figure 8. Thresholds were higher to make target decisions in 
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PM blocks (session one M = 2.32, SD = 0.03, session two M = 2.03, SD = 0.03) than control 

blocks (session one M= 2.00, SD = 0.03, session two M = 1.91, SD = 0.03) for both session one, 

Z = 10.92, p = 0, and session two, Z = 4.38 p = 0. Proactive control over non-target decisions was 

less apparent. In session one, thresholds to make non-target decisions were not higher in PM 

blocks (M = 2.21, SD =0.03) than control blocks (M = 2.21, SD = 0.04), Z = 0.16, p = .434. 

However, in session two, non-target thresholds were higher in PM blocks (M = 2.04, SD = 0.03) 

than control blocks (M = 1.91, SD = 0.03), Z = 4.69 p = 0. Thresholds towards the PM decision 

were not substantially higher for session one (M = 1.73, SD = 0.04) than for session two (M = 

1.73, SD = 0.04), Z = 0.28, p = .39. 

Reactive Control 

Excitation. In order to examine reactive processes, we compare differences in 

accumulation between PM ships and non-PM ships. Trivially, as would be expected with 

reasonable PM accuracy, PM accumulation was substantially faster to PM ships (target ships M= 

2.14, SD = 0.04, and non-target ships M =1.70, SD = 0.04) than to non-PM ships (M = -3.79, SD 

= 0.12), Z = 52.64, p =0. More interestingly, PM excitation was greater to ‘target’ PM ships (PM 

ships that also satisfy the ongoing task target detection rule), than to ‘non-target’ PM ships (PM 

ships that do not satisfy the ongoing target detection rule), Z = 11.5, p = 0.  

Inhibition. We tested for reactive inhibition by comparing ongoing task accumulation 

rates between PM ships and non-PM ships. These rates are plotted in Figure 9. Lower ongoing 

task accumulation to PM ships indicates inhibition. For target ships, accumulation towards the 

decision to respond 'target' was much lower when the target was a PM ship (M = 0.61, SD =0.08) 

than when it was a non-PM ship (M = 2.32, SD =0.03), Z = 24.79, p = 0 (top right panel, Figure 

9). Similarly, for non-target ships, the speed of accumulation towards the non-target decision was 
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much lower when the non-target was a PM ship (M = 0.88, SD = 0.05) than when it was a non-

PM ship (M = 2.25, SD = 0.03), Z = 29.64, p = 0 (top left panel). For target ships, there also was 

evidence that the error accumulation rates were lower when the target was a PM ship (M = -1.56, 

SD = 0.15), than when it was a non-PM ship (M = -0.30, SD = 0.05), Z = 8.18, p = 0 (bottom 

right panel). For non-target ships, error accumulation was also lower when the non-target was a 

PM ship (M = -1.44, SD = 0.14) than when it was a non-PM ship (M =-1.07, SD = 0.07), Z = 

2.53, p = .004 (bottom left panel).  

We also examined inhibition in terms of processing quality and processing quantity. For 

target ships, ongoing task processing quality was lower for PM ships than non-PM ships, Z = 

2.64, p = .005. For non-target ships, ongoing task processing quality was lower for PM ships 

than non-PM ships, Z = 6.5, p = 0. For target ships, ongoing task processing quantity was much 

lower for PM ships than non-PM ships, Z = 17.58, p = 0. This was also the case for non-target 

ships, Z = 11.36, p = 0.  

Model Exploration 

In complex cognitive models, the contribution of model processes to the observed data 

can be difficult to discern. Here, we seek to understand the model processes that underlie PM 

cost and accuracy by removing them from the model and examining the miss-fit to PM cost and 

PM accuracy that follows. To the extent that removing a model mechanism causes miss-fit to an 

effect, that effect can be ascribed to the mechanism in the full model. We summarize model fit 

by examining the percentages of PM accuracy and PM cost predicted. This percentage can be 

over 100 if the model actually predicts a larger number than the data.  

