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Abstract   
 

 

Bio-cementation through microbially induced calcite precipitation (MICP) 

has gained considerable research interests globally for improving the 

mechanical properties of soils. MICP leads to precipitation of calcite 

crystals that bind soil particles together, thereby increasing the soil strength 

and stiffness. In this research, the effects of some important environmental 

factors that affect the successful implementation of MICP for field 

application were investigated, including the treatment temperature, soil pH, 

freeze-thaw (FT) cycles and rainwater flushing. It was found that MICP 

treatment favours the ambient temperature over the much colder and hotter 

temperatures due to the different crystal structures formed with the various 

rates of crystal nucleation and growth. In addition, the neutral initial soil pH 

was found to facilitate the progressive inclination of the MICP process in 

achieving super-saturation conditions. Bio-cemented well-graded sand was 

also found to be more durable than uniformly-graded fine and coarse sands 

due to the unique characteristics of having a high number of inter-particle 

contact points (attributed to the presence of fine sand particles) and high 

permeability, as well as large pore size (attributed to the presence of coarse 

sand particles). The results also suggested that bio-cemented soils 

encountered rainwater flushing during the treatment process was partly 

cemented, or completely non-cemented owing to the bacteria flush out 

because of the premature bacteria attachment to the nucleation sites of the 

soil grains. 

 

Despite the large number of studies carried out on MICP for soil 

stabilisation, little attention has been paid to the effect of different calcite 

crystal precipitation patterns on improving the strength of bio-cemented 

soils. In this research, the effect of the CaCO3 crystal precipitation patterns 

on the geotechnical properties of bio-cemented sand was examined. 

Different concentrations of bacterial culture (BC) and cementation solution 

(CS) were utilised to achieve different CaCO3 crystal precipitation patterns. 
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Abstract 

 

 

 

 

It was found that the combination of high BC (32 U/mL) and low CS (0.25 M) was 

optimum in producing the most effective CaCO3 crystal precipitation patterns, 

evaluated through the unconfined compressive strength (UCS) test and considering a 

broad range of cementation levels. This finding was confirmed by a microstructural 

study using scanning electron microscopy (SEM) analysis, which explained the 

precipitation mechanism and revealed the unique characteristics of the CaCO3 crystal 

pattern, such as having larger crystal size compared to the previously reported 

CaCO3 crystal and rhombohedral in shape that favours the strategic spots of soil pore 

throats for precipitation.  

 

The geotechnical properties of the bio-cemented sand were further assessed through 

the consolidated undrained (CU) triaxial tests, considering the effect of different 

confining pressures and stress paths. The results revealed an enhancement in the 

shear strength parameters of bio-cemented sand, and different soil behaviour was 

observed under the different applied stress paths. An analytical model was developed 

to predict the strength improvement of the optimised bio-cemented sand. The 

developed analytical model was able to predict the experimental data well. A 

comparative study was also conducted to assess the strength improvement and 

permeability retainment between the bio-cemented sand and the conventional 

ordinary Portland cement (OPC) treated sand. It was found that the bio-cemented 

sand outperforms the OPC treated sand due to the efficacy of the CaCO3 crystal 

precipitation patterns of the bio-cemented sand samples.  
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Chapter 1 
 

Introduction   
 

Upon touching sand, may it turn to gold. 

Greek Proverb 

 

 
1.1 Preamble 

 
 

Construction over loose sand has become inevitable, owing to the 

exponential population growth and land scarcity. Loose sand is usually 

characterised by its low bearing capacity and high compressibility. 

Conventional pre-construction treatments such as geosynthetics, 

chemical grouting, prefabricated vertical drains and micropiles are used 

to improve in-situ subsoil strength and stiffness, thus eliminating the 

risk of excessive post-construction deformations and concomitant 

instability issues. One of the major drawbacks of these soil 

improvement techniques is the requirement of substantial amount of 

energy for their production and installation. Hence, a more cost-

effective and environmentally friendly soil stabilisation method is 

warranted.  

 
Nature provides its own soil stabilisation solution through a process 

called diagenesis – natural lithification of sediments as a result of 

physical, biological and chemical processes that turns sediments into 

rocks. The deposited sediments get compacted in consecutive layers 

and cemented by the precipitated minerals from groundwater. 

Naturally, the transition process of sediments into a rock-like material 

takes extremely long time, depending on the cementation process. 

However, in the presence of certain microorganisms, the cementation 

process could be accelerated as they actively induce biochemical 

reactions, leading to the alteration of the subsurface environment that 

promotes the precipitation of inorganic minerals.  
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Biologically induced cementation by minerals such as calcium carbonate (or 

calcite - CaCO3) successfully consolidated loose sand in nature. Example of 

such occurrence can be found in the several meters tall weathered limestone 

pillars called The Pinnacles that rise out of yellow sand dunes in Nambung 

National Park, Western Australia (Figure 1.1). 

 

 

Figure 1.1: The Pinnacles, Nambung National Park, Western Australia 

 

Observations from nature have paved the way towards the exploration of a 

novel soil improvement technique called microbially induced calcite 

precipitation (MICP) that harnesses the metabolic pathway of ureolytic 

bacteria to create an in-situ cementation agent in the form of CaCO3. 

Precipitated CaCO3 binds sand grains together, thereby increasing both the 

strength and stiffness of the otherwise uncemented material (Whiffin, 2004; 

DeJong et al., 2006; Al-Thawadi, 2008; van Paassen, 2009; Chou et al., 

2011; Cheng, 2012). Due to its potential as a sustainable soil stabilisation 

technique, MICP has recently gained unduly interest in geotechnical 

engineering applications. Two notable applications, bio-cementation (the 

generation of particle binding) and bio-clogging (the production of pore 

filling materials via microbial processes in situ) have been explored (Ivanov 

& Chu, 2008). 
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Bio-cemented sand treated with MICP was reported to increase the 

engineering properties (strength and stiffness) of soils (DeJong et al., 2006; 

Whiffin et al., 2007; Chou et al., 2011; Rong et al., 2012; Cheng et al., 

2013; Ng et al., 2013; Montoya & DeJong, 2015; Shahrokhi-Shahraki et al., 

2015; Cheng & Shahin, 2016), reduce foundation settlement (DeJong et al., 

2010; van Paassen et al., 2010a), minimise the effect of liquefaction 

(Montoya et al., 2013; Montoya & DeJong, 2015), promote erosion controls 

(Jiang & Soga, 2014; Maleki et al., 2016; Salifu et al., 2016), repair cracks 

in soil healing (Montoya & DeJong, 2013; Harbottle et al., 2014) and 

reduce soil permeability due to bioclogging (Ivanov & Chu, 2008; Chu et 

al., 2013). Few attempts have been previously made to study the different 

factors affecting the MICP treatment process for improving the engineering 

properties of bio-cemented soils and the CaCO3 distribution uniformity (Al 

Qabany et al., 2012; Al Qabany & Soga, 2013; Martinez et al., 2013; Ng et 

al., 2014; Zhao et al., 2014a). Previously, it was believed that the strength 

of the bio-cemented soil is governed by the CaCO3 distribution uniformity 

in the soil matrix (Fujita et al., 2000; Okwadha & Li, 2010; Al Qabany & 

Soga, 2013). However, Cheng et al. (2013) demonstrated that higher 

strength per mass of CaCO3 can be achieved through the precipitation of 

effective CaCO3 (relatively larger, rhombohedral-shaped and non-uniformly 

distributed crystals precipitation) in the partially saturated sample condition. 

This suggests that the alteration of calcite crystal precipitation patterns can 

have significant effects on the geotechnical response of bio-cemented soils. 

Most of the previous studies used the conventional unconfined compressive 

strength (UCS) test to verify the strength improvement of bio-cemented 

soils due to the simplicity of the technique, which allows a large number of 

samples to be treated simultaneously (Al Qabany & Soga, 2013). 
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Recent studies performed triaxial tests under monotonic loading (Lin et al., 

2015; Montoya & DeJong, 2015; Feng & Montoya, 2016) and dynamic 

loading using a centrifuge (Montoya et al., 2013) to assess the improved 

engineering properties of bio-cemented soils. Nevertheless, the scarcity of 

experimental results that cover a wide range of cementation levels and 

shearing conditions represents a serious gap in the literature. 

 

Previous research proved the potential of using the MICP method for field 

applications. One study by van Paassen et al. (2010b) showed that bio-

cementation through MICP can significantly improve the stiffness of 

granular soils in a large-scale laboratory experiment (100 m3). This was 

further echoed by Gomez et al. (2014), who performed field-scale bio-

cementation tests using surficial application of MICP, aimed to provide 

surface stabilisation for dust control and future revegetation and 

enhancement of the erosion resistance of loose sand deposits. Despite the 

successful cementation to certain column depths, uniform distribution of the 

produced CaCO3 within the soil still proves to be a great challenge (DeJong 

et al., 2010). A review of the literature indicated that the surface percolation 

method introduced by Cheng & Cord-Ruwisch (2012) successfully 

mobilised a homogeneous cementation along a 1 m column depth.  

 

The main issue of successful execution of the MICP procedure that can 

produce uniformly distributed calcite is not on how to transport the bacterial 

along the sand column, but it actually relates to the lack of understanding of 

the different precipitation pattern mechanisms, especially the aspect of 

crystal growth (Terzis et al., 2016). This aspect is of major interest, because 

it governs the size of the precipitated CaCO3 crystals within the soil matrix. 

Understanding the mechanisms associated with a specific precipitation 

pattern would certainly help engineers to design better recipes that can meet 

certain specifications. 
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1.2 Objectives and Scope of the Study 

 

The primary aim of this research is to optimise the process that leads 

to precipitation of CaCO3 by exploring the various precipitation patterns 

and the relationship between their microstructural characteristics and the 

corresponding strength of the bio-cemented soil post-treatment. The results 

of this research will have implications for the design of MICP for field 

applications. The specific objectives of this study are: 

 

1. To quantify the factors affecting the treatment optimisation in extreme 

environmental conditions such as the treatment temperature, soil pH, 

freeze-thaw (FT) cycles and rainwater flushing through UCS testing, 

including the recipe to produce effective CaCO3.  

2. To elucidate the precipitation mechanism (evolution) and identify the 

specific microstructural features of the effective CaCO3 crystal 

precipitation patterns through microstructural studies. Understanding 

the specific microstructural features will allow achieving specific 

targets for field applications.   

3. To study the geotechnical response of the bio-cemented sand using 

triaxial tests, considering the influence of the different confining 

stresses and stress paths on the strength and stiffness. A simple 

theoretical derivation to predict the peak strength ( uq ) value of the bio-

cemented sand based on the effective CaCO3 precipitation will also be 

presented. 

 

For this research, the term ‘effective CaCO3’ will refer to mineralisation of 

the relatively large, rhombohedral-shaped and non-homogeneously 

precipitated CaCO3 crystals at the soil pore throats. Furthermore, the 

engineering properties of the bio-cemented sand imbued with the effective 

CaCO3 will be assessed through UCS and triaxial tests. Figure 1.2 shows 

the summarised scope of the research. 
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Figure 1.2: Scope of the current research  

 

1.3 Thesis Structure 

 

This thesis is divided into six diverse chapters. Chapter 1 describes a brief 

background of the study and highlights the gap in the literature. Also, the 

main aim, the specific objectives and the scope of the research are outlined 

in this chapter. 

 
Chapter 2 presents a state-of-the-art review of the literature associated 

with the presented work. The comprehensive review focuses on the history, 

development, process optimisation, primary factors affecting CaCO3 bio-

mineralization and the application of MICP for soil stabilization. In the 

same chapter, the fundamental principles involving multidisciplinary fields 

such as microbiology, chemistry and engineering were briefly discussed to 

ensure sufficient understanding between their interactions. 

(after Mujah et al., 2016)  (after Montoya & DeJong, 2015) 



7 

Chapter 1: Introduction 
 

 
 

 

 

Most of the recent literature dealing with soil bio-cementation was critically 

discussed and their limitations were highlighted to identify the rationale of 

this study. The inherent advantages and the potential drawbacks of the 

MICP for soil stabilisation were also considered. 

 
Chapter 3 describes the materials used for the design of the bio-cemented 

samples and the methodology to commission the experimental programs for 

verification of the results. The first section relates to the sample preparation 

part that deals with the procedures to extract, inoculate, grow and harvest the 

microorganisms prior to the MICP treatment process. Next, the relevant 

calibration charts, key parameters for the urea hydrolysis reaction and set up 

for the batch analysis were presented. Small column split moulds and the 

stop-flow injection method procedures were detailed at length. The bio-

cemented sand samples underwent UCS and triaxial testing to determine the 

effective CaCO3 content and to capture the strength and stiffness of the MICP 

treated sand post shearing. The measurement of the CaCO3 content, 

permeability, ammonia produced and the microstructural observation through 

the scanning electron microscopy (SEM) were all described in detail. 

 

Chapter 4 discusses some key environmental factors that affect the 

successfully implementation of MICP treatment for field applications. These 

factors include the environmental temperature, soil pH, freeze-thaw (FT) 

cycles and rainwater flushing. Also, the optimum combination of bacteria 

culture and cementation solution concentrations that produced the most 

effective CaCO3 crystal was identified. Various CaCO3 crystal precipitation 

patterns were explored by altering CS and BC concentrations during 

injection. Samples were treated to represent various cementation levels for 

UCS testing. The optimum combination was predicted to produce the highest 

UCS and permeability retention values owing to the precipitation of the 

effective CaCO3 crystals. The evolution and the specific microstructural 

features of the effective CaCO3 crystals were observed under the scanning 

electron microscope (SEM). The optimised bio-cemented samples were 

compared to the ordinary Portland cement (OPC) treated samples. 
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Chapter 5 explores the geotechnical behaviours of the optimised bio-

cemented sand employing the proposed optimum combination suggested by 

the current study. Consolidated undrained (CU) tests under different 

confining pressures (100, 200 and 400 kPa) and stress paths were 

performed. The stress path analyses include the conventional triaxial axial 

compression and constant-p loading paths. Accordingly, the experimental 

data were compared with the available published literature in terms of their 

respective shear strength parameters i.e. the effective friction angles ( ' ) 

and the effective cohesion values ( 'c ). A theoretical formulation/model to 

predict the uq values of the bio-cemented sands was also derived and 

presented. The model is based on the superposition of failure strength 

contributions of the soil and cement phases. The model assumes that the soil 

follows the critical state soil mechanics while the strength of the cemented 

phase is described using the Drucker-Prager failure criterion. In this model, 

uq  of the bio-cemented sand is a function of the adjusted porosity/cement 

parameter. The model data was compared with experimental results for 

further validation in Chapter 5. 

 

Summary of the research findings, including t h e  conclusions and 

recommendations for further studies were presented in Chapter 6. Lastly, 

a list of references and appendices were presented at the end of Chapter 6. 
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Chapter 2 
 

Soil Bio-Cementation by MICP: A Review   
 
 

2.1 Introduction 

 
In order to produce a successful soil bio-cementation by MICP, a 

detailed understanding that encompasses the fundamentals of 

microbiology, basic soil improvement and the theory of superposition 

of failure strength contributions is warranted. This chapter was 

modified from a published article; the full reference of the article is: 

Donovan Mujah, Mohamed A. Shahin, and Liang Cheng (2016) ‘State-

of-the-Art Review of Biocementation by Microbially Induced Calcite 

Precipitation (MICP) for Soil Stabilization’ Geomicrobiology Journal, 

34(6): 524-537 (authorship attribution is appended in Appendix A). 

This chapter presents an updated comprehensive review of the relevant 

literature regarding the use of bio-cementation for soil stabilisation. 

Also, the primary components, treatment and the major factors 

affecting the MICP process were discussed. The potential applications, 

advantages, limitations, some primary challenges dealing with MICP 

for soil stabilisation and the current research focus were outlined in this 

chapter. 

 

2.2 MICP Process 

 

MICP is a biologically driven CaCO3 precipitation technology that uses 

microbial cementation to form soil particle binding material as a result 

of the chemical reaction between microbes and specific chemical 

additives in the soil. Although many processes available in nature that 

are mediated by microbial pathway, namely reduction, oxidation and 

dissolution, only mineralisation of inorganic substances can produce 

stable and strong binding material in the soil matrix (Ivanov & Chu, 

2008). 
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For soil stabilization purposes, the most commonly adopted microbial 

pathway is through a process called urea hydrolysis in the presence of 

highly active ureolytic bacteria. Al-Thawadi (2011) stated that urea 

hydrolysis is the most preferred CaCO3 precipitation method due to its 

ability to generate up to 90% of the chemical conversion efficiency (CCE) 

of the precipitated CaCO3 in a short period of time. Also Dhami et al. 

(2013), reported that the overall process of CaCO3 mineralisation in the urea 

hydrolysis is straightforward and can be easily controlled deeming it to be 

superior to other microbial pathways. Attempts have also been made using 

denitrifying bacteria to produce CaCO3 precipitation (van Paassen et al., 

2010a; Martin et al., 2013; Hamdan et al., 2016). Although denitrifying 

bacteria managed to precipitate CaCO3 all over the soil column, the amount 

of the CaCO3 produced was reportedly much lower than the total converted 

amount, leading to non-homogenous CaCO3 precipitation inside the soil 

column (van Paassen et al., 2010a). Pham et al. (2016) specified that the 

occurrence of inhibitive intermediates (nitrite and nitrous oxide) at high 

concentrations and the much slower reaction rate of denitrification process 

compared to that of urea hydrolysis eliminates the denitrification as a 

practical soil stabilisation technique. 

 

2.3 Microorganisms Screening for MICP 

 

Ureolytic bacteria can be found ubiquitously in nature. Nevertheless, only 

bacteria that possess high urease activity, thus producing high amount of 

CaCO3 precipitates within a short period of time, are desired for MICP (Wei 

et al., 2015). Currently, the most commonly used bacteria for MICP are 

Sporosarcina pasteurii, Bacillus megaterium and Bacillus sphaericus. 

Ivanov & Chu (2008) described S. pasteurii as a type of aerobic bacteria 

able to hydrolyse urea into ammonia by generating adenosine triphosphate 

(ATP) through the secretion of urease enzyme. Figure 2.1 shows the 

physical difference between the bacteria usually utilised in MICP process. 
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Figure 2.1: Different types of bacteria commonly used in MICP: (a) 

Sporosarcina pasteurii, (b) Bacillus megaterium, and (c) Bacillus 

sphaericus 

 

Ivanov & Chu (2008) consider facultative anaerobic bacteria as the most 

suitable agent for in-situ MICP soil stabilisation due to their unique 

characteristics. Facultative anaerobic bacteria remain active under both 

aerobic and anaerobic conditions and possess Gram-positive cell walls, which 

are highly resistant towards the changes in osmotic pressure. Although these 

types of bacteria can be found effortlessly in the environment, Al-Thawadi 

(2008) highlighted that only pure ureolytic bacteria strains, which are 

cultivated under sterile conditions and contamination are compatible with 

MICP due to the presence of the high urease enzyme that mediates the urea 

hydrolysis catalysis. Burbank et al. (2012) stated that only pure ureolytic 

bacteria cultures (BC) can produce highly active urease enzyme metabolic 

activity; the authors claimed that the desired urease activity of pure ureolytic 

BC for soil stabilisation is 4 – 50 mM urea/min. 

  

 

(a) (b) 
 

(c) 

 

1 µm 

 

4 µm 

 

1 µm 
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Burbank et al. (2011) proposed the use of enrichment mediums containing 

molasses, urea, sodium acetate trihydrate, ammonium chloride and yeast 

extract to enrich the production of indigenous, highly active ureolytic 

bacteria in-situ and successfully induce soil bio-cementation. Recently, 

Cheng & Cord-Ruwisch (2013) produced highly active ureolytic bacteria by 

cultivating non-sterile chemostat cultures in a medium with pH = 10 and 

urea concentration = 0.17 M. These conditions helped the growth of urease 

active bacteria and facilitated the continuous reproduction of enriched 

bacteria on-site. 

 
 
2.4 Calcite Precipitation by Urea Hydrolysis 

 

Precipitation of CaCO3 by urea hydrolysis has been explained in detail in 

several previous studies (Hillgartner et al., 2001; Hammes et al., 2003a; 

Burbank, 2010; Waller, 2011; Cheng, 2012; Martinez, 2012; Montoya, 

2012). In general, the process can be categorised into two main stages: (1) 

urea hydrolysis stage; and (2) CaCO3 precipitation. The following general 

chemical reactions of the urea hydrolysis process were presented by Cheng 

et al. (2013): 

 

( ) 2

2 2 4 32
2 2CO NH H O NH CO+ −+ → +            Equation 2.1 

2 2

3 3Ca CO CaCO+ −+ →              Equation 2.2 

 

During the urea hydrolysis stage, 1 mole of urea (CO(NH2)2) is hydrolysed 

to produce 2 moles of ammonium ions (NH4
+) and 1 mole of carbonate ion 

(CO3
2-). Next, the calcium ion (Ca2+) derived from the calcium chloride 

(CaCl2) of the cementation solution (CS) reacts with the carbonate ion 

(CO3
2-) to form 1 mole of calcium carbonate (CaCO3) crystals. Figure 2.2 

shows  highly active ureolytic bacteria catalyse the generation of CaCO3 

crystals in three main phases (Ferris et al., 2004): (1) the development of a 

supersaturated condition; (2) nucleation at the point of critical saturation; 

and (3) spontaneous crystal growth on the stable nuclei. 
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Figure 2.2: Schematic diagram showing CaCO3 precipitation mechanism 

in the microscopic level during urea hydrolysis 

 

Since the precipitation process of CaCO3 by urea hydrolysis obeys the 

domino theory, where each stage is dependent on one another, a 

supersaturation condition must be initially present. Al-Thawadi & Cord-

Ruwisch (2012) suggest that the CaCO3 precipitation rate is a linear function 

of the concentration of the ion products (Ca2+ and CO3
2-) and generally obeys 

the second order kinetics. However, the first order kinetics governs the 

precipitation rate if one of the reactants is in excess. The supersaturation 

condition is achieved when the concentrations of Ca2+ and CO3
2- exceed the 

solubility product (Ksp) based on Equation 2.3 (Al-Thawadi & Cord-Ruwisch, 

2012). The higher the supersaturation index (SI), the more likely the CaCO3 

precipitation is to take place. 

 

2 2

3

sp

Ca CO
SI

K

+ −      =                                                                       Equation 2.3 
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Where; 2 2

3Ca CO+ −        are the ion activity products (IAP) and 
spK is the 

CaCO3 solubility product.  

 

After the supersaturation condition is reached, the CaCO3 crystals start to 

form until the critical saturation. At the point of critical saturation, the 

CaCO3 minerals grow spontaneously on the previously stable nuclei, 

precipitating larger CaCO3 crystals. The understanding of these phases is 

crucial, particularly for soil stabilization, since the interplay of each phase 

would lead to different mechanical responses from the bio-cemented soil as 

a result of the diverse CaCO3 crystals precipitation patterns (i.e. type, shape, 

size and distribution). Previous studies showed that different CaCO3 crystal 

polymorphs, such as calcite, vaterite and aragonite, can affect the strength 

of the bio-cemented soil post-treatment (Al-Thawadi, 2013; Dhami et al., 

2013). Mitchell & Ferris (2006) proposed that the size of the CaCO3 crystals 

can be increased by propagating more concentrated ureolytic BC during the 

nucleation phase. More recently, Cheng & Shahin (2016) showed the 

influence of some precipitation patterns on the geotechnical response of the 

bio-cemented soil. The research demonstrated the multifaceted potential of 

urea hydrolysis by showing it to be one of the most viable pathways to tailor 

the CaCO3 production for practical purposes.  

 

2.5 Soil Bio-Cementation by MICP 

 

Soil bio-cementation mimics natural events through the lithification process 

of sediments over a long period of time (Stocks-Fischer et al., 1999). In the 

case of MICP, the artificially produced CaCO3 is accelerated through the 

continuous supply of BC and CS. The combination of BC and CS is 

fortunate because both elements can be found in nature (Fujita et al., 2000). 

The production of CaCO3 in the soil matrix alters the engineering properties 

of the bio-cemented sand as it metamorphoses from natural sand into bio-

sandstone (Achal et al., 2015). Figure 2.3 shows the transformation of 

natural sand into bio-sandstone after MICP treatment. 
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Figure 2.3: Sand metamorphoses: (a) natural sand; and (b) bio-

sandstone (after Mujah et al., 2016) 

2.6 Soil Treatment Process by MICP 

The retention capacity and the mobilisation of the urease enzyme, resulting 

from the introduction of ureolytic bacteria into the soil matrix, hold the key to 

the successful MICP application for soil stabilization. Without these qualities, 

inapt bacteria mobilization could lead to uneven urease enzyme distribution, 

which results in a non-uniform CaCO3 precipitation along the column depth 

and negatively impacts the global bio-cemented soil strength. An increased 

bacteria retention capacity enables the bacteria adherence towards the sand 

particles to mitigate the bacteria nucleation sites detachment as a result of a 

continuous injection of the CS. The introduction of bacteria into the soil can 

be attained by the injection method, the surface percolation method or the 

pre-mixing method. In the injection method, BC is flushed following a top-

down direction, while a certain retention period is observed (depending on 

the concentration of the supplied CS) to ensure sufficient bacteria attachment 

onto the sand grains before the CS is injected. In the surface percolation 

method, both BC and CS are percolated by gravity and capillary forces. The 

pre-mixing method warrants mechanical mixing of the soil and bacteria prior 

to the introduction of CS. Each method is discussed in the following sections. 

(a) (b) 

“Publication has been removed due to copyright restrictions” 
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2.6.1 Injection Method 

 

The injection method was first introduced by Whiffin (2004)  in treating a 2 

m long column of natural sand. In this method, both BC and CS were 

injected alternately by half of the void volume, from top to bottom, 

following the vertical flow path regulated by a peristaltic pump. Since then, 

the injection method was used by many researchers (Burbank, 2010; Chou 

et al., 2011; De Muynck et al., 2011; Akiyama & Kawasaki, 2012; Martinez 

et al., 2013; Gomez et al., 2014; Wei et al., 2015; Cheng et al., 2016) to 

introduce BC and CS into a sand column. One of the key steps of the 

injection method is the attachment of the bacteria onto the sand grain 

surface prior to the supply of CS. Initially, this was achieved by allowing a 

retention period (normally 3 hours after introducing BC to the sand column) 

(Whiffin et al., 2007). However, Harkes et al. (2010) added a fixation 

solution (FS), in the form of a 50 mM calcium chloride (CaCl2) solution, 

after  injecting BC and found that the increase in calcium ions promoted 

bacteria attachment as a result of the bacterial absorption onto the sand grain 

surface (Torkzaban et al., 2008). van Paassen et al. (2010b) demonstrated 

that the injection method also functions well in the horizontal flow 

direction. Although they reported high variations of UCS values along the 

sand volume transversely, they managed to fairly reinforce a large-scale 

experiment comprising of 100 m3 of sand volume. The schematic diagram 

of the most recently adopted injection method is presented in Figure 2.4. 

