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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

As energy systems undergo significant utility-scale transitions to combat global warming, the capacity for future 
customers to lead the next transition needs to be studied and quantified. This research presents a customer-driven 
energy policy simulation framework that integrates endogenous customer PV and battery investment, the energy 
market and generators, with the means to comparatively evaluate market evolution and policy impacts. Energy 
policies can also be designed and tested within this framework to assess the potential for customer-driven renewable 
energy transition pathways. A hypothetical analysis is presented. 
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1. Introduction 

The rate of technological and economic changes brought about by renewable energy technologies continues to 
challenge policy makers. These changes to the energy market have exposed existing generation and network assets 
to significant utility-scale operational and planning uncertainties [1]. At the same time, the falling installation costs 
of solar PV and Battery Energy Storage Systems (BESS) has encouraged significant customer investment in behind-
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the-meter energy generation (and to a lesser extent energy storage) that has started to impact network energy 
demand and daily operation. 

Utilizing simulation (rather than optimization) modelling for network and energy system planning allows 
multiple evolutionary pathways to be evaluated. By considering customers as the basis for network energy demand, 
the market pressures from customer PV and battery investments can be modelled. A rich literature exists that utilize 
techno-economic modelling to evaluate system sizing [2], electricity prices [3], feed-in tariffs [4] and load profiles 
[5] on PV and battery adoption. Integrating socio-technical perspectives into investment decisions [6] allows a 
broader range of issues to be studied. 

This modelling framework incorporates these dimensions into a simulation of customer behavior and energy 
market responses, to evaluate market evolutionary pressures and policy impacts. Policy instruments that affect 
customer renewable energy investment can be evaluated, from the individual customer through to network and 
market levels. Furthermore, policies can be designed and tested within this framework to assess the potential for 
customer-driven renewable energy transition pathways. 

2. Customer-driven energy policy simulation framework  

At the center of the simulation framework is a bottom-up evaluation of customer energy demand profiles. 
Aggregating the results produces a forecast of network demand that allows the assessment of market and generator 
outcomes. By evaluating across a range of policy scenarios, the effectiveness and sensitivity of changes to policy 
instruments can be estimated. Endogenous customer PV-battery investment decisions allow this framework to 
dynamically adapt to changing financial investment conditions. 
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Fig. 1. Customer-driven energy policy simulation framework 

The simulation framework consists of two major components, the customer simulation model and market 
simulation model. The customer simulation model independently evaluates each and every customer’s unique 
demand profile to forecast individual energy demand, while the market simulation model uses the aggregate 
customer simulation data to evaluate the market impacts. 
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2.1. Customer simulation model 

The customer simulation model forecasts future net energy demand for each customer by determining (i) the most 
economic PV and battery system configurations, and (ii) when to install a PV and/or battery system. By analyzing a 
large set of customers and aggregating their results, a forecast of grid demand can be produced. Energy policies that 
affect customer financial returns (such as feed-in tariffs, electricity prices and rate structures) and economic 
conditions (such as PV and battery installation costs) that affect customer investment decisions, can be evaluated 
simultaneously. Furthermore, as the scenario’s financial conditions change, customer investment decisions respond 
dynamically and lead to further changes in grid demand. The simulation results provide the means to forecast grid 
demand, regime shifts and tipping points between customers and utilities. This model facilitates the evaluation of 
customer-led grid and policy outcomes. The customer dynamics are generated using three interacting elements, the 
technical model, financial model and investment. 

2.1.1. Technical model 

The technical model utilizes a customer’s electricity demand profile and obtains the operational impact from the 
installation of each PV and battery system combination for the length of the investment evaluation period. This 
information is required by the financial model for PV and battery investment analysis. The technical model utilizes a 
multi-staged approach and uses a customer’s energy demand profile to calculate (at each 15-min timestep) the 
amount of energy generated, imported, exported, stored and discharged. The solar PV generation profiles can be 
scaled using location-specific solar insolation profiles and modelling performance degradation. By subtracting the 
solar generation curve from the customer’s electricity demand a preliminary net energy profile is produced, that is 
used by the BESS model to determine its charge and discharge dynamics. The BESS model takes into consideration 
the operational lifespan, capacity degradation and option of grid-charging. The final net energy profile from the 
BESS model represents the bi-directional flow of energy at the customer energy meter and determines the annual 
imported and exported energy for each potential PV and/or battery system investment option. 

