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Abstract 

 

Since data in most industrial processes are non-Gaussian distributed and contains missing 

measurements, the existing algorithms for adaptive soft sensors that ignore these scenarios 

work poorly and limited research has been dedicated to address the above issues. Thus, in 

this study, a newly proposed algorithm, namely expectation maximization ensemble 

locally weighted independent component Kernel partial least square (EM-E-LW-IC-

KPLS) was formulated. It is introduced through modification on locally weighted partial 

least square (LW-PLS) to include the ensemble method, the Kernel function, the 

independent component analysis and the expectation maximisation algorithms. It is 

hypothesised EM-E-LW-IC-KPLS can improve the capability of adaptive soft sensors to 

work well with non-Gaussian distributed data, nonlinear data, and incomplete 

measurements. The newly developed algorithms were tested using process data generated 

from six simulated plants where MATLAB software was utilised as a platform for 

modelling and simulation studies. From two case studies, it was found that the presence 

of an unsteady state in training data of the output variable cause higher prediction errors 

for all algorithms than the test data where training data usually has lower prediction errors 

than the test data. For nonlinear and Gaussian distributed process data, the ensemble 

locally weighted Kernel partial least square (E-LW-KPLS) performed better than the LW-

PLS in which it’s the error of approximation, Ea values improved approximately 7% to 

54%. On the other hand, the ensemble locally weighted independent component Kernel 

partia least square (E-LW-IC-KPLS) also provided better prediction performances 

compared to the LW-PLS, and the Ea values were lower by roughly 8% to 94%. Based on 

case studies, the performance of the EM-E-LW-IC-KPLS in dealing with 5% to 60% of 

missing data in nonlinear and non-Gaussian process data was investigated. It was found 

the EM-E-LW-IC-KPLS model performs better than the integration of LW-PLS models 

with the missing data imputation methods including EM model, trimmed score regression 

and singular vector decomposition in handling up to 20% of missing data. Moreover, the 

inclusive of ensemble method in the newly proposed E-LW-KPLS, E-LW-IC-KPLS, and 

EM-E-LW-IC-KPLS algorithms had significantly minimised the penalty which is the 
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computational burden. While, these algorithms showed more accurate predictive 

performance as compared to the existing LW-PLS model in dealing with nonlinear, non-

Gaussian distributed and missing data. As a conclusion, the proposed EM-E-LW-IC-

KPLS algorithm has successfully narrowed down the current research gap. The 

incorporation of other local models in locally weighted algorithms should be further 

investigated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Publications arising from this thesis 

 

Journal Papers 

1. Yeo, Wan Sieng, Agus Saptoro and Perumal Kumar. 2017. “Development of 

Adaptive Soft Sensor Using Locally Weighted Kernel Partial Least Square Model.” 

Chemical Product and Process Modeling. 12(4), doi: 10.1515/cppm-2017-0022. 

2. Vivianna Maria Mickel, Wan Sieng Yeo, and Agus Saptoro. 2019. “Evaluating the 

performance of newly integrated model in nonlinear chemical process against 

missing measurements.” Chemical Product and Process Modeling. 14(4), doi: 

10.1515/cppm-2018-0066. 

3. Yeo, Wan Sieng, Agus Saptoro and Perumal Kumar. 2019. “Adaptive soft sensor 

development for non-Gaussian and nonlinear processes.” Industrial and 

Engineering Chemistry Research, doi: 10.1021/acs.iecr.9b03821. 

4. Yeo, Wan Sieng, Agus Saptoro and Perumal Kumar. 2019. “Misssing data 

treatment for locally weighted partial least square based modelling.” Asia Pacific 

Journal of Chemical Engineering. (Under review) 

5. Wan Sieng Yeo, Agus Saptoro and Perumal Kumar. 2019. “An overview on just-

in-time based soft sensors for processes industry.” Journal of Process Control. (In 

preparation) 

 

Conference Papers 

1. Wan Sieng Yeo, Agus Saptoro and Perumal Kumar. 2016. “Development of 

Adaptive Soft Sensor using Locally Weighted Kernel Partial Least Square Model.” 

29th Symposium of Malaysian Chemical Engineers, Miri, Sarawak, Malaysia, 1st – 

3rd December 2016.  

2. Yeo, Wan Sieng, Agus Saptoro and Perumal Kumar. 2017. “Adaptive Soft Sensor 

based on Modified Locally Weighted Partial Least Square Algorithm for non-



viii 

 

Gaussian and Nonlinear Processes.” Proceeding of One Curtin International 

Postgraduate Conference 2017, Miri, Sarawak, Malaysia, 10th – 12th December 

2017.  

3. Wan Sieng Yeo, Agus Saptoro, and Perumal Kumar. 2018. “PLS based non-

Adaptive and LW-PLS based Adaptive soft sensor development with missing 

data.” Proceeding of one Curtin international postgraduate conference (OCPC) 

2018, Miri, Sarawak, Malaysia, 26th – 28th November 2018. 

4. Vivianna Maria Mickel, Wan Sieng Yeo, and Agus Saptoro. 2018. “The 

development of trimmed scores regression locally weighted Kernel partial least 

squares for nonlinear chemical process data with missing 

measurements.” Proceeding of one Curtin international postgraduate conference 

(OCPC) 2018, Miri, Sarawak, Malaysia, 26th – 28th November 2018. 

5. Wan Sieng Yeo, Agus Saptoro, and Perumal Kumar. 2019. “Non Gaussian Locally 

Weighted Kernel PLS based Adaptive soft sensor.” 7th International Conference 

on Smart Computing and Communication 2019, Miri, Sarawak, Malaysia, 28th - 

30th June 2019. 

 

 

 

 

 

 

 

 

 



ix 

 

Table of Contents 

 

Title page ............................................................................................................................. i 

Declaration ........................................................................................................................ ii 

Dedication ........................................................................................................................ iii 

Acknowledgement............................................................................................................. iv 

Abstract .............................................................................................................................. v 

Publications arising from this thesis ............................................................................... vii 

Table of Contents .............................................................................................................. ix 

List of Tables.................................................................................................................. xiii 

List of Figures .................................................................................................................. xx 

Nomenclatures.............................................................................................................. xxiii 

List of Appendices ............................................................................................................ xl 

Chapter 1 Introduction ....................................................................................................... 1 

1.1. Background and motivation ................................................................................ 1 

1.2. Problem statement ............................................................................................... 4 

1.3. Research questions .............................................................................................. 5 

1.4. Aim and objectives .............................................................................................. 6 

1.5. Scopes of research ............................................................................................... 6 

1.6. Novelty, contribution and significance ............................................................... 9 

1.7. Structure of the thesis .......................................................................................... 9 

Chapter 2 Literature review .............................................................................................. 12 

2.1. Introduction ....................................................................................................... 12 

2.2. Soft sensors ....................................................................................................... 12 



x 

 

2.3. Adaptive algorithms .......................................................................................... 15 

2.4. Just-in-time based algorithms ........................................................................... 17 

2.5. Gaussian-based just-in-time algorithms ............................................................ 20 

2.5.1. Correlation based just-in-time algorithms ......................................................... 20 

2.5.2. Locally weighted learning based just-in-time algorithms ................................. 22 

2.5.3. Sparse sample regression based just-in-time algorithms .................................. 27 

2.5.4. Support vector regression and least square support vector regression based just-

in-time algorithms........................................................................................................ 28 

2.5.5. Online local learning based algorithms ............................................................. 30 

2.5.6. Gaussian process regression based just-in-time algorithms .............................. 32 

2.5.7. Extreme learning machine based just-in-time methods .................................... 34 

2.5.8. Just-in-time based methods ............................................................................... 35 

2.6. Non-Gaussian based just-in-time algorithms .................................................... 48 

2.7. Nonlinear data issues......................................................................................... 53 

2.8. Missing data issues ............................................................................................ 54 

2.9. Research gaps .................................................................................................... 56 

2.10. Summary ........................................................................................................... 57 

Chapter 3 Research methodology .................................................................................... 58 

3.1. Introduction ....................................................................................................... 58 

3.2. Basic idea of algorithms formulation ................................................................ 58 

3.3. Main stages of the research ............................................................................... 60 

3.4. Description of algorithms formulation .............................................................. 63 

3.4.1. Gaussian based locally weighted algorithms .................................................... 63 

3.4.2. Non-Gaussian based locally weighted algorithms ............................................ 63 



xi 

 

3.5. Case studies ....................................................................................................... 65 

3.6. Predictive performance measurement ............................................................... 65 

3.7. Specifications of computing facilities ............................................................... 71 

3.8. Kernel functions ................................................................................................ 71 

3.9. Summary ........................................................................................................... 72 

Chapter 4 Gaussian based locally weighted algorithms ................................................... 74 

4.1. Introduction ....................................................................................................... 74 

4.2. Similarity measurement .................................................................................... 74 

4.3. Locally weighted partial least square algorithm ............................................... 75 

4.4. Kernel partial least square algorithm ................................................................ 78 

4.5. Ensemble locally weighted Kernel partial least square algorithm .................... 81 

4.6. Summary ........................................................................................................... 84 

Chapter 5 Non-Gaussian based locally weighted algorithms ........................................... 85 

5.1. Introduction ....................................................................................................... 85 

5.2. Independent component analysis ...................................................................... 85 

5.3. Ensemble locally weighted independent component Kernel partial least square 

algorithm ...................................................................................................................... 88 

5.4. Expectation maximization algorithm ................................................................ 90 

5.5. Expectation maximization ensemble locally weighted independent component 

Kernel partial least square algorithm ........................................................................... 95 

5.6. Summary ........................................................................................................... 98 

Chapter 6 Results and discussions ................................................................................... 99 

6.1. Introduction ....................................................................................................... 99 

6.2. Case studies ....................................................................................................... 99 



xii 

 

6.2.1. Case study 1: Numerical example 1 ................................................................ 100 

6.2.2. Case study 2: A single chemical reactor ......................................................... 100 

6.2.3. Case study 3: Wastewater treatment ............................................................... 101 

6.2.4. Case study 4: Numerical example 2 ................................................................ 102 

6.2.5. Case study 5: Eukaryotic cell cycle regulation ............................................... 102 

6.2.6. Case study 6: A highly nonlinear continuous stirred tank reactor .................. 103 

6.3. Parameter optimization ................................................................................... 104 

6.4. Splitting data and parameters setting .............................................................. 106 

6.5. Missing data .................................................................................................... 107 

6.6. Current results and discussions ....................................................................... 108 

6.6.1. Gaussian distributed data ................................................................................ 109 

6.6.2. Non-Gaussian distributed data ........................................................................ 123 

6.6.3. Missing data .................................................................................................... 138 

6.7. Conclusion ...................................................................................................... 146 

Chapter 7 Conclusions and recommendations ............................................................... 150 

7.1. Introduction ..................................................................................................... 150 

7.2. Research summary and conclusions................................................................ 150 

7.3. Contributions ................................................................................................... 152 

7.4. Recommendations for future research ............................................................ 153 

Reference........................................................................................................................ 154 

Last page ........................................................................................................................ 275 

 

 



xiii 

 

List of Tables 

 

Table 1.1 Survey on the industrial applications of soft sensor (Kano and Ogawa 2010) .. 2 

Table 2.1 Problems with hardware sensors (JSPS PSE 143 Committee 2004) ............... 13 

Table 2.2 Overview of soft sensor types .......................................................................... 14 

Table 2.3 Limitations of various adaptive methods for data-driven soft sensors ............ 18 

Table 2.4 Summary of the Just-in-time (JIT) based adaptive soft sensors for Gaussian 

distributed data ................................................................................................................. 37 

Table 2.5 Summary of the Just-in-time (JIT) based adaptive soft sensors for Non-Gaussian 

distributed data ................................................................................................................. 51 

Table 3.1 Summary of the charactheristics of data and Kernel functions used in all case 

studies…………………………………………………………………………………...68 

Table 6.1 Input and output variables for case study 2.................................................... 101 

Table 6.2 Input and output variables for case study 3.................................................... 102 

Table 6.3 Input and output variables for case study 5.................................................... 103 

Table 6.4 Input and output variables for case study 6.................................................... 104 

Table 6.5 Parameters used in the algorithms ................................................................. 106 

Table 6.6 Values of used parameters for the algorithms ................................................ 107 

Table 6.7 Prediction performances of E-LW-KPLS, LW-KPLS and LW-PLS models for 

case study 1 .................................................................................................................... 116 

Table 6.8 Prediction performances of E-LW-KPLS, LW-KPLS and LW-PLS algorithms 

for case study 2............................................................................................................... 118 

Table 6.9 Prediction performances of the E-LW-KPLS, LW-KPLS and LW-PLS models 

for case study 3............................................................................................................... 121 



xiv 

 

Table 6.10 Prediction performances of the E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS 

and LW-PLS algorithms for case study 4 ...................................................................... 125 

Table 6.11 Prediction performances of the E-LW-IC-KPLS, LW-IC-KPLS and LW-KPLS 

and LW-PLS algorithms for case study 5 ...................................................................... 131 

Table 6.12 Prediction performances of product concentration using the E-LW-IC-KPLS, 

LW-IC-KPLS, LW-KPLS and LW-PLS algorithms for case study 6 ........................... 134 

Table 6.13 Prediction performances of reactor temperature using the E-LW-IC-KPLS, 

LW-IC-KPLS, LW-KPLS and LW-PLS models for case study 6 ................................. 135 

Table A.1 The values for the process parameters and steady-state for the chemical reactor 

in case study 2 …………………………………………………………………………168 

Table A.2 The values for the process parameters and steady-state for the wastewater 

treatment process in case study 3 ................................................................................... 170 

Table A.3 The values for the process parameters and steady-state for the wastewater 

treatment process in case study 5 ................................................................................... 172 

Table A.4 The values for the process parameters and steady-state for the highly nonlinear 

continuously stirred tank reactor in case study 6 ........................................................... 173 

Table C.1.1.1 Results for E-LW-KPLS, LW-KPLS and LW-PLS algorithms for case study 

1……………………………………………………………………………… …181 

Table C.1.1.2 Results for E-LW-KPLS algorithm for case study 1 ............................... 181 

Table C.1.1.3 Results for E-LW-KPLS algorithm for case study 1 ............................... 182 

Table C.1.1.4 Results for E-LW-KPLS algorithm for case study 1 ............................... 182 

Table C.1.1.5 Results for E-LW-KPLS algorithm for case study 1 ............................... 183 

Table C.1.1.6 Results for E-LW-KPLS algorithm for case study 1 ............................... 183 

Table C.1.2.1 Results for E-LW-KPLS, LW-KPLS and LW-PLS algorithms for case study 

2……..…………………………………………………………………………………184 

Table C.1.2.2 Results for E-LW-KPLS algorithm for case study 2 ............................... 184 



xv 

 

Table C.1.2.3 Results for E-LW-KPLS algorithm for case study 2 ............................... 185 

Table C.1.2.4 Results for E-LW-KPLS algorithm for case study 2 ............................... 185 

Table C.1.2.5 Results for E-LW-KPLS algorithm for case study 2 ............................... 186 

Table C.1.2.6 Results for E-LW-KPLS algorithm for case study 2 ............................... 186 

Table C.1.3.1 Results for E-LW-KPLS, LW-KPLS and LW-PLS algorithms for case study 

3……………………………………………………………………………………..…187 

Table C.1.3.2 Results for E-LW-KPLS algorithm for case study 3 ............................... 188 

Table C.1.3.3 Results for E-LW-KPLS algorithm for case study 3 ............................... 188 

Table C.1.3.4 Results for E-LW-KPLS algorithm for case study 3 ............................... 189 

Table C.1.3.5 Results for E-LW-KPLS algorithm for case study 3 ............................... 189 

Table C.1.3.6 Results for E-LW-KPLS algorithm for case study 3 ............................... 190 

Table E.1.1.1 Results for E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 4………………………………………………………….…197 

Table E.1.1.2 Results for E-LW-IC-KPLS algorithm for case study 4.......................... 197 

Table E.1.1.3 Results for E-LW-IC-KPLS algorithm for case study 4.......................... 198 

Table E.1.1.4 Results for E-LW-IC-KPLS algorithm for case study 4.......................... 198 

Table E.1.1.5 Results for E-LW-IC-KPLS algorithm for case study 4.......................... 199 

Table E.1.1.6 Results for E-LW-IC-KPLS algorithm for case study 4.......................... 199 

Table E.1.2.1 Results for E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 5………………………………………………………….…200 

Table E.1.2.2 Results for E-LW-IC-KPLS algorithm for case study 5.......................... 201 

Table E.1.2.3 Results for E-LW-IC-KPLS algorithm for case study 5.......................... 201 

Table E.1.2.4 Results for E-LW-IC-KPLS algorithm for case study 5.......................... 202 

Table E.1.2.5 Results for E-LW-IC-KPLS algorithm for case study 5.......................... 202 



xvi 

 

Table E.1.2.6 Results for E-LW-IC-KPLS algorithm for case study 5.......................... 203 

Table E.1.2.7 Results for E-LW-IC-KPLS algorithm for case study 5.......................... 203 

Table E.1.3.1 Results for E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 6…………………………………………………………….204 

Table E.1.3.2 Results for E-LW-IC-KPLS algorithm for case study 6.......................... 205 

Table E.1.3.3 Results for E-LW-IC-KPLS algorithm for case study 6.......................... 206 

Table E.1.3.4 Results for E-LW-IC-KPLS algorithm for case study 6.......................... 207 

Table E.1.3.5 Results for E-LW-IC-KPLS algorithm for case study 6.......................... 208 

Table E.1.3.6 Results for E-LW-IC-KPLS algorithm for case study 6.......................... 209 

Table G.1.1.1 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 

4………………………………………………………………………………………..217 

Table G.1.1.2 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS and SVD-E-LW-

IC-KPLS, EM-LW-PLS, TSR-LW-PLS, SVD-LW-PLS algorithms for case study 4 .. 218 

Table G.1.1.3 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 219 

Table G.1.1.4 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 220 

Table G.1.1.5 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 221 

Table G.1.1.6 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 222 

Table G.1.1.7 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 223 

Table G.1.1.8 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 224 



xvii 

 

Table G.1.1.9 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 225 

Table G.1.1.10 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 226 

Table G.1.1.11 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 227 

Table G.1.1.12 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 4 . 228 

Table G.1.2.1 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 

5……..............................................................................................................................230 

Table G.1.2.2 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 231 

Table G.1.2.3 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 232 

Table G.1.2.4 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 233 

Table G.1.2.5 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 234 

Table G.1.2.6 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 235 

Table G.1.2.7 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 236 

Table G.1.2.8 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 237 

Table G.1.2.9 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 238 



xviii 

 

Table G.1.2.10 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 239 

Table G.1.2.11 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 240 

Table G.1.2.12 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 5 . 241 

Table G.1.3.1 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6…243 

Table G.1.3.2 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 245 

Table G.1.3.3 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 247 

Table G.1.3.4 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 249 

Table G.1.3.5 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 251 

Table G.1.3.6 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 253 

Table G.1.3.7 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 255 

Table G.1.3.8 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 257 

Table G.1.3.9 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 259 

Table G.1.3.10 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 261 



xix 

 

Table G.1.3.11 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 263 

Table G.1.3.12 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms for case study 6 . 265 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xx 

 

List of Figures 

 

Figure 1.1 Flow diagram of the thesis .............................................................................. 11 

Figure 3.1 A flow chart represents the framework used to construct a new algorithm ... 62 

Figure 4.1 Flow diagram of the proposed E-LW-KPLS model ....................................... 83 

Figure 5.1 Flow diagram of the proposed E-LW-IC-KPLS model .................................. 89 

Figure 5.2 Flow diagram of the EM-E-LW-IC-KPLS model .......................................... 96 

Figure 6.1 Computational times for LW-KPLS and E-LW-KPLS in case study 1 ....... 112 

Figure 6.2 Computational times for LW-KPLS and E-LW-KPLS in case study 2 ....... 113 

Figure 6.3 Computational times for LW-KPLS and E-LW-KPLS in case study 3 ....... 114 

Figure 6.4 The error of approximation for separate subsets of the E-LW-KPLS in case 

study 1 ............................................................................................................................ 115 

Figure 6.5 The error of approximation for different subsets of the E-LW-KPLS algorithm 

in case study 2 ................................................................................................................ 119 

Figure 6.6 The error of approximation for different subsets of the E-LW-KPLS in case 

study 3 ............................................................................................................................ 122 

Figure 6.7 Computational times for LW-IC-KPLS and E-LW-IC-KPLS in case study 4

 ........................................................................................................................................ 125 

Figure 6.8 Computational times for LW-IC-KPLS and E-LW-IC-KPLS in case study 5

 ........................................................................................................................................ 126 

Figure 6.9 Computational times for LW-IC-KPLS and E-LW-IC-KPLS in case study 6

 ........................................................................................................................................ 127 

Figure 6.10 The error of approximation for different subsets of the E-LW-IC-KPLS model 

in case study 4 ................................................................................................................ 128 



xxi 

 

Figure 6.11 The error of approximation for different subsets of the E-LW-IC-KPLS in 

case study 5 .................................................................................................................... 131 

Figure 6.12 The error of approximation for different subsets of the E-LW-IC-KPLS in 

case study 6 .................................................................................................................... 135 

Figure 6.13 The error of approximation for assorted missing data ratios of the EM-E-LW-

IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS 

and SVD-LW-PLS algorithms in case study 4 .............................................................. 142 

Figure 6.14 The error of approximation for assorted missing data ratios of the EM-E-LW-

IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS 

and SVD-LW-PLS algorithms in case study 5 .............................................................. 143 

Figure 6.15 The error of approximation of product concentration for various missing data 

ratios of the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-

LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms in case study 6 ...................... 144 

Figure 6.16 The error of approximation of reactor temperature for missing data ratios of 

the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, 

TSR-LW-PLS and SVD-LW-PLS models in case study 6 ............................................ 145 

Figure H.1 Schematic of wastewater treatment process (Caraman et al. 2007) ............ 267 

Figure H.2 Schematic diagram of the CSTR (Chen et al. 1995) ................................... 267 

Figure H.3 Prediction results for training data in case study 1 using LW-PLS, LW-KPLS 

and E-LW-KPLS algorithms .......................................................................................... 268 

Figure H.4 Prediction results for test data in case study 1 using the LW-PLS, LW-KPLS 

and E-LW-KPLS algorithms .......................................................................................... 268 

Figure H.5 Prediction results for training data of the case study 2 using LW-PLS, LW-

KPLS and E-LW-KPLS models .................................................................................... 269 

Figure H.6 Prediction results for test data of the case study 2 using LW-PLS, LW-KPLS 

and E-LW-KPLS models ............................................................................................... 269 



xxii 

 

Figure H.7 Prediction results for training data of the case study 3 using the LW-PLS, LW-

KPLS and E-LW-KPLS algorithms ............................................................................... 270 

Figure H.8 Prediction results for test data of case study 3 using the LW-PLS, LW-KPLS 

and E-LW-KPLS models ............................................................................................... 270 

Figure H.9 Prediction results for training data from case study 4 using the LW-PLS, LW-

KPLS, LW-IC-KPLS and E-LW-IC-KPLS models ...................................................... 271 

Figure H.10 Prediction results for the test data of case study 4 using the LW-PLS, LW-

KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms ................................................. 271 

Figure H.11 Prediction results for training data of case study 5 using the LW-PLS, LW-

KPLS, LW-IC-KPLS and E-LW-IC-KPLS models ...................................................... 272 

Figure H.12 Prediction results for test data of case study 5 using the LW-PLS, LW-KPLS, 

LW-IC-KPLS and E-LW-IC-KPLS algorithms ............................................................. 272 

Figure H.13 Prediction results of product concentration for training data in case study 6 

using the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms ......... 273 

Figure H.14 Prediction results of reactor temperature for training data in case study 6 using 

the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms ................... 273 

Figure H.15 Prediction results of product concentration for test data in case study 6 using 

the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms ................... 274 

Figure H.16 Prediction results of reactor temperature for test data in case study 6 using 

the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS models ......................... 274 

 

 

 

 

 

 



xxiii 

 

Nomenclatures 

 

Abbreviations 

ACS Adjusted local cosine similarity 

ALD Approximate linearity dependence 

ANN Artificial neural network 

CoJIT Correlation-based just-in-time 

CPU Central processing unit 

CSTR Continuous stirred tank reactor 

DLOER Dual learning-based online ensemble regression 

D-LWPCR Double locally weighted principal component regression 

D-LWKPCR Double locally weighted Kernel principal component 

regression 

EJITGPR Ensemble just-in-time Gaussian process regression 

E-JITL Ensemble just-in-time learning 

ELM Extreme leaning machine 

E-LW-IC-KPLS Ensemble locally weighted independent component Kernel 

partial least square 

E-LW-KPLS Ensemble locally weighted Kernel partial least square 

EM Expectation maximization 



xxiv 

 

EM-E-LW-IC-KPLS Expectation maximization ensemble locally weighted 

independent component Kernel partial least square 

FLOO Fast leave-one-out 

FLOO-CV Fast leave-one-out cross validation 

GB Gigabyte 

GMM Gaussian mixture model 

GPR Gaussian process regression 

Grey Grey-box models 

ICA Independent component analysis 

ICR Independent component regression 

JIT Just-in-time 

JIT-ELM Just-in-time extreme learning machine 

JITL Just-in-time learning 

JITL-bagging-PLS Just-in-time learning bagging partial least square 

JITL-MWGPR Just-in-time learning moving window Gaussian process 

regression 

JITL-RLSSVR Just-in-time learning based recursive least square support 

vector regression 

JSELM Just-in-time semi-supervised extreme learning machine 

KPLS Kernel partial least square 



xxv 

 

LFA Latent factor analysis 

LSSVR Least square support vector regression 

LW Locally weighted 

LW-IC-KPLS Locally weighted independent component Kernel partial least 

square 

LWL Locally weighted learning 

LW-KPCR Locally weighted Kernel principal component regression 

LW-KPLS Locally weighted Kernel partial least square 

LW-PCR Locally weighted principal component regression 

LW-PLS Locally weighted partial least square 

LWR Locally weighted regression 

LWSLFA Locally weighted supervised latent factor analysis 

LWSSLFA Locally weighted semi-supervised latent factor analysis 

MACS Modified adjusted cosine similarity 

MI Mutual information 

MLR Multiple linear regression 

MPF M-phase promoting factor 

MW Moving window 

MWGPR Moving window Gaussian process regression 



xxvi 

 

MWJIT-LS-SVM Moving window just-in-time learning least square support 

vector machine regression 

MW-JITL-TD Moving window locally weighted partial least square under 

time difference 

NC Nearest correlation 

NGR Non-Gaussian regression 

Non-JIT Non-just-in-time 

NNPLS Neural network partial least square 

NPLS Nonlinear partial least square 

OS Operating system 

O.L. Other linear regressions 

OLLASS Online local learning based adaptive soft sensor 

OLPLS Local partial least square based approach for online soft 

sensing 

OSVR Online support vector regression 

PC Principal Component 

PCA Principal component analysis 

PCR Principal component regression 

Phys Physical models 

PLS Partial least square 



xxvii 

 

QPLS Quadratic partial least square 

RAM Random access memory 

RMSE Root mean squared error 

SC Spectral clustering 

SPLS Spline partial least square 

SSD Solid-state drive 

SSR-JIT Sparse sample regression just-in-time 

SVD Singular value decomposition 

SVDD Support vector data description 

SVD-E-LW-IC-

KPLS 

Singular value decomposition ensemble locally weighted 

independent component Kernel partial least square 

SVD-LW-PLS Singular value decomposition locally weighted partial least 

square 

SVR Support vector regression 

TD Time difference 

TSR Trimmed score regression 

TSR-E-LW-IC-KPLS Trimmed scores regression ensemble locally weighted 

independent component Kernel partial least square 

TSR-LW-PLS Trimmed scores regression locally weighted partial least 

square 



xxviii 

 

WLDS Weighted linear dynamic system 

WPPCA Locally weighted probabilistic principal component analysis 

 

Symbols 

A  Unknown mixing matrix in independent component analysis (-) 

1A , 2A  
The reactant species (-) 

ACS  Adjusted local cosine similarity index (-) 

b Kernel parameter (-) 

kb  The regression coefficient in Kernel partial least square (-) 

B  A scaled version of projection direction (-) 

cB  Orthogonal matrix in independent component analysis (-) 

1B , 2B  
The desired product (-) 

c Number of independent components (-) 

C  Factor loading matrices of input data set (-) 

2C  
Unwanted product (-) 

CA Concentration of the reactant species (
3

m

kmol
) 

CA0 Concentration of A in inlet stream (
3

m

mol
) 



xxix 

 

CB Concentration of the desired product (
3

m

kmol
) 

jC  Features for just-in-time learning extreme learning machine (-) 

tkC  The tk -th Gaussian component (-) 

CP Product concentration (
l

mol
) 

vsC ,  Double-weighted covariance matrix (-) 

d A d-dimensional variable (-) 

2D  
By-product (-) 

DO  Dissolved oxygen concentration (
l

mg
) 

nd  Distance between qx  and nx  (-) 

td  Number of column in matrix tX  (-) 

0e  The predicted error vector for the newest labelled sample (-) 

aE  The error of approximation (-) 

FLOO

N FF
E λ,  The fast leave-one-out (FLOO) based error index (-) 

ie  The predicted error vector for the i-th nearest sample around the 

query sample (-) 

F  Feature space (-) 



xxx 

 

iF  
Inlet flow rate of CSTR (

hr

m
3

) 

fm, ( )•mf  The localized online support vector regression models (-) 

H  The output matrix of hidden-layer vector ( ih ) 

J  Similarity factor (-) 

*J  Anti-over-fitting criterion (-) 

FJ  A matrix consists of a unit matrix for the graph Laplacian (-) 

K ,k Number of latent variables (-) 

1k , 
2k , 3k  The reaction rates ( 1−hr ) 

iK , K
~

 Kernel matrix for training data (-) 

tK ,
tk  Number of Gaussian component in Gaussian mixture model (-) 

testK , testK
~

 Kernel matrix for test data (-)  

)(skurt  Kurtosis (-) 

L  Number of output variable (-) 

L1 Level in non-isothermal CSTR ( m ) 

l , 
minl , maxl  The related samples which are chosen before constructing a just-

in-time learning model (-) 

mLD  M  local domains (-) 



xxxi 

 

FL  The number of training sample (-) 

m The number of iteration in Expectation maximization (-) 

M  Number of input or observed variable (-) 

MACS  Modified adjusted cosine similarity (-) 

MAE Mean absolute error (-) 

MAE1 Mean absolute error for training data (-) 

MAE2 Mean absolute error for test data (-) 

ijm  Element in matrix sM  (-) 

ijm  Element in matrix sM  (-) 

MSE Mean square error (-) 

MSE1 Mean square error for training data (-) 

MSE2 Mean square error for test data (-) 

sM  The missing data indicator matrix (-) 

sM  The complement of sM  (-) 

tm  Mean value of the observed data (-) 

tM  A vector that consists of tm  (-) 

n 
Number of row in matrix ( )xφ  (-) 



xxxii 

 

N  The total number of samples (-) 

1N  The number of training data set (-) 

2N  The number of testing data set (-) 

FN  
The number of hidden nodes (-) 

GN  The total number of data in matrix tX  (-) 

mn  Number of local modelling sampling (-) 

P  Factor loading matrices of output data set (-) 

)|( newj xCp  Posterior probability for just-in-time learning extreme learning 

machine (-) 

)|( newm xLDp  The diverse local models (-) 

)|( qi xGPRP  The posterior probability of new test sample, newx  (-) 

kp  The kth loading vector of kX  (-) 

mP  The loading matrix for Gaussian mixture model (-) 

Q  Whitening matrix (-) 

iq  The loading vector of iY  (-) 

kq  The kth regression coefficient vector (-) 

•

kQ  Heat flow (
hr

J
) 



xxxiii 

 

mq  Loading vector for Gaussian mixture model (-) 

( )m

tjk

m
XcQ

t
Ω,|  Posterior probability of the j-th sample data with the k-th non-

Gaussian component at the m-th iteration (-) 

sQ  Q statistic (-) 

RMSE  Root mean square error (-) 

1RMSE  Root mean square errors of the training data set (-) 

2RMSE  
Root mean square errors of the testing data set (-) 

s Column vector for independent components (-) 

cs  Unknown independent components (-) 

is  The weight of the respective sample (-) 

ls  Presented cumulative similarity factor (-) 

qis  The similarity factor between the query sample and the sample 

in the data set (-) 

sS
 

Substract concentration (
l

mg
) 

T1 Temperature of the single chemical reactor ( K ) 

T2 Temperature of highly nonlinear CSTR ( K ) 

T  The score matrix of ( )ixφ  (-) 



xxxiv 

 

2T  Hotelling’s T squared statistic (-) 

t1 Central processing unit time for training data (sec) 

t2 Central processing unit time for testing data (sec) 

it  The score vector of ( )ixφ  (-) 

kt  The kth latent variable of kX  (-) 

kqt ,  The kth latent variable of qX  (-) 

u Dimensionless concentration of active MPF (-) 

U  The score matrix of iY  (-) 

iu  The score vector of iY  (-) 

1U , 1R  
The undesired by-products (-) 

v Dimensionless concentration of total cyclin (-) 

V  Kernel matrix for training data (-) 

•

V  
Flow rate (

hr

m
3

) 

qV  Kernel matrix for query/ testing data (-) 

RV

V
 

Scaled volumetric inlet flow (-) 

W  The demixing matrix in independent component analysis (-) 



xxxv 

 

kw  The eigenvector of k

T

kk

T

k XYYX ΩΩ  (-) 

mW  The weighting matrix for Gaussian mixture model (-) 

sW  Sample weighted data matrix (-) 

vW  Variable weighted data matrix (-) 

X , x, nx  Input/ observed variable/ nth historical input data (-) 

x  Mean values of the input variables (-) 

1x ,
2x  The input variables with a range from -25 to 25 (-)  

BX  Biomass concentration (
l

mg
) 

ix , iX  The i-th test vector in Kernel partial least square (-) 

nMx  The missing data element in the matrix (-) 

jx , jX  The j-th training vector in kernel partial least square (-) 

kX  The kth historical input data (-) 

mX  A matrix with missing data (-) 

−

mX  Weighted mean for input data (-) 

imx ,  The local training input (-) 



xxxvi 

 

newx  New test sample (-) 

nX  Historical data (-) 

qX , qx  Query data (-) 

kqX ,  Query data for k-th latent variable (-)  

rX
 

Recycled biomass concentration (
l

mg
) 

vsX ,  Double-weighted data matrix (-) 

tX  A new reconstructed matrix for Gaussian mixture model (-) 

tix  Element in matrix tX  (-) 

y , ny  , Y  Output variable (-) 

newGPRi
y ,  The local prediction mean from the i-th local model for 

Gaussian process regression, iGPR, eMi ,...2,1∈  (-) 

iY  Output variable in Kernel partial least square (-) 

iy  The training data (-) 

kY  The nth historical output data (-) 

−

lY  Weighted mean for output data (-) 



xxxvii 

 

newmy ,  The output variable from local model (-) 

newy  The final output (-) 

^

qy  An output prediction (-) 

testY
∧

 
The prediction on test data (-) 

trainY
∧

 
The prediction on training data (-) 

wy  Weighted mean of output (-) 

y  Mean values of the output variables (-) 

z  The over sphered zero-mean vectors in independent component 

analysis (-) 

qz  Mean vector of posterior distribution of query point (-) 

Λ  Diagonal matrix of eigenvalues (-) 

β  Formulated regression coefficients (-) 

qβ  Regression coefficient vector (-) 

α , γ  Parameters for regression coefficient vector (-) 

im,α , 
∗

im,α , mb  The online support vector regression model parameters (-) 

Rγ  
The regularization parameter (-) 



xxxviii 

 

testφ  The matrix of the mapped test data (-) 

( )ixφ , ( )
jxφ  A nonlinear mapping function that projects the input vectors 

from the original space to F  (-) 

Ω  A similarity matrix (-) 

tΩ  Parameter in expectation maximization (-) 

λ  Setting parameter (-) 

Fλ  A balance parameter (-) 

nω  Similarity index (-) 

tk
π  The probabilistic weight of the k-th Gaussian component (-) 

1+m

kt
π  Prior probability of the k-th non-Gaussian component at the 

(m+1)-th iteration (-) 

µ  Mean vector in Gaussian mixture model (-) 

1+m

kt
µ  Mean of the k-th non-Gaussian component at the (m+1)-th 

iteration (-) 

Σ  Covariance matrix in Gaussian mixture model (-) 

∑x  
Measured noise variance of input data set (-) 

1+∑m

kt
 Covariance of the k-th non-Gaussian component at the (m+1)-

th iteration (-)  

ϕ  A localization parameter in similarity measurement (-) 



xxxix 

 

σ  The width parameter of the Exponential Kernel function (-) 

dσ  Standard deviation of nd  in similarity measurement (-) 

θ Regression coefficient vector (-) 

tθ  Gaussian model parameters (-) 

θD Diagonal matrix with all positive elements (-) 

0ϑ  Initial temperature ( K ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xl 

 

List of Appendices 

 

Appendix A Diferrential equations for simulation......................................................... 167 

Appendix B MATLAB code for an ensemble locally weighted Kernel partial least square 

algorithm ........................................................................................................................ 175 

Appendix C Results for the ensemble locally weighted Kernel partial least square 

algorithm ........................................................................................................................ 180 

Appendix D MATLAB code for an ensemble locally weighted independent component 

Kernel partial least square algorithm ............................................................................. 191 

Appendix E Results for the ensemble locally weighted independent component Kernel 

partial least square algorithm ......................................................................................... 196 

Appendix F MATLAB code for an expectation maximization ensemble locally weighted 

independent component Kernel partial least square algorithm ...................................... 210 

Appendix G Results for the expectation maximization ensemble locally weighted 

independent component Kernel partial least square algorithm ...................................... 216 

Appendix H Figures ....................................................................................................... 267 

 

 

 



1 

 

Chapter 1 

Introduction 

 

1.1. Background and motivation 

An unstable economy, stiff competition, increasing energy and material costs and stricter 

environmental regulations have forced process industries to improve their operational 

efficiency. Due to these challenges, process industries are required to achieve operational 

excellence in their processing plants to obtain optimal performance in productivity and 

quality of products. Hence, industries such as steel-making, pharmaceutical, food 

processing, semiconductor and petrochemical industries are looking for advanced 

technological tools to predict, monitor and control production processes. Soft sensors that 

use easy-to-measure variables to predict hard-to-measure variables are a technological 

tool to improve process monitoring and controls. Soft sensors have been used as 

alternative sensors when their hardware counterparts are not available or are cost-

prohibitive or where variables are difficult to measure (Fortuna et al. 2007; Kaneko and 

Funatsu 2011b; Saptoro 2014). 

 

In other words, soft sensors are used in industrial processing plants to predict important 

variables such as product quality when online measurements are associated with excessive 

delays, real-time measurements are not available, expensive and or difficult to procure. 

Industrial questionnaire surveys on soft sensor applications were conducted in chemical 

industrial process plants by Kano and Koichi (2013) and Kano and Ogawa (2010). These 

pharmaceutical, steel-making, semiconductor, refinery, and petrochemical processing 

industries reported soft sensors had been successfully applied in important chemical 

engineering unit operations such as distillation, polymerisation and reaction processes. 

Their survey results found the physical model (Phys), data-driven and hybrid (grey-box) 

based soft sensors had been used in major unit operations. The data-driven based soft 

sensors included partial least square (PLS), multiple linear regression (MLR), just-in-time 
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(JIT), artificial neural network (ANN), and other linear regressions (O.L.). Table 1.1 

summarises the survey results of the industrial applications of these soft sensors. Phys or 

‘first principle models’ are built by incorporating physicochemical knowledge of the 

process. The data-driven models are constructed from recorded historical operational data 

from the processing plants. Meanwhile, grey-box models are hybrid models combining 

some of the properties of both Phys and data-driven models. 

 

Table 1.1 Survey on the industrial applications of soft sensor (Kano and Ogawa 2010) 

Process 

Methodology 

Phys MLR PLS O.L. ANN JIT Grey Total 

Distillation 20 256 41 6 0 5 3 331 

Reaction 5 32 43 0 0 5 1 86 

Polymerisation 0 4 8 0 3 0 5 20 

Others 0 1 1 0 0 0 0 2 

Total 25 293 93 6 3 10 9 439 

 

It can be seen from Table 1.1 that most industrial soft sensors are developed using data-

driven approaches. Moreover, compared to other data-driven approaches, MLR models 

are more widely used due to their simplicity in model development (Jin et al. 2014; Kano 

and Koichi 2013; Kim et al. 2013a; Kim et al. 2013b; Kano and Ogawa 2010). 

Nonetheless, MLR models can be over-fitted and inaccurate when dealing with high 

dimensional and highly collinear data. Hence, PLS models that can address the limitations 

of the MLR models are preferable. Based on the existing comparative studies, the PLS 

models provide more accurate prediction capability than principal component regression 
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(PCR) and MLR models (Hazama and Kano 2015; Kano and Koichi 2013; Wentzell and 

Montoto 2003; Cramer III 1993).  

 

Soft sensors have been widely used in industrial applications though there are some 

practical difficulties. Traditional data-driven soft sensors such as MLR, PLS, PCR, and 

ANN were constructed using the plants’ historical data in offline mode before their 

application. Hence, the predictive performance of these soft sensors has slowly 

deteriorated over time. This condition is due to changes in the state of the processes and 

plant characteristics such as sensor and process drift caused by fouling, catalyst de-

activation, changes in raw materials, equipment aging, clogging and wear, etc. (Saptoro 

2014; Kano and Koichi 2013; Kadlec et al. 2011). According to most industrial engineers, 

the main problem with soft sensors is the deterioration of their accuracy as a result of 

changes in process conditions (Kano and Koichi 2013; Kano and Ogawa 2010).  

 

Thus, to cope with process changes and to maintain the soft sensor’s effective performance 

in practice, a soft sensor must be updated often since the process characteristics change 

over time. This new soft sensor, which can adapt to the current state of the plant, is called 

the ‘adaptive soft sensor.’ Earlier adaptive models used to develop the newer adaptive soft 

sensors can be found in the literature. The common adaptive soft sensors such as 

correlation based JIT (CoJIT) and locally weighted (LW) PLS (LW-PLS) have been 

successfully applied in industries (Hazama and Kano 2015; Jin et al. 2015a; Kano and 

Koichi 2013).  

 

Most of the data driven approach for soft sensors are easy to develop and give reasonable 

predictive capability. Hence, these data driven soft sensors can be incorporated to the 

controller as part of the adaptive controller. However, a majority of the current adaptive 

data-driven models, which include CoJIT and LW-PLS assume that process data always 

follows a Gaussian distribution (Liu and Gao 2015) with no missing measurement (Kadlec 

et al. 2009). However, the majority of current industrial process data are non-Gaussian 
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distributed (Ge et al. 2013) and sometimes consist of missing data (Yin et al. 2014). 

Therefore, the current adaptive data-driven models in soft sensor may not function well in 

these conditions. The development of an improved adaptive algorithm, which is capable 

of addressing non-Gaussian and incomplete data, has become necessary. Therefore, this 

research aims to respond to the fundamental needs as stated above where a new and 

improved adaptive algorithm provides a possible solution to the limitations of the existing 

algorithms.  

 

1.2. Problem statement 

The existing algorithms for developing adaptive soft sensors, which include a popular 

LW-PLS algorithm, do not take into account the fact that most of the process data are non-

Gaussian distributed and contain incomplete measurements. Missing measurements are 

data that do not have a value in an observation. It is also observed that less effort had been 

considered regarding non-Gaussian distributed data in developing adaptive soft sensors, 

especially JIT-based soft sensors. In practice, the industrial process data clearly shows 

non-Gaussian behaviour (Qin 2012) predominantly in highly non-linear processes. Hence, 

the current data driven soft sensors including LW-PLS suffer when the data distribution 

is non-Gaussian since their models are unable to properly extract useful information from 

non-Gaussian data. Thus, an improved adaptive soft sensor can cope with non-Gaussian 

distributed data and it is required to provide more accurate prediction capabilities.  