 

The injection method is the most preferred MICP treatment method because 

the main parameters of BC and CS, flow, pressure and hydraulic gradient, 

can be controlled during the test using pumps. The flexibility of the method 

allows injection of fluids either vertically or horizontally. Also, this method 

permits the control of the soil’s degree of saturation (S) to be either fully 

saturated (S = 100%) or partially saturated (S < 100%) since the flow of the 

fluids is controllable (Cheng et al., 2013). 
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Figure 2.4: Schematic diagram of the injection method set-up  

(after Whiffin et al., 2007) 

 

Despite the control provided by the injection method, nonhomogeneous 

CaCO3 distribution resulting from uneven bacteria distribution poses the risk 

of non-uniform soil strength throughout the soil column length, therefore 

representing a serious disadvantage of the injection method  for soil 

stabilization using MICP (Mujah et al., 2016). Ginn et al. (2001) explained 

that the uneven bacteria distribution was partly due to the filtering effect of 

the sand particles as the bacteria were injected through the pore space. Some 

bacteria might be suspended along the injection path as the bacteria 

concentration reduces linearly with depth. Al Qabany et al. (2012) described 

this phenomenon, known as pore plugging, as one of the potential reasons for 

the uneven bacteria distribution. Pore plugging occurs when a localised 

cementation occurs at the region near to the injection source (top part of the 

sand column if applied top-down). The localised cementation ensues when 

the repeatedly supplied CS reacts with the trapped bacteria near the injection 

point. Pore plugging at the injection source hinders the transport of the 

subsequent BC injection into other regions of the sand column, ultimately 

leading to the uneven bacteria distribution. 

 

 

 

 

 

 

 

 

 

“Publication has been removed due to copyright restrictions” 
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Whiffin et al. (2007) recommended an increase in the CS injection rate as a 

countermeasure to pore clogging to allow more fluids to reach further in the 

sand column. It is believed that the higher CS injection rate provides greater 

BC mobilisation into the soil depth, although no studies have proven this 

claim. Harkes et al. (2010) suggested the use of FS (high salinity CaCl2 

solution), immediately injected after the initial BC injection, to retard the 

movement of bacteria and facilitate bacteria absorption onto the sand grains 

surface. The next injection of CS (less saline than the FS) would remobilise 

the bacteria into the deeper locations of the sand column as they return to 

the liquid phase. Tobler et al. (2012) found that the two-staged injection 

method (alternate injection of BC and CS) was more effective than the 

parallel injection (CS is immediately injected after BC) as the latter greatly 

promotes pore plugging near the injection source. 

 

2.6.2 Surface Percolation Method 

 

The surface percolation method was introduced by Cheng & Cord-Ruwisch 

(2014) to allow for the treatment of an unsaturated sand. In this method, BC 

and CS were vertically introduced from the top opening of the sand column. 

No caps were provided on both sides of the column to permit fluid passage 

through the column. The fluids were transported into the column depth by 

gravity and capillary forces. Figure 2.5 shows a schematic diagram of the 

surface percolation method. Cheng & Cord-Ruwisch (2014) found that by 

applying multiple alternating layers of BC and FS and then incubating the 

sample, bacteria could be mobilised into a 1 m sand column depth due to a 

higher percolation rate. This would imply that a reasonable CaCO3 

distribution homogeneity would be observed. In terms of the degree of 

saturation, the pendular regime (lower water content region) produced three 

times higher local strength per mass of CaCO3 over the samples taken from 

the funicular regime (higher water content region). This indicates that the 

cost of strengthening using the surface percolation method is three times 

lower than that of the traditional injection method, which always requires 

the sample to be fully saturated. 
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Figure 2.5: Schematic diagram of the surface percolation method set-up  

(after Cheng and Cord-Ruwisch, 2012) 

 

Despite such appraisal, application of the surface percolation method is 

limited to coarse-grained soil. Fine-grained soils, such as silt and clay, have 

low fluid infiltration rates and permeability, hence limiting the transport of 

bacteria into the deeper locations of the column. The bulk of the soil deposits 

present deep in soil strata are fine-grained soils. To date, no study has shown 

the potential of using the surface percolation method in fine-grained soils. 

 

2.6.3 Pre-Mixing Method 

 

In order to achieve better CaCO3 distribution uniformity, Yasuhara et al. 

(2012) mechanically pre-mixed bacteria powder, in enzyme form, with sand. 

After pre-mixing, CS was injected into the sand column. Zhao et al. (2014a) 

found that 83% of CaCO3 precipitated in their bio-cemented sample was 

homogenously distributed throughout the 1 m sand column depth. 
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Recently, Zhao et al. (2014b) applied the pre-mixing method in MICP 

treatment to stabilize natural sand. The sand mixture was compacted into 

geotextile mould and wrapped around the sand column before full 

submersion into a mechanically operated tank containing CS. In this 

method, CS could freely diffuse into the sand column through the perforated 

geotextile due to the difference in the concentration gradients by the action 

of the robust magnetic stirring. The schematic diagram of the pre-mixing 

method is presented in Figure 2.6. 

 

Figure 2.6: Schematic diagram of the pre-mixing method set-up  

(after Zhao et al., 2014b) 

 

The advantage of this method over the traditional injection method is that it 

helps to promote more uniform CaCO3 distribution deeper into sand column 

depth. This is accomplished by rigorously mixing the bacteria (can be in the 

liquid or solid powder form) with the sand prior to the introduction of CS. 

The mixing process ensures the homogenous placement of the bacteria 

inside the sand and afterwards guarantees the precipitation of homogeneous 

CaCO3 distribution. Ivanov et al. (2015b) successfully utilised this method 

to strengthen marine clay and found that the CaCO3 was fairly distributed 

along the column depth in the presence of fine-grained soils. 
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However, one of the major drawbacks of this method is that it is impractical 

to apply the diffusion technique in the field, as it requires the installation of 

geotextile wrapping around the massive soil bulk and the fitting a huge 

mechanical stirrer to accelerate the diffusion rate of the CS into the treated 

sample. It is also argued that the integrity of the treated soils in terms of the 

pseudo stress history may be disturbed by the instalment of the geotextile 

wrapping, hence contributing to inaccurate prediction of the soil’s strength. 

 

2.7 Geotechnical Engineering Properties of Bio-Cemented Sand 

 

2.7.1 Permeability 

 

MICP can be used to regulate soil permeability through a process called bio-

clogging, which completely blocks inter-particle pores in the soil. The 

concept of bio-clogging was introduced by Ivanov & Chu (2008) at which, 

significant permeability reduction was observed (5 × 10-5 m/s to 1.4 × 10-7 

m/s) at high CaCO3 content. Similarly, Chu et al. (2013) found that bio-

clogging mechanism only occurs after 9.6% CaCO3 content or higher. The 

generated CaCO3 is responsible for clogging the soil pores, thereby 

restricting the flow of water and thus decreasing the soil permeability 

(Glatstein & Francisca, 2014; Kanmani et al., 2014; Amin et al., 2017). Bio-

clogging has practical geotechnical engineering applications, including the 

prevention of leachate penetration from landfill sites to the surrounding soil 

and as a support barrier that averts the displacement of backfill materials in 

construction of dams. The ability to control the permeability of porous 

materials is highly desirable because it can prevent the development of excess 

pore pressure during loading (Farah et al., 2016). Cho et al. (2006) stated that 

the packing density of the soil inter-particles at a microscopic level affects the 

drainage condition of the porous materials. To achieve a good drainage 

condition, Chu et al. (2013) suggested that a permeability value of at least 1 × 

10-4 m/s must be maintained to ensure a full penetration of bacteria and 

cementation solution to the desired soil depth. This is crucial to guarantee a 

homogeneous CaCO3 distribution along the treated soil column. 

 



22 

Chapter 2: Soil Bio-Cementation by MICP: A Review 

 
 

 

 

Cheng et al. (2013) compared the permeability characteristics of bio-

cemented sand with ordinary Portland cement (OPC) treated sand and found 

that the bio-cemented samples have significantly higher permeability 

retention compared to the OPC treated samples (Figure 2.7). It was noted 

that the hydraulic conductivity for the sand used was 10 × 10-5 m/s. At 

cement content of 7%, permeability reduction values of 50% and 98% were 

recorded for the bio-cemented and OPC treated samples, respectively. It 

was also noted that at a cement content greater than 9.6%, considerably 

poor drainage behaviour was demonstrated by the OPC treated samples with 

a permeability value less than 1 × 10-6 m/s while the bio-cemented samples 

successfully maintained permeability value ≥ 4 × 10-5 m/s. Cheng et al. 

(2013) suggested that the mineralisation of insoluble hydrates that occupies 

the pore spaces as a result of the cement hydration reaction between OPC 

and water molecules was the cause for the permeability loss in the OPC 

treated samples. Compared to the insoluble hydrates, the CaCO3 crystals 

cause slight volume change in the pore space hence, allowing better 

drainage passage in the soil matrix. 

 

 

Figure 2.7: Comparison of permeability reduction between bio-

cemented and OPC treated samples (after Cheng et al., 2013) 
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Using 0.5 M cementation solution, van Paassen (2009) reported 60% 

permeability reduction at 100 kg/m3 CaCO3 content whereas, Ivanov et al. 

(2010) recorded 50 – 99% permeability reduction using a 1 M cementation 

solution. Al Qabany & Soga (2013) compared the effect of using different 

cementation solution concentrations (0.25, 0.5 and 1 M) towards the 

permeability reduction. They found that high CS concentration produced 

sudden clogging in the biocemented soil samples as a result of the biomass 

plugging that occurred in the vicinity of the accumulated bacteria cells 

producing large clusters of CaCO3 crystals (Stewart & Fogler, 2001). This 

resulted in non-uniform flow of the subsequent chemical injection, leading to 

non-homogenous CaCO3 precipitation in the soil matrix. Low CS 

concentration promotes the precipitation of CaCO3 at the soil contact points 

due to the tendency of the bacteria cells to be amassed at the soil pore throats 

(DeJong et al., 2010). The accretion of the bacteria cells near to the pore 

throats produced relatively small CaCO3 crystals, leading to much more 

stable chemical flow, hence encouraging more homogeneous CaCO3 crystals 

precipitation in the soil matrix. The different precipitation patterns and the 

corresponding effect of the pore clogging towards the chemicals flow are 

presented in Figure 2.8. 

 

2.7.2 Stiffness 

 

Soil stiffness or better known as soil elastic modulus (E) is the ratio of stress 

over strain and is associated with the bonding strength induced by adjacent 

soil grains. Cheng et al. (2013) showed that E increases with the amount of 

the precipitated calcite content in an exponential fashion, although the 

precipitation patterns affect the mechanical response of the bio-cemented 

samples. Montoya & DeJong (2015), Lin et al. (2015) and Feng & Montoya 

(2016) studied the stress-strain behaviour of biocemented sand in a triaxial 

machine and found that E noticeably was improved with the increase in the 

cementation levels.  
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Figure 2.8: Schematic diagram of pore clogging in MICP: (a) high 

cementation solution concentration; and (b) low cementation solution 

concentration (modified after Al-Qabany & Soga, 2013) 
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Cheng et al. (2013) compared E values of different types of geomaterials 

such as concrete, gravel and soft rock with MICP treated sand, as shown in 

Figure 2.9. Their results revealed that the MICP cemented coarse sand 

showed the most flexible behaviour compared to other types of geomaterials. 

This characteristic of artificially cemented materials proves to be very useful 

in earthquake prone areas, where less stiff soil is able to provide extra time 

for evacuation purposes due to its ability to sustain significant residual 

strength post failure (Montoya et al., 2013). In the event that stiffer soil 

conditions are desired, Ismail et al. (2002a) suggested that more reagent 

flushes are required so that E values approach that of concrete. It is worth to 

note that the rate of stiffness can be influenced by the different stress paths 

(SP) of soil in a way that particular SPs could reduce E resulting from the 

cementation degradation over time, prior to failure. Montoya & DeJong 

(2015) discussed this mechanism and found that SPs play an important role in 

determining the actual E response of bio-cemented sand. Ruistuen et al. 

(1999) related the shear-enhanced compaction of the SP condition to weakly 

cemented soil and how it loses stress sensitivity despite the increase in the 

cementation levels. 

 

 

Figure 2.9: Relationship between E and qucs of the biocemented sand 

compared with other geomaterials (after Cheng et al., 2013) 
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2.7.3 Shear Strength 

 

Shear strength parameters refer to the cohesion value (c) and the friction 

angle (ϕ) of the bio-cemented sand samples. Montoya & DeJong (2015) 

showed that the cohesive intercept for bio-cemented sand samples is equal 

to zero in the Mohr-Coulomb failure criteria diagram because the MICP 

treated samples having shear wave velocity, Vs = 1000 m/s or higher 

(heavily cemented samples) were able to retain their shape under self-

weight. Also, Lee et al. (2009) mentioned that the corresponding cohesion 

intercept greatly depends on the confining stress levels. A constant cohesion 

intercept is normally found at low confining stress levels; meanwhile a 

gradual decrease in the cohesion intercept is witnessed after a breaking 

point (transition zone) due to the breakage of the cementation bonds 

observed at high confining stresses (Figure 2.10). The peak effective ϕ was 

observed to increase with an increase in the cementation levels, leading to a 

transition in the stress-strain behaviour from strain hardening to strain 

softening (Montoya & DeJong, 2015). The large increase in the peak 

effective ϕ shown in Figure 2.11 was argued to be related to the increase in 

the particle roughness as the cementation level increases during the bio-

chemical cementation process. 

 

 

Figure 2.10: Cohesion value of the cemented sand idealisation  

(after Lee et al., 2009) 
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Figure 2.11: Peak effective ϕ’ in relation to the various cementation 

levels measured using bender element (after Montoya & DeJong, 2015) 

 

Furthermore, Feng & Montoya (2017) showed that no significant influence 

was observed in the peak effective ϕ in the lightly-cemented and moderately-

cemented samples. It is worthy to note that the degree of saturation affects the 

shear strength parameters of the bio-cemented soils, i.e. coarse and fine 

grained, as confirmed by Cheng et al. (2013). It was demonstrated that the 

precipitated CaCO3 crystals under the low saturation degree condition 

improved the shear strength parameters of the tested soils significantly. In the 

case of the coarse sand, this is attributed to the formation of the CaCO3 

crystals which were concentrated only near the soil pore throats (the smallest 

pore space connecting two large pore cavities). The effective placement of 

the CaCO3 crystals in the interparticle connections assists the enhancement of 

shear strength in bio-cemented soils. On the other hand, the improvement in 

shear strength in the fine sand is related to the compounding benefits of much 

smaller particles, such as precipitation of more effective CaCO3 crystals and 

lower particle contact stresses. 
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2.7.4 Unconfined Compressive Strength (UCS) 

 

The unconfined compressive strength (UCS) test is currently the most 

preferable strength test to describe the mechanical response of the bio-

cemented soil, particularly because the test permits a large number of bio-

cemented samples to be tested at the same time, easing the characterisation 

of sample strengths (Al Qabany et al., 2012). Figure 2.12 shows the 

comparison of UCS values and the corresponding calcite contents from 

different studies using a consistent cementation solution concentration, i.e. 1 

M. There exists an exponential relationship between the precipitated CaCO3 

content with the UCS values. Based on Figure 2.12, it can be deduced that 

the mechanical response of the bio-cemented samples can vary remarkably 

despite having the same amount of CaCO3 content. Currently, no literature 

has embarked on explaining this observation; hence this study will attempt 

to elucidate this with the theory of effective CaCO3 crystal formation, which 

is discussed at length in Chapter 4. 

 

 
Figure 2.12: Relationship between the UCS values and the calcite 

content comparison between different studies 
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2.7.5 Microstructural Characteristics 

 

The improvement mechanism of the bio-cemented samples in the 

microscopic level could be explained through the scanning electron 

microscopy (SEM) imaging technique. This aspect is particularly crucial 

since it was noted by Sham et al. (2013) and Terzis et al. (2016) that different 

precipitation pattern structures at a microscopic level could influence the 

macroscopic response of bio-cemented samples differently. DeJong et al. 

(2010) presented two CaCO3 crystals precipitation distribution alternatives 

within the soil pore spaces, e.g. (1) uniform distribution at which the CaCO3 

crystals form almost an equal thickness layer of envelope surrounding the 

sand particles resulting in a relatively small contact bonding area between the 

neighbouring sand particles; and (2) preferential distribution which highlights 

the agglomeration of the precipitated CaCO3 crystals near to the vicinity of 

the soil pore throats. However, based on the observation through SEM 

images by many researchers (De Muynck et al., 2011; Akiyama & Kawasaki, 

2012; Rong et al., 2012; Tobler et al., 2012; Cheng et al., 2013; Rong & 

Qian, 2013; Park et al., 2014a; Sel et al., 2014; Cheng et al., 2016), the actual 

distribution of CaCO3 crystals precipitation is a combination of both 

alternatives, as shown in Figure 2.13. Furthermore, DeJong et al. (2011) 

associated the spatial distribution of the precipitated CaCO3 crystals in the 

bio-cemented soil pore spaces to the biological behaviour of the bacteria and 

the liquid filtering process. Bacteria are prone to smaller space area such as 

near to the soil pore throats as a result of the reduced shearing stresses and 

the availability of more nutrients at the grain contact surface. The filtering 

process is the result of the formation and suspension of the CaCO3 crystals in 

the soil pore fluid space because of the incessant supplement of the BC and 

CS. This process would force the CaCO3 particles to re-attach to the region of 

the grain contact points as the supplied chemicals flow inside the soil pore 

fluid space. Its effect towards the formation of the CaCO3 crystals near to the 

grain contact points becomes more pronounced since it governs the relative 

size of the suspended CaCO3 crystals and the soil pore throat space which 

decreases under loading (Santamarina & Cho, 2004). 
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Figure 2.13: CaCO3 crystals precipitation distribution in the soil pore 

space: (a) uniform distribution (modified after DeJong et al., 2010); (b) 

preferential distribution (modified after DeJong et al., 2010); and (c) actual 

distribution (after Lin et al., 2015) 

 

Earlier studies correlated the strength improvement of the MICP treated samples 

to the amount of the CaCO3 content enveloping the sand particles in the bio-

cemented soil matrix (Fujita et al., 2000; Okwadha & Li, 2010). However, 

Whiffin et al. (2007) suggested that the shear strength of the bio-cemented 

samples may not be directly proportional to the amount of the CaCO3 content 

present in the bio-cemented soil matrix. Further investigations by Cheng et al. 

(2013) and Cheng et al. (2017) demonstrated that the exponential increase in the 

UCS values of the bio-cemented samples is due to the precipitation of the 

effective CaCO3 crystals. 
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Figure 2.14 shows the precipitation of the effective CaCO3 crystals post 

MICP treatment. Based on the figure, it can be observed that among the most 

salient characteristics of an effective CaCO3 crystal includes: (1) larger 

crystal size (approximately 20–50 µm); (2) rhombohedral in shape (calcite); 

and (3) distributed mainly at the soil pore throats which then fills in the gaps 

between two or more sand particles (Cheng et al., 2017). The CaCO3 crystal 

precipitation patterns greatly influence the mechanical properties of bio-

cemented samples according to the precipitated CaCO3 crystals size, shape 

and structure as they accumulated in the soil pore throats (Al Qabany et al., 

2012). In return, these unique characteristics could potentially implicate how 

MICP treatment can be applied more economically in engineering practice. 

 

 

Figure 2.14: Microstructure of the effective CaCO3 crystals precipitation  

(after Cheng et al., 2017) 
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2.7.6 Shear Wave Velocity 

 

Shear wave velocity measurement is a relatively new technique utilised in 

geotechnical engineering that employs the use of non-destructive test via 

using bender elements (BE) to determine the development of the 

progressive strength of the improved soil (Sharma et al., 2011). In MICP 

application, BE is used mainly to monitor the one-dimensional flow of the 

permeability reduction in the bio-cemented soil column (Martinez et al., 

2013) and also to capture the change in the small-strain stiffness of the bio-

cemented soil during shearing in the triaxial setup (Montoya & DeJong, 

2015). Among the advantages of this technique include the ability to 

measure soil strength as a function of time in the real time domain and also 

the non-destructive examination of the bio-cemented samples (Piriyakul & 

Iamchaturapatr, 2013). 

 

2.8 Factors Affecting the Formation of CaCO3 Crystals in MICP 

Treatment 

 

Al Qabany & Soga (2013), Terzis et al. (2016) and Cheng et al. (2017) 

noted that the different precipitation patterns could affect the mechanical 

response of bio-cemented soils depending on their crystallographic 

morphology (shape, size and distribution) in the bio-cemented soil matrix. 

Some critical factors affecting MICP treatment namely the bacteria culture 

concentration, cementation solution concentration, temperature, pH level 

and degree of saturation are discussed in this section. 

 

2.8.1 Bacteria Culture Concentration 

 

Bacteria culture concentration is related to the urease activity of the 

supplied bacteria. According to Whiffin (2004), urease activity can be 

measured based on the hydrolysis rate of urea by the ureolytic bacteria. In 

other words, the higher is the number of bacteria concentrated in a culture, 

the higher is the urease activity.  
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The increase in urease activity enhances the CaCO3 production due to the 

more bacteria cells concentrated inside the culture acting as nucleation sites 

for CaCO3 crystals precipitation (Nemati & Voordouw, 2003). Similarly, 

Hammes & Verstraete (2002) also confirmed that the availability of the 

nucleation sites is a vital governing factor in determining the amount of 

CaCO3 production. DeJong et al. (2011) explained that the nucleation sites 

for CaCO3 crystals precipitation occur as a result of the bacteria cells 

attachment to the soil grains surface at which, bacteria would catalyse the 

reaction between Ca2+ and CO3
2- ions to form CaCO3 that would ultimately 

bond two or more soil particles together as they grow in size. Since the 

availability of the nucleation sites greatly depends on the amount of the 

attached bacteria cells on the soil particles, it is imperative that the amount of 

the introduced bacteria cells (i.e. the BC concentration which then would 

affect the urease activity level) needs to be addressed. When more bacteria 

cells present in the soil matrix, precipitation of new CaCO3 crystals can be 

anticipated due to the abundance of the bacteria cells accumulated at the soil 

pore throats (contact points) and also attached to the sand grains surface 

acting as the nucleation sites for the consumption of the Ca2+ and CO3
2- ions 

to form new small CaCO3 crystals instead of growing the existing ones. These 

several small crystals would progress to form dense layers which envelop the 

sand grains with the continuous supply of CS. In case of fewer bacteria cells 

introduced into the soil matrix, the nucleation of new CaCO3 crystals is 

insignificant compared to the growth of the existing ones. The low number of 

nucleation sites present in the soil matrix facilitates the growth of individual 

crystals instead of formation of new ones. This claim is proved by Cheng et 

al. (2017) when they studied the effect of different urease activities on the 

UCS values of the bio-cemented samples, as shown in Figure 2.15. They 

claimed that bio-cemented samples treated with lower urease activity bacteria 

culture would produce higher strength gain compared to the higher urease 

activity bacteria culture at the same CaCO3 content level due to the 

precipitation of larger CaCO3 crystals. 
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Figure 2.15: Effect of different bacteria culture concentrations on the 

bio-cemented soils UCS (after Cheng et al., 2016) 

 

It is noted by Cheng et al. (2017) that using different strain of ureolytic 

bacteria would probably lead to different results than those presented 

because of the attainment of the same urease activity level requires different 

bacteria culture biomass, leading to different number of nucleation sites and 

therefore, potentially affecting the precipitated CaCO3 crystals pattern. 

Further study is needed considering this issue because different CaCO3 

crystals precipitation patterns would lead to different strength gain after 

MICP treatment of soils. 

 

2.8.2 Cementation Solution Concentration 

 

Al-Thawadi & Cord-Ruwisch (2012) indicated that the precipitation of 

CaCO3 crystals in the bio-cemented samples is affected by the cementation 

solution concentration. In their study using pure chemical CaCO3 

production, they showed that a higher cementation solution concentration 

would lead to produce larger CaCO3 crystals. However, in the MICP 

treatment scheme, where the CS is introduced to the soil column in its liquid
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form, Okwadha & Li (2010) observed that the precipitated CaCO3 crystals 

were randomly distributed in the soil voids due to the faster rate of the 

precipitation process induced by the higher CS concentration. This finding is 

further echoed by Al Qabany & Soga (2013), which showed that more 

homogeneous CaCO3 crystals distribution was observed in the bio-cemented 

samples using lower CS concentration. Their findings also suggest that the 

CaCO3 precipitation homogeneity contributes towards the strength gain by 

the bio-cemented samples, as shown in Figure 2.16. 

 

 

Figure 2.16: Effect of different cementation solution concentrations on 

the bio-cemented soils UCS (after Al-Qabany and Soga, 2013) 

 

Al Qabany & Soga (2013) conducted a study using different CS 

concentrations comprising of equimolar urea-calcium chloride, i.e. 0.1 M, 

0.25 M, 0.5 M and 1 M. They found that the lowest concentration (0.1 M) 

produced higher UCS values compared to that treated with higher CS 

concentration. They argued that this is probably due to the precipitation of 

more homogeneously distributed CaCO3 crystals at the particle contact 

points, hence, leading to strength improvement with minimum soil 

disturbance and permeability reduction. 
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No further explanation was provided as to why the use of 1 M CS provided 

no strength despite the high CaCO3 content. Also, the fact that the authors 

linked the strength improvement with the CaCO3 crystals distribution 

homogeneity does not fully explain why 1 M CS produced samples with 

null strength. Further investigation into the microstructural characteristics 

especially in terms of the evolution of the precipitated CaCO3 crystals and 

their relationship with the progressive bio-cemented sample strength is 

necessary. Their findings are further supported by Ng et al. (2014) who 

found that 0.5 M CS provided higher strength improvement on the bio-

cemented residual soil as compared to that of 1 M CS concentration. Also, 

Cheng et al. (2014) used low concentration of Ca2+ ion source, i.e. seawater 

to produce bio-cemented sand columns. They noted that, in order to achieve 

the same amount of CaCO3 crystals precipitation using seawater, greater 

number of injections is needed compared to that of using the normal 

equimolar CS. 

 

2.8.3 Degree of Saturation 

 

It was suggested by Cheng & Cord-Ruwisch (2012) that the CaCO3 crystals 

distribution patterns can be controlled by manipulating the degree of 

saturation of the bio-cemented soils during the MICP treatment. This is 

made possible by restricting the CaCO3 precipitation only at the vicinity of 

the soil pore throats. It was hypothesised that the ability to precipitate 

CaCO3 at the soil pore throats leads to the formation of CaCO3 crystals that 

link two or more sand grains together at their contact points. Hence, Cheng 

et al. (2013) conducted a series of experiment investigating the effectiveness 

of MICP treatment at various degrees of saturation (20%, 40%, 80% and 

100%). The study found that the 20% degree of saturation proved to be the 

most effective (highest UCS value at 5% CaCO3 content) compared to 40%, 

80% and 100%, as shown in Figure 2.17. Cheng & Cord-Ruwisch (2012) 

attributed this to the precipitation of the CaCO3 crystals, which were 

concentrated at the soil pore throats as a result of the air occupation in the 

partially saturated condition (Tuller et al., 1999). 
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The materialisation of the menisci shaped cementation solution at the soil pore 

throat has led to the formation of the CaCO3 crystals at the contact points 

between the soil grains, contributing to the strength improvement. Meanwhile, 

in the case of fully saturated condition, the CaCO3 crystals are free to 

precipitate without being restricted to the location as the MICP solution 

occupies the entire pore space. This condition propels the agglomeration of 

CaCO3 crystals to be formed on both the host grain surface and the grain gaps 

thus, leading to the much scattering pattern of the CaCO3 crystals precipitation 

in the fully saturated condition. The SEM images showing the difference of the 

precipitation patterns in the two extreme saturation degree conditions is shown 

in Figure 2.18. 