PM accuracy. First, we tested the contributions of proactive and reactive control to PM 

accuracy. Figure 10 depicts the results. We removed all control over ongoing task decisions from 
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the model by setting thresholds in PM blocks to control block levels (removing proactive control 

of ongoing tasks decisions), and also setting ongoing task accumulation rates on PM ships to the 

level on non-PM ships (removing reactive control). Whereas the full model predicted 98% of PM 

accuracy to target ships and 103% of accuracy to non-target ships, the model with control 

removed predicted only 59% of accuracy to target ships, and 65% to non-target ships. Next, we 

examined a model with proactive control in the model, but not reactive control. This predicted 

65% of PM accuracy to target ships, and 66% of accuracy to non-target ships indicating that 

proactive control made some contribution to PM accuracy in the full model. However, allowing 

reactive control into the model, but not proactive control, resulted in much better fits to PM 

accuracy, with 95% of PM accuracy predicted to target ships and 100% of accuracy predicted to 

non-target ships. This illustrates that for the current task, proactive control had relatively little 

influence on PM accuracy, whereas reactive inhibitory control was critical.  

PM cost. Next, we tested the extent to which the PM cost effect could be accounted for 

by proactive control compared to capacity sharing. We examined a model with proactive control 

removed by setting all ongoing task thresholds to the values in control conditions; and we 

examined a model with capacity sharing removed by setting all non-PM accumulation rates to 

the values from control blocks. The results are displayed in Figure 11. We only discuss cost to 

responses to target ships, because cost to non-target ships was small, and the 95% credible 

intervals of all the models overlapped with the true effect. The full model predicted 104% of cost 

to target ships, whereas removing capacity sharing resulted in predicting only 54% of cost to 

target ships. Similarly, removing proactive control predicted only 39% of cost to target ships.  

These results suggest that both capacity sharing and proactive control played substantial roles in 

the observed PM cost effects to target ships.  
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Individual Differences in PM Accuracy  

We were also interested in how the model explained variation in PM accuracy across 

participants. We investigate this by correlating model mechanisms with PM accuracy. To obtain 

correlations, we calculated model mechanisms (e.g., proactive control over target decisions) for 

each posterior sample for each participant, and then calculated the correlation for that posterior 

sample. The result is a distribution of posterior correlations (Ly, Boehm, et al., 2018). We 

applied a correction to the correlations, so that they are suitable for inference about the 

population rather than the sample (Ly, Marsman, & Wagenmakers, 2018). We plot the posterior 

means, and credible intervals, of the resulting correlation distributions in Figure 12. Below we 

report in text the posterior means of the substantial correlations.  

In our previous work using a simple paradigm, we found that only reactive inhibition 

towards the ‘match’ ongoing task decision strongly correlated with PM accuracy. We replicated 

this reactive inhibition effect here, for PM accuracy both to target PM ships (r = .74) and to non-

target PM ships (r = .73). Furthermore, reactive inhibition to the non-target response for non-

targets was correlated with target PM accuracy (r = .55), and reactive inhibition of the target 

response to target PM ships was correlated with non-target PM accuracy (r = .57).  These 

correlations suggest that reactive control ability is a strong determinant of individual differences 

in PM accuracy. 

We found another parameter that correlated with PM accuracy here that did not correlate 

in the simple PM paradigm: the PM accumulation rate. The speed of PM accumulation correlated 

with PM accuracy both to target PM ships (r = .55) and non-target PM ships (r = .82). 

Furthermore, the PM accumulation rate towards non-target PM ships was correlated with PM 
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accuracy to target PM ships (r = .62) and the PM accumulation rate towards target PM ships was 

correlated with PM accuracy towards non-targets (r = .49).   

Multiple Stimulus Encoding  

In each trial, participants were presented three ships and were instructed to respond to in 

any order they wished. As reviewed above, we found substantially slower responses for the first 

ship on each trial, consistent with Palada et al. (2018). This motivated a subsequent analysis of 

our manifest data. Although it is unlikely that participants would switch their attention between 

the ships during decisions (Palada et al., 2016), it is possible that at the beginning of each trial, 

prior to focusing attention on the first ship (and performing evidence accumulation), participants 

might either perform some initial scan of the ships for PM features, or notice the PM features 

during initial encoding of the locations of the three ships. We tested this for each participant by 

performing a chi-square test on the frequency with which PM items were responded to first. As 

PM ships were interspersed randomly amongst the other ships, the null hypothesis was that PM 

ships would be responded to first no more than chance. The null was calculated for each 

participant by examining the total number of responses recorded first, second, and third within a 

trial (this was not exactly a third due to non-responses, although very close). We tabulate the 

results of the chi-square tests for each participant in the supplementary materials. 

 We found four participants who responded to PM ships first more often than chance (p 

less than the family-wise error rate of .0014). This motivated two checks of our model results. 

