
School of Earth and Planetary Sciences

Numerical and Theoretical Modelling of the

Chemo-Mechanical Responses of Solid Solutions

Santiago Peña Clavijo

This thesis is presented for the Degree of

Doctor of Philosophy

of

Curtin University

October, 2019



Declaration

To the best of my knowledge and belief, this thesis contains no material previ-

ously published by any other person except where due acknowledgment has been

made.

This thesis contains no material, which has been accepted for the award of

any other degree or diploma in any university.

Signature:

Date: 30/10/2019

2



Acknowledgment

This project was carried out at the School of Earth and Planetary Sciences.

This research is supported by a Curtin International Postgraduate Research

Scholarship (CIPRS).

I would like to express my sincerest gratitude to my supervisor, Professor

Victor Calo, for his continuous guidance and support.

I would like to thank Professors Andrew Putnis and Bruce Hobbs for taking

the time and effort to teach me how to think about problems in geoscience.

Special thanks to Dr Luis Espath. He taught me how to think about problems

and spent countless hours doing so.

I would like to extend my appreciation to my colleagues, Quanling Deng,

Roberto Cier, and Sergio Rojas for their continuous support.

Finally, I would like to thank Kelly Peña Carrasquilla – Mella – for being a

source of inspiration and for teaching me never to give up.

3



Numerical and Theoretical Modelling of the

Chemo-Mechanical Responses of Solid Solutions

Santiago Peña Clavijo

Abstract

Complex physical and chemical processes rule the evolution of solid solutions.

Both high temperature and pressure allow for solid diffusion and chemical reac-

tions between chemical constituents, which in turn, lead to phase transformations

and induced deformation. The description and understanding of the physical and

chemical responses of a solid solution under different conditions of temperature

and pressure is an important challenge for several disciplines concerned with the

solid state such as metallurgy, materials science, and Earth science. For instance,

solid solutions in geomaterials are mineral solid solutions. Most importantly,

coupled chemo-mechanical interactions rule the evolution of the mineral solid so-

lution. Nonetheless, such an effort requires a comprehensive treatment that char-

acterises the dynamic behaviour of the coupled chemo-mechanical interactions as

the solution evolves. The purpose of this thesis is to derive a continuum theory

for multicomponent systems undergoing mass transport, chemical reactions, de-

formation, and interfacial effects from a thermodynamic point of view in order to

describe solid solutions. The theoretical foundations of the model rely on mod-

ern continuum mechanics, thermodynamics far from equilibrium, and phase-field

models. To obtain a complete description of the evolution process, we derive a set

of balance equations in the form of partial differential equations. These equations

describe how mass, linear and angular momenta, internal energy and entropy vary

in time as deformation and chemical processes take place. Using robust numeri-

cal procedures, we solve the resulting set of coupled chemo-mechanical equations

and verify the underlying physics for the physical and chemical responses of solid

solutions.
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Chapter 1

Introduction

Complex physical and chemical processes rule the evolution of metamorphic min-

erals. Deep in the Earth, both high temperature and pressure allow for solid

diffusion and chemical reactions between rock minerals, which in turn, lead to

phase transformations and induced deformation. Furthermore, the transport of

chemical constituents, particularly during uphill diffusion, induces phase separa-

tion processes as a result of the geothermal gradient in the crust. When con-

sidering a deformable medium, such as the metamorphic rock complexes in the

lithosphere, mineral reactions may affect the rock strength and its mechanical

properties. Analogously, high mechanical strength may suppress either the vol-

umetric shrinkage or swelling associated with the local volume changes caused

by the chemical processes [1]. Thereby, the chemical processes, associated with

diffusion and chemical reactions, induce volume changes that lead to stresses

around the reaction site. Milke et al. [2] define that positive volume changes in-

volve the creation of space by moving out mass from the reaction site, and thus,

the reaction products can grow and accommodate. On the contrary, negative

volume changes induce mass transport into the reaction site by consuming the

reactant phases. Hence, there exists an essential interaction between the chemo-

mechanical processes of metamorphic rocks which eventually control the dynamics

of their microstructural evolution and properties. Metamorphic rocks are com-

plex systems composed of fractures, several mineral, and grain-boundaries where

the chemical and mechanical properties may vary in each direction. Without loss

of generality, this theoretical and numerical work only focuses on the description

of single minerals as solid solutions with the purpose of understanding complex

processes such as coupled chemo-mechanical responses during metamorphism.