2.1.2. Financial model 
 
The financial model uses data from the technical model coupled with changing market conditions and energy 

policies to determine the economic returns from each PV and/or battery investment. Typical retail electricity rate 
structures consist of a volumetric usage charge ($/kWh), daily supply charge ($/day) and volumetric feed-in tariff 
rebate ($/kWh), the operational data from the technical model can be used to calculate the annual electricity bills 
across the investment evaluation period. Any electricity bill savings then equate to cash flow received from each PV 
and battery investment. Financial metrics, such as net present value (NPV), discounted payback period, internal rate-
of-return (IRR) and return-on-investment, can be calculated by the financial model. As electricity prices, feed-in 
tariffs and installation costs of PV and battery systems change over time, the financial model dynamically responds 
and changes the financial returns on each PV and battery investment. Hence the financial model provides the means 
to evaluate (with respect to each customer’s electricity demand profile) when and how PV-only, PV-battery or 
battery-only systems become economic. 

2.1.3. Investment Model 

For each forecast year, the investment model uses the financial model data to decide if a customer should or 
shouldn’t install a PV-only, PV-battery or battery-only system. Individual financial metrics (such as the maximum 
NPV or lowest payback period) can be used to determine when to invest. Alternatively a multi-staged approach, 
such as Norm Activation Theory (NAT) can be used [7]. NAT requires a customer to be firstly aware of the 
investment opportunity before deciding to invest. This approach has the added benefit of integrating both financial 
and socio-technical perspectives into customer investment behavior. 

If a PV-only, PV-battery or battery-only system is installed, the customer’s electricity demand profile is updated 
to reflect the installation of the new equipment. This leads to a new set of investment opportunities that have to 
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The simulation framework consists of two major components, the customer simulation model and market 
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demand profile to forecast individual energy demand, while the market simulation model uses the aggregate 
customer simulation data to evaluate the market impacts. 
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rebate ($/kWh), the operational data from the technical model can be used to calculate the annual electricity bills 
across the investment evaluation period. Any electricity bill savings then equate to cash flow received from each PV 
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of-return (IRR) and return-on-investment, can be calculated by the financial model. As electricity prices, feed-in 
tariffs and installation costs of PV and battery systems change over time, the financial model dynamically responds 
and changes the financial returns on each PV and battery investment. Hence the financial model provides the means 
to evaluate (with respect to each customer’s electricity demand profile) when and how PV-only, PV-battery or 
battery-only systems become economic. 

2.1.3. Investment Model 

For each forecast year, the investment model uses the financial model data to decide if a customer should or 
shouldn’t install a PV-only, PV-battery or battery-only system. Individual financial metrics (such as the maximum 
NPV or lowest payback period) can be used to determine when to invest. Alternatively a multi-staged approach, 
such as Norm Activation Theory (NAT) can be used [7]. NAT requires a customer to be firstly aware of the 
investment opportunity before deciding to invest. This approach has the added benefit of integrating both financial 
and socio-technical perspectives into customer investment behavior. 

If a PV-only, PV-battery or battery-only system is installed, the customer’s electricity demand profile is updated 
to reflect the installation of the new equipment. This leads to a new set of investment opportunities that have to 
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complement the newly installed equipment. Overall the customer simulation model provides the means to forecast 
energy demand at the individual and aggregate levels. 

2.2. Market simulation model 

The sum of net customer energy demand from the customer simulation model generates a time-series forecast of the 
network demand in the energy market. By using a market clearing method, such as economic merit-order dispatch, 
the market simulation model determines the dispatching generators within each dispatch period. As the market 
clearing mechanism in the market simulation model operates under perfect information, care must be taken to avoid 
short-term evaluations, like network constraints and frequency control services, but rather consider longer-term 
perspectives, such as annual changes to network demand. Additionally, more sophisticated market simulation 
models can also be utilized if the model is able to accept the forecasted customer energy demand from the customer 
simulation model. The hard-link between the energy market and customer simulation models facilitate the bottom-
up customer-led evaluation of energy policy and economic conditions. 