First, we checked whether the inferences reported above held without the four ‘PM first’ 

participants included in the data, and we found that they did. Second, we examined non-decision 

times of the four ‘PM first’ participants compared with the rest of the participants. We found that 

the non-decision time for the first response on each trial was slower for these four participants 
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(M = 0.84s, SD = 0.009s) than other participants (M = 0.76s, SD = 0.004s), Z = 7.46, p = 0, 

whereas the non-decision times for the other two responses were slightly faster for the four 

participants (M = 0.11s, SD = 0.004s) than for the rest of the sample (M = 0.12s, SD = 0.003s), Z 

= 2.99, p = .006. Given these results, it is possible that participants who encode stimuli more 

thoroughly at the beginning of the trial can notice PM ships during encoding, and then 

subsequently orient their attention to a PM ship first for that trial.   

Discussion 

In the current study, we examined PM in a laboratory simulation of a complex, dynamic, 

maritime surveillance task. We found substantial PM error rates in our task, similar to those 

observed in simple laboratory paradigms (Einstein & McDaniel, 1990). Replicating findings 

from simple laboratory PM tasks, we found a PM cost to RT of the ongoing target detection task. 

Specifically, in PM blocks of trials we found slower RTs to (non-PM) ongoing task targets. We 

also found a PM cost to ongoing-task target accuracy. We used our data to test the recently 

developed PMDC model (Strickland et al., 2018). We found that PMDC fitted well to the 

observed performance data, despite the RTs in this task being much slower than in tasks PMDC 

has previously been applied to. This finding corroborates other recent studies that have 

successfully validated accumulation models in tasks that require longer decisions, and thus are 

more representative of decisions in complex real-world task environments (Lerche & Voss, 

2017; Palada et al., 2016, 2018). Critically, we found that PMDC was applicable to, and 

informative about, human performance in a ‘red zone’ of task demand. PMDC indicated capacity 

sharing between PM monitoring and ongoing task performance, contrasting with previous 

findings from simple paradigms that PM monitoring does not impact ongoing task capacity 

(Strickland et al., 2018). We also found support for proactive and reactive control processes 
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underlying PM, generalizing previous findings (Strickland et al., 2018) to the current more 

complex paradigm. 

Capacity sharing. We found evidence for capacity sharing between PM monitoring and 

performing the ongoing task. Accumulation rates to non-PM ships in PM blocks suffered as 

compared with accumulation in control blocks. For non-PM ships that were ongoing task targets, 

there was a cost for both processing quality (lower quality ongoing task accumulation under PM 

conditions) and quantity (less quantity of ongoing task processing under PM conditions). For 

non-PM, non-target ships, we found only a cost to processing quality, and not quantity. This 

asymmetry in PM cost across ongoing task targets and non-targets is also evident in the manifest 

data. PM cost to RT was more substantial for target ships than non-targets, and PM cost to 

ongoing task accuracy was only present for target ships. The asymmetry also appeared in Palada 

et al. (2018)’s finding that the point of capacity ‘redline’ reduced target ship accuracy to chance 

but left non-target ship accuracy intact. It appears that in this maritime surveillance paradigm, 

capacity costs primarily affect ongoing task target detection, rather than target rejection.  

At first glance, our finding of capacity sharing in maritime surveillance may seem 

consistent with early verbal PM theories, which assumed the PM cost effect in more simple PM 

tasks is driven by capacity sharing (Einstein et al., 2005; Smith, 2003), and starkly contrasting 

with more recent research applying evidence accumulation models that have consistently failed 

to find evidence of capacity sharing in simple PM tasks (e.g., Ball & Aschenbrenner, 2017; 

Heathcote et al. 2015; Horn & Bayen, 2015; Strickland et al., 2017, 2018). However, we do not 

believe our findings indicate that capacity sharing undergirds PM in all situations. Instead, our 

findings suggest that capacity sharing is likely driven by the demands of the task environment. 

According to resource-based theories of human cognition (e.g., Navon & Gopher, 1979; Norman 
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& Bobrow, 1975), we can only identify whether two processes share capacity in situations where 

capacity cannot be held in reserve. As outlined in the introduction, our maritime surveillance task 

is substantially more demanding than the simple tasks typically used in PM research. Previous 

work by Palada et al. (2018) places our level of task demands in or close to the ‘red zone’ 

(Wickens et al., 2015), where participants are likely to have insufficient ‘reserve capacity’ to 

meet additional task demands, resulting in capacity sharing between tasks. Thus, the capacity 

sharing finding we observed in the present task likely was driven by the demands of the task. 