 

 

Figure 2.17: Effect of different degree of saturation on the bio-cemented 

soil strength improvement (after Cheng et al., 2013) 
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Figure 2.18: CaCO3 crystals precipitation patterns: (a) fully saturated 

condition; and (b) partially saturated condition (20%)  

(after Cheng et al., 2013) 

 

2.9 Large Scale MICP Experiments 

 

Attempts have been made to upscale the use of bio-cementation for field 

application. For example, van Paassen (2009) treated 100 m3 of natural sand 

(Figure 2.19) and found that the strength of the bio-cemented sand was 

significantly increased after the MICP treatment. However, a distinct CaCO3 

precipitation spatial heterogeneity was noted. Possible reasons for the non-

homogeneously distributed CaCO3 in the bio-cemented soil mass include: (1) 

non-homogenously distributed bacteria cells as a result of the lacking in both the 

retention time and the fixation solution, to ensure the attachment of bacteria into 

the sand grains before the subsequent injection of cementation solution which 

might wash away some of the injected bacteria cells; (2) the amount of the 

supplied reagents and the way that they are introduced into the soil mass (e.g. 

injection or surface percolation; and (3) flow of reagents into the soil depth 

which might follow the preferential flow path along the phreatic surface. 

 

(a) (b) 
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Figure 2.19: 100 m3 scaled up experiment set up  

(after van Paassen, 2009) 

 

The transport of reagents in the preferential flow path leads to higher CaCO3 

content precipitated in that area, which is prone to receive more reagents 

where the flow resistance is much lower. The locally precipitated CaCO3 

crystals located in the soil pore throats reduce the permeability of the bio-

cemented sand and thus, causing an increase in the flow resistance and 

leading to the development of a new preferential flow path (DeJong et al., 

2011). 

 

Martinez (2012) performed an up-scaled experiment to investigate the three-

dimensional flow regime pattern developed by the MICP treatment in the 

scaled well-to-well treatment model. The scaled well-to-well model simulates 

the flow condition found in a repeated five-spot well pattern, commonly used 

in oil recovery applications to achieve efficient oil recovery over a target 

subsurface zone. It was found that the two-phase MICP treatment scheme 

utilised to consolidate the system has adequately improved the target 

treatment (0.5 m × 0.5 m × 0.15 m) zone with small spatial variation. The 

small spatial variation was attributed to the uniformly distributed CaCO3 

crystals along the soil subsurface as a result of the uniformly distributed 

bacteria and nutrients along the flow regime. 
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Gomez et al. (2014) conducted a field-scale bio-cementation test focussing 

on the surficial application of MICP to provide surface stabilisation and to 

improve the erosion resistance of loose sand deposits (Figure 2.20). The 

results indicated that the treated soil was improved to a depth of 

approximately 28 cm after 20 days of treatment. Also, it was shown that the 

treated soil exhibited moderate degradation at 298 days post-treatment 

following a harsh winter condition. This signals the potential use of MICP 

treatment to strengthen soil in cold regions. The result also showed that the 

low-concentration treatment solutions provided the greatest improvement; 

no apparent reason was discussed to explain this finding. However, this 

indicates that the use of low-concentration treatment solutions can result in a 

relatively lower cost of MICP treatment installation in the field due to the 

use of less concentrated reagents. 

 

 

Figure 2.20: Field scale set up using uniform, loose and poorly graded 

sand (after Gomez et al., 2014) 
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Recently, Phillips et al. (2016) used MICP to seal fracture due to fluid 

leakage near the subsurface wellbore environment. As discussed by Ivanov & 

Chu (2008) and Chu et al. (2013), MICP can act as either bio-cementing or 

bio-clogging agent depending on the targeted usage. In fracture sealing 

mechanism, MICP treatment is used to produce CaCO3 crystals that perform 

as bio-clogging agent to provide fracture plugging and permeability reduction 

in porous materials. It was highlighted that the CaCO3 sealant is advantageous 

over cement-based sealant due to the lower viscosity of the reagents needed 

to produce CaCO3 crystals thus, enabling their ease of transport into the 

targeted well fracture. 

 

Gomez et al. (2016) performed a large scaled bio-cementation experiment to 

study the improvement difference when using two different types of bacteria: 

(1) bio-augmented using the commercially available bacteria, i.e. S pasteurii; 

and (2) bio-stimulated approach (natural bacteria in the soil) (Figure 2.21). 

Their results suggested that MICP treatment using bio-stimulation approach 

provided comparable resistance towards CPT with an increase in tip 

resistance of 419% after treatment signifying the potential economic gains 

using the bio-stimulation concept. 

 

 

Figure 2.21: Large scale experiment set up using bio-augmented and bio-

stimulated MICP approaches (after Gomez et al. 2016) 
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 2.10 Envisioned Applications of MICP for Soil Improvement 

 

Present research on soil bio-cementation basically revolves in the MICP 

process and treatment optimisation at the experimental scale level. Table 2.1 

presents the envisioned application of MICP exploring its plausibility as 

other alternatives for geotechnical engineering soil improvement technique. 

Each envisioned application is tailored to its specific function and the 

possible mechanism is explained in brief. 

 

Table 2.1: Envisioned Applications of MICP for Soil Improvement 

Envisioned 

application 

Improvement mechanism References 

Soil 

stabilisation 

The produced CaCO3 crystals bind 

sand particles together hence, 

increasing soil’s shear strength and 

stiffness  

Whiffin et al. 

(2007); DeJong et 

al. (2010); Al 

Qabany et al. 

(2012); Cheng et 

al. (2013); Chu et 

al. (2013); Ivanov 

et al. (2015a); 

Smith et al. 

(2017) 

Slope 

stabilisation 

The produced CaCO3 crystals help 

to strengthen the failure plane 

surface by providing additional 

stability needed to inhibit slope 

failure 

DeJong et al. 

(2011); DeJong et 

al. (2013); Salifu 

et al. (2016) 

Settlement 

reduction 

The produced CaCO3 crystals 

increased the bearing capacity of the 

foundation thus, reducing the 

primary settlement 

van Paassen et al. 

(2010a); van 

Paassen et al. 

(2010b); Pham et 

al. (2016) 

Erosion 

control 

The produced CaCO3 crystals 

increase the soil resistance against 

the forces of water along the sea 

shores/riverbanks and wind for 

surficial soil protection 

Jiang et al. 

(2016); Maleki et 

al. (2016); Jiang 

& Soga (2017) 

Liquefaction 

prevention 

The post-shearing loads could re-

initiate the MICP process hence, 

preventing further liquefaction 

damages 

Montoya et al. 

(2013); Montoya 

& DeJong (2015); 

Han et al. (2016) 

Self-healing 

of soil 

The produced CaCO3 crystals 

degraded when loaded beyond its 

yield strength. The bio-cemented 

sand properties can be returned to its 

pre-sheared level condition by re-

initiating the MICP process 

Montoya & 

DeJong (2013); 

Harbottle et al. 

(2014) 
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2.11 Advantages of MICP for Soil Bio-Cementation 

 

2.11.1 Cost Effectiveness 

 

One of the reasons why MICP is yet to be applied in the real field application 

is due to the misleading belief that its implementation would be costly. Table 

2.2 provides the cost comparison to treat 1 m3 of soil sample based on the 

various cementing agents available in the literature against MICP. Although, 

it is noted by Whiffin et al. (2007) that the initial cost of the implementation 

of MICP in terms of the bacteria placement and the cementation solution 

introduction into the targeted soil stratum is slightly more compared to other 

cementing agents, soil bio-cementation by MICP process is deemed to be 

cost-saving in the long run because the bacterial enzyme can be reused in 

subsequent treatment applications using the same cementation solution 

provided that no major bacterial cells flushed out during the treatment. 

 

Table 2.2: Cost Comparison of Various Cementing Agents 

Cementing agent Yield strength 

(MPa) 

Cost per m3 

treatment ($)* 

References 

MICP 0.5 – 2.5 20 – 60 Cheng (2012) 

Portland cement 0.5 – 3.8 NC Ismail et al. (2002b) 

Gypsum 0.2 – 1.8 NC Ismail et al. (2002b) 

Chemical grout NM 2 – 72 Ivanov & Chu (2008) 

          NM = not measured 

          NC = not calculated 

          $ = Australian dollar 

 

 

Based on Table 2.2, the cost to treat 1 m3 of soil differs according to the 

cementing agents used. While MICP seemed to be incurring the highest cost 

at the moment, it poses no detrimental effects to the environment as opposed 

to the use of other cementing agents such as Portland cement, gypsum and 

chemical grout, which according to Ivanov & Chu (2008) could be toxic to 

the environment. 
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Alternatives have been suggested in the literature to reduce the cost of 

MICP implementation for field application. For example, Cheng (2012) 

successfully showed that the cost of the sterile bacteria production could be 

further minimised with the production of non-sterile chemostat culture 

containing high urease active bacteria cultivated at high pH = 10 and high 

urea concentration of 0.17 M. The preparation of the non-sterile chemostat 

culture allows the enrichment of bacterial cells to be reproduced 

continuously on site. Also, Cheng et al. (2014) demonstrated that the 

calcium ions (Ca2+) available in the seawater could potentially act as 

substitution for the commercial calcium chloride (CaCl2) source for the 

production of the cementation solution. The use of seawater would reduce 

the cost of MICP implementation since the source of Ca2+ occurs naturally, 

plus the concept would work well if the targeted soil treatment is located 

near to the seashore where the soil is prone to erosion. 

 

2.11.2 Promoting the Concept of Sustainability 

 

MICP process used in soil bio-cementation promotes the concept of 

sustainability in the sense that it uses natural material ubiquitously available 

in nature such as microorganism (bacteria) as the primary source of the 

cementing agent. The supplied bacteria can be reused to re-initiate MICP 

process up to three times injection of the cementation solution provided that 

bacteria flushed out can be kept to the minimum. Harkes et al. (2010) 

suggested the use of fixation solution to ensure the permanence of bacteria 

attachment to the sand particles to prevent bacteria detachment, as a result 

of the initial cementation solution injection. MICP process has been 

successfully applied in the construction industry mostly as cementing agent 

to heal concrete cracks (Van Tittelboom et al., 2010; Achal et al., 2011; 

Achal et al., 2013) and retrofitting historical structures (Reddy et al., 2012; 

Yang & Cheng, 2013). The myriad use of MICP signals its novelty as the 

plausible material for future purposes. 
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Although it has been pointed out that the end product of urea hydrolysis i.e. 

ammonia, can be detrimental to the environment, especially if it is able to 

permeate into the groundwater chains and reportedly cause the ‘blue baby’ 

syndrome (Qiu et al., 2017). It is also learnt from nature that ammonia helps 

to enrich plants’ nutrients intake. The release ammonia could be properly 

collected, managed and fed back into the surroundings as possible source of 

fertilizer to nourish plants’ growth. This eventually could open new horizon 

into looking at the aspect of vegetation growth on top of soil treated with 

MICP. For example, vegetation growth could improve slope stability with its 

roots anchorage system that grips the soil surface (Hooke & Sandercock, 

2017; Shen et al., 2017). 

  

2.11.3 Bacteria Reliability 

 

One of the most fundamental advantages of MICP for soil bio-cementation is 

the fact that the bacteria used for the catalyst of the ureolytic process could be 

sourced from and is abundance in nature. The availability of the bacteria in 

the MICP process indicates that the CaCO3 crystals precipitation is an active 

process. Unlike other cementing agents, which are generally considered inert, 

the process of bio-cementation continues to occur as long as the bacteria cells 

remain active in the soil matrix system (bacteria activity is measured in terms 

of their urease enzyme production) (Cheng et al., 2013). The ability of the 

bacteria to remain active in the soil matrix even after several cementation 

solution injections could further be harnessed into the concept of soil healing. 

Soil healing is made possible through MICP by means of bacteria re-

activation upon loading. The degraded CaCO3 bonds developed in the bio-

cemented soil as a result of the subsequent loading could be healed by re-

introducing the cementation solution into the cracked bio-cemented sample 

(Harbottle et al., 2014). The supplied cementation solution would infiltrate 

the cracked bio-cemented sample through the degraded CaCO3 bonds by 

preferential flow. The dormant bacteria available in the bio-cemented sample 

are re-activated through the supply of growth medium or buffer solution that 

would re-initiate the MICP process. 

 



46 

Chapter 2: Soil Bio-Cementation by MICP: A Review 

 
 

 

 

The healing ability of MICP in soil improvement can be utilised to 

minimise primary and secondary settlements of structures and soils during 

earthquake as well as the subsequent additional settlement due to 

aftershocks (Montoya and DeJong 2013). This specific healing property of 

MICP derived soil improvement technique denotes the reliability of bacteria 

as the precursor to the whole MICP process reaction. 

 

2.12 Limitations of MICP for Soil Bio-Cementation 

 

2.12.1 Bio-Cemented Soil Treatment Uniformity 

 

CaCO3 crystals precipitation uniformity along the soil depth remains the 

most integral part in the successful implementation of MICP in the field. 

CaCO3 crystals precipitation uniformity could not be achieved if the 

bacteria cells were not uniformly distributed along the intended treated soil 

column (Whiffin et al., 2007; Okwadha & Li, 2010; Akiyama & Kawasaki, 

2012; Cheng et al., 2013; Montoya & DeJong, 2015). It was identified 

through the literature that there are two ways to achieve the bacteria cells 

homogeneity, i.e. (1) adoption of two-phase injection strategy; and (2) 

introduction of fixation solution (FS). For instance, Whiffin et al. (2007) 

introduced the two-phase injection method at which, the bacteria and the 

cementation solutions were injected alternately into the treated soil samples. 

It was found that the two-phase injection method produced more 

homogeneous CaCO3 crystals formation compared to the simultaneous 

injection for both reagents. Simultaneous injection of BC and CS leads to 

immediate bacteria flocculation that results in the precipitation of primary 

CaCO3 crystals that tend to precipitate near the region of the injection point 

hence, causing local clogging. Subsequent introduction of BC and CS into 

the treated sample would further increase the size of the initially 

precipitated CaCO3 crystals. The gradual increase in the CaCO3 crystals 

size would then retard the passage of the subsequent BC and CS injections 

into the treated column. 
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As previously mentioned, the key issue in achieving a homogenously 

distributed CaCO3 crystals precipitation along the treated soil column relies 

upon the ability to spread out the bacteria cells evenly across the entire 

column depth. One of the main challenges to achieve CaCO3 crystals 

precipitation uniformity is the gullibility of the bacteria to be flushed away 

during MICP treatment. Harkes et al. (2010) introduced the application of 

fixation solution (consisting of high salinity solution i.e. 50 mM CaCl2 

solution) after the initial bacteria culture injection. It was observed that the 

high salinity solution promoted the increased in the ionic strength of Ca2+ 

ions available in the CS thus; enhancing bacteria cells attachment to the sand 

grains Torkzaban et al. (2008). Bacteria cells attachment to the sand grains 

increases the chances of the bacterial absorption onto the sand grains surface, 

hence, eliminating the possibility of bacteria cells washed out as a result of 

the subsequent reagents injection as the treatment process continues (Tobler 

et al., 2012). Employing this injection scheme, followed by the injection of 

the FS, Zhao et al. (2014a) reported that almost 85% of precipitated CaCO3 

crystals were uniformly distributed along the bio-cemented sample upon the 

calcite content measurement. 

 

2.12.2 Ammonia Production 

 

In the presence of urease active bacteria, urea (CO(NH2)2) is hydrolysed into 

ammonia (NH3) and carbamic acid (NH2COOH), as shown in Equation 2.4. 

Due to its instability, carbamic acid (NH2COOH) spontaneously hydrolyses 

into ammonia (NH3) and carbonic acid (H2CO3), as shown in Equation 2.5. In 

the presence of water, ammonia (NH3) and carbonic acid (H2CO3) can 

reversibly turn into ammonium (NH4
+) and hydroxide (OH-) ions (Equations 

2.6 and 2.7). Bicarbonate (HCO3
-) ions equilibrium can easily be altered 

forming carbonate (CO3
2-) ions by the production of hydroxide (OH-) ions, as 

a result of the pH increase (Equation 2.8). In the presence of calcium source, 

i.e. from the cementation solution, calcium (Ca2+) ion would react with 

carbonate (CO3
2-) ion to form calcium carbonate (CaCO3) crystals (Equation 

2.9) (Hammes et al., 2003b). 
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( )2 2 2 32
CO NH H O NH COOH NH+ → +                                    Equation 2.4              

2 2 3 2 3NH COOH H O NH H CO+ → +                                           Equation 2.5             

3 2 42 2 2 2NH H O NH OH+ −+  +                                                 Equation 2.6             

2 3 3H CO HCO H− + +                                                                Equation 2.7              

2

3 4 3 4 22 2 2 2HCO H NH OH CO NH H O− + + − − ++ + +  + +            Equation 2.8 

2 2

3 3Ca CO CaCO+ −+ →                                                                Equation 2.9 

 

As can be seen from Equations 2.4 – 2.6, for 1 mole of urea hydrolysis, 2 

moles of ammonia are produced. To date, no study has been found in the 

literature, which specifically addresses the issue of ammonia production as 

the by-product of MICP process. Ammonia can be detrimental to human 

health and safety and has obnoxious odour. The severity of the health 

impact of ammonia to the human body has been outlined in the National 

Health and Medical Research Council (2011) for drinking water source, 

which limits the amount of less than 0.5 mg/L ammonia is to be consumed 

at a time. It has been reported that, incessant consumption of ammonia in 

the drinking water beyond this limit could lead to ‘blue baby syndrome’ in 

infants that could consequently lead to infant fatality if no proper 

immunisation scheme is to be initiated at the early stage. Hence, moving 

forward, it is fundamental to devise strategies to deal with ammonia 

production through MICP treatment. Lately, Yasuhara et al. (2012) and 

Zhao et al. (2014a) proposed the use of urease enzyme extracted from plant, 

i.e. jack bean as substitute towards urease active bacteria to catalyst the 

process of urea hydrolysis. It was reported that although the strength 

improvement of the urease enzyme mediated treatment was almost 5 times 

lower than that of the traditional MICP treatment using urease active 

bacteria, the amount of ammonia produced could be significantly reduced 

by employing urease enzyme as ureolysis catalyst.  
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2.12.3 Geometric Soil-Bacteria Compatibility 

 

One of the key issues that limit the use of MICP as general solution towards 

soil improvement is the geometric compatibility between the soil and the 

bacteria. Geometric compatibility refers to the condition whereby bacteria 

can freely move from one pore space to another through the soil pore throats 

in the bio-cemented soil matrix. Mitchell & Santamarina (2005) argued that 

there are two major factors that govern the geometric compatibility, i.e. (1) 

soil pore throat size; and (2) agglomeration of the CaCO3 crystals. 

 

Soil pore throat size affects the movement of bacteria in the soil matrix. 

DeJong et al. (2010) suggested that the soil pore throat size could 

approximate to be 20% of the soil particle size that corresponds to 10% 

passing in the sieve analysis. In other words, should the size of the soil pore 

throat be less than the size of the bacteria used in the treatment, MICP 

process could not function properly as local pore clogging would occur near 

to the inlet of the MICP reagents injection (Al Qabany et al., 2012). Pore 

clogging occurs as a result of the accumulation of bacteria cells that 

eventually turn into CaCO3 precipitates aligning themselves near to the 

vicinity of soil pore throat, which is rich in nutrient and presumably features 

the least stressed area (DeJong et al., 2011). As the soil pore throat is 

impeded by the accumulation of the CaCO3 precipitates, further supply of 

MICP reagents would contribute into either the CaCO3 crystals growth or the 

agglomeration of CaCO3 crystals instead of the transport of the bacteria into 

the column depth thus, rendering CaCO3 crystals precipitation distribution 

non-uniformity. 

 

Agglomeration of CaCO3 crystals from primary individual circular-shaped 

crystals into the secondary clustered rhombohedral-shaped mesocrystals 

would create a natural filter for the subsequent MICP reagents injection. 

Since the filtering process is dependent on the relative size between the pore 

space and the CaCO3 crystals size as they aggregated, the effect would be 

more pronounced in a comparatively smaller soil pore throat size. 
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DeJong et al. (2010) mentioned that the size of the microorganisms 

typically used in soil bio-cementation ranges from 0.5 – 3 μm. It is noted 

that the microorganisms’ selection takes into consideration the soil pore 

throat size in the soil matrix. This is to accommodate for the relatively small 

allowance of passageway the microorganisms took as they move from one 

pore space to another via the soil pore throat (Mitchell & Santamarina, 

2005). On the other hand, soil is classified into two major categories, i.e. 

coarse and fine-grained soils. Although most of the soil bio-cementation 

treatment was applied to sandy soil due to its most convenient geometric 

compatibility, more attempts were directed into improving finer-grained 

soils (e.g. silt and clay) or even coarser soil (e.g. gravel) in the laboratory 

scale experiments. Table 2.3 lists the most currently use soils for MICP 

available in the literature. 

 

Table 2.3: Current Soil Types Treated Using MICP Process 

Soil type Soil size References 

Gravel 2 – 6 mm Amini & Hamidi (2014); Jiang et al. 

(2016); Jiang & Soga (2017) 

 

Sand 0.06 – 2 mm Mitchell & Santamarina (2005); Whiffin 

et al. (2007); Harkes et al. (2010); 

Burbank et al. (2011); Al Qabany et al. 

(2012); Burbank et al. (2012); Cheng & 

Cord-Ruwisch (2012); Yasuhara et al. 

(2012); Cheng et al. (2013); Yang & 

Cheng (2013); Zhao et al. (2014a); (Park 

et al., 2014b); Montoya & DeJong (2015); 

Cheng et al. (2017); Choi et al. (2016); 

Pham et al. (2016); Terzis et al. (2016); 

Cheng & Shahin (2017); (Feng & 

Montoya, 2017); (Terzis & Laloui, 2018) 

 

Silt 0.002 – 0.06 mm Lee et al. (2013); Ng et al. (2014); 

Keykha et al. (2014); Grabiec et al. (2017) 

 

Clay < 0.002 mm Ivanov et al. (2015b) 
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2.13 Current Research Focus 

 

Unlike other cementing agents, CaCO3 crystals precipitated through MICP 

process could be tailored into their specific usage according to their 

precipitation patterns, i.e. (1) small crystals to clog the soil pores (Ivanov & 

Chu, 2008; Al Qabany et al., 2012; Chu et al., 2013); and (2) large crystals 

such as effective CaCO3 crystals formation at soil pore throats that bind soil 

particles together, hence, improving the bio-cemented soil’s strength (Cheng 

et al., 2013; Terzis et al., 2016). Cheng et al. (2013) has pointed out that the 

various precipitation patterns are closely related by the interplay between the 

concentration of the bacteria culture and the cementation solution injected 

into the treated sample.  

 

No study has ever embarked on the microstructural characteristics of the 

different precipitation patterns and their relationship towards the macro 

strength improvement properties of the bio-cemented samples. So far, the 

production of CaCO3 crystals whether in the laboratory scale or in the field 

relies heavily on the so-called MICP process optimisation, e.g. treatment 

injection scheme, treatment cycle, use of urease active bacteria or urease 

enzyme extracted from plant, source of cementation solution (i.e. magnesium 

or calcium) and various environmental factors (Harkes et al., 2010; 

Mortensen et al., 2011; Al Qabany et al., 2012; Tobler et al., 2012; Martinez 

et al., 2013; Zhao et al., 2014a; Cheng et al., 2017). Although the optimised 

version of MICP utilising these recommendations exhibited improved 

strength properties; however, the production of specific CaCO3 crystal pattern 

still yet to be cost-effectively produced due to the failure to understand the 

mechanism of achieving different patterns of CaCO3 crystals precipitation in 

the laboratory and field scale levels. 
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The current study aims to artificially produce effective CaCO3 crystals that 

can improve both the strength improvement and the permeability retention 

of the bio-cemented sand. This was achieved by mixing various 

concentrations of BC and CS. The main goal of the present study was to 

identify which combination of the different BC and CS that would produce 

the most effective CaCO3 crystals. The different CaCO3 crystals 

precipitation is crucial because they could serve different purpose for field 

application. For instance, small CaCO3 crystals that cover the surface of the 

sand grains would be ideal for embankments and dams’ consolidation to 

prevent dissipation of liquid. Meanwhile, the precipitation of effective 

CaCO3 crystals would serve the traditional superstructure foundation’s 

reinforcement, ground improvement and pavement base stabilisation. 

 

The microstructural properties of various CaCO3 crystals precipitation were 

then observed under the SEM to explore their evolution phases and the 

specific microstructural features. While the evolution study will show the 

transformation of the primary and secondary CaCO3 crystals and the 

associated binding mechanism of the soil particles, the microstructural 

analysis will pinpoint to the unique characteristics of the proposed effective 

CaCO3 crystals in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

Chapter 2: Soil Bio-Cementation by MICP: A Review 

 
 

 

 

2.14 Summary 

 

A thorough review of the process and the influencing factors affecting the 

effectiveness of MICP process for soil bio-cementation was addressed in this 

chapter. Different approaches adopted to treat soil samples using MICP 

together with the geotechnical engineering properties of the bio-cemented 

soils and their microstructural characteristics were discussed at length. 

Different factors affecting the effectiveness of the MICP process which 

include the process and treatment optimisation were presented. Field 

application of soil bio-cementation were duly acknowledged and earlier 

experimental works available in the literature were described and criticised 

with some details highlighting their limitations, in order to justify the present 

research. The envisioned applications of MICP for soil improvement, their 

advantages and limitations were also discussed. 

 

The review into the literature reveals that very few studies have examined the 

relationship between the different precipitation patterns with the engineering 

properties of the bio-cemented samples, as explained in Section 2.12. The 

ability to produce different precipitation patterns within a controlled 

environment (in this case, the effective CaCO3 crystals), and then specifically 

tailor their purpose for field application is desirable. Therefore, there is a 

need to explore the necessary procedures and treatment regime to achieve the 

effective CaCO3 crystals. In the following chapter, the materials and 

methodologies used to prepare the bio-cemented samples together with the 

associated testing program to assess the engineering properties improvement 

are discussed in detail. 
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Chapter 3 
 

Bio-cemented Samples Preparation and 

Testing Program 

_______________________________________ 
 

3.1 Introduction 

 

This chapter describes the materials (bacteria, growth medium, 

cementation solution and OPC) and test procedures (batch analyses, 

UCS, permeability, triaxial, SEM) utilised in the present study. Unlike 

previous studies, which focused on the mechanical behaviour of the bio-

cemented soils in the macroscale level (Al-Thawadi, 2013; DeJong et al., 

2014; Duraisamy & Airey, 2015; Gomez et al., 2016; Smith et al., 2017) 

and the MICP process optimisation (Al Qabany et al., 2012; Duan & 

Zhu, 2012; Chu et al., 2013; Martinez et al., 2013), the current study 

considers the effect of the CaCO3 crystal precipitation patterns and their 

relationship on the strength improvement of the bio-cemented soils at a 

microscopic level. 

 

The microstructural study will focus on two main issues: (1) the 

evolution of the CaCO3 crystal during the MICP process, which includes 

the propensity of the bacteria cells to align themselves near the soil pore 

throats, the availability of the nucleation sites, the birth of new crystal 

and the growth of the available crystal; and (2) the specific 

microstructural features of the effective CaCO3 crystals that would 

pinpoint to their unique characteristics compared to the previously 

discovered precipitation patterns. 
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3.2 Methodology Framework 

 

Three phases of experimentation setup were executed to achieve the objectives of the 

present study. The different staged experiment outlined in the research work is 

crucial in the interest of producing, examining and understanding the effect of the 

effective CaCO3 crystals towards the bio-cemented soils engineering properties. 