2.3. Evaluation 

The proposed framework provides researchers with the means to operationally forecast and evaluate customer 
installations of PV and BESS. Utility-scale solar PV network integration issues have been well observed [8], 
however as customer-sited BESS significantly change customer interactions across many points across the grid, the 
operational dynamics become more difficult to predict. By aggregating results across a large range of real or 
hypothetical customer energy demand and solar insolation profiles, a network demand forecast is created that 
incorporates customer PV and battery installations while facilitating a wide range of additional operational 
assessments, such as changes to annual energy consumption and peak network demand, shifting of peak demand 
hours and changing ramping rates. Furthermore, excess solar PV and underutilized energy storage can be quantified 
to evaluate the supply and demand potential for demand side management schemes. 

The framework also creates a simulated environment to assess market opportunities and risks arising from these 
customer-driven changes. The hard-link between the customer and market simulation models provides a view on the 
technical and financial flows in the energy market and allows for the evaluation of micro-economic transactions 
between customers, the energy market and generation assets. By utilizing a market clearing mechanism with 
forecasted energy demand, the suitability of various generation technologies to meet the network demand can also 
be evaluated. Additionally, generation and network capacity planning can be assessed by evaluating the peak 
network demand and energy consumption operational results. 

Policy instruments, such as feed-in tariffs, surcharges and rebates, shape customer investment decisions. The 
operational and market simulations allow this framework to assess the effectiveness of these policy instruments to 
achieve policy goals, such as greenhouse gas emission reduction from changes to the utility-scale fuel mix and 
greater customer self-generation and consumption. 

3. Hypothetical analysis 

This hypothetical analysis aims to ‘determine a timeline of customer solar PV and battery capacity installations, 
the impact on the network energy demand and influence on energy market revenues’. The scenario consists of an 
ideal network containing 50 unique residential customers using 5 Australian energy consumption profiles (‘double 
hump’, ‘day focus’, ‘nigh focus’, ‘evening focus’ and ‘high day & evenings’) [9] that have been scaled to an annual 
energy consumption between 2 and 10 MWh/annum. The analysis runs over a 30-year forecast period where 
customers use an investment evaluation period of 10 years. Based on electricity prices in Perth, Australia, the fixed-
rate electricity usage charge, fixed network charge and feed-in tariff are 27 c/kWh, 95 c/day, 7 c/kWh respectively 
and increase at 5% each year. Furthermore, the feed-in tariff is only eligible to customers with installed PV up to 5 
kWP [10]. A discount rate of 6% is used. The installation cost of solar PV and battery systems start at $2000/kWP 
[11] and $1500/kWh [12] respectively and decrease at -5.9% [13] and -8% [14] each year. The PV model has a 25-
year operational lifespan with an end-of-life capacity of 80%. The BESS model, based on a Tesla Powerwall 2, has a 
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10-year operational lifespan, 100% depth-of-discharge and an end-of-life capacity of 70%. As it not cost-effective 
under flat-rate volumetric usage charges, grid-charging is disabled. The solar insolation profile is obtained from the 
PV Watts calculator for Perth, Australia with a fixed north-facing roof mounted array (20° tilt) that receives an 
average solar radiation of 5.82 kWh/m2/day [15]. 

The investment model utilizes two stages, based upon ‘customer awareness’ and ‘customer behavior’. The 
‘customer awareness’ for an investment occurs when any potential PV and/or battery investment has a discounted 
payback period less than 5 years. Once the awareness has been established, the ‘customer behavior’ governs which 
PV and/or battery system is installed. In this analysis, the system configuration with the maximum NPV is chosen 
(Fig. 2). 
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Fig. 2. Net Present Value (NPV) investment with a 10-year investment horizon of each PV-battery combination that leads to a decision to invest 
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Fig. 3. Forecasted changes to one of the customer’s net energy demand with installed PV and battery systems 



	 Kelvin Say et al. / Energy Procedia 158 (2019) 3445–3451� 34494 Kelvin Say et al. / Energy Procedia 00 (2018) 000–000 

complement the newly installed equipment. Overall the customer simulation model provides the means to forecast 
energy demand at the individual and aggregate levels. 