Moreover, this demonstrates that effects which appear similar across simple and complex tasks 

using coarse measures (e.g., mean RT), can be driven by very different psychological processes, 

with different implications for psychological theory and practice.  

Additionally, owing to the fact that PM accumulation rate can also be taken as a measure 

of PM capacity, the results of the present study indicate that individual differences in capacity 

are associated with PM accuracy. Previous work applying PMDC to simple paradigms found that 

PM accuracy only correlated across subjects with inhibition of the ongoing task (Strickland et al., 

2018). However, in the present study we found that the PM accumulation rate also correlated 

with PM accuracy across participants. It is likely that Strickland et al. (2018) did not detect these 

individual differences because participants had sufficient capacity to perform both the ongoing 

task and maintain PM monitoring without capacity sharing, resulting in PM accuracy being 

largely determined by cognitive control over ongoing task processes. Thus, in the current 

paradigm where spare capacity is limited, it follows that individual differences in PM capacity 

could explain differences in PM accuracy.   

Proactive control. Replicating work from simple paradigms (e.g., Ball & 

Aschenbrenner, 2018; Heathcote et al., 2015; Horn & Bayen, 2015; Strickland et al., 2017, 
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2018), we found that participants increased their ongoing task thresholds in PM conditions as 

compared with control conditions, consistent with ‘proactive control’ over ongoing task 

decisions. The strongest effect was on thresholds to make ‘target’ decisions. These threshold 

increases accounted for a substantial portion of PM cost. However, our model exploration 

revealed that although these threshold increases were important to explaining PM cost, they only 

had minor benefits to PM accuracy. There was also some proactive control over thresholds to 

make ‘non-target’ decisions, however this effect was smaller, only appeared on session two of 

the experiment, and did not produce any substantial PM cost to non-targets, or any substantial 

benefits to PM accuracy. 

All in all, ongoing task threshold control appears less relevant to PM accuracy in the 

current study than it was in our previous application of PMDC (Strickland et al., 2018). Proactive 

control may be more limited in the current paradigm due to the trial response deadlines. 

Proactive control would increase RTs and risk breaching deadlines, and Palada et al. (2018) 

reported that participants decreased their thresholds to avoid non-responses. Thus, it is possible 

that without response deadlines, participants could exert more proactive control, and this control 

would account for more variance in PM accuracy, perhaps also discouraging the need for 

capacity sharing. This limitation on proactive control is important to note for real world 

applications of PMDC. Often, operators face time pressure to respond, either in time to avoid an 

adverse event, or because they need to switch to other tasks. Such situations may render a 

proactive control strategy ineffective, potentially compromising PM accuracy, or increasing 

capacity demands of PM. 

Reactive control. Unsurprisingly, we found larger PM accumulation rates for PM ships 

than non-PM ships, consistent with inputs from processing the configuration of PM features 



PROSPECTIVE MEMORY IN THE RED ZONE                                                                       40 

 

 

driving the PM accumulation process. More interestingly, we found that this ‘PM excitation’ was 

stronger for target PM ships than non-target PM ships. Target ships may induce greater PM 

excitation because other ship features may provide similar inputs to PM ship features (e.g., the 

blue smoke stack feature might provide inputs similar to the ‘life boat’ or ‘flag’ PM features, 

because they are both partially blue and in similar locations, see Figure 4). If this is the case, our 

finding of greater PM excitation for ongoing task targets may not generalize to tasks in which 

PM-related evidence and ongoing task target evidence is less similar.  

We also found evidence of ‘reactive inhibition’ of ongoing task processing on PM ships. 

That is, ongoing task accumulation rates were lower for decisions to PM ships than non-PM 

ships. This effect was strong for both targets and non-targets. We found that inhibition mostly 

affected the quantity of ongoing task processing, with a smaller effect on the quality of 

processing, which is very consistent with the ‘feedforward’ nature of inhibition in PMDC in 

which inhibition flows forward from the encoding stage, rather than occurring on-line during the 

decision process. Our correlations across participants revealed that individual differences in 

reactive inhibition were a large determinant of PM accuracy, replicating our work from basic 

paradigms (Strickland et al., 2018). Thus, it appears that reactive inhibition of ongoing task 

processing upon encountering PM events is an important mechanism underlying PM accuracy in 

the current paradigm.   