Concisely, the three phases experimentation setup proposed herein can be described 

as follow: 

 

1. Optimisation in terms of batch analyses to assess the bio-cementation kinetics to 

obtain the most optimum parameters for an effective MICP process; 

  
2. The optimised CaCO3 crystals and their relationship with the strength 

improvement of the bio-cemented sand in the microscopic level; and 

 
3. UCS and triaxial tests to quantity the strength and stiffness of the bio-cemented 

sand columns reinforced with the optimised CaCO3 crystals. 

 

Details of the above steps are presented in the methodology framework, as shown 

Figure 3.1. The test program was carefully designed to justify the research objectives 

relevant to the current research scope. The goal of conducting batch analyses was to 

determine the most optimum parameters for an effective MICP process. Factors such 

as initial soil pH and temperature were assayed. In the next phase, the optimised 

CaCO3 crystals and its relationship on the strength improvement of the bio-cemented 

sand were assessed. The examination was made particularly in the microscopic level 

to study the inter-particle bonding mechanism as well as the corresponding failure 

criteria. Different BC and CS concentrations were used to produce different 

precipitation patterns at which, the most effective CaCO3 crystals precipitation and 

their impact on the strength and stiffness improvement of the bio-cemented sand 

samples were examined. Finally, the correlation between the amount of the 

precipitated CaCO3 content with the strength and stiffness enhancement were 

determined through the UCS and triaxial tests. 
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Figure 3.1: Methodology framework 

 

 
 

 

 

 

 

 

 

Phase 1 

Optimisation 

Consideration of microbiological measurements 

such as biomass concentration, ammonium ion 

concentration and urease activity. 

 

Consideration of environmental parameters such as 

initial soil pH, temperature, freeze-thaw (FT) cycle 

and rainwater flushing. 

 

Determination of key factors on strength and 

stiffness improvements. 

Phase 2 

CaCO3 

precipitation 

Various CaCO3 crystals precipitation through 

different BC and CS combinations. 

 

Comparison of strength and stiffness improvement 

with the increase in CaCO3 content. 

Microstructural behaviour analysis with bonding 

and failure mechanisms explanations. 

Phase 3 

Testing 

Run standard UCS and triaxial tests to measure 

strength and stiffness improvement. 

Bio-cemented samples were compared to OPC 

treated sands. 

Engineering properties were compared with 

previous studies. 
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3.3 Materials 

 

3.3.1 Bacteria 

 

The urease-producing bacteria used in the current study are called Sporosarcina 

pasteurii. S. pasteurii, which are Gram-positive, rod-shaped bacteria commonly 

found in soil and have unique characteristics. The main reason for choosing S. 

pasteurii in this study is their highly active urease production characteristics. As 

discussed in Chapter 2, highly active urease-producing bacteria contributed directly 

towards the high amount of the CaCO3 precipitates in the MICP process (Tobler et 

al., 2014; Wei et al., 2015; Bhaduri et al., 2016; Harris et al., 2016). Another crucial 

reason is their tolerance to high temperature and chemicals due to the availability of 

their resistant endospores, which then maintain their permanence in the soil for a 

long period of time. Most importantly, S. pasteurii pose no harm to humans, as they 

are categorised as a non-pathogenic type of bacteria. Figure 3.2 shows the proximate 

view of S. pasteurii. 

 

 

Figure 3.2: A proximate view of Sporosarcina pasteurii  

(www.alchetron.com)

 
 

 

http://www.alchetron.com/
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3.3.2 Urea 

 

Urea is a colourless crystalline compound that has the chemical formula CO(NH2)2. In 

the presence of water, CO(NH2)2 can be reduced to form carbonate and ammonium 

ions. The released carbonate ion in return becomes a crucial factor in the formation of 

the CaCO3 crystals. The index properties of CO(NH2)2 are given in Table 3.1.  

 

Table 3.1: Index properties of CO(NH2)2 

Property Value 

Molar mass 60.06 g/mol 

Density 1.32 g/cm3 

Solubility in water 1079 g/L at 20°C 

Gibbs free energy -47.12 kcal/mol 

Flash point Non-flammable 

Hazards identification Hazardous 

 

 

3.3.3 Calcium Chloride 

 

Calcium chloride (CaCl2) is an inorganic compound that has the chemical formula 

CaCl2. It is colourless and highly soluble in water. In the presence of water, the 

CaCl2 compound can be reduced to form calcium ions and chlorine gas. The released 

calcium ions are important in the formation of the CaCO3 crystals. The index 

properties of CaCl2 are listed in Table 3.2.  

 

Table 3.2: Index properties of CaCl2 

Property Value 

Molar mass 147.02 g/mol (dehydrate) 

Density 1.85 g/cm3 (dehydrate) 

Solubility in water 134.5 g/L (dehydrate) 

Gibbs free energy −748.81 kcal/mol 

Flash point Flammable 

Hazards identification Hazardous 
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3.3.4 Ordinary Portland cement  

 

Ordinary Portland cement (OPC) has a grey; fine powder form produced by 

heating limestone and clay minerals in a kiln by grinding to form clinker. In the 

current study, OPC was used to prepare cemented samples for comparison of 

UCS and permeability values with those obtained from bio-cementation. Table 

3.3 outlines the mixture design of the OPC treated samples. The sand used for 

this experiment was silica sand of uniform size 0.425 mm, classified as poorly 

graded sand (SP) by the Unified Soil Classification System (USCS). 

 

Table 3.3: Mixture design for the OPC treated sands 

Sample 

ID 

Cement 

Content 

(g) 

Sand 

Content 

(g) 

Water 

Content 

 (mL) 

Dry Density 

(g/cm3) 

1 7   

 

 

 

350 

 

 

 

 

45 

 

 

 

 

1.8 – 1.83 

 

2 14 

3 21 

4 28 

5 35 

6 38.5 

7 42 

8 49 
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3.3.5 Soil 

 

Natural silica sand obtained from Cook Industrial Minerals Pty Ltd, Western 

Australia was used in the present study. Unless specified elsewhere in the thesis, 

natural silica sand was used as the key soil in this study. The basic soil physical 

properties are given in Table 3.4. According to the Unified Soil Classification 

System (USCS), the sand used is classified as poorly graded sand (SP). This type of 

sand was used in the current study because it exhibits undesirable engineering 

behaviour for most geotechnical engineering applications.  

 

Table 3.4: Properties of the sand used in the current study 

OMC is the optimum moisture content with respect to the standard Proctor test (SPT) 

γd-max is the sand maximum dry density  

n is the sand porosity 

k is the sand permeability 

 

 

 

 

 

 

 

Property Value 

D10 (mm) 0.17 

D30 (mm) 0.21 

D60 (mm) 0.28 

Cu 1.65 

Cc 0.84 

Gs 2.71 

emin 0.48 

emax 0.71 

OMC (%) 12 

γd-max (kN/m3) 16.3 

n (%) 40 

k (x 10-5 m/s) 80 ± 0.5 

USCS classification SP 
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3.4 Bacteria Culture Preparation 

 

3.4.1 Growth Medium 

 

S. pasteurii isolated from a previous work by Al-Thawadi & Cord-Ruwisch 

(2012) at Murdoch University, Australia, was used as the mother culture for the 

bacteria supply needed for the current study. Hence, other microbiological 

activities such as the pure strain bacteria cultivation were not conducted. The 

ingredients of the typical growth medium are listed in Table 3.5. 

 

Table 3.5: Ingredients of the typical growth medium 

Ingredient Quantity 

Yeast extract 20 g 

Ammonium sulfate 18 g 

Nickel chloride hexahydrate 500 μL 

Sodium hydroxide To adjust pH until 9.25 

Distilled water 1 L 

 

The procedures to produce the growth medium are demonstrated in Figure 3.3. 

Firstly, 20 g of yeast extract and 18 g of ammonium sulfate were measured and 

mixed inside a 2000 mL glass beaker, as shown in Figure 3.3(a). Then, 1 L of 

distilled water was added, and the mixture was mixed well until all the chemicals 

powder were completely dissolved [Figure 3.3(b)]. Next, a 500 μL of nickel (II) 

chloride hexahydrate solution was added using a pipette into the well-mixed 

solution [Figure 3.3(c)]. It should be noted that the initial pH of the solution 

should be slightly acidic (6.5 < pH < 7.0) at this point. Sodium hydroxide 10 M 

solution was introduced into the mixture using a 5 mL pipette, to adjust the final 

pH to 9.25 [Figure 3.3(d)]. Once the final pH reached a value of 9.25, the mixture 

was then equally divided into 2 sets of conical flasks containing, 200 mL mixture 

poured into the first set of 500 mL conical flasks and 300 mL mixture poured into 

the final set of 1 L conical flasks [Figure 3.3(e)]. Finally, all conical flasks were 

purified in the steriliser at 121°C for 40 minutes [Figure 3.3(f)]. The sterilisation 

step is important to ensure that the growth medium is free from contamination. 
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Figure 3.3: Growth medium preparation procedures: (a) yeast extract 

and ammonium sulfate measurement; (b) addition of 1 L distilled water 

and mixing; (c) addition of 500 µL of nickel (II) chloride hexahydrate; 

(d) addition of 10 M sodium hydroxide until the final pH is 9.25; (e) 

dividing the growth medium equally into several conical flasks; and (f) 

sterilising the medium at 121°C for 40 minutes

(c) 

(e) (f) 

(a) (b) 

(d) 
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3.4.2 Bacteria Inoculation 

 

It is critical to ensure that a clear growth medium is formed, as shown in Figure 

3.4(b) by repeating the procedures stated in Section 3.4.1 prior to bacteria 

inoculation. This was assessed by monitoring any change in the colour of the 

solution after 24 hours; any change in the growth medium was recorded and a 

decision was made according to the quality of the solution. For example, if the 

growth medium showed slight turbidity, as shown in Figure 3.4(a), it was deemed 

contaminated and hence discarded. After the growth medium has cooled down 

and the bacteria sub-culture temperature reached ambient temperature, the 

inoculation process was started, as shown in Figure 3.5. Initially, the laminar flow 

cabinet was turned on and disinfected with 70% ethanol [Figure 3.5(a)]. Then, the 

tip of the conical flask containing the bacteria sub-culture was heated up using 

the Bunsen burner to ensure that the sub-culture remains sterile [Figure 3.5(b)]. 

Next, a few drops of the bacteria sub-culture were transferred into the growth 

medium flask, whose lid was closed immediately after the transfer [Figure 

3.5(c)]. Finally, the inoculated growth medium was transferred into the water 

bath shaker to continue the growing phase. During this step, the water bath was 

set to 30°C (optimum temperature for bacteria growth) and allowed to shake 

(aerobic condition) for at least 72 hours until the specific urease activity of the 

desired BC was achieved [Figure 3.5(d)]. 

 

    

Figure 3.4: Growth medium indication: (a) contaminated sample 

characterised by a change in turbidity; and (b) a clear growth medium, a 

characteristic of successful preparation  

(a) (b) 
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Figure 3.5: Bacteria inoculation procedures: (a) disinfecting laminar flow 

cabinet working area with 70% ethanol to avoid other impurities; (b) heating 

up the bacteria sub-culture flask tip to ensure that the sub-culture remained 

sterile; (c) addition of a few drops of bacteria sub-culture into the growth 

medium; and (d) growing the inoculated bacteria inside a water bath shaker 

at a constant temperature of 30°C for at least 72 hours 

 

 

 

 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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3.5 Cementation Solution 

 

3.5.1 Recipes 

 

The cementation solution used in the current study consisted of equimolar of 

CO(NH2)2 and CaCl2 anhydrous. A total of three final CS concentrations were 

considered, namely  0.25 M, 0.5 M and 1 M. Higher CS concentration above 1.5 M 

was found to result in a reduced CaCO3 content, according to Whiffin (2004). 

Concentrations below 0.25 M were not tried since more CS treatment cycles would 

have been required to produce adequate amounts of CaCO3 crystals. Table 3.6 

details the amount of each chemical used to achieve the different concentrations 

above. Once the desired CS concentration was achieved, the CS was then 

transferred into glass bottles and labelled prior to use. 

 

Table 3.6: Cementation solution recipes 

CO(NH2)2 (g/L) CaCl2 (g/L) Molarity (M) 

15.1 36.75 0.25 

30.1 73.5 0.5 

60.2 147.02 1 

 

3.5.2 Cementation Solution Preparation 

 

The exact amount of each of the two chemicals CO(NH2)2 and CaCl2 needed to 

obtain the desired CS molarity listed in Table 3.6 was strictly used to ensure an 

equimolar distribution of each chemical in the CS combination. For instance, in 

order to prepare 1 M CS, 60.2 g of CO(NH2)2 was initially mixed with 500 mL of 

distilled water, resulting in a 2 M CO(NH2)2 solution. At the same time, 147.02 g of 

CaCl2 was mixed with 500 mL distilled water, resulting in 2 M of CaCl2 solution. 

After about 5 minutes, once all the CO(NH2)2 and CaCl2 powder were completely 

dissolved in the mixture, both solutions were added simultaneously into a 1 L 

measuring cylinder and shaken vigorously to ensure that the CS was 

homogeneously mixed to produce a final molarity of 1 M CS. This procedure was 

repeated to produce others CS molarities. 
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3.6 Microbiological Consideration 

 

Microbiological consideration assessing the suitability of the microorganism to be 

used as the source of the ureolytic bacteria is needed. Three calibration charts were 

established in order to calibrate the biomass of the grown bacteria, the concentration 

of the ammonium ions and the urease activity of the ureolytic bacteria used during 

the study.  

 

3.6.1 Biomass Concentration Measurement 

 

Routine biomass growth monitoring was carried out by applying the optical density 

(OD) measurement method using a spectrophotometer. OD is the measurement of a 

refractive medium to slow or delay the transmission of light. In MICP application, it 

is measured by passing the ultraviolet light through the cuvette containing bacteria 

suspension, forcing the light to scatter. The speed of light affecting the wavelength of 

a given light wave was then analysed and translated to the biomass concentration. 

Typically, a greater scattering degree indicates more bacteria present in the liquid. 

The spectrophotometer then analyses the amount of light scatter and translates it into 

a numeric value that could be read through the monitor display of the 

spectrophotometer. Generally, in order to determine the biomass concentration, the 

OD is set to a wavelength of 600 nm (OD600) with deionised (DI) water used as blank 

sample. All cuvette samples are diluted to a range between 0.2 – 1.0 of the 

absorbance prior to measurement (Cheng, 2012). Figure 3.6 shows the standard 

curve used to determine the biomass concentration (recorded as the biomass dry 

density) at any given OD600 below 3. The correlation between the dry density of the 

biomass and OD600 is expressed by Equation 3.1 with a correlation strength, R2 = 

0.9974. 

 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑔

𝐿
) = 0.4155𝑂𝐷600 + 0.0112                           Equation 3.1 
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Figure 3.6: Standard curve of biomass dry density versus OD600 

 

3.6.2 Ammonium Ion Concentration Measurement 

 

In the MICP process, determination of the ammonium ion (NH4
+) concentration is 

crucial, as it relates to the amount of ammonia (NH3) released as a by-product; such 

substance is detrimental to the environment if no proper measures are taken to 

mitigate its impact. The impact of NH3 releases into the environment was discussed 

at length in Section 2.11.2. The procedures outlined by Whiffin (2004) and Cheng 

(2012) in accordance with the modified Nessler’s Method was utilised to determine 

the NH4
+ concentration using the spectrophotometer. All cuvette samples were 

diluted to a range of 0 – 0.5 mM of the absorbance prior to measurement (Whiffin, 

2004). Then, 2 mL of the diluted sample was mixed with 100 µL of Nessler’s reagent 

and left to react for exactly 1 minute in the cuvette. The cuvette was then placed 

inside the spectrophotometer and a reading was taken at a wavelength of 425 nm. 

The spectrophotometer reading was compared to the standard curve obtained using 

the calibration chart of analytical grade ammonium chloride (NH4Cl) (Figure 3.7). 
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Figure 3.7: Standard curve of the absorbance versus NH4
+ concentration 

 

Based on Figure 3.7, the correlation between absorbance at 425 nm and NH4
+ 

concentration maybe expressed by Equation 3.2 with a correlation strength, R2 = 

0.9861. 

 

 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒425𝑛𝑚 = 2.4158𝑁𝐻4
+𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 0.121                   Equation 3.2 

 

 

3.6.3 Urease Activity Measurement 

 

The urease activity of the bacteria was determined based on the urea hydrolysis rate 

using the conductivity meter technique. The conductivity meter measures the 

electrical conductivity to determine the amount of nutrients in a liquid. In this study, 

the conductivity meter technique was used to calculate the concentration of NH3 and 

NH4
+ over time during the batch analyses. The urease activity was determined from 

the rate of change of conductivity that takes place during the conversion of NH3 to 

ionic products, i.e. NH4
+ and CO3

2- under the standard conditions of 1 atm pressure 

and 298 K temperature (Whiffin, 2004).  
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According to Rebata-Landa (2007), a typical bacteria growth curve consists of 4 

distinct phases (Figure 3.8). (1) The ‘lag’ phase is where bacterial cells begin to 

adapt to their new environment after inoculation, characterised by a limitation of 

the amount of the cells division. (2) The ‘exponential’ phase is where the cells 

consume the provided substrates optimally characterised by fast duplication of 

the bacteria cells. (3) The ‘stationary’ phase is where the cells reach their 

maximum population density. (4) The ‘death’ phase is where the bacteria die due 

to the combination of several factors namely the nutrients depletion, oxygen 

exhaustion, unfavourable pH condition and waste accumulation. Therefore, it is 

imperative to measure the urease activity of the bacteria either at the end 

‘exponential’ or stationary phases to determine the accurate activity of the 

bacterial cells.   

 

 

Figure 3.8: A typical growth curve of bacteria population in a batch culture  

(after Rebata-Landa, 2007)  

 

In order to measure the urease activity of the bacteria used in the present study, 1 

mL of bacterial suspension was collected from the culture and 5 mL of 3 M 

CO(NH2)2 solution together with 4 mL of DI water were added to the mixture. 

The conductivity change was recorded for a period of 5 minutes at 25°C until the 

incremental rate of the conductivity achieved a constant rate. Figure 3.9 shows 

the conductivity of the different BC concentrations used in the current study. 
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Figure 3.9: Conductivity rate of various BC concentrations  

 

According to Whiffin (2004), urease activity can be calculated using Equation 3.3, 

which indicates that a rate of 1 mS/cm/min corresponds to 11.11 mM urea/min and a 

dilution factor DF = 10. Table 3.7 presents the bacteria culture recipes used in the 

current study. It is worth to note that the specific urease activities of the different 

types of BC used were similar, with ±0.01 tolerance in order to ensure consistency of 

the experiments.  

 

𝑈𝑟𝑒𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (
𝑈

𝑚𝐿
) = 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 (

𝑚𝑆
𝑐𝑚
min

) ∗ 11.11
𝑚𝑀𝑢𝑟𝑒𝑎

𝑚𝑖𝑛
∗ 𝐷𝐹 

                 Equation 3.3
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Table 3.7: Bacteria culture recipes  

 

 

ID  

Bacteria culture 

Biomass concentration, 

OD600, (cell density, g/L)* 

Urease activity 

(U/mL)† 

Specific urease activity 

(U/mL/OD600)#  

1 1.21 (0.615) 8.33 6.88 

2 2.36 (1.093) 16.25 6.89 

3 4.66 (2.048) 32.15 6.90 

*The OD600 and cell density were calculated based on Equation 3.1 
†The urease activity was calculated based on Equation 3.3 
# The specific urease activity was calculated as ‘urease activity/OD600’ 

 

3.7 MICP Treatment Process 

 

The method outlined by Martinez et al. (2013) and Cheng & Cord-Ruwisch (2014), 

i.e. the two-phase injection method, was employed for the MICP treatment in this 

study. The method was carried out by injecting a half void volume of BC, followed 

by injecting a half void volume of CS during the first cycle of treatment. The sample 

was left to cure for 24 hours to allow the bacteria cells to adhere to the soil particles. 

After 24 hours, a full void volume of CS was then injected into the sand column. The 

sample was left to cure for 24 hours to allow for formation and precipitation of the 

CaCO3 (second injection). After 24 hours, another full void volume of CS was 

supplied, and the sample was left to cure for 24 hours (third injection). These 

procedures were repeated several times for each individual sand column in order to 

produce different levels of cementation. The NH4
+ content and the bacterial activity 

were constantly monitored after each treatment using the methods discussed in 

Section 3.6. Figure 3.10 shows the MICP treatment set-up used in this study. 
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Figure 3.10: MICP treatment set-up: (a) upward flow injection during 

saturation process; and (b) downward flow injection during MICP treatment 

 

The sand column was fully saturated with water (S = 100%) using the upward flow 

method [Figure 3.10(a)]. The upward flow method facilitates removal of air voids 

from inside the soil sample, thus maintaining the fully saturated soil condition. The 

MICP treatment was then initiated using the two-phase downward flow injection 

strategy [Figure 3.10(b)]. In order to maintain the full saturation status of the sand 

column throughout the MICP treatment process, the water head in the free tube 

attached to the bottom of the sand column was kept at the same level of the top part 

of the sand column. 

 

3.8 Key Environmental Parameters 

 

Some of the key environmental parameters that may affect the performance of the 

MICP in real field application were investigated in the current study. This included 

the initial soil pH, the degree of the surface temperature, the freeze-thaw (FT) cycles 

and the rainwater flushing. 

 

 

 

 

 

(a) (b) 
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3.8.1 Initial Soil pH 

 

Harkes et al. (2010) pointed out that the pH of the surrounding environment at which 

the MICP process occurred can influence the bacteria transport and attachment in the 

soil matrix. In this study, the sand was flushed with 2 L of 1 M citric acid to achieve 

the initial soil pH = 3.5 (acidic), 2 L of 1 M sodium hydroxide adjusted to achieve 

the initial soil pH = 9.5 (basic) whereas, pH = 7 (neutral) acts as a control. The 

flushed sand samples were then prepared and tested accordingly to the procedures 

described in Sections 3.11, 3.12 and 3.13 for UCS, CaCO3 content measurement and 

SEM analysis, respectively.  

 

3.8.2 Surface Temperature 

 

Ng et al. (2012) reported that the urease activity would increase with the increase in 

temperature from 10°C to 60°C. While, Nemati & Voordouw (2003) showed that an 

increase in temperature (from 20°C to 50°C) improved both the CaCO3 crystals 

production rate and the extent of CS conversion in a batch system. However, the 

effectiveness of CaCO3 crystals formed at different degrees of temperature was not 

investigated. In the current study, three different temperature scenarios were 

examined in particular 4°C to simulate the surface temperature in cold regions, 25°C 

to simulate the surface temperature in tropical regions, and 50°C to simulate the 

surface temperature in arid regions. Table 3.8 summarises the experimental 

conditions for this study. The sand samples were prepared and tested accordingly to 

the procedures outlined in Sections 3.11, 3.12, and 3.13 for UCS, CaCO3 content 

measurement and SEM analysis, respectively. 

 

   Table 3.8: Experimental conditions for surface temperature study 

Temperature 

(°C) 

Representation Condition 

4 Cold region Left for treatment inside 4°C refrigerator 

25 Tropical region Left for treatment at room temperature 

50 Arid region Left for treatment inside 50°C oven 
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3.8.3 Freeze-Thaw (FT) Cycles 

 

Destruction of porous materials as a result of freezing and thawing becomes a great 

concern for people living in cold regions. The action of FT cycles could affect the 

durability of the soil in question due to the loss in the soil mass caused by the 

repeated actions of freezing and thawing. Therefore, current study examines the 

effect of FT cycles on three types of soils: (1) fine grained soil (0.15 mm diameter); 

(2) coarse grained soil (1.18 mm diameter); and (3) well-graded sand (0.053 – 2.36 

mm diameter). The properties of the sand used for FT cycles study is presented in 

Table 3.9. 

 

Table 3.9: Sands used for FT cycles experiment 

Property Fine Sand  

(0.15 mm) 

Coarse Sand 

(1.18 mm) 

Well-graded sand 

D10 (mm) 0.12  0.54  0.13 

D30 (mm) 0.13 0.61 0.33 

D60 (mm) 0.15 0.7 0.81 

Cu  1.25 1.29 6.23 

Cc  0.94 0.98 1.03 

Gs  2.68 2.73 2.75 

emin  0.36 0.52 0.35 

emax  0.68 0.75 0.65 

OMC (%) 17.41 15.54 11.5 

γdmax (kN/m3) 16.41 14.72 18.5 

n (%) 35.91 40.23 30 

k (10-5 m/s) 4.09±0.2 80.4±4.2 11.8±1.1 

USCS classification SP SP SW 

OMC stands for optimum moisture content with respect to the standard Proctor test (SPT) 

n stands for porosity 

k stands for permeability 

USCS stands for the unified soil classification system  
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Each bio-cemented sand column was prepared and tested according to the procedures 

detailed in Sections 3.11‒3.13 followed by exposure to 4 and 10 FT cycles prior to 

UCS testing. Each FT cycle procedure was subjected to 12 hours freeze at -14°C 

followed by 12 hours thaw at room temperature (25 ± 1°C). All bio-cemented sand 

columns were fully immersed in water throughout the FT cycles to ensure full 

saturation conditions. The effect of FT cycles on the bio-cemented sand columns was 

evaluated by comparing the UCS values before and after the FT cycles. 

 

3.8.4 Rainwater Flushing 

 

In the current study, tap water with pH ranges from 6.8 to 7.2 was used to simulate 

the effect of heavy rain with rainfall intensity of 50 mm/hour on the MICP process 

according to the National Meteorological Library (2015). Sand columns were 

prepared accordingly to the procedures described in Section 3.7 followed by tap 

water flushing for approximately 12 hours. To examine the different effects of the 

rainwater, the tap water was flushed immediately or 24 hours after the bacterial 

placement while, a sample with no tap water flushing was prepared as a control. 

After treatment, the samples were prepared and tested accordingly to the procedures 

highlighted in Sections 3.11 and 3.12 for UCS and CaCO3 content measurement, 

respectively. The extraction of the bio-cemented specimens from the PVC mould 

was made with great caution as to avoid the impact of soil disturbance on the bio-

cemented specimens. 

 

3.9 CaCO3 Crystals Precipitation Patterns 

 

It was suggested previously by DeJong et al. (2010) that the most desirable CaCO3 

crystals distribution within the pore space is the one which is significantly 

concentrated at the vicinity of the particle-particle contacts. This is due to the 

selective nature of the bacteria cells, which align themselves in small surface features 

due to their biological behaviour and the particle filtering processes. DeJong et al. 