2.2. Market simulation model 
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ideal network containing 50 unique residential customers using 5 Australian energy consumption profiles (‘double 
hump’, ‘day focus’, ‘nigh focus’, ‘evening focus’ and ‘high day & evenings’) [9] that have been scaled to an annual 
energy consumption between 2 and 10 MWh/annum. The analysis runs over a 30-year forecast period where 
customers use an investment evaluation period of 10 years. Based on electricity prices in Perth, Australia, the fixed-
rate electricity usage charge, fixed network charge and feed-in tariff are 27 c/kWh, 95 c/day, 7 c/kWh respectively 
and increase at 5% each year. Furthermore, the feed-in tariff is only eligible to customers with installed PV up to 5 
kWP [10]. A discount rate of 6% is used. The installation cost of solar PV and battery systems start at $2000/kWP 
[11] and $1500/kWh [12] respectively and decrease at -5.9% [13] and -8% [14] each year. The PV model has a 25-
year operational lifespan with an end-of-life capacity of 80%. The BESS model, based on a Tesla Powerwall 2, has a 
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10-year operational lifespan, 100% depth-of-discharge and an end-of-life capacity of 70%. As it not cost-effective 
under flat-rate volumetric usage charges, grid-charging is disabled. The solar insolation profile is obtained from the 
PV Watts calculator for Perth, Australia with a fixed north-facing roof mounted array (20° tilt) that receives an 
average solar radiation of 5.82 kWh/m2/day [15]. 

The investment model utilizes two stages, based upon ‘customer awareness’ and ‘customer behavior’. The 
‘customer awareness’ for an investment occurs when any potential PV and/or battery investment has a discounted 
payback period less than 5 years. Once the awareness has been established, the ‘customer behavior’ governs which 
PV and/or battery system is installed. In this analysis, the system configuration with the maximum NPV is chosen 
(Fig. 2). 
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Fig. 2. Net Present Value (NPV) investment with a 10-year investment horizon of each PV-battery combination that leads to a decision to invest 

in (a) forecast year 2, (b) forecast year 9, (c) forecast year 14, (d) forecast year 23 
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Fig. 3. Forecasted changes to one of the customer’s net energy demand with installed PV and battery systems 
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The results for a single customer with a ‘double hump’ profile and an annual consumption of 5.2 MWh are 
presented in Fig. 3. A 1.5 kWP PV system is initially installed in the 2nd year. In the 9th year, a 3.5 kWP PV is added 
for a combined total of 5 kWP and maintaining the eligibility for the feed-in tariff (FiT). In the 14th year, battery 
prices have fallen enough to add a 10 kWh BESS. Interestingly after only 5 years, it is cost effective for the 
customer to install another 10 kWh battery system rather than wait for the initial BESS to reach its end-of-life. As 
the original 1.5 kWP PV nears its end-of-life in the 23rd year and PV and battery costs have fallen far enough that 
losing the FiT rebate (by exceeding the 5 kWP limit) is no longer an effective financial disincentive for larger PV 
systems. From this point on, it becomes increasingly cost-effective to reduce overall grid-consumption with even 
larger PV and battery systems.  

By aggregating each customer’s timeline of PV and battery investments, a network wide perspective of energy 
supply and demand is obtained. In this scenario, all customers eventually find it cost-effective to install BESS that 
significantly reduce self-consumption to a fraction of their original consumption (Fig. 4a). Once this occurs, the 
network grid energy demand falls significantly and never recovers (Fig. 4b).  