Multiple Stimulus Encoding. On each trial in our task, participants were presented with 

three stimuli at a time, and we added a ‘response order’ factor to our data to capture possible 

performance differences between earlier and later responses in the trials. We found some effects 

of response order. We found a decrease in target accuracy (around 2-3%) for the last response on 

each trial, without an equal effect on non-target accuracy. This effect, although small, is 
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consistent with the Palada et al. (2018) finding that target accuracy is selectively affected, and 

can be reduced to chance, by tight deadlines – the third ship on each trial is most likely to be 

responded to with little time left until trial deadline. The strongest effect of response order by far 

was an increase in RT for the first ship responded to. This is likely due to orienting attention to 

the locations of the 3 ships presented, parallel encoding, and orienting the motor response to the 

first ship. To account for this, we included a different non-decision time for the first trial 

response than subsequent responses in our model. Replicating Palada et al. (2018), we found that 

the non-decision time for the first ship was longer than the others.   

Four participants responded to PM ships first on the trials that they were presented much 

more often than second or third on those trials. This suggests that those participants were able to 

detect PM features at the beginning of the trial, perhaps due to extended encoding. Consistent 

with this, these four participants had longer non-decision times for the first response than other 

participants. This illustrates that in complex, multi-stimulus tasks, PM-related adaptive behavior 

can vary across individuals. More complex paradigms bring the possibility of there being 

multiple effective strategies (e.g., noticing PM features during encoding vs. noticing PM features 

during the standard accumulation process), and individuals may differ in adoption of strategies 

and under what circumstances they apply them. In addition to extended encoding, there is likely 

initial time devoted to eye saccades, and motor responding. Future work may investigate these 

further with appropriate tools such as eye tracking and mouse tracking. It might also be possible 

to experimentally manipulate strategy (e.g., instruct participants it is best to respond to PM ships 

before ongoing task ships).  
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Limitations 

Before outlining the potential applied implications of our findings, it is critical to 

acknowledge some potential limitations. We designed our simulated maritime task to be more 

representative of the conditions operators in complex dynamic work domains face, relative to the 

previous application of PMDC. Nevertheless, we acknowledge that there are issues associated 

with generalizing our findings to field operations. For one, the trials in our experiment were 

discrete – three ships appeared on the camera view at a time and exited at the same time. By 

contrast, real-world monitoring tasks are continuous, involving multiple stimuli with variable, 

and often unpredictable, onsets and durations. Under these conditions, patterns of proactive 

control and capacity allocation may differ. Thus, it would be worthwhile extending PMDC to a 

more continuous monitoring task. Our paradigm also encouraged speedy serial decision making 

(i.e., one ship decision at a time), without attention switching before each decision is made. By 

contrast, in many applied settings, perceptual display items evolve slowly over time, and it is 

likely operators distribute their attention across stimuli cyclically. It is may be possible to 

incorporate attention switching into our framework using ‘piecewise’ accumulation (Holmes, 

Trueblood & Heathcote, 2016) and eye-tracking measurements, such that evidence accumulation 

rates about an event can change when gaze moves to another display item.  

We are also limited by the fact that our data did not come from expert participants. 

Whereas our student participants appeared to share resources between PM monitoring and the 

ongoing task, with practice the performance of expert operators might become more automatic 

(Logan, 1988), shifting the ‘red zone’ to a higher level of task demand. Consistent with practice 

reducing the resource requirements of the task, we observed a smaller PM cost to target detection 

accuracy on the second session of our experiment. Although the model we reported in detail here 
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did not estimate ongoing task capacity separately for session one and two (due to concerns about 

cutting data too finely), we explored such a model, and report the parameter estimates in the 

supplementary materials. This exploration did indeed indicate more PM cost to ongoing task 

capacity in session one than in session two. In all other respects it led to similar conclusions to 

the modeling reported in text. Future work could potentially benefit from formally specifying 

why these practice effects occur. For example, a model of practice could potentially form a front-

end to the PMDC measures of capacity demands.  

Practical Implications and Future Directions 

Despite these potential limitations, our results have several potential practical 

implications, and open future directions for research. Our findings regarding capacity and control 

help to bridge the gap between basic laboratory-based PM research and practical applications of 

PM theory. For example, we found that proactive and reactive control over ongoing task decision 

processes support event-based PM, generalizing Strickland et al (2018)’s findings from a simple 

PM paradigm to a more representative task. This finding may have implications for work design. 

Both proactive and reactive control mechanisms depend upon delaying ongoing task decision 

making to facilitate PM retrieval. Interventions may emulate such control. For example, when 

work designers know that responding to an expected event-based PM event is safety-critical, it 

may be useful to externally delay operator responses to non-critical stimuli to allow more time 

for evidence accumulation for the PM action. 