(2010) explained that bacteria cells favour the small space due to reduced shear 

stresses and a greater availability of nutrients at the particle-particle contacts. A 

greater concentration of microbes near the particle-particle contacts results in
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increased CaCO3 crystals precipitation in the region. Another factor affecting the 

different CaCO3 crystals precipitation is the bacteria filtering processes that occurred 

in the soil matrix as a result of the relative size of the suspended CaCO3 crystals and 

the pore space (Valdes & Santamarina, 2006). As the pore fluid seeps through the 

soil matrix, the precipitated CaCO3 crystals that were suspended within the pore fluid 

tend to re-attach near the particle-particle contacts as the pore fluid flows through the 

surrounding pore throats. This effect is more pronounced as the CaCO3 crystals 

precipitation increases (the pore throat space decreases). Despite those findings, none 

of the previous studies ever examined this matter deeper due to the complexity of the 

BC kinetics inside the soil matrix. However, Cheng et al. (2013) found that 

precipitation of concentrated CaCO3 crystals in the vicinity of the particle-particle 

contacts is indeed possible in partially saturated conditions. Moreover, concentration 

of the CaCO3 crystals at the particle-particle contacts results in the formation of 

relatively large CaCO3 crystals, which were found to be more effective in terms of 

strength improvement compared with conventional CaCO3 crystals that are normally 

characterised by relatively smaller size. It is postulated that three main patterns exist 

for CaCO3 in association with precipitation patterns: large, small and a mixture of 

both. Figure 3.11 shows a schematic diagram of these patterns. The different patterns 

were obtained using the combination of different BC and CS concentrations outlined 

in Sections 3.5 and 3.6.  

 

 

Figure 3.11: Various patterns of CaCO3 morphology and precipitation within 

the soil matrix: (a) large CaCO3 crystals that increase the particle-particle 

contact areas; (b) small CaCO3 crystals that surround the sand grains forming a 

coating layer; and (c) mixture of CaCO3 crystals

(a) (b) (c) 
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3.10 Permeability Test 

 

Permeability testing was conducted for all specimens prepared by the MICP method, 

as described in Section 3.7. The test was conducted in accordance with the 

procedures described in the Australian Standards AS 1289.6.7.1 (2001). The bio-

cemented specimens were kept inside the original PVC column split mould during 

the permeability test to avoid disturbance. The permeability value, k was measured 

before and after the MICP treatment to monitor its change due to the bio-

cementation. The coefficient of permeability, k, was determined using Equation 3.4,  

 

QL
k

Ath
=                            Equation 3.4 

 

where; Q is the volume of the discharged water, L is the length of the specimen, A is 

the cross-sectional area of the specimen, t is the discharge time and h is the hydraulic 

head difference. 

 

Two sets of permeability tests were conducted to investigate: (1) the effect of 

different precipitation patterns; and (2) the effect of using an optimised MICP recipe 

compared with traditional OPC, as an alternative cementation agent. The bio-

cemented specimens covered the range of light, medium and heavy cementation 

discussed above. The effect of the various precipitation patterns on the hydraulic 

conductivity is of interest in this study for potential field application. The mixture 

designs for the OPC treated specimens are covered in Section 3.3.4. The results of 

the permeability experiments are presented and discussed in Chapter 4. 
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3.11 UCS Test 

 

UCS tests were performed in this study in accordance with Australian Standards AS 

5101.4 (2008). The UCS test was employed in this study as an indicator of the 

success of the MICP method to impart true cohesion to otherwise uncemented sands.  

 

3.11.1 UCS Samples Preparation 

 

The split mould used in the current study was made of cylindrical PVC of 40 mm 

diameter and 160 mm height. The height of the column was deliberately made to be 

4 times the diameter so that the bio-cemented sample could be cut into two 

specimens of a height to diameter ratio of 1:2, as required in the UCS test standards. 

Figure 3.12 shows the sample preparation for UCS testing. Figure 3.12(a) shows the 

PVC column split mould used in the present study. Prior to sample preparation, the 

internal wall of the PVC mould was lubricated with silicon grease to minimise the 

friction between the sand and the mould wall. The split mould was sealed using 

silicon glue and the two halves were tied using a metal hose clamp. Prior to that, the 

sand underwent the standard Proctor test to determine the OMC, at which a given 

soil type will become most dense and achieve its maximum dry density. It was found 

that the OMC of the sand used for the current study was roughly 12%. The sand was 

carefully placed using a scoop and was tamped using a steel rod that was specifically 

designed to fit the diameter of the PVC column, as shown in Figure 3.12(b). The 

PVC column was filled with 3 equal thickness layers of sand at which, each layer 

was lightly tamped by the steel rod 20 times to produce specimens with consistent 

and uniform densities. The top surface was levelled and trimmed using a straight 

edge, as shown in Figure 3.12(c). Finally, the top part of the PVC column was 

sealed, and the specimen was treated using the MICP process, as described in Section 

3.7. Figure 3.12(d) shows the extracted bio-cemented specimen ready for the UCS 

test.
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Figure 3.12: UCS sample preparation: (a) PVC column split mould; (b) addition 

of sand into the PVC column; (c) levelling of the tampered sand; and (d) 

extracted specimen ready for UCS test

(a) (b) 

(c) (d) 
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3.11.2 UCS Testing Procedures 

 

After extracting the bio-cemented specimens from the split mould, it was rinsed with 

1 L of tap water to remove the excess salts from the surface. Immediately after that, 

the specimens were placed into the UCS apparatus. The UCS machine is completely 

automated and it was programmed to apply a constant rate of displacement of 1 

mm/min, and the displacement was measured using a linear variable displacement 

transducers (LVDT) mounted on the platen. The axial load was applied at a constant 

rate of strain. The tests termination procedures were carried out either when the 

specimens failed at which, failure planes were clearly visible (noted by the sudden 

dropped in uq  after peak) or when the axial strain reached 20%, whichever comes 

first. Two distinct failure modes were generally observed after UCS testing, as 

shown in Figure 3.13. Failure with tension cracks (single crack) and local failure 

(multi cracks either at the top or bottom part of the bio-cemented specimen). 

 

     

Figure 3.13: Typical failure modes of the bio-cemented specimens: (a) tension 

crack (single crack); and (b) local failure (multi cracks)

(a) (b) 
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3.12 CaCO3 Content Measurement 

 

After UCS testing, the failed sample was collected, sealed and labelled inside a 

transparent plastic bag prior to measuring the CaCO3 content. This was performed by 

mixing 2 ml of 2 M hydrochloric acid (HCl) to 0.5–2 g of the crushed specimen. In 

order to maintain the accuracy of the measurement, the CaCO3 samples were taken at 

3 different spots (top, middle and bottom), as shown in Figure 3.14. The CaCO3 was 

calculated as the average of these 3 values. 

 

 

Figure 3.14: Sampling for measurement of the CaCO3 content after UCS testing 

 

The reaction between HCl and CaCO3 within the crushed specimen produces carbon 

dioxide (CO2). Whiffin et al. (2007) showed that the CO2 gas emitted from this 

reaction can be captured using the U-tube manometer under standard conditions 

(25°C, 101.325 kPa atm), as shown in Figure 3.15. The actual amount of the CaCO3 

content was calculated based on the standard curve of the analytical grade CaCO3 

powder versus CO2 gas production from the dissolution of CaCO3 sample, as 

displayed in Figure 3.16. 

Top 

Middle 

Bottom 
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Figure 3.15: Capturing CO2 gas using the U-tube manometer set-up  

 

 

Figure 3.16: Standard curve of the analytical grade CaCO3 powder vs. CO2 gas 

production for CaCO3 content measurement (after Cheng, 2012) 
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Based on Figure 3.16, the correlation between the analytical grade CaCO3 powder 

and the CO2 gas production may be expressed by Equation 3.5 with correlation 

strength, R2 = 0.9993. 

 

𝐶𝑎𝐶𝑂3 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑔) = 0.0044𝐶𝑂2 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (𝑚𝐿)                      Equation 3.5 

 

3.13 Microstructural Study 

 

Despite the large number of studies showing the bond mechanism associated with the 

CaCO3 crystals in the bio-cemented sands, a detailed microstructural study is still 

needed involving the examination of: (1) the morphological structure of the CaCO3 

crystals; and (2) the evolution process associated with CaCO3 crystals. The first 

morphological study will differentiate between the two most critically acclaimed 

CaCO3 polymorphs that bind soil particles (i.e. calcite or vaterite), and the evolution 

study will show the transformation of the primary and secondary CaCO3 crystals and 

the associated bonding mechanism to the soil particles. These are covered herein and 

the outcome will be used to identify the most effective CaCO3 crystals for further 

mechanical testing. A variable pressure field emission scanning electron microscope 

(VP-FESEM) capable of analysing high resolution images with secondary electrons 

(SE) or/and backscattered electrons (BSE) was used at Curtin University. 

 

Pieces of the crushed bio-cemented samples from the UCS test were rinsed with tap 

water to remove all soluble salts and oven-dried at 105°C temperature for 24 hours to 

remove the moisture. Then, the specimens were desiccated for 30 minutes inside a high-

pressured vacuum to ensure they are completely dry and uncontaminated. 

Contamination in the form of oil can induce specimen charging inside the electron 

chamber leading to SEM images distortion. The tested specimens were placed on 

designated stubs and platinum coating was applied. This step improves the conductivity 

of the specimen to produce better SEM imaging quality. A conductive, double coated 

carbon tape was used as adhesive to mount the specimens onto the stubs. The stubs 

were then screwed into the steel mount and placed inside the electron chamber for 

imaging. 
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3.14 Triaxial Tests  

 

Triaxial tests were performed in this study in accordance with Australian Standards 

AS 1289.6.4.2 (1998). The aim of the triaxial testing was to investigate the effect of 

different confining pressures of 100, 200, and 400 kPa and loading paths on the 

geotechnical response of the bio-cemented specimens.  

 

3.14.1 Triaxial Samples Preparation 

 

The triaxial samples were prepared in accordance to the procedures explained in 

Section 3.11.1.  For triaxial testing, the sample was placed in a rubber membrane 

lining the PVC mould, to ease the removal of the bio-cemented specimen from the 

mould to the triaxial pedestal. After the sand was fully cemented under the effective 

CaCO3 crystals, it was then removed from the PVC split mould and rinsed with tap 

water to remove any excess salt. The aspect ratio of the height to diameter was 1:2 

for all samples. A total number of 6 specimens were prepared for each triaxial test. 

Figure 3.17 shows the typical triaxial test set-up used in the current study. 

 

 

Figure 3.17: Triaxial test set-up used in the current study
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3.14.2 Triaxial Testing Procedures 

 

Conventional triaxial testing procedures were adopted using the 3 main stages of 

saturation, consolidation and shearing. The saturation phase ensures that all voids 

within the test specimen are filled with water. In this study, this was achieved by 

increasing the back pressure to force air into solution. During the saturation phase, 

the back pressure and cell pressure were increased simultaneously at the rate of 10 

kPa/min, until the back pressure reached 300 kPa. All samples were saturated by 

maintaining a constant effective pressure recorded negligible change and the 

Skempton’s B > 0.96. The B-value check was conducted by increasing the cell 

pressure by 10 kPa (∆σ3) in undrained condition and the increase in pore pressure 

(∆u) was monitored. The B-value was calculated by calculating the ratio between 

∆u/∆σ3. All the tested samples were having B-values of at least 0.98, signifying that 

the saturation phase was sufficiently achieved. 

 

The consolidation stage is used to bring the specimen to the effective stress state 

required for shearing. Typically, the specimen was isotropically consolidated by 

increasing the cell pressure whilst maintaining a constant back pressure. This process 

was continued until the volume change, ΔV, of the specimen was no longer 

significant, and at least 95% of the excess pore pressure has dissipated. At the end of 

the consolidation phase, the sample was sheared undrained according to their 

designated loading paths, i.e. axial compression or constant-p. The excess pore 

pressures were recorded to calculate the effective stresses within the sample. The 

shearing rate for all the CU tests was kept at 0.016 mm/min (1%/hour) for all samples. 

However, for the constant-p test, the undrained tests were conducted under stress-

controlled condition and the shear stress rates were set at +5 kPa/min (+300 kPa/hour) 

for the deviator stress, and -1.67 kPa/min (-100 kPa/hour) for the radial stress 

respectively. The stress-controlled condition in the constant-p test was performed in 

order to determine the effect of pore water pressure (liquefaction) to the bio-cemented 

sand at which, the constant total mean stress values of σc = 100, 200 and 400 kPa 

were maintained. The test was terminated when: (1) a pronounced shear plane was 

observed: or (2) the axial strain reached 20%, whichever occurred first. 
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3.15 Summary 

 

In this chapter, details of the materials and the testing procedures for preparing, 

treating and testing the bio-cemented soil specimens were presented. The method of 

injection was implemented for the supply of both the BC and CS into the compacted 

soil column. Unlike previous treatment reported in the literature where the bio-

cemented column was subjected to 24 hours of 104°C heat to remove the excess pore 

water prior to UCS testing, the current study skipped this step and immediately tested 

the treated bio-cemented column after removal from the split mould to mimic real 

field conditions. Relevant mechanical tests (UCS and triaxial) and microstructural 

analysis (SEM) were also outlined following the available standards. UCS tests were 

performed to determine the most optimum BC and CS concentrations producing the 

effective CaCO3 crystal under a wide range of cementation level: light, medium and 

heavy. Triaxial tests (considering two stress paths, i.e. axial compression and the 

constant-p) were conducted to examine the behaviour of the bio-cemented specimen 

under these loading paths.  

 

In the following chapter, the results from the study of crystal precipitation patterns in 

terms of the most applicable key environmental parameters for field application and 

the most effective CaCO3 crystal precipitation were presented. The efficacy of the 

effective CaCO3 crystal was determined using the SEM examination which focussed 

on their evolution and specific microstructural features. Understanding of the specific 

CaCO3 crystals microstructure is imperative to suit their intended purpose for field 

application.
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Chapter 4 

Calcite Crystals Precipitation Patterns 

_________________________________________ 
 

4.1 Introduction 

 

Limited research has been reported on the strength improvement of bio-

cemented soils in relation to their calcite crystals precipitation patterns. To fill 

this gap, various sand samples were prepared in this study under the co-effect 

of different bacteria culture (BC) and cementation solution (CS) 

concentrations, to evaluate the optimum BC (u/mL) and CS (M) combination 

that yields the highest soil strength. Prior to that, some key environmental 

parameters were investigated to ensure the feasibility of MICP for field 

application. This work has formed the basis of the published article: Liang 

Cheng, Mohamed A. Shahin, and Donovan Mujah (2017) ‘Influence of Key 

Environmental Conditions on Microbially Induced Cementation for Soil 

Stabilization’ Journal of Geotechnical and Geoenvironmental Engineering 

143(1) doi: 10.1061/(ASCE)GT.1943-5606.0001586 (authorship attributions 

in Appendix B) and refereed conference proceedings Donovan Mujah, 

Mohamed Shahin, and Liang Cheng (2016) ‘Performance of Biocemented 

Sand Under Various Environmental Conditions’ In Proceedings of XVIII 

Brazilian Conference on Soil Mechanics and Geotechnical Engineering, 

COBRAMSEG ISSN: 2595-0843, 19-22 October 2016, Belo Horizonte, 

Brazil doi: 10.20906/CPS/GJ-05-0002 (authorship attributions in Appendix 

E). 
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The bio-cemented specimens were examined in terms of their strength, stiffness and 

permeability. It is postulated that the effectively precipitated CaCO3 crystals are 

characterised with their rhombohedral shape and large crystals size and were 

concentrated at the soil pore throats. On the other hand, the normal CaCO3 crystals 

are characterised with their circular shaped, relatively smaller crystals size and were 

deposited on the individual sand grain surface. In order to determine the most 

optimum combination to produce the most effective CaCO3 precipitation, the 

following were assumed: 

 

• The combination that provided the highest UCS value is the most effective. 

 
• The combination that provided the highest permeability value is the most 

effective.  

 
• Only reagents that were able to sustain at least 50% chemical conversion 

efficiency (CCE) (i.e. urea to ammonia conversion) are considered effective. 

 
• One full injection of CS (M) is equivalent to 24 hours reaction time.  

 

Furthermore, the evolution and the specific microstructural features of the CaCO3 

crystals growth were presented via results obtained from SEM analysis. The ability 

to produce an effective CCPP that meets the specific need of a field application is 

extremely useful to design a treatment strategy that can provide successful 

improvement solution to the soil in question. In addition, the optimised CCPP (i.e. 

the bio-cemented specimen treated with the effective CaCO3 crystals precipitation) 

was then compared with the conventional OPC treated soil in terms of their strength 

improvement and permeability retention. Some work presented in this chapter has 

formed the basis of the published article: Donovan Mujah, Liang Cheng, and 

Mohamed A. Shahin (2019). Microstructural and geo-mechanical study on bio-

cemented sand for optimization of MICP process. Journal of Materials in Civil 

Engineering, 31(4) doi: 10.1061/(ASCE)MT.1943-5533.0002660 (authorship 

attributions in Appendix C). 
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4.2 Key Environmental Parameters 

 

4.2.1 Initial Soil pH 

 

Most of previous studies performed on the MICP method were conducted in basic 

condition where pH = 9.25, because the resulting CaCO3 favours basic condition 

(explained in detail in Section 2.8.4). However, the natural soil environment is not 

necessarily basic. To understand the implications of pH values different from 9.25, 

the effect of initial soil values of pH = 3.5 (acidic), pH= 7 (neutral) and pH = 9.5 

(extra basic) were investigated in terms of the geotechnical response of the cemented 

sand resulting from the treatment. The UCS values of all bio-cemented samples are 

shown in Figure 4.1. 

 

 

Figure 4.1: Strength improvement of bio-cemented sand under various soil pH 

conditions (after Mujah et al. 2016)
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Based on Figure 4.1, the initial neutral soil condition provides the highest UCS value 

(325 kPa) at a CaCO3 content of 0.025 g/g or equivalent to 2.5%. The next best UCS 

value resulted from the basic soil condition (170 kPa) at CaCO3 content of 0.013 g/g 

or 1.3%. The initial acidic soil condition recorded the lowest UCS value (80 kPa) at a 

CaCO3 content of only 0.005 g/g or 0.5%. It was also observed that, regardless of the 

initial soil pH value, the final soil pH value after MICP treatment ranged between 7.5 

and 9.5 for all treated soil samples. The results obtained from Figure 4.1 suggest that 

the MICP method successfully produces CaCO3 under basic, acidic and neutral 

conditions, but favours the basic condition. The ability of the process to produce 

CaCO3 in non-basic or neutral conditions can be explained by the fact that the 

alkalinity of the surrounding environment in the bacteria cells progressively 

increases due to the process of urea hydrolysis during the MICP process (Rebata-

Landa, 2007). This means that as long as the final pH environment is  between 7.5 

and 9.3, CaCO3 would still form (Ferris et al., 2004).  

 

Apparently, when the CaCO3 content was low (< 3%), the strength improvement was 

governed mainly by the homogeneity of the CaCO3 distribution along the column, as 

shown in Figure 4.2. The distribution shown on the figure was made by the CaCO3 

crystals precipitation. The CaCO3 precipitation distribution is mostly homogeneous 

in the neutral pH condition compared with the acidic and basic pH conditions. This 

could be possibly explained by the tendency of the bacteria attachment (on soil 

particles) to increase in ionic environment, as suggested by Harkes et al. (2010). The 

ionic environment in both the acidic and basic pH conditions was triggered by the 

presence of the NH4
+ (acidic) and OH- (basic) ions (Duan & Zhu, 2012; Hammad & 

Zoheir, 2013). Progressive formation of ionic environment encourages more bacteria 

to attach themselves to the soil particles, leading to concentrated accumulation of the 

bacteria in the top part of the bio-cemented column. Upon adding more supply of CS, 

these bacteria cells fuse together through the MICP reaction to form CaCO3 crystals. 

The formation of the concentrated CaCO3 crystals on the top part of the bio-cemented 

column limits the transport of subsequent bacteria to be mobilised deeper into the 

column, resulting in a non-homogenous CaCO3 distribution. 
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Figure 4.2: CaCO3 precipitation distribution in different soil pH 

(after Mujah et al. 2016) 

 

The actual distribution of the formed CaCO3 affects the overall strength of the bio-

cemented column. The effect of the homogeneity of the resulting cemented column 

in terms of CaCO3 distribution (see Figure 4.2) may explain the reason behind the 

significant difference in bio-cemented soil strength between the neutral and basic 

conditions despite the difference in the formed CaCO3 contents (2.5% and 1.3 %, 

respectively). It should be noted that the homogeneous distribution (in the case of the 

neutral pH condition) of the CaCO3 precipitation increased the global UCS of the 

bio-cemented soil column. This is evidenced by the tensile crack failure of the bio-

cemented sample, indicating that the shearing force was equally distributed along the 

shear plane [refer to Figure 3.13(a)]. Whereas, the bio-cemented columns in the 

acidic and basic conditions failed at the bottom part of the column, indicating a local 

failure as a result of the non-homogeneous CaCO3 precipitation [refer to Figure 

3.13(b)]. 
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4.2.2 Surface Temperature 

 

The initial surface temperature of soil treated by the MICP method plays a vital role 

in ensuring successful cementation. This is particularly important in field application 

because soils have different temperatures based on their location. For example, the 

temperature is invariably high on the Equator compared with other cold regions 

where the temperature can be extremely low. Prior to application of the MICP in 

these extreme surface temperature conditions, investigation into the performance of 

the MICP method in these temperatures is crucial. 

 

To achieve the different extreme temperature conditions used in the current study, 

MICP treatment was conducted in: (1) inside a 4°C refrigerator; (2) room 

temperature at 25°C; and (3) inside a 50°C oven. These temperature degrees were 

selected to simulate cold regions (4°C), tropical regions (25°C) and arid regions 

(50°C). The coldest temperature of 4°C was selected, as the bacteria become inactive 

below it; the hottest temperature of 50°C was selected, because it is the limiting 

temperature for the bacteria survival. Above 50°C and below 4°C, the bacteria could 

either be respectively dead or inactive, rendering the MICP treatment process 

unfeasible (Rebata-Landa & Santamarina, 2006). Applicability of the MICP as a 

cementation treatment process is limited to the situations where the temperature 

range of (4°C- 50°C) is maintained. Performance of the MICP treated samples at 

these two extreme temperature conditions was assessed by performing some UCS 

tests, and the results are presented in Figure 4.3. 
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Figure 4.3: Effect of soil surface temperature on the strength improvement of 

bio-cemented sands (after Cheng et al. 2017) 

 

It can be seen from Figure 4.3 that the trend of increasing the strength exponentially 

with the CaCO3 content is consistent for all tested temperatures. However, it is 

interesting to note that the strength improvement was higher at 25°C compared to the 

same CaCO3 amount produced. It can be therefore argued that the CaCO3 crystals 

formed at the highest temperature of 50°C were the least efficient in imparting the 

bio-cemented soil cohesive strength. In order to verify this argument, a 

microstructural study was warranted. This was accomplished by preparing SEM 

specimens from samples having the same CaCO3 content that was produced at 

different temperatures. The microstructural images are presented in Figure 4.4.  
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Figure 4.4: SEM images of the bio-cemented sands treated at different surface 

temperatures: (a) and (b) 4°C, UCS = 200 kPa, and CaCO3 content = 0.029 g/g 

sand; (c) and (d) 25°C, UCS = 250 kPa, and CaCO3 content = 0.028 g/g sand; 

and (e) and (f) 50°C, UCS = 100 kPa, and CaCO3 content = 0.03 g/g sand  

(after Cheng et al. 2017) 
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The crystals microstructural analysis indicates that MICP treatment at 50°C resulted 

in distributing the CaCO3 crystals over the entire sand grain surface, with a typical 

individual crystal size of 2 and 5μm [Figure 4.4(e–f)]. The individual CaCO3 crystals 

of this surface temperature of 50°C were of similar size; they distributed themselves 

spatially and coated the surface of the sand grains. However, analysis of the 

microscopic image shows that the sand grains were not effectively connected within 

the remaining large voids [Figure 4.4(e–f)]. For the samples treated at ambient 

temperature, the average size of the CaCO3 crystals size increased by 10 times 

(individual CaCO3 crystal size between 20 and 50μm), compared with those formed 

at 50°C. These large crystals precipitated on the grain surface, covering the contact 

areas of the sand grains [Figure 4.4(c–d)]. This pattern of distribution was also found 

in the samples treated at 4°C, whose crystal was also smaller in size [Figure 4.4(a–

b)]. 

 

The kinetics of crystallisation indicates that both the activated energy (which is a 

function of temperature and relative supersaturation degree) has a strong impact on 

the rate of nucleation and crystal growth. It is the relationship between the competing 

kinetic rates of nucleation (birth of new crystal nuclei) and crystal growth (i.e. crystal 

size) that determines the distribution of crystals. Wojtowicz (1998) suggested that the 

higher the temperature, the lower the activation energy barrier as well as the faster 

the rate of nucleation of CaCO3 precipitation. The faster nucleation rate may induce 

excess nucleation sites, which results in smaller crystal size, as found in the samples 

treated at 50°C. Although the nucleation rate was low at the low temperature of 4°C, 

the formed crystals also had a small size. This is possibly due to the slow crystal 

growth at low temperature due to the low relative supersaturation degree, which 

results from the low urease activity at low temperature (Sahrawat, 1984). It is 

believed that the decrease in the relative supersaturation led to a decrease in both the 

crystal nucleation rate and growth rate. As stated previously, the final crystal size 

distribution is dependent on the competition between these two rates. The formation 

of CaCO3 in MICP is a very complex process, because of the role of the bacteria as 

nucleation sites and CO3
2- ions as a producer. Therefore, if a different number of 

bacteria is supplied, the precipitation pattern can be different from what is obtained 

in the current study. 
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Generally, the temperature can affect many physical, chemical, and biological 

properties of the MICP system. For example, the temperature can affect the urease 

activity, which in turn influences the urea hydrolysis rate, CO3
2- production rate and 

the resulting crystal growth rate. The solubility of CaCO3 crystals also varies with 

the temperature. Overall, based on the temperature study performed here, it could be 

concluded that large-size crystals precipitated in the voids among the sand grains are 

more effective in producing the highest strength improvement of the bio-cemented 

sand. 

 

4.2.3 Freeze-Thaw Cycles 

 

Freeze-thaw cycles pose significant challenge to engineers living in regions having 

extreme topoclimatic positions, especially on sites involving  formation of 

permafrost (Kellerer-Pirklbauer, 2017). The action of FT cycles can lead to rock 

weathering over a long period of time. FT cycles can also affect the performance of 

soil durability (short-term or long-term endurance of soil exposed to stresses). 

Therefore, it is important to consider the effect of FT cycles on bio-cemented sands 

prior to real field application. To this end, two uniform sands of 0.15 mm (fine sand) 

and 1.18 mm (coarse sand) as well as well-graded sand were tested after being 

treated with MICP. Each bio-cemented column of the two sands was prepared 

according to the procedures described in Section 3.11.  

 

The UCS results of the tested samples are shown in Figure 4.5. It can be observed 

that an increase in the number of FT cycles is associated with a decrease in the 

compressive strength for all sand specimens [Figure 4.5(a) and (b)]. The main reason 

for the strength decreases after the FT cycles is formation and growth of micro 

cracks resulting from the ice forming during the freezing process, which induces 

micro cracks due to volume change of the ice crystals. In theory, higher porosity and 

permeability values allow more rapid water mass transfer in the sand matrix, which 

can increase the FT resistance. Lake et al. (2017) found that porous solids with high 

porosity or permeability usually have a good FT cycles resistance. 
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Figure 4.5: Effect of FT cycles on different sands: (a) fine sand (0.15 mm); (b) 

coarse sand (1.18 mm); and (c) well-graded sand (after Cheng et al. 2017)  

 

The results presented in Figure 4.5 suggest that the fine sand (0.15 mm in size - 

smaller pore size and slightly less porosity) was more durable against the FT cycles 

than the coarse sand (1.18 mm in size- larger pore size and slightly higher porosity). 