Fig. 4. Forecasted changes to grid energy demand and energy exports at the (a) customer-level (b) network-level 

The capacity forecast for customer PV and battery systems (Fig. 5a) shows that once BESS become cost-
effective, customer PV-battery systems will become the norm and rather than plateauing, increasing amounts of PV 
and BESS capacity will become available on the grid. A forecast of retail electricity revenues is generated (Fig. 5b) 
by computing the sum of all customer electricity bills (using their annual imported and exported energy quantities). 
Not surprisingly, the results indicate that as customers significantly reduce grid imports the volumetric contribution 
becomes negative and fixed charges become the biggest contributor to future revenue. 

Fig. 5. Forecasted changes to (a) installed customer PV and battery capacity (b) aggregate customer retailer revenues 

The hypothetical analysis suggests that all 50 customers will eventually find it economic to install enough PV and 
battery capacity to significantly reduce their grid imports. Notably, the tipping point (around forecast year 13) is 
consistent across different customer energy profiles and annual consumption quantities (granted the sample size is 
small). 
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4. Conclusion 

Energy policies that affect the economics of PV-battery investment (such as FiTs, rate structures, surcharges and 
rebates) can be designed and tested within this framework – and it allows energy researchers to assess the potential 
for customer-driven renewable energy transition pathways. The presented hypothetical analysis illustrates a single 
scenario that leads to significant reductions in customer grid demand. However, a comparative assessment approach 
across scenarios allows researchers to quantify and assess the relative influence of policy changes (such as various 
FiT rates or renewable energy surcharges) on the time and quantity of potential customer PV and battery adoption. 
The results from this approach highlights energy market and utility generation impacts while providing an 
awareness of future trading conditions. Furthermore, this framework allows the simulation and development of new 
energy market concepts that can better capture the value in customer-sited distributed energy resources that have the 
potential to reduce the cost of electricity for all customers. 
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The results for a single customer with a ‘double hump’ profile and an annual consumption of 5.2 MWh are 
presented in Fig. 3. A 1.5 kWP PV system is initially installed in the 2nd year. In the 9th year, a 3.5 kWP PV is added 
for a combined total of 5 kWP and maintaining the eligibility for the feed-in tariff (FiT). In the 14th year, battery 
prices have fallen enough to add a 10 kWh BESS. Interestingly after only 5 years, it is cost effective for the 
customer to install another 10 kWh battery system rather than wait for the initial BESS to reach its end-of-life. As 
the original 1.5 kWP PV nears its end-of-life in the 23rd year and PV and battery costs have fallen far enough that 
losing the FiT rebate (by exceeding the 5 kWP limit) is no longer an effective financial disincentive for larger PV 
systems. From this point on, it becomes increasingly cost-effective to reduce overall grid-consumption with even 
larger PV and battery systems.  

By aggregating each customer’s timeline of PV and battery investments, a network wide perspective of energy 
supply and demand is obtained. In this scenario, all customers eventually find it cost-effective to install BESS that 
significantly reduce self-consumption to a fraction of their original consumption (Fig. 4a). Once this occurs, the 
network grid energy demand falls significantly and never recovers (Fig. 4b).  

Fig. 4. Forecasted changes to grid energy demand and energy exports at the (a) customer-level (b) network-level 

The capacity forecast for customer PV and battery systems (Fig. 5a) shows that once BESS become cost-
effective, customer PV-battery systems will become the norm and rather than plateauing, increasing amounts of PV 
and BESS capacity will become available on the grid. A forecast of retail electricity revenues is generated (Fig. 5b) 
by computing the sum of all customer electricity bills (using their annual imported and exported energy quantities). 
Not surprisingly, the results indicate that as customers significantly reduce grid imports the volumetric contribution 
becomes negative and fixed charges become the biggest contributor to future revenue. 