 

On the other hand, the presence of missing measurement in the process data is inevitable. 

Incomplete data are commonly caused by routine sensor maintenance, sensor failure, and 

sensors with different sampling rates (Folch-Fortuny et al. 2015; Arteaga and Ferrer 

2002). When the algorithms for developing adaptive soft sensors are subject to incomplete 

data conditions, the datasets containing the missing values are usually omitted (Folch-

Fortuny et al. 2016) so only the complete datasets are utilized. In some cases, the removal 

of this data is undesirable and impractical since the omitted data sets may contain 

significant information about the process and ultimately cause data loss when the amount 
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of missing data is large. Furthermore, the negative impact of the incomplete data on 

regression methods used to develop soft sensors, including principal component analysis 

and PLS have been demonstrated by Nelson et al. (2006). Hence, to address the significant 

issues of non-Gaussianity and incomplete process data in the development and application 

of adaptive soft sensors, a new and more robust algorithm that can manage non-Gaussian 

distributed data and may contain incomplete measurements is needed. 

 

1.3. Research questions 

As stated above, certain limitations and other issues faced by the current adaptive 

algorithms used to develop new adaptive soft sensors have created interest in pushing for 

additional research in this area. Some concerns and questions have arisen (as shown in the 

following section) and they will be examined in this research. Subsequently, the aim and 

scopes of this research are identified. 

 

a. How many simultaneous integration and modification of different data analysis and 

modelling theories be effectively performed to formulate a robust, non-Gaussian 

adaptive soft sensor algorithm?  

 

b. Will the proposed algorithm has any limitations in terms of the maximum degree of 

robustness against missing data? 

 

c. Are there any consequences associated with the proposed algorithm especially in 

regard to computational efficiency? If there are, what are the approaches to minimise 

them? 
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1.4. Aim and objectives 

This research aims to introduce a novel improved algorithm to develop an adaptive soft 

sensor, which can deal with nonlinear and non-Gaussian distributed data as well as 

missing measurements. To achieve this aim, the following objectives are proposed: 

 

a. To formulate a new algorithm, namely expectation maximization (EM) ensemble LW 

independent component Kernel partial least square (EM-E-LW-IC-KPLS) algorithm 

as a robust against missing data, nonlinear and non-Gaussian approach to developing 

adaptive soft sensors. 

 

b. To investigate the predictive performance of the newly introduced adaptive 

algorithms using simulated data and then compares the results with the bench-

marking algorithm (widely used LW-PLS algorithm). 

 

c. To minimise the computational efficiency of the newly improved adaptive algorithms 

while evaluating their predictive performance. 

 

1.5. Scopes of research 

In this section, the research scope and methodologies employed in this current research 

work are briefly explained. Firstly, the traditional and commonly used LW-PLS model is 

adopted as a base case since it is simple and able to cope with outliers, nonlinearity, and 

collinearity in the process data set. In this study, a new and improved algorithm is 

formulated and proposed through a modification on LW-PLS to incorporate the ensemble 

method, the Kernel function, the independent component analysis (ICA) and the 

expectation maximisation (EM) algorithms.  
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ICA is integrated into the LW-PLS model to accommodate non-Gaussian data while 

Kernel function is also incorporated to enhance further the algorithm’s ability to cope with 

nonlinear processes. Moreover, the inclusion of the EM algorithm is established to deal 

with missing data. The newly developed algorithm is called expectation maximization 

ensemble locally weighted independent component Kernel partial least square (EM-E-

LW-IC-KPLS) algorithm. Hypothetically, this newly developed algorithm will be able to 

improve the adaptive soft sensors concerning their capability to work well with non-

Gaussian distributed data, nonlinear data, and incomplete measurements.  

  

Also, other newly modified Gaussian-based and non-Gaussian-based LW algorithms are 

also formulated in this study. Gaussian-based LW algorithms are formulated by 

incorporating Kernel function into the LW-PLS algorithm to obtain the ensemble LW 

Kernel partial least square (E-LW-KPLS) algorithms. Several Kernel functions are 

employed in E-LW-KPLS algorithm as an internal model within PLS instead of a linear 

regression to cope with nonlinear process data. Kernel functions such as polynomial 

Kernel, inverse multi-quadric Kernel, power Kernel, and log Kernel are used. This newly 

developed algorithm is expected to be more accurate in dealing with non-linear process 

data. The predictive performance of this recently developed algorithms are then analysed 

using the simulated Gaussian distributed data in case studies 1 to 3, and the results are 

compared to the LW-PLS, and LW-KPLS algorithms. 

 

On the other hand, the new Gaussian-based LW algorithms developed are further 

improved to cope with nonlinear, non-Gaussian distributed and missing data. In this step, 

ICA is used to generate independent components from non-Gaussian distributed data and 

incorporated into the improved Gaussian-based LW algorithms. This newly improved 

non-Gaussian-based LW algorithm is called the ‘ensemble LW independent component 

Kernel partial least square’ (E-LW-IC-KPLS). Then, the EM algorithm is integrated into 

the E-LW-IC-KPLS to analyse the missing data problem. Hence, another new algorithm, 

the ‘EM ensemble LW independent component Kernel partial least square’ (EM-E-LW-
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IC-KPLS) has been developed. This new algorithm is expected to be not only robust 

against missing measurements but also more accurate in dealing with non-linear and non-

Gaussian distributed process data. These algorithms have been tested using data in case 

studies 4 to 6. Their results are then compared to the existing LW-PLS and LW-KPLS and 

their integrated algorithms.  

 

The newly proposed algorithms are tested using process data generated from six simulated 

plants. They are numerical example 1 (case study 1), a single chemical reactor (case study 

2), wastewater treatment (case study 3), numerical example 2, a static approximation of 

two sine waves (case study 4), Eukaryotic cell cycle regulation (case study 5) and a highly 

nonlinear continuously stirred tank reactor (case study 6). Historical data of these 

simulated plants are used to validate the developed models. These data are produced from 

virtual plants using the MATLAB Simulink. The simulated data in case studies 1 to 3 are 

nonlinear, and Gaussian distributed data while case studies 4 to 6 are nonlinear and non-

Gaussian distributed data. Then, the simulated data in case studies 4 to 6 are further treated 

to generate different levels of random missing measurements ranging from 0% to 60%. 

 

In addition, from the practical point of view, the new algorithms should not only be 

evaluated regarding predictive performances, but their computational efficiencies also 

have to be assessed by calculating the central processing unit (CPU) running time to 

predict the targeted process variable(s). Hence, computational times of the developed and 

current adaptive algorithms are analysed and compared. These comparisons are 

accomplished by running the improved and the existing algorithms in a software platform 

using a computer to determine their CPU times for data processing and predictive 

modelling. In this research, to minimise these loads, the ensemble method is adopted in 

the proposed Gaussian- and non-Gaussian-based LW algorithms. 
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1.6. Novelty, contribution and significance 

The novelty of, contributions to and significance of this current research is indicated in 

the following:- 

 

Scientific contributions 

a. A new adaptive algorithm utilised to formulate an adaptive soft sensor, able to analyse 

nonlinear and non-Gaussian distributed data as well as possessing robustness against 

missing data has been developed to address the research gaps of the existing 

algorithms. 

 

b. This new algorithm is an additional approach to develop an adaptive soft sensor and 

is a more accurate alternative to the existing algorithms to address the nonlinear and 

non-Gaussian distributed data as well as with the presence of missing data.  

 

c. Other associated outcomes of the EM-E-LW-IC-KPLS are E-LW-KPLS and E-LW-

IC-KPLS are newly developed algorithms and methods for improving adaptive soft 

sensors.  

 

Practical applications 

a. The new EM-E-LW-IC-KPLS algorithm for adaptive soft sensors has the potentials 

to be implemented in any industrial process that has nonlinear and non-Gaussian 

distributed operational data in addition to missing measurements.  

 

1.7. Structure of the thesis 

In this section, a brief description of the structure of this thesis is provided. This thesis is 

organised and divided into seven chapters. Chapter 2 describes an overview of the existing 

adaptive soft sensors. Including a critical review of their limits and finally, the research 

gaps in current research on adaptive soft sensors are identified.  
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Chapter 3 describes the basic concept of the newly integrated algorithm formulation to 

address problems that have been identified earlier. Then, it is followed by the main stage 

of the research, the framework of the newly proposed Gaussian and non-Gaussian LW 

algorithms formulations. Next, case studies, predictive performance measurement and the 

specifications of computing facilities are briefly explained. 

 

Chapter 4 presents the new Gaussian-based LW algorithm formulation for adaptive soft 

sensors for process plants, the E-LW-KPLS followed by an explanation of similarity 

measurement, Kernel partial least square and LW-PLS algorithms. Later in Chapter 5, 

there is a discussion of the formulation of non-Gaussian-based LW algorithms, including 

the E-LW-IC-KPLS, EM-E-LW-IC-KPLS, and EM.  

 

In Chapter 6, the formulated E-LW-KPLS, E-LW-IC-KPLS, EM-E-LW-KPLS and EM-

E-LW-IC-KPLS algorithms described in Chapters 4 and 5 are applied to the generated 

Gaussian and non-Gaussian data for virtual plants. The results obtained from these 

algorithms are analysed, discussed and compared with the LW-PLS, LW-KPLS and their 

integrated algorithms. Besides, computational times used for running these algorithms are 

assessed.  

 

Finally, Chapter 7 presents the research summary, conclusions of this current research and 

recommendations for further studies on adaptive soft sensors. Figure 1.1 illustrates the 

overview of the thesis structure in a flow diagram. 
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Figure 1.1 Flow diagram of the thesis  

 

Chapter 3: Research methodology 

Explanation on basic idea of algorithms formulation to address 

these problems 

Conclusions and recommendations 

Chapters 4: Gaussian-based locally weighted algorithms 

The formulation of Gaussian-based locally weighted algorithms  

Chapters 5: non-Gaussian-based locally weighted algorithms 

The formulation of non-Gaussian-based locally weighted 

algorithms 

Chapter 6: Results and discussion 

Chapter 2: Literature review 

� A review and analysis of relevant literatures of the thesis  

� Research gaps in current research on adaptive soft sensors 

Chapter 1: Introduction 
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Chapter 2 

Literature review 

 

2.1. Introduction 

In this chapter, the existing algorithms used to develop adaptive soft sensors are discussed 

and critically reviewed. Firstly, the background of soft sensors used to reduce the 

drawbacks of hardware sensors is provided and then followed by a discussion of adaptive 

algorithms. The adaptive algorithms are broadly classified into non-just-in-time (non-JIT) 

and just-in-time (JIT) based algorithms. The JIT based algorithms, categorised into either 

Gaussian-based or non-Gaussian-based are further illustrated. Moreover, there is a brief 

discussion on algorithms that analyse nonlinear data and missing data. The pros and cons 

of these algorithms are outlined and discussed and ultimately identifying the research gaps 

to be addressed in this research project.  

 

2.2. Soft sensors 

Hardware sensors are commonly used in industrial processing plants for fault detection, 

process monitoring, and control to ensure safe, optimal and environmentally friendly 

operations. These sensors are required to observe and manage the processes, then 

undertake any necessary responses to address any abnormal process performance to 

achieve process optimisation with regards to efficiency and operating costs (Sharma and 

Tambe 2014). Despite their successful implementation, however, current applications of 

hardware sensors have encountered issues summarised in Table 2.1. These tabulated data 

were collected from an industry survey conducted by the JSPS PSE 143 Committee 

(2004). 
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           Table 2.1 Problems with hardware sensors (JSPS PSE 143 Committee 2004) 

Raising issues Percentage 

Time-consuming maintenance 27% 

Need for calibration 21% 

Aged deterioration 

Insufficient accuracy 

15% 

13% 

Long dead-time, slow dynamics 10% 

Large noise 8% 

Low reproducibility 2% 

Others 4% 

 

These commonly cited issues may lead to safety, and environmental concerns increased 

production costs and lower final product quality. To address these concerns associated 

with hardware sensors, virtual sensing technology, often referred as soft sensors or 

inferential sensors, have been proposed and developed by many researchers (Zhang et al. 

2017; Kano and Koichi 2013; Kadlec et al. 2009). Past research and industrial applications 

have indicated soft sensors have become a popular alternative to hardware sensors when 

the hardware sensors are unavailable, or their drawbacks have become overwhelming. 

 

Table 2.2 summarises and illustrates the general classifications of soft sensors. Soft 

sensors can be categorised as either ‘first principle’ or ‘white-box’ or ‘physical model-

based’ (or simply model-based), historical data-driven or ‘black-box’ and a combination 

of model-based and data-driven or ‘grey-box’ based soft sensors. Developing a model-

based soft sensor requires accurate fundamental models, which are formed based on 

detailed knowledge about physicochemical phenomena of processes such as kinetics, fluid 

flow, mass transfer, heat transfer, and thermodynamics. Since most of the industrial 
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processes are usually very complex, obtaining this knowledge is time-consuming and 

expensive (Parish and Duraisamy 2016; Braunschweig and Joulia 2008). For example, 

predicting the properties of a polymer (e.g., viscosity, densities) via a nonlinear first 

principle model requires a product molecular property analysis in a lab that is usually 

expensive and time-consuming (Pantelides and Renfro 2013). Sometimes, the model-

based method is impractical due to insufficient accurate fundamental model parameters. 

As a result, data-driven approaches have gained popularity and have been widely 

employed in the last two decades in developing predictive models from process data (Ge 

2014; Kadlec et al. 2009).  

 

Table 2.2 Overview of soft sensor types 

  Soft sensors 

Model-based approaches 

(White-box models) 

Data-driven approaches 

(Black-box models) 

Hybrid approaches  

(Grey-box models) 

 

Moreover, the results of the industrial survey mentioned earlier have indicated data-driven 

soft sensors are more widely employed than model-based soft sensors, as shown in Table 

1.1 in Chapter 1. Additionally, model-based and data-driven models have also been 

combined to overcome the limitations of a model-based model (Ahmad et al. 2014; Ukai 

et al. 2011; Nakabayashi et al. 2010; Chen et al. 2010). Such integrated models are known 

as grey-box models because they are constructed using both white-box and black-box 

models.  

 

Data-driven based soft sensors have been developed based on historical data collected 

from industrial processing plants using empirical modelling techniques such as multiple 

linear regression (MLR), principal component regression (PCR), partial least square 

(PLS), artificial neural networks (ANN), support vector regression (SVR), least square 
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support vector regression (LSSVR), Gaussian process regression (GPR) and independent 

component regression (ICR) (Kano and Koichi 2013; Stulp and Sigaud 2015). Table 1.1 

reveals that among the existing techniques, data-driven-based soft sensors are the most 

popular followed by model-based soft sensors. Detailed discussions on the above 

modelling techniques can be found in review papers written by Kadlec et al. (2009), Qin 

(2012), Ge et al. (2013), Stulp and Sigaud (2015), Souza et al. (2016) and Funatsu (2018). 

 

Traditional data-driven soft sensors use historical plant data in offline mode before their 

applications. Although the historical data are rich (Dong and McAvoy 1996), they do not 

contain all possible future plant operating conditions. Hence, the predictive performance 

abilities of these soft sensors will gradually deteriorate over time. This condition is due to 

changes in the state of the processing plants and process characteristics such as process 

feed materials, process fouling, catalyst deactivation, equipment aging, and changes in the 

external environment, etc. These newer states or characteristics are not captured in the 

historical data. For sensors to respond to any possible new conditions, non-adaptive soft 

sensors must be regularly maintained and updated, and therefore the incorporation of self-

adapting mechanisms into soft sensors has attracted considerable interest. 

 

2.3. Adaptive algorithms 

In the literature, adaptive methods such as moving window (MW), recursive, time 

difference (TD) and ensemble approaches have been proposed to develop adaptive data-

driven soft sensors. Despite their ability to automatically update models, these approaches 

have been associated with some drawbacks in their practice. MW models are built with 

the most recently adopted samples by adjusting a window to include the newest data and 

then eliminating the oldest data from the model. However, this makes MW perform poorly 

in processes with abrupt changes. Furthermore, according to Saptoro (2014) and Kadlec 

et al. (2011), MW must keep all data within the window and thus its application is limited 

to the memory size. Moreover, it is difficult to set the optimal size of the window and the 
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adaption interval between updates (step size). Furthermore, MW losses the old data which 

may contain beneficial information (Yang et al. 2016). 

 

On the other hand, rather than storing all the data in the memory like MW, recursive 

methods utilise a ‘forgetting factor’ to decrease the influence of old information. Besides, 

the recursive method allows the gathering of new information for constructing a predictive 

model. These methods can perform model adaptation and maintain their stable model 

structure. Nevertheless, Saptoro (2014), Ge et al. (2013) and Kadlec et al. (2011) have 

reported these methods to perform poorly in processes with abrupt changes. Kaneko and 

Funatsu (2013) have also indicated due to its sequential updating, and the recursive 

method is sensitive to sudden changes. Furthermore, when the process operation is carried 

out within a narrow range for certain duration, the recursive techniques will blindly update 

the model and a significant period is required to adapt into a new process operating 

condition.  

 

TD approaches have been used by Kaneko and Funatsu (2011a), Kaneko and Funatsu 

(2011b), Kaneko and Funatsu (2011c) as well as Kaneko and Funatsu (2013b) to develop 

adaptive soft sensors. According to these authors, the TD approaches utilise time 

difference of explanatory variables, x and that of target variable(s), y to build models to 

decrease the impact of deterioration over time. However, since the TD approaches do not 

observe process conditions such as changes of a state for a chemical process, its predictive 

performance can be lower than that of other models (Kaneko and Funatsu, 2013b, 2011b; 

Okada1 et al., 2010). To address this limitation, updated models which include the MW 

and JIT models have been combined with the TD algorithm by Kaneko and Funatsu 

(2015b). Research on the deterioration of adaptive methods against changes in the state of 

chemical plants was done by Kaneko and Funatsu (2013a). 

 

Ensemble algorithms are complicated when a set of different internal models is employed. 

Ensemble methods have been demonstrated by Krogh and Vedelsby (1995) that the 
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average construction of the various internal models is not an optimal integration approach 

and the weighted integration method such as the JIT locally weighted approach is often 

preferred (Kadlec et al. 2011). On the other hand, the JIT modelling algorithm only uses 

a single model to estimate target variables in modelling. Hence, it has a lower 

computational load than the ensemble methods. Moreover, JIT methods can be applied to 

nonlinear processes and processes with abrupt changes. As a result, JIT modelling was 

introduced as an attractive solution to build adaptive soft sensors; it addresses the 

limitations of the methods mentioned above are shown in Table 2.3. 

 

Generally, MW, recursive, TD, ensemble and JIT methods have been used to develop 

adaptive data-driven soft sensors. Reviews of MW, recursive and ensemble methods have 

been published by Saptoro (2014), Kano and Koichi (2013), Ge et al. (2013), Kadlec et 

al. (2011), and Kadlec et al. (2009). Reviews of JIT methods were briefly discussed by 

Saptoro (2014), and Kano and Koichi (2013). While the following sections present an 

extensive overview of JIT based algorithms for adaptive data-driven soft sensors. 

 

2.4. Just-in-time based algorithms 

The JIT modelling algorithm was formulated based on ideas from database technology 

and local modelling and thus, it is also known as ‘instance-based learning,’ locally 

weighted model, lazy learning or model-on-demand (Jin et al. 2015b; Yuan et al. 2014a; 

Saptoro 2014; Kano and Koichi 2013). For the JIT modelling approach, there is an 

assumption that all useful observations are stored in the historical database. And then, a 

predictive model is built dynamically upon a query. Later, these models are used to predict 

the output of the query sample. 
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Table 2.3 Limitations of various adaptive methods for data-driven soft sensors (Agus 

2014; Kadlec et al. 2011) 

Methods Limitations 

Moving window Perform poorly in the process with abrupt changes. 

Is not suitable for large window and memory limited 

applications. 

Is difficult to set the optimal size of the adaption window 

(window size) and adaption intervals between the updates (step 

sizes). 

Losses the eliminated old data which may consist of beneficial 

information. 

Recursive methods Perform poorly in the process with abrupt changes. 

When process operation is carried out within a narrow range for 

certain duration, recursive methods will blindly update the 

model.  

A period is required to adapt to a new process operating 

condition. 

Time difference 

methods 

Do not observe process conditions such as changes of state for 

the chemical process. 

Ensemble methods The average constructing of different internal models is not an 

optimal integration approach. 

Have high computational load since these methods consist of a 

set of different local models. 

 



19 

 

Unlike traditional methods that refer to global modelling, a JIT model is a local model 

that is developed from a historical dataset around a query data sample when an estimated 

value of this point is required. Moreover, the global model is constructed offline while the 

JIT model is built online (Liu and Yoo 2016; Jin et al. 2015a; Zhang et al. 2015; Yuan et 

al. 2014a; Jin et al. 2014; Saptoro 2014; Ge and Song 2010). For this reason, the JIT model 

is able to trace the current state of the process more efficient. It not only can deal with 

slow-varying operations but also abrupt process changes (Liu and Yoo 2016; Jin et al. 

2015a; Jin et al. 2015b; Zhang et al. 2015; Liu and Gao 2015; Jin et al. 2014; Fan et al. 

2014).  

 

As mentioned previously, the JIT based method builds a local model using historical data 

having a high similarity with the query point. Therefore, some versions of JIT modelling 

algorithms have been proposed based on the various similarity measures (Hazama and 

Kano 2015; Jin et al. 2015a; Saptoro 2014; Kano and Koichi 2013). These versions 

include linear, combined linear and angle distance and correlation-based JIT (CoJIT) 

algorithms. Among these various JIT algorithms, the distance based similarity measure 

algorithms have been more widely used in the literature since it is easier to implement 

(Zhang et al. 2015; Saptoro 2014; Jin et al. 2014; Xie et al. 2014). Nevertheless, the CoJIT 

proposed by Fujiwara et al. (2012), Fujiwara et al. (2009) and Fujiwara et al. (2008) has 

been found to be more effective than the distance-based JIT algorithms c predictive 

performance.  

 

Other classifications of the JIT modelling algorithm may also be based on the type of local 

model used and the characteristics of the process data. It has been reported by Hazama 

and Kano (2015), Yuan et al. (2014a) and Kano and Koichi (2013) that the adopted local 

models may be either MLR, PLS, SVR, LSSVR, GPR, locally weighted regression (LWR) 

and locally weighted PLS (LW-PLS) models. Therefore, JIT algorithms have been 

proposed based on these local models such as JIT PLS, JIT SVR, JIT LSSVR, JIT GPR, 

LWR, and LW-PLS. Meanwhile, characteristics of the process data include the following: 
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Gaussian versus non-Gaussian distributed data, linear versus nonlinear data and complete 

versus incomplete data. The sub-sections below summarise the literature survey of the 

classification based on these process data characteristics. 

 

2.5. Gaussian-based just-in-time algorithms 

In this section, those JIT modelling algorithms that recognise Gaussian distributed data 

are discussed in the following sub-sections. These sub-sections review previous studies 

which were based on CoJIT, locally weighted learning (LWL) based JIT, sparse sample 

regression based JIT (SSR-JIT), SVR and LSSVR based JIT methods as well as online 

local learning based and GPR-based JIT methods. 

 

2.5.1. Correlation based just-in-time algorithms 

As previously stated, the CoJIT algorithm was proposed to develop adaptive soft sensors. 

In the CoJIT modelling, samples for local modelling are chosen from the correlation 

between process variables (Fujiwara et al. 2008). Fujiwara et al. (2008) and Fujiwara et 

al. (2009) introduced CoJIT modelling for soft sensors. In their studies, Q statistic, sQ  

which was derived by principal component analysis (PCA), measured the dissimilarity 

between the samples and the modelling data based on the correlation between process 

variables. Meanwhile, Hotelling’s T squared statistic, 2T  is used to prevent extrapolation 

and ensure the sample is situated in the modelling data. The similarity factor, J  for 

CoJIT, can be obtained from the following equation:  

 

sQTJ )1(2 λλ −+=                                                                                                        (2.1) 

 

where λ is the setting parameter from trial-and-error and its range is from 0 to 1. 
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Later, Fujiwara et al. (2012) incorporated the nearest correlation (NC) into CoJIT to 

further improve its accuracy in dealing with individual differences in production units as 

these units have different characteristics even though they have the same catalogue 

specifications. In their proposed algorithm, NC, a correlation-based pattern recognition 

technique was adopted to determine the samples used for local modelling having a strong 

correlation with the query. In addition, this developed NC-CoJIT algorithm is able also to 

perform effectively with smaller operation data sets. The effectiveness of this relatively 

recently developed algorithm has been established using a parallelized chemical reaction 

process.  

 

Subsequently, Fujiwara et al. (2010) later established an improved version of NC-CoJIT 

where NC was integrated with spectral clustering (SC), a graph partitioning approach. In 

this proposed NC-SC CoJIT, NC was used to build a weighted graph that showed 

correlation-based similarities between the samples and the query. Then, the weighted 

graph is later split using SC. Fujiwara et al. (2010) showed that their proposed CoJIT 

based algorithm could provide improved accuracy compared to conventional distance-

based methods. Kano and Koichi (2013) stated that the CoJIT (with PLS as its internal 

model) is widely used in current industrial applications due to its simplicity and superior 

performance. However, all of the abovementioned CoJIT based approaches perform 

poorly with outliers and have difficulty in determining the parameter (λ), which is usually 

carried out by trial-and-error (Saptoro 2014). 

 

To cope with outliers and time-varying processes, Liu et al. (2012b) have adopted robust 

nearest correlation to develop CoJIT based soft sensors. Moreover, these authors 

combined their CoJIT algorithm with an inductive confidence predictor to form an interval 

soft sensor to enhance its predictive performance. Since the computational load of this 

proposed algorithm is high, multi-model ensemble learning is utilized to reduce its 

computational burden. Furthermore, this algorithm performs well in processes with and 

or without the presence of outliers. However, all of the abovementioned CoJIT algorithms 
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are only applicable to Gaussian distributed process data without the presence of missing 

data. 

 

2.5.2. Locally weighted learning based just-in-time algorithms 

Apart from CoJIT algorithms, linear distance-based algorithms based on LWL such as 

LWR, LW-PLS, and ensemble LW-PLS have also been formulated for developing 

adaptive soft sensors and process monitoring. Shigemori et al. (2011) built a LWR based 

quality design system for the steelmaking industry which can identify optimal 

manufacturing conditions. In their study, the target quality was monitored and ensured 

using this LWR model. Later, Shigemori (2015) also applied the LWR model to control 

cooling temperatures in a steel plate production process. Toshiya and Kano (2015), 

however, reported that the LWR algorithm becomes problematic when the number of new 

input variables is more than their nearest neighbours’ samples in the historical data.  

 

In this regard, the LW-PLS algorithm has been found to be a more effective alternative 

due to its ability to deal with a higher dimensionality of variables (a large number of input 

variables) and outliers (Hazama and Kano 2015; Kaneko and Funatsu 2015a) as well as 

collinearity among the process variables (Kano and Koichi 2013). Applications of the 

LW-PLS based soft sensors in various industries such as semiconductor, petrochemical, 

biochemical and pharmaceutical processing have been reported in publications and 

analysis indicates the LW-PLS algorithm has become a popular algorithm in developing 

soft sensors (Hazama and Kano 2015; Toshiya and Kano 2015; Kano and Koichi 2013; 

Kim et al. 2013b; Kim et al. 2013a; Nakagawa et al. 2012).  

 

On the other hand, to enhance the predictive performance of the LW-PLS algorithm, a 

hybrid of the LW-PLS algorithm with different adaptive approaches such as the MW, TD 

and ensemble methods have also been developed for adaptive soft sensors. Yuan et al. 

(2015a) introduced MW LW-PLS algorithm under the TD (MW-JITL-TD) method with 
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temporal and spatial adaptive techniques for nonlinear time-varying and variable drifting 

processes. In the MW-JITL-TD model, the MW has been adopted to adapt to the new 

process state while the TD model has been used to tackle the process change of variable 

drifts. Meanwhile, spatial adaptive LW-PLS algorithms and temporal adaptive MW are 

utilised to improve the performance of the predictive model. Nonetheless, this proposed 

approach did not take into consideration multiple process states which operate separately.  

 

Consequently, Kaneko and Funatsu (2016) proposed the ensemble LW-PLS algorithm 

where a traditional LW-PLS algorithm is combined with ensemble learning. This newly 

developed method is claimed to be more effective compared to the LW-PLS since LW-

PLS model has lower prediction accuracy when it is applied in multiple process states that 

perform individually. Hence, the LW-PLS models are formulated for each multiple sub-

datasets and are weighted with ensemble learning and Bayes’ theorem. This recent method 

can cope with time-varying, and multiple processes state concurrently. However, this 

ensemble LW-PLS model did not take into account strongly nonlinear data. 

 

More recently, Zhang et al. (2017) integrated Kernel functions into the LW-PLS 

algorithm, the LW-KPLS for nonlinear time-varying processes. In their paper, a sparse 

Kernel features a characterization factor that considers the strength of nonlinear 

dependency between a query and training samples. In the high dimensional Hilbert 

feature, space is utilized to weight their training dataset. Similar to the SVR and LSSVR, 

the Kernel-based models, which include the LW-KPLS model, have increased their 

computation loads (Goldberg and Elhadad 2008). However, an investigation into the 

computational efficiency of these newly developed models was not carried out. 

 

In addition to the LW-PLS based methods, another type of LWL method based on 

principal component regression (PCR), the PCA, or latent factor analysis (LFA) has also 

been established for soft sensing. These other methods include locally weighted Kernel 

principal component regression (LW-KPCR), locally weighted probabilistic principal 
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component analysis (WPPCA), double locally weighted principal component regression 

(D-LWPCR), locally weighted supervised latent factor analysis (LWSLFA), locally 

weighted semi-supervised latent factor analysis (LWSSLFA) and weighted linear 

dynamic system (WLDS) approaches.  

 

Since linear PCR in a locally weighted PCR (LW-PCR) has issues when dealing with 

nonlinear processes, Yuan et al. (2014a) incorporated Kernel functions into the LW-PCR 

model to form the LW-KPCR algorithm to cope with nonlinear time-varying processes. 

The nonlinear features of Kernel functions such as linear Kernel, polynomial Kernel, 

sigmoid Kernel, and Gaussian Kernel functions enable the LW-KPCR model to capture 

nonlinear data. Hence, the LW-KPCR algorithm has a higher prediction ability for highly 

nonlinear processes compared to the LW-PCR, Kernel PCR, and PCR.  

 

Later, Chen et al. (2018) proposed D-LWKPCR based on approximate linearity 

dependence (ALD) for time-varying and strong nonlinear processes. This D-LWKPCR 

extracts more accurate output-related nonlinear features than LW-KPCR since it considers 

the variable relevance with the quality output. Euclidean distance is used to obtain the 

sample and variable weight coefficients, and then different weights are assigned for 

variables during local modeling. To decrease the computational time of D-LWPCR, ALD 

is used to decide the requirement for updating the local model. Hence, it has lower 

computational burden than the ordinary LW-KPCR. The ability of this D-LWKPCR was 

only evaluated using an industrial roller kiln. Thus, its applicability in other processes is 

uncertain.  

 

Instead of using the Kernel function, Yuan et al. (2015b) proposed a WPPCA that uses a 

nonlinear dimensional reduction method to obtain nonlinear features from process data to 

build the soft sensor model. JIT learning (JITL) is utilised by WPPCA to select the most 

relevant samples for each query sample for local modelling. Then, each relevant sample 

is weighted separately based on their similarities to the testing sample under the 
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probabilistic framework. Next, the WPPCA model is formulated to extract nonlinear 

features to predict the output of the query sample, qŷ , via the following equation:  

 

q

T

wq zyy θ+=ˆ                                                                                                              (2.2) 

 

where wy , θ and qz  are the weighted mean of the output, the regression coefficient vector 

and the mean vector of the posterior distribution of the query point, respectively. However, 

the LW-KPCR and WPPCA only consider the input information without any reference to 

the output information which could lead to imperfect sample selection.  

 

To consider including the output information into the relevant sample selection, Yuan et 

al. (2016b) proposed the D-LWPCR which utilizes an improved sample selection method 

in the supervised latent structure where the extracted latent variables are extremely related 

to the output variables. By considering sample importance and variable importance, which 

are obtained from the sample-wise and variable-wise weighting methods, the D-LWPCR 

can extract nonlinear and output-related features for prediction. The double-weighted data 

matrix, Xs,v and the double-weighted covariance matrix, Cs,v is shown below: 

 

vsvs XWWX =,                                                                                                                (2.3) 
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where Ws, Wv, X, and N are the sample weighted data matrix, the variable weighted data 

matrix, the historical input matrix and the number of samples, respectively. 
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Additionally, the abovementioned LW-PLS based and the PCA locally weighted based 

approaches did not consider both supervised and semi-supervised process data. Hence, 

Yao and Ge (2017) created two probabilistic locally weighted prediction approaches, the 

LWSLFA, and LWSSLFA models for the data which employs the expectation 

maximization (EM) algorithm. Unlike traditional global modelling approaches, a range of 

historical samples is extracted by integrating the similarity index into the noise variance 

of the process variables that provide reliable information about nonlinearity and abrupt 

changes in the process. After underlying factors are determined, the predicted output 

variables are calculated through an Equation (2.5). The authors showed the effectiveness 

and flexibility of both newly developed methods using industrial processes. The 

computational load of these approaches has not been examined since the EM algorithm 

can be time consuming (Lan et al. 2016; Karanja et al. 2013).  
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where C and P are the factor loading matrices of the input and output data set, respectively 

while x  and y  are the mean values of the input and output variables. Additionally, ∑ x

is the measured noise variance of the input dataset. 

 

Since most of the abovementioned models use a static linear approach, they are not 

suitable for processes that are dynamic with nonlinearity. Hence, recently, Yuan et al. 

(2018) have developed a new WLDS model for dynamic and nonlinear processes. In their 

study, a WLDS-based probabilistic latent variable model is introduced for nonlinear 

feature representation. Two types of weights in the WLDS were constructed for local 

linearization of the nonlinear state evolution and state emission approximation. Moreover, 

a weighted log-likelihood function has been built, and the EM is utilised for parameter 

estimation. The effectiveness of the improved model is illustrated using numerical 

examples and industrial process data. 
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2.5.3. Sparse sample regression based just-in-time algorithms 

Subsequently, Uchimaru and Kano (2016) introduced the SSR-JIT that is an improved 

approach for the conventional distance based locally weighted learning methods. These 

distanced based approaches do not often perform well since correlation among the process 

variables is not considered. Even though the CoJIT can obtain high prediction accuracy, 

it is very dependent on fine-tuning the parameters. To address these limitations, the SSR-

JIT utilizes an elastic net to locate useful past samples to build an accurate local model. A 

sparse regression model has been constructed to estimate the output of a query when the 

SSR-JIT solves the optimization problem (Zou and Hastie 2005) as shown in Equations 

(2.6) and (2.7) where the formulated regression coefficient, β  is employed as a weighted 

sample. However, this method has not considered highly nonlinear processes data. 

 

2

minarg ββ
β

T

qq Xx −=                                                                                               (2.6) 
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where qβ  is the regression coefficient vector, while α  and γ  are parameters.  

 

Later, Wei et al. (2019) proposed three algorithms namely neighbourhood preserving 

embedding regression (NPER), sparse neighbourhood preserving embedding regression 

(SNPER), and locally weighted SNPER (LW-SNPER) for nonlinear, high-dimensional 

and time-varying processes. NPER can make sure of the intrinsic local topology structure 

and proximity relations among data samples which cannot be done by the global-based 

methods in estimating the quality output variables. However, when the number of process 

variables is more than the number of samples, SNPER is more suitable than NPER. 

SNPER uses elastic net regulation that is also utilised in SSR-JIT and it can spontaneously 
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consider the local geometry of data and the connection between the input and output 

variables. To update this predictive model, the locally weighted method is integrated with 

SNPER to deal with time-varying characteristics in the process. Nevertheless, the ability 

of these newly developed algorithms to deal with outliers and non-Gaussian distributed 

data has not been examined. 

 

2.5.4. Support vector regression and least square support vector regression 

based just-in-time algorithms 

Furthermore, the nonlinear JIT algorithms, JIT SVR and JIT LSSVR are also used to 

develop adaptive soft sensors for highly nonlinear processes. A comparative study of the 

JIT PLS, JIT SVR and JIT LSSVR conducted by Ge and Song (2010) showed the JIT 

LSSVR provided more effective prediction capabilities for highly nonlinear processes due 

to its nonlinear model and a higher value of correlation coefficient compared to the JIT 

SVR. In contrast to the standard JIT PLS, which has a linear internal model, the JIT SVR 

and JIT LSSVR have a greater ability to capture strongly nonlinear process data. On the 

other hand, Liu and Yoo (2016) have applied the JIT LSSVR to predict and monitor the 

indoor air quality for hazardous pollutants and have shown the superior prediction 

performance of the JIT LSSVR compared to the LSSVR. The SVR and LSSVR based 

algorithms which include the JIT SVR and JIT LSSVR have been acknowledged to 

support a much higher computational load than PLS-based algorithms (Liu et al. 2012a; 

Ge and Song 2010). 

 

Different versions of the JIT LSSVR have been established to reduce the computational 

load. Liu et al. (2012a) proposed a JITL based recursive LSSVR (JITL-RLSSVR) for 

nonlinear batch processes. In this study, they presented a cumulative similarity factor, Sl, 

which can be calculated via Equation (2.8) is used to determine the similarity between a 

query and relevant samples which includes the weight of similarity and the size of the 

corresponding set. After that, a fast leave-one-out cross-validation (FLOO-CV) strategy 

with a low computational load is employed to tune the kernel parameters in the JITL-



29 

 

RLSSVR model adaptively. Hence, this proposed approach performs better than the JIT 

SVR and JIT LSSVR since it is not equipped for online optimization of model parameters. 

However, the disadvantage of this new approach is it does not consider the multistage, 

multiphase or multi-grade of the batch processes. 
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where Sqi is the similarity factor between the query sample and the sample in the data set, 

while l, lmin and lmax are the related samples, which are chosen before constructing a JITL 

model.  

 

Later, Liu and Chen (2013) developed another type of JIT LSSVR algorithm combining 

the JIT LSSVR with probabilistic analysis to address the multi-grade processes problem 

that often occurs in nonlinear fine chemical and polymer processes. First, the LSSVR 

models are derived for each product steady-state grade. And then, a probabilistic analysis 

approach utilizing the statistical property of steady-state classes is used for online 

prediction of a query sample. When the probability of the query sample for a particular 

steady-state grade is high enough, the prediction is made based on the respective LSSVR 

model. If the query sample is not similar to any steady-state category, it is categorised as 

in a transitional mode. Then, the JIT LSSVR model is built utilizing the sample most 

identical to the query sample via the FLOO-CV strategy with the low computational load. 

Still, this innovative approach has not yet investigated the non-Gaussian distributed data. 

 

Other than the JIT SVR and JIT LSSVR, another type of nonlinear JIT algorithm, the MW 

JITL least square-support vector machine regression (MWJIT-LS-SVM) was also 

proposed by Li et al. (2015) for nonlinear and time-varying chemical distillation 
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processes. The prediction accuracy of the JITL least square-support vector machine 

regression can be enhanced using MW with a particular moving window size algorithm. 

This technique is to ease proper samples selection when constructing a local model for a 

query. Additionally, incremental and decremental algorithms are adopted to reduce the 

computational complexity of the MWJIT-LS-SVM algorithm. Nevertheless, the 

computational load of the MWJIT-LS-SVM is still considered high, and its applicability 

to other processes has not been examined. 

 

2.5.5. Online local learning based algorithms 

Another variant of the JIT method commonly referred to as online local online learning 

has also been adopted to develop adaptive soft sensors. Jin et al. (2015b) proposed a multi-

model online support vector regression (OSVR) for nonlinear time-variant batch 

processes. This method has been developed according to the local learning framework and 

OSVR. Initially, a batch process is described by a set of local operating domains via a t-

test and the moving window strategy. Then, the localized OSVR models, fm are 

constructed for each local operating domain via Equation (2.9). Based on Bayesian 

ensemble learning, these localized models demonstrate the best prediction result of similar 

samples to the query data and are then adaptively merged to predict the target output. This 

output is further corrected by implementing offset compensation. However, the 

application of this approach has been limited to batch processes only and has not 

considered multi-output processes. 
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where nm and fm(x) are the number of local modelling sampling and the local OSVR model, 

respectively; While xm,i is the local training input, and im,α , 
∗

im,α  and bm are the OSVR 

model parameters.  
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Other than the SVR based algorithm, Shao et al. (2014) also introduced local learning 

based soft sensor, the local PLS based approach for online soft sensing (OLPLS) for multi-

output processes. Two steps, the operation states division, and the local model adaptation 

are utilized to develop the OLPLS. Firstly, the unique local time regions are extracted 

using the adaptive process states division based on an F-test. Then, for local model 

adaptation, an anti-over-fitting criterion, J* determined via Equation (2.10) is 

demonstrated by considering the correlation between process variables and the 

information is labeled and unlabeled samples. The authors showed the prediction 

performance of the OLPLS was superior to the CoJIT methods. The OLPLS has the same 

limitation as of the CoJIT, the ability to deal with outliers. 
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where e0 designates the predicted error vector for the newest labeled sample, ei denotes 

the predicted error vector for the i-th nearest sample of the query sample, ӨD is the 

diagonal matrix with all positive elements, Si is the weight of the respective sample, and 

ƔR is the regularization parameter. 

 

Jin et al. (2015a) also developed online local learning based adaptive soft sensor 

(OLLASS) for the industrial fed-batch chlortetracycline fermentation process. In this 

study, the neighbouring sample based on the mutual information (MI) weighted similarity 

measure is used to choose the samples for local modelling. Next, the maximum local 

modelling sizes for situations with and without the neighbour output information are 

determined by self-validation and neighbour-validation. Meanwhile, an online dual 

updating strategy is used to update the local model. Then, the model output offset is also 

updated to prevent unwanted local model regeneration to reduce computational load. 

Moreover, the maximal similarity replacement rule based on the MI weighted similarity 
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measure is used to update the data set. However, the effectiveness and applicability of the 

OLLASS have not been tested in other nonlinear chemical and biological processes.  

 

Moreover, Jin et al. (2016) developed an adaptive soft sensor using dual learning-based 

online ensemble regression (DLOER) for nonlinear time-varying processes. In this study, 

an adaptive localization approach utilizes JITL to build M local domains, LDm and local 

models to handle process nonlinearity. Besides, statistical hypothesis testing is used to 

eliminate unnecessary local models. Afterward, the posterior probabilities of each test 

dataset, xnew corresponding to the diverse local models, p(LDm|xnew) are determined via 

Bayesian inference. Then, they are applied as an adaptive weight to unite local predictions 

into a final output, 
∧

qy  which can be calculated via Equation (2.11). Furthermore, the 

DLOER framework consists of a dual learning-based adaption mechanism, incremental 

local learning, and JITL, to allow recursive adaption and the online inclusion of local 

models to achieve high prediction performance. However, DLOER utilizes PLS which is 

a linear model for local modelling and hence does not work well in strongly nonlinear 

processes.  

 

∑= =
M
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where ym,new is the output variable from the local PLS model. 