This could be explained by the increase in the average number of contacts per soil 

particle (i.e. the coordination number) in the case of the fine sand due to the smaller 

inter-particular contact in the soil matrix as CaCO3 crystals begin to precipitate. 

Assadi-Langroudi et al. (2018) found that the average number of contacts per sphere 

increases with the decrease in porosity. Therefore, the larger number of inter-particle 

contacts in the case of the fine sand helped the calcite crystals to bridge over the 

contact points, which increased the tensile resistance during the stress test caused 

during the durability experiment. 
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Figure 4.5(c) shows that the FT cycles have a minor impact on the well-graded sand. 

The main reason for the high durability of MICP well-graded sand is due to the 

unique characteristics of its soil particles which possess both fine soil particles 

(allowing a high number of inter-particle contact points) and coarse soil particles 

(ensuring high permeability due to the presence of the large pore size). Overall, it can 

be concluded that the influence of FT cycles on soil strength and durability depends 

on the soil porosity, pore size and bonding behaviour of MICP in the soil matrix. 

 

Soils at high elevation normally freeze during winter. As such, geotechnical 

foundations that are exposed to FT cycles are prone to be subjected to significant 

structural damages. This is because FT cycles induce uneven stresses within the soil, 

resulting in a decrease in soil durability. As shown by the current study, UCS values 

of the bio-cemented soil samples were improved indicating the viability of MICP as 

a potential solution to minimise the impact of FT cycles. This is achieved by creating 

cemented soil bodies that have high durability against FT cycles which is attributed 

to the sufficient contact points in the soil matrix and the large pore size that ensure 

high permeability of the bio-cemented soil. These characteristics enhance the 

efficacy of MICP cementing agent in bridging the inter-particle contacts, and at the 

same time, allow a rapid water mass transfer within the soil matrix.  

 

4.2.4 Rainwater Flushing 

 

The effect of rainwater flushing on MICP treatment in the field is an important 

aspect, especially in the tropical region where the intensity of rainfall can become 

quite severe. Hence, it was deemed vital to study this effect in the laboratory prior to 

future field implementation. Tap water with pH ranging from 6.8–7.2 was used in the 

present study to simulate the effect of rainfall. In order to investigate the effect of 

extreme rainfall intensity on the MICP process, sand sample was subjected to a tap 

water stream for approximately 12 hours. Three sand samples were prepared at 

which: (1) the tap water flushing was commenced immediately after the bacterial 

placement; (2) the tap water flushing was commenced 24 hours after the bacterial 

placement; and (3) no tap water flushing was used (for control).  
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The effect of the rainwater flushing on the MICP process is shown in Figure 4.6. The 

figure shows that the control sample (i.e. no water flushing) was fully cemented 

[Figure 4.6(a)]. In contrast, the samples that encountered water flushing during the 

treatment process was partly cemented or completely non-cemented [Figure 4.6(b) 

and (c)]. For the control sample, the chemical conversion efficiency (CCE), which is 

defined as the percentage of injected CO(NH2)2 and CaCl2 that precipitates as 

CaCO3, was found to reduce from approximately 95% to only 5% throughout the 

MICP process [Figure 4.7(a)]. The decrease in the CCE may be explained by the loss 

of urease activity due to flushing. The water flushing caused the significant decrease 

in the CCE irrespective of the waiting period applied to the bacterial attachment. The 

negative impact of water flushing on bio-cementation was also demonstrated by the 

low degree of cementation and final CaCO3 content measurements. Less than 0.3% 

(0.003 g/g sand) of CaCO3 crystal was detected in the samples subjected to water 

flushing, whereas 10 times more (0.043 g/g sand) CaCO3 crystals were found in the 

control sample with a measured UCS value of 262 kPa [Figure 4.7(b)]. 

 

 

Figure 4.6: Bio-cemented samples subjected to tap water flushing: (a) control 

sample with no tap water flushing; (b) sample with tap water flushing after 24 

hours of bacteria placement; and (c) sample with tap water flushing 

immediately after bacteria placement (after Cheng et al. 2017)

(a) (b) (c) 
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Figure 4.7: Bio-cemented samples subjected to tap water flushing: (a) CCE; and 

(b) UCS and CaCO3 content (after Cheng et al. 2017)

Water flushing immediate after bacterial placement 
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For successful bio-cementation, it is necessary that the bacteria are introduced into 

the soil first and kept without disturbance, followed by application of CS that 

contains CO(NH2)2 and CaCl2. Torkzaban et al. (2008) demonstrated that the 

increase in the BS salinity increases bacteria adsorption onto the soil particles. By 

flushing low-salinity solutions after BC injection, a large part of the adsorbed 

bacteria could be remobilised from the solid surface into the liquid phase (Harkes et 

al., 2010). This suggests that, in real applications, rainwater flushing during MICP 

bio-cementation could reduce the effectiveness of MICP treatment by washing out 

the bacterial cells and reducing the CCE. 

 

4.3 BC and CS Concentrations Optimisation  

 

4.3.1 UCS Tests 

 

A total number of 108 UCS specimens comprising from a broad range of 

cementation levels were tested. For the purpose of this study, the cementation levels 

were categorized based on the CaCO3 content e.g. lightly cemented (2–4% CaCO3 

content), medium cemented (4–6% CaCO3 content), and heavily cemented (> 6% 

CaCO3 content). Figure 4.8 shows the results of the UCS tests, which indicates that 

the strength increases exponentially as the amount of CaCO3 content increases as can 

be seen in Figure 4.8(a-c). Note that the specimens with < 2% CaCO3 content was 

not reported here, as attempts to test them were unsuccessful as the specimens tended 

to deform locally registering negligible strength values; some specimens even 

collapsed immediately after being assembled in the testing machine. It is noted from 

Figure 4.8(a) that 32 U/mL BC provided the highest strength improvement at any 

CaCO3 content compared to 16 and 8 U/mL BC when combined with 0.25 M CS. 

However, this trend is reversed in Figure 4.8(c), 8 U/mL BC provided the highest 

strength improvement at any CaCO3 content compared to 16 and 32 U/mL BC when 

combined with 1 M CS. Plausible explanation of the reasons behind the different 

strength improvement efficiency of each combination is presented later. 
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Figure 4.8: The effect of different BC (u/mL) and CS concentrations on UCS: 

(a) 0.25 M CS; (b) 0.5 M CS; and (c) 1 M CS 

 

Figure 4.9 shows a comparison of all combinations of BC and CS concentrations. 

The strength response of bio-cemented specimens differs for different CS 

concentrations without a unique trend. For example, at lower CS concentration (i.e. 

0.25 M), the specimens treated with higher BC concentrations were more effective in 

terms of the strength improvement per amount of calcite formed. However, the 

increase in strength in the case of CS = 0.5 M concentration was almost insensitive to 

the BC concentrations. In contrast to the tow trends above, at a higher CS 

concentration of 1 M, the specimens treated with lowest BC concentrations registered 

the highest strength. The lowest strength was registered for the combination of BC = 

32 U/mL and CS = 1 M. Based on the UCS results, it is suggested that the 

combination of 32 U/mL BC and 0.25 M CS concentrations is the most effective in 

terms of the strength improvement.  
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Figure 4.9: Effect of different BC concentrations on the strength of bio-

cemented specimens at various CS concentrations (after Mujah et al. 2019) 

 

The microstructure of the specimens that exhibited the highest strength (BC: 32 U/mL 

and low CS: 0.25 M) and lowest strength (BC: 32 U/mL and high CS: 1 M) was 

examined under the SEM and the results are presented in Figure 4.10. It can be seen 

from Figure 4.10(a) and (b) that the favourable combination of high BC and low CS 

concentrations produced agglomeration of large clusters of CaCO3 crystals 

(approximately > 20 µm). However, it should be mentioned that the relative size 

between the CaCO3 crystals and the sand particles are more important than the 

absolute size of the crystals themselves, as the crystals need to be large enough to fill 

in the pore throats among different sand grains, which is a function of the grain size. 

Precipitation of large clusters of CaCO3 crystals increases the area of contact between 

soil grains, leading to stronger load path and overall shear strength (Ismail et al., 

2002a; Mitchell & Santamarina, 2005; Cheng et al. 2017). Figure 4.10(c and d) shows 

the precipitation of relatively smaller CaCO3 crystals (approximately < 10 µm) for the 

combination of high BC and CS concentrations. The contrast between the crystal sizes 

of the two extreme combinations (in terms of specimen strength) is evident when one 

compares Figure 4.10(a) with Figure 4.10(c) and Figure 4.10(b) with Figure 4.10(d). 
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Figure 4.10: Microstructure of soil specimens at 5% CaCO3 content: (a, b) high 

BC (32 U/mL) and low CS (0.25 M) concentrations; and (c, d) high BC (32 

U/mL) and high CS concentrations (1 M) (after Mujah et al. 2019) 

 

The different sizes of the CaCO3 crystals resulting from each concentration 

combination may be attributed to the competition between the crystal growth and 

crystal nucleation as a result of the complex interplay between the CS and BC 

concentrations. Gandhi et al. (1995) reported that the competition would occur if the 

nucleation of new crystals triumphs over the growth rate of the existing ones. In the 

case of high BC and low CS concentrations, a high number of bacterial cells are
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introduced into the soil specimens and attach themselves to the sand grain surface. In 

principle, a high number of bacterial cells would provide  abundance of nucleation 

sites in the soil matrix (Cheng et al., 2017). In the presence of CS, the urea 

hydrolysis reaction is triggered to produce CO3
2- ions, which were then mainly 

consumed by the nucleation of new CaCO3 crystals rather than by the growth of the 

existing ones. Initially, this leads to abundance of the small CaCO3 crystals, but with 

continuous supply of low CS concentration, the numerous small crystals would 

develop to grow larger in size, as shown in Figure 4.10(b). The size of the CaCO3 

crystals precipitated using high BC and CS concentrations was comparatively 

smaller (approximately 10 µm) compared to the crystals formed under high BC and 

low CS concentrations, as shown in Figure 4.10(d). In both conditions, the amount of 

BC concentration was fixed to 32 U/mL, and the only difference was in the CS 

concentration. The CS concentration affects the super-saturation condition 

(difference between the actual concentration and solubility concentration) of the 

environment that favours MICP process (Bosak & Newman, 2005), which is usually 

affected by the Ca2+ and CO3
2- ions sources from the CaCl2 and CO(NH2)2. The 

higher the super-saturation, the greater the nucleation rate of CaCO3 crystals, 

resulting in formation of small crystals (Al-Thawadi & Cord-Ruwisch, 2012). The 

correlation between the shear strength of the bio-cemented sand and the CaCO3 

content was investigated previously by Whiffin et al. (2007), Fujita et al. (2008) and 

Okwadha & Li (2010). They concluded that the CaCO3 content may not necessarily 

contribute to the soil strength improvement. Cheng et al. (2013) and Cheng et al. 

(2017) showed how sand grains coated with CaCO3 crystals had less strength 

efficiency than specimens experiencing  accumulation of CaCO3 crystals at the 

contact points. The accumulated clusters of CaCO3 crystals act like a closed surface 

adhering to the host particles. On the microscale level, this surface could develop an 

arching mechanism to carry normal stresses and enhance the shear resistance because 

of the intrinsic shear stiffness of a closed surface (Ismail, 2000). The current study 

confirms the efficacy of the strength improvement by the formation of the effective 

CaCO3 crystals. It is envisaged that accumulation of the effective CaCO3 layers that 

adhere to the initial CaCO3 precipitates increases the size of the CaCO3 crystal as 

cycles of the low concentrated reagent are supplied, which eventually increases the 

total area of contacts among the CaCO3 crystals and the host sand grains. 
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4.3.2 Permeability 

 

Figure 4.11 shows the permeability test results obtained from the bio-cemented 

specimens listed earlier. Only the extreme cases between the highest (32 U/mL) and 

the lowest BC (8 U/mL) concentrations with their respective combinations are shown 

for clarity. The results show a general trend where the permeability decreases with the 

increase in the CaCO3 content; the initial concentration of the BC supply affects the 

permeability trend, especially at high CaCO3 content. Overall, the reduction in the 

permeability due to precipitation of the calcite is less than an order of magnitude 

within the tested CaCO3 content, regardless of the BC concentration. It can be seen 

from Figure 4.11(a) and (b) that the change in the permeability at any CaCO3 content 

is very small, irrespective of the BC or CS concentrations. This makes the focus for 

any permeability target to be placed on the amount of CaCO3 that must be precipitated 

rather than on the specific combinations of BC and CS that should be used. 

Significant reduction in the permeability by more than an order of magnitude (for any 

practical application) will require significant amount of calcite. The benefit achieved 

from reducing the permeability must be weighed against the magnitude of strength 

acquired during the process of precipitation.  

 

The 32 U/mL BC and 0.25 M CS concentration produced effective CaCO3 crystals 

with distinct characteristics such as relatively large in size, rhombohedral shaped and 

were concentrated at the soil pore throat [Figure 4.12(a)]. This type of CaCO3 

distribution allows for more liquid passage [indicated by the rectangular box in Figure 

4.12(a)] in the soil matrix as it does not completely fill the gaps between sand grains 

[Figure 4.12(b)]. Furthermore, this is evidenced by the fact that, for most of the 

specimens treated under this protocol, no sudden clogging was detected and the 

effective CaCO3 crystals were successfully distributed throughout the entire 

specimen. Al Qabany et al. (2012) reported that lower concentration of CS (injected 

several times) would provide better overall strength due to the gradual increase in the 

pH environment around the bacteria cells that produced conditions favouring CaCO3 

precipitation. Detailed description on the unique features of the effective CaCO3 

crystals precipitation is presented later. 
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Figure 4.11: Permeability comparison of the bio-cemented specimens: (a) 32 

U/mL BC concentration; and (b) 8 U/mL BC concentration 
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Figure 4.12: Characteristics of the effective CaCO3 crystals precipitation: (a) 

precipitation at the soil pore throat; and (b) close up of the gap between the 

sand particles
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4.3.3 Chemical Conversion Efficiency (CCE) 

 

Based on the findings obtained from the treatment strategy employed in this study, 

it was clear that the different CCPPs are governed by the combined concentrations 

of BC and CS supplied during the MICP treatment. It is worth noting that in the 

present study, the BC solution was supplied once as one lot, and a constant input 

rate of 0.042 mol/L/h was maintained for all CS injections, to investigate the 

number of CS injection required to exhaust one BC solution injection. Therefore, it 

is imperative to study the CCE of the repeated injections of CS per injection of BC 

in order to produce a more cost-effective MICP process for field application. 

 

Figure 4.13 shows the effect of the number of CS injection on CCE of the MICP 

process. Only the extreme cases involving the highest BC (32 U/mL) [Figure 

4.13(a)] and the lowest BC (8 U/mL) [Figure 4.13(b)] concentrations are presented 

in order to discern the effect of the in-situ urease activity on CCE. Based on 

Figure 4.13 regardless of the BC concentration, the CCE of each treatment 

diminishes with the increasing number of CS treatments. Figure 4.13 also shows the 

cumulative mass of CaCO3 precipitate (obtained from the CCE) of each condition; 

the decreasing CCE shown in the figure is related to the total amount of the 

produced CaCO3. The gradual decrease in the CCE observed after each injection 

(which is in line with van Paassen et al. (2010a)) reflect the loss of the urease 

activity, possibly due to the bacterial cell encapsulation, elution of cells or/and cells 

death or lysis. It is observed from Figure 4.13(a) that only the combination of 32 

U/mL BC and 0.25 M CS concentrations recorded > 50% CCE up to 4 number of 

CS injections. Although the MICP process continues after 4 number of CS 

injections (shown by the continued decline of the CCE), further supply of CS did 

not contribute towards the production of more CaCO3 crystals, as the number of 

microbial cells become less available to encapsulate the urea during the hydrolysis 

reaction. Meanwhile, only two CS injections were recorded for the 8 U/mL BC 

concentration at CCE > 50% [Figure 4.13(b)]. The rapid decline in CCE for both 

BC concentrations (especially at 1 M CS condition) is presumably due to the 

intrinsic heterogeneity in any bacteria-related process, which can hamper exact 

replication of results. 
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Figure 4.13: Effect of the number of CS injections on CCE of the MICP process: 

(a) 32 U/mL BC; and (b) 8 U/mL BC concentrations (after Mujah et al. 2019) 
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The optimum number of CS injections is crucial for field application to ensure that it 

is sufficient to consume the supplied BC without wastage in each treatment cycle. 

Higher BC concentrations (e.g. 32 U/mL) can sustain a higher number of CS 

injections, whereby the CCE is expected to exceed 50% compared with lower BC 

concentration. The possible high number of CS injections achieved with the 32 U/mL 

BC concentration could be attributed to the higher number of bacteria cells in the BC 

solution. In fact, it is the number of bacteria cells available in the MICP environment 

that allows progression and continuity of the MICP process. On that basis, this study 

suggests that one injection of combination of 32 U/mL BC solution together with 4 

injections of 0.25 M CS is ideal for a single treatment cycle. This is in line with the 

findings of Cheng et al. (2016) and Feng & Montoya (2016) who recommended 

multiple injections of bacteria to recover the in-situ urease activity and achieve a 

high level of cementation by continuing the MICP process. Also, recovery of the loss 

of the urease activity during the MICP process can be achieved by in-situ enrichment 

of ureolytic bacteria by providing a specific growth medium (Gomez et al., 2016) or 

by reintroducing the ex-situ cultivated bacterial culture. 

 

4.3.4 Evolution of the Effective CaCO3 Crystals 

 

To study the morphology of the effective CaCO3 crystal precipitates and their 

evolution as a function of the BC and CS injections over time, the specimens taken 

from the sand column after one, two, three and four injections were examined under 

the SEM. The reagents used in this study to produce the effective CaCO3 crystals 

were based on the optimum results discussed in the preceding section (i.e. 32 U/mL 

BC and 0.25 M CS concentrations). 
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Figure 4.14: Evolution of the effective CaCO3 crystals precipitation: (a) bacteria attachment onto the sand grain leading to 

formation of nucleation sites (image taken after the first injection); (b) formation of metastable primary spherical shaped 

precipitates (image taken after the second injection); (c) cluster of single crystals creating mesocrystals which successively form 

the effective CaCO3 crystals (image taken after the third injection); and (d) precipitation of the effective CaCO3 crystals 

concentrated at the soil pore throat (image taken after the fourth injection) (after Mujah et al. 2019) 
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Figure 4.14 shows evolution of the effective CaCO3 crystals precipitation with 

successive injections. During the first treatment (one half void volumes of BC and 

CS were injected), the bacteria cells attached themselves to the sand grains due to 

their negatively charged state reacting to the positively charged Ca2+ ion during the 

urea hydrolysis reaction (DeJong et al., 2011; DeJong et al., 2013; Anbu et al., 2016; 

Rajasekar et al., 2017). The observed bacteria colonies are indicated by the red 

circles in Figure 4.14(a). In the second treatment (one full void volume of CS was 

injected), the metastable primary spherical shaped precipitates were detected [shown 

in red circle in Figure 4.14(b)] and these are speculated to be vaterite by van Paassen 

(2009) and Al Qabany et al. (2012). Further supply of CS helped the subsequent 

formation of the effective CaCO3 crystals. This can be seen during the third treatment 

(two full void volumes of CS were injected) as portrayed in Figure 4.14(c), which 

displays the formation of mesocrystals as a result of the agglomeration of single 

crystals. Further details on this type of growth will be discussed later in Section 4.6. 

Eventually, in the fourth treatment (three full void volumes of CS were injected), the 

effective CaCO3 crystals precipitation concentrated mainly in the soil pore throat, as 

captured in Figure 4.14(d). 

 

Also, depending on the reagents input rate, CaCO3 crystals transformation during the 

second treatment can be altered. For example, the formation of the metastable 

primary spherical shaped precipitates presented in Figure 4.14(b) was based on the 

constant input rate of 0.042 mol/L/h. However, if the input rate is increased, this will 

shorten the time required for the reagents to react during the MICP process, and this 

may produce a different transition mechanism. This is demonstrated in Figure 4.15, 

which shows the transition of the metastable primary spherical shaped single crystal 

into a much stable secondary rhombohedral shaped single crystal; this transition 

phase was captured during the second treatment using 0.167 mol/L/h input rate. This 

observation is in line with the transition phase reported by Terzis et al. (2016), who 

observed similar CaCO3 crystals transformation. 
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Figure 4.15: Transition of the metastable primary precipitate into a more stable 

secondary single crystal 

 

Overall, the first supply of CS initially introduces Ca2+ ions into the bio-cemented 

specimen, to help create new CaCO3 crystals. Further supply of CS together with the 

deposition of CO3
2- ions from urea hydrolysis by bacteria onto the CaCO3 crystal 

surface increases the size of the initially formed CaCO3 crystals (Park et al., 2014a; 

Anbu et al., 2016). Unlike previously reported by DeJong et al. (2010) and Al 

Qabany & Soga (2013), growth of the CaCO3 crystals in the current study stems from 

agglomeration of the single crystals (observed after the first and second treatment) 

creating mesocrystals (after the fourth treatment), which eventually form the 

effective CaCO3 crystals (Figure 4.14). 
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4.3.5 Microstructural Features of the Effective CaCO3 Crystals 

 

In order to understand the mechanism associated with the precipitation of the 

effective CaCO3 crystals, it is vital to make careful and thorough observations into 

the microstructural features that are unique to the precipitation process. It has been 

established earlier that the main characteristics of the effective CaCO3 crystals 

precipitation are, but not limited to: (1) they are concentrated at the soil pore throats; 

(2) they are relatively large in size (normally > 20 µm); and (3) they have a 

rhombohedral shape. The current study has shown that these could be achieved in the 

laboratory by manipulating both BC and CS concentrations as discussed previously. 

 

One of the most distinct features that allow for precipitation of the effective CaCO3 

crystals is the tendency of the bacteria cell to align in the vicinity of the soil pore 

throats, as shown in Figure 4.16a and b). This propensity is supported by two main 

factors: (1) availability of the rich nutrient (DeJong et al., 2010); and (2) the low 

stresses induced in the menisci region of the soil pore throat (Cheng et al., 2013).  

 

    

Figure 4.16: Feature of the effective CaCO3 crystals precipitation: (a) alignment 

of bacteria cells in the soil pore throat region; and (b) a close up showing 

accumulation of bacteria cells after the second injection of BC solution during 

the second treatment cycle

(a) (b) 

Soil pore throat 

Bacteria cells 
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Another interesting feature of the effective CaCO3 crystals precipitation is the fact 

that they are relatively larger in size eventually. Based on the observations made in 

this study, this is attributed to the unique ability of the CaCO3 crystals to cluster into 

agglomeration [Figure 4.17(a)], of large CaCO3 mesocrystals [Figure 4.17(b)]. 

Agglomeration of the CaCO3 precipitates shown in Figure 4.17(a) was the result of 

the low CS (0.25 M) injection (two full void volumes), while the clustered CaCO3 

mesocrystals shown in Figure 4.17(b) were achieved after three full void volumes of 

0.25 M CS injections. The combination of high BC (32 U/mL) and low CS (0.25 M) 

favour this type of precipitation, because the high concentration of BC promotes 

accumulation of the bacteria cells near the soil pore throat region, as discussed 

earlier; on the other hand, the low concentration of CS injection supports the 

formation of the clustered CaCO3 precipitates that eventually developed into CaCO3 

mesocrystals. This was achieved by progressively increasing the supersaturation 

condition; supersaturation is increased with the increase in both Ca2+ and CO3
2- ions 

concentration (Al-Thawadi & Cord-Ruwisch, 2012) of the MICP process 

environment and thus, allowing accumulation of the succeeding precipitations over 

the initial small crystals.  

 

Figure 4.18 depicts the growth of the effective CaCO3 crystals during the second 

treatment cycle. As mentioned in Section 4.4, one treatment cycle equals one 

injection of 32 U/mL BC and four injections of 0.25 M CS. This protocol continues 

for the next treatment cycles. During the second treatment cycle, the effective CaCO3 

crystals continue to grow in size. This is evinced by the cascaded formation of the 

sheet-like pattern into a foliated structure (indicated by the red dotted circles in 

Figure 4.18). Unlike the evolving mechanism associated with the first treatment 

cycle, the effective CaCO3 crystals formed in the subsequent treatment cycles copy 

the existing ones and adhere strongly to them, producing the foliated pattern 

described above. The increase in size of the initial crystals is the result of bacteria 

cells attachment to the initial crystals that occupied the pore throat after the first 

treatment cycle. The growth continues until all urea available in the CS are 

completely consumed by the bacteria cells. 
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Figure 4.17: Feature of the effective CaCO3 crystals precipitation: (a) CaCO3 

precipitates agglomeration; and (b) clustered crystals forming large CaCO3 

mesocrystals (size > 20 µm) 

 

 

Figure 4.18: Sheet-like pattern reproducing a foliated structure due to 

successive growth of the effective CaCO3 crystals 

 

(a) (b) 
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Eventually, the CaCO3 mature (or develop) into a rhombohedral shape.  Figure 

4.19(a) shows that majority of the effective CaCO3 crystals are rhombohedral in 

shape, especially those located at the soil pore throats. Figure 4.19(b) shows a close 

up of the region displaying the rhombohedral shape for large effective CaCO3 

crystals (size > 20 µm). Unlike the CaCO3 crystals previously reported in the 

literature as being mainly circular in shape, the rhombohedral shape crystals are more 

robust due to their interlocking effect while connecting the sand grains (Figure 4.20), 

leading to a stronger cemented matrix overall. Explanation of the physiochemical 

nature of the mechanism of the effective CaCO3 crystals and its interlocking nature is 

beyond the current study; however, based on the strength comparison between the 

optimised MICP and the OPC treated specimens, it is revealed that the optimised 

MICP imbued with the effective CaCO3 crystals proved to impart significant strength 

improvement compared to the OPC treated specimens at similar cement content. 

 

  

Figure 4.19: Shape feature of the effective CaCO3 crystals precipitation: (a) 

rhombohedral shaped CaCO3 crystals filing the gaps at the soil pore throat; and 

(b) a close up view of the large CaCO3 mesocrystals (size > 20 µm) 

 

(a) (b) 
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Figure 4.20: Effective CaCO3 crystals precipitation interlocking the soil pore 

throats 

 

The findings obtained from this study suggest that different CaCO3 precipitation 

patterns can be engineered by controlling the BC and CS concentrations through the 

MICP treatment, which can result in a variety of macroscale strength responses. In 

general, the effective CaCO3 crystal will develop into a pattern of large, clustered 

rhombohedral-shaped crystals. The CaCO3 crystal precipitation pattern, including the 

relative size between crystals and sand particles, greatly impacts the target 

application of bio-cementation in the field. The specific features affects the strength 

of the cemented matrix, as it will influence the load transfer mechanism inside the 

soil matrix, which depends on the size of the contact area, linked by the precipitated 

CaCO3 crystals (Ismail et al., 2002a). In terms of hydraulic conductivity, the shape, 

size and distribution of the precipitated CaCO3 crystals near the soil pore throats will 

influence the flow properties of the cemented porous media, as reported by Al 

Qabany et al. (2012). It should be noted that in addition to the amount of effective 

CaCO3 crystals formed, the spatial uniformity of the overall microbially induced 

CaCO3 precipitates is also a critical factor controlling the ultimate soil strength of the 

cemented medium. 
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In civil engineering applications such as transportation subgrades and embankments, 

the ability to apply the MICP technique that produces the largest quantity of effective 

CaCO3 precipitation is desirable to minimise the involved cost. The current study 

suggests that this can be achieved by the combination of high BC and low CS, which 

can increase the strength dramatically compared with its side effect of reducing the 

permeability. This is particularly advantageous in transportation subgrade and 

embankment applications, which normally need improved strength while maintaining 

high drainage characteristics. 