Fig. 5. Forecasted changes to (a) installed customer PV and battery capacity (b) aggregate customer retailer revenues 

The hypothetical analysis suggests that all 50 customers will eventually find it economic to install enough PV and 
battery capacity to significantly reduce their grid imports. Notably, the tipping point (around forecast year 13) is 
consistent across different customer energy profiles and annual consumption quantities (granted the sample size is 
small). 
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4. Conclusion 

Energy policies that affect the economics of PV-battery investment (such as FiTs, rate structures, surcharges and 
rebates) can be designed and tested within this framework – and it allows energy researchers to assess the potential 
for customer-driven renewable energy transition pathways. The presented hypothetical analysis illustrates a single 
scenario that leads to significant reductions in customer grid demand. However, a comparative assessment approach 
across scenarios allows researchers to quantify and assess the relative influence of policy changes (such as various 
FiT rates or renewable energy surcharges) on the time and quantity of potential customer PV and battery adoption. 
The results from this approach highlights energy market and utility generation impacts while providing an 
awareness of future trading conditions. Furthermore, this framework allows the simulation and development of new 
energy market concepts that can better capture the value in customer-sited distributed energy resources that have the 
potential to reduce the cost of electricity for all customers. 

Acknowledgements 

This work was supported by resources provided by The Pawsey Supercomputing Centre with funding from the 
Australian Government and the Government of Western Australia 

References 

[1] P. Simshauser, “Monopoly regulation, discontinuity & stranded assets,” Energy Economics, vol. 66, pp. 384–398, 2017. 
[2] J. Weniger, T. Tjaden, and V. Quaschning, “Sizing of Residential PV Battery Systems,” Energy Procedia, vol. 46, pp. 78–87, Jan. 2014. 
[3] J. Hoppmann, J. Volland, T. S. Schmidt, and V. H. Hoffmann, “The economic viability of battery storage for residential solar photovoltaic 

systems – A review and a simulation model,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 1101–1118, Nov. 2014. 
[4] Z. Ren, G. Grozev, and A. Higgins, “Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses 

under alternative tariff structures,” Renewable Energy, vol. 89, pp. 317–330, Apr. 2016. 
[5] J. Linssen, P. Stenzel, and J. Fleer, “Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load 

profiles,” Applied Energy, vol. 185, no. Part 2, pp. 2019–2025, Jan. 2017. 
[6] L. Niamir, T. Filatova, A. Voinov, and H. Bressers, “Transition to low-carbon economy: Assessing cumulative impacts of individual 

behavioral changes,” Energy Policy, vol. 118, pp. 325–345, Jul. 2018. 
[7] S. H. Schwartz, “Normative influences in Altruism,” in Advances in experimental social psychology, vol. 10, B. Leonard, Ed. Academic 

Press, 1977, pp. 221–279. 
[8] P. Denholm, M. O’Connell, G. Brinkman, and J. Jorgenson, “Overgeneration from Solar Energy in California: A Field Guide to the Duck 

Chart,” Technical Report NREL/TP-6A20-65023, 2015. 
[9] J. Martin, “How to get the most out of your solar PV system part 2: What’s your electricity usage pattern?,” SolarChoice, 2016. [Online]. 

Available: https://www.solarchoice.net.au/blog/how-to-get-most-solar-pv-system-pt-2-electricity-usage-patterns. 
[10] Synergy, “Solar connections, REBS & upgrades,” Synergy, 2017. [Online]. Available: https://www.synergy.net.au/Your-home/Manage-

account/Solar-connections-and-upgrades. [Accessed: 08-Jan-2018]. 
[11] J. Martin, “Residential solar system prices for December 2017,” SolarChoice, 2017. [Online]. Available: 

http://www.solarchoice.net.au/blog/residential-solar-system-prices-december-2017. [Accessed: 08-Jan-2018]. 
[12] J. Martin, “Home solar battery storage system prices for Dec 2017,” SolarChoice, 2017. [Online]. Available: 

http://www.solarchoice.net.au/blog/home-solar-battery-storage-prices-december-2017. [Accessed: 08-Jan-2018]. 
[13] K. Ardani, J. J. Cook, R. Fu, and R. Margolis, “Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017–2030,” National 

Renewable Energy Laboratory, Golden, Colorado, Technical Report NREL/TP-6A20-70748, 2018. 
[14] IRENA, “Electricity Storage and Renewables: Costs and Markets to 2030,” International Renewable Energy Agency, Abu Dhabi, 2017. 
[15] NREL, “PVWatts Calculator,” 2018. [Online]. Available: http://pvwatts.nrel.gov/. 