 Our model indicated that PM demands cost ongoing task processing in the current 

experiment, whereas models of performance in simple paradigms did not (e.g., Strickland et al., 

2018), demonstrating that a lack of capacity sharing between processes in simple laboratory 

paradigms does not rule out capacity sharing in more complex tasks. Thus, when studying PM 
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and ongoing task capacity sharing in view of practical applications, it is important to use 

laboratory tasks with sufficiently representative task demands. This finding also has implications 

for work design. It suggests that in complex, dynamic tasks, event-based PM could potentially 

benefit from reducing the capacity burden of ongoing tasks (e.g., via work design inventions 

such as task automation; Endsley, 2017; Wickens, 2018). Similarly, our findings suggest that for 

successful performance of both concurrent PM task and ongoing tasks, it is critical to keep 

workload within safe limits. This may involve planning ahead to reduce the burden of workload 

with external factors (e.g., by coordinating with other people) (Loft et al. 2007; Neal et al., 

2014). Operators may also manage workload adaptively right as they encounter mentally 

demanding events (Loft et al. 2007; Neal et al., 2014), by adjusting their cognitive operations 

with mechanisms such as those identified in the current study (shunting capacity between tasks, 

proactive threshold shifts, reactive inhibition). 

A more general line of practical implications follows from our finding that PMDC is a 

viable model of our complex, dynamic task, and can account for and explain the effects of PM in 

the ‘red zone’ of task demand. This suggests that PMDC could potentially serve as a quantitative 

‘human performance model’ (Byrne & Pew, 2009) for many applications of event-based PM. 

Our modelling does not aim to replace traditional methods such as experimentation, field 

research, and task analysis. Instead, it can complement these methods, by offering insights into 

the ecological work contexts that traditional methods indicate there is potentially a high payoff 

for further understanding. The PMDC architecture is tractable, relatively easy to apply, and 

offers numerous advantages over verbal theorizing. For example, PMDC could serve as a 

‘measurement model’, similar to how signal detection theory is often used by human factors 

practitioners (Byrne & Pew, 2009), but using RT as well as accuracy to measure PM processes 
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(i.e., a “dynamic signal detection theory”). In addition, as PMDC’s accumulation rate parameters 

are potentially more sensitive to the capacity for information processing than manifest data, 

PMDC could be used to assess the effectiveness of training or interventions that attempt to 

reduce cognitive load on the operator. Furthermore, as illustrated in the current paper with our 

use of ‘posterior exploration’, PMDC allows us to quantify the effects of various model 

mechanisms. As such, PMDC could be a useful tool to not only identify the latent effects of 

interventions, but also quantify how much they directly affected a behavioral feature of interest. 

For example, if an intervention aimed to increase the caution with which operators make ongoing 

task decisions, PMDC could directly measure whether the intervention succeeded in doing so, 

and quantify the benefits of any caution increases to PM performance. We do acknowledge that 

applying PMDC as a ‘measurement model’ requires observing adequate numbers of PM 

responses to estimate parameters, which could be challenging in some applied contexts, but this 

could be improved with a hierarchical model of the population parameters (observing many 

humans, rather than many responses per human), and the incorporation of prior information to 

constrain parameter estimates. 

As a quantitative human performance model, PMDC may also serve to unify disparate 

human data beyond RT and response choice. For example, it is straightforward to explore 

correlations between model parameters and individuals abilities in a fully Bayesian way using 

posterior correlations (Ly, Boehm, et al., 2018). This could help to identify the measures (e.g., 

working memory scores) that are most associated with causes of PM performance in complex, 

dynamic tasks. It is also possible to include trial level covariates in the model, in which case 

model parameters are specified as a function of some other measurement (e.g., biometrics such 

as pupil dilation) around the time of the decision. With this approach, we could find the 
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measurements that best correspond to PM decision parameters. It might even be possible to 

incorporate data from previous responses to determine the parameters of the current PM 

decision, providing a model-based method to predict PM failures before they happen. 
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Table 1 

 Experimental counterbalance. Note that we have marked control to indicate one control 

block, whereas PM indicates two PM blocks, one after the other. We collected more PM blocks 

than control in order to collect more observations of PM responses for modeling.  