 

4.4 MICP Method versus Ordinary Portland Cement 

 

In order to further verify the optimised strength and permeability of the bio-cemented 

sand specimens, a series of MICP treated specimens were produced and tested in 

parallel with specimens cemented with ordinary Portland cement (OPC) for 

comparison; the OPC specimens were cured for 28 days. Figures 4.21 and 4.22 show 

a comparison of the stress-strain relationship of the MICP and OPC treated sands at 

various contents of the respective cementing agent. As expected, the increase in the 

content of either CaCO3 or Portland cement increases the peak strength of the treated 

specimens. Based on the results of Figure 4.21, the peak strength recorded for the 

MICP treated sand at 4%, 6%, 8%, and 10% CaCO3 are 850 kPa, 1200 kPa, 2200 

kPa, and 4100 kPa, respectively. The corresponding values for the case of OPC are 

500 kPa, 1100 kPa, 1500 kPa, and 3000 kPa, respectively (Figure 4.22). Also, it is 

noted that the OPC treated specimens exhibit relatively ductile behaviour compared 

with the bio-cemented specimens; this is in agreement with the findings obtained by 

Schnaid et al. (2001) and Ismail et al. (2002b). 
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Figure 4.21: Stress-strain relationship of the optimised MICP treated specimens 

(32 U/mL and 0.25 M CS) (after Mujah et al. 2019) 

 

Figure 4.22: Stress-strain relationship of OPC treated specimens after 28 days 

(after Mujah et al. 2019)
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Figure 4.23 shows the UCS and permeability results of the sand specimens treated 

with the optimised MICP effective CaCO3 and OPC treated with 2-10% cement 

content after 28 days of curing. The optimised bio-cemented specimens have higher 

strength compared to the OPC treated specimens at all cementation levels. Moreover, 

the permeability of the optimised bio-cemented specimens is significantly higher 

than that of the OPC treated specimens at all cementation levels. For instance, at 6% 

cement content, the permeability of the OPC treated specimen is considerably 

reduced to 98%, while the optimised bio-cemented specimen retained about 50% of 

the initial permeability. At cement content > 8%, the OPC treated specimen would 

act as a very poor drainage material having a permeability value of less than 1 x 10-5 

m/s.  

 

 

Figure 4.23: Comparison of UCS and permeability of optimised bio-cemented  

(32 U/mL BC and 0.25 M CS) and OPC treated (at 28 days) sands  

(after Mujah et al. 2019) 
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The increase in the strength associated with significant reduction in the permeability 

of the OPC treated specimens are due to the cement hydration process, which 

continues for up to 28 days (and beyond) after the initial reaction between the cement 

and the soil (Nakarai & Yoshida, 2015; Mujah, 2016). According to Cheng et al. 

(2013), the cement hydration process produces water insoluble hydrates in the form 

of calcium silicate hydrate (C-S-H gel). This gel-like structure binds the sand 

particles, leading to an increase in strength and stiffness. It should be noted that the 

OPC cementation process presented here is representative of the traditional ground 

improving technique for soil stabilisation using chemical additives (e.g. cement, 

gypsum, or lime). Observation into the microscale level of the OPC treated 

specimens reveals that the C-S-H gel [Figure 4.24(a-b)] occupies most of the pore 

space, hence, limiting the permeability of the cemented material. Unlike the 

formation of the C-S-H structure, the precipitated CaCO3 did not completely fill the 

gaps between the sand grains, hence, allowing relatively free passage of the liquid in 

the soil matrix [indicated by the red lines in Figure 4.24(c)]. The effective CaCO3 

crystals in their solid achieved stronger and stiffer post treatment mechanical 

responses compared with the C-S-H gel hydrates (for the reasons discussed above). 

 

In summary, the results and discussion above indicate that the optimised bio-

cementation process presented herein is more efficient than Portland cement in 

increasing both the strength and stiffness with much lower reduction in permeability. 

This is mainly attributed to the nature of the effective CaCO3 crystals in terms of 

their large, rhombohedral shaped and clustered crystals and the strategic location of 

their formation at the pore throats compared with the OPC C-S-H gel that does not 

lend itself to a preferential growth pattern or location within the sand matrix.  
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Figure 4.24: SEM images showing the effect of cement on permeability: (a) 

formation of C-S-H gel in the OPC treated specimen (after 7 days); (b) 

formation of C-S-H gel in the OPC treated specimen (after 28 days); and (c) 

precipitation of the effective CaCO3 crystals in the bio-cemented specimen. 

Cementing agent content fixed at 8% for all specimens (after Mujah et al. 2019) 

 

(a) (b) 

(c) 
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It is essential to mention some of the limitations and postulates associated with the 

optimisation needed to produce the effective CaCO3 crystals; these include: (1) the 

different BC concentrations used herein were harvested from one single bacterium 

type (e.g. Sporosarcina pasteurii); (2) the CS concentrations used were based on 

equimolar concentrations one part urea to one part CaCl2 (to source the CO3
2- ions 

and Ca2+ ions, respectively); and (3) the injection strategy implemented is based on a 

two-phase injection approach. It can be envisaged that using different types of 

ureolytic bacteria with either higher or lower BC concentrations or different non-

equimolar concentrations of CS may yield different results. This is because different 

bacteria types have different rates of urea hydrolysis. Also, the use of not ureolytic 

bacteria should be taken into consideration as non-ureolytic bacteria did not use the 

same urea hydrolysis reaction pathway to produce CaCO3 crystals. In addition, the 

use of different concentrations of the chemicals which made the CS e.g. urea and the 

calcium chloride were shown to affect the rate of the bio-cementation since different 

concentrations of CS require different reaction times to be fully consumed by the 

supplied bacteria. Different injection strategies such as the injection, pre-mixing or 

surface percolation methods may bring about different bacteria and CS distributions 

within the sand columns, changing the physical and mechanical outcomes of the 

cemented soil. It is noted that, the issue of treatment homogeneity which results from 

the homogeneous distribution of CaCO3 crystals precipitation remains the major 

obstacle for MICP moving forward.  

 

The conclusions of the current research might not be applicable to other types of 

sands (e.g., calcareous sand), which have different mineralogy properties and shapes, 

and the surface properties of the soil grain will have significant effect on the 

characteristics of the CaCO3 precipitates thus, ensuing the characteristics of 

cementation. However, the methodology developed in the current study can be 

readily employed for other types of coarse-grained soils. 
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4.5 Strength Comparison with Previous Studies 

 

A strength comparison chart in terms of the UCS values was produced and shown in 

Figure 4.25 for the optimised bio-cemented specimens treated with the combination 

of 32 U/mL BC and 0.25 M CS concentrations, along with results from previous 

studies. The main selection criterion for the list of the comparison is that those 

previous studies must have undergone similar optimisation; this can be in terms of 

their use of different treatment strategy, i.e. constant flow injection (Whiffin et al., 

2007); reagents manipulation, i.e. using low BC and high CS concentrations (Al 

Qabany & Soga, 2013); using a different type of bacteria, i.e. Bacillus Megaterium 

(Duraisamy & Airey, 2015); using urease enzyme as a substitute for ureolytic 

bacteria (Zhao et al., 2014a); using a different type for the calcium source, e.g. 

soluble calcium derived from seawater (Cheng et al., 2014), calcium derived from 

egg shells (Choi et al., 2016)]; and using a low degree of saturation (S = 20%) 

treatment to produce effective CaCO3 crystals (Cheng et al., 2013). 

 

 

Figure 4.25: Strength comparison of the current results with previous studies 
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Figure 4.25 reveals that the strength values from the current study lie significantly 

above all previous studies, except those reported by Cheng et al. (2013), especially at 

CaCO3 contents lower than 5%. The results from Cheng et al. (2013) were achieved 

by maintaining a partially saturated condition in the soil matrix during the MICP 

treatment. Apparently, the partially saturation condition triggered a strong coating 

effect, which is predominantly attributed to the homogeneously distributed solution 

on absorbed by the surface of the sand grains by the surface tension needed for the 

MICP solution to make such coating effect. It was also reported that the host grains’ 

gaps were filled with CaCO3 crystals, which were precipitated as a result of the 

retained MICP solution located at the grains in a menisci form, allowing the CaCO3. 

Although the low degree of saturation condition proved to produce effective CaCO3 

crystals that are mainly precipitated at the soil pore throats, it will be practically of 

limited use, since it is difficult to control and maintain the inner soil matrix saturation 

condition that is critical for its effectiveness. However, using the method described in 

the current study will make the precipitation of the effective CaCO3 crystals at the 

soil pore throats possible for field application due to the fact that it just require 

manipulation of the BC and CS concentrations with no other restrictive preparation 

in the field of the manner needed for the method described by Cheng et al. (2013). 

The excellent strength improvement achieved by the method presented herein stems 

from the fact that the optimised CaCO3 crystals are relatively larger in size (> 20 

µm), concentrated at the soil pore throats and rhombohedral in shape as compared to 

the previously reported CaCO3 crystals precipitation patterns in the literature to date. 
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4.6 Summary 

 

The effects of some key environmental parameters such as the initial soil pH, the 

degree of the surface temperature, the freeze-thaw (FT) cycles and the rainwater 

flushing on the potential application of MICP in such conditions were examined. The 

results showed that the MICP treatment favoured both basic soil pH and ambient 

surface temperature conditions. Also, it was revealed that bio-cemented fine sand 

(0.15 mm in diameter) is more durable compared with bio-cemented coarse sand (1.18 

mm in diameter) under the action of up to 10 FT cycles while the impact was minor 

on the bio-cemented well-graded sand. It was also noted that MICP treatment failed to 

perform if rainwater was flushed even 24 hours and/or immediately after adding the 

bacteria. These findings are critical for application of the MICP in the field.  

 

It was found that the combination of the 32 U/mL BC and the 0.25 M CS 

concentrations provided the highest strength improvement. Similarly, the same 

combination yielded the highest permeability retention, suggesting that the said 

combination is the most optimum for strength improvement and permeability 

retention. Examination into the CCE revealed that the optimum number of CS 

injection for the optimised combination of reagents used in the present study is 4. 

Further supply of CS proved less effective in forming more CaCO3 crystals. The 

optimum number of CS injection is crucial for field application for both cost and 

environmental implications. 

 

Microstructural study of the CaCO3 crystals formation illustrated the specific 

mechanism associated with the effective CaCO3 crystals precipitation. The SEM 

images captured the bacteria attachment onto the sand grains, which leads to the 

formation of the nucleation sites, formation of the metastable primary spherical 

shaped precipitates, the clustering of the single crystals into mesocrystals towards 

large effective CaCO3 crystals, and the localisation of the effective CaCO3 crystals at 

the ‘strategic’ soil pore throats. 
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Through microstructural imaging, the unique characteristics of the effective CaCO3 

crystals were determined and explained. These include the propensity of the bacteria 

cells to align themselves at the vicinity of the soil pore throats, the relatively large 

CaCO3 crystals formed (> 20 µm in size) and the clustering of single crystal that 

eventually developed into rhombohedral mesocrystals. These unique characteristics 

of the effective CaCO3 crystals are the underlying factors for the enhanced strength 

improvement of the bio-cemented presented herein.  

 

The optimised bio-cemented specimens were compared to the conventional chemical 

stabilising technique using OPC treated specimens. The results showed that the 

optimised bio-cemented specimens performed better than the OPC treated specimens 

in terms of both strength and permeability; the effective CaCO3 crystals were shown 

to provide more liquid passage compared with the C-S-H gel like structures found in 

the OPC treated specimens. The results of the proposed optimisation recipe utilised 

in the current study performed better than the previous MICP studies reported in the 

literature. 

 

In the following chapter, the geotechnical behaviour of the optimised bio-cemented 

sand specimens is analysed through the triaxial testing considering the effect of 

different confining pressures and stress paths. Also, the experimental results 

conducted via the CU triaxial tests are compared to an analytical model for further 

validation.
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Chapter 5 

Geotechnical Behaviours of the Optimised Bio-

Cemented Sand 

_________________________________________ 
 

5.1 Introduction 

 

It has been demonstrated that the combination of both 32 U/mL BC and 0.25 

M CS used in this study has produced an effective CaCO3 crystal 

precipitation which increased both the strength improvement and the 

permeability retention of the bio-cemented sand compared to other previously 

known CaCO3 precipitation. In this chapter, the geotechnical behaviour of the 

bio-cemented sand employing the optimised combination recipe were further 

examined through the triaxial tests, considering the effect of different 

confining pressures (100 kPa, 200 kPa, and 400 kPa) and stress paths (axial 

compression and constant-p). It is postulated that the optimised bio-cemented 

sand would behave similarly (in general) under the different confining 

pressures owing to the precipitation of the effective CaCO3 crystals. 

However, the behaviour would be different under the different stress paths. 

Isotropic consolidated undrained (CU) triaxial tests were performed in order 

to capture the intended soil behaviour. A simple analytical model was 

presented at which, the results from the experiments were compared to 

predictions from the model. Finally, the shear strength parameters of the 

optimised bio-cemented sand were compared with results of previous studies 

found in the literature. The work presented in this chapter has formed the 

basis of the submitted article: Donovan Mujah, Mohamed A. Shahin, and 

Liang Cheng (2019). Experimental study and analytical model for strength 

behaviour of bio-cemented sand. Proceedings of ICE - Ground Improvement, 

under review (authorship attributions in Appendix D). 
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5.2 Triaxial Tests 

 

Montoya & DeJong (2015) indicated the role of confining pressure and cementation 

level towards the shear strength and stiffness of MICP cemented sands. Earlier, van 

Paassen et al. (2010a) and Chou et al. (2011) reported the dependency of the 

behaviour of MICP cemented sands on confining stresses between 5 – 40 kPa in the 

direct shear tests. Furthermore, Feng & Montoya (2016) studied the effect of higher 

confining stresses, i.e. 100, 200 and 400 kPa, and the influence of cementation levels 

on the behaviour of the MICP cemented sands. They concluded that the stiffness, 

peak shear strength and dilation increase with an increase in the CaCO3 content at a 

given effective confining pressure. Their results also noted that the dilation of the 

specimens is primarily suppressed with an increase in the effective confining 

pressure. The improvement in both the peak and residual friction angles and initial 

elastic modulus are dependent on both the cementation level and confining pressure. 

 

The mechanical behaviour of bio-cemented sand specimens prepared by the method 

described in this thesis was investigated at different conditions of cementation level, 

confining pressure (100, 200, and 400 kPa) and varying loading paths (axial 

compression and constant-p). The consolidated isotropically undrained test (CU) was 

chosen over the drained test (CD) because it can be performed much quicker and it 

also provides both the total and effective stress paths information. The peak and 

residual shear stresses were quantified using the brittleness index, IB, presented in 

Equation 5.1 (Bishop, 1971): 

 

p r

B

p

q q
I

q

−
=                 Equation 5.1 

 

Where; 

𝐼𝐵 = Brittleness index;  

𝑞𝑝 = Peak shear strength; and 

𝑞𝑟 = Residual shear strength.
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5.2.1 Influence of Confining Pressure 

 

The effects of confining pressure on the stress-strain behaviour of the untreated and 

bio-cemented sands are shown in Figures 5.1 and 5.2. Based on the results in 

Figure 5.1(a), the strength of the untreated (uncemented) sand increases significantly 

in a ductile manner with the increase in confining pressure for the 3 confining 

pressures of 100, 200 or 400 kPa. The strength of the untreated sand was attained at 

approximately ε = 3%, consistently for all confining pressures.  

 

As can be seen from Figure 5.1(b), the untreated sand tends to contract up to ε = 4% 

with increasing the pore water pressure (and decreasing in effective stress). Further 

shearing of the specimen invokes a dilative and an increase in the effective stress. 

This observation is valid for all untreated sand specimens regardless of the confining 

pressure. On the other hand, and within the same range of cementation and tested 

confining pressure, the stress-strain behaviour of the optimised bio-cemented sand 

varies. Medium cemented specimens having CaCO3 content between 5.2% and 5.5% 

were used for comparison with the behaviour presented above for the untreated sand. 

As expected, the cemented specimens always exhibit higher strength and stiffness 

compared with the untreated specimens at the same confining pressure. Generally, 

based on Figure 5.2(a), the optimised bio-cemented specimens exhibited a strain 

softening response after the peak stress, regardless of the confining pressure. 

However, the overall shearing response of all tested specimens was of a strain 

hardening fashion up to ε = 1%. 
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Figure 5.1: CU tests of the untreated sand: 

 (a) stress-strain curve; and (b) excess pore water pressure

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

D
ev

ia
to

r 
S

tr
es

s,
 q

(k
P

a
)

Axial Strain, ε (%)

Pc = 100 kPa

Pc = 200 kPa

Pc = 400 kPa

a

-250

-200

-150

-100

-50

0

50

100

150

0 2 4 6 8 10 12 14 16

E
x
ce

ss
 P

o
re

 W
a
te

r,
 Δ

u
 (

k
P

a
)

Axial Strain, ε (%)

Pc = 100 kPa

Pc = 200 kPa

Pc = 400 kPa

b
……. σc = 100 kPa

------- σc = 200 kPa

σc = 400 kPa

……. σc = 100 kPa 

------- σc = 200 kPa 

          σc = 400 kPa 

 



Chapter 5: Geotechnical Behaviours of the Optimised Bio-Cemented Sand 

 

136 
 

 

 

 

Figure 5.2: CU tests of the optimised bio-cemented sand: 

 (a) stress-strain curve; and (b) excess pore water pressure
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Based on the results in Figure 5.2(a), at a confining pressure = 100 kPa, the 

optimised bio-cemented specimen attained a peak strength q = 890 kPa at ε = 1%, 

followed by a strain softening behaviour. However, at higher confining pressures of 

200 kPa and 400 kPa, the corresponding q = 1040 kPa and 1525 kPa were attained at 

ε = 0.95% and ε = 1.4%, respectively. Based on this observation, it can be said that, 

for a confining pressure of 100 kPa and 200 kPa, only minor change in the axial 

strain values was recorded at peak strength. However, at the higher confining 

pressure of 400 kPa, a much less axial strain value of 0.4% is required to increase the 

peak stress from 890 kPa to 1525 kPa, signifying the effect of the higher confining 

stress on the specimen stiffness. The sudden increase in stiffness under the 400 kPa 

confining pressure can be attributed to the degradation of the CaCO3 bond inside the 

soil matrix, manifesting as fines that increased the soil grains roughness (DeJong et 

al., 2010; Montoya & DeJong, 2015).  

 

Strong negative pore pressures were observed in all confining pressure conditions, as 

shown in Figure 5.2(b). The results indicated that higher confinement leads to a 

larger negative pore pressure. For instance, increasing the confining pressure from 

100 kPa to 400 kPa resulted in no change in the positive peak values of. u ; 

however, the confining pressures seen to mobilise the development of higher 

negative u values at the residual state zone. The changes in pore pressure were due 

to the change in the mean total stress and/or the tendency of the volume of the soil to 

dilate post peak. In this case, the optimised bio-cemented specimens displayed more 

dilative tendency at the strain-softening zone due to the increase in stiffness as a 

result of the increase in the pore pressure. 

 

Generally, cementation suppresses the tendency of the particles to crush from initial 

loading. This is reflected in an essentially elastic compression curve up to the yield 

point. Prior to the yield point, degradation of the cementation is brittle, followed by a 

strain softening response. The strain softening behaviour observed after the brittle 

yielding could either continue towards the residual value or change to strain 

hardening due to mobilisation of friction.  
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5.2.2 Brittleness Index 

 

The brittleness index, IB, relates the residual shear strength value rq  to the peak shear 

strength value,
pq , as represented by Equation 5.1. Figure 5.3 compares the BI  values 

of the untreated and the bio-cemented sands (the optimised, high BC + high CS, and 

low BC + low CS combinations). Based on Figure 5.3, the confining pressure has no 

impact in the case of the untreated sand. However, as expected, the BI values in the 

case of bio-cemented specimens is much higher than those in the case of no treatment 

and gradually reduces with confining  pressure ( BI  = 0.72, 0.52 and 0.33 at confining 

pressures of 100 kPa, 200 kPa and 400 kPa, respectively). The combination of high 

BC + high CS treatment produced the most brittle specimens regardless of the 

confining pressures due to the precipitation of much smaller CaCO3 crystals 

cementing the sand grains. The high BI  value indicates that more degradation in the 

CaCO3 bond has occurred in the residual stress zone, which eventually led to 

specimen failure. 

 

Figure 5.3: Brittleness index of the untreated and the bio-cemented sands
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5.2.3 Undrained Peak Failure Envelope 

 

The improved response of the loose treated sand with MICP could occur from two 

effects i.e. densification (as a result of soil dilation under loading not considering any 

binding/cementation effects created by the CaCO3 crystals), and cementation (as a 

result of the CaCO3 crystals binding). Precipitated CaCO3 crystals reduced the sand 

void ratio and upon undrained shearing, the mean stress will increase until the critical 

state line (CSL) is reached due to the propensity of sand to dilate (DeJong et al., 

2010). Figure 5.4 shows the undrained peak failure envelope for both the untreated 

and bio-cemented sands, along with the full stress path of the tested specimens. 

Based on the peak failure envelope of the untreated sand, it is determined that the 

(q-p’ space intercept) and   (q-p’ space slope angle) values are zero kPa and 27°, 

respectively. The equivalent shear strength parameters are 'c = 0 and '  = 31°. On 

the other hand, the corresponding values of   and   for the bio-cemented sand are 

278 kPa and 44°, respectively.  

 

  

Figure 5.4: Undrained stress path and peak failure envelope for the untreated 

and optimised bio-cemented sands
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The failure envelope of the MICP treated sand was greater than that of the untreated 

sand since the increased density and particle angularity (from the precipitated 

CaCO3) increases the resistance to shearing. The CSL prior to and after MICP 

treatment was shifted due to the CaCO3 changing the particle properties (e.g. shape) 

and gradation of the sand tested. Cementation of the sand particles together further 

increases soil strength. The cementation increases the initial stiffness of soil at small 

strains and the maximum deviatoric stress (q) that can be applied before the 

specimen begins to yield (Figure 5.4). As the maximum shear resistance is reached, 

localised shearing and breakage of the CaCO3 cementation bonding initiates. As 

bonds continue to break, the shear resistance continues to decrease until the soil has 

completely failed, and the benefit of cementation is lost. However, at this failed state, 

the benefits of densification are still taking effect as shown by the much higher CSL. 

 

5.3 Response to Different Stress Paths 

 

Figure 5.5 shows the undrained shear stress behaviour of the optimised bio-cemented 

sand under the constant-p stress path (achieved by increasing σ1 while decreasing σ3 

at a constant total mean stress where σ1 and σ3 are the major and minor principal 

stresses, respectively; this produces the total stress path shown in Figure 5.6, since

3

1

0.5





= −


). Based on Figure 5.5(a), the peak q value increases at low axial strain 

values (1 – 1.3%) with the increase in the confining pressures from 100 kPa to 400 

kPa. The peak shear stress occurred at approximately 1% axial strain for both the 100 

kPa and 200 kPa confining pressures whereas, for the 400 kPa confining pressure, 

the peak shear stress transpired at 1.4% axial strain. Clear strain hardening followed 

by peak shear stress value that eventually developed into strain softening can be seen 

at the 400 kPa confining pressure condition. However, the behaviour of the 

optimised bio-cemented specimen under the 100 kPa and 200 kPa confining 

pressures slightly deviate in terms of no significant peak shear stress was noticed and 

that the q value levelled off until failure with no visible strain softening observed. It 

is also noted from Figure 5.5(b) that the excess pore water pressure registered only 

negative values (signifying high dilation) at the shearing stage, leading to a deviation 

from its behaviour under the axial compression loading path. 
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Figure 5.5: Undrained constant-p test of the optimised bio-cemented sand:  

(a) stress-strain curve, and (b) excess pore water pressure 
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Figure 5.6: Schematic diagram showing the total stress paths 

 

Figure 5.7 shows the effective stress paths for both the axial compression CU and 

constant-p tests. It can be observed from the figure that, for a confining pressure of 

100 kPa, the optimised bio-cemented specimens coincidentally behave quite similar 

in both stress paths loading conditions. Similar behaviour was reported by Montoya 

& DeJong (2015) under 100 kPa confining pressure. This behaviour under small 

confining pressure can be attributed to the much slower rate of stiffness reduction 

due to cementation degradation prior to failure. However, it is noted that for the axial 

compression CU test, after a certain critical point, the drop in the q  value is 

significant as the 'p  value increases meanwhile, for the constant-p test, q  value 

remains constant. The abrupt reduction in 'p  when maximum q  was reached 

signifies that the benefit of CaCO3 cementation is lost as bonds continue to break 

until the soil has completely failed.  

 

Interestingly, the behaviour of the bio-cemented specimens changed in much higher 

confining pressures, i.e. 200 kPa and 400 kPa. It seemed that in both confining 

pressure conditions, q  value drops significantly in the axial compression CU test 

while, the drop is less significant in constant-p test as the 'p  value increases. 
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Figure 5.7: Effective stress paths for the axial compression and constant-p tests 

 

5.4 Relationship between Emax and qmax for various geomaterials 
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elastic modulus, Emax (the maximum soil stiffness i.e. the ratio between stress and 

strain in the elastic soil region), and the maximum deviator stress, qmax, for various 

geo-materials was examined (Figure 5.8). It can be seen that the bio-cemented sands 

(1 GPa < Emax < 10 GPa) behave reasonably well in terms of the soil elastic modulus 

when compared to other geo-materials; the bio-cemented sand treated using the 

recipe developed in this study can be positioned in between that of artificially soft 

rock and also 5 to 6 flushes of using the technique called calcite in-situ precipitation 

system (CIPS) (Ismail, 2000). 

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400

D
ev

ia
to

r 
S

tr
es

s,
 q

(k
P

a
)

Mean Effective Stress, p' (kPa)

Axial Compression (Pc = 100 kPa)

Constant-P (Pc = 100 kPa)

Axial Compression (Pc = 200 kPa)

Constant-P (Pc = 200 kPa)

Axial Compression (Pc = 400 kPa)

Constant-P (Pc = 400 kPa)

- - - - Axial compression (σc = 100 kPa) 

         Constant-p (σc = 100 kPa) 

         Axial compression (σc = 200 kPa) 

         Constant-p (σc = 200 kPa) 

         Axial compression (σc = 400 kPa) 

         Constant-p (σc = 400 kPa) 

- - - - Axial compression (σc = 100 kPa) 

         Constant-p (σc = 100 kPa) 

         Axial compression (σc = 200 kPa) 

         Constant-p (σc = 200 kPa) 

         Axial compression (σc = 400 kPa) 

         Constant-p (σc = 400 kPa) 



Chapter 5: Geotechnical Behaviours of the Optimised Bio-Cemented Sand 

 

144 
 

 

Although the improvement of the mechanical behaviour of the bio-cemented sand 

proposed by this study performed much lower than that of the concrete, it was 

revealed that MICP treatment has higher permeability retention compared to that of 

using cement based reinforcing agent for soil stabilisation (Mujah et al., 2019). Also, 

the present study could be performed slightly at par with 3 to 4 flushes of CIPS, 

despite having much lower calcite content, proves that the amount of calcite content 

does not necessarily correlate to the strength and stiffness improvement; rather, it is 

the efficacy of the precipitate that is more dominant. 