 

2.5.6. Gaussian process regression based just-in-time algorithms 

Furthermore, Yang et al. (2016) developed ensemble JIT GPR (EJITGPR) based adaptive 

soft sensors for an industrial batch rubber mixing nonlinear process. Since a single local 

model of JIT GPR has limited capability for capturing all the relevant process features, 

the EJITGPR approach constructs a series of input variable datasets using the concept of 

partial MI and random re-sampling of historical data sets for multiple local modelling. 
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Meanwhile, a PLS analysis procedure is employed to eliminate unnecessary or redundant 

local variable sets. Moreover, the finite mixture and Bayesian inference techniques are 

utilised to unite the best local prediction outcomes into the final output, ynew as shown in 

Equation (2.12). However, the applicability and effectiveness of this recent approach have 

not been investigated in other nonlinear and multiple operation mode processes. 
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where yGPRi,new and P(GPRi|xnew) are the local prediction mean from the i-th local model, 

GPRi, i∈1,2,…Me, and the posterior probability of a new test sample, xnew for different 

local GPR models. 

 

Besides, the JIT based MW GPR (MWGPR) approach with dual updating strategy was 

proposed by Xiong et al. (2016) to deal with multi-mode and nonlinear processes. 

Moreover, this approach has the capability of capturing switching dynamics or process 

nonlinearity. Firstly, the Gaussian mixture model (GMM) is adapted to distribute the data 

into separate operating modes. For each operating mode, the MWGPR utilises JITL to 

select relevant data in the specific window via specific nearest neighbourhood criterion to 

construct a local model for query sample. The predicted output is then improved using 

bias updating. However, the GPR in the MWGPR and EJITGPR has a higher modelling 

burden compared to the PLS and KPLS models (Jin et al. 2015a).  

 

After that, Mei et al. (2018a) introduced a new JITL MW GPR for time-varying, nonlinear 

and multi-parameter characteristics of an industrial Erythromycin fermentation process.  

JITL is utilised to allow the construction of the local GPR model based on the sample kept 

in the last given MW. Different from the traditional soft sensors, this JITL MW GPR 

considers spatial characteristic of a query data point and local temporal characteristic of 
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real-time process conditions. However, this proposed approach only tested on one case 

study and its predictions on other processes are not carried out. 

 

2.5.7. Extreme learning machine based just-in-time methods 

In addition, Li et al. (2018) proposed JIT extreme learning machine (JIT-ELM) for 

Polyethylene terephthalate (PET) production process to predict its viscosity. This 

polymerisation has multi-mode operating and multi-standard production conditions. This 

JIT-ELM is mainly designed to address the poor accuracy of the online instrument and 

time-consuming laboratory analysis problems. The local model for JIT-ELM is built to 

predict the output after the relevant samples are selected from the Euclidean distance and 

angle distance method. JIT-ELM is superior to LWR since it has fast learning speed and 

good generalization performance. Nevertheless, JIT-ELM has not been examined in other 

types of process. 

 

Meanwhile, Zheng et al. (2018) suggested JIT semi-supervised ELM (JSELM) to predict 

the Mooney viscosity for industrial rubber mixers. This JSELM utilises a fast leave-one-

out (FLOO) to train its regression model. The FLOO-based error index, 
FLOO

N FF
E λ,  is shown 

in Equation (2.13) consisting of JSELM’s parameters (the number of hidden nodes, NF 

and a balance parameter,
Fλ ). These parameters need to be obtained using the FLOO 

strategy to train a JSELM regression model for an adopted similar dataset. Besides, the k-

means clustering technique is also used to select the similar sample for semi-supervised 

learning of a local regression model. Nevertheless, JSELM has only tested on rubber 

mixers only. 
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where yi is the training data, LF is the number of training sample, JF is a matrix consists of 

a unit matrix for the graph Laplacian, H is the output matrix of hidden-layer vector (hi), 

and Y is the output data sample. 

 

2.5.8. Just-in-time based methods 

Besides, Liu et al. (2018) introduced a JITL strategy with common feature extraction 

algorithm for the complicated nonlinear characteristics of multi-grade processes. In their 

method, JITL is employed to select the relevant sample from different grades with regards 

to the query. Then, the common features shared by different grades are extracted based on 

the selected samples. Next, a PLS model is utilised to the special features for each grade. 

Hence, quality prediction can be done by integrating the common and special features of 

each grade. However, when the number of samples in each grade is sufficient, a simple 

PLS regression can obtain the similar prediction as this technique.  

 

Meanwhile, Yuan et al. (2018) demonstrated a new ensemble JITL (E-JITL) method using 

multiple similarity measurements for nonlinear processes. In this method, different local 

models are built using different groups of relevant samples respective to the similarity 

measurements. The similarity measurements include Euclidean distance measurement, 

distance, and angle measurement, and distance measurement in the low-dimensional 

supervised latent space using PLS. Then, the final prediction is found using the ensemble 

method on each local model. The effectiveness of E-JITL is illustrated using two industrial 

applications. Nevertheless, the type of similarity measurements for the group of the 

sample is predefined. Hence, the optimal results using this E-JITL are not guaranteed.    

 

At the same time, Mei et al. (2018b) suggested a novel JITL-bagging-PLS for 

fermentation processes. Different from the traditional similarity measurement, the authors 

use the Gaussian Kernel function to find the most relevant samples. The bagging method 

is utilised to reselect the obtained samples to prevent setting the size of the selected 
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samples. Then, the local model is built by PLS for prediction purpose. The prediction 

performance of his JITL-bagging-PLS algorithm is evaluated using an industrial Penicillin 

fermentation. However, since Kernel function is utilised, the computation time for the 

proposed algorithm can be high, and it should be investigated. 

 

Table 2.4 summarises the JIT based adaptive soft sensors for Gaussian distributed data in 

recent years. Table 2.4 shows that LW-PLS using Euclidean distance measure has been 

widely adopted. Among these JIT based approaches for Gaussian distributed data, LW-

PLS model may still be preferable due to its simplicity and practicability. Since the LW-

PLS model is simple and has been used in industrial applications, an improved LW-PLS 

model to deal with non-Gaussian distributed data is needed.  
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Table 2.4 Summary of the Just-in-time (JIT) based adaptive soft sensors for Gaussian distributed data 

Methods Similarity factor Process type    

[ B, C ]* 

Advantages Process description Publication 

Correlation-based JIT 

(CoJIT) 

Q and Hotelling’s 

T2 statistics of PCA 

(Correlation 

measure) 

C Abrupt changes, 

time-varying, 

nonlinearity 

CSTR, 

A cracked gasoline 

fractionator 

(Fujiwara et al. 2008; 

Fujiwara et al. 2009) 

Nearest correlation 

correlation-based JIT 

(NC CoJIT) 

Q and Hotelling’s 

T2 statistics of PCA 

(Correlation 

measure) 

C Abrupt changes, 

time-varying, 

nonlinearity 

Numerical example, a 

parallelized chemical 

reaction process 

(Fujiwara et al. 2012) 

Nearest correlation 

spectral clustering 

correlation-based JIT 

(NC-SC CoJIT) 

Nearest correlation 

correlation spectral 

clustering method 

(Correlation 

measure) 

B Abrupt changes, 

time-varying, 

nonlinearity 

Numerical example, a 

case study of 

parallelized batch 

process 

(Fujiwara et al. 2010) 
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Ensemble Correlation-

based JIT 

(CoJIT) with inductive 

confidence predictor 

Q and Hotelling’s 

T2 statistics of PCA 

(Correlation 

measure) 

C Abrupt changes, 

time-varying, 

highly 

nonlinearity, 

Outlier 

Wastewater treatment 

process 

(Liu et al. 2012b) 

JIT Locally Weighted 

Regression 

(JIT LWR) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

nonlinearity 

Steel products plant (Shigemori et al. 

2011; Shigemori 

2015) 

Locally Weighted Partial 

Least Square 

(LW-PLS) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

nonlinearity, 

multiple mode, 

collinearity 

Industrial 

petrochemical 

process, Industrial 

Pharmaceutical 

process, Industrial 

chemical plant, 

Industrial 

semiconductor 

(Hazama and Kano 

2015; Toshiya and 

Kano 2015; Kim et 

al. 2013b; Kim et al. 

2013a; Nakagawa et 

al. 2012) 
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process, industrial 

food processing plant 

Moving window Locally 

Weighted Partial Least 

Square under TD 

(MW-JITL-TD) 

Euclidean distance 

measure with 

moving window 

and time difference 

strategies 

C Abrupt changes, 

time-varying, 

nonlinearity, 

multiple mode, 

collinearity 

Numerical example, 

sulfur recovery unit, 

blast furnace iron 

making process 

(Yuan et al. 2015a) 

Ensemble Locally 

Weighted Partial Least 

Square 

(ELWPLS) 

New distance 

measure together 

with data density 

and the nearest  data 

C Abrupt changes, 

time-varying, 

nonlinearity, 

multiple mode, 

collinearity 

Numerical example, a 

debutanizer column, 

an IPA production 

process 

(Kaneko and Funatsu 

2016) 

JIT Locally Weighted 

Kernel Principal 

Component Regression 

(LW-KPCR) 

Euclidean distance 

measure 

B, C Abrupt changes, 

time-varying, 

highly 

nonlinearity, 

collinearity 

Debutanizer column, 

Fermentation process 

for Penicillin 

production 

(Yuan et al. 2014a) 
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Double locally weighted 

Kernel principle 

component regression 

(D-LWKPCR) 

Euclidean distance 

measure with 

weighted technique 

C Abrupt changes, 

time-varying, 

highly 

nonlinearity, 

collinearity 

Industrial roller kiln Chen et al. (2018) 

Locally weighted Kernel 

partial least square 

regression (LW-KPLSR) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

nonlinearity 

 

Numerical example, 

Penicillin 

fermentation process, 

Magnesium stearate  

concentration 

estimation in cleaning 

processes 

(Zhang et al. 2017) 

Locally weighted 

probabilistic principal 

component analysis 

(WPPCA) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

nonlinearity, 

dimensional 

reduction, 

Numerical example, 

industrial debutanizer 

column,  

(Yuan et al. 2015b) 
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feature 

extraction 

Double locally weighted 

Kernel principle 

component regression 

(D-LWPCR) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

feature 

extraction, 

reference to 

output 

information 

Numerical example, 

industrial blast 

furnace iron making 

process 

(Yuan et al. 2016b) 

Locally weighted 

supervised latent factor 

analysis (LWSLFA) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

highly nonlinear 

Industrial debutanizer 

column, industrial of 

CO2 column 

(Yao and Ge 2017) 

Weighted linear 

dynamic system 

(WLDS) 

Euclidean distriance 

measure 

C Abrupt changes, 

time-varying, 

highly nonlinear 

Numerical example, 

industrial debutanizer 

column 

(Yuan et al. 2018) 
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Sparse sample 

regression based JIT 

(SSR-JIT) 

Elastic net 

 

C Abrupt changes, 

time-varying, 

nonlinearity, 

Industrial cleaning 

process, industrial 

drugs productions 

(Uchimaru and Kano 

2016) 

Multiphase JIT - Kernel 

Partial Least Square 

(MJIT-KPLS) 

Euclidean distance 

measure 

B Abrupt changes, 

time-varying, 

highly 

nonlinearity, 

multiple phases 

Industrial 

chlortetracycline fed-

batch fermentation 

process 

(Jin et al. 2014) 

JIT Least Square 

Support Vector 

Regression 

(JIT- LSSVR) 

Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

highly 

nonlinearity 

Tennessee Eastman 

Process, Debutanizer 

column 

(Ge and Song 2010) 

JIT Least Square 

Support Vector 

Regression 

(JIT- LSSVR) 

Distance measure C Abrupt changes, 

time-varying, 

highly 

nonlinearity,  

Outlier 

Indoor air quality of 

hazardous pollutants 

(Liu and Yoo 2016) 



43 

 

JIT-Recursive Least 

Square Support Vector 

Regression (JIT-

RLSSVR) 

Distance and angle 

measure 

B Abrupt changes, 

time-varying, 

highly 

nonlinearity 

Streptokinase fed-

batch fermentation 

process 

(Liu et al. 2012a) 

JIT-Least Square 

Support Vector 

Regression 

(JIT-LSSVR) 

Distance and angle 

measure 

C Abrupt changes, 

time-varying, 

highly 

nonlinearity,  

multi-grade 

A simulated CSTR 

process, industrial 

polyethylene process 

(Liu and Chen 2013) 

MW JITL least square-

support vector machine 

regression  

(MW JIT LS-SVM) 

Distance and angle 

measure with 

moving window 

strategy 

C Abrupt changes, 

time-varying, 

nonlinearity 

Distillation process (Li et al. 2015) 

Multi-model online SVR 

(MOSVR) 

t-test and moving 

window strategy 

B Nonlinearity, 

multi-phases, 

batch to batch 

variations 

Simulated fed-batch 

penicillin 

fermentation process, 

Industrial fed-batch 

(Jin et al. 2015b) 
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chlortetracycline 

fermentation process 

Adaptive/online local 

PLS (OLPLS) 

F-test C Time-varying, 

nonlinearity,  

multi-output, 

process state 

division, local 

model adaption, 

reduce the 

memory cost 

Debutanizer 

distillation column, 

Sulfur recovery unit 

(Shao et al. 2014) 

Online local learning 

based adaptive soft 

sensor 

(OLLASS) 

Mutual information 

(MI) weighted/ 

neighbor sample 

based similarity 

measure 

B Abrupt changes, 

time-varying, 

nonlinearity 

Industrial fed-batch 

chlortetracycline 

fermentation process 

(Jin et al. 2015a) 
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Dual learning-based 

online ensemble 

regression 

(DLOER) 

Euclidean distance 

measure 

B Abrupt changes, 

time-varying, 

nonlinearity 

Fed-batch penicillin 

fermentation process 

(Jin et al. 2016) 

Ensemble JIT GPR 

(EJITGPR) 

Euclidean distance 

measure 

B Abrupt changes, 

time-varying, 

nonlinearity 

Industrial batch 

rubber mixing 

process 

(Yang et al. 2016) 

JIT based MW GPR 

(MWGPR) 

Euclidean distance 

measure with 

moving window 

strategy 

B, C Abrupt changes, 

time-varying, 

nonlinearity 

A continuous 

fermentation process, 

a pilot scale 

experiment 

(Xiong et al. 2016) 

JITL MW GPR 

(JIT-MWGPR) 

Gaussian function-

based similarity 

criterion 

B Abrupt changes, 

time-varying, 

nonlinearity 

Industrial 

Erythromycin 

fermentation process 

Mei et al. (2018) 

JIT Extreme Learning 

Machine (JIT ELM) 

Distance and angle 

measure 

C Abrupt changes, 

time-varying, 

Industrial 

Polyethylene 

Li et al. (2018) 
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nonlinearity, 

multi-mode 

operating, multi-

standard 

production 

condition 

terephthalate 

polymerization 

process 

JIT semi-supervised 

Extreme Learning 

Machine 

(JSELM) 

K-mean clustering 

method 

B Abrupt changes, 

time-varying, 

nonlinearity 

Industrial rubber 

mixer 

Zheng et al. (2018) 

JITL strategy Euclidean distance 

measure 

C Abrupt changes, 

time-varying, 

nonlinearity, 

multi-grade 

A numerical example, 

industrial 

polyethylene process 

Liu et al. (2018) 

Ensemble JITL           

(E-JITL) 

Euclidean distance 

measure, distance 

and angel measure, 

C Abrupt changes, 

time-varying, 

nonlinearity 

Industrial hydro 

cracking process, 

Yuan et al. (2018) 
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distance measure in 

the low dimensional 

supervised latent 

space using PLS 

blast furnace iron 

making process 

JIT-bagging-PLS Gaussian function-

based similarity 

criterion 

B Abrupt changes, 

time-varying, 

nonlinearity 

A numerical example, 

Penicillin 

fermentation process 

Mei et al. (2018) 

*B = Batch processes; C = Continuous processes 
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2.6. Non-Gaussian based just-in-time algorithms 

Several different approaches have been developed to reveal meaningful information in 

non-Gaussian data. Fan et al. (2014) have introduced a new GMM based similarity 

criterion which is based on distance measure for JIT based soft sensors to handle time-

varying and non-Gaussian behaviour processes. In their study, the GMM has been built 

from a set of training samples to obtain the non-Gaussian information in the process data 

set. After considering the non-Gaussianity of the process data and the behaviour of the 

query sample, a more accurate similarity criterion for sample selection to m query, qŷ  can 

be calculated via Equation (2.14). However, Ge et al. (2013) have reported that GMMs 

are unable to model all types of non-Gaussian data and their model training is 

complicated.  

 

( ) mm

T

mmqq qWPWxŷ
1−

=
                                                                                               

(2.14) 

 

where Wm, Pm, and qm are the weighting matrix, loading matrix, and loading vector, 

respectively. 

 

Xie et al. (2014) have integrated non-Gaussian regression (NGR) into support vector data 

description (SVDD) based JIT soft sensors on coping with non-Gaussian distributed 

process data. This integrated algorithm utilizes NGR to extract non-Gaussian information 

from process data while the SVDD is used to perform distance-based similarity 

measurements for constructing a local model. However, Xie et al. (2014) have reported 

this method can lead to suboptimal results due to the tuning parameter, which is used to 

ensure the best response of this method is obtained via a heuristic technique. Moreover, 

Ge et al. (2013) have declared that setting the Kernel parameter for the SVDD based 

model is difficult and the SVDD has a tighter control limit which may cause more false 

alarms. Also, Zhang et al. (2015) have reported that these GMM-based and SVDD based 

JIT algorithms are restricted to continuous processes. 
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On the other hand, Zhang et al. (2015) and Ge and Song (2008) have integrated 

independent component analysis (ICA) into their advanced JIT based algorithm for batch 

processes as an ICA can capture meaningful information on higher order statistics of non-

Gaussian distributed data. Ge and Song (2008) have proposed a two-step ICA – PCA that 

combines with a JIT LSSVR model to perform online monitoring of nonlinear multiple 

mode processes with non-Gaussian information. However, Ge and Song (2008) did not 

consider multi-phases in their advanced algorithm, and their algorithm was limited to 

continuous processes.  

 

As mentioned earlier, the JIT LSSVR suffers from a high computational load (higher than 

the JIT PLS). Zhang et al. (2015) have integrated ICA – PLS and non-Gaussian 

dissimilarity measures into a JITL soft sensor to estimate the quality variable of batch 

processes that are time-varying, nonlinear, non-Gaussian, with multi-phases and batch-to-

batch variations. However, in their study, the proposed approach showed a much higher 

computational load than a PLS-based algorithm and became problematic when dealing 

with outliers since correlation-based measures were used.   

 

Besides, Liu and Gao (2015) have proposed to integrate support vector clustering which 

is a non-Gaussian outlier detection method into the JIT GPR to control for non-Gaussian 

data and outliers for online prediction in nonlinear processes. Liu and Gao (2015) have 

adopted the JIT GPR which is a nonlinear model since it supplies probabilistic information 

for prediction and can maximise its parameters spontaneously which cannot be done by 

the JIT SVR and JIT LSSVR models. Nevertheless, Jin et al. (2015a) have reported that 

GPR methods have a heavier modelling burden compared to the PLS and KPLS methods. 

Hence, the computational load for the JIT GPR methods is high. 

 

Peng et al. (2017) have created a JITL extreme learning machine (JITL ELM) for non-

Gaussian chemical processes with multimode operating conditions. In their study, a 

speedy Kernel ELM approach, which uses Fast food Kernel (an approximate kernel 
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expansion) has been adopted to extract information from high nonlinear process data. 

Additionally, a new similarity index, the modified adjusted cosine similarity (MACS) is 

proposed for local modelling and can be measured using Equation (2.15). With the help 

of a Bayesian classifier, the MACS index can control for M multiple modes, and Cj features 

in the JITL ELM model. Nevertheless, the developed approach did not consider the 

transition data, which may lead a failure to classify transition data from fault data.  

 

∑=
=

M

j
inewnewjinew xxACSxCpxxMACS

1

),()|(),(                                                            (2.15) 

 

where p(Cj|xnew) and ACS are the posterior probability and the adjusted local cosine 

similarity index respectively. 

 

From the review above, it is obvious there is a need to create a non-Gaussian algorithm 

that is simpler and more practical than the non-Gaussian algorithms discussed earlier in 

this chapter. Table 2.5 shows the summary of the JIT based adaptive soft sensors for non-

Gaussian distributed data. Much less JIT based algorithms have been established for non-

Gaussian distributed data as compared to the Gaussian based algorithms in Table 2.4. 

Nevertheless, the performance of the LW-PLS model in handling nonlinear processes data 

should be improved. In the literature, the incorporation of the Kernel function into the 

PCR and PLS models has resulted in Kernel PCR and KPLS models, respectively, and 

have shown improvements in their predictive performances (Jin et al. 2014; Hu et al. 

2013). Thus, hypothetically, the inclusion of the Kernel function into the LW-PLS 

algorithm will be able to enhance the performance of LW-PLS models under nonlinear 

conditions. A brief review of the nonlinear issue is included in the following section. 
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Table 2.5 Summary of the Just-in-time (JIT) based adaptive soft sensors for Non-Gaussian distributed data 

Methods Similarity factor Process type      

 [ B, C ]* 

Advantages Process 

description 

Publication 

JIT Gaussian mixture 

model (JIT-GMM) 

Mahalanobis 

distance measure 

C Abrupt changes, 

time-varying, 

nonlinearity  

Numerical 

study, 

Debutanizer 

column 

(Fan et al. 2014) 

Non-Gaussian 

Regression JIT Support 

Vector Data Description 

(NGR-JIT-SVDD) 

Q and Hotelling’s 

T2  statistics of 

PCA (Correlation 

measure) 

C 

 

 

Abrupt changes, 

time-varying, 

nonlinearity  

Numerical 

study, Sulfur 

recovery unit 

(Xie et al. 2014) 

JIT Independent 

component analysis 

Principal Component 

analysis Least Square 

Support Vector 

Regression 

(JIT-ICA-PCA-LSSVR) 

Distance and angle 

measure 

C Abrupt changes, 

time-varying, 

highly 

nonlinearity, 

multiple mode 

Numerical 

example, 

simulation of 

the Tennessee 

Eastman 

benchmark 

process 

(Ge and Song 2008) 
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Support Vector 

Clustering JIT Gaussian 

Process Regression 

(SVC-JGPR) 

Euclidean distance 

measure 

B Abrupt changes, 

time-varying, 

nonlinearity, 

non-Gaussian, 

outliers 

Industrial 

polyethylene 

production 

process 

(Liu and Gao 2015) 

Non-Gaussian JITL (NG-

JITL) 

Non-Gaussian 

(ICA-PLS) 

dissimilarity 

measure 

(Correlation 

measure) 

B Abrupt changes, 

time-varying, 

nonlinearity, 

non-Gaussian, 

multi-phases, 

batch-to-batch 

variation 

Fed-batch 

penicillin 

fermentation 

process 

(Zhang et al. 2015) 

JITL and Extreme 

Leaning Machine (JITL 

ELM) 

Cosine similarity 

and posterior 

probability 

C Abrupt changes, 

time-varying, 

non-Gaussian 

Numerical 

example,  

distillation 

column system 

(Peng et al. 2017) 

*B = Batch processes; C = Continuous processes 



53 

 

2.7. Nonlinear data issues 

Although the LW-PLS model has been widely used to develop adaptive soft sensors, 

a linear PLS regression in the LW-PLS model may not work well when processes have 

nonlinear characteristics (Gao et al. 2015; Shan et al. 2015; Hu et al. 2013; Zhang and 

Zhang 2009). Thus, an improved algorithm for LW-PLS based adaptive soft sensors, 

which is capable of dealing with nonlinear data is required. Since developing an 

improved LW-PLS model is the primary objective of this study, only nonlinear types 

of PLS able to cope with nonlinear data is discussed in this subsection.  

 

Several nonlinear versions of a PLS such as quadratic PLS (QPLS), spline PLS 

(SPLS), neural network PLS (NNPLS) and Kernel PLS (KPLS) models have been 

proposed for nonlinear issues. The internal nonlinear PLS (NPLS) models, QPLS, 

SPLS and NNPLS make use of nonlinear functions (e.g., a simple polynomial 

transformation of observed data) to define a relationship between latent variables (not 

directly observed variables) (Wang et al. 2015b; Rosipal 2010; Frank 1990). However, 

the predefined form of the quadratic function in QPLS algorithms has restricted its 

flexibility to develop a nonlinear model (Wang et al. 2015b; Shah et al. 2015; Shah et 

al. 2014; Zhou et al. 2007). 

 

Although SPLS and NNPLS algorithms provide flexibility to capture nonlinearity 

relationships for variables, these methods may lead to local minima or obtain over-

fitted model (Wang et al. 2015b; Shan et al. 2014; Wold 1992). Unlike the 

abovementioned internal NPLS models, the KPLS model, first introduced by Rosipal 

and Trejo (2002), maps observed variables into a high-dimensional feature space using 

the Kernel function before the linear PLS models are built in this new feature space. 

Compared to other NPLS models, Kernel-based techniques including the KPLS 

model, do not involve the nonlinear optimization strategy (Hu et al. 2013) and the 

KPLS model only requires linear algebra which is as simple as a linear PLS regression 

(Jin et al. 2014; Zhang and Zhang 2009).  
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Moreover, different types of Kernel functions like polynomial Kernel, Gaussian 

Kernel, Sigmoid Kernel, the exponential Kernel and the Fourier Kernel (Wang et al. 

2015b) allow the KPLS model to control for different forms of nonlinearities (Hu et 

al. 2011). Due to these advantages, the KPLS model has been used to capture nonlinear 

information from chemical processes by Hu et al. (2013), Zhang et al. (2012), Zhang 

and Hu (2011), and Zhang and Zhang (2009) for process monitoring as well as by Jia 

and Zhang (2016) for fault detection. In addition, Wang et al. (2016), Jin et al. (2014), 

Zhang et al. (2010) and García-Reiriz et al. (2010) have adopted the KPLS model to 

develop soft sensors for nonlinear processes while Gao et al. (2015) used a modified 

KPLS for general modelling. On the other hand, Kernel functions were incorporated 

into a Locally Weighted (LW) based algorithm to control for nonlinear problems by 

Yuan et al. (2014a) for creating soft sensing and Jiang and Yan (2013) for process 

monitoring.  

 

It is to be noted that researchers have not paid enough attention to applying the KPLS 

model for soft sensor development compared to other applications such as process 

monitoring and fault detection. However, the LW-PLS model is unable to analyse 

nonlinear process data, and an improved approach for the LW-KPLS algorithm has 

not been found yet. Moreover, locally weighted learning based JIT methods, including 

the LW-KPLS accept the dataset as complete without the missing data.  

 

2.8. Missing data issues 

The issues of missing data can be addressed by imputation methods such as deletion, 

replacement, and Expectation-Maximization (EM) methods. Karanja et al. (2013) 

ranked deletion, replacement, and EM methods as first, second and third generation 

methods, respectively. These imputation methods are commonly used for soft sensors, 

process monitoring and fault diagnosis to address incomplete observation problems. 

However, a more comprehensive review of other missing data imputation techniques 

were carried out by Miao et al. (2018), Liu and Gopalakrishnana (2017), Folch-

Fortuny et al. (2016), Karanja et al. (2013), Schafer and Graham (2002), Arteaga and 

Ferrer (2002) and Nelson et al. (1996). Additional comparative studies of different 
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imputation approaches have done by Askarian et al. (2016), Riggi et al. (2015), Folch-

Fortuny et al. (2015), and Gómez-Carracedo et al. (2014). 

 

Deletion methods such as list-wise and pairwise deletions eliminate dataset containing 

missing values. These deletion methods are usually performed in the pre-processing 

data stage before developing the soft sensors and where complete data sets are 

assumed (Souza et al. 2015; Pani and Mohanta 2011). These methods are 

straightforward, but a large amount of data may be lost (Xu 2016; Folch-Fortuny et al. 

2015; Karanja et al. 2013) which will affect the accuracy of the predictive model (Yin 

et al. 2014; Nelson et al. 2006; Lopes and Menezes 2005). Moreover, the negative 

impact of missing measurements on the predictive models for soft sensors and process 

monitoring has been reported by Nelson et al. (2006).  

 

In addition, replacement methods including regression imputation, interpolation 

replacement and mean substitution have been proposed to estimate the missing 

measurements using other observed values in the dataset. These replacement methods 

have been studied for soft sensors and process monitoring applications by many 

researchers : Yuan et al. (2016a), Folch-Fortuny et al. (2015), Lin et al. (2007), Lopes 

and Menezes (2005), Arteaga and Ferrer (2005), Arteaga and Ferrer (2002), and 

Nelson et al. (1996). However, Karanja et al. (2013) and Peugh and Enders (2004) 

pointed out that replacing the missing values decreases variability in the hypothetically 

complete dataset and leads to biased estimates. Hence, EM is recommended by 

Karanja et al. (2013) since it can reduce the impact of the lack of variability in the 

imputed dataset.  

 

To date, the EM has been utilised by numerous researchers; (Xiong et al. 2015; Li et 

al. 2015; Junger and de Leon 2015; Gómez-Carracedo et al. 2014; Yin et al. 2014; Jin 

et al. 2012) for process sensing and monitoring to control for missing data problems. 

Nevertheless, limited research has been carried out to consider the missing data issue 

in developing adaptive soft sensors including locally weighted learning based adaptive 
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soft sensors. Integrating the locally weighted learning based JIT method with EM to 

address the missing data problem has not been explored. 

 

2.9. Research gaps 

From the above review, it is observed the JIT approach has been more commonly used 

to develop adaptive soft sensors compared to non-JIT approaches such as the MW, 

recursive, TD, and ensemble methods. Among the existing JIT based adaptive soft 

sensors, the LW-PLS has been found to be a unique algorithm in both the literature 

and in industrial applications as it exhibits some advantages such as simplicity, ability 

to cope with high dimensionality and collinearity among the variables as well as the 

ability to handle outliers. However, most JIT algorithm based adaptive soft sensors, 

including the LW-PLS model, assume all of the observed data are complete without 

any missing data and have a Gaussian distribution. Missing data are inevitably present 

in the observed data due to transmission errors, the failure of hardware sensors and 

problems in accessing the database.  

 

On the other hand, not all data behave as a Gaussian distribution. And yet, JIT 

algorithm based adaptive soft sensors do not simultaneously take into account the 

presence of non-Gaussian distributed data and incomplete measurements in their 

model development stage and applications. Furthermore, the existing approaches for 

dealing with non-Gaussianity data such as the LSSVR based, GMM based, SVDD 

based, the non-Gaussian dissimilarity measure based and the GPR based JIT 

algorithms have higher complexities and computational loads compared to the PLS 

based algorithm. Moreover, all the algorithms mentioned above were developed to 

treat complete data only. Thus, it is imperative that a new simpler algorithm, which 

can deal with non-Gaussian data and robust against missing data is available. This new 

algorithm is also expected to have low computational time as compared to its 

counterpart and it can solve the hardware sensors issues stated in Table 2.1. 
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2.10. Summary 

This chapter covers the historical background of applying soft sensors, adaptive 

algorithms, and reviews the developed JIT-based adaptive soft sensors to handle 

Gaussian and non-Gaussian distributed data as well as nonlinear and missing data. 

Research gaps are then identified based on the limitations of the existing adaptive soft 

sensors. It can be seen that majority of the JIT based algorithms for adaptive soft 

sensors are proposed to address nonlinear and non-Gaussian distributed chemical 

process data. Moreover, limited work has focused on missing data issues. In reality, 

the process data can be highly nonlinearity, non-Gaussianity and consists of missing 

measurement. Less work for adaptive soft sensors has simultaneously considered these 

characteristics of data. Hence, these research gaps have opened the challenges for 

researchers to develop a new and improved algorithm for adaptive soft sensors. 
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Chapter 3 

Research methodology 

 

3.1. Introduction 

This chapter provides an overview of the research methodology for developing new 

improved adaptive soft sensors, which involves Gaussian-based and non-Gaussian-

based locally weighted (LW) algorithms. Firstly, the framework of algorithm 

formulation used to address the problem statement explained in Chapter 1 and the 

challenges encountered are presented. Then, the main stage of the research is 

described. The formulation of the novel developed Gaussian based, and non-Gaussian 

based LW algorithms are then briefly described. Then, case studies, predictive 

performance measurement, specification of computer facilities, the measurement of 

prediction quality, computational times and Kernel functions are also presented. 

 

3.2. Basic idea of algorithms formulation 

In view of practical applications and theoretical perspectives, there is still an 

opportunity for improving the existing locally weighted partial least square (LW-PLS) 

algorithms. As mentioned earlier, current LW-PLS algorithms have been formulated 

based on two main assumptions. They must contain Gaussian distributed data and a 

complete dataset. Therefore, it is necessary to improve the prediction performance of 

the LW-PLS algorithm to handle the missing data and non-Gaussian distributed data. 

 

On the other hand, among the existing algorithms, such as the principal component 

analysis (PCA), partial least square (PLS) and LW-PLS, Qin (2012) has mentioned 

the PCA can be used to generate the principal components, the latent variables required 

for process modelling. However, the PCA algorithm can only model up to second-

order statistics of process data that describes Gaussian distribution information. 

Hence, an independent component analysis (ICA), Gaussian mixture models and a 

support vector data description are the most commonly used methods to deal with non-

Gaussian distributed data (Ge et al. 2013). Among these methods, the ICA is more 
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appropriate for incorporating into the LW-PLS model since it is simple, easy to 

understand and can extract high-order data information.  

 

Moreover, the ICA model, which is an extension of the PCA model, has been used by 

Ge and Song (2008), and Zhang et al. (2015) to develop JIT-based soft sensors. In 

their studies, two-step ICA-PCA and ICA-PLS models have been proposed to capture 

both Gaussian and non-Gaussian distributed data since the ICA can include higher 

order statistics of data in algorithms modelling. Hence, for the LW-PLS model to 

handle non-Gaussian distributed data, it has to be combined with an ICA model in the 

improvement of adaptive soft sensors. This ICA integrated algorithm should also 

consider its robustness against missing data since it has yet to be developed. 

 

To cope with missing data, Karanja et al. (2013) have suggested using a third 

generation missing data imputation method, expectation maximization (EM). First 

generation based algorithms such as the deletion method are more likely to eliminate 

too many data sets and may cause data loss and lead to a larger standard of errors in 

the estimate if the amount of missing data is not minimized. Second-generation 

imputation methods such as mean and multiple linear regression-based substitutions 

are more robust than first-generation techniques. However, these replacement methods 

also reduce the accuracy of the predictive performance of the model as they reduce the 

variability present in the data set.  

 

Third generation techniques, especially EM are preferable as the variability in the 

imputed data are optimized. Recently, EM has been used as a missing data imputation 

method for developing soft sensors by Li et al. (2015) and for producing a robust 

version of PLS-based soft sensors by Yin et al. (2014). A modified PLS based soft 

sensor was developed by Nelson et al. (1996) using a second generation missing data 

imputation method. Nonetheless, an integration of the EM method with the LW-PLS 

model can be a solution to handle the missing data problem for adaptive soft sensors. 
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The primary objective of this work is to propose and develop a non-Gaussian 

algorithm for the LW-PLS based adaptive soft sensor, which is sufficiently robust 

against missing measurements. This algorithm will be formulated by a simultaneous 

integration of EM, LW, the ensemble method and ICA algorithms into Kernel PLS 

(KPLS) algorithms to form the EM ensemble locally weighted independent 

component Kernel partial least square (EM-E-LW-IC-KPLS).  

 

The integration of the ICA model (instead of using the PCA only in the existing 

algorithms) is to deal with non-Gaussian data, and the inclusion of the EM algorithm 

is to handle missing data. Whereas, the Kernel function is incorporated into the PLS 

algorithm to enhance the algorithm ability to further deal with nonlinear dynamic 

processes. The proposed algorithm for creating adaptive soft sensors is expected to 

improve process sensing and control and optimisation as well as enhancing the 

operational efficiency of process plants which ultimately leads to more sustainable and 

profitable operations. The framework used to construct a new algorithm is presented 

in Figure 3.1. 

 

3.3. Main stages of the research 

The main stages of this research are described in the following: 

 

a. Developing virtual plants to generate data 

Historical data used to develop and validate the soft sensor model is generated from 

virtual plants simulated using MATLAB Simulink or MATLAB. The virtual plants 

are six different case studies with nonlinear data as well as Gaussian and non-Gaussian 

data. Besides, different sets of data with various levels of random missing 

measurements ranging from 5% to 60% are generated.  

 

b. Developing and evaluating a robust, Gaussian LW algorithm 

The newly proposed Gaussian LW algorithms are formulated by incorporating Kernel 

functions and ensemble model into the LW-PLS algorithm to obtain the ensemble LW 
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Kernel PLS (E-LW-KPLS) algorithm. Different Kernel functions are employed as an 

internal model within PLS instead of linear regression.  

 

c. Developing and evaluating a robust, non-Gaussian LW algorithm 

The newly developed Gaussian-based LW algorithms developed is extended to handle 

non-Gaussian distributed data. Independent components (ICs) generated from ICA is 

employed in KPLS modelling to address non-Gaussianity of the data while EM 

algorithm is used to deal with missing measurements. The obtained algorithms are 

called ensemble LW independent component Kernel PLS (E-LW-IC-KPLS) and EM-

E-LW-IC-KPLS.  

 

d. Assessing and minimising potential penalty in computational time of the new 

algorithm 

The new algorithms should not only be evaluated in term of predictive performances 

but also their computational efficiency by determining the central processing unit 

(CPU) running time of each algorithm for predicting the targeted process variable(s). 

Therefore, computational loads of the newly proposed and existing algorithms are 

assessed and compared. These comparisons are conducted by running these algorithms 

in MATLAB platform using the same computer to trace CPU time for data processing 

and predictive modelling.  
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Figure 3.1 A flow chart represents the framework used to construct a new algorithm 

 

 

Yes 

No 

Yes 

-Does the integrated and modified algorithm be 

effectively performed against nonlinear, non-Gaussian 

distributed, and missing data?  

-Validating the algorithm using three case studies. 

End 

Modification is made on LW-PLS to include Kernel function 

and LW KPLS is formed. 

Ensemble method is incorporated with the proposed algorithm 

to form E-LW-KPLS. 

 

-Can the proposed algorithm cope with non-Gaussian 

distributed data? 

-Validating the algorithm using three case studies. 

No 

Modification is made on the proposal algoritm to add ICA and 

E-LW-IC-KPLS is built. 

No -Is there any computational burden associated with the 

proposed algorithm?  

-Validating the algorithm using three case studies. 

 

- Will the proposed algorithm have any limitation in term of the 

maximum degree of robustness against missing data? 

-Validating the algorithm using three case studies. 

LW-PLS bench marking model for adaptive soft sensors 

Yes 

Yes 

Inclusion of the EM algorithm in the proposed algorithm and EM- E-

LW-IC-KPLS is constructed.  

No 
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3.4. Description of algorithms formulation 

A Gaussian-based LW algorithm is developed to deal with missing data and nonlinear 

data while a non-Gaussian-based LW algorithm is constructed to cope with non-

Gaussian data. These LW algorithms are briefly explained in the following 

subsections. 

 

3.4.1. Gaussian based locally weighted algorithms 

A Gaussian-based LW algorithm is a combination of the LW-PLS model, the 

ensemble method and the Kernel function, where the Kernel function is utilized to deal 

with nonlinear data. In the first instance, the integration of Kernel function, the 

ensemble method, and the LW-PLS are done to form the E-LW-KPLS model. This 

new and modified algorithm is an improved algorithm for nonlinear processes. 

Meanwhile, it has lower computational time compared to LW Kernel PLS (LW-

KPLS) model. Next, the predictive performance of this new Gaussian-based LW 

algorithm, the E-LW-KPLS, is evaluated using various case studies. The E-LW-KPLS 

model is applied to the nonlinear process, and the results are compared with the LW-

PLS and LW-KPLS models. The detailed formulation about these Gaussian-based LW 

algorithms is shown in Chapter 4 while the results and discussion about its predictive 

performance in different case studies are given in Chapter 6. 

 

3.4.2. Non-Gaussian based locally weighted algorithms 

This E-LW-KPLS model is then integrated with the ICA algorithm to form a non-

Gaussian-based LW algorithm, called the EM-E-LW-IC-KPLS. In this integrated 

algorithm, the ICA model is employed to handle non-Gaussian distributed data. 

Initially, the ICA is incorporated with the E-LW-KPLS model to create the locally 

weighted independent component Kernel partial least square (LW-IC-KPLS) model 

and the ensemble LW independent component Kernel PLS (E-LW-IC-KPLS) model. 

After that, the EM is combined with the E-LW-IC-KPLS model to build the EM-E-

LW-IC-KPLS model.  
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The E-LW-IC-KPLS is the associated outcomes of the EM-E-LW-IC-KPLS, and it is 

a new and improved algorithm. This new adaptive algorithm utilised to formulate an 

adaptive soft sensor, able to analyse nonlinear and non-Gaussian distributed data. On 

the other hand, the newly developed algorithms including E-LW-IC-KPLS and EM-

E-LW-IC-KPLS are additional approaches to develop an adaptive soft sensor. They 

are the more accurate alternative to the existing algorithms since it can address the 

nonlinear and non-Gaussian distributed data as well as with the presence of missing 

data simultaneously. Meanwhile, EM-E-LW-IC-KPLS has been developed to address 

the research gaps of the existing algorithms. 

 

In the later stage of the study, these three newly formulated algorithms, the LW-IC-

KPLS, E-LW-IC-KPLS, and EM-E-LW-IC-KPLS models have been applied to 

various case studies to investigate their predictive accuracy. Notably, the predictive 

performance of the E-LW-IC-KPLS model is distinguished from other algorithms 

such as the LW-PLS, LW-KPLS, and the LW-IC-KPLS. Moreover, the EM-E-LW-

IC-KPLS model is applied to process data consisting of missing data. More 

information about the development of these developed non-Gaussian based LW 

algorithms is illustrated in Chapter 5.  

 

In addition, these algorithms are applied in different case studies, and their results and 

discussion are demonstrated in Chapter 6. Besides, for case studies with nonlinear and 

non-Gaussianity, results of LW-PLS, LW-KPLS, LW-IC-KPLS, and E-LW-IC-KPLS 

are evaluated and compared. Furthermore, for the case studies with missing data, the 

results of EM-E-LW-IC-KPLS are compared to another popular missing data 

imputation method, the trimmed score regression (TSR) and singular value 

decomposition (SVD) that are also integrated with the E-LW-IC-KPLS model to form 

TSR E-LW-IC-KPLS (TSR-E-LW-IC-KPLS) and SVD E-LW-IC-KPLS (SVD-E-

LW-IC-KPLS) models. The TSR has a good agreement in the results as demonstrated 

by Folch‐Fortuny et al. (2016a), Folch‐Fortuny et al. (2016b), Folch-Fortuny et al. 

(2015) and Arteaga and Ferrer (2002) while SVD is also a popular missing data 

imputation method. Besides, SVD and TSR models are also integrated with the 

benchmark LW-PLS model, and the results are compared with EM-E-LW-IC-KPLS. 
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3.5. Case studies 

To evaluate the predictive performance of the developed Gaussian- and Non-

Gaussian-based LW algorithms, process data generated from six simulated plants are 

used. These simulated plants including numerical example 1 (case study 1), a single 

chemical reactor (case study 2), wastewater treatment (case study 3), numerical 

example 2, a static approximation of two sine waves (case study 4), Eukaryotic cell 

cycle regulation (case study 5) and a highly nonlinear continuously stirred tank reactor 

(CSTR) (case study 6) were produced using the MATLAB Simulink. Historical data 

of these simulated plants are utilised to validate the developed models. The simulated 

data in case studies 1 to 3 are nonlinear, and Gaussian distributed data while case 

studies 4 to 6 are nonlinear, and non-Gaussian distributed data. The non-Gaussian 

distributions in these case studies include bimodal distribution, multimodal 

distribution, plateau distribution and exponential distribution (Weaver et al. 2018). 