 

BLOCK ORDER PM RESPONSE BUTTON 

1: control-PM-PM-control RED 

2: control-PM-PM-control GREEN 

3: PM-control-control-PM RED 

4: PM-control-control-PM GREEN 
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Table 2 

Correct-response latencies (RT, in seconds) and accuracy (Acc, as a proportion) for ongoing 

task (feature classification) performance for target stimuli (4+ features) and non-target stimuli 

(<4 features) in control and PM blocks. 

 

   Control  PM  

Session Stimulus RT  SE Acc SE  RT SE Acc SE 

1 Target 1.80 0.012 0.94 0.004  2.02 0.010 0.87 0.004 

 Non-Target 2.02 0.013 0.94 0.003  2.03 0.010 0.93 0.003 

2 Target 1.77 0.013 0.92 0.004  1.89 0.010 0.91 0.003 

 Non-Target 1.88 0.013 0.96 0.003  1.95 0.010 0.95 0.002 
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Table 3 

 Correct-response latencies and accuracy for PM task performance (two specific features 

present) for target stimuli (4+ features) and non-target stimuli (< 4 features) in control and PM 

blocks. 

  Session 1   Session 2 

Stimulus RT (s) SE Acc SE  RT (s) SE Acc SE 

Target 1.89 0.012 0.82 0.012  1.73 0.012 0.77 0.012 

Non-Target 1.92 0.013 0.66 0.013  1.71 0.013 0.66 0.013 
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Table 4 

Correct-response latencies and accuracy for ongoing task (feature classification) performance 

by response order in control and PM blocks.  

 

    Control  PM  

Session Task 
Response  

Order 
RT (s) SE Acc SE  RT (s) SE Acc SE 

1 

 1 2.47 0.018 0.96 0.004  2.65 0.013 0.91 0.004 

Ongoing Task 2 1.60 0.012 0.95 0.004  1.73 0.010 0.90 0.004 

 3 1.64 0.012 0.93 0.004  1.70 0.010 0.89 0.004 

 1      2.46 0.037 0.76 0.037 

PM Task 2      1.53 0.029 0.75 0.029 

 3      1.50 0.027 0.72 0.027 

2 

 1 2.41 0.018 0.96 0.004  2.53 0.013 0.94 0.003 

Ongoing Task 2 1.52 0.011 0.94 0.004  1.61 0.010 0.94 0.003 

 3 1.53 0.011 0.93 0.005  1.62 0.010 0.92 0.004 

 1      2.31 0.037 0.72 0.037 

PM Task 2      1.41 0.027 0.72 0.027 

 3      1.38 0.02 0.70 0.023 
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Table 5 

Priors for the parameters of the LBA models fitted to our data. 

Model Parameter Distribution M SD Lower Upper 

A Truncated Normal 1 1 0 10 

B Truncated Normal 2 1 0 None 

v (Ongoing match) Truncated Normal 1 2 None None 

v (Ongoing mismatch) Truncated Normal 0 2 None None 

v (PM match) Truncated Normal 1 2 None None 

v (PM false alarm) Truncated Normal -1 2 None None 

sv Truncated Normal 1 1 0 None 

t0 Uniform 0.1 3 
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Figure 1. PMDC as it applies to our target detection task. Evidence for each response is initially 

drawn from a uniform distribution on the interval [0, A]. Over time, evidence accumulates 

towards each response at rates drawn from normal distributions with mean v, and standard 

deviation sv. The first accumulator to reach its threshold, b, determines the overt response. Total 

RT is given by total accumulation time plus non-decision time. Note that we depict a bias against 

non-target responding, as may be the case in classification tasks where missing a target (e.g., 

failing to identify a target ship) is often more costly than a false alarm (e.g., flagging a non-target 

ship for further investigation). 

 

 

 

 

 

 



PROSPECTIVE MEMORY IN THE RED ZONE                                                                       62 

 

 

 

 

 

 

Figure 2. The PMDC architecture’s proposed reactive control structure, as it would apply to our 

target detection task with a PM requirement. Panel 1 depicts the basic structure. There is a 

detector for each possible decision. PM stimulus inputs may activate the PM detector. Panel 2 

illustrates the possible effects of PM activation on the decision process. Activation may excite 

the corresponding response, increasing accumulation (e.g., A1), but also inhibit competing 

responses, slowing their accumulation (e.g., B1 & B2). 
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Figure 3. Screenshot of the UAV task, with possible non-target (red box) and target (green box) 

responses required to each ship. Note that the noise and fog overlay are reduced for illustrative 

purposes.  
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Figure 4. Schematic of ship stimulus displaying all seven possible features. 
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Figure 5. Fits of our chosen (top model) to the data. The data are illustrated by the white dots. 