 

 

Figure 5.8: Relationship between Emax and qmax for various geomaterials 

(modified after Ismail, 2002) 
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5.5 Comparison of the Shear Strength Parameters 

 

A comparison of the various shear strength parameters obtained from this research 

and other previous studies in the literature is presented in Table 5.1. The shear 

strength parameters obtained from the current study (based on the results of the axial 

compression CU triaxial tests) are the highest when the CaCO3 contents were 

compared, even for higher CaCO3 from the literature. This signifies the effectiveness 

of the precipitated CaCO3 crystals formed in the present study. Although the heavily 

cemented specimen produced by Feng & Montoya (2016) recorded an average 

CaCO3 content of 5.3% equal the one used in the present study, the improvement in 

the shear strength parameters was not as significant. This further proves that the 

unique precipitation pattern of the optimised bio-cemented specimen produced with 

the recipe presented in the current study is more efficient. However, caution must be 

made in this generalisation as the properties of the sands used (soil grains size, 

shapes, and relative densities) could play significant role in the achievement of the 

improved strength. 

 

Table 5.1: Comparison of the various shear strength parameters 

Cementation level Reference CaCO3 

content 

(%) 

c′ 

(kPa) 

ϕ′ 

(°) 

Lightly cemented  Feng & Montoya (2016) 1.4 5 34 

Medium cemented  Feng & Montoya (2016) 2.4 9 38 

Medium cemented Present study 5.1 278 44 

Medium cemented  Feng & Montoya (2016) 5.3 59 41 

Heavily cemented Terzis et al. (2016) 8.5 253 44 

Heavily cemented Cui et al. (2017) 8 200 42 
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5.6 Prediction of qu 

 

The ultimate strength, uq , of the artificially cemented granular soils is positively 

influenced by an increase in cement content and decrease in porosity (Wang & Leung, 

2008; Rios et al., 2012). It was shown by Consoli et al. (2007) that the adjusted 

porosity/cement ratio, / c

ivn C , could be plotted against uq to describe a unique 

hyperbolic relationship for a given soil and cement type, as shown in Equation 5.2 

(Consoli et al., 2007): 

 

b

u c

iv

n
q B

C

 
=  

 
                            Equation 5.2 

 

where; n  is the sample porosity and 
ivC  is the percentage of the cement volume over 

the total volume of the specimen. The exponent, c , can be approximated to 1.0 for 

clean granular soils (Consoli et al., 2013). The term b is the empirical exponent 

derived from the experiments while the term B is the multiplying factor controlled by 

the sand matrix properties. The theoretical model presented in the current study was 

modified from the model developed by Diambra et al. (2017) to predict uq of 

artificially cemented sand using Portland cement. The proposed theoretical model to 

predict the overall constitutive behaviour of the cemented soil herein is based on the 

consideration that the cemented soil acts as a multiphase material imposing the 

superposition of the stress contributions of cement bonds as well as the sand grains.  
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5.6.1 Theoretical Model 

 

The proposed theoretical model assumed that the bio-cemented soil composite is 

made of the soil phase and the cement phase with the following characteristics: 

 
1. The soil composite is isotropic. 

  
2. The behaviour of the bio-cemented soil at failure is governed by the superposing of 

both phases contributed by their strengths [following the stress superposition 

approach proposed by Vatsala et al. (2001)]. 

 
3. The failure of the bio-cemented soil composite occurs as a result of the 

simultaneous failure of both the cemented and soil matrix phases [following the 

proposed failure mechanism by DeJong et al. (2010)]. 

 
4. The strain tensors are compatible with the soil and cement phases [following the 

parallel spring approach proposed by Vatsala et al. (2001)]. 

 

The failure stress state of the bio-cemented soil composite,  , can be derived from 

the failure stresses of its constituents, i.e. failure stress of the soil matrix phase, m , 

and the failure stress of the cement phase, c , following the volumetric averaging 

approach as shown in Equation 5.3 (Diambra et al., 2013): 

 

m m c c    = +   Equation 5.3 

 

where, m  and c  are the volumetric concentrations of the soil and cement in the bio-

cemented soil composite respectively. Equation 5.3 can be expanded in terms of the 

total mean stress, p , and deviatoric stress, q , components to satisfy the axisymmetric 

stress conditions of the UCS test procedures, as expressed in Equation 5.4: 

 

m c

m c

m c

q qq

p p p
 

    
= +    

     
  Equation 5.4
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5.6.2 Failure of the Soil Phase 

 

It is assumed that in the soil phase, the grain crushing does not occur during loading; 

thus, its effect on the strength of the soil matrix and the overall failure mode is 

therefore, negligible. The density-dependent deviatoric stress and mean stress ratio,

m

m

q

p
, is normally used to represent the strength of granular soils. Diambra et al. (2017) 

introduced a state parameter,  , which is the ratio between the current density state 

with the density at the critical state, to link the strength of the material as shown in 

Equation 5.5: 

 

csn

n
 =                             Equation 5.5 

 

where; n  represents the current soil porosity and csn  refers to the critical state soil 

porosity. 1   represents the state on the loose side of the critical state line (CSL) 

and 1   represents the state on the dense side of the CSL. According to Diambra et 

al. (2017), the granular soil stress ratio at failure can then be expressed by Equation 

5.6: 

 

*

a

m cs

m

q n
M M

p 

 
= =  

 
                                      Equation 5.6 

 

where; *M is the peak strength, M is the critical state strength and a  is the model 

parameter that links the peak strength to the state parameter. 
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5.6.3 Failure of the Cement Phase 

 

The strength of the cement phase can be described using the Drucker-Prager failure 

criterion, as presented by Diambra et al. (2017) in Equation 5.7: 

 

c c c cq c M p= +                 Equation 5.7 

 

where; cc  is the cohesion of cement phase and cM  is the slope of the failure line for 

cement phase in the c cq p−  plane, can be linked to the uniaxial compressive 

strength, c

c , and the uniaxial tensile strength, t

c , of the cementing agent by the 

following expressions: 

 

2
1

c

c
cc





 
=  

− 
                            Equation 5.8 

 

and 

 

1
3

1
cM





 +
=  

− 
                Equation 5.9 

 

where;   is the ratio between the uniaxial compressive and the tensile strengths: 

 

c

c

t

c





=                Equation 5.10 
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5.6.4 Strength Relationship for the Bio-Cemented Sand 

 

Substituting Equations 5.6 and 5.7 into Equation 5.4, uq  can be derived as: 

 

*
3

3 *

c c c c
u c

c M p M p
q

M


+ − 
=  

− 
                       Equation 5.11 

 

An estimation of the confining stress of the current cement phase, cp , is required to 

ensure that Equation 5.11 is expressed in terms of the soil and cement phase strength 

only. Hence, it is assumed that the artificially cemented soil exhibits a quasi-elastic 

behaviour up to the peak strength under the UCS test conditions. Therefore, the 

radial strain of the cemented soil, r , and the axial strain of the cemented soil, a , 

can be linked in Equation 5.12 (Diambra et al., 2017): 

 

r a = −                           Equation 5.12 

 

where;   is the bio-cemented soil composite Poisson’ ratio. It is possible to derive 

the cement stress ratio, cK  (Equation 5.13) based on the approximation between the 

ratio of deviatoric stress, cq , and isotropic stress, cp , assuming the strain 

compatibility condition that both the soil and cement phases experienced the same 

strain field at which, they are behaving elastically up to the peak strength (Diambra 

et al., 2017): 

 

1 21
3

1 1 2

c c
c

c c

q
K

p



 

  −+  
= =   

+ −  
                       Equation 5.13 

 

where; c  is the cement Poisson’ ratio. The combination of Equation 5.7 and 

Equation 5.13 yields the expression for isotropic stress at failure for the cement 

phase Equation 5.14 (Diambra et al., 2017): 
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c
c

c c

c
p

K M
=

−
              Equation 5.14 

 

By substituting Equation 5.14 into Equation 5.11, the following relationship for uq  is 

obtained: 

( ) ( )
6

1 3 1
3

a

cs
cc

c c
u a

c cs

n
K M

n
q

K n
M

n

 

 

  
−      =     − + +    −  

  

          Equation 5.15 

 

Equation 5.15 provides a direct expression for uq of the bio-cemented soil as a 

function of the porosity, n  and the volumetric concentration of the cement, c  

provided that the parameters given in Table 5.2 are constant relative to the soil and 

cement phases. The value of the soil porosity at the critical state is considered a soil 

constant independent of the mean effective stress. 

 

Table 5.2: Proposed model parameters 

Phase Variable Symbol Values 

LC MC HC 

Soil 

phase 
Critical state soil strength ratio M  1.36 1.36 1.36 

Critical state soil porosity 
csn  40% 40% 40% 

Parameter governing dependence of 

soil strength and density 

a  1.2 2.3 3.1 

Cement 

phase 
Compressive cement strength c

c  1.2 MPa 1.8 MPa 3.5 MPa 

Tensile cement strength t

c  0.3 MPa 0.4 MPa 0.7 MPa 

Cement strength ratio   4 4.5 5 

Cement stress ratio 
cK  -6 -5 -3 

LC = Lightly cemented silica sand 

MC = Medium cemented silica sand 

HC = Heavily cemented silica sand 
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5.6.5 Calibration of Model Parameters 

 

The values of the critical state strength ratio, M  (linked to the critical state friction 

angle,  ) and the critical state porosity, csn , were derived from the triaxial tests 

conducted in the laboratory. A series of 3 sets of triaxial tests comprising of different 

degree of cementation; lightly cemented (2–4% calcite content), medium cemented 

(4–6% calcite content), and heavily cemented (> 6% calcite content) were prepared 

in the laboratory. The estimation of the parameter a  for the soil was made from the 

calibration exercise of the data obtained through Equation 5.6 with the UCS values 

shown in Figure 5.9. The value of the parameter   relative to the cement phase was 

selected based on the typical ranges of the uniaxial compression and tensile cement 

strength values for bio-cemented soil based on the UCS and the tensile strength tests 

conducted in the laboratory (Appendix F). Since the value of the parameter cK  is 

dependent on the Poisson’s ratios of the cemented soil and the cement phase, a 

constant value of 4cK   is adopted (Diambra et al., 2017). The strength parameter of 

the cementing phase, c

c , was determined by matching the UCS given by Equation 

5.15 with the experimental results. 

 

  

Figure 5.9: Calibration of the parameter a  for soil using peak strength data 

from triaxial test 
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5.7 Theoretical Model Prediction  

 

The model predictions and the experimental results versus the n/Civ ratio for the three 

cementation levels are shown in Figure 5.10. Figure 5.10(a-c) shows clearly that the 

model predicts the uq  values reasonably well. For example, in the lightly cemented 

sand condition [Figure 5.10(a)], both data converge into a similar curve, though the 

slope of the experimental data is steeper than the model prediction especially from 15 

to 20 n/Civ values. In the case of medium cementation, Figure 5.10(b) shows that the 

model underestimates the experimental data at strength levels higher than 1500 kPa; 

however, the model begins to converge well with the experiment data at 8 to 10 n/Civ 

values. In the heavily cemented sand condition [Figure 5.10(c)], the model slightly 

overestimated the experimental data. Figure 5.10(d) shows the direct comparison 

between the model predictions and the experiment results. The results demonstrate 

that the compared data relates well with each other. Nevertheless, it must be noted 

that slight discrepancies exist in the data arising from the difficulty in estimating the 

exact percentage of cementation. This difficulty has been circumvented by 

combining the strength of the cemented bonds to be considered as a unique model 

parameter.  

 

The observations made in this study were based on the use of Silica sand with mostly 

round soil grains shape cemented with the effective CaCO3 crystals. The accuracy of 

the model prediction may differ if: (1) different soil properties, e.g. soil grains size 

and shape were used. Ismail et al. (2002a) reported the influence of the soil particle 

size and shape (round or non-angular grains) towards the strength of the cemented 

soil; and (2) different cementation bonding parameters were applied based on the 

type of the CCPP. It is shown that the different type of CCPP would produce 

different strength improvement as concluded in Section 4.3, as it affects the peak 

strength of the bio-cemented specimens. 
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Figure 5.10: Comparison between model predictions and experimental results: 

(a) lightly cemented sand; (b) medium cemented sand; (c) heavily cemented 

sand; and (d) direct comparison between model predictions and experimental 

results 
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5.8 Summary 

 

The geotechnical behaviour of the optimised bio-cemented specimens was examined 

in this chapter. Experimental programs consisting of the isotropically consolidated 

undrained compression tests (CU) under different confining pressures (100, 200 and 

400 kPa) and specialist stress paths were performed. The stress path analyses include 

the axial compression and constant-p analysis. The experimental data were compared 

with the available data published in the literature in terms of their respective shear 

strength parameters ( and ) in order to verify the effectiveness of the optimised 

bio-cemented specimens treated with the combination of 32 U/mL BC and 0.25 M CS 

concentrations. The results confirmed that the proposed MICP recipe has greatly 

improved the shear strength parameters of the optimised bio-cemented sand compared 

to the untreated sand and previous studies.  

 

An analytical model to predict the  value of bio-cemented sand was analysed and 

compared with the experimental data. The results showed reasonable convergence of 

the compared data. It must be noted that discrepancy arises from the difficulty in 

estimating the exact percentage of cementation has been circumvented by combining 

the strength of the cemented bonds to be considered as a unique model parameter. In 

the following chapter, general summary and comprehensive conclusions with 

recommendations for future work are presented. 

' 'c

uq
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Chapter 6 
 

Summary, Conclusions and Recommendations   
 

 

6.1    Summary 

  

This thesis investigated a new (or modified) technique whereby sands can 

be cemented artificially by calcite (CaCO3). This technique is achieved 

through the precipitation of effective CaCO3 crystals. It is based on using 

urease bacteria in a biochemistry reaction to produce the effective CaCO3. 

The thesis presented the results of a comprehensive study aimed at 

understanding the different CaCO3 crystals precipitation patterns. The work 

focused on determining the optimum design of the process (procedure, 

concentrations and the effective CaCO3 crystal precipitation) for potential 

field application. In terms of the depositional environment for the artificial 

CaCO3, the results showed that the MICP treatment favoured basic soil pH 

and ambient surface temperature conditions. Also, it was revealed that fine 

sand (0.15 mm in diameter) is more durable than coarse sand in resisting 

harsh conditions while the impact was minor in well-graded sand. It was 

also noted that MICP treatment failed to perform if rainwater was flushed, 

immediately after the bacteria placement or even 24 hours after.  

 

In this study, effective CaCO3 was proposed by successfully combining the 

different bacteria culture (BC) and cementation solution (CS) concentrations 

in the laboratory. The results revealed that the combination of a high BC 

concentration (32 U/mL) and a low CS concentration (0.25 M) produced the 

most effective CCPP with distinctive characteristics of the produced 

crystals: (1) relatively large crystals; (2) rhombohedral crystal shape and (3) 

effectively concentrated at the soil pore throats. This combination also 

yielded the highest strength improvement and the lowest reduction in 

permeability, suggesting that the said combination is the most optimum for 

field application requiring strength improvement and permeability retention. 
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Examination into the chemical coefficient efficiency (CCE) revealed that the optimum 

number of CS injection for the optimised combination of reagents used in the present 

study is 4. More injections proved less effective in forming more CaCO3 crystals. 

Obviously, knowledge of the optimum number of CS injection is vital for feasibility 

of field applications, to ensure full consumption of the supplied BC without economic 

wastage in each treatment cycle.  

 

The optimised bio-cemented specimens were compared to the conventional chemical 

stabilisation technique using ordinary Portland cement (OPC) treated specimens after 

28-day curing. The results showed that the optimised bio-cemented specimens 

performed better in terms of higher strength and higher permeability. The superiority 

of the bio-cementation is believed to result from the intrinsic features of the effective 

CaCO3 crystals compared with the formation of the calcium silicate hydrate (C-S-H) 

gel like structure found in the OPC treated specimens. 

 

A comprehensive electron microscope (SEM) study was undertaken to study the 

precipitation mechanism of the various calcite crystal precipitation patterns (CCPP) 

produced as a result of the precipitated CaCO3 crystals proposed in this study. The 

SEM images successfully captured the process of bacteria attachment onto the sand 

grains, which instigates formation of: nucleation sites, metastable primary spherical 

shaped precipitates; and cluster of effective CaCO3 crystals that precipitate 

strategically at the soil pore throats. The unique characteristics of the effective CaCO3 

crystals were determined through the microstructural imaging.  

 

A theoretical model based on the concept of superposition of strength contributions 

from both the soil and cement phases was also developed. The model assumes that the 

soil behaves in accordance with the critical state soil concept, while the strength of the 

cemented phase is described using the Drucker-Prager failure criterion. In this model, 

the ultimate strength, , of the bio-cemented sand is a function of the adjusted 

porosity/cement parameter. The model successfully predicted the experimental and 

theoretical data reasonably well. 

 

uq
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The mechanical behaviour of the untreated and the optimised bio-cemented 

specimens was assessed using triaxial testing. CU tests under different confining 

pressures of 100, 200 and 400 kPa and stress paths (axial compression and constant-

p) were performed. The results showed that increasing the confining pressures from 

100 kPa to 400 kPa increased the yield stress of both the untreated and optimised 

bio-cemented specimens. For the optimised bio-cemented specimen, under 100 kPa 

and 200 kPa confining pressures, insignificant effect on the increased stiffness was 

observed. However, under the 400 kPa confining pressure, a noticeable change in the 

axial strain value is required to increase the peak stress, demonstrating the effect of 

the high confining stress on the optimised bio-cemented specimen stiffness. Strong 

negative pore pressures were observed in all confining pressures and the 400 kPa 

confining pressure lead to a larger negative pore pressure.  

 

The dilation tendency of the bio-cemented specimens occurred at different strain 

values regardless of the confining pressures. The high brittleness index, value 

observed in the 400 kPa confining pressure indicates that more degradation in the 

CaCO3 bond occurs in the residual stress zone, which leads to failure. It is also noted 

that the residual stress values for the optimised bio-cemented specimen recorded 

higher values at high strains compared to the peak stress values attained in the 

untreated sand sample. The behaviour of the optimised bio-cemented specimens are 

characterised by a strain softening response with gradual degradation towards the 

residual strength until failure. 

 

Examination into the mechanical improvement of the optimised bio-cemented sands 

treated using the recipe developed in this study behaves reasonably well compared to 

other geomaterials. Based on the comparison of the various geomaterials, it can be 

concluded that the optimised bio-cemented sands produced by the current study can 

be positioned in between that of artificially soft rock and 5 to 6 flushes of using the 

calcite in-situ precipitation (CIPS) technique. Moreover, using the proposed CCPP 

developed in this study, the shear strength parameters of the optimised bio-cemented 

sands are generally higher than their counterparts from earlier MICP treatments. 
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6.2 Conclusions 

 

The work presented in this thesis explores the different types of the CaCO3 crystals 

precipitation patterns (CCPP) and how they affect the engineering properties of bio-

cemented sands. For this purpose, different combinations of MICP reagents (BC and 

CS) were examined and the optimum combination that produced the desired 

engineering properties improvement as outlined in this thesis was presented. 

Investigation into the MICP treatment process optimisation led to the following 

findings: 

 

• For optimum results, MICP treatment is best conducted at neutral soil  conditions 

(pH around 7). 

• For optimum results, MICP treatment is best performed at ambient surface 

temperature (25°C). This temperature is the most optimum condition for the 

bacterium species used in this study, i.e. Bacillus sp. 

• Fine sand (0.15 mm in diameter) is more durable than the coarse sand (1.18 mm 

in diameter) under the action of up to 10 FT cycles. While the impact is minor 

towards well-graded sand. 

• MICP treatment would fail to perform if rainwater is flushed 24 hours and/or 

immediately after the bacteria placement into the treated sand  column. 

• Different CCPPs produced different engineering properties in the bio- cemented 

sand. The combination of 32 U/mL BC and 0.25 M CS yielded the highest 

strength improvement in terms of UCS value. The combination of 32 U/mL BC 

and 0.25 M CS yielded the lowest permeability  reduction value of about 40%. 

• Precipitation of relatively large, rhombohedral CaCO3 crystals that concentrate 

at the soil pore throats proved to be highly effective in terms of enhancing the 

engineering properties of the bio-cemented sand. 

• The optimised bio-cementation provided better levels of improvement compared 

with earlier studies. 

• One excellent feature of the optimised MICP process is that the increase in the 

produced amount of CaCO3 is associated with the increase in the size of their 

crystals, a critical reason for superiority of the technique. 
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• The optimised bio-cemented sand samples shown brittle behaviour compared 

 with the OPC treated sand samples within the tested cementation levels. 

• Comparison of the optimised bio-cemented specimens with the previous 

 MICP  treated specimen by other studies revealed that the optimised bio-

 cemented material performed better in terms of the strength  improvement, 

except against the partial saturation technique; however, such a technique was 

shown to be impractical for field application. 

 

Investigation into the microstructural analysis of the precipitation mechanism of the 

effective CaCO3 crystals evolution and their unique features led to the following 

findings: 

 

• After the first injection, bacteria attachment onto the sand grains that leads to the 

 birth of nucleation sites is shown.  

• After the second injection, the formation of metastable primary spherical shaped 

 precipitates before they morph into the secondary more stable precipitate form 

 was demonstrated. 

• After the third injection, a cluster of single crystal creating mesocrystals that 

 successively form the effective CaCO3 crystals was captured. 

• After the fourth injection, the precipitation of the effective CaCO3 crystals 

 concentrated at the soil pore throat was noted.  

• Transition of the metastable primary precipitate towards the more stable 

 secondary single crystal was also captured after the second injection using 0.167 

 mol/L/h input rate. This transition phase is only observed when the input rate is 

 more than 0.042 mol/L/h. 

• The microstructural analysis revealed that the concentration of the CaCO3 

 crystals at the soil pore throat stems from two main factors: (1) 

 availability of the rich nutrient in that area; and (2) the 

 lower stresses existing in the menisci region of the soil pore throats.
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• Another feature of the effective CaCO3 crystals is their relatively large size 

 (normally > 20 µm) compared to the available recorded size of the previous 

 CaCO3 crystals (normally 5 < size < 10 µm). This can be attributed to the 

 progressive increase in the supersaturation condition as a result of the increase in 

 the concentrations of the Ca2+ and CO3
2- ions in the MICP environment thus, 

 leading to the accumulation of succeeding precipitations over the initial small 

 CaCO3 crystals.  

• Another feature of the effective CaCO3 crystals is their final development into 

 a rhombohedral shape that provides better interlocking mechanism for more 

 shear resistance. 

 

Investigation into the effect of the effective CaCO3 crystals precipitation into the 

optimised bio-cemented sand geotechnical behaviours led to the following findings: 

 

• Increasing the confining pressure from 100 kPa to 400 kPa generally increase the 

peak stress values of all the untreated and optimised bio-cemented specimens. 

• At confining pressure = 100 kPa, the optimised bio-cemented specimen attained 

peak q = 890 kPa at ε = 1%, followed by strain softening behaviour. 

• At higher confining pressures of 200 kPa and 400 kPa, peak q = 1040 kPa and 

peak q = 1525 kPa were attained at ε = 0.95% and ε = 1.4%, respectively.  

• Strong negative pore pressures were observed in all confining pressures. 

• Dilation tendency occurred at different strain values of 4%, 3% and 2% axial 

strains for the confining pressures of 100 kPa, 200 kPa and 400 kPa respectively. 

• 100 kPa confining pressure shows the highest BI  value of 0.72, followed by BI  

value for the 200 kPa confining pressure of 0.52 and the BI  value for the 400 

kPa confining pressure of 0.33.  

• The residual stress values for the optimised bio-cemented specimen still show 

higher values at high strains compared to the peak stress values attained in the 

untreated sand sample. 

• The optimised bio-cemented sand developed higher failure envelope than that of 

the untreated sand. 
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• The loading paths influence the behaviour of the MICP treated specimen. Under 

constant-p stress path, clear strain hardening followed by peak shear stress value 

that eventually developed into strain softening can be seen under the 400 kPa 

confining pressure condition. No significant peak shear stress was noticed under 

100 kPa and 200 kPa confining pressures and that the q value levelled off until 

failure with no visible strain softening observed. 

• E and the shear strength parameters values (c’ = 278 kPa and ϕ’ = 44°) of the 

optimised bio-cemented specimen performed and improved well as compared to 

previous studies within the tested range. 

 

6.3 Recommendations for Future Work 

 

Although this thesis has provided a significant contribution regarding the 

development of the newly proposed effective CaCO3 crystals to improve the 

engineering properties of the bio-cemented sand, further issues should be addressed 

for future work, including the following items: 

 

1. The proposed combination of the MICP reagents used in the current study, 

 i.e. 32 U/mL BC and 0.25 M CS, was sourced from one type of bacterium 

 species and that the CS concentration was based on the equimolar ratio of 

 CO(NH2)2 and CaCl2. Using different types of ureolytic bacteria with either  

 higher or lower BC concentrations and different non-equimolar 

 concentrations of CS may yield different results.  

 

2. Natural silica sand was used as the main soil for the purpose of this study. 

 Different types of soils might react differently to the different CCPP as the 

 soils have different shape, size and mineralogy characteristics. One 

 interesting type of soil recommended for future work is calcareous sand, 

 which mostly or partly contains calcite particles. It is worthwhile to 

 understand the effect of the calcite particles already present in the sand 

 grains as to whether they can produce soluble calcium that can be used as 

 calcium source for the MICP process to improve the properties of the bio-

 cemented sands. 
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3. Although the current injection technique that employed the method called 

the two-phase injection seemed to have fully cemented the bio-cemented 

specimens (laboratory-scaled column), the fact remains that this technique 

was deemed unsuccessful when a long column of 1 m in height was tried 

(results not shown). The main issue with the current technique is that it 

cannot distribute the effective CaCO3 crystals homogenously throughout the 

entire column. The two-phase injection method was carried out by injecting 

a half void volume of BC, followed by injecting a half void volume of CS 

during the first injection. The sample was left to cure for 24 hours to allow 

for the bacteria to attach to the soil grains. After 24 hours, full void volume 

of CS was then injected into the sand column. The sample was left to cure 

for 24 hours to allow for CaCO3 precipitation (second injection). After 24 

hours, another full void volume of CS was supplied and left to cure for 24 

hours (third injection). These procedures were repeated several times for 

each individual sand column in order to gain different degrees of 

cementation, which leads to the different desired strength and stiffness. The 

effective CaCO3 crystals non-homogeneous precipitation pattern stems from 

the failure to distribute the bacteria cells (eventually become the nucleation 

sites for new crystal growth) throughout the entire column depth. The reality 

is that most of the precipitation occurred within the top half of the column 

depth (fully cemented part) leaving the bottom half of the column either 

partially cemented or completely uncemented. Hence, it is recommended 

that future work focus on searching for a new technique to improve the 

process. 

 

4. Current study focuses more on the microscale analysis of the newly 

proposed CCPP without looking at the behaviour of the proposed CCPP on 

real field application. It is recommended that future work would examine 

the implementation of using the newly proposed CCPP on real field test to 

assay its relevance towards field application. Although the current study did 

not test the newly proposed CCPP for field trial, the understanding of its 

precipitation mechanism, its microstructural characteristics and the bio-

cemented sand performance treated with its recipe are well documented. 
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