Then, the simulated data in case studies 4 to 6 are further treated to generate different 

levels of random missing measurements ranging from 5% to 60%. Table 3.1 

summaries the characteristics of data in the case studies. 

 

3.6. Predictive performance measurement 

To assess how well the developed LW algorithms predict an output in each case study, 

the standard measure of prediction errors including root mean square error (RMSE), 

mean absolute error (MAE), and the error of approximation (Ea) are considered. These 

predictive errors are applied to both training and test data. The lower values of RMSE, 

MAE, and Ea indicate that the predictions of algorithms are better while higher values 

denote more significant prediction errors. Meanwhile, the amount of time used to 

execute the algorithms determines their computational complexity. Hence, the CPU 

times used for an algorithm in each case study are calculated. The overall predictive 

performance of an algorithm is evaluated using its RMSE, MAE, Ea and t 

(computational time). However, the main performance measurement used to compare 

the different algorithms is Ea. Then, the results of each developed algorithm are 

evaluated and compared to distinguish their effectiveness. 
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To measure and compare the prediction accuracy of the models, several predictive 

errors are used in this work. There is a possible network where the error of the training 

set is smallest, however, the error of the test set is large (Dou et al. 2005). This form 

of network is unsteady when it is utilized to predict an unknown sample.  

 

To prevent this type of situation, a new evaluation criterion of the network, the error 

of approximation, Ea is used. The description of this criterion, taken from Saptoro et 

al. (2006) is given in Equations (3.1), and (3.2) as below: 
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where RMSE1 and RMSE2 are the root mean square errors of the training and the testing 

datasets. RMSE1 and RMSE2 are used to evaluate the ability of a model to fit data and 

its predictive power (Zhang et al. 2010). The equation of root mean square error, 

RMSE is shown as below: 
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                                                                                    (3.2) 

 

where N, N1, and N2 are the total number of samples, the number of training and testing 

datasets, respectively. In addition, yi and 
∧

iy  are the real and estimated values of the 

output. According to Dou et al. (2005) and Saptoro et al. (2006), a smaller Ea indicates 

more models are close to the real nature of the dataset. Hence, the effects of both 

training and test sets are examined using this evaluation criterion (Dou et al. 2005). 
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Moreover, the mean absolute error (MAE) and mean square error (MSE) are also used 

to evaluate the performance of predictive models. The MAE and MSE for both training 

and test data are also calculated. They are shown as below: 
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Ea, RMSE, MAE and MSE are utilized to evaluate the accuracy of the model. The 

smaller their values, the higher the accuracy of the model will be.  

 

To calculate the centre processing unit (CPU) or the computational time used to run 

the developed model, t, a simple formula as below is used. The computation times of 

the training and test data, which are t1 and t2, respectively, are measured through the 

determination of the length of time required to perform a computational process. 

 

start time -  timestop=t                                                                                                                (3.5) 
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Table 3.1 Summary of the charactheristics of data and Kernel functions used in all case studies 

Type of data Nonlinear and Gaussian distributed data Nonlinear and non-Gaussian distributed data 

Case study Case study 1 Case study 2 Case study 3 Case study 4 Case study 5 Case study 6 

Name of the case 

study 

Numerical 

example 1 

A single chemical 

reactor 

Wastewater 

treatment 

Numerical 

example 2 

Eukaryotic cell 

cycle regulation 

A highly 

nonlinear CSTR 

Description A nonlinear test 

problem 

A well-mixed, 

non-isothermal 

continuous stirred 

tank reactor 

(CSTR) 

An aerated 

bioreactor with a 

settler 

A static function 

approximation of 

the sum of two 

sine waves 

A biochemical 

reaction in a cell 

cycle to control 

frog egg 

development 

An acid-catalyzed 

electrophilic 

hydration in 

aqueous using 

CSTR with a 

cooling jacket 

Used Kernel 

functions 

Inverse multi-

quadric 
Polynomial 

Inverse multi-

quadric 
Log Log Log 

Input 1 

[Min, Max,  

Mean, Std]* 

x1 

Min: 1.0994x10-4    

Max: 87.6862 

Mean: 18.0303   

Std: 13.5182  

Concentration of 

the reactant 

species, CA 

Min: 1.7770   

Max: 4         

Recycled biomass 

concentration, Xr 

Min: 320     

x 

Min: 0           

Max: 10       

Mean: 4.9950         

Std: 2.8870 

Dimensionless 

concentration of 

active M-phase 

promoting factor, 

u 

Scaled volumetric 

inlet flow, 
RV

V
 

Min: 3.0044           

Max: 34.9950       
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Mean: 1.7975  

Std: 0.0624 

Max: 576.4784       

Mean: 547.1739            

Std: 49.8538 

Min: 0           

Max: 0.2393       

Mean: 0.0579         

Std: 0.0682 

Mean: 19.0443         

Std: 9.2830 

Input 2 

[Min, Max,  

Mean, Std]* 

x2 

Min: 1.0994x10-4    

Max: 87.6862 

Mean: 18.0303   

Std: 13.5182 

Temperature of the 

reactor, T1 

Min: 300        

Max: 458.2479 

Mean: 455.1939 

Std: 2.9283 

Biomass 

concentration, XB 

Min: 200            

Max: 290.0542        

Mean: 276.2885         

Std: 19.4681 

- - 

Heat flow, 
•

kQ  

Min: -9x103           

Max: -0.2777       

Mean: -4.5018 

x103          

Std: 2.6228 x103 

Input 3 

[Min, Max,  

Mean, Std]* 
- - 

Substrate 

concentration, Ss 

Min: 10.2489            

Max: 88        

Mean: 15.2548         

Std: 4.1475 

- - - 
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Output 1 

[Min, Max,  

Mean, Std]* 

y 

Min: -1.3407    

Max: 1.3112   

Mean: -

5.2603x10-4     

Std: 0.7160 

Concentration of 

the desired 

product, CB 

Min: 0            

Max: 1.8126  

Mean: 1.7924 Std: 

0.0528 

Dissolved oxygen 

concentration, 

DO 

Min: 1.5971           

Max: 7.8571         

Mean: 6.0636          

Std: 0.8113 

y 

Min: -1.1518            

Max: 1.1462       

Mean: -3.0194E-4         

Std: 0.5097 

Dimensionless 

concentration of 

total cyclin, v 

Min: 0           

Max: 0.4874        

Mean: 0.3673         

Std: 0.0857 

Product 

concentration, CP 

Min: 1.0033           

Max: 1.0925        

Mean: 1.0591         

Std: 0.0140 

Output 2  

[Min, Max,  

Mean, Std]* 
- - - - - 

Reactor 

temperature, T2 

Min: 386.0555           

Max: 387.35       

Mean: 386.0578         

Std: 0.0132 

Type of non-

Gaussian 

distribution 

- - - Multimodal 
Exponential, 

bimodal 
Multimodal 

* Min = minimum values; Max = Maximum values; Std = Standard deviation 
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3.7. Specifications of computing facilities 

The configuration of the computer software used in this study is explained in this 

section. The software and hardware specification are stated as below: 

 

Operating system (OS): Windows 10 (64 bit), CPU: 2.20 GHz Intel Core M3-6Y30 

CPU processor (it has the same performance as Intel Core i5 6200U), 4.0 Gigabyte 

(GB) of Random Access Memory (RAM) and 128GB solid-state drive (SSD) storage. 

The version of MATLAB used is 2015a.  

 

3.8. Kernel functions 

As mentioned earlier in Chapter 4, the Kernel method is used for nonlinear problems 

to map data into higher dimensional spaces F. Then, the mapped data can be more 

effectively structured before developing local models. The nonlinear mapping can be 

done via the following inner product in feature space F, which is called the Kernel 

function (Jia and Zhang 2016). 

 

( ) ( )
j

T

iji xxxxK φφ=),(                                                                                            (3.6) 

 

where ϕ(xi) and ϕ (xj) are i-th and j-th row vectors respectively. In this study, several 

different Kernel functions, obtained from Kamath et al. (2010) are used in the case 

studies. 

 

Inverse multi-quadricKernel function: 

An inverse multi-quadric Kernel function with a Kernel parameter squared, b2 greater 

than zero is shown in Equation (3.7). This function allows the creation of non-singular 

matrices (De Marchi 2013). 

 



72 

 

2
2

1

bxx

)x,x(k

ji

ji

+−

=                                                                                    (3.7) 

 

Polynomial Kernel function: 

A polynomial Kernel is a non-stationary Kernel often used in Kernelized nonlinear 

models such as a support vector and least square support vector machines. It represents 

the data features as polynomial expansions up to an index b. Equation (3.8) is the 

polynomial Kernel function taken from Wang et al. (2015b). 
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where b is the order of the polynomial and is also a Kernel parameter. 

 

Log Kernel function: 

A Log Kernel is usually used in an image database and is only conditionally positive 

definite. The Log Kernel function is displayed as below: 

 

( )1log),( +−−=
b

jiji xxxxk                                                                                 (3.9) 

 

where b is called the Kernel parameter. 

 

3.9. Summary 

This chapter describes the framework of new algorithms that can cope with nonlinear, 

non-Gaussian distributed and missing data. Moreover, the main stages of research that 

were used to address the research questions while achieving the research objectives 

are also illustrated. Then, brief descriptions on the newly developed algorithms for 
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both Gaussian-based and non-Gaussian-based locally LW algorithms are also carried 

out. Besides, case studies, the measurement used to evaluate the predictive 

performance of these developed algorithms, the computing facilities, the measurement 

of prediction quality, computational times and Kernel functions are presented too. In 

the next chapter, details of the formulation of Gaussian-based LW algorithms are 

presented.  
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Chapter 4 

Gaussian based locally weighted algorithms 

 

4.1. Introduction 

In this chapter, the newly developed Gaussian-based locally weighted (LW) algorithm 

which is an ensemble locally weighted Kernel partial least square (E-LW-KPLS) 

model is described. Firstly, the similarity measurement used in the Gaussian-based 

LW algorithm is presented. Next, the locally weighted partial least square (LW-PLS) 

algorithm is also described since the novel Gaussian-based LW algorithm is an 

extension of the LW-PLS. Illustrations of the Kernel partial least square (KPLS) model 

flow and lastly, this novel E-LW-KPLS model is presented.  

 

4.2. Similarity measurement 

The original Gaussian-based LW algorithm consists of the LW-PLS; hence a similarity 

measurement is also required in the proposed algorithm. The predictive performance 

of the LW-PLS is strongly influenced by the selection of the similarity measurement 

(Hazama and Kano 2015). Therefore, the similarity measurement must be well 

nominated. In this research, the common similarity measurement, Euclidean distance 

is used due to its simplicity (Zhang et al. 2015; Saptoro 2014; Jin et al. 2014; Xie et 

al. 2014). The Euclidean distance-based similarity index, nω  is determined based on 

the distance between query, Xq and historical data, Xn. The distance-based similarity 

index obtained from Ma et al. (2015) is shown in the following equations:  
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where dσ  is the standard deviation of dn (n= 1, 2,…,N) and ϕ  is a localization 

parameter. To handle the nonlinear relationship between input and output variables, 

the value of ϕ  should be low. However, when it has a shallow value of ϕ , the 

sensitivity of the LW-PLS towards noise is going to be increased (Kim et al. 2013b). 

In addition, the predictive performance of the LW-PLS model is similar to the partial 

least square (PLS) model when ϕ  equals to infinite (Toshiya and Kano 2015; Kim et 

al. 2011). Therefore, ϕ  must be appropriately adjusted to ensure the prediction 

accuracy of the LW-PLS model is superior to the PLS. Usually, the value of ϕ  is 

within the range of 0 to 10 (Uchimaru and Kano 2016).  

 

4.3. Locally weighted partial least square algorithm 

When the number of input variables is larger than the neighbouring samples, the LW 

regression becomes problematic (Toshiya and Kano 2015). In this case, a just-in-time 

based algorithm, the LW-PLS, can be a suitable alternative. The LW-PLS not only can 

deal with a large number of input variables but also with outliers (Hazama and Kano 

2015; Kaneko and Funatsu 2015a) and collinearity among the input and output 

variables (Kano and Koichi 2013). Due to its advantages, the LW-PLS based soft 

sensors have become popular and have been utilized in biochemical, semiconductor, 

petrochemical, and pharmaceutical processing industries (Kano and Koichi 2013; 

Hazama and Kano 2015; Toshiya and Kano 2015; Kim et al. 2013b; Kim et al. 2013a; 

Nakagawa et al. 2012).  

 

In creating the LW-PLS model, a local PLS model is built by using the similarity 

between a query which is new data and historical data (Kim et al. 2011; Kano and 

Koichi 2013). The following description of the LW-PLS algorithm is adopted from 

Hazama and Kano (2015). The input and output variables, x and y respectively, for n 

number of samples can be expressed as:  

 

[ ]TnMnnn xxxx ,...,, 21=                                                                                             (4.3) 
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[ ]TnLnnn yyyy ,...,, 21=                                                                                             (4.4) 

 

where M and L are numbers of x and y, respectively. These x and y variables are kept 

in a historical database. The similarity index, nω  between a query, Xq and the k-th 

historical data, Xk are measured to develop a local PLS model when the prediction of 

output variable, 
^

qy is required for Xq. Detailed explanations of the LW-PLS model can 

be found in Nakagawa et al. (2012), Kim et al. (2013b) and Nakagawa et al. (2014). 

 

The predicted output 
∧

qy  is determined by using the LW-PLS algorithm through the 

following steps:  

1. Fix the number of latent variables K and set k = 1. 

2. Determine a similarity matrix Ω  using Equations (4.1), (4.2) and (4.5). 

 

{ }Ndig ωωω ,...,, 21=Ω                                                                                         (4.5) 

 

3. Calculate Xk, Yk, and Xq,k where 1N is a vector of ones using Equations (4.6) to 

(4.10). 
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4. Set
T

Lq yyyy ],...,,[ 21

^ −−−

= . 

5. Derive the k-th latent variable of Xk using Equations (4.11) and (4.12). 

 

kkk wXt =                                                                                                          (4.11) 

 

where wk is the Eigenvector of k

T

kk

T

k XYYX ΩΩ , which corresponds to the 

maximum Eigenvalue, and is derived by: 
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6. Derive the k-th loading vector of Xk and the k-th regression coefficient vector.  
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7. Derive the k-th latent variable of Xq. 

 

k

T

kqkq wXt ,, =                                                                                                     (4.15) 

 

8. Replace 
∧

qy with kkqq qty ,+
∧

. 

9. If k = K, then finish prediction. Otherwise, set 

 

T

kkkk ptXX −=+1                                                                                              (4.16) 

 

T

kkkk qtYY −=+1                                                                                                (4.17) 

 

kkqkqkq ptXX ,,1, −=+                                                                                       (4.18) 

 

10. Set k = k + 1 and go to Step 5. 

 

4.4. Kernel partial least square algorithm 

Kernel approaches are commonly used to solve nonlinear problems since they provide 

good performance in a majority of real-world applications (Zhang and Hu 2011). Thus, 

for PLS based soft sensors, Kernel functions were incorporated into the PLS model to 

enhance their predictive performance in controlling for nonlinear data. With the help 

of Kernel functions, the KPLS maps original observed data into a high dimensional 

feature space, F and then the linear PLS models are constructed in the feature space, 
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F. It is assumed there is a nonlinear transformation of independent variables, xi, i = 1, 

2,…, n into feature space F and this can be represented by Equation (4.19).  

 

( ) FxRx i

n

i ∈→∈ φφ :                                                                                    (4.19) 

 

where ∑ = =n

i ix1 0)(φ is assumed and ϕ(xi) is a nonlinear mapping function that 

projects the input vectors from the original space to the feature space F. Regardless, 

the dimensionality of the feature space F is arbitrarily large and can be infinite. The 

order of matrix ϕ(xi) is n × M where the n-th row is the vector in the M-dimensional 

feature space F. Using the introduction of the Kernel trick, ϕ(xi)
Tϕ(xj) = K(xi, xj), one 

can prevent both performing explicit nonlinear mapping and computing dot products 

in the feature space. Steps for the KPLS model from Gao et al. (2015) are shown as 

follows: 

 

K is the number of latent variables (i = 1, 2,…,K) and the below steps are repeated. 

1. Initialise, set Ki = K, Yi = Y, set ui equal to any column of Yi. 

2. Compute the score vector of ϕ(X) using Equation (4.20). 

 

ii

T

i

i
i

uKu

Ku
t =                                                                                                                                      (4.20) 

 

3. Compute the loading vector of Yi using Equation (4.21). 
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4. Compute the score vector of Yi using Equation (4.22). 
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5. If ui converges, then go to Step 6, otherwise return to Step 2.  

6. Calculate the residual of ϕ(X) and Y using Equations (4.23) and (4.24). 
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7. Then, i  = i  + 1, and go to Step 2. 

 

The regression coefficient, bk in the KPLS model is determined from Equation (4.25) 

after all the K latent variables are extracted.  
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where T = [t1, t2,…, tH] and U = [u1, u2,…, uH] are the score matrices. Therefore, when 

the number of test data is N2, the prediction on training data and test data can be made 

as below, respectively: 
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where ϕtest is the matrix of the mapped test data and Ktest is the N2× M test Kernel 

matrix whose elements are Ktest(i, j) = K(xi, xj), where xi is the i-th test vector and xj is 

the j-th training vector. 

 

The mean centering of the data should be done before performing the KPLS model 

(Schölkopf et al. 1998). The Kernel matrices Ki and Ktest are substituted with iK
~

 and 

testK
~

, where 
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where I is an M-dimensional identity matrix, 1M and 
2

1N , are vectors whose elements 

are all ones, with length M and N2, respectively.  

 

4.5. Ensemble locally weighted Kernel partial least square algorithm 

As mentioned earlier, the LW-PLS can achieve adequate performance in industrial 

applications. However, it still may not fulfil the prediction accuracy requirement for 

nonlinear processes. In this research, the E-LW-KPLS is introduced to handle this 

issue. First, the modification is made on the LW-PLS model to have the ability to map 

the original variables into high dimensional space using the Kernel function. And, 

locally weighted models are still built using the same procedure as the LW-PLS model. 

Similar to the method of the LW-PLS model, before constructing a locally weighted 

model, this new high dimension feature variable vectors, ϕ(x) should also be weighted-

mean centered. Besides, the second modification is made using ensemble method to 

slipt the data into numerous of LW-KPLS models that can run simultaneously. So that, 
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the computational time for the LW-KPLS model can be minimised. It is assumed that 

simplicity is fulfilled and therefore the E-LW-KPLS model can be formulated as 

shown in this section.  

 

Since original variables are mapped into a Kernel-defined feature space, correlations 

between allocated input variables and predicted output variables must be determined. 

This mapping can be done by performing a dual KPLS model discrimination to 

measure the projection direction in the Kernel-defined feature space containing the 

maximum amount of variance in the data. This discrimination is done by obtaining a 

dual representation of a scaled version of projection direction, where B moved a Kernel 

matrix, V. According to Shawe-Taylor and Cristianini (2004), this can be calculated 

by Equation (4.30). A detailed explanation and MATLAB coding for Equation (4.30) 

can be found in Shawe-Taylor and Cristianini (2004). 

 

βVYYB '=   with the normalisation,
β

β
β =                                                       (4.30) 

 

The presence of Kernel function increases the computational complexity of the LW-

KPLS dramatically. The ensemble method is utilised to assign and divide the original 

input dataset into different sub-datasets with the same sample size to overcome the 

computational burden problem. Ensemble method is to form local models which are a 

number of LW-IC-KPLS models in this work that are built from the corresponding 

original variables subsets (Jin et al. 2016). These sub-datasets are then sent to the LW-

KPLS models, and these models are calculated simultaneously. Then, the multiple 

output data from these models are combined. Each of the predicted process output data 

is later combined to calculate the overall root mean square error of prediction. 

Additionally, the ensemble method also can enhance the generalization performance 

of each learning machine (He et al. 2016). Figure 4.1 shows the flow diagram of the 

E-LW-KPLS model proposed in this work. 
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Figure 4.1 Flow diagram of the proposed E-LW-KPLS model 

 

The predicted output, 
∧

qy which is calculated through each of the LW-KPLS models, 

is shown as the following procedure:  

1. Set V = x as the input data for the training data for Kernel matrix and Vq = Xq as the 

input data for the query/ testing data where they are mapped into a higher 

dimensional feature space using a selected Kernel function. 

2. Conduct mean centering on the V and Vq using Equations (4.28) and (4.29), 

respectively. 

3. Perform dual kernel partial least square discrimination to obtain B using Equation 

(4.30). 

4. Compute the rescaled query, and input variable matrices, Vq, and V using Equations 

(4.31) and (4.32), respectively. 

 

BVX qq =                                                                                                          (4.31) 

 

VBX =                                                                                                            (4.32) 

Original input data set 

1st LW-PLS model .        .         .        .      .     . nth LW-PLS model 

Predicted process output data  

Combined 

1st Kernel function nth Kernel function 

Ensemble method 

.        .         .        .       .       . 

data data 

data data 

data data 
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5. Determine the number of latent variables K and set k = 1. 

6. Calculate a similarity matrix Ω  using Equations (4.1), (4.2) and (4.5). 

7. Calculate Xk, Yk, and Xq,k using Equations (4.6) to (4.10). 

8. Set 
T

Lq yyyy ],...,,[ 21

^ −−−

= . 

9. Derive the k-th latent variable of Xk using Equations (4.11) and (4.12). 

10. Derive the k-th loading vector of Xk and the k-th regression coefficient vector 

using Equations (4.13) and (4.14).  

11. Derive the k-th latent variable of Xq using Equation (4.15). 

12. Replace 
∧

qy  with jjqq qty ,+
∧

 where tq,k is the k-th latent variable of Xq. 

13. If k = K, then finish prediction. Otherwise, set Equations (4.16) to (4.18). 

14. Set k = k + 1 and go to Step 9. 

 

4.6. Summary 

This chapter mainly provides the details explanation of the newly modified Gaussian-

based LW algorithm, which is called E-LW-KPLS. Besides, the existing Euclidean 

distance based similarity measure, as well as the current algorithms LW-PLS, and 

KPLS are also presented since they are preliminary studies adopted as base cases to 

the newly proposed algorithm. These initial studies provided some useful frameworks 

for the development of the E-LW-KPLS algorithm. In the next chapter, Chapter 5, the 

extended Gaussian-based LW algorithms which are non-Gaussian LW algorithms are 

illustrated.  
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Chapter 5 

Non-Gaussian based locally weighted algorithms 

 

5.1. Introduction 

In this chapter, the two non-Gaussian-based locally weighted (LW) algorithms, which 

are extended algorithms for Gaussian-based LW algorithms and are described in 

Chapter 4 are demonstrated. They are the ensemble LW independent component 

Kernel partial least square (E-LW-IC-KPLS) model and the expectation maximization 

ensemble LW independent component kernel partial least square (EM-E-LW-IC-

KPLS) model. The independent component analysis (ICA) is incorporated into 

Gaussian-based LW algorithms to cope with non-Gaussian distributed data. The 

similarity measurement used in the non-Gaussian-based LW algorithms is also a 

Euclidean distance since it is simple and easy to use. In the following sections, the 

existing ICA is discussed first then followed by the proposed E-LW-IC-KPLS, 

expectation maximization (EM), and EM-E-LW-IC-KPLS algorithms. 

 

5.2. Independent component analysis 

The proposed Gaussian-based LW algorithms utilize principal component analysis 

(PCA) to extract latent variables in which PCA only imposes principal components up 

to second order statistics information (Ge et al. 2013). That means PCA only considers 

the mean and variance-covariance of data (Lee et al. 2006). When the process data 

involves higher order statistical information that is non-Gaussian distributed data, 

these Gaussian-based LW algorithms perform poorly. On the other hand, ICA breaks 

down the observed data into linear combinations of statistically independent 

components (ICs), which are decorrelated from each other and exhibit decreased high-

order statistical dependencies (Jiang and Yan 2013; Lee et al. 2006; Lee 2000). 

Compared to PCA, ICA may reveal more meaningful information in the non-Gaussian 

distributed data (Ge et al. 2013; Shao et al. 2006). More detailed descriptions of ICA 

can be found in Hyvärinen (2013), Naik and Kumar (2011), Hyvärinen et al. (2004), 

Hyvärinen and Oja (2000), and Lee (2000). 
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To handle the non-Gaussianity of data, ICA has been employed by Tong et al. (2016), 

Peng et al. (2016), Chen et al. (2016), Wang et al. (2015a), Jiang et al. (2014), Ge et 

al. (2014), Song et al. (2012) and Lee et al. (2006) for use in soft sensors, process 

monitoring, fault detection, and diagnosis methods. In this study, a fixed point ICA is 

utilitised since it is simple and provides high efficiency (Peng et al. 2016; Lee et al. 

2006; Hyvärinen and Oja 2000). The below description of the ICA algorithm is taken 

from Hyvärinen and Oja (2000).  

 

In the ICA algorithm, the observed variables x1, x2, …, xn can be expressed as linear 

combinations of c ICs S1, S2, …, Sc where c<n. It is assumed the observed variables 

and ICs have zero mean. Let designate the observed variables and ICs in column 

vectors, which are x = [x1, x2,…, xn]
T and S = [S1, S2, …, Sc]

T. Their relationship can 

be represented by the ICA model as follows: 

 

Asx =                                                                                                                     (5.1) 

 

where A= [a1, a2,…, am] ∈ Rnxc is the mixing matrix. Equation (5.1) describes a process 

of mixing the ICs generates the observed variables. In other words, A and S can only 

be estimated based on the observed variable(s), x. To simplify the estimation, A is 

assumed to be an unknown square matrix where n = c and S has unit variance: E(SST) 

= I. Then, S can be estimated from the inverse of A, W which is the so-called ‘demixing 

matrix’ (Equation (5.2)). 

 

Wxs =                                                                                                                     (5.2) 

 

In the ICs, S is estimated through the following procedure:  

1. Apply whiten transformation to remove all the cross-correlation between random 

variables using Equation (5.3) in which the over-sphered zero-mean vector, z is 

calculated. 
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QxxUz T ==
−

2

1

Λ                                                                                                (5.3) 

 

where 
TUQ 2

1
−

= Λ  is the whitening matrix, and Λ  (the diagonal matrix of its 

Eigenvalues) and U (the orthogonal matrix of eigenvectors) are obtained from the 

Eigenvalue decomposition of the covariance matrix 
TT

UU)xx(E Λ= . After the 

transformation, Equations (5.4) and (5.5) can be obtained. 

 

sBQAsQxz c===                                                                                            (5.4) 

 

QxBzBs
T

c

T

c ==                                                                                                 (5.5) 

 

where Bc = QA is the orthogonal matrix and is given as E(zzT) = Bc(E(ssT))Bc
T = 

BcBc
T = I. From Equations (5.2) and (5.5), the relationship of W and Bc can be 

expressed as: 

 

QBW
T

c=                                                                                                           (5.6) 

 

2. Determine Bc, subject to Equation (5.5).  

3. Calculate W using Equation (5.6) in order to estimate s via Equation (5.5). 

 

Since each column vector in Bc is randomly initialed, they must be updated in Step 2 

until the ICs have maximum non-Gaussianity. Commonly, Kurtosis or the fourth-order 

cumulant and negentropy can be used to measure non-Gaussianity (Hyvarinen 1999). 

Since negentropy is computationally very difficult, Kurtosis is the chosen method in 

this study and can be defined as (Hyvärinen and Oja 2000):  
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{ } { }( )244 3)( sEsEskurt −=                                                                                       (5.7) 

 

5.3. Ensemble locally weighted independent component Kernel partial least 

square algorithm 

To further enhance the predictive performance of the developed Gaussian-based LW 

algorithm, the ensemble locally weighted Kernel partial least square (E-LW-KPLS) is 

integrated with ICA to form the E-LW-IC-KPLS algorithm. In this regard, ICA is used 

to deal with non-Gaussian distributed data; Using ICA, informative data is extracted 

from non-Gaussian data before they are mapped to higher dimensional space using 

Kernel function. In the E-LW-IC-KPLS model, original input variables are divided 

into separate sub-datasets with similar sample size via the ensemble method and these 

data are executed in the multiple proposed models, which are LW-IC-KPLS models 

concurrently.  

 

Each of these sub-datasets is first mapped into high dimensional space using the 

Kernel function. Subsequently, these mapped sub-datasets are sent to ICA models to 

extract the ICs consisting of non-Gaussian information. Next, the ICs are used to 

predict process output data using LW-PLS models. Lastly, each of the anticipated 

process output data from the sub-models is combined to calculate the overall root mean 

square error of prediction. Figure 5.1 illustrates the flow diagram of the proposed E-

LW-IC-KPLS model. Similar to E-LW-KPLS model, the number of models to be 

ensemble, nth are pre-defined. 

 

The predicted output
∧

qy  is calculated through the following procedure:  

1. Set V = x as training data for Kernel matrix and Vq = Xq as the query or testing data 

where they are mapped into higher dimensional feature space using selected Kernel 

function. 

2. Conduct mean centering on the V and Vq using Equations (4.28) and (4.29). 
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Figure 5.1 Flow diagram of the proposed E-LW-IC-KPLS model 

 

3.Perform dual Kernel partial least square discrimination to obtain B using Equation 

(4.30). 

4. Compute the rescaled query, and input variable matrices, Vq, and V using Equations 

(4.31) and (4.32). 

5.Determine the number of ICs, c which is similar to the number of input variables 

and then X and Xq are set as the observed variables in the ICA models. 

6. Apply whiten transformation to remove all of the cross-correlations between 

random variables using Equation (5.3) in which the over-sphered zero-mean vector, 

z is calculated. 

7. Determine Bc, subject to Equation (5.5).   

8. Calculate W using Equation (5.6) to estimate s via Equation (5.5). 

9. The estimated s for both X and Xq are set as input variables and a query for the LW-

PLS model is conducted. 

10. Determine the number of latent variables K and set k = 1. 

11. Calculate a similarity matrix Ω  using Equations (4.1), (4.2) and (4.5). 

1st LW-PLS model .      .       .      .     . nth LW-PLS model 

Predicted process output data  

Original input data set 

1st ICA model nth ICA model 

1st Kernel function nth Kernel function 

.      .       .      .     .

Ensemble method 

.      .       .      .     .

Combined 

data data 

data 

data 

data 

data 

data 

data 
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12. Calculate Xk, Yk, and Xq,k using Equations (4.6) to (4.10). 

13. Set
T

Lq yyyy ],...,,[ 21

^ −−−

= . 

14. Derive the k-th latent variable of Xk using Equations (4.11) and (4.12). 

15. Derive the k-th loading vector of Xk and the k-th regression coefficient vector using 

Equations (4.13) and (4.14).  

16. Derive the k-th latent variable of Xq using Equation (4.15). 

17. Replace 
∧

qy  with jjqq qty ,+
∧

where tq,k is the k-th latent variable of Xq. 

18. If k = K, then finish prediction. Otherwise, set Equations (4.16) to (4.18). 

19. Set k = k + 1 and go to Step 9. 

 

5.4. Expectation maximization algorithm 

In this section, an overview of the EM algorithm is explained. EM can be defined as a 

statistical approach for conducting likelihood estimation with missing data (Pangborn 

et al. 2011). This approach preferable when the pattern of missing data is at random 

(Karanja et al. 2013). This method has been used as a missing data imputation method 

by Xiong et al. (2015), Li et al. (2015), Junger and de Leon (2015), Yin et al. (2014), 

Jin et al. (2012) and Schön (2009). More information about EM can be found in Lan 

et al. (2016), Gómez-Carracedo et al. (2014), Karanja et al. (2013) and Schön (2009). 

 

When the data to the model are not unimodal or do not have symmetric shape, these 

data are more likely referring to non-Gaussian data, and a mixture model could be used 

to describe the data distribution (Ma 2011). Moreover, the mixture model has shown 

success in handling non-Gaussian data (Yuan et al. 2014b). On the other hand, EM for 

the mixture model has been employed by Zhou and Lim (2014) to replace missing 

data. Hence, in this study, EM for the mixture model is used to handle missing data 

problem.  
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In this study, it is assumed that the missing data is present in the input variables (x-

variables) since missing data rarely happens in the output variables (y-variables). In 

most cases, the output variables that are related to the final product including its 

concentration is tested using the hardware sensors manually. For instance, the 

concentration of gasoline and butane in the distillation column are measured using gas 

chromatography in the laboratory. Hence, the majority of the previous studies do not 

consider missing data in the output variables. These studies include Basir and Wei 

(2018), Severson et al. (2017), Yuan et al. (2016), Junger and De Leon (2015), Ringgi 

et al. (2015), Schmitt et al. (2015), De la Fuente et al. (2010), Schӧn (2009), Sentas 

and Angelis (2006), Lopes and Menezes (2005), Arteaga and Ferrer (2005), Arteaga 

and Ferrer (2002), Walczak and Massart (2001), and Nelson et al. (1996). Therefore, 

the EM is developed with the consideration that missing data happens in the x-

variables. 

 

Before performing EM for the mixture model, the initial value that is the mean value 

of the observed data, mt is needed to replace the missing data to generate a complete 

mixture model. By substituting the original missing data with mt, a new reconstructed 

matrix, Xt for the mixture model is obtained. Let Xm be a n x M matrix with missing 

data where x = [xn1, xn2, …, nMx ] is the n-th row containing the information for 

observation n and x is the value of the M-th variable for observation n. Moreover, the 

missing data indicator matrix, Ms is the binary n  ×  M matrix in which the element in 

Ms, mij = 1 if xnM is missing, and mij = 0 if xnM is presence. In addition, the complement 

of Ms, sM  has the element, ijij mm −=1 . At the beginning stage, missing data in Xm 

are filled with zeroes. Then, Xt is built using the below equation which is a modified 

equation from Folch-Fortuny et al. (2015): 

 

stmst MMXMX +=                                                                                                (5.8) 

 

where Mt is a n ×  M matrix that consists of mt. 
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Then, EM for the mixture model is used to generate a new optimum Mt by using Xt. 

Similar to Xm, Xt be a n  ×  M matrix where x = [xn1, xn2, …, nMx ]. The probability 

density function for Xt which has a M-dimensional sample can be written as: 
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)|(                                          (5.9) 

 

where µ is the mean vector, and Σ  is the covariance matrix. }{ Σµθ ,====  is the mixture 

model parameters that are used to obtain a distribution. Then, the probability density 

function for the Xt, which is from a mixture model can be derived as shown (Bishop 

2006; Yuan et al. 2014b): 

 

)|()|( t

1
t

t

t

t k

K

k

ktt XfXp θπ∑
=

=Ω                                                                              (5.10) 

 

where Kt is the number of non-Gaussian components, and 
tkθ  in mixture model is pre-

defined. 
tk

π  is the probabilistic weight of the kt -th non-Gaussian component where 
tk

π  

should be a positive value and ∑
=

=
t

t

t

K

k

k

1

1π . tΩ  consists of the parameters in the 

mixture model with Kt components and it can be defined as 

{ } { } { }( )
ttt

KKKt ,,,...,,,,,, ΣµπΣµπΣµπΩ 111111= .  

 

The likelihood and log-likelihood functions of Xt in EM for the mixture model are 

shown as below:  
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Initially, a log sum of the exponential is computed to avoid potential overflow and 

underflow of the exponential function in EM for the mixture model (Pangborn et al. 

2011). This model is shown as Equation (5.13). 

 

( )







−+≡ ∑∑

i

tit

i

i XxXx )max(explog)max())exp(log(                                    (5.13) 

 

Next, the unknown parameters in the set tΩ  must be determined. In this study, EM 

for the mixture model is used to obtain the parameters that maximise the log-likelihood 

function and can be written as: 

 

),(log
maxarg

 t t

t

t XL Ω
Ω

=Ω                                                                                  (5.14) 

 

The EM algorithm is comprised of two steps, which are an expectation step (E-step), 

and a maximization step (M-step). The E-step estimates the parameters, and then the 

M-step updates the estimated parameters. The E-step and M-step are repeated 

iteratively, then the tΩ  will converge to optimum values. As a result, EM generates 

a sequence of parameters which are }{ 21 m

ttt ,...,, ΩΩΩ . In this study, EM for the mixture 

model is taken from Yuan et al. (2014b) and Yu and Qin (2008). 
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The missing data, Xt is calculated using the EM algorithm through the following steps:  

1. Set m = 1 and start with an initial guess −∞=Ω1

t . 

2. Expectation step: Compute  
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where ( )m

tjk

m XcQ
t

Ω,|  is the posterior probability of the j-th sample data within 

the k-th non-Gaussian component at the m-th iteration. 

3. Maximization step: Compute  
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where 
1+m

kt
µ , 

1+Σm

kt
 and 

1+m

kt
π  are the mean, covariance, and prior probability of the k-

th non-Gaussian component at the (m+1)-th iteration, respectively.  

4. If not converged, update m = m + 1 and return to Step 2. 
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5. If converged, then the newly generated 
tktm µ= is obtained. Next, Mt is 

substituted into Equation (5.8) to obtain a new Xt where missing data are replaced 

with this new mt.  

 

5.5. Expectation maximization ensemble locally weighted independent 

component Kernel partial least square algorithm 

The EM-E-LW-IC-KPLS algorithm is an extended algorithm of the E-LW-IC-KPLS 

model in which EM are used to handle missing data. At first, EM model is integrated 

to the newly developed E-LW-IC-KPLS algorithm. As mentioned in Section 5.4, EM 

uses an expectation step to estimates the value for the missing data, and then the 

estimated data is updated using a maximization step to get an optimum value. The 

original data including the missing data are initially executed using the EM algorithm. 

Subsequently, the output data from the EM algorithm are sent to the E-LW-IC-KPLS 

model. Figure 5.2 displays the flow diagram of the original EM-E-LW-IC-KPLS 

model, which is designed for processes that contain missing data, nonlinear and non-

Gaussianity distributed data.  

 

In this study, the range of missing data levels in the input data used to test the 

developed algorithm is from 5% to 60%. In most cases, the output variable(s) that is 

related to the final product quality is tested using hardware sensors such as laboratory 

assays and gas chromatography. Hence, the majority of previous studies did not 

consider missing data in the output variables (Yuan et al. 2017, Folch-Fortuny et al. 

2015, Junger and De Leon 2015, Riggi et al. 2015, De la Fuente et al. 2010, Schön 

2009, Arteaga and Ferrer 2005, Lopes and Menezes 2005, Arteaga and Ferrer 2002, 

Walczak and Massart 2001, Nelson et al. 1996).  
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Figure 5.2 Flow diagram of the EM-E-LW-IC-KPLS model 

 

The predicted output, 
∧

qy  is determined via:  

1. Missing data in Xm is filled with zeroes. Then, the initial value, the mean value of 

the observed data, mt is calculated. 

2. The calculated Mt is substituted into Equation (4.19) to build Xt . 

3. Next, set m = 1 and start with an initial guess −∞=Ω1

t . 

4. Expectation step: Compute ( )m

tjk

m XcQ
t

Ω,|  using Equation (4.26). 

5. Maximization step: Compute 
1+m

kt
µ , 

1+Σm

kt
 and 

1+m

kt
π  using Equations (4.27), (4.28) 

and (4.29). 

6. If the imputed value for the missing data is not converged, update m = m + 1 and 

return to Step 4 (Threshold of converge is 1x10-6). 

Original input data set with missing data 

1st LW-IC-KPLS nth LW-IC-KPLS 

Predicted process output data  

Ensemble method 

Complete input data set 

.        .         .        . 

Combined 

EM model (Missing data imputation method) 

data

data

data data
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7. If converged, then the newly generated 
tktm µ= is obtained. Next, Mt is  

substituted into Equation (4.19) to obtain a new Xt where missing data are  

replaced with this new mt.  

8. Set V as training data of Xt for the Kernel matrix and Vq as the query or testing data 

of Xt where they are mapped into a higher dimensional feature space using the 

selected Kernel function. 

9. Conduct mean centering on the V and Vq using Equations (4.28) and (4.29). 

10. Perform dual Kernel partial least square discrimination to obtain B using Equation 

(4.30). 

11. Compute the rescaled query, and input variable matrices, Vq, and V using 

Equations (4.31) and (4.32). 

12. Determine the number of ICs, c which is similar to the number of input variables 

and then X and Xq are set as the observed variables in the ICA models. 

13. Use the whiten transformation to remove all the cross-correlation between 

random variables using Equation (5.3) in which the over sphered zero-mean 

vectors, z is calculated. 

14.  Determine Bc, subject to Equation (5.5).   

15. Calculate W using Equation (5.6) in order to estimate s via Equation (5.5). 

16. The estimated s for both X and Xq are set as input variable and query for LW-PLS 

model. 

17. Determine the number of latent variables K and set k = 1. 

18. Calculate a similarity matrix Ω  using Equations (4.1), (4.2) and (4.5). 

19. Calculate Xk, Yk, and Xq,k using Equations (4.6) to (4.10). 

20. Set
T

Lq yyyy ],...,,[ 21

^ −−−

= . 

21. Derive the k-th latent variable of Xk using Equations (4.11) and (4.12). 

22. Derive the k-th loading vector of Xk and the k-th regression coefficient vector 

using Equations (4.13) and (4.14).  
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23. Derive the k-th latent variable of Xq using Equation (4.15). 

24. Replace 
∧

qy  with jjqq qty ,+
∧

 where tq,k is the k-th latent variable of Xq. 

25. If k = K, then finish prediction. Otherwise, set Equations (4.16) to (4.18). 

26. Set k = k + 1 and go to Step 16. 

 

5.6. Summary 

The details formulation of non-Gaussian-based LW algorithms including the E-LW-

IC-KPLS and the EM-E-LW-IC-KPLS models are given in this chapter. These novel 

algorithms are extended algorithms for Gaussian-based LW algorithm, which is E-

LW-KPLS presented in Chapter 4. Due to the presence of ICA in the E-LW-IC-KPLS 

algorithm, it provides better predictive performance in handling non-Gaussian 

distributed data as compared to the existing locally weighted partial least square (LW-

PLS) and locally weighted Kernel partial least square (LW-KPLS) as well as the E-

LW-KPLS. However, neither E-LW-IC-KPLS nor LW-PLS nor LW-KPLS can deal 

with missing data. Hence, the EM-E-LW-IC-KPLS algorithm is proposed to cope with 

nonlinear, non-Gaussian distributed and missing data simultaneously. In the following 

chapter, Chapter 6, the effectiveness of these Gaussian-based and non-Gaussian-based 

LW algorithms is demonstrated using numerous case studies. 
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Chapter 6 

Results and discussions 

 

6.1. Introduction 

In this chapter, the improved Gaussian-based and non-Gaussian-based locally 

weighted (LW) algorithms described in Chapters 4 and 5, respectively were applied to 

six different case studies. The effectiveness and capabilities of the Gaussian-based LW 

algorithm, an ensemble locally weighted Kernel partial least square (E-LW-KPLS), 

and the two non-Gaussian-based LW algorithms, the ensemble LW independent 

component Kernel partial least square (E-LW-IC-KPLS) and the expectation 

maximization ensemble locally weighted independent component Kernel partial least 

square (EM-E-LW-IC-KPLS) were demonstrated using these case studies. 

 

Comparative studies were also carried out between the E-LW-KPLS and E-LW-IC-

KPLS algorithms with locally weighted partial least square (LW-PLS) and other 

integrated algorithms as well as their associated models the locally weighted Kernel 

partial least square (LW-KPLS) and the locally weighted independent component 

Kernel partial least square (LW-IC-KPLS). The explanations of the six case studies 

and the configuration of the computer used are described first. Next, the parameter 

optimisations used in all LW algorithms, the splitting data, parameter settings, and 

missing data are discussed. Lastly, the results obtained from the case studies are 

presented and discussed.  