The model predictions are the black dots. The error bars around the predictions are the 95% 

credible intervals of the predictions (i.e., the uncertainty). The RT graphs depict quantiles, 

including the median (the middle values), the 0.1 quantile (fastest 10% of responses), and the 0.9 

quantiles (the slowest 10% of response times). We plot fits to the participant-averaged data, 

which we obtained by concatenating all data together, and then summarising, for both the data 

and the model. The PM error RTs depicted correspond to the correct ongoing task decision on 

PM ships (e.g., target decision to a target PM ship). The plots do not depict incorrect ongoing 

task RTs to PM ships, nor PM RTs to non-PM ships, because they were rarely observed.  
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Figure 6. Fits of our chosen (top model) to the data by response order. The data are illustrated by 

the white dots. The model predictions are the black dots. The error bars around the predictions 

are the 95% credible intervals of the predictions (i.e., the uncertainty). The RT graphs depict 

quantiles, including the median (the middle values), the 0.1 quantile (fastest 10% of responses), 

and the 0.9 quantiles (the slowest 10% of response times). We plot fits to the participant-

averaged data, which we obtained by concatenating all data together, and then summarising, for 

both the data and the model. The PM error RTs depicted correspond to the correct ongoing task 

decision on PM ships (e.g., target decision to a target PM ship). The plots do not depict incorrect 

ongoing task RTs to PM ships, nor PM RTs to non-PM ships, because they were rarely observed. 
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Figure 7.  The estimated accumulation rates to non-PM ships. The dots indicate the posterior 

means of the subject-average parameters, and the error bars are the mean plus or minus the 

standard deviations of the posteriors. The x axis indicates condition (control vs PM). The panels 

indicate stimulus type (non-target vs target). The top panels illustrate accumulation to ‘match’ 

accumulation rates (that is the accumulation towards the correct response, e.g., non-target 

accumulation to non-targets). The bottom panels illustrate ongoing task ‘mismatch’ 

accumulation (e.g., target accumulation to non-targets).   
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Figure 8.  The estimated thresholds to ongoing task decisions. The dots indicate the posterior 

means of the subject-average parameters, and the error bars are the means plus or minus the 

standard deviations of the posteriors. The x axis indicates condition (control vs PM). The panels 

indicate the latent response accumulator (non-target vs target).  
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Figure 9.  Ongoing task accumulation rates to non-PM ships compared with PM ships. The 

difference in rates between non-PM and PM ships indicates reactive inhibitory control. The dots 

indicate the posterior means of the subject-average parameters, and the error bars are the 

posterior means plus or minus the standard deviations of the posteriors. The x axis indicates 

whether the ship was a PM ship or not. The panels indicate stimulus type in terms of the ongoing 

task rule (non-target vs target). The top panels illustrate accumulation to ‘correct’ accumulation 

rates in terms of the ongoing task (that is the accumulation towards the correct response, e.g., 

non-target accumulation to non-targets). The bottom panels illustrate ongoing task ‘error’ 

accumulation (e.g., target accumulation to non-targets).   
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Figure 10.  Posterior exploration of the role of model mechanisms underlying PM accuracy. The 

dashed line indicates the observed PM accuracy in the data. The black dots indicate the posterior 

mean predicted by each model, and the error bars are the 95% credible intervals. The full model 

is that reported in text, whereas the other models were obtained by removing effects from the full 

model after parameter estimation. These graphs depict fits to the participant average data. This 

was obtained by concatenating all data together, and then summarizing, for both the data and the 

model predictions. 
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Figure 11.  Posterior exploration of the role of model mechanisms in PM cost. The dashed line 

indicates the observed PM cost in the data. The black dots indicate the posterior mean predicted 

by each model, and the error bars are the 95% credible intervals. The full model is that reported 

in text, whereas the other models were obtained by removing effects from the full model after 

parameter estimation. These graphs depict fits to the participant average data. This was obtained 

by concatenating all data together, and then summarizing, for both the data and the model 

predictions. 
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Figure 12.  Posterior correlations of model mechanisms with PM accuracy. The distributions 

were obtained by separately correlating model mechanisms and PM accuracy across participants 

for each posterior sample. The correlations were then corrected for population level inference 

(Ly, Marsman, & Wagenmakers, 2018). The black dots indicate the means of the posteriors, and 

the bars are the 95% credible intervals. The dashed line sits on a correlation value of 0.  

 

 

 

 