 

6.2. Case studies 

Three case studies with Gaussian distributed data, identified as case studies 1, 2 and 3 

were used to demonstrate the performance of the E-LW-KPLS algorithm and another 

three case studies with non-Gaussian distributed data, are identified as case studies 4, 

5 and 6 were employed to evaluate the effectiveness of the E-LW-IC-KPLS and EM-

E-LW-IC-KPLS models. In this section, the details of these case studies are briefly 

described. 
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6.2.1. Case study 1: Numerical example 1 

This numerical example is a nonlinear dynamic test problem with Gaussian distributed 

data adopted from Li et al. (2010). The following equation can represent the function: 

 

( )21cos xxy +=
                                                                                                 (6.1) 

 

where x1 and x2 are the input variables and y is the output variable. These input 

variables are generated from a normal distribution with zero mean and unit variance. 

Moreover, a Gaussian noise whose mean is zero, and the variance is 0.1 is added to 

the above function (Equation 6.1). 

 

6.2.2. Case study 2: A single chemical reactor 

This simulation study which involves a single chemical reactor was obtained from 

Christofides and El-Farra (2005). This reactor is a well-mixed, non-isothermal 

continuous stirred tank reactor (CSTR) where three parallel irreversible elementary 

exothermic reactions of the form 11
1

B

k

A → , 11

2

U

k

A →  and 11
3

R

k

A →  occur. A1 is 

the reactant species, B1 is the desired product, U1 and R1 are the undesired by-products 

while k1, k2 and k3 are the reaction rates. 

 

In this study, the rate of heat input to the CSTR is set at 0 KJ/hr since an adiabatic 

process is assumed. Meanwhile, the feed flow rate of pure A1 to the CSTR is kept 

constant in the range of 4.998 to 6 m3/hr to achieve a nonlinear dynamic process. The 

differential equations that describe the process of this case study are shown in 

Appendix A.1 in Appendix A. The detailed information about this CSTR can be found 

in Christofides and El-Farra (2005) and additionally this study consisted of Gaussian 

distributed process data. Table 6.1 shows the input and output variables for the case 

study 2. 

 



101 

 

Table 6.1 Input and output variables for case study 2 

Output variable Variable description 

CB Concentration of the desired product 

Input variables Variable description 

T1 Temperature of the reactor 

CA Concentration of the reactant species 

 

6.2.3. Case study 3: Wastewater treatment 

Wastewater treatment processes are very complex and nonlinear. Figure H.1 in 

Appendix H shows a wastewater treatment plant with an aerated bioreactor containing 

a mixture of liquid and suspended solids where microorganisms are grown to eliminate 

the organic substrate from the mixture. Moreover, a settler is used to separate the 

sludge and the clear effluent. Some of the settled sludge is recycled back into the 

bioreactor, and the remaining sludge from the settler is discharged as waste (Caraman 

et al. 2007).  

 

In this treatment process, substrate, Ss, biomass, XB, and dissolved oxygen 

concentration, DO in the effluent are sent to the bioreactor first and then to the settler. 

From the settler, the recycled biomass, Xr in the sludge is recycled back to the 

bioreactor. In the bioreactor, an appropriate DO level enables the optimal growth of 

microorganisms used in the wastewater treatment process (Ingildsen 2002). Hence, in 

this study, the predictive output variable is the DO while there are three input variables 

which include Ss, XB, and Xr. The differential equations that explain this wastewater 

treatment are give in Appendix A.2 in Appendix A. These variables involve Gaussian 

distributed data, and they are summarised in Table 6.2.  
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Table 6.2 Input and output variables for case study 3 

Output variable Variable description 

DO Dissolved oxygen concentration 

Input variables Variable description 

Ss  Substrate concentration 

XB  Biomass concentration 

Xr  Recycled biomass concentration 

 

6.2.4. Case study 4: Numerical example 2 

This nonlinear dynamic numerical example is a static function approximation of the 

sum of two sine waves adapted from Roffel and Betlem (2007). The sine function can 

be represented by Equation (6.2): 

 

)2sin(5.0)sin(5.0 xxy ππ +=                                                                            (6.2) 

 

where x is the input variable with a range of 0 to 10 and y is the output variable. These 

variables are generated using non-Gaussian distributed data, and moreover, the 

Gaussian noise whose mean is zero and variance 0.1 has been added to the above 

function (Equation 6.2). After plotting the histogram plot of the generated data using 

MATLAB, it was found that the non-Gaussian data in case study 1 followed multi-

model distributions having more than one peak or mode. 

 

6.2.5. Case study 5: Eukaryotic cell cycle regulation 

This process is a biochemical reaction involving cyclin-dependent kinase and their 

associated proteins which are included in a cell cycle to control frog egg development. 

There are three key species in this biochemical reaction: the free cyclin, the M-phase 
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promoting factor (MPF) and the other regulatory enzymes. MPF is a heterodimer 

formed by the proteins Cdc2 and cyclin. It controls the transition from the interphase 

to mitosis of the cell cycle. This Cdc2-cyclin regulatory system is assumed to operate 

as a spontaneous oscillator in the early embryos. The detailed description of this 

nonlinear dynamic process can be found in Novak and Tyson (1993). In this study, the 

output variable used to represent the product quality is a dimensionless concentration 

of total cyclin, v. Meanwhile, the predictor is a dimensionless concentration of active 

MPF, u. The differential equations which illustrate the eukaryotic cell cycle regulation 

are given in Appendix A.3 in Appendix A. In case study 5, the non-Gaussian 

distributed data follows exponential and bimodal distributions. Table 6.3 shows the 

input and output variables that are non-normal data for this case study. 

 

Table 6.3 Input and output variables for case study 5 

Output variable Variable description 

v Dimensionless concentration of total cyclin 

Input variable Variable description 

u Dimensionless concentration of active MPF 

 

6.2.6. Case study 6: A highly nonlinear continuous stirred tank reactor 

This case study is adapted from Chen et al. (1995) where cyclopentenol, B2 is 

generated from cyclopentadiene, A2 by acid-catalyzed electrophylic hydration in 

aqueous using CSTR with a cooling jacket (as shown in Figure H.2 in Appendix H). 

This process is called a ‘van der Vusse reaction,’ and the following reaction scheme 

can describe it: 222
21 CBA

kk →→  and 22
32 DA

k→ . The reactant, A2 is transformed 

to B2 and then B2 is consecutively reacted to form the unwanted product 

cyclopentanediol, C2. 
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Moreover, A2 also undergoes another undesired parallel reaction to produce the by-

product dicyclopentadiene, D2. In Figure H.2, the flow rate 
•

V containing only 

cyclopentadiene, A2 with an initial concentration CA0 and a temperature 0ϑ  is fed to a 

CSTR. The heat load, 
•

kQ  is removed from the coolant using an external heat 

exchanger. The differential equations described this van der Vusse reaction are 

provided in Appendix A.4 in the Appendix A. Additional descriptions about this 

nonlinear dynamic process can be found in Chen et al. (1995) and Helbig et al. (2000). 

The non-Gaussian distributed process data in this case study was found to be 

multimodel distribution. Table 6.4 shows the input and output variables containing 

non-Gaussian distributed data for case study 6. 

 

Table 6.4 Input and output variables for case study 6 

Output variable Variable description 

CP Product concentration 

T2 Reactor temperature 

Input variable Variable description 

RV

V
 Scaled volumetric inlet flow 

•

kQ  
Heat flow 

 

6.3. Parameter optimization 

An optimized parameter is required to be tuned to find a well-performing model. Since 

the LW-PLS algorithm has been integrated into the improved LW-KPLS, E-LW-KPLS, 

LW-IC-KPLS, E-LW-IC-KPLS and EM-E-LW-IC-KPLS models, these LW 

algorithms require similar optimized parameters such as the localisation parameter 
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used to find similarity of the data, ϕ  , the number of latent variables in the local 

regression model, K as well as the number of samples, training and test sets N, N1 and 

N2, respectively used to perform prediction. Furthermore, to handle nonlinear data, the 

improved Gaussian- and non-Gaussian-based LW algorithms require an additional 

optimised parameter in the Kernel function, which is the Kernel parameter, b.   

 

In this study, K, N, N1, N2, and ϕ are fixed to proper values while b is tuned by trial 

and error experiments. Since N, N1, and N2 are not sensitive parameters for the LW 

algorithms, they are specified as an equal adequate value in all the case studies. 

Typically, the first few latent variables commonly referred to as principal components 

of PLS-based algorithms, are sufficient to describe the main features of the data (Yuan 

et al. 2014a). Furthermore, an equal value of K is applied in all the case studies to 

compare the algorithms fairly. The number of latent variables K is predefined. A set 

of latent variable explained the relationship between two variables, hence they are used 

for dimensionality reduction of data. Since less variables are involved in the case 

studies and higher number of K may increase the computational times of the integrated 

models, the number of latent variables K is fixed as 1. 

 

Also, applying different values of ϕ in the LW algorithms does not change the results 

as ϕ  is only useful when choosing related samples for query samples in the LW 

algorithms (Yuan et al. 2014a). Hence, ϕ  is also fixed as equal value for all LW 

algorithms in the case studies. The optimal value for ϕ  was studied by Yeo et al. 

(2017) and the publication can be found in Yeo et al. (2017). Moreover, in the 

expectation maximization (EM) algorithm for a Gaussian mixture model, the number 

of Gaussian components, Kt is specified as a small value for all the case studies since 

a higher value of Kt may increase the computational time of LW algorithms. 

 

On the other hand, Kernel parameter, b in a reasonable space range varies from 0.01 

to 100 (Wang et al. 2015b). Furthermore, the studies carried out by Mongillo (2011) 

and Orr (1996) have shown the minimum error is usually found when the value of b is 
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small in the range of 0.01 to 10. In most cases, they also found when b equals 1 this 

provides the lowest predicted error. Hence, b is tuned in this range to obtain the 

smallest error of the dataset including the training and test dataset. Moreover, the 

number of the independent component, c used in the LW-IC-KPLS, E-LW-IC-KPLS 

and EM-E-LW-IC-KPLS models is different in each case study. Table 6.5 summarises 

all the parameters used in the algorithms. 

 

Table 6.5 Parameters used in the algorithms 

Conventional algorithm Used parameters 

LW-PLS ϕ , K, N, N1, N2 

New algorithms Used parameters 

LW-KPLS ϕ , K, N, N1, N2, b 

E-LW-KPLS ϕ , K, N, N1, N2, b 

LW-IC-KPLS ϕ , K, N, N1, N2, b, c 

E-LW-IC-KPLS ϕ , K, N, N1, N2, b, c 

EM-E-LW-IC-KPLS ϕ , K, N, N1, N2, b, c , Kt 

 

6.4. Splitting data and parameters setting 

For each case study, data sets are generated using MATLAB Simulink. Large number 

of dataset is adopted to resemble the real scenarios in industrial processing plants in 

which abundant data are recorded. Furthermore, for historical database modelling, the 

higher the number of samples, the better the accuracy of the developed model will be. 

Thus, 10,000 datasets are generated in each case study and they are split into training 

and test datasets. A big number of datasets is used since the computational times used 

by each model to execute the dataset are measured and compared. If only few hundred 

or thousand dataset is used, the calculated computational time for each model is only 

few seconds. Besides, for all of the case studies, 75% of the datasets is randomly 

selected as training data. And, the remaining 25% of the datasets are used as test data 
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(Saptoro et al. 2006; Saptoro et al. 2008). Therefore, N, N1, and N2 are set as 10,000, 

7,500 and 2,500, respectively.  

 

K and ϕ  for the Gaussian-based and the non-Gaussian-based LW algorithms are 

adjusted to 1 and 0.1, respectively, in the case studies. Table 6.6 illustrates the values 

of these used parameters for the developed LW algorithms. In this study, the Kernel 

functions used are shown in Section 6.3. The optimal value of Kernel parameter, b is 

tuned from 0.01 to 10 and the value of b is different in each case study. The value of 

c is equal to the number of input variables while the value of Kt in the EM algorithm 

is set as 1 for all the case studies to minimize the computational time. 

 

Table 6.6 Values of used parameters for the algorithms 

Used parameters Values 

N 10000 

N1 7500 

N2 2500 

K 1 

ϕ  0.1 

b 0.01 to 10 

c Same as the number of input variables 

Kt 1 

 

6.5. Missing data 

Since the missing at random (MAR) mechanism usually occurs in process industries 

(Schafer and Graham 2002), hence missing data imputation methods that can cope 

with MAR are used in this research study. MAR refers to the probability of 

missingness and may rely on observed data only and not on any missing data. Since 

the distributions of missing data are often related to the output variables, the MAR 
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assumption may be more realistic (Junger and Ponce de Leon, 2015). During the stage 

of constructing the model for chemo-metric industries data, practitioners commonly 

must handle 5% to 20% of the missing data. Likewise, for complex processes 

including nonlinear processes, percentages of missing data varying from 30% to 60% 

can appear in the historical dataset (A Folch-Fortuny et al. 2015). Since the process 

data for case studies are nonlinear, 5% to 60% of missing data are used in this research 

work.  

 

For each case study, different percentages of data are removed from the generated data 

set and the removed data is considered as missing data. In this study, missing data 

levels of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% and 60% are 

all considered in order to exam the ability of the EM-E-LW-IC-KPLS models in 

handling missing data problems. These different missing data levels are present in both 

training and test input data. To test these missing data in the relevant case studies, 

several missing data imputation methods are used to obtain their imputed data to 

replace them in the data set. Then, the complete data set with the imputed data are run 

using different integrated models. These models are EM model integrated with LW-

PLS (EM-LW-PLS), the singular vector decomposition (SVD) method integrated with 

the E-LW-IC-KPLS (SVD-E-LW-IC-KPLS) and LW-PLS (SVD-LW-PLS) 

algorithms and the trimmed score regression (TSR) combined with the E-LW-IC-

KPLS (TSR-E-LW-IC-KPLS) and LW-PLS (TSR-LW-PLS) models. The Ea, and 

RMSE are also measured and compared with the EM-E-LW-IC-KPLS algorithm.  

 

6.6. Current results and discussions 

The results of the improved E-LW-KPLS, E-LW-IC-KPLS and EM-E-LW-IC-KPLS 

models were applied to six different case studies. As mentioned in Chapters 4 and 5, 

the E-LW-KPLS, E-LW-IC-KPLS, and EM-E-LW-IC-KPLS algorithms involve 

numerous subsets of LW-KPLS and LW-IC-KPLS models. The number of data in each 

subset is the same, and the nonlinear relationship between input and output variables 

in each sub-dataset is consistent. In this study, 1 set to 30 subsets of the LW-KPLS 

and LW-IC-KPLS models were tested and evaluated. According to Kaneko and 



109 

 

Funatsu (2016), a model with a small dataset changes correlation and over-fitting. 

Hence, only up to 30 sets were examined and there has not been much improvement 

in most case studies after more than 20 subsets. Furthermore, in each case study, the 

value of Ea versus the number of graph sets was used to choose the optimal set of the 

E-LW-IC-KPLS algorithm. 

 

The optimal set of the E-LW-IC-KPLS model was integrated with the EM to form the 

EM-E-LW-IC-KPLS algorithm and is used to solve the missing data problem. Next, 

its predictive performance was investigated under various levels of missing data and 

compared with other missing data imputation methods including the SVD-E-LW-IC-

KPLS, TSR-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

models. Also, different Kernel functions are utilised in separate case studies. The 

inverse multi-quadric and polynomial Kernel functions were found to work well with 

nonlinear and Gaussian distributed data. Furthermore, the Log Kernel function 

performed well on nonlinear and non-Gaussian distributed data. 

 

All of the obtained results from the abovementioned algorithms were analysed, 

compared and discussed in this section. The predictive performance of the algorithms 

was evaluated and distinguished based on their RMSE1, RMSE2, Ea, both of the CPU 

running times for training data, t1 and test data, t2 as well as the MAE and MSE for 

training (MAE1 and MSE1) and the testing data (MAE1 and MSE2). For each case study, 

the computational time or load (t1 or t2) is measured using Equation (6.5) and it is 

obtained from the time taken from the start of executing the data using a model until 

the end as determined by an ordinary clock. 

 

6.6.1. Gaussian distributed data 

As mentioned earlier, case studies 1, 2, and 3 consisted of Gaussian distributed and 

nonlinear data. The Gaussian distributed data in these case studies are divided into 

training and testing data. These training and testing data of the case studies were used 

to evaluate the capabilities and effectiveness of the original Gaussian-based LW 

algorithm, the E-LW-KPLS. Furthermore, a sample of the MATLAB’s coding for the 
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E-LW-KPLS model can be found in Appendix B. Based on the objective stated in 

Chapter 1, the obtained results from the E-LW-KPLS have to compare with the 

benchmarking LW-PLS and the developed LW-KPLS algorithms to investigate the 

predictive performance of E-LW-KPLS model.  

 

Besides, to reduce the computation burden of the LW-KPLS which is also the 

objective of this research, the ensemble method was incorporated into LW-KPLS to 

form E-LW-KPLS. E-LW-KPLS has several LW-KPLS models that are run 

simultaneously. Generally, ensemble method is a learning method where multiple 

models are trained to solve the same problem and combined to shorten the processing 

time. Hence, E-LW-KPLS should have lower computational time than LW-KPLS. 

Figures 6.1 to 6.3 for case studies 1 to 3, respectively show the computational times 

for training and test data concerning the number of sets in E-LW-KPLS models. These 

number of sets or subsets are the multiple of LW-KPLS models. These figures have 

proven the effectiveness of the ensemble method in minimising computational times 

of the E-LW-KPLS models, especially from 1 set to 6 sets of LW-KPLS models.  

 

Case study 1: Numerical example 1 

In case study 1, an inverse multi-quadric Kernel which as shown in Equation (3.7) in 

Chapter 3 with b equal to 0.3 was utilized in both E-LW-KPLS and LW-KPLS models 

since it showed a more accurate predictive performance. Figure 6.4 displays the Ea 

values for all the E-LW-KPLS models while Table 6.7 shows the results of the 

prediction performance of LW-PLS, LW-KPLS and E-LW-KPLS algorithms 

Likewise, additional results for an E-LW-KPLS algorithm with other sets are listed in 

Appendix C.1.1.  

 

As shown in Figure 6.4, the LW-KPLS model gave the best prediction results as it had 

the lowest value of Ea compared to other E-LW-KPLS algorithms. However, its 

computation load is the highest among all other algorithms. Hence, an E-LW-KPLS 

model with 3 subsets which has a slightly lower value of Ea than the LW-KPLS was 

chosen as the optimal set of E-LW-KPLS algorithm in this case study. As noted in the 
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above Table 6.7 and Figure 6.1, the E-LW-KPLS model had 8 to 10 times lower 

computational loads than the LW-KPLS algorithm. As can be seen from Table 6.7 the 

Ea for both E-LW-KPLS and LW-KPLS models decreased by about 53.4% and 53.6% 

respectively, in comparison with the LW-PLS algorithm. This result has shown that 

the inverse multi-quadric Kernel in both LW-KPLS and E-LW-KPLS have 

significantly improved the predictive performance when dealing with nonlinear 

process data.  

 

Furthermore, the RMSE1, RMSE2, MAE1, MAE2, MSE1 and MSE2 for E-LW-KPLS and 

LW-KPLS models were also much lower than LW-PLS. Again, with the help of the 

inverse multi-quadratic Kernel function, the E-LW-KPLS and LW-KPLS algorithms 

performed much better than the LW-PLS model. However, the t1 and t2 for the E-LW-

KPLS and LW-KPLS algorithms were higher than the LW-PLS. By using the 

ensemble method, the computational times of E-LW-KPLS are lowered by than LW-

KPLS. By using ensemble method, E-LW-KPLS allows a number of local LW-KPLS 

models to run spontaneously where each of the models has less number of data 

compared to a LW-KPLS model. Since the E-LW-KPLS has a lower computational 

time than the LW-KPLS model and all of its predictive errors are much smaller than 

the LW-PLS, it is still the most effective algorithm in this case study. 
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Figure 6.1 Computational times for LW-KPLS and E-LW-KPLS in case study 1 
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Figure 6.2 Computational times for LW-KPLS and E-LW-KPLS in case study 2 
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Figure 6.3 Computational times for LW-KPLS and E-LW-KPLS in case study 3 
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Figure 6.4 The error of approximation for separate subsets of the E-LW-KPLS in case study 1 
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Table 6.7 Prediction performances of E-LW-KPLS, LW-KPLS and LW-PLS models 

for case study 1 

Algorithms LW-PLS LW-KPLS % E-LW-KPLS % 

Number of 

subsets 
1 1  3  

Type of Kernel 

function 
- 

Inverse multi-

quadric Kernel 
 

Inverse multi-

quadric Kernel 
 

Kernel 

parameter, b 
- 0.3  0.3  

RMSE1 
0.4822 0.2244 53.5 0.2229 53.8 

MAE1 0.4264 0.1721 59.6 0.1717 59.7 

MSE1 0.2325 0.0504 78.3 0.0497 78.6 

t1 (sec) 14 1003  98  

RMSE2 0.4859 0.2227 54.2 0.2259 53.5 

MAE2 0.4287 0.1706 60.2 0.1725 59.8 

MSE2 0.2325 0.0496 78.7 0.0510 78.1 

2t (sec) 4 218  26  

Ea 0.4868 0.2257 53.6 0.2267 53.4 

 

On the other hand, the current prediction results from LW-PLS, LW-KPLS, and E-

LW-KPLS models for training and test data in case study 1 are shown in Figures H.3 

and H.4 in Appendix H. As can be seen in these figures, the predicted output from both 

E-LW-KPLS and LW-KPLS algorithms cope better with true output value than the 

LW-PLS. Also, LW-PLS was totally not able to predict the output values for both 

training and testing data since LW-PLS cannot cope with nonlinear dynamic data. As 

a conclusion, this newly developed E-LW-KPLS algorithm has achieved the 

objectives stated in Chapter 1 since it has better predictive performance than the 
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benchmarking LW-PLS algorithm and its computational times are lower than LW-

KPLS model. 

 

Case study 2: A single chemical reactor  

The polynomial Kernel shown in Equation (3.8) in Chapter 3 was used in the LW-

KPLS, and E-LW-KPLS algorithms in case study 2 and the optimal value of b used 

were 0.01. The prediction results of the E-LW-KPLS, LW-KPLS and LW-PLS models 

for case study 2 are displayed in Table 6.8. Figure 6.5 illustrates the Ea for different 

subsets of the E-LW-KPLS algorithm for case study 2. From Figure 6.5, the E-LW-

KPLS with 13 subsets has the lowest value of Ea and hence it was selected as the 

optimal set of E-LW-KPLS models. The current prediction results of other E-LW-

KPLS algorithms can be seen in Appendix C.1.2.   

 

Table 6.8 shows the Ea for the E-LW-KPLS and LW-KPLS models are lower by 

58.3% and 17.6% respectively, compared to the LW-PLS. Due to the presence of the 

polynomial Kernel function in the E-LW-KPLS and LW-KPLS algorithms, they have 

slightly different results and their RMSE1, MAE1 and MSE1 were less than the LW-

PLS for nonlinear process data. Nevertheless, their RMSE2, MAE2 and MSE2 were 

somewhat higher than the LW-PLS. The prediction errors of the LW-KPLS and LW-

PLS models for training data (RMSE2, MAE2 and MSE2) were higher than the test data. 

This result is due to the presence of an unsteady state condition in the first 30 samples 

of the output in the training data. The inclusion of these data in the local model 

constructions has caused the LW-KPLS and LW-PLS algorithms to demonstrate 

poorer predictive performance than the E-LW-KPLS. The ensemble method enables 

the E-LW-KPLS to exhibit more accurate generalization capabilities than by 

combining all data to be run in local models (Wang et al. 2016). Besides, ensemble 

method has the ability to reduce the variance of the error (Opitz and Maclin 1999). 

Generally, the smaller the value of variance will result in more reliable prediction (Liu 

and Gao 2015). Thus, ensemble method enables E-LW-KPLS model to reduce the 

variance of the unsteady state dataset in this case study. 
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Table 6.8 Prediction performances of E-LW-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 2 

Algorithms LW-PLS LW-KPLS % E-LW-KPLS % 

Number of subsets 1 1  13  

Type of Kernel 

function 
- 

Polynomial 

Kernel 
 

Polynomial 

Kernel 
 

Kernel parameter, 

b 
- 0.01  0.01  

RMSE1 0.0075 0.0065 13.3 0.0040 46.7 

MAE1 0.0028 0.0028 0 0.0026 7.1 

MSE1 5.7x10-5 4.2x10-5 26 1.6x10-5 72.1 

t1 (sec) 10 907  9  

RMSE2 0.0032 0.0033 -3.1 0.0033 -3.1 

MAE2 0.0026 0.0027 -3.8 0.0027 -3.8 

MSE2 1x10-5 1.1x10-5 -3.8 1.1x10-5 -6.7 

2t (sec) 3 205  4  

Ea 0.0108 0.0089 17.6 0.0045 58.3 
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Figure 6.5 The error of approximation for different subsets of the E-LW-KPLS algorithm in case study 2 
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On the other hand, the t1 and t2 for LW-KPLS algorithms are much higher than for E-

LW-KPLS and LW-PLS models. Moreover, as shown in the Table 6.8 and Figure 6.2, 

the computational times for the E-LW-KPLS are up to 100 times smaller than the LW-

KPLS while its computation loads are almost the same as the LW-PLS. These results 

indicate the ensemble method which enables numerous of local LW-KPLS model run 

spontaneously is a useful tool to reduce the computational burden of LW-KPLS 

algorithms while providing the E-LW-KPLS better prediction results. From the overall 

results, E-LW-KPLS model is still preferable compared to the other two algorithms. 

Figures H.5 and H.6 in Appendix H show the prediction results for training and test 

data using LW-PLS, LW-KPLS, and E-LW-KPLS models. In Figure H.5, the 

predicted output from the E-LW-KPLS is slightly closer to real output than LW-KPLS 

and LW-PLS algorithms. While, in Figure H.6, the predicted output from E-LW-

KPLS, LW-KPLS, and LW-PLS models are almost similar and closer to the actual 

output since the range of the output for testing data is small. Again, in case study 2, 

the results from E-LW-KPLS model have shown that the objectives of this research 

were attained. 

 

Case study 3: Wastewater treatment  

In case study 3, the inverse multi-quadric Kernel with the value of b set at 8 was used 

as a Kernel function in E-LW-KPLS and LW-KPLS algorithms. Table 6.9 displays 

current results of the prediction performance for LW-PLS, LW-KPLS and E-LW-

KPLS models in case study 3. As shown in Figure 6.6, the E-LW-KPLS algorithm 

with 12 subsets of the E-LW-KPLS exhibited the lowest value of Ea compared to other 

E-LW-KPLS models and was therefore selected as the optimal set of E-LW-KPLS 

algorithms. Additionally, the results for the E-LW-KPLS model with 1 set to 30 

subsets are presented in Appendix C.1.3.  

 

As seen in Table 6.9, the Ea for the E-LW-KPLS and LW-KPLS algorithms are 6% 

and 6.9% lower than the LW-PLS respectively. This result shows the E-LW-KPLS, 

and LW-KPLS models with inverse multi-quadric Kernel performed better than the 

LW-PLS. Furthermore, the RMSE1, MAE1 and MSE1 for the E-LW-KPLS are smaller 
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than the LW-KPLS algorithm. In addition, the RMSE1 and MSE1 for the E-LW-KPLS 

models are slightly more than the LW-PLS and its MAE1 is 2% lower than the LW-

PLS due to the presence of Kernel function. For the test data set, the RMSE2, MAE1 

and MSE2 for the E-LW-KPLS and LW-KPLS algorithms are smaller than the LW-

PLS.  

 

Table 6.9 Prediction performances of the E-LW-KPLS, LW-KPLS and LW-PLS 

models for case study 3 

Algorithms LW-PLS LW-KPLS % E-LW-KPLS % 

Number of 

subsets 
1 1  12  

Type of 

Kernel 

function 

- 
Inverse multi-

quadric Kernel 
 

Inverse multi-

quadric Kernel 
 

Kernel 

parameter, b 
- 8  8  

RMSE1 
0.7103 0.7330 -3.2 0.7139 -0.5 

MAE1 0.5811 0.5859 -0.8 0.5693 2 

MSE1 0.5045 0.5373 -6.5 0.5097 -1 

t1 (sec) 11 1067  11  

RMSE2 0.7744 0.7413 4.3 0.7314 5.6 

MAE2 0.6284 0.6053 3.7 0.5966 5.1 

MSE2 0.5997 0.5496 8.4 0.5350 10.8 

2t (sec) 4 238  4  

Ea 0.7905 0.7434 6 0.7358 6.9 
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Figure 6.6 The error of approximation for different subsets of the E-LW-KPLS in case study 3 
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Regarding computational time, as seen in Table 6.9 and Figure 6.3, the t1 and t2 for the 

E-LW-KPLS are up to 100 times smaller than the LW-KPLS. Again, the ensemble 

method has significantly increased the computational efficiency of the E-LW-KPLS 

model while providing lower prediction errors than the LW-KPLS. Generally, the E-

LW-KPLS offers the best prediction results among the other algorithms.  

 

The current prediction results of output from the LW-PLS, LW-KPLS, and E-LW-

KPLS models for training and test data of case study 3 are depicted in Figures H.7 and 

H.8 in the Appendix H. As illustrated in these figures, the predicted output from the 

E-LW-KPLS is nearer to the real output than the LW-PLS and LW-KPLS algorithms. 

Similar to the previous case studies, from the results in case study 3, the objectives of 

this research were met. 

 

6.6.2. Non-Gaussian distributed data 

Non-Gaussian distributed data in case studies 4, 5 and 6 were used to examine the 

capabilities and effectiveness of this study’s newly created non-Gaussian-based LW 

algorithm, the E-LW-IC-KPLS. Appendix D shows an example of the MATLAB’s 

coding for the E-LW-IC-KPLS. Besides, for comparison, the prediction results from 

the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms for the case 

studies 4, 5 and 6 are illustrated, evaluated and discussed in this section. Comparisons 

of results from these models are carried out to examine the prediction capability of the 

proposed E-LW-KPLS model, which is also an objective of this research. 

 

In this case study, LW-IC-KPLS model which has a better prediction than LW-PLS in 

dealing with nonlinear and non-Gassianity data was developed. However, the penalty 

for this newly proposed model is its high computation loads. This penalty was 

expected and thus minimising this penalty was included as an objective in this 

research. Hence, the ensemble method was used to improve the computational 

efficiency of this proposed LW-IC-KPLS model. Numerous of LW-IC-KPLS models 

are executed spontaneously. The computational times of training and test data for each 

set of E-LW-IC-KPLS models in case studies 4 to 6 are illustrated in Figures 6.7 to 
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6.9. It can be seen that the computation times were reduced dramatically from 1 set to 

6 sets in Figures 6.7 and 6.8 and from 1 set to 13 sets in Figures 6.9. 

 

Case study 4: Numerical example 2  

The Log Kernel function as shown in Equation (3.9) in Chapter 3 was chosen to be 

incorporated into the E-LW-IC-KPLS, LW-IC-KPLS, and LW-KPLS models in case 

study 4. The selected value of b in the Log Kernel function was 2 as it gave the best 

predictive results. The prediction results of the E-LW-IC-KPLS, LW-IC-KPLS, LW-

KPLS and LW-PLS algorithms in case study 4 for the training and test data are 

summarised in Table 6.10. Figure 6.10 illustrates the error of approximation for the E-

LW-IC-KPLS with unique subsets in case study 4. This figure shows that the E-LW-

IC-KPLS models with 2, 3 and 13 subsets have the lowest Ea value and their values 

are almost identical. However, the E-LW-IC-KPLS with 13 subsets was picked as the 

optimal set for the E-LW-IC-KPLS algorithm since its RMSE1, MAE1 and MSE1 are 

lower than the other two subsets. Also, the prediction results for other E-LW-IC-KPLS 

models with a variety of subsets can be seen in the Appendix E.1.1.  

 

Table 6.10 shows both the LW-KPLS and LW-PLS algorithms have quite similar Ea 

value and prediction errors. Nevertheless, the LW-KPLS has a higher t1 and t2 than the 

LW-PLS. It can be concluded that the LW-KPLS and LW-PLS models have poor 

predictive qualities in this case study consisting of non-Gaussian distributed data. With 

the presence of independent component analysis (ICA) in both the E-LW-IC-KPLS 

and LW-IC-KPLS algorithms, all their prediction errors including Ea are more 

accurate than the LW-KPLS and LW-PLS models. It means that the LW-IC-KPLS and 

LW-IC-KPLS algorithms have greater success when dealing with non-Gaussian 

distributed data than the LW-PLS and LW-KPLS models.  
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Figure 6.7 Computational times for LW-IC-KPLS and E-LW-IC-KPLS in case study 4 
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Figure 6.8 Computational times for LW-IC-KPLS and E-LW-IC-KPLS in case study 5 
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Figure 6.9 Computational times for LW-IC-KPLS and E-LW-IC-KPLS in case study 6 
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Figure 6.10 The error of approximation for different subsets of the E-LW-IC-KPLS model in case study 4 

 

 

LW-IC-KPLS E-LW-IC-KPLS 



129 

 

Table 6.10 Prediction performances of the E-LW-IC-KPLS, LW-IC-KPLS, LW-

KPLS and LW-PLS algorithms for case study 4 

Algorithms LW-PLS 
LW-

KPLS 
% 

LW-IC-

KPLS 
% 

E-LW-

IC-KPLS 

% 

Number of 

subsets 
1 1  1  13  

Type of Kernel 

function 
- 

Log 

Kernel 
 

Log 

Kernel 
 

Log 

Kernel 
 

Kernel 

parameter, b 

- 2  2  2  

RMSE1 0.2574 0.2593 -0.7 0.2269 11.8 0.2187 15 

MAE1 0.2140 0.2149 -0.4 0.1911 10.7 0.1843 13.9 

MSE1 0.0663 0.0672 -1.4 0.0515 22.3 0.0478 27.9 

t1 (sec) 9 449  7146  45  

RMSE2 0.2591 0.2643 -2 0.2322 10.4 0.2313 10.7 

MAE2 0.2170 0.2206 -1.7 0.1971 9.2 0.1945 10.4 

MSE2 0.0671 0.0699 -4.2 0.0539 19.7 0.0535 20.3 

2t (sec) 3 112  1289  11  

Ea 0.2595 0.2656 -2.4 0.2335 10 0.2345 9.6 

 

As shown in Table 6.10, the E-LW-IC-KPLS and LW-IC-KPLS algorithms have Ea 

values 9.6% and 10% lower than the LW-PLS, respectively. This improvement has 

resulted in trade-offs where their t1 and t2, especially for the LW-IC-KPLS are 

relatively greater than the LW-PLS. Compared to the LW-IC-KPLS, the E-LW-IC-

KPLS model has a slightly higher Ea value but smaller prediction errors. From Table 

6.10 and Figure 6.7, the ensemble method has reduced the computational complexity 

of the LW-IC-KPLS in which the t1 and t2 of the E-LW-IC-KPLS are 117 to 159 times 
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lower than the LW-IC-KPLS algorithm. The ensemble method has significantly 

reduced the computational times of E-LW-IC-KPLS algorithm since it has multiple 

local LW-IC-KPLS models that are run in parallel and combined to make prediction 

rather than making prediction from a single LW-IC-KPLS regression model. Hence, 

it can be concluded the E-LW-IC-KPLS is superior to the LW-IC-KPLS, LW-KPLS 

and LW-PLS models.  

 

Figures H.9 and H.10 in the Appendix H shows the comparisons of the real output 

values for training and test data against the predicted outputs from the LW-PLS, LW-

KPLS, LW-IC-KPLS, and E-LW-IC-KPLS algorithms. In both figures, the LW-KPLS 

exhibited unimpressive results, whereas the prediction accuracy of the LW-PLS, LW-

IC-KPLSand E-LW-IC-KPLS models were significantly improved. In comparison, 

the LW-IC-KPLS and E-LW-IC-KPLS algorithms delivered better results than the 

LW-PLS. From the results in case study 4, it can be concluded that the objectives of 

this research are accomplished.    

 

Case study 5: Eukaryotic cell cycle regulation  

For case study 5, the Log Kernel function was adopted in the E-LW-IC-KPLS, LW-

IC-KPLS, and LW-KPLS models while the optimal value for b was 0.8. Figure 6.11 

depicts the error of approximation for the E-LW-IC-KPLS with different subsets in 

case study 5. The E-LW-IC-KPLS with 4 and 13 subsets had the lowest and similar 

value of Ea. Since RMSE1, MAE1 and MSE1 for 13 subsets were lower than 4 subsets, 

the E-LW-IC-KPLS with 13 subsets was chosen as the optimal set for E-LW-IC-

KPLS. Appendix E.1.2 presents the prediction results for the E-LW-IC-KPLS with 

different subsets. Their predictive results for the training and test data using the E-LW-

IC-KPLS, LW-IC-KPLS, LW-KPLS, and LW-PLS algorithms are tabulated in Table 

6.11.  
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Figure 6.11 The error of approximation for different subsets of the E-LW-IC-KPLS in case study 5 
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Table 6.11 Prediction performances of the E-LW-IC-KPLS, LW-IC-KPLS and LW-

KPLS and LW-PLS algorithms for case study 5 

Algorithms LW-PLS 
LW-

KPLS 
% 

LW-

IC-

KPLS 

% 

E-LW-

IC-

KPLS 

% 

Number of 

subsets 
1 1  1  13  

Type of 

Kernel 

function 

 
Log 

Kernel 
 

Log 

Kernel 
 

Log 

Kernel 
 

Kernel 

parameter, b 
- 0.8  0.8  0.8  

RMSE1 0.0755 0.0702 7 0.0702 7 0.0675 10.6 

MAE1 0.0641 0.0556 13.3 0.0556 13 0.0533 16.8 

MSE1 0.0057 0.0049 14 0.0049 13 0.0046 19.3 

t1 (sec) 9 521  6850  54  

RMSE2 0.0746 0.0697 6.6 0.0697 6.6 0.0699 6.3 

MAE2 0.0639 0.0554 13.3 0.0553 13.5 0.0549 14.1 

MSE2 0.0056 0.0049 12.5 0.0049 12.5 0.0049 12.5 

2t (sec) 3 140  1310  13  

Ea 0.0761 0.0706 7.2 0.0706 7.2 0.0704 7.5 

 

It is apparent that the LW-KPLS and LW-IC-KPLS models have approximately the 

same value of prediction errors and Ea as well as their Ea values are 7.2% lower than 
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the LW-PLS. As can be seen in Table 6.11, all their prediction errors are also smaller 

than the LW-PLS. It can be said that all of the developed models in this research 

performed better than the benchmarking LW-PLS. When the LW-PLS and E-LW-IC-

KPLS algorithms are compared, all prediction errors of the E-LW-IC-KPLS were 

relatively lower than the LW-PLS. These results demonstrate that the Log Kernel has 

increased the predictive ability of the LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS 

models in handling the nonlinear process data. The ICA has allowed the LW-IC-KPLS 

to perform slightly better than the LW-KPLS since its MAE2 is lower. 

 

However, the disadvantages of these Kernel-based models are their t1 and t2 are much 

higher than the LW-PLS. In contrast to the LW-KPLS and LW-IC-KPLS algorithms, 

the ensemble method has reduced the computational loads of the LW-IC-KPLS from 

10 to 100 times lower with better predictive results. This is because ensemble method 

builds a set of local LW-IC-KPLS models and run them simultaneously. Based on the 

overall application results in Table 6.11, the superiority of the E-LW-IC-KPLS over 

the other models in estimating the output of nonlinear and non-Gaussian processes has 

been confirmed. The comparison of the actual output value against the predicted 

output by the LW-PLS, LW-KPLS, LW-IC-KPLS, and E-LW-IC-KPLS models for 

training and test data, can be seen in Figures H.11 and H.12 in the Appendix H. In 

both figures, the predicted outputs from the E-LW-IC-KPLS are closer to the real 

output compared to other models. Hence, the results in this case study show that the 

objectives of this research are successfully achieved. 

 

Case study 6: A highly nonlinear CSTR  

In case study 6, a Log Kernel function was chosen to be incorporated into the E-LW-

IC-KPLS, LW-IC-KPLS and LW-KPLS algorithms. The value of b in this Kernel 

function was tuned to 9 since this gave the best predictive results. This case study is 

different from other case studies as it has two outputs, product concentration, and 

reactor temperature. Hence, there are three Ea values in Figure 6.12. The Ea1, and Ea2 

are Ea values for product concentration, reactor temperature, respectively while 3aE

is the average value of the Ea1, and Ea2. In Figure 6.12, it can be noticed that the Ea2 
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values for the E-LW-IC-KPLS with 14 and 27 subsets are smaller than other subsets 

and quite similar. Nevertheless, Ea1 for the E-LW-IC-KPLS with 27 subsets was lower 

than 14 subsets. Furthermore, the Ea3 for the E-LW-IC-KPLS with 27 subsets has the 

lowest values among all of the subsets. Thus, the E-LW-IC-KPLS with 27 subsets was 

adopted as the optimal set for the E-LW-IC-KPLS model.  

 

Table 6.12 Prediction performances of product concentration using the E-LW-IC-

KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS algorithms for case study 6 

Algorithms 
LW-

PLS 

LW-

KPLS 

% LW-IC-

KPLS 

% E-LW-

IC-KPLS 

% 

Number of 

subsets 
1 1  1  27  

Type of 

Kernel 

function 

- 
Log 

Kernel 
 

Log 

Kernel 
 

Log 

Kernel 
 

Kernel 

parameter, b 
- 9  9  9  

RMSE1 0.0155 0.0153 1.3 0.0153 1.3 0.0127 18.1 

MAE1 0.0111 0.0110 0.9 0.0110 0.9 0.0092 17.1 

MSE1 2.4x10-4 2.4x10-4 2.5 2.4x10-4 2.5 1.6x10-4 32.8 

t1 (sec) 17 1978  18307  106  

RMSE2 0.0074 0.0076 -2.7 0.0079 -6.8 0.0106 -43.2 

MAE2 0.0061 0.0063 -3.3 0.0065 -6.6 0.0083 -36.1 

MSE2 5.5x10-5 5.8x10-5 -4.7 6.3x10-5 -13.2 1.1x10-4 -102 

2t (sec) 6 446  3243  25  

Ea1 (1
st output) 0.0216 0.0211 2.3 0.0209 3.2 0.0143 33.8 
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Figure 6.12 The error of approximation for different subsets of the E-LW-IC-KPLS in case study 6
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The prediction results for the E-LW-IC-KPLS with different subsets are given in 

Appendix E.1.3. Next, the prediction results of the product concentration and reactor 

temperature for the new E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms in case study 6 for the training and test data are presented in Tables 6.12 

and 6.13 respectively. As these two tables show, the three Ea values for the E-LW-IC-

KPLS show significant improvement compared to the other algorithms. In Table 6.12, 

the Ea1 values for the LW-KPLS and LW-IC-KPLS algorithms were lower by 2.3% 

and 3.2% as compared to the LW-PLS respectively. Irrespectively, from Table 6.12, 

the E-LW-IC-KPLS which utilises ensemble method has a 33.8% smaller value of Ea1 

than the LW-PLS. 

 

It can be observed from Table 6.12 that the prediction errors of training data RMSE1, 

MAE1 and MSE1 for the LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS models were 

lower than the LW-PLS. The integrated Log Kernel function enhanced the predictive 

capability of these algorithms concerning training data for product concentration. 

However, their prediction errors for test data (RMSE2, MAE2 and MSE2) are higher 

than the LW-PLS. Similar to case study 2, this was due to the presence of unsteady 

state conditions in the first 2000 data sets of product concentration (output) in training 

data which affect the accuracy of models to capture the nonlinearity and non-

Gausianty of data.  

 

Moreover, due to this condition, the prediction errors of the training data for the LW-

PLS, LW-KPLS, and LW-IC-KPLS algorithms are also much higher than the 

prediction errors of their test data. Moreover, due to the presence of the Log Kernel 

function, the t1 and t2 for the LW-KPLS and LW-IC-KPLS models are also much 

greater than for the LW-PLS and E-LW-IC-KPLS algorithms. From Table 6.12 and 

Figure 6.9, the ensemble method is used in the E-LW-IC-KPLS to lower the 

computational times, and it has significantly reduced the computational times of E-

LW-IC-KPLS algorithm.  
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Table 6.13 Prediction performances of reactor temperature using the E-LW-IC-

KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS models for case study 6 

Algorithms 
LW-

PLS 

LW-

KPLS 

% LW-IC-

KPLS 

% E-LW-

IC-

KPLS 

% 

Number of 

subsets 
1 1  1  27  

Type of 

Kernel 

function 

- 
Log 

Kernel 
 

Log 

Kernel 
 

Log 

Kernel 
 

Kernel 

parameter, b 
- 9  9  9  

RMSE1 0.0152 0.0086 43.4 0.0086 43.4 0.0011 92.8 

MAE1 5.9x10-4 3.9x10-4 33.6 3.9x10-4 33.6 2.5x10-4 57.8 

MSE1 2.3x10-4 7.4x10-5 68.1 7.4x10-5 68.1 1.2x10-6 99.5 

t1 (sec) 17 1978  18307  106  

RMSE2 5.4x10-4 2.7x10-4 50.3 0.0022 -308.2 4.8x10-4 11.1 

MAE2 3.1x10-4 1.9x10-4 37.4 4.1x10-4 -30.6 2.4x10-4 23.2 

MSE2 2.9x10-7 7.2x10-8 75.3 4.8x10-6 -1549.5 2.3x10-7 21.3 

2t (sec) 6 446  3243  25  

Ea2 (2
nd 

output) 
0.0262 0.0148 43.5 0.0134 48.9 0.0016 93.9 

Ea3 (average) 0.0239 0.0180 24.7 0.0172 28.0 0.0080 66.5 
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From Table 6.13, the Ea2 values for the E-LW-IC-KPLS, LW-IC-KPLS and LW-

KPLS models were improved by about 93.9%, 48.9% and 43.5% in comparison with 

LW-PLS, respectively. Moreover, the Ea3 value, which is the average value for both 

Ea1 and Ea2 was lower by 66.5% compared to LW-PLS model and it is the lowest Ea3 

value among others. Furthermore, all their prediction errors are also lower than the 

LW-PLS. Nonetheless, the t1 and t2 for the LW-IC-KPLS and LW-KPLS are relatively 

higher than for the E-LW-IC-KPLS and LW-PLS algorithms. The ensemble method 

was utilised in the E-LW-IC-KPLS to minimise the computational times of the LW-

IC-KPLS. It resulted in a reduction of approximately 173 times lower than the LW-

IC-KPLS since the execution time for several local LW-IC-KPLS models is lesser than 

a LW-IC-KPLS model with the same amount of data. Furthermore, the addition of the 

ensemble approach and the ICA in the E-LW-IC-KPLS has improved its prediction 

errors. In general, the E-LW-IC-KPLS is superior to the LW-IC-KPLS, LW-KPLS 

and LW-PLS models concerning predictive performance. 

 

The comparisons of the real output value with the predicted outputs of product 

concentration from the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS 

algorithms for training and test data are plotted in Figures H.13 and H.15 respectively 

in Appendix H. The true output value of the reactor temperature compared to the 

predicted output from the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS 

models for training and test data are displayed in Figures H.14 and H.16 respectively 

in the Appendix H. In these figures, the majority of the predicted outputs from the E-

LW-IC-KPLS are closer to the right output value as compared to other algorithms. On 

the other hand, even the predictive errors of the E-LW-IC-KPLS for training data 

(RMSE2, MAE2 and MSE2) shown in Table 6.13 are not as good as LW-KPLS. However, 

its overall performance is better since its Ea3 value is smaller than LW-KPLS.  

 

6.6.3. Missing data 

Different missing data levels - 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 

55% and 60% - were considered in case studies 4, 5 and 6. The simulated data in these 

case studies were used to evaluate the capabilities and effectiveness of the current EM-

E-LW-IC-KPLS algorithm. Also, the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, 
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SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS, and SVD-LW-PLS models 

were also tested using case studies 4, 5 and 6 with the presence of missing data. The 

Kernel functions and Kernel parameters that were used in the EM-E-LW-IC-KPLS, 

TSR-E-LW-IC-KPLS, and SVD-E-LW-IC-KPLS algorithms are the same in Section 

6.8.2.  

 

Computation times of these models have not been discussed since they are the same. 

The results of the abovementioned algorithms are summarised, compared and 

discussed in this section. Only Ea values are evaluated and considered as they present 

the predictive errors for both training and test data. Additionally, a sample of the 

MATLAB’s coding for the EM-E-LW-IC-KPLS is listed in the Appendix F. 

Moreover, for case studies 4 to 6, the results of the EM-E-LW-IC-KPLS, TSR-E-LW-

IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS, and SVD-LW-PLS 

algorithms in different missing data levels are summarised in the Appendix G. 

 

Case study 4: Numerical example 2 (Non-Gaussian and missing data) 

Figure 6.13 shows the Ea values for different missing data ratio of the EM-E-LW-IC-

KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS 

and SVD-LW-PLS algorithms in case study 4. Besides, Figure 6.13 also shows that 

the EM-E-LW-IC-KPLS and TSR-E-LW-IC-KPLS models are statistically superior 

to the other models when dealing with 5% to 20% of the missing data. This result is 

due to both EM, and TSR models imputed more suitable values than the SVD method. 

Moreover, the E-LW-IC-KPLS in EM-E-LW-IC-KPLS and TSR-E-LW-IC-KPLS 

models have better predictive performance than LW-PLS model in dealing with non-

Gaussian distributed data. However, the EM-E-LW-IC-KPLS and TSR-E-LW-IC-

KPLS models appear to be unstable with 35% and 55% of the missing data. As seen 

in Tables G.1.1.7 and G.1.1.11 in the Appendix G, their test data performed poorly in 

this volume of missing data since the prediction errors for test data suddenly increased.  

The SVD-E-LW-IC-KPLS and SVD-LW-PLS model overestimated the association, 

and their Ea values tended to be higher and more unreliable as compared to other 
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models when the percentage of missing data increased. This result indicates that the 

precision of the imputed data from SVD model is lesser than the one from EM and 

TSR methods. Notice that SVD-E-LW-IC-KPLS algorithm became unstable at 40% 

of missing data. From Table G.1.1.8, it can say that the imputed data from SVD-E-

LW-IC-KPLS algorithm has resulted in the predictive errors for test data became high. 

Anyhow, it can be concluded that EM-E-LW-IC-KPLS model performed better at up 

to 20% of missing data in case study 4 as compared to EM-LW-PLS, TSR-LW-PLS, 

SVD-LW-PLS, and SVD-E-LW-IC-KPLS models. This result has shown that the 

objectives of this research were attained since the performance of newly developed 

EM-E-LW-IC-KPLS model is better than the integration of the benchmarking LW-

PLS with EM, TSR, and SVD methods. 

 

Case study 5: Eukaryotic cell cycle regulation (Non-Gaussian and missing data) 

In case study 5, the Ea values for various missing data ratios of the EM-E-LW-IC-

KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS, 

and SVD-LW-PLS algorithms are summarised in Figure 6.14. As shown in Figure 

6.14, the EM-E-LW-IC-KPLS and TSR-E-LW-IC-KPLS models performed much 

better than the EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms in which 

their Ea values were lower at all of the percentages of missing data (5% to 60%). 

Similar to case study 4, it is due to the E-LW-IC-KPLS model performed better than 

LW-PLS model in data that is non-Gaussian distributed. Figure 6.14 also indicates the 

EM and TSR models provided more realistic imputed data for missing data than the 

SVD method.  

 

On the other hand, it can be seen that the SVD-E-LW-IC-KPLS model has the highest 

Ea value at 20% of missing data. From Table G.1.2.4, the estimates from the SVD-E-

LW-IC-KPLS model for test data with 20% of missing data are less precise. The 

overall results exhibit the capability of the EM-E-LW-IC-KPLS model is better than 

the existing LW-PLS models that were incorporated with EM, TSR and SVD models. 

Therefore, it can be said that the objectives of this research were met. 
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Case study 6: A highly nonlinear CSTR (Non-Gaussian and missing data) 

As mentioned earlier in Section 6.8.2, there are two output variables, production 

concentration and reactor temperature in case study 6. The Ea values of these output 

variables for the missing data ratios of the EM-E-LW-IC-KPLS, TSR-E-LW-IC-

KPLS and SVD-E-LW-IC-KPLS models in case study 6 can be found in Figures 6.15 

and 6.16. It is obvious that the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS and SVD-

LW-IC-KPLS models worked much better than the LW-PLS models with EM, TSR 

and SVD models. This result denotes that their E-LW-IC-KPLS models have more 

accurate prediction performance than the LW-PLS model in nonlinear and non-

Gaussian distributed data. 

 

Also, it can be seen from Figure 6.15 that all of the Ea values for the EM-E-LW-IC-

KPLS were less frustrated with missing proportions from 5% to 60%. This result 

shows the EM-E-LW-IC-KPLS was more stable compared to the TSR-E-LW-IC-

KPLS and SVD-E-LW-IC-KPLS algorithms. Notice that these E-LW-IC-KPLS based 

models did not significantly outperform than any other since they have very similar 

imputed values for the missing data. Overall, the EM-E-LW-IC-KPLS model is more 

stable as compared to the TSR-E-LW-IC-KPLS and SVD-E-LW-IC-KPLS algorithms 

while it performed much better than EM-LW-PLS, TSR-LW-PLS, and SVD-LW-PLS 

algorithms. 
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Figure 6.13 The error of approximation for assorted missing data ratios of the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms in case study 4 
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Figure 6.14 The error of approximation for assorted missing data ratios of the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms in case study 5
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Figure 6.15 The error of approximation of product concentration for various missing data ratios of the EM-E-LW-IC-KPLS, TSR-E-LW-IC-

KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS algorithms in case study 6 
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Figure 6.16 The error of approximation of reactor temperature for missing data ratios of the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-

E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS models in case study 6
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As shown in Figure 6.16, the Ea values of the reactor temperature for the EM-E-LW-

IC-KPLS, TSR-E-LW-IC-KPLS and SVD-E-LW-IC-KPLS models were smaller than 

the integration of LW-PLS models with missing data imputation methods. This result 

shows that E-LW-IC-KPLS based models outperformed than the LW-PLS based 

models in case study 6. Notice that the Ea values for these E-LW-IC-KPLS based 

models are relatively similar when handling 15% to 60% of missing data. This result 

is due to the range of the output variables, which is the reactor temperature is small, 

and the imputed values from these models are quite similar. Anyway, the newly 

developed EM-E-LW-IC-KPLS model achieved high prediction accuracy than the 

existing integrated LW-PLS models with EM, TSR and SVD models. Thus, the 

objectives of this research were accomplished. 

 

6.7. Conclusion 

The predictive performance of the LW-KPLS is much better than for the LW-PLS in 

case study 1. Nevertheless, it has a much higher computational load, and this is the 

penalty of the improved algorithm. The ensemble method was employed in the E-LW-

KPLS to reduce the computational load of the LW-KPLS while it has almost the same 

predictive performance as the LW-KPLS. In case study 1, as compared to the LW-

PLS, the newly developed E-LW-KPLS still has a higher computational time since it 

consists of only three subsets. Again, its penalty, the computational time could be 

further reduced by having more subsets, though its prediction performance might 

become less impressive but still better than the LW-PLS. In case studies 2 and 3, the 

results showed the E-LW-KPLS provided better prediction capabilities than of the 

LW-PLS and LW-KPLS models. On the other hand, the computational load for the E-

LW-KPLS is the same as for the LW-PLS as it had more than ten subsets.  

 

In addition, in case study 2, the presence of an unsteady state condition in the training 

data for the output variable makes the E-LW-KPLS and LW-KPLS algorithms 

produce a slightly poorer predictive performance on test data when compared to the 

LW-PLS. Moreover, this condition also results in all these models having higher 

prediction errors on the training data than the test data where it is usually the opposite 
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in most cases. Regardless, in general, case studies 1, 2 and 3 have shown that the E-

LW-KPLS performs better than the LW-PLS in dealing with nonlinear and Gaussian 

distributed process data where the Ea values of the E-LW-KPLS can be improved by 

approximately 7% to 54%. Based on the results in case studies 1 to 3, it can be said 

that the objectives stated in Chapter 1 were achieved. 

 

For case studies 4 to 6, the LW-IC-KPLS and E-LW-IC-KPLS models performed 

better than the LW-PLS algorithm in dealing with nonlinear and non-Gaussian 

distributed data. This result is due to the presence of independent component analysis 

in the model which works well with non-Gaussian distributed data. Similar to the idea 

of the E-LW-KPLS, to minimize the computation load of the LW-IC-KPLS, the 

ensemble method was applied in which numerous sets of the LW-IC-KPLS were run 

simultaneously. In addition, notice that Log Kernel function is preferable for non-

Gaussian distributed data since it attains good prediction performance.  

 

Case study 6 also had an unsteady state condition in the training data of the product 

concentration as in case study 2. Therefore, the prediction errors for all models on the 

training data of production concentration were higher than the test data. Additionally, 

this condition has resulted in the E-LW-IC-KPLS, LW-IC-KPLS and LW-KPLS 

models performing more poorly on test data compared to the LW-PLS. However, in 

case study 6, the general predictive performance of the E-LW-IC-KPLS was better 

than the LW-IC-KPLS, LW-KPLS and LW-PLS algorithms. For case studies 4 to 6, 

which showed nonlinear and non-Gaussianity conditions, the E-LW-IC-KPLS showed 

better predictive results as compared to the other algorithms. The Ea values for the E-

LW-IC-KPLS improved 7.5% to 93.9% as compared to the LW-PLS in coping with 

nonlinear and non-Gaussian distributed data. Hence, this result has shown that the 

objectives of this research were attained.    

 

In addition, five out of the six case studies (case studies 2 to 6) had good predictive 

performances at 12, 13 or 14 subsets of the improved E-LW-KPLS and E-LW-IC-

KPLS algorithms. Hence, these subsets are the optimal subsets for the newly 
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developed algorithms. Additionally, as mentioned earlier, the inverse multi-quadric 

Kernel function is more suitable for processes that behave nonlinearly and Gaussianity 

and process data with a large range of input variables such as data in case studies 1 

and 3 (refer to Table 3.1 in Chapter 3). Besides, case study 2 which also behaves 

nonlinear and Gaussianity has the presence of an unsteady state in the training data of 

the output and small range of input variables. It was found that the polynomial Kernel 

to be preferable rather than the inverse multi-quadric Kernel function. Likewise, the 

Log Kernel function was found to be more appropriate for nonlinear and non-Gaussian 

distributed process data such as data in case studies 4 to 6. This data follows the non-

Gaussianity types including plateau, multimodal, exponential and bimodal. 

 

As mentioned earlier in Chapter 2, the LW-PLS based algorithms including the LW-

KPLS, E-LW-KPLS and E-LW-IC-KPLS models can cope with outliers. This 

advantage is one of the reasons the LW-PLS-based algorithms were chosen to be 

studied in this research. As shown from the above results, the RMSE of the training 

and test data for all the case studies were more than MAE. This result indicates the 

presence of outliers in the process data in all the case studies (Bratu 2013; Legates and 

Gregory 1999). It can also be seen the newly developed LW algorithms can perform 

with the existence of outliers.  

 

Based on the basic idea mentioned in Chapter 3, the EM has been incorporated into 

the newly developed E-LW-IC-KPLS model to address missing data problems as it 

has less sampling variability. This newly developed just-in-time based algorithm is 

referred to as the EM-E-LW-IC-KPLS model. In case study 4, it can be seen that this 

model performed better than the LW-PLS model integrated with missing data 

imputation methods (EM, TSR, and SVD models) when dealing with up 20% of 

missing data.  

 

From case studies 5 and 6, EM-E-LW-IC-KPLS model was found to have better 

performance as compared to the EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

models in the presence of 5% to 60% of missing data. Moreover, the EM-E-LW-IC-
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KPLS and TSR-E-LW-IC-KPLS models have practically equivalent ability since they 

yielded similar predictive results. Generally, the results showed the EM-E-LW-IC-

KPLS model is superior to the LW-PLS model integrated with EM, TSR and SVD 

models when the proportions of missing values were not exceeded 20%. The results 

have also demonstrated the effectiveness of the EM-E-LW-IC-KPLS against missing 

data which means that the objectives of this research were successfully attained.  

 

As reported earlier in Chapter 1, the possible performance trade-off of applying the 

newly improved and integrated adaptive algorithms is their high computational 

efficiency. Integration of different algorithms increases the computational complexity 

of the developed algorithms and results in high computational load. By using six 

different case studies, it had been proven that the ensemble method in the newly 

proposed E-LW-KPLS, E-LW-IC-KPLS and EM-E-LW-IC-KPLS algorithms could 

significantly reduce their computational burden as compared to their single regression 

model. In the meanwhile, these algorithms showed more accurate predictive 

performance as compared to the popular LW-PLS model which become problematic 

when handling with nonlinear, non-Gaussian distributed and missing data. 
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Chapter 7 

Conclusions and recommendations 

 

7.1. Introduction 

This research work aimed to create a novel adaptive algorithm that can control for 

nonlinear and non-Gaussian distributed data and with the presence of missing data. In 

this research work, the formulated algorithm is called the expectation maximization 

ensemble locally weighted (LW) independent component kernel partial least square 

(EM-E-LW-IC-KPLS). In this chapter, the research summary, and conclusions, as well 

as the contributions to the development of an adaptive soft sensor, are described. 

Finally, recommendations for future research on adaptive LW algorithm modelling are 

suggested. 

 

7.2. Research summary and conclusions 

Soft sensing technologies, which refer to data-driven and model-based soft sensors, 

are becoming more popular since they can solve problems associated with hardware 

counterparts. As stated earlier, issues with hardware include time-consuming 

maintenance, the need for calibration, aged deterioration, insufficient accuracy, etc. 

Soft sensors offer solutions to some of these such as low cost, minimal time required, 

and more efficient use of resources. However, as also mentioned earlier, model-based 

soft sensors are sometimes inefficient when accurate details of model parameters are 

incomplete. Hence, data-driven soft sensors, which include historical data to improve 

prediction capabilities, are far more preferable. These soft sensors have to be adaptive 

to avoid inefficiencies due to changes in the state of plants and process characteristics.  

 

In this research work, just-in-time (JIT) based adaptive algorithms including LW 

algorithms are the focus. JIT-based algorithms address the limitations of other adaptive 

models that these particular algorithms can be applied to processes that require abrupt 

changes, and they have a low computation load. A widely used JIT-based adaptive soft 

sensor the so-called LW partial least square (LW-PLS) was the benchmark technology 
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in this research. This research aimed to develop an improved LW-PLS algorithm that 

could deal with nonlinear and non-Gaussian distributed data with the presence of 

missing measurements. 

 

This research introduced a newly integrated EM-E-LW-IC-KPLS algorithm for 

nonlinear and non-Gaussian distributed process data with missing measurements. 

Besides, other associated outcomes are E-LW-KPLS and E-LW-IC-KPLS. They are 

also newly developed algorithms and methods for improving adaptive soft sensors. As 

part of this study, the capabilities and effectiveness of these newly developed 

algorithms had been tested in six different case studies. Based on the results, it was 

found the proposed algorithm was superior to the LW-PLS and LW Kernel partial least 

square (LW-KPLS) algorithm in controlling for nonlinear, and non-Gaussian 

distributed data. Moreover, for a missing data problem, the proposed algorithm is also 

deal to address a certain percentage of the missing data. 

 

The main findings and conclusions of this study are presented in the following. These 

findings and conclusions have answered the research questions stated in Chapter 1.  

 

a. In nonlinear and Gaussian distributed processes, the developed ensemble LW-

KPLS (E-LW-KPLS) outperformed compared to the LW-PLS since its Ea values 

improved about 7% to 54%.  

 

b. Another developed algorithm which is the ensemble LW independent component 

Kernel partial least square (E-LW-IC-KPLS) are also more accurate than the LW-

PLS in which the Ea values were lower by approximately 8% to 94%.  

 

c. The performance of the EM-E-LW-IC-KPLS in dealing with 5% to 60% of 

missing data in nonlinear and non-Gaussian process data was investigated.  
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d. By using case studies, it was found the EM-E-LW-IC-KPLS performs better than 

the existing integrated benchmarking LW-PLS with missing data imputation 

methods including expectation maximisation, trimmed score regression, and 

singular vector decomposition methods in handling up to 20% of missing data. 

 

e. Besides having a more accurate prediction as compared to LW-PLS, the inclusive 

of ensemble method in the newly proposed E-LW-KPLS, E-LW-IC-KPLS, and 

EM-E-LW-IC-KPLS algorithms had successfully minimised their penalty which 

is the computational burden. 

 

7.3. Contributions 

This research work offers some contributions to the field of soft sensing technologies. 

The contributions of this research are outlined below: 

 

a. A novel improved algorithm, EM-E-LW-IC-KPLS used to develop the adaptive 

soft sensor that is robust against incomplete data and capable of dealing with non-

Gaussian distributed data has been formulated and proposed to address the 

limitations of the existing algorithms. 

 

b. This new algorithm, EM-E-LW-IC-KPLS is a more accurate approach to develop 

adaptive soft sensors and a better alternative than the LW-PLS in dealing with non-

Gaussian distributed data and missing data.  

 

c. Though not as effective as the EM-E-LW-IC-KPLS, the E-LW-KPLS, EM-E-LW-

KPLS and E-LW-IC-KPLS models are also newly developed algorithms and can 

be additional methods for developing adaptive soft sensors. These algorithms are 

adaptive due to the presence of locally weighted method, which is an adaptive 

model in their algorithms. 
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d. The proposed EM-E-LW-IC-KPLS algorithm has the potential to be applied in any 

industrial processing plant in which the process is nonlinear, and the operational 

data follows non-Gaussian distribution and contains missing measurements.  

 

e. The results and new findings in this study can be used as a platform to develop 

better adaptive soft sensing and control in any chemical industrial processes. 

 

7.4. Recommendations for future research 

Although the proposed EM-E-LW-IC-KPLS algorithm for adaptive soft sensors, 

which can deal with non-Gaussian data and robust against missing data has 

successfully narrowed down the research gaps mentioned in Chapter 2, extensive 

studies still can be carried out. There are some recommendations for future studies 

which are listed below: 

 

a. In addition, other local models including the support vector regression, the least 

square support vector regression, the Gaussian process regression, and the 

Gaussian mixture model may be considered as local modeling in LW algorithms 

in future studies.  

 

b. Validating the newly proposed models using online data is recommended. 

 

c. Further research on the control system using the developed adaptive soft sensors 

can be carried out. 
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Appendix A Diferrential equations for simulation 

 

This appendix shows the differential equations used in the case studies to produce the 

simulated data using MATLAB SIMULINK. Appendices A.1, A.2, A.3, and A.4 are 

for case studies 2, 3, 5 and 6, respectively. 

 

Appendix A.1 Case study 2: A single chemical reactor 

The following differential equations are used to generate simulated data for a single 

chemical reactor in case study 2. 

 

( )
( )

( )
VC

Q
TCR

C

H
TT

V

F

dt

dT

p

Ai

i p

i

A
ρρ

+
∆−

+−= ∑
=

,
3

1

0                                            (A.1.1) 

 

( )
A

i

iAi C
RT

E
kTCR )exp(, 0

−
=                                                                               (A.1.2) 

 

( ) ( )TCRCC
V

F

dt

dC
A

i

iAA

A ,
3

1

0 ∑
=

−−=                                                                   (A.1.3) 

 

( )TCRC
V

F

dt

dC
AB

B ,1+−=                                                                                  (A.1.4) 

 

where T, TA0, F, Q, V, and ρ  are the reactor temperature, the temperature of the pure 

reactant species A, the flow rate, the rate of heat input, the volume of the reactor, and 

the density of the fluid in the reactor, respectively. Then, ∆ Hi, ki, Ei, i = 1, 2, 3, and cp 

are the enthalpies, the pre-exponential constants, the activation energies of the three 

reactions and the heat capacity, respectively. CA0, CA, and CB are the molar 

concentration of pure A, the concentrations of the species A and B, respectively. The 
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values of process parameters and the respective steady-state values are summarised in 

Table A.1.1. 

 

Table A.1 The values for the process parameters and steady-state for the chemical 

reactor in case study 2 

Parameters Values 

F 4.998 m3/hr 

V 1.0 m3 

R 8.314 KJ/kmol.K 

TA0 300.0 K 

CA0 4.0 kmol/m3 

CB0 0.0 kmol/m3 

∆ H1 -5.0× 104 KJ/kmol 

∆ H2 -5.2× 104 KJ/kmol 

∆ H3 -5.4× 104 KJ/kmol 

k10 3.0× 106 hr-1 

k20 3.0× 105 hr-1 

k30 3.0× 105 hr-1 

E1 5.0× 104 KJ/kmol 

E2 7.53× 104 KJ/kmol 

E3 7.53× 104 KJ/kmol 

ρ  1000 kg/m3 

cp 0.231 KJ/kg.K 

Ts 388.57 K 

s

AC  3.59 kmol/m3 

s

BC  0.41 kmol/m3 
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Appendix A.2 Case study 3: Wastewater treatment 

The differential equations for the wastewater treatment process in case study 3 are 

shown below: 
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where XB(t), Ss(t), DO(t), DOmax, Xr(t), D(t), Sin, and DOin are the biomass, the 

substrate, the dissolved oxygen, the maximum dissolved oxygen, the recycled 

biomass, the dilute rate, the substrate and dissolved oxygen concentrations in the 

influent, respectively. Besides, Y, µ , µ max, ks, KDO, α , W, K0 , r, and β  are the 

biomass yield factor, the biomass growth rate, the maximum specific growth rate, the 

saturation constants for the substrate and the dissolved oxygen, the oxygen transfer 

rate, the aeration rate, the model constant, the ratios of recycled and waste flow to the 

influent, respectively. 
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Table A.2 The values for the process parameters and steady-state for the wastewater 

treatment process in case study 3 

Parameters Values 

Y 0.65 

β  0.2 

α  0.018 

KDO 2 mg/l 

K0 0.5 

maxµ  0.15 hr-1 

KS 100 mg/l 

DOmax  10 mg/l 

r 0.6 

XB(0) 200 mg/l 

Ss(0) 88 mg/l 

DO(0) 5 mg/l 

Xr(0) 320 mg/l 

DOin 0.5 mg 

Sin 200 mg/l 

D 0.02 to 0.05 hr-1 

W 20 to 80 hr-1 
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Appendix A.3 Case study 5: Eukaryotic cell cycle regulation 

In case study 5, the following differential equations for eukaryotic cell cycle regulation 

are used to capture the basic stages of frog egg development. 
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where u, v, kINH, and kCAK are the dimensionless concentration of active M-phase 

promoting factor (MPF), the dimensionless concentration of total cyclin, the rate 

constant for inhibition of INH (a protein that negatively regulates MPF), and the rate 

constant for activation of CAK (a cdc2-acting kinase), respectively. 
'k1 , week , 

'k2 , 
"k2

, 
'

k25, and 
"

k25 are a rate constant for cyclin synthesis, the rate constant for inhibition of 

Weel (an enzyme responsible for the tyrosine phosphorylation of MPF which inhibits 

MPF activity), the rate constant for the low-activity form of cyclin degradation, the 

rate constant for high activity form of cyclin degradation, the rate constant for the low-

activity form of tyrosine dephosphorylation of MPF, and the rate constant for the high 

activity form of tyrosine dephosphorylation of MPF, respectively. The parameters 

used in this cell cycle model are illustrated in Table A.3.1.  
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Table A.3 The values for the process parameters and steady-state for the wastewater 

treatment process in case study 5 

Parameters Values 

'
k1  

0.01 

'
k25 

0.04 

"
k25 

100 

INHk  0.1 

CAKk  1 

'
k2  (Oscillatory mode) 

0.01 

"k2  (Oscillatory mode) 
10 

week  (Oscillatory mode) 2.0 

 

Appendix A.4 Case study 6: A highly nonlinear CSTR 

The reactor dynamics of a highly nonlinear continuously stirred tank reactor (CSTR) 

in case study 6 can be described by using the below differential equations. 
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The reaction rate constants for this highly nonlinear CSTR, ki can be described by 
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where Q& , V& , VR, T0, CA0, CA, CB, and Tc are the heat flow, the inlet flow, the reactor 

volume, the temperature contains reactant A, the concentration of pure reactant A, the 

concentration of reactant A, the concentration of B, and the cooling medium 

temperature, respectively. Moreover, Ei, Cp, mc, Cpc, ρ , kw, and AR are the activation 

energy for the reaction, the heat capacity, the coolant mass, the heat capacity of 

coolant, the density, the heat transfer coefficient for the cooling jacket, and the surface 

of the cooling jacket, respectively. Besides, ∆HRAB, ∆HRBC, and ∆HRAD are the 

enthalpies of reaction k1, the enthalpies of reaction k2, and the enthalpies of reaction 

k3, respectively. Table A.4.1 provides the parameters values required for the 

mathematical model described the highly nonlinear CSTR in the case study 6. 

 

Table A.4 The values for the process parameters and steady-state for the highly 

nonlinear continuously stirred tank reactor in case study 6 

Parameters Values 

CA0 5.10 mol/l 

CA 2.14 mol/l 

CB 1.09 mol/l 

T 114.2 oC 
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T0 104.9 oC 

Tc 112.9 oC 

RV

V&
 3 hr-1 to 35 hr-1 

Q&  
-9000 kJ/hr to 0 kJ/hr 

k1 (1.287±0.04) × 1012 hr-1 

k2 (1.287±0.04) × 1012 hr-1 

k3 (9.043±0.27) × 109 molA-1hr-1 

E1 -9758.3 K 

E2 -9758.3 K 

E3 -8560 K 

∆HRAB (4.2±2.36) kJ/molA-1 

∆HRBC -(11.0±1.92) kJ/molB-1 

∆HRAD -(41.85±1.41) kJ/molA-1 

Cp (3.01±0.04) kJkg-1K-1 

ρ  (0.9342±4.0× 10-4) kg/l 

kw (4032±120) kJhr-1m-2K-1 

AR 0.215 m2 

VR 0.01 m3 

mk 5.0 kg 

Cpc (2.0±0.05) kJkg-1K-1 
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Appendix B MATLAB code for an ensemble locally weighted Kernel 

partial least square algorithm 

 

Appendix B.1 MATLAB code for an ensemble locally weighted Kernel partial 

least square (E-LW-KPLS) algorithm 

This section displays a sample of the MATLAB code for the E-LW-KPLS algorithm. 

The main program code for the E-LW-KPLS (main2.m) with two subsets of locally 

weighted Kernel partial least square (LW-KPLS) is presented. Additionally, the other 

MATLAB codes for the LW-KPLS function (lw_kpls.m), centering function 

(centering.m), Kernel matrix function (kernelmatrix.m), Kernel centering function 

(kernelcentering.m), dualpls function (dualpls.m) and estimate Sigma function 

(estimateSigma.m) are given in website. The web site’s link is 

https://drive.google.com/open?id=1NXUPXG23hSj59sCVpKs2T_7hOSwQFRWC. 

 

clear, clc 

%% --- Description --- 

% This is a sample program of ensemble locally weighted 

Kernel partial least squares (E-LW-KPLS)  

 

%% --- Nomeclature --- 

% N1            : number of training samples 

% N2            : number of testing samples 

% M1            : number of input variables 

% M2            : number of output variables 

% 

% --- Input --- 

% X (N1 * M1): input observed data matrix for training 

data 

% Y (N1 * M2): output observed data matrix for training 

data     

% Xq (N2 * M1): query/new input matrix 

% Yq (N2 * M2): true or query/new output matrix  

% LV (1 * 1): number of latent variable to be calculated  
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% phi (1 * 1): localization parameter for distance         

% b (1 * 1): Kernel parameter 

%   

% --- Output --- 

% RMSE2 (1 * 1): root mean square for testing data 

% MAE2 (1 * 1): mean absolute errorfor testing data 

% MSE2 (1 * 1): mean square errorfor testing data 

% t2 (1 * 1): central processing unit time for testing 

data 

% RMSE1 (1 * 1): root mean square for training data 

% MAE1 (1 * 1): mean absolute errorfor training data 

% MSE1 (1 * 1): mean square errorfor training data 

% t1 (1 * 1): central processing unit time for training 

data 

% Avr_Y (1 * 1): average value of real output variable 

matrix for training data 

% Avr_YY (1 * 1): average value of predicted output 

variable matrix for training data 

% Avr_Yq (1 * 1): average value of real output variable 

matrix for testing data 

% Avr_Yest (1 * 1): average value of predicted output 

variable matrix for testing data 

% Rsq_test (1 * 1): R-squared for testing data 

% Rsq_train(1 * 1): R-squared for training data 

% E (1 * 1)       : error of approximation (Ea) value 

 

%% --- Data loading for testing data --- 

load single.mat  

tic 

%% --- Parameter setting for testing data ---  

XA  = [CA(1:2:7500,1),T(1:2:7500,1)]; 

XB  = [CA(2:2:7500,1),T(2:2:7500,1)]; 

YA  = CB(1:2:7500,1); 

YB  = CB(2:2:7500,1); 

 

XqA = [CA(7501:2:10000,1),T(7501:2:10000,1)];  
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XqB = [CA(7502:2:10000,1),T(7502:2:10000,1)]; 

YqA = CB(7501:2:10000,1);  

YqB = CB(7502:2:10000,1);  

 

%% --- Parameter setting for training and testing data - 

LV  = 1;    % number of latent variables 

phi = .1;   % localization parameter 

b   = 23;   % Kernel parameter 

 

%% --- Output estimation for testing data --- 

[YestA, W, T, P, q, omega, tq] = 

lw_kpls(XA,YA,XqA,LV,phi,b); 

[YestB, W, T, P, q, omega, tq] = 

lw_kpls(XB,YB,XqB,LV,phi,b); 

 

Yest = [YestA;YestB]; 

Yq   = [YqA;YqB]; 

 

%% --- Results for testing data ---   

formatlong 

RMSE2 = sqrt(sum((Yq(:)-Yest(:)).^2)/numel(Yq(:))) 

 

MAE2 = mean(abs(Yq(:)-Yest(:))) 

 

MSE2 = mean((Yq(:)-Yest(:)).^2) 

 

toc 

t2 = toc 

 

%% --- Data loading for training data ---  

load single.mat 

tic 

%% --- Parameter setting for training data --- 

XA = [CA(1:2:7500,1),T(1:2:7500,1)]; 

XB = [CA(2:2:7500,1),T(2:2:7500,1)]; 

 

YA = CB(1:2:7500,1); 
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YB = CB(2:2:7500,1); 

 

%% --- Output estimation for training data --- 

[YYA, W, T, P, q, omega, tq] = lw_kpls(XA,YA,XA,LV,phi,b); 

[YYB, W, T, P, q, omega, tq] = lw_kpls(XB,YB,XB,LV,phi,b); 

 

YY = [YYA;YYB]; 

Y  = [YA;YB]; 

 

%% --- Results for training data --- 

RMSE1 = sqrt(sum((Y(:)-YY(:)).^2)/numel(Y(:))) 

 

MAE1 = mean(abs(Y(:)-YY(:))) 

 

MSE1 = mean((Y(:)-YY(:)).^2) 

 

toc 

t1 = toc 

 

%% --- Results for testing and training data --- 

Avr_Y     = sum(Y(:))/numel(Y(:)); 

Avr_YY    = sum(YY(:))/numel(YY(:)) 

 

Avr_Yq    = sum(Yq(:))/numel(Yq(:)); 

Avr_Yest  = sum(Yest(:))/numel(Yest(:)) 

 

Rsq_test  = 1-sum((Yq(:) - Yest(:)).^2)/sum((Yest(:) - 

mean(Yq(:))).^2) 

Rsq_train = 1-sum((Y(:) - YY(:)).^2)/sum((YY(:) - 

mean(Y(:))).^2) 

 

N2 = size(Yq,1); 

N1 = size(Y,1); 

E  = (N1/(N2+N1))*RMSET + (N2/(N2+N1))*RMSE + abs(RMSET-

RMSE) 

 

% coded by Christine yeo @ Curtin Uni.     

Malaysia(christineyeo@curtin.edu.my) 
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% created date: 7th Jan 2016. 

% last update : 7th Dec 2017. 

 

Listing B.1.main2.m 
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Appendix C Results for the ensemble locally weighted Kernel partial 

least square algorithm 

 

Appendix C.1 Results for the ensemble locally weighted Kernel partial least 

square (E-LW-KPLS) algorithm 

For case studies 1, 2 and 3, the obtained current results from the newly developed E-

LW-KPLS, the locally weighted Kernel partial least square (LW-KPLS) and the 

locally weighted partial least square (LW-PLS) algorithms are illustrated in this 

section. Moreover, the E-LW-KPLS consists of numerous sets of LW-KPLS models 

running simultaneously. Hence, the obtained results from 1 set of LW-KPLS to 30 

subsets of LW-KPLS models are also shown in the following tables. 

 

C.1.1 Case study 1: Numerical example 1 

Tables C.1.1.1 to C.1.1.6 show the results from the E-LW-KPLS, LW-KPLS and LW-

PLS models for case study 1. The Kernel function used in the E-LW-KPLS and LW-

KPLS algorithms is the inverse multi-quadric Kernel, and the Kernel parameter b is 

fixed at 0.3.  
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Table C.1.1.1 Results for E-LW-KPLS, LW-KPLS and LW-PLS algorithms for case 

study 1 

No. of set 1 set 1 set 2 sets 3 sets 4 sets 5 sets 

Models LW-PLS  
LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.4822 0.2244 0.2266 0.2229 0.2244 0.2245 

MAE1  0.4264 0.1721 0.1740 0.1717 0.1741 0.1738 

MSE1 0.2325 0.0504 0.0513 0.0497 0.0504 0.0504 

t1 (sec) 14 1003 196 98 61 42 

              

RMSE2 0.4859 0.2227 0.2266 0.2259 0.2313 0.2329 

MAE2 0.4287 0.1706 0.1724 0.1725 0.1776 0.1779 

MSE2 0.2325 0.0496 0.0513 0.0510 0.0535 0.0542 

t2 (sec) 4 218 54 26 16 11 

Ea 0.4868 0.2257 0.2266 0.2267 0.2330 0.2350 

 

Table C.1.1.2 Results for E-LW-KPLS algorithm for case study 1 

No. of set 6 sets 7 sets 8 sets 9 sets 10 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.2239 0.2270 0.2227 0.2235 0.2250 

MAE1  0.1732 0.1758 0.1734 0.1730 0.1750 

MSE1 0.0501 0.0515 0.0496 0.0499 0.0506 

t1 (sec) 27 20 19 15 12 

            

RMSE2 0.2345 0.2369 0.2364 0.2443 0.2460 

MAE2 0.1796 0.1819 0.1801 0.1858 0.1880 

MSE2 0.0550 0.0561 0.0559 0.0597 0.0605 

t2 (sec) 8 6 5 4 4 

Ea 0.2372 0.2393 0.2398 0.2495 0.2513 
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Table C.1.1.3 Results for E-LW-KPLS algorithm for case study 1 

No. of set 11 sets 12 sets 13 sets 14 sets 15 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.2202 0.2225 0.2222 0.2228 0.2225 

MAE1  0.1706 0.1738 0.1735 0.1729 0.1728 

MSE1 0.0485 0.0495 0.0494 0.0496 0.0495 

t1 (sec) 10 10 9 8 7 

            

RMSE2 0.2458 0.2449 0.2537 0.2448 0.2546 

MAE2 0.1862 0.1887 0.1943 0.1864 0.1944 

MSE2 0.0604 0.0600 0.0644 0.0599 0.0648 

t2 (sec) 4 4 3 3 2 

Ea 0.2521 0.2487 0.2616 0.2503 0.2626 

 

Table C.1.1.4 Results for E-LW-KPLS algorithm for case study 1 

No. of set 16 sets 17 sets 18 sets 19 sets 20 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.2239 0.2228 0.2229 0.2230 0.2240 

MAE1  0.1750 0.1741 0.1737 0.1745 0.1762 

MSE1 0.0502 0.0496 0.0497 0.0497 0.0502 

t1 (sec) 6 6 6 6 6 

            

RMSE2 0.2564 0.2612 0.2650 0.2686 0.2699 

MAE2 0.1954 0.2013 0.2029 0.2045 0.2061 

MSE2 0.0657 0.0682 0.0702 0.0721 0.0729 

t2 (sec) 2 2 2 2 2 

Ea 0.2645 0.2709 0.2755 0.2800 0.2814 
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Table C.1.1.5 Results for E-LW-KPLS algorithm for case study 1 

No. of set 21 sets 22 sets 23 sets 24 sets 25 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.2227 0.2191 0.2221 0.2198 0.2214 

MAE1  0.1743 0.1713 0.1745 0.1728 0.1748 

MSE1 0.0496 0.0480 0.0493 0.0483 0.0490 

t1 (sec) 6 6 6 5 5 

            

RMSE2 0.2690 0.2737 0.2768 0.2755 0.2800 

MAE2 0.2076 0.2079 0.2126 0.2121 0.2145 

MSE2 0.0724 0.0749 0.0766 0.0759 0.0784 

t2 (sec) 2 2 2 2 2 

Ea 0.2806 0.2873 0.2904 0.2894 0.2946 

 

Table C.1.1.6 Results for E-LW-KPLS algorithm for case study 1 

No. of set 26 sets 27 sets 28 sets 29 sets 30 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.2201 0.2205 0.2202 0.2210 0.2202 

MAE1  0.1731 0.1733 0.1727 0.1737 0.1724 

MSE1 0.0484 0.0486 0.0485 0.0488 0.0485 

t1 (sec) 5 5 5 5 4 

            

RMSE2 0.2827 0.2886 0.2792 0.2877 0.2917 

MAE2 0.2156 0.2191 0.2140 0.2238 0.2215 

MSE2 0.0799 0.0833 0.0780 0.0828 0.0851 

t2 (sec) 2 2 2 2 2 

Ea 0.2983 0.3056 0.2940 0.3044 0.3096 
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C.1.2 Case study 2: A single chemical reactor 

The results from the E-LW-KPLS, LW-KPLS and LW-PLS models for case study 2 

are shown in Tables C.1.2.1 to C.1.2.6. The polynomial Kernel is used as the Kernel 

function in the E-LW-KPLS, and LW-KPLS algorithms and then the Kernel parameter 

b is set at 0.01. 

 

Table C.1.2.1 Results for E-LW-KPLS, LW-KPLS and LW-PLS algorithms for case 

study 2 

No. of set 1 set 1 set 2 sets 3 sets 4 sets 5 sets 

Models LW-PLS  
LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.0075 0.0065 0.0064 0.0064 0.0058 0.0052 

MAE1  0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 

MSE1 0.0001 4.2x10-5 4.1x10-5 4.1x10-5 3.4x10-5 2.7x10-5 

t1 (sec) 10 907 256 98 61 38 

              

RMSE2 0.0032 0.0033 0.0033 0.0033 0.0033 0.0033 

MAE2 0.0026 0.0027 0.0027 0.0027 0.0027 0.0027 

MSE2 1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 

t2 (sec) 3 205 64 27 18 13 

Ea 0.0108 0.0089 0.0087 0.0087 0.0077 0.0067 

 

Table C.1.2.2 Results for E-LW-KPLS algorithm for case study 2 

No. of set 6 sets 7 sets 8 sets 9 sets 10 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.0061 0.0050 0.0061 0.0060 0.0051 

MAE1  0.0028 0.0027 0.0028 0.0028 0.0027 

MSE1 3.8x10-5 2.5x10-5 3.8x10-5 3.6x10-5 2.6x10-5 

t1 (sec) 27 21 19 15 13 

            

RMSE2 0.0033 0.0033 0.0033 0.0034 0.0033 

MAE2 0.0027 0.0027 0.0027 0.0027 0.0027 

MSE2 1.1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 

t2 (sec) 9 7 6 5 5 

Ea 0.0082 0.0063 0.0083 0.0080 0.0065 
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Table C.1.2.3 Results for E-LW-KPLS algorithm for case study 2 

No. of set 11 sets 12 sets 13 sets 14 sets 15 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.0047 0.0042 0.0040 0.0041 0.0049 

MAE1  0.0027 0.0027 0.0026 0.0027 0.0027 

MSE1 2.2x10-5 1.8x10-5 1.6x10-5 1.7x10-5 2.4x10-5 

t1 (sec) 13 10 9 8 8 

            

RMSE2 0.0033 0.0033 0.0033 0.0034 0.0034 

MAE2 0.0027 0.0027 0.0027 0.0027 0.0027 

MSE2 1.1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 1.1x10-5 

t2 (sec) 4 4 4 3 3 

Ea 0.0057 0.0049 0.0045 0.0047 0.0060 

 

Table C.1.2.4 Results for E-LW-KPLS algorithm for case study 2 

No. of set 16 sets 17 sets 18 sets 19 sets 20 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.0078 0.0087 0.0078 0.0079 0.0080 

MAE1  0.0029 0.0029 0.0029 0.0029 0.0029 

MSE1 6.1x10-5 7.6x10-5 6.1x10-5 6.2x10-5 6.4x10-5 

t1 (sec) 7 7 7  7 6 

            

RMSE2 0.0034 0.0035 0.0034 0.0036 0.0036 

MAE2 0.0027 0.0028 0.0027 0.0028 0.0028 

MSE2 1.1x10-5 1.2x10-5 1.2x10-5 1.3x10-5 1.3x10-5 

t2 (sec) 3 3 3 3 3 

Ea 0.0111 0.0126 0.0111 0.0111 0.0113 
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Table C.1.2.5 Results for E-LW-KPLS algorithm for case study 2 

No. of set 21 sets 22 sets 23 sets 24 sets 25 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.0074 0.0071 0.0071 0.0069 0.0070 

MAE1  0.0029 0.0029 0.0028 0.0028 0.0028 

MSE1 5.7x10-5 5.1x10-5 5x10-5 4.8x10-5 4.9x10-5 

t1 (sec) 6 6 5 5 5 

            

RMSE2 0.0036 0.0036 0.0035 0.0036 0.0037 

MAE2 0.0028 0.0028 0.0028 0.0028 0.0028 

MSE2 1.3x10-5 1.3x10-5 1.2x10-5 1.3x10-5 1.4x10-5 

t2 (sec) 3 3 2 2 2 

Ea 0.0102 0.0097 0.0098 0.0094 0.0094 

 

Table C.1.2.6 Results for E-LW-KPLS algorithm for case study 2 

No. of set 26 sets 27 sets 28 sets 29 sets 30 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.0068 0.0068 0.0068 0.0068 0.0067 

MAE1  0.0028 0.0028 0.0027 0.0028 0.0028 

MSE1 4.6x10-5 4.6x10-5 4.7x10-5 4.6x10-5 4.5x10-5 

t1 (sec) 5 5 5 5 5 

            

RMSE2 0.0036 0.0035 0.0036 0.0037 0.0037 

MAE2 0.0028 0.0028 0.0027 0.0028 0.0029 

MSE2 1.3x10-5 1.2x10-5 1.3x10-5 1.4x10-5 1.4x10-5 

t2 (sec) 2 2 2 2 2 

Ea 0.0091 0.0093 0.0093 0.0091 0.0090 
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C.1.3 Case study 3: Wastewater treatment 

In this section, Tables C.1.3.1 to C.1.3.6 illustrate the obtained current results from E-

LW-KPLS, LW-KPLS and LW-PLS algorithms for case study 3. An inverse multi-

quadric Kernel function is adopted in E-LW-KPLS and LW-KPLS algorithms and 

then the selected Kernel parameter, b is 8. 

 

Table C.1.3.1 Results for E-LW-KPLS, LW-KPLS and LW-PLS algorithms for case 

study 3 

No. of sets 1 set 1 set 2 sets 3 sets 4 sets 5 sets 

Models LW-PLS  
LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.7103 0.7330 0.7322 0.7309 0.7294 0.7283 

MAE1  0.5811 0.5859 0.5851 0.5841 0.5828 0.5820 

MSE1 0.5045 0.5373 0.5361 0.5342 0.5320 0.5304 

t1 (sec) 11 1067 225 101 61 42 

              

RMSE2 0.7744 0.7413 0.7412 0.7415 0.7425 0.7429 

MAE2 0.6284 0.6053 0.6052 0.6054 0.6060 0.6062 

MSE2 0.5997 0.5496 0.5494 0.5498 0.5513 0.5519 

t2 (sec) 4 238 64 30 19 13 

Ea 0.7905 0.7434 0.7435  0.7441 0.7458 0.7466 
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Table C.1.3.2 Results for E-LW-KPLS algorithm for case study 3 

No. of sets 6 sets 7 sets 8 sets 9 sets 10 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.7259 0.7243 0.7223 0.7212 0.7176 

MAE1  0.5800 0.5791 0.5784 0.5761 0.5738 

MSE1 0.5269 0.5246 0.5217 0.5201 0.5149 

t1 (sec) 31 25 20 16 14 

            

RMSE2 0.7418 0.7443 0.7401 0.7436 0.7475 

MAE2 0.6047 0.6068 0.6025 0.6061 0.6095 

MSE2 0.5502 0.5539 0.5477 0.5530 0.5588 

t2 (sec) 10 8 7 5 5 

Ea 0.7458 0.7493  0.7445 0.7493 0.7550 

 

Table C.1.3.3 Results for E-LW-KPLS algorithm for case study 3 

No. of sets 11 sets 12 sets 13 sets 14 sets 15 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.7157 0.7139 0.7137 0.7066 0.7040 

MAE1  0.5712 0.5693 0.5692 0.5641 0.5605 

MSE1 0.5123 0.5097 0.5094 0.4993 0.4956 

t1 (sec) 12 11 10 9 8 

            

RMSE2 0.7461 0.7314 0.7462 0.7432 0.7508 

MAE2 0.6087 0.5966 0.6090 0.6018 0.6124 

MSE2 0.5567 0.5350 0.5568 0.5524 0.5637 

t2 (sec) 4 4 3 3 3 

Ea 0.7537 0.7358  0.7543 0.7523 0.7625 
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Table C.1.3.4 Results for E-LW-KPLS algorithm for case study 3 

No. of sets 16 sets 17 sets 18 sets 19 sets 20 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.7046 0.6978 0.6982 0.6887 0.6881 

MAE1  0.5621 0.5564 0.5562 0.5492 0.5479 

MSE1 0.4965 0.4869 0.4874 0.4743 0.4735 

t1 (sec) 8 7 7 7 6 

            

RMSE2 0.7510 0.7581 0.7545 0.7501 0.7608 

MAE2 0.6125 0.6130 0.6108 0.6059 0.6182 

MSE2 0.5641 0.5748 0.5693 0.5626 0.5789 

t2 (sec) 3 3 3 3 3 

Ea 0.7626 0.7732  0.7686 0.7654 0.7790 

 

Table C.1.3.5 Results for E-LW-KPLS algorithm for case study 3 

No. of sets 21 sets 22 sets 23 sets 24 sets 25 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.6876 0.6879 0.6809 0.6752 0.6693 

MAE1  0.5471 0.5464 0.5409 0.5369 0.5327 

MSE1 0.4727 0.4732 0.4637 0.4559 0.4479 

t1 (sec) 6 6 5 5 5 

            

RMSE2 0.7486 0.7572 0.7640 0.7676 0.7685 

MAE2 0.6112 0.6174 0.6166 0.6219 0.6230 

MSE2 0.5605 0.5734 0.5838 0.5892 0.5906 

t2 (sec) 3 3 2 2 2 

Ea 0.7639 0.7746  0.7848 0.7907 0.7933 
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Table C.1.3.6 Results for E-LW-KPLS algorithm for case study 3 

No. of sets 26 sets 27 sets 28 sets 29 sets 30 sets 

Models 
E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

E-LW-

KPLS 

RMSE1  0.6628 0.6632 0.6694 0.6599 0.6628 

MAE1  0.5241 0.5240 0.5300 0.5238 0.5241 

MSE1 0.4394 0.4398 0.4481 0.4355 0.4394 

t1 (sec) 5 5 5 5 5 

            

RMSE2 0.7605 0.7870 0.7990 0.7760 0.7605 

MAE2 0.6143 0.6375 0.6416 0.6324 0.6143 

MSE2 0.5784 0.6193 0.6385 0.6022 0.5784 

t2 (sec) 2 2 2 2 2 

Ea 0.7849 0.8179  0.8315 0.8050 0.7849 
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Appendix D MATLAB code for an ensemble locally weighted 

independent component Kernel partial least square algorithm 

 

Appendix D.1 MATLAB code for an ensemble locally weighted independent 

component Kernel partial least square (E-LW-IC-KPLS) algorithm 

A sample of the MATLAB code for the E-LW-IC-KPLS algorithm is illustrated in this 

section. The main MATLAB code for the E-LW-IC-KPLS (main2.m) with two sets of 

a locally weighted independent component Kernel partial least square (LW-IC-KPLS) 

model is presented first. Moreover, the other MATLAB codes for the LW-IC-KPLS 

function (lw_ic_kpls.m), centering function (centering.m), Kernel matrix function 

(kernelmatrix.m), Kernel centering function (kernelcentering.m), dualpls function 

(dualpls.m), estimate Sigma function (estimateSigma.m), independent component 

analysis function (ica.m) and principal component analysis with singular value 

decomposition function (pca_svd.m) can be found in 

https://drive.google.com/open?id=1rS83rQqiyPLkS7lZMq-RllqZRZo1flv2. 

 

clear, clc 

%% --- Description --- 

% This is a sample program of ensemble locally weighted 

independent component Kernel partial least squares (E-LW-

IC-KPLS)  

% 

%% --- Nomeclature --- 

% N1            : number of training samples 

% N2            : number of testing samples 

% M1            : number of input variables 

% M2            : number of output variables 

% 

% --- Input --- 

% X (N1 * M1): input observed data matrix for training 

data 

% Y (N1 * M2): output observed data matrix for training 

data     
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% Xq (N2 * M1): query/new input matrix 

% Yq (N2 * M2): true or query/new output matrix  

% LV (1 * 1): number of latent variable to be calculated  

% phi (1 * 1): localization parameter for distance        

% b (1 * 1): Kernel parameter 

% numPC (1 * 1): number of principal components to be 

calculated 

% epsilon (1 * 1): maximum error for convergence (default: 

0.1) 

% max_itr (1 * 1): maximum number of iteration (default: 

1000) 

% 

% --- Output --- 

% RMSE2 (1 * 1): root mean square for testing data 

% MAE2 (1 * 1): mean absolute errorfor testing data 

% MSE2 (1 * 1): mean square errorfor testing data 

% t2 (1 * 1): central processing unit time for testing 

data 

% RMSE1 (1 * 1): root mean square for training data 

% MAE1 (1 * 1): mean absolute errorfor training data 

% MSE1 (1 * 1): mean square errorfor training data 

% t1 (1 * 1): central processing unit time for training 

data 

% Avr_Y (1 * 1): average value of real output variable 

matrix for training data 

% Avr_YY (1 * 1): average value of predicted output 

variable matrix for training data 

% Avr_Yq (1 * 1): average value of real output variable 

matrix for testing data 

% Avr_Yest (1 * 1): average value of predicted output 

variable matrix for testing data 

% Rsq_test (1 * 1): R-squared for testing data 

% Rsq_train(1 * 1): R-squared for training data 

% E (1 * 1)       : error of approximation (Ea) value 

 

%% --- Data loading for testing data --- 

load sine.mat 
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tic 

 

%% --- Parameter setting for training data --- 

XA = x(1:2:7500,1); 

XB = x(2:2:7500,1); 

 

YA = y(1:2:7500,1); 

YB = y(2:2:7500,1); 

 

XqA = x(7501:2:10000,1);  

XqB = x(7502:2:10000,1); 

YqA = y(7501:2:10000,1);  

YqB = y(7502:2:10000,1);  

 

%% --- Parameter setting for training and testing data - 

LV  = 1;   % number of latent variables 

phi = .1;   % localization parameter 

numIC = 1; % number of ICs 

epsilon = 0.00001; 

max_itr = 1000; 

b = 2; % Kernel parameter 

 

%% --- Output estimation for testing data --- 

[YestA, W, T, P, q, omega, tq] = 

lw_ic_kpls(XA,YA,XqA,LV,phi,numIC,epsilon,max_itr,b); 

[YestB, W, T, P, q, omega, tq] = 

lw_ic_kpls(XB,YB,XqB,LV,phi,numIC,epsilon,max_itr,b); 

 

Yest = [YestA;YestB]; 

Yq = [YqA;YqB]; 

 

%% --- Result for testing data ---   

formatlong 

RMSE2 = sqrt(sum((Yq(:)-Yest(:)).^2)/numel(Yq(:))) 

 

MAE2 = mean(abs(Yq(:)-Yest(:))) 
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MSE2 = mean((Yq(:)-Yest(:)).^2) 

toc 

t2 = toc 

 

%% --- Data loading for training data ---  

load sine.mat 

tic 

 

%% --- Parameter setting for training data --- 

XA = x(1:2:7500,1); 

XB = x(2:2:7500,1); 

YA = y(1:2:7500,1); 

YB = y(2:2:7500,1); 

 

%% --- Output estimation for training data --- 

[YYA, W, T, P, q, omega, tq] = 

lw_ic_kpls(XA,YA,XA,LV,phi,numIC,epsilon,max_itr,b); 

[YYB, W, T, P, q, omega, tq] = 

lw_ic_kpls(XB,YB,XB,LV,phi,numIC,epsilon,max_itr,b); 

 

YY = [YYA;YYB]; 

Y = [YA;YB]; 

 

%% --- Result for training data --- 

formatlong 

RMSE1 = sqrt(sum((Y(:)-YY(:)).^2)/numel(Y(:))) 

 

MAE1 = mean(abs(Y(:)-YY(:))) 

 

MSE1 = mean((Y(:)-YY(:)).^2) 

 

toc 

t1 = toc 

 

%% --- Results for testing and training data --- 

Avr_Y = sum(Y(:))/numel(Y(:)) 

Avr_YY = sum(YY(:))/numel(YY(:)) 
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Avr_Yq = sum(Yq(:))/numel(Yq(:)) 

Avr_Yest = sum(Yest(:))/numel(Yest(:)) 

 

Rsq_test = 1-sum((Yq(:) - Yest(:)).^2)/sum((Yest(:) - 

mean(Yq(:))).^2) 

Rsq_train = 1-sum((Y(:) - YY(:)).^2)/sum((YY(:) - 

mean(Y(:))).^2) 

 

N = size(Yq,1); 

NN = size(Y,1); 

E = (NN/(N+NN))*RMSET + (N/(N+NN))*RMSE + abs(RMSET - 

RMSE) 

 

% coded by Christine yeo @ Curtin Uni. 

Malaysia(christineyeo@curtin.edu.my) 

% created date: 7th Jan 2016. 

% last update : 7th Dec 2017. 

 

Listing D.1.main2.m 
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Appendix E Results for the ensemble locally weighted independent 

component Kernel partial least square algorithm 

 

Appendix E.1 Results for an ensemble locally weighted independent component 

Kernel partial least square (E-LW-IC-KPLS) algorithm 

In this section, the results of case studies 4, 5 and 6 from the newly developed E-LW-

IC-KPLS, locally weighted independent component Kernel partial least square (LW-

IC-KPLS), locally weighted Kernel partial least square (LW-KPLS) and locally 

weighted partial least square (LW-PLS) algorithms are presented. For the E-LW-IC-

KPLS model, several LW-IC-KPLS models are run spontaneously. The tables below 

report the results for 1 set of the LW-IC-KPLS to 30 subsets of LW-IC-KPLS models.  

 

E.1.1 Case study 4: Numerical example 2 

Tables E.1.1.1 to E.1.1.6 show the results from the E-LW-IC-KPLS, LW-IC-KPLS, 

LW-KPLS and LW-PLS algorithms for case study 4. The Kernel function used in the 

E-LW-IC-KPLS, LW-IC-KPLS and LW-KPLS models is the Log Kernel, and the 

Kernel parameter b is fixed at 2. 
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Table E.1.1.1 Results for E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 4 

No. of set 1 set 1 set 1 sets 2 sets 3 sets 4 sets 

Models 
LW-

PLS  

LW-

KPLS 

LW-IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

RMSE1  0.2574 0.2593 0.2269 0.2270 0.2272 0.2271 

MAE1  0.2140 0.2149 0.1911 0.1911 0.1912 0.1911 

MSE1 0.0663 0.0672 0.0515 0.0515 0.0516 0.0516 

t1 (sec) 9 449 7146 1726 728 437 

              

RMSE2 0.2591 0.2643 0.2322 0.2324 0.2329 0.2334 

MAE2 0.2170 0.2206 0.1971 0.1972 0.1975 0.1977 

MSE2 0.0671 0.0699 0.0539 0.0540 0.0542 0.0545 

t2 (sec) 3 112 1289 309 147 89 

Ea 0.2595 0.2656 0.2335 0.2338 0.2343 0.2350 

 

Table E.1.1.2 Results for E-LW-IC-KPLS algorithm for case study 4 

No. of set 5 sets 6 sets 7 sets 8 sets 9 sets 10 sets 

Models 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

RMSE1  0.2270 0.2271 0.2252 0.2272 0.2270 0.2271 

MAE1  0.1912 0.1911 0.1892 0.1911 0.1909 0.1911 

MSE1 0.0515 0.0516 0.0507 0.0516 0.0515 0.0516 

t1 (sec) 291 210 169 133 105 81 

              

RMSE2 0.2334 0.2334 0.2364 0.2347 0.2339 0.2361 

MAE2 0.1979 0.1979 0.1997 0.1985 0.1981 0.1997 

MSE2 0.0545 0.0545 0.0559 0.0551 0.0547 0.0557 

t2 (sec) 60 43 33 28 24 18 

Ea 0.2350 0.2350 0.2392 0.2366 0.2356 0.2383 
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Table E.1.1.3 Results for E-LW-IC-KPLS algorithm for case study 4 

No. of set 11 sets 12 sets 13 sets 14 sets 15 sets 16 sets 

Models 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

RMSE1  0.2212 0.2282 0.2187 0.2277 0.2274 0.2281 

MAE1  0.1861 0.1916 0.1843 0.1907 0.1912 0.1914 

MSE1 0.0489 0.0521 0.0478 0.0518 0.0517 0.0520 

t1 (sec) 69 61 45 43 41 41 

              

RMSE2 0.2346 0.2368 0.2313 0.2407 0.2365 0.2378 

MAE2 0.1980 0.1993 0.1954 0.2019 0.1995 0.2004 

MSE2 0.0551 0.0561 0.0535 0.0579 0.0559 0.0566 

t2 (sec) 15 15 11 11 11 11 

Ea 0.2380 0.2389 0.2345 0.2439 0.2387 0.2402 

 

Table E.1.1.4 Results for E-LW-IC-KPLS algorithm for case study 4 

No. of set 17 sets 18 sets 19 sets 20 sets 21 sets 22 sets 

Models 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

RMSE1  0.2302 0.2288 0.2313 0.2202 0.2277 0.2263 

MAE1  0.1930 0.1915 0.1931 0.1846 0.1908 0.1885 

MSE1 0.0530 0.0524 0.0535 0.0485 0.0518 0.0512 

t1 (sec) 39 36 34 33 21 20 

              

RMSE2 0.2403 0.2404 0.2403 0.2417 0.2420 0.2423 

MAE2 0.2020 0.2021 0.2017 0.2030 0.2027 0.2025 

MSE2 0.0578 0.0578 0.0577 0.0584 0.0586 0.0587 

t2 (sec) 10 10 9 8 7 6 

Ea 0.2429 0.2433 0.2426 0.2471 0.2456 0.2463 
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Table E.1.1.5 Results for E-LW-IC-KPLS algorithm for case study 4 

No. of set 23 sets 24 sets 25 sets 26 sets 27 sets 28 sets 

Models 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

RMSE1  0.2257 0.2322 0.2182 0.2247 0.2259 0.2321 

MAE1  0.1891 0.1932 0.1798 0.1872 0.1864 0.1924 

MSE1 0.0510 0.0539 0.0476 0.0505 0.0510 0.0539 

t1 (sec) 18 18 18 18 18 17 

              

RMSE2 0.2371 0.2440 0.2452 0.2407 0.2620 0.2492 

MAE2 0.1997 0.2034 0.2035 0.2008 0.2185 0.2071 

MSE2 0.0562 0.0595 0.0601 0.0579 0.0686 0.0621 

t2 (sec) 6 6 6 6 6 5 

Ea 0.2399 0.2469 0.2519 0.2446 0.2710 0.2535 

 

Table E.1.1.6 Results for E-LW-IC-KPLS algorithm for case study 4 

No. of set 29 sets 30 sets 

Models 
E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

RMSE1  0.2310 0.2297 

MAE1  0.1907 0.1920 

MSE1 0.0533 0.0528 

t1 (sec) 17 17 

      

RMSE2 0.2442 0.2443 

MAE2 0.2029 0.2047 

MSE2 0.0596 0.0597 

t2 (sec) 5 5 

Ea 0.2475 0.2480 
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E.1.2 Case study 5: Eukaryotic cell cycle regulation 

The results from the E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 5 are shown in Tables E.1.2.1 to E.1.2.7. The Log Kernel is 

used as the Kernel function in the E-LW-IC-KPLS, LW-IC-KPLS and LW-KPLS 

models and then the selected Kernel parameter b is 0.8. 

 

Table E.1.2.1 Results for E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 5 

No. of set 1 set 1 set 1 sets 2 sets 3 sets 4 sets 

Models LW-PLS  
LW-

KPLS 

LW-IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-

IC-

KPLS 

RMSE1  0.0755 0.0702 0.0702 0.0700 0.0697 0.0695 

MAE1  0.0641 0.0556 0.0556 0.0554 0.0552 0.0550 

MSE1 0.0057 0.0049 0.0049 0.0049 0.0049 0.0048 

t1 (sec) 9 521 6850 1740 765 458 

              

RMSE2 0.0746 0.0697 0.0697 0.0697 0.0701 0.0698 

MAE2 0.0639 0.0554 0.0553 0.0554 0.0555 0.0554 

MSE2 0.0056 0.0049 0.0049 0.0049 0.0049 0.0049 

t2 (sec) 3 140 1310 335 141 84 

Ea 0.0761 0.0706 0.0706 0.0702 0.0702 0.0699 
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Table E.1.2.2 Results for E-LW-IC-KPLS algorithm for case study 5 

No. of set 5 sets 6 sets 7 sets 8 sets 9 sets 

Models 
E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

RMSE1  0.0690 0.0691 0.0686 0.0696 0.0683 

MAE1  0.0546 0.0548 0.0542 0.0546 0.0540 

MSE1 0.0048 0.0048 0.0047 0.0048 0.0047 

t1 (sec) 296 204 157 123 98 

            

RMSE2 0.0702 0.0707 0.0709 0.0718 0.0705 

MAE2 0.0554 0.0562 0.0559 0.0576 0.0553 

MSE2 0.0049 0.0050 0.0050 0.0052 0.0050 

t2 (sec) 58 41 31 25 22 

Ea 0.0705 0.0712 0.0715 0.0724 0.0710 

 

Table E.1.2.3 Results for E-LW-IC-KPLS algorithm for case study 5 

No. of set 10 sets 11 sets 12 sets 13 sets 14 sets 

Models 
E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

RMSE1  0.0676 0.0690 0.0682 0.0675 0.0674 

MAE1  0.0533 0.0546 0.0542 0.0533 0.0533 

MSE1 0.0046 0.0048 0.0046 0.0046 0.0045 

t1 (sec) 83 71 62 54 48 

            

RMSE2 0.0711 0.0716 0.0719 0.0699 0.0717 

MAE2 0.0557 0.0567 0.0570 0.0549 0.0560 

MSE2 0.0051 0.0051 0.0052 0.0049 0.0051 

t2 (sec) 19 16 15 13 12 

Ea 0.0720 0.0723 0.0728 0.0704 0.0728 
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Table E.1.2.4 Results for E-LW-IC-KPLS algorithm for case study 5 

No. of set 15 sets 16 sets 17 sets 18 sets 19 sets 

Models 
E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

RMSE1  0.0677 0.0678 0.0669 0.0667 0.0669 

MAE1  0.0536 0.0535 0.0529 0.0530 0.0530 

MSE1 0.0046 0.0046 0.0045 0.0045 0.0045 

t1 (sec) 41 40 38 33 32 

            

RMSE2 0.0719 0.0737 0.0737 0.0718 0.0722 

MAE2 0.0566 0.0591 0.0575 0.0565 0.0564 

MSE2 0.0052 0.0054 0.0054 0.0052 0.0052 

t2 (sec) 11 10 10 9 9 

Ea 0.0730 0.0752 0.0753 0.0730 0.0735 

 

Table E.1.2.5 Results for E-LW-IC-KPLS algorithm for case study 5 

No. of set 20 sets 21 sets 22 sets 23 sets 24 sets 

Models 
E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

RMSE1  0.0657 0.0672 0.0666 0.0670 0.0665 

MAE1  0.0518 0.0530 0.0527 0.0528 0.0524 

MSE1 0.0043 0.0045 0.0044 0.0045 0.0044 

t1 (sec) 30 21 21 21 21 

            

RMSE2 0.0720 0.0746 0.0727 0.0765 0.0752 

MAE2 0.0559 0.0596 0.0571 0.0597 0.0595 

MSE2 0.0052 0.0056 0.0053 0.0058 0.0057 

t2 (sec) 8 7 7 7 6 

Ea 0.0735 0.0765 0.0742 0.0789 0.0773 
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Table E.1.2.6 Results for E-LW-IC-KPLS algorithm for case study 5 

No. of set 25 sets 26 sets 27 sets 28 sets 29 sets 

Models 
E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-IC-

KPLS 

RMSE1  0.0661 0.0652 0.0647 0.0645 0.0650 

MAE1  0.0521 0.0511 0.0509 0.0508 0.0516 

MSE1 0.0044 0.0043 0.0042 0.0042 0.0042 

t1 (sec) 20 19 18 18 18 

            

RMSE2 0.0732 0.0711 0.0731 0.0729 0.0733 

MAE2 0.0576 0.0551 0.0563 0.0564 0.0573 

MSE2 0.0054 0.0051 0.0053 0.0053 0.0054 

t2 (sec) 6 6 6 6 6 

Ea 0.0750 0.0726 0.0752 0.0750 0.0753 

 

Table E.1.2.7 Results for E-LW-IC-KPLS algorithm for case study 5 

No. of set 30 sets 

Models E-LW-IC-KPLS 

RMSE1  0.0650 

MAE1  0.0512 

MSE1 0.0042 

t1 (sec) 18 

   

RMSE2  0.0785 

MAE2 0.0617 

MSE2 0.0062 

t2 (sec) 6 

Ea 0.0819 

 

E.1.3 Case study 6: A highly nonlinear CSTR 

The results from the E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 6 are shown in Tables E.1.3.1 to E.1.3.6. The Log Kernel is 

used as the Kernel function in the E-LW-IC-KPLS, LW-IC-KPLS and LW-KPLS 

algorithms and the chosen Kernel parameter b is 9. 
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Table E.1.3.1 Results for E-LW-IC-KPLS, LW-IC-KPLS, LW-KPLS and LW-PLS 

algorithms for case study 6 

Output variable : Product concentration 

No. of set 1 set 1 set 1 set 2 sets 3 sets 4 sets 

Models LW-PLS 
LW-

KPLS 

LW-IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-

IC-KPLS 

RMSE1 0.0155 0.0153 0.0153 0.0151 0.0149 0.0151 

MAE1 0.0111 0.0110 0.0110 0.0108 0.0107 0.0108 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

       

RMSE2 0.0074 0.0076 0.0079 0.0082 0.0078 0.0106 

MAE2 0.0061 0.0063 0.0065 0.0066 0.0063 0.0077 

MSE2 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st 

output) 
0.0216 0.0211 0.0209 0.0202 0.0202 0.0185 

Output variable : Reactor temperature 

No. of set 1 set 1 set 1 set 2 sets 3 sets 4 sets 

Models LW-PLS 
LW-

KPLS 

LW-IC-

KPLS 

E-LW-

IC-

KPLS 

E-LW-IC-

KPLS 

E-LW-

IC-KPLS 

RMSE1 0.0152 0.0086 0.0086 0.0151 0.0029 0.0152 

MAE1 0.0006 0.0004 0.0004 0.0006 0.0003 0.0005 

MSE1 0.0002 7.4x10-5 7.4x10-5 0.0002 8.2x10-5 2.3x10-5 

t1 (sec) 17 1978 18307 9328 7024 4416 

       

RMSE2 0.0005 0.0003 0.0022 0.0013 0.0014 0.0003 

MAE2 0.0003 0.0002 0.0004 0.0005 0.0002 0.0002 

MSE2 2.9x10-5 7.2x10-5 4.8x10-5 1.7x10-5 1.9x10-5 6.6x10-5 

t2 (sec) 6 446 3243 1826 985 851 

Ea2 (2
nd 

output) 
0.0262 0.0148 0.0134 0.0255 0.0040 0.0264 

Ea3 (average) 0.0239 0.0180 0.0172 0.0229 0.0121 0.0225 
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Table E.1.3.2 Results for E-LW-IC-KPLS algorithm for case study 6 

Output variable : Product concentration 

No. of set 5 sets 6 sets 7 sets 8 sets 9 sets 10 sets 

Models 
E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1  0.0147 0.0143 0.0147 0.0152 0.0143 0.0141 

MAE1 0.0106 0.0103 0.0105 0.0109 0.0103 0.0102 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

             

RMSE2 0.0086 0.0099 0.0086 0.0104 0.0092 0.0090 

MAE2 0.0069 0.0076 0.0069 0.0079 0.0072 0.0072 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st 

output) 
0.0194 0.0177 0.0193 0.0187  0.0181 0.0179 

Output variable : Reactor temperature 

No. of set 5 sets 6 sets 7 sets 8 sets 9 sets 10 sets 

Models 
E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1 0.0152 0.0029 0.0152 0.0024 0.0029 0.0018 

MAE1 0.0005 0.0003 0.0005 0.0003 0.0003 0.0003 

MSE1 0.0002 8.4x10-6 0.0002 5.7x10-6 8.3x10-6 3.3x10-6 

t1 (sec) 3285 2024 1934 1230 1146 968 

            

RMSE2 0.0003 0.0004 0.0004 0.0007 0.0005 0.0004 

MAE2 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 

MSE2 1.1x10-7 1.7x10-7 1.4x10-7 4.8x10-7 2.2x10-7 1.4x10-7 

t2 (sec) 475 377 305 291 273 253 

Ea2 (2
nd 

output) 
0.0263 0.0048  0.0263  0.0037  0.0047  0.0029 

Ea3 (average) 0.0229 0.0113 0.0228 0.0112 0.0114 0.0104 
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Table E.1.3.3 Results for E-LW-IC-KPLS algorithm for case study 6 

Output variable : Product concentration 

No. of set 11 sets 12 sets 13 sets 14 sets 15 sets 16 sets 

Models 
E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1  0.0138 0.0140 0.0136 0.0134 0.0138 0.0136 

MAE1 0.0101 0.0102 0.0099 0.0097 0.0100 0.0098 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0098 0.0094 0.0099 0.0104 1.0588 1.0586 

MAE2 0.0076 0.0075 0.0077 0.0078 0.0100 0.0108 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0078 0.0082 

Ea1 (1
st 

output) 
0.0168 0.0175 0.0164  0.0156 0.0166 0.0156 

Output variable : Reactor temperature 

No. of set 11 sets 12 sets 13 sets 14 sets 15 sets 16 sets 

Models 
E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1 0.0152 0.0028 0.0028 0.0013 0.0013 0.0015 

MAE1 0.0005 0.0003 0.0003 0.0003 0.0003 0.0003 

MSE1 2.3x10-4 8.1x10-6 8x10-6 1.7x10-6 1.8x10-6 2.2x10-6 

t1 (sec) 881 764 683 505 404 397 

             

RMSE2 0.0005 0.0004 0.0005 0.0005 0.0004 0.0004 

MAE2 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

MSE2 2.2x10-7 2.0x10-7 2.9x10-7 2.1x10-7 1.3x10-7 1.2x10-7 

t2 (sec) 205 194 188 171 105 91 

Ea2 (2
nd 

output) 
0.0262  0.0046  0.0045  0.0019  0.0021 0.0023  

Ea3 (average) 0.0215 0.0111 0.0105 0.0088 0.0094 0.0090 
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Table E.1.3.4 Results for E-LW-IC-KPLS algorithm for case study 6 

Output variable : Product concentration 

No. of set 17 sets 18 sets 19 sets 20 sets 21 sets 22 sets 

Models 
E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1  0.0137 0.0145 0.0130 0.0130 0.0129 0.0131 

MAE1 0.0099 0.0104 0.0094 0.0095 0.0095 0.0095 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

             

RMSE2 0.0106 1.0591 1.0588 0.0106 0.0102 0.0106 

MAE2 0.0081 0.0090 0.0103 0.0082 0.0079 0.0081 

MSE2  0.0001 0.0071 0.0079 0.0001 0.0001 0.0001 

Ea1 (1
st 

output) 
0.0160 0.0187 0.0149 0.0148 0.0150 0.0149 

Output variable : Reactor temperature 

No. of set 17 sets 18 sets 19 sets 20 sets 21 sets 22 sets 

Models 
E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1 0.0028 0.0013 0.0029 0.0029 0.0026 0.0027 

MAE1 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

MSE1 7.9x10-6 1.8x10-6 8.1x10-6 8.5x10-6 7x10-6 7.1x10-6 

t1 (sec) 305 285 272 263 251 248 

            

RMSE2 0.0006 0.0003 0.0003 0.0004 0.0006 0.0005 

MAE2 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 

MSE2 3.5x10-7 7.2x10-8 1.2x10-7 1.5x10-7 3.9x10-7 2.8x10-7 

t2 (sec) 85 78 66 57 46 35 

Ea2 (2
nd 

output) 
0.0045 0.0022  0.0047  0.0048 0.0041  0.0043  

Ea3 (average) 0.0103 0.0105 0.0098 0.0098 0.0096 0.0096 
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Table E.1.3.5 Results for E-LW-IC-KPLS algorithm for case study 6 

Output variable : Product concentration 

No. of set 23 sets 24 sets 25 sets 26 sets 27 sets 28 sets 

Models 
E-LW-IC-

KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1  0.0128 0.0131 0.0128 0.0124 0.0127 0.0129 

MAE1 0.0093 0.0094 0.0093 0.0091 0.0092 0.0093 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

             

RMSE2 0.0102 0.0105 0.0102 0.0106 0.0106 0.0111 

MAE2 0.0080 0.0081 0.0080 0.0083 0.0083 0.0086 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st 

output) 
0.0147  0.0150 0.0148 0.0138 0.0143 0.0142  

Output variable : Reactor temperature 

No. of set 23 sets 24 sets 25 sets 26 sets 27 sets 28 sets 

Models 
E-LW-IC-

KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

E-LW-

IC-KPLS 

RMSE1 0.0023 0.0012 0.0029 0.0021 0.0011 0.0012 

MAE1 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

MSE1 5.2x10-6 1.5x10-6 8.4x10-6 4.4x10-6 1.2x10-6 1.5x10-6 

t1 (sec) 224 206 187 158 106 103 

            

RMSE2 0.0004 0.0003 0.0003 0.0004 0.0005 0.0006 

MAE2 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

MSE2 1.3x10-7 9.6x10-8 8.6x10-8 1.3x10-7 2.3x10-7 3.9x10-7 

t2 (sec) 31 28 27 26 25 23 

Ea2 (2
nd  

output) 
0.0037  0.0019  0.0049 0.0034  0.0016  0.0017  

Ea3 (average) 0.0092 0.0085 0.0099 0.0089 0.0080 0.0080 
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Table E.1.3.6 Results for E-LW-IC-KPLS algorithm for case study 6 

Output variable : Product concentration 

No. of set 29 sets 30 sets 

Models E-LW-IC-KPLS E-LW-IC-KPLS 

RMSE1  0.0132 0.0128 

MAE1 0.0094 0.0092 

MSE1 0.0002 0.0002 

     

RMSE2 0.0113 0.0106 

MAE2 0.0086 0.0082 

MSE2  0.0001 0.0001 

Ea1 (1
st output) 0.0146 0.0144 

Output variable : Reactor temperature 

No. of set 29 sets 30 sets 

Models E-LW-IC-KPLS E-LW-IC-KPLS 

RMSE1 0.0048 0.0029 

MAE1 0.0004 0.0003 

MSE1 2.3x10-5 8.3x10-6 

t1 (sec) 95 87 

    

RMSE2 0.0006 0.0003 

MAE2 0.0002 0.0002 

MSE2 3.7x10-7 1.2x10-7 

t2 (sec) 22 21 

Ea2 (2
nd output) 0.0079  0.00477 

Ea3 (average) 0.0113 0.0096 
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Appendix F MATLAB code for an expectation maximization 

ensemble locally weighted independent component Kernel partial 

least square algorithm 

 

Appendix F.1 MATLAB code for the expectation maximization ensemble locally 

weighted independent component Kernel partial least square (EM-E-LW-IC-

KPLS) algorithm 

In this section, a sample of the MATLAB code for the EM-E-LW-IC-KPLS algorithm 

is illustrated. Firstly, the main MATLAB code for the EM-E-LW-IC-KPLS (main2.m) 

is presented. The other MATLAB codes for the LW-IC-KPLS are the LW-IC-KPLS 

function (lw_ic_kpls.m), centering function (centering.m), Kernel matrix function 

(kernelmatrix.m), Kernel centering function (kernelcentering.m), dualpls function 

(dualpls.m), estimate Sigma function (estimateSigma.m), independent component 

analysis function (ica.m), principal component analysis with singular value 

decomposition function (pca_svd.m), expectation maximization function 

(mixGaussEm.m) and log-sum-exp function (logsumexp.m) are provided in 

https://drive.google.com/open?id=1o1GTRjh_e3vpucGEyejQPripWOcxDoLf. 

 

clear, clc 

 

%% --- Description --- 

% This is a sample program of expectation maximization 

ensemble locally weighted independent component Kernel 

partial least squares(EM-E-LW-IC-KPLS)  

 

%% --- Nomeclature --- 

% N1            : number of training samples 

% N2            : number of testing samples 

% M1            : number of input variables 

% M2            : number of output variables 

% 

% --- Input --- 

% X (N1 * M1): input observed data matrix for training 

data 

% Y (N1 * M2): output observed data matrix for training 

data     

% Xq (N2 * M1): query/new input matrix 
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% Yq (N2 * M2): true or query/new output matrix  

% LV (1 * 1): number of latent variable to be calculated  

% phi (1 * 1): localization parameter for distance        

% b (1 * 1): Kernel parameter 

% numPC (1 * 1): number of principal components to be 

calculated 

% epsilon (1 * 1): maximum error for convergence 

(default: 0.1) 

% max_itr (1 * 1): maximum number of iteration (default: 

1000) 

% kt (1 * 1): number of Gaussian component for 

expectation maximization algorithm 

% 

% --- Output --- 

% RMSE2 (1 * 1): root mean square for testing data 

% MAE2 (1 * 1): mean absolute error for testing data 

% MSE2 (1 * 1): mean square error for testing data 

% t2 (1 * 1): central processing unit time for testing 

data 

% RMSE1 (1 * 1): root mean square for training data 

% MAE1 (1 * 1): mean absolute error for training data 

% MSE1 (1 * 1): mean square error for training data 

% t1 (1 * 1): central processing unit time for training 

data 

% Avr_Y (1 * 1): average value of real output variable 

matrix for training data 

% Avr_YY (1 * 1): average value of predicted output 

variable matrix for training data 

% Avr_Yq (1 * 1): average value of real output variable 

matrix for testing data 

% Avr_Yest (1 * 1): average value of predicted output 

variable matrix for testing data 

% Rsq_test (1 * 1): R-squared for testing data 

% Rsq_train(1 * 1): R-squared for training data 

% E (1 * 1)       : error of approximation (Ea) value 

 

%% --- Data loading for testing data --- 

load Data_ECCR.mat 

 

tic 

 

% Generating missing data 

u(1:20:10000,1)= NaN; % Generating 5% of missing data 

 

%% --- Parameters setting for expectation maximization 

algorithm --- 

X = u(1:7500,1); % set input variables as X 

kt = 1; % Set one gaussian component 
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%% --- Initial guess for expectation maximization 

algorithm --- 

%--- Fill in the missing values by their estimated 

values --- 

% Calculate mean and then input data has missing values 

that filles with its mean 

[n,d] = size(X); 

mis = zeros(n,d);  

cmis = zeros(n,d);  

m = zeros(1,d);  

mt = zeros(n,d);  

 

while sum(isnan(X))>0, 

mis    = isnan(X);  

X(mis) = 0; % let missing data equal to zeros 

cmis   = ones(n,d) - mis; % complement of mis 

m  = (sum(X)./(n - sum(mis))); % calculating mean value 

from observed data 

mt = repmat(m,[n,1]); % creating a matrix with repeated 

means 

X = cmis.*X + mt.*mis; % replacing missing data with 

mean value 

end 

 

X = X'; 

 

%% --- Impute new value for missing data using 

expectation maximization algorithm --- 

% training dataset 

[z1,model,llh] = mixGaussEm(X,kt); 

 

mu = model.mu'; 

u1 = cmis.*X' + repmat(mu,n,1).*mis; % replacing missing 

data with new value 

 

u2 = u(7501:10000,1); % test data 

 

% substituting imputed value into test data 

[n,d] = size(u2); 

mis = zeros(n,d);  

cmis = zeros(n,d);  

%m = zeros(1,d);  

mt = zeros(n,d);  

 

while sum(isnan(u2))>0, 

mis    = isnan(u2);  

u2(mis) = 0; % let missing data equal to zeros 

cmis   = ones(n,d) - mis; % complement of mis 

%m  = (sum(X)./(n - sum(mis))); % calculating mean value 

from observed data 
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mt = repmat(mu,[n,1]); % creating a matrix with repeated 

means 

u2 = cmis.*X + mt.*mis; % replacing missing data with 

mean value 

end 

 

%% --- Parameter setting for training and testing data - 

XA = u1(1:2:7500,1); 

XB = u1(2:2:7500,1); 

 

YA = v(1:2:7500,1); 

YB = v(2:2:7500,1); 

 

XqA = u2(1:2:2500,1);  

XqB = u2(2:2:2500,1); 

 

YqA = v(7501:2:10000,1);  

YqB = v(7502:2:10000,1);  

 

LV  = 1;   % number of latent variables 

phi = .1;   % localization parameter 

numIC = 1; % number of indepedence component 

epsilon = 0.1; 

max_itr = 1000; 

b = 0.8; % Kernel parameter 

 

%% --- output estimation --- 

[YestA, W, T, P, q, omega, tq] = 

ic_lw_kpls(XA,YA,XqA,LV,phi,numIC,epsilon,max_itr,b); 

[YestB, W, T, P, q, omega, tq] = 

ic_lw_kpls(XB,YB,XqB,LV,phi,numIC,epsilon,max_itr,b); 

 

Yest = [YestA;YestB]; 

Yq = [YqA; YqB]; 

 

%% --- Results for testing data --- 

format long 

RMSE = sqrt(sum((Yq(:)-Yest(:)).^2)/numel(Yq(:))) 

 

MAE = mean(abs(Yq(:)-Yest(:))) 

 

MSE = mean((Yq(:)-Yest(:)).^2) 

 

toc 

t2 = toc 

 

%% --- Data loading for testing data --- 

load Data_ECCR.mat 

 

tic 
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% Generating missing data 

u(1:20:10000,1)= NaN; % Generating 5% of missing data 

 

%% --- Parameters setting for expectation maximization 

algorithm --- 

X = u(1:7500,1); % set input variables as X 

kt = 1; % Set one gaussian component 

 

%% --- Initial guess for expectation maximization 

algorithm --- 

%--- Fill in the missing values by their mean value --- 

% Calculate mean and then input data has missing values 

that filles with its mean 

[n,d] = size(X); 

mis = zeros(n,d);  

cmis = zeros(n,d);  

m = zeros(1,d);  

mt = zeros(n,d);  

while sum(isnan(X))>0, 

mis    = isnan(X);  

X(mis) = 0; % let missing data equal to zeros 

cmis   = ones(n,d) - mis; % complement of mis 

m  = (sum(X)./(n - sum(mis))); % calculating mean value 

from observed data 

mt = repmat(m,[n,1]); % creating a matrix with repeated 

means 

X = cmis.*X + mt.*mis; % replacing missing data with 

mean value 

end 

 

X = X'; 

 

%% --- Impute new value for missing data using 

expectation maximization algorithm --- 

% training dataset 

[z1,model,llh] = mixGaussEm(X,kt); 

 

mu = model.mu'; 

u1 = cmis.*X' + repmat(mu,n,1).*mis; % replacing missing 

data with new value 

 

u1 = u(:,1); % new input variables 

 

%% --- parameter setting --- 

XA = u1(1:2:7500,1); 

XB = u1(2:2:7500,1); 

 

YA = v(1:2:7500,1); 

YB = v(2:2:7500,1); 

%% --- output estimation --- 
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[YYA, W, T, P, q, omega, ~] = 

ic_lw_kpls(XA,YA,XA,LV,phi,numIC,epsilon,max_itr,b); 

[YYB, W, T, P, q, omega, tq] = 

ic_lw_kpls(XB,YB,XB,LV,phi,numIC,epsilon,max_itr,b); 

 

YY = [YYA;YYB]; 

Y = [YA; YB]; 

 

%% --- Results for training data --- 

format long 

RMSET = sqrt(sum((Y(:)-YY(:)).^2)/numel(Y(:))) 

 

MAET = mean(abs(Y(:)-YY(:))) 

 

MSET = mean((Y(:)-YY(:)).^2) 

 

toc 

t1 = toc 

 

%% --- Results for testing and training data --- 

Avr_Y = sum(Y(:))/numel(Y(:)); 

Avr_YY = sum(YY(:))/numel(YY(:)) 

 

Avr_Yq = sum(Yq(:))/numel(Yq(:)); 

Avr_Yest = sum(Yest(:))/numel(Yest(:)) 

 

Rsq_test = 1-sum((Yq(:) - Yest(:)).^2)/sum((Yest(:) - 

mean(Yq(:))).^2) 

Rsq_train = 1-sum((Y(:) - YY(:)).^2)/sum((YY(:) - 

mean(Y(:))).^2) 

 

N = size(Yq,1); 

NN = size(Y,1); 

E = (NN/(N+NN))*RMSET + (N/(N+NN))*RMSE + abs(RMSET-

RMSE) 

 

Listing F.1.main2.m 
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Appendix G Results for the expectation maximization ensemble 

locally weighted independent component Kernel partial least square 

algorithm 

 

Appendix G.1 Results for the expectation maximization ensemble locally 

weighted independent component Kernel partial least square (EM-E-LW-IC-

KPLS) algorithm 

Case studies 4, 5 and 6 with 5% to 60% of missing data were used to evaluate the 

predictive performance of the EM-E-LW-IC-KPLS algorithm. Likewise, integration 

of the singular value decomposition (SVD) with ensemble locally weighted 

independent component Kernel partial least square, the E-LW-IC-KPLS (SVD-E-LW-

IC-KPLS) and locally weighted partial least square, the LW-PLS (SVD-LW-PLS) 

while the trimmed score regression (TSR) with the E-LW-IC-KPLS (TSR-E-LW-IC-

KPLS) and LW-PLS (TSR-LW-PLS) algorithms are also used to solve the missing 

data problem. Besides, expectation maximization (EM) model was also integrated with 

LW-PLS (EM-LW-PLS). The results from the abovementioned algorithms are 

demonstrated in this section. 

 

G.1.1 Case study 4: Numerical example 2 

Tables G.1.1.1 to G.1.1.12 show the results from the EM-E-LW-IC-KPLS, TSR-E-

LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS models for case study 4. These algorithms were tested on process data with 5%, 

10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% and 60% of missing data. In 

case study 4, the Kernel function used in the E-LW-IC-KPLS, LW-IC-KPLS and LW-

KPLS algorithms is also the Log Kernel, and the Kernel parameter b is also fixed at 2. 

The std(x) and std(xq) are the standard deviation for the training data and test data, 

respectively. 
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Table G.1.1.1 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

5% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.2442 0.2442 0.2553 0.2717 0.2717 0.2856 

MAE1  0.1969 0.1969 0.2050 0.2205 0.2205 0.2284 

MSE1  0.0596 0.0596 0.0652 0.0738 0.0738 0.0815 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.8129 2.8129 2.8617 2.8129 2.8129 2.8617 

           

RMSE2 0.2560 0.2560 0.2677 0.2734 0.2734 0.2845 

MAE2 0.2089 0.2089 0.2173 0.2243 0.2243 0.2301 

MSE2 0.0655 0.0655 0.0716 0.0747 0.0747 0.0810 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.7668 2.7668 2.8428 2.7668 2.7668 2.8428 

Ea 0.2589 0.2589 0.2707 0.2738 0.2738 0.2863 
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Table G.1.1.2 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS and SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS, SVD-LW-PLS 

algorithms for case study 4 

10% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.2621 0.2621 0.2778 0.2877 0.2877 0.3053 

MAE1  0.2061 0.2061 0.2174 0.2297 0.2297 0.2393 

MSE1  0.0687 0.0687 0.0772 0.0828 0.0828 0.0932 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.7380 2.7380 2.8323 2.7380 2.7380 2.8323 

              

RMSE2 0.2727 0.2727 0.2926 0.2886 0.2886 0.3025 

MAE2 0.2168 0.2168 0.2332 0.2324 0.2324 0.2396 

MSE2 0.0743 0.0743 0.0856 0.0833 0.0833 0.0915 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.6960 2.6960 2.8421 2.6960 2.6960 2.8421 

Ea 0.2753 0.2753 0.2963 0.2888 0.2888 0.3075 
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Table G.1.1.3 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

15% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.2798 0.2798 0.2958 0.3026 0.3026 0.3213 

MAE1  0.2154 0.2154 0.2276 0.2381 0.2381 0.2486 

MSE1  0.0783 0.0783 0.0875 0.0916 0.0916 0.1032 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.6675 2.6675 2.8034 2.6675 2.6675 2.8034 

           

RMSE2 0.2893 0.2893 0.3201 0.3022 0.3022 0.3159 

MAE2 0.2272 0.2272 0.2538 0.2403 0.2403 0.2479 

MSE2 0.0837 0.0837 0.1024 0.0913 0.0913 0.0998 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.6327 2.6327 2.8490 2.6327 2.6327 2.8490 

Ea 0.2916 0.2916 0.3261 0.3029 0.3029 0.3254 
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Table G.1.1.4 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

20% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.2986 0.2986 0.3131 0.3163 0.3163 0.3352 

MAE1  0.2266 0.2266 0.2380 0.2461 0.2461 0.2570 

MSE1  0.0892 0.0892 0.0980 0.1001 0.1001 0.1123 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.5814 2.5814 2.7564 2.5814 2.5814 2.7564 

              

RMSE2 0.3078 0.3078 0.3370 0.3168 0.3168 0.3313 

MAE2 0.2370 0.2370 0.2644 0.2483 0.2483 0.2562 

MSE2 0.0947 0.0947 0.1136 0.1004 0.1004 0.1098 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.5487 2.5487 2.8166 2.5487 2.5487 2.8166 

Ea 0.3101 0.3101 0.3430 0.3169 0.3169 0.3380 
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Table G.1.1.5 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

25% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.3172 0.3172 0.3286 0.3301 0.3301 0.3483 

MAE1  0.2374 0.2374 0.2471 0.2539 0.2539 0.2650 

MSE1  0.1006 0.1006 0.1079 0.1089 0.1089 0.1213 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.4995 2.4995 2.7097 2.4995 2.4995 2.7097 

              

RMSE2 0.3297 0.3297 0.3569 0.3323 0.3323 0.3467 

MAE2 0.2514 0.2514 0.2768 0.2570 0.2570 0.2654 

MSE2 0.1087 0.1087 0.1274 0.1104 0.1104 0.1202 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.4710 2.4710 2.7910 2.4710 2.4710 2.7910 

Ea 0.3328 0.3328 0.3640 0.3329 0.3329 0.3494 
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Table G.1.1.6 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

30% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.3287 0.3287 0.3429 0.3429 0.3429 0.3607 

MAE1  0.2442 0.2442 0.2564 0.2615 0.2615 0.2727 

MSE1  0.1080 0.1080 0.1176 0.1176 0.1176 0.1301 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.4290 2.4290 2.6686 2.4290 2.4290 2.6686 

              

RMSE2 0.3395 0.3395 0.3992 0.3429 0.3429 0.3558 

MAE2 0.2590 0.2590 0.3166 0.2640 0.2640 0.2724 

MSE2 0.1153 0.1153 0.1594 0.1176 0.1176 0.1266 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.4142 2.4142 2.8056 2.4142 2.4142 2.8056 

Ea 0.3422 0.3422 0.4133 0.3429 0.3429 0.3643 
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Table G.1.1.7 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

35% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.3522 0.3522 0.3625 0.3569 0.3569 0.3732 

MAE1  0.2600 0.2600 0.2690 0.2702 0.2702 0.2809 

MSE1  0.1240 0.1240 0.1314 0.1274 0.1274 0.1393 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.3051 2.3051 2.5778 2.3051 2.3051 2.5778 

              

RMSE2 0.4653 0.4653 0.3849 0.3589 0.3589 0.3690 

MAE2 0.3487 0.3487 0.2963 0.2724 0.2724 0.2787 

MSE2 0.2165 0.2165 0.1482 0.1288 0.1288 0.1361 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.2169 2.2169 2.6699 2.2169 2.2169 2.6699 

Ea 0.4935 0.4935 0.3905 0.3594 0.3594 0.3764 
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Table G.1.1.8 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

40% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.3687 0.3687 0.3799 0.3689 0.3689 0.3855 

MAE1  0.2717 0.2717 0.2812 0.2782 0.2782 0.2897 

MSE1  0.1360 0.1360 0.1443 0.1361 0.1361 0.1486 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.2316 2.2316 2.5139 2.2316 2.2316 2.5139 

           

RMSE2 0.4422 0.4422 0.5266 0.3690 0.3690 0.3795 

MAE2 0.3357 0.3357 0.4181 0.2794 0.2794 0.2868 

MSE2 0.1955 0.1955 0.2773 0.1362 0.1362 0.1440 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.1935 2.1935 2.7153 2.1935 2.1935 2.7153 

Ea 0.4605 0.4605 0.5633 0.3691 0.3691 0.3901 
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Table G.1.1.9 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 4 

45% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.3754 0.3754 0.3854 0.3800 0.3800 0.3950 

MAE1  0.2772 0.2772 0.2868 0.2864 0.2864 0.2973 

MSE1  0.1409 0.1409 0.1486 0.1444 0.1444 0.1560 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.1645 2.1645 2.4735 2.1645 2.1645 2.4735 

           

RMSE2 0.3909 0.3909 0.6367 0.3788 0.3788 0.3894 

MAE2 0.2983 0.2983 0.4889 0.2866 0.2866 0.2946 

MSE2 0.1528 0.1528 0.4053 0.1435 0.1435 0.1516 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.1738 2.1738 2.7017 2.1738 2.1738 2.7017 

Ea 0.3948 0.3948 0.6995 0.3809 0.3809 0.3992 

 

 

 



226 

 

Table G.1.1.10 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 4 

50% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.3890 0.3890 0.3975 0.3915 0.3915 0.4051 

MAE1  0.2868 0.2868 0.2955 0.2944 0.2944 0.3050 

MSE1  0.1513 0.1513 0.1580 0.1533 0.1533 0.1641 

t1 (sec) 54 54 54 9 9 9 

std(x) 2.0408 2.0408 2.3717 2.0408 2.0408 2.3717 

           

RMSE2 0.4022 0.4022 0.4388 0.3929 0.3929 0.4036 

MAE2 0.3050 0.3050 0.3458 0.2958 0.2958 0.3042 

MSE2 0.1617 0.1617 0.1925 0.1544 0.1544 0.1629 

t2 (sec) 14 14 14 4 4 4 

std(xq) 2.0306 2.0306 2.5236 2.0306 2.0306 2.5236 

Ea 0.4055 0.4055 0.4491 0.3933 0.3933 0.4062 
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Table G.1.1.11 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 4 

55% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.4063 0.4063 0.4127 0.4056 0.4056 0.4187 

MAE1  0.3013 0.3013 0.3080 0.3051 0.3051 0.3157 

MSE1  0.1650 0.1650 0.1703 0.1646 0.1646 0.1753 

t1 (sec) 54 54 54 9 9 9 

std(x) 1.9617 1.9617 2.2785 1.9617 1.9617 2.2785 

           

RMSE2 0.4640 0.4640 0.4204 0.4072 0.4072 0.4155 

MAE2 0.3711 0.3711 0.3197 0.3069 0.3069 0.3122 

MSE2 0.2153 0.2153 0.1767 0.1658 0.1658 0.1727 

t2 (sec) 14 14 14 4 4 4 

std(xq) 1.8446 1.8446 2.2817 1.8446 1.8446 2.2817 

Ea 0.4784 0.4784 0.4223 0.4076 0.4076 0.4211 
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Table G.1.1.12 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 4 

60% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.4154 0.4154 0.4188 0.4147 0.4147 0.4238 

MAE1  0.3078 0.3078 0.3134 0.3114 0.3114 0.3200 

MSE1  0.1725 0.1725 0.1754 0.1720 0.1720 0.1796 

t1 (sec) 54 54 54 9 9 9 

std(x) 1.8259 1.8259 2.1980 1.8259 1.8259 2.1980 

           

RMSE2 0.4197 0.4197 0.4232 0.4168 0.4168 0.4261 

MAE2 0.3137 0.3137 0.3196 0.3138 0.3138 0.3228 

MSE2 0.1762 0.1762 0.1791 0.1738 0.1738 0.1816 

t2 (sec) 14 14 14 4 4 4 

std(xq) 1.8288 1.8288 2.2018 1.8288 1.8288 2.2018 

Ea 0.4208 0.4208 0.4243 0.4174 0.4174 0.4267 
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G.1.2 Case study 5: Eukaryotic cell cycle regulation 

The results from the EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-

KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS models for case study 5 are 

illustrated in Tables G.1.2.1 to G.1.2.12. The process data with 5%, 10%, 15%, 20%, 

25%, 30%, 35%, 40%, 45%, 50%, 55% and 60% of missing data were used to examine 

the performance of these algorithms.The Log Kernel was used as the Kernel function 

in the E-LW-IC-KPLS, LW-IC-KPLS and LW-KPLS algorithms and the selected 

Kernel parameter, b was 0.8. The std(x) and std(xq) were the standard deviations for 

training data and test data respectively. 
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Table G.1.2.1 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

5% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0692 0.0692 0.0693 0.0761 0.0761 0.0762 

MAE1  0.0554 0.0554 0.0552 0.0652 0.0652 0.0650 

MSE1  0.0048 0.0048 0.0048 0.0058 0.0058 0.0058 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0665 0.0665 0.0667 0.0665 0.0665 0.0667 

        

RMSE2 0.0716 0.0716 0.0717 0.0755 0.0755 0.0755 

MAE2 0.0571 0.0571 0.0569 0.0650 0.0650 0.0649 

MSE2 0.0051 0.0051 0.0051 0.0057 0.0057 0.0057 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0666 0.0666 0.0669 0.0666 0.0666 0.0669 

Ea 0.0722 0.0722 0.0723 0.0766 0.0766 0.0767 
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Table G.1.2.2 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

10% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0698 0.0698 0.0700 0.0768 0.0768 0.0769 

MAE1  0.0561 0.0561 0.0563 0.0660 0.0660 0.0659 

MSE1  0.0049 0.0049 0.0049 0.0059 0.0059 0.0059 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0647 0.0647 0.0653 0.0647 0.0647 0.0653 

           

RMSE2 0.0721 0.0721 0.0752 0.0760 0.0760 0.0761 

MAE2 0.0578 0.0578 0.0600 0.0657 0.0657 0.0656 

MSE2 0.0052 0.0052 0.0057 0.0058 0.0058 0.0058 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0648 0.0648 0.0654 0.0648 0.0648 0.0654 

Ea 0.0727 0.0727 0.0765 0.0774 0.0774 0.0774 
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Table G.1.2.3 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

15% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0708 0.0708 0.0712 0.0773 0.0773 0.0776 

MAE1  0.0571 0.0571 0.0573 0.0666 0.0666 0.0666 

MSE1  0.0050 0.0050 0.0051 0.0060 0.0060 0.0060 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0627 0.0627 0.0636 0.0627 0.0627 0.0636 

              

RMSE2 0.0739 0.0739 0.0743 0.0765 0.0765 0.0766 

MAE2 0.0598 0.0598 0.0602 0.0662 0.0662 0.0664 

MSE2 0.0055 0.0055 0.0055 0.0058 0.0058 0.0059 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0631 0.0631 0.0640 0.0631 0.0631 0.0640 

Ea 0.0747 0.0747 0.0750 0.0780 0.0780 0.0782 
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Table G.1.2.4 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

20% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0714 0.0714 0.0716 0.0779 0.0779 0.0781 

MAE1  0.0581 0.0581 0.0580 0.0672 0.0672 0.0672 

MSE1  0.0051 0.0051 0.0051 0.0061 0.0061 0.0061 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0609 0.0609 0.0620 0.0609 0.0609 0.0620 

           

RMSE2 0.0735 0.0735 0.0788 0.0770 0.0770 0.0773 

MAE2 0.0597 0.0597 0.0640 0.0669 0.0669 0.0671 

MSE2 0.0054 0.0054 0.0062 0.0059 0.0059 0.0060 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0612 0.0612 0.0623 0.0612 0.0612 0.0623 

Ea 0.0741 0.0741 0.0806 0.0786 0.0786 0.0786 
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Table G.1.2.5 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

25% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0743 0.0743 0.0744 0.0784 0.0784 0.0786 

MAE1  0.0619 0.0619 0.0616 0.0678 0.0678 0.0678 

MSE1  0.0055 0.0055 0.0055 0.0062 0.0062 0.0062 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0590 0.0590 0.0603 0.0590 0.0590 0.0603 

           

RMSE2 0.0777 0.0777 0.0781 0.0778 0.0778 0.0780 

MAE2 0.0650 0.0650 0.0654 0.0676 0.0676 0.0679 

MSE2 0.0060 0.0060 0.0061 0.0061 0.0061 0.0061 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0592 0.0592 0.0606 0.0592 0.0592 0.0606 

Ea 0.0786 0.0786 0.0790 0.0789 0.0789 0.0791 
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Table G.1.2.6 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

30% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0733 0.0733 0.0736 0.0788 0.0788 0.0792 

MAE1  0.0603 0.0603 0.0604 0.0681 0.0681 0.0685 

MSE1  0.0054 0.0054 0.0054 0.0062 0.0062 0.0063 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0571 0.0571 0.0586 0.0571 0.0571 0.0586 

           

RMSE2 0.0757 0.0757 0.0762 0.0781 0.0781 0.0786 

MAE2 0.0623 0.0623 0.0626 0.0680 0.0680 0.0685 

MSE2 0.0057 0.0057 0.0058 0.0061 0.0061 0.0062 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0572 0.0572 0.0588 0.0572 0.0572 0.0588 

Ea 0.0763 0.0763 0.0768 0.0792 0.0792 0.0796 
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Table G.1.2.7 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

35% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0739 0.0739 0.0744 0.0796 0.0796 0.0798 

MAE1  0.0608 0.0608 0.0614 0.0689 0.0689 0.0691 

MSE1  0.0055 0.0055 0.0055 0.0063 0.0063 0.0064 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0549 0.0549 0.0566 0.0549 0.0549 0.0566 

              

RMSE2 0.0760 0.0760 0.0768 0.0786 0.0786 0.0790 

MAE2 0.0626 0.0626 0.0635 0.0686 0.0686 0.0691 

MSE2 0.0058 0.0058 0.0059 0.0062 0.0062 0.0062 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0550 0.0550 0.0568 0.0550 0.0550 0.0568 

Ea 0.0765 0.0765 0.0774 0.0803 0.0803 0.0805 
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Table G.1.2.8 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

40% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0747 0.0747 0.0752 0.0799 0.0799 0.0802 

MAE1  0.0618 0.0618 0.0622 0.0693 0.0693 0.0696 

MSE1  0.0056 0.0056 0.0057 0.0064 0.0064 0.0064 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0528 0.0528 0.0547 0.0528 0.0528 0.0547 

              

RMSE2 0.0768 0.0768 0.0773 0.0790 0.0790 0.0795 

MAE2 0.0636 0.0636 0.0641 0.0690 0.0690 0.0696 

MSE2 0.0059 0.0059 0.0060 0.0062 0.0062 0.0063 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0529 0.0529 0.0548 0.0529 0.0529 0.0548 

Ea 0.0774 0.0774 0.0778 0.0806 0.0806 0.0807 
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Table G.1.2.9 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 5 

45% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0757 0.0757 0.0758 0.0803 0.0803 0.0806 

MAE1  0.0630 0.0630 0.0630 0.0698 0.0698 0.0701 

MSE1  0.0057 0.0057 0.0057 0.0065 0.0065 0.0065 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0506 0.0506 0.0526 0.0506 0.0506 0.0526 

              

RMSE2 0.0780 0.0780 0.0783 0.0796 0.0796 0.0800 

MAE2 0.0650 0.0650 0.0654 0.0696 0.0696 0.0702 

MSE2 0.0061 0.0061 0.0061 0.0063 0.0063 0.0064 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0508 0.0508 0.0528 0.0508 0.0508 0.0528 

Ea 0.0786 0.0786 0.0789 0.0809 0.0809 0.0811 
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Table G.1.2.10 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 5 

50% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0764 0.0764 0.0764 0.0807 0.0807 0.0810 

MAE1  0.0639 0.0639 0.0638 0.0702 0.0702 0.0706 

MSE1  0.0058 0.0058 0.0058 0.0065 0.0065 0.0066 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0482 0.0482 0.0503 0.0482 0.0482 0.0503 

              

RMSE2 0.0783 0.0783 0.0787 0.0801 0.0801 0.0805 

MAE2 0.0656 0.0656 0.0662 0.0701 0.0701 0.0707 

MSE2 0.0061 0.0061 0.0062 0.0064 0.0064 0.0065 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0484 0.0484 0.0506 0.0484 0.0484 0.0506 

Ea 0.0788 0.0788 0.0793 0.0812 0.0812 0.0814 
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Table G.1.2.11 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 5 

55% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0770 0.0770 0.0770 0.0812 0.0812 0.0814 

MAE1  0.0648 0.0648 0.0647 0.0708 0.0708 0.0710 

MSE1  0.0059 0.0059 0.0059 0.0066 0.0066 0.0066 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0458 0.0458 0.0480 0.0458 0.0458 0.0480 

              

RMSE2 0.0792 0.0792 0.0796 0.0805 0.0805 0.0810 

MAE2 0.0667 0.0667 0.0672 0.0706 0.0706 0.0713 

MSE2 0.0063 0.0063 0.0063 0.0065 0.0065 0.0066 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0460 0.0460 0.0483 0.0460 0.0460 0.0483 

Ea 0.0798 0.0798 0.0803 0.0816 0.0816 0.0817 
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Table G.1.2.12 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 5 

60% EM TSR SVD EM TSR SVD 

No. of set 13 sets 13 sets 13 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0776 0.0776 0.0777 0.0814 0.0814 0.0818 

MAE1  0.0656 0.0656 0.0656 0.0711 0.0711 0.0715 

MSE1  0.0060 0.0060 0.0060 0.0066 0.0066 0.0067 

t1 (sec) 54 54 54 11 11 11 

std(x) 0.0432 0.0432 0.0454 0.0432 0.0432 0.0454 

              

RMSE2 0.0804 0.0804 0.0806 0.0809 0.0809 0.0814 

MAE2 0.0683 0.0683 0.0683 0.0711 0.0711 0.0717 

MSE2 0.0065 0.0065 0.0065 0.0066 0.0066 0.0066 

t2 (sec) 14 14 14 4 4 4 

std(xq) 0.0435 0.0435 0.0459 0.0435 0.0435 0.0459 

Ea 0.0811 0.0811 0.0813 0.0818 0.0818 0.0820 
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G.1.3 Case study 6: A highly nonlinear CSTR 

Tables G.1.3.1 to G.1.3.12 present the results from the EM-E-LW-IC-KPLS, TSR-E-

LW-IC-KPLS and SVD-E-LW-IC-KPLS algorithms for case study 6. 5%, 10%, 15%, 

20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% and 60% of missing data were included 

in the process data utilised to investigate the performance of the EM-E-LW-IC-KPLS, 

SVD-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS, and 

SVD-LW-PLS algorithms. The Log Kernel was used as the Kernel function in E-LW-

IC-KPLS, LW-IC-KPLS and LW-KPLS models and the chosen Kernel parameter, b 

was 9. The std(x) and std(xq) were the standard deviations for training data and test 

data, respectively. 
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Table G.1.3.1 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

5% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0124 0.0126 0.0128 0.0155 0.0155 0.0155 

MAE1 0.0090 0.0091 0.0092 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0102 0.0104 0.0115 0.0074 0.0074 0.0074 

MAE2 0.0079 0.0081 0.0087 0.0061 0.0061 0.0061 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0141 0.0143  0.0137 0.0216 0.0216 0.0216 

Output variables: Reactor temperature  

5% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0145 0.0145 0.0145 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

MSE1 0.0002 2.1x10-4 2.1x10-4 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 9.0486 9.0486 9.2941 9.0486 9.0486 9.2941 

std(x2) 2552.7293 2552.7293 2601.8756 2552.7293 2552.7293 2601.8756 

              

RMSE2 0.0039 0.0039 0.0039 0.0006 0.0006 0.0005 

MAE2 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 

MSE2  1.5x10-5 1.5x10-5 1.5x10-5 3.8x10-7 3.8x10-7 2.8x10-7 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 8.9891 8.9891 9.2369 8.9891 8.9891 9.2369 

std(xq2) 2559.3288 2559.3288 2604.8644 2559.3288 2559.3288 2604.8644 

Ea2 (2
nd output) 0.0224  0.0224  0.0224  0.0261 0.0261 0.0262 
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Table G.1.3.2 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

 10% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0129 0.0131 0.0129 0.0155 0.0155 0.0155 

MAE1 0.0093 0.0094 0.0093 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0105 0.0105 0.0101 0.0075 0.0075 0.0075 

MAE2 0.0081 0.0081 0.0080 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0147 0.0149  0.0150 0.0216 0.0216 0.0216 

Output variables: Reactor temperature   

10% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 

SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0147 0.0147 0.0150 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0004 0.0006 0.0006 0.0006 

MSE1 0.0002 2.2x10-4 2.2x10-4 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 8.8159 8.8159 9.2587 8.8159 8.8159 9.2587 

std(x2) 2490.8909 2490.8909 2579.4034 2490.8909 2490.8909 2579.4034 

              

RMSE2 0.0029 0.0029 0.0003 0.0005 0.0005 0.0005 

MAE2 0.0004 0.0004 0.0002 0.0003 0.0003 0.0003 

MSE2  8.6x10-6 8.6x10-6 8.2x10-8 2.7x10-7 2.7x10-7 2.2x10-7 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 8.7586 8.7586 9.2246 8.7586 8.7586 9.2246 

std(xq2) 2491.1706 2491.1706 2579.8916 2491.1706 2491.1706 2579.8916 

Ea2 (2
nd output) 0.0235  0.0235  0.0260  0.0262 0.0262 0.0263 
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Table G.1.3.3 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

15% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0130 0.0130 0.0129 0.0155 0.0155 0.0155 

MAE1 0.0093 0.0094 0.0093 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0105 0.0107 0.0099 0.0075 0.0075 0.0075 

MAE2 0.0081 0.0082 0.0078 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0149 0.0148  0.0152 0.0216 0.0216 0.0216 

Output variables: Reactor temperature    

15% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0149 0.0149 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

MSE1 0.0002 2.2x10-4 0.0002 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 8.6012 8.6012 9.2463 8.6012 8.6012 9.2463 

std(x2) 2421.9051 2421.9051 2551.4447 2421.9051 2421.9051 2551.4447 

              

RMSE2 0.0014 0.0014 0.0014 0.0004 0.0004 0.0004 

MAE2 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 

MSE2  1.9x10-6 1.9x10-6 1.9x10-6 2x10-7 2x10-7 1.7x10-7 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 8.5210 8.5210 9.1900 8.5210 8.5210 9.1900 

std(xq2) 2415.4177 2415.4177 2543.8760 2415.4177 2415.4177 2543.8760 

Ea2 (2
nd output) 0.0251  0.0251  0.0251  0.0263 0.0263 0.0263 
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Table G.1.3.4 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

20% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0135 0.0134 0.0132 0.0155 0.0155 0.0155 

MAE1 0.0096 0.0095 0.0094 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0106 0.0106 0.0094 0.0075 0.0075 0.0075 

MAE2 0.0081 0.0081 0.0074 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0157 0.0154 0.0161 0.0216 0.0216 0.0216 

Output variables: Reactor temperature    

20% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0151 0.0151 0.0150 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 8.3152 8.3152 9.1472 8.3152 8.3152 9.1472 

std(x2) 2343.8782 2343.8782 2511.3571 2343.8782 2343.8782 2511.3571 

              

RMSE2 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 

MAE2 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 

MSE2  1.2x10-7 1.2x10-7 7x10-8 1.6x10-7 1.6x10-7 1.4x10-7 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 8.2505 8.2505 9.1085 8.2505 8.2505 9.1085 

std(xq2) 2361.0369 2361.0369 2525.4588 2361.0369 2361.0369 2525.4588 

Ea2 (2
nd output) 0.0261  0.0261  0.0260  0.0263 0.0263 0.0263 
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Table G.1.3.5 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

25% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0136 0.0138 0.0133 0.0155 0.0155 0.0155 

MAE1 0.0097 0.0097 0.0094 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0109 0.0109 0.0104 0.0074 0.0074 0.0074 

MAE2 0.0082 0.0082 0.0078 0.0062 0.0062 0.0061 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0156 0.0160 0.0155 0.0216 0.0216 0.0216 

Output variables: Reactor temperature     

25% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0151 0.0149 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 8.0308 8.0308 9.0227 8.0308 8.0308 9.0227 

std(x2) 2276.5987 2276.5987 2474.7320 2276.5987 2276.5987 2474.7320 

        

RMSE2 0.0020 0.0020 0.0019 0.0004 0.0004 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 

MSE2  3.8x10-6 3.8x10-6 3.5x10-6 1.4x10-7 1.4x10-7 1.2x10-7 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 8.0114 8.0114 9.0715 8.0114 8.0114 9.0715 

std(xq2) 2286.7744 2286.7744 2479.5615 2286.7744 2286.7744 2479.5615 

Ea2 (2
nd output) 0.0249  0.0245  0.0246  0.0263 0.0263 0.0263 
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Table G.1.3.6 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

30% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0135 0.0134 0.0131 0.0155 0.0155 0.0155 

MAE1 0.0096 0.0095 0.0094 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0097 0.0098 0.0098 0.0075 0.0075 0.0075 

MAE2 0.0076 0.0078 0.0078 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0164 0.0160 0.0156 0.0216 0.0216 0.0216 

Output variables: Reactor temperature      

30% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0149 0.0149 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 



254 

 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

t1 (sec) 110 110 110 20 20 20 

std(x1) 7.8007 7.8007 8.9329 7.8007 7.8007 8.9329 

std(x2) 2193.2745 2193.2745 2423.8835 2193.2745 2193.2745 2423.8835 

        

RMSE2 0.0010 0.0010 0.0010 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 3.8x10-4 0.0003 0.0003 0.0003 

MSE2  9.9x10-7 9.9x10-7 9.9x10-7 1.2x10-7 1.2x10-7 1.1x10-7 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 7.7040 7.7040 8.8910 7.7040 7.7040 8.8910 

std(xq2) 2195.6077 2195.6077 2422.5456 2195.6077 2195.6077 2422.5456 

Ea2 (2
nd output) 0.0254 0.0254 0.0254 0.0263 0.0263 0.0264 
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Table G.1.3.7 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

35% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0136 0.0136 0.0137 0.0155 0.0155 0.0155 

MAE1 0.0098 0.0098 0.0098 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0090 0.0090 0.0093 0.0075 0.0075 0.0075 

MAE2 0.0072 0.0072 0.0072 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0171 0.0171 0.0171 0.0216 0.0216 0.0216 

Output variables: Reactor temperature       

35% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0149 0.0149 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
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MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

t1 (sec) 110 110 110 20 20 20 

std(x1) 7.5428 7.5428 8.8019 7.5428 7.5428 8.8019 

std(x2) 2115.7468 2115.7468 2376.4203 2115.7468 2115.7468 2376.4203 

        

RMSE2 0.0015 0.0015 0.0015 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 

MSE2  2.3x10-6 2.3x10-6 2.3x10-6 1x10-7 1x10-7 9.5x10-8 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 7.4590 7.4590 8.7843 7.4590 7.4590 8.7843 

std(xq2) 2109.0245 2109.0245 2360.3395 2109.0245 2109.0245 2360.3395 

Ea2 (2
nd output) 0.0249  0.0249  0.0250  0.0264 0.0264 0.0264 
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Table G.1.3.8 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

40% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0137 0.0138 0.0139 0.0155 0.0155 0.0155 

MAE1 0.0099 0.0099 0.0100 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

        

RMSE2 0.0090 0.0090 0.0088 0.0074 0.0074 0.0074 

MAE2 0.0070 0.0070 0.0069 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0173 0.0173 0.0177 0.0216 0.0216 0.0216 

 Output variables: Reactor temperature       

40% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0149 0.0149 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 7.2561 7.2561 8.6186 7.2561 7.2561 8.6186 

std(x2) 2030.4564 2030.4564 2314.1938 2030.4564 2030.4564 2314.1938 

        

RMSE2 0.0014 0.0014 0.0014 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 

MSE2  2.1x10-6 2.1x10-6 2x10-6 9.9x10-8 9.9x10-8 9.1x10-8 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 7.1622 7.1622 8.6005 7.1622 7.1622 8.6005 

std(xq2) 2040.3829 2040.3829 2315.6844 2040.3829 2040.3829 2315.6844 

Ea2 (2
nd output) 0.0250  0.0250  0.0250  0.0264 0.0264 0.0264 
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Table G.1.3.9 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-PLS 

algorithms for case study 6 

Output variable: Production concentration 

45% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0137 0.0139 0.0137 0.0155 0.0155 0.0155 

MAE1 0.0098 0.0099 0.0097 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0107 0.0107 0.0095 0.0075 0.0075 0.0075 

MAE2 0.0079 0.0079 0.0073 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0160 0.0162 0.0168 0.0216 0.0216 0.0216 

 Output variables: Reactor temperature        

45% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0149 0.0149 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
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MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

t1 (sec) 110 110 110 20 20 20 

std(x1) 6.9304 6.9304 8.3860 6.9304 6.9304 8.3860 

std(x2) 1942.6921 1942.6921 2246.7901 1942.6921 1942.6921 2246.7901 

        

RMSE2 0.0014 0.0014 0.0014 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 

MSE2  1.8x10-6 1.8x10-6 1.8x10-6 1x10-7 1x10-7 9.3x10-8 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 6.8925 6.8925 8.4512 6.8925 6.8925 8.4512 

std(xq2) 1949.6352 1949.6352 2241.5826 1949.6352 1949.6352 2241.5826 

Ea2 (2
nd output) 0.0251 0.0251 0.0251 0.0264 0.0264 0.0264 
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Table G.1.3.10 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 6 

Output variable: Production concentration 

50% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0138 0.0146 0.0150 0.0155 0.0155 0.0155 

MAE1 0.0097 0.0103 0.0105 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0096 0.0088 0.0098 0.0075 0.0075 0.0075 

MAE2 0.0073 0.0069 0.0072 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0169 0.0189 0.0190 0.0216 0.0216 0.0216 

  Output variables: Reactor temperature        

50% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0152 0.0152 0.0149 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
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t1 (sec) 110 110 110 20 20 20 

std(x1) 6.6211 6.6211 8.1466 6.6211 6.6211 8.1466 

std(x2) 1859.7109 1859.7109 2177.7359 1859.7109 1859.7109 2177.7359 

        

RMSE2 0.0013 0.0013 0.0013 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002 

MSE2  1.6x10-6 1.6x10-6 1.6x10-6 9.8x10-8 9.8x10-8 9x10-8 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 6.6659 6.6659 8.2903 6.6659 6.6659 8.2903 

std(xq2) 1889.8303 1889.8303 2202.9966 1889.8303 1889.8303 2202.9966 

Ea2 (2
nd output) 0.0256 0.0256 0.0252 0.0264 0.0264 0.0264 
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Table G.1.3.11 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 6 

Output variable: Production concentration 

55% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0138 0.0138 0.0139 0.0155 0.0155 0.0155 

MAE1 0.0098 0.0098 0.0099 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0083 0.0083 0.0084 0.0075 0.0075 0.0075 

MAE2 0.0066 0.0066 0.0067 0.0062 0.0062 0.0062 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0179 0.0179 0.0181 0.0215 0.0215 0.0215 

  Output variables: Reactor temperature        

55% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0151 0.0151 0.0151 0.0152 0.0152 0.0152 

MAE1 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 
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MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

t1 (sec) 110 110 110 20 20 20 

std(x1) 6.2426 6.2426 7.8309 6.2426 6.2426 7.8309 

std(x2) 1764.6585 1764.6585 2091.8953 1764.6585 1764.6585 2091.8953 

        

RMSE2 0.0013 0.0013 0.0012 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002 

MSE2  1.7x10-6 1.7x10-6 1.6x10-6 9.5x10-8 9.5x10-8 8.7x10-8 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 6.1962 6.1962 7.8258 6.1962 6.1962 7.8258 

std(xq2) 1758.9717 1758.9717 2085.8460 1758.9717 1758.9717 2085.8460 

Ea2 (2
nd output) 0.0255  0.0255  0.0254  0.0264 0.0264 0.0264 
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Table G.1.3.12 Results for EM-E-LW-IC-KPLS, TSR-E-LW-IC-KPLS, SVD-E-LW-IC-KPLS, EM-LW-PLS, TSR-LW-PLS and SVD-LW-

PLS algorithms for case study 6 

Output variable: Production concentration 

60% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0137 0.0137 0.0138 0.0155 0.0155 0.0155 

MAE1 0.0098 0.0098 0.0099 0.0111 0.0111 0.0111 

MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

              

RMSE2 0.0084 0.0084 0.0084 0.0074 0.0074 0.0074 

MAE2 0.0067 0.0067 0.0068 0.0061 0.0061 0.0061 

MSE2  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Ea1 (1
st output) 0.0177 0.0177 0.0179 0.0216 0.0216 0.0216 

   Output variables: Reactor temperature        

60% EM TSR SVD EM TSR SVD 

No. of set 27 sets 27 sets 27 sets 1 set 1 set 1 set 

Models 
EM-E-LW-IC-

KPLS 

TSR-E-LW-IC-

KPLS 
SVD-E-LW-IC-

KPLS 
EM-LW-PLS TSR-LW-PLS SVD-LW-PLS 

RMSE1  0.0151 0.0151 0.0150 0.0152 0.0152 0.0152 

MAE1 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
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MSE1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

t1 (sec) 110 110 110 20 20 20 

std(x1) 5.8799 5.8799 7.4917 5.8799 5.8799 7.4917 

std(x2) 1666.7046 1666.7046 1998.7383 1666.7046 1666.7046 1998.7383 

        

RMSE2 0.0013 0.0013 0.0012 0.0003 0.0003 0.0003 

MAE2 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002 

MSE2  1.8x10-6 1.8x10-6 1.4x10-6 1x10-7 1x10-7 9.3x10-8 

t2 (sec) 27 27 27 7 7 7 

std(xq1) 5.8541 5.8541 7.5579 5.8541 5.8541 7.5579 

std(xq2) 1654.2430 1654.2430 1996.0462 1654.2430 1654.2430 1996.0462 

Ea2 (2
nd output) 0.0255  0.0255  0.0253  0.0264 0.0264 0.0264 
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Appendix H Figures 

 

This appendix provides figures used for case studies 1 to 6 in Chapter 6. Some of these 

figures are either adopted from journal papers or generated from MATLAB software 

or drawn from Microsoft Excel. All these figures are labeled from Figures H.1 to H.28. 

 

 

 

  

 

 

 

 

 

Figure H.1 Schematic of wastewater treatment process (Caraman et al. 2007) 

 

 

Figure H.2 Schematic diagram of the CSTR (Chen et al. 1995) 
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Figure H.3 Prediction results for training data in case study 1 using LW-PLS, LW-

KPLS and E-LW-KPLS algorithms 

 

 

Figure H.4 Prediction results for test data in case study 1 using the LW-PLS, LW-

KPLS and E-LW-KPLS algorithms 
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Figure H.5 Prediction results for training data of the case study 2 using LW-PLS, 

LW-KPLS and E-LW-KPLS models 

 

 

Figure H.6 Prediction results for test data of the case study 2 using LW-PLS, LW-

KPLS and E-LW-KPLS models
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Figure H.7 Prediction results for training data of the case study 3 using the LW-

PLS, LW-KPLS and E-LW-KPLS algorithms 

 

 

Figure H.8 Prediction results for test data of case study 3 using the LW-PLS, LW-

KPLS and E-LW-KPLS models 
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Figure H.9 Prediction results for training data from case study 4 using the LW-PLS, 

LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS models 

 

 

Figure H.10 Prediction results for the test data of case study 4 using the LW-PLS, 

LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms 
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Figure H.11 Prediction results for training data of case study 5 using the LW-PLS, 

LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS models 

 

 

Figure H.12 Prediction results for test data of case study 5 using the LW-PLS, LW-

KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms



273 

 

 

Figure H.13 Prediction results of product concentration for training data in case 

study 6 using the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS 

algorithms 

 

 

Figure H.14 Prediction results of reactor temperature for training data in case study 

6 using the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms 
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Figure H.15 Prediction results of product concentration for test data in case study 6 

using the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS algorithms 

 

 

Figure H.16 Prediction results of reactor temperature for test data in case study 6 

using the LW-PLS, LW-KPLS, LW-IC-KPLS and E-LW-IC-KPLS models 
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