13



The purpose of this thesis is to develop a thermodynamically consistent model

to describe common processes for solid solutions such as coupled reaction-diffusion,

interfacial effects, and deformation based on the framework of modern continuum

mechanics, thermodynamics far form equilibrium, and phase field models. We ap-

ply the aforementioned framework to understand these processes in metamorphic

minerals modelled as solid solutions composed of several phases. Consequently,

we derive a set of coupled reactive-chemo-mechanical equations for solid solutions.

In this effort, we derive a multicomponent reaction-diffusion system which takes

into account interfacial effects, namely the phases have a interface of non-zero

thickness where physical and chemical properties vary smoothly. As a result of

the interfaces, the mass transport process is driven by changes in the chemical

potentials which depend on the phases concentrations and the interface curva-

ture. Mathematically speaking, the chemical potential is a function of both the

concentrations and their laplacians. This process is commonly called non-Fickian

diffusion.

Our derivation corresponds to the multicomponent version of the Cahn–Hilliard

model which is coupled with a general law of mass action to describe possible

chemical reactions between the phases. We also assume that phases in the solid

solution follow a mass constraint imposed by the crystalline lattice. In particular,

we consider saturated system. Namely, the summation of the phases concentra-

tions must always equal one. We review the mathematical properties and con-

comitant physical meaning of the system of partial equations which emerge from

the underlying balance laws and constitutive behaviour. By doing so, we propose

a novel constitutive behaviour for the interfacial energy tensor which opposite

to the classical definition, i.e., a diagonal and positive definite tensor, suggests

that negative interfacial interactions are also possible as long as the constrained

system leads to a positive definite tensor. This implies a positive definite dif-

fusion tensor and a physically sound diffusion process. To capture the elastic

behaviour of the solid solution, in particular the impact of the chemical processes

towards stress-generation, we couple the aforementioned reactive multicompo-

nent Cahn–Hilliard system with a neo-Hookean solid model. This allows us to

study the mechanical behaviour of the solid solution when mass transport and

chemical reactions take place. In this introduction, we review the evidence of the

chemo-mechanical interactions of solid solutions in geological processes to justify

the choice of deriving a fully-coupled thermodynamically consistent model.

The chapter is structured as follows: In section §1.1, we provide the evidence of

14



chemo-mechanical interactions in metamorphic rocks. In particular, we point out

that the pressure of these systems must have contributions from both the chemical

and mechanical responses of the solid and it corresponds to the thermodynamic

pressure. Moreover, we show phase separation processes in ternary feldspars

during cooling.

1.1 Evidence and modelling of chemo-mechanical

responses in mineral solid solutions

Recent studies on metamorphic petrology and microstructural observations sug-

gest the influence of mechanical effects upon chemically active metamorphic rocks

[1–7]. An example of this coupling is the grain-scale pressure variations in high-

temperature metamorphic rocks. As pointed out by Tajčmanová et al. [1], the

effects of an inhomogeneous pressure distribution can be maintained even in the

microscale at ambient conditions. The study of minerals under residual pressure

can be carried out by advanced observational techniques. Howell et al. [8] use

an analytical model that relates geometric features of both the host rock and the

inclusion together with a quantitative birefringence analysis to study the residual

stress of graphite inclusion in diamond. Their measurements show the distribu-

tion of internal inhomogeneous pressure around the graphite inclusion caused by

the residual stresses.

Conventionally, at a given depth, the pressure is assumed spatially homoge-

neous and equal to the lithostatic value given by Archimedes’ formula. Neverthe-

less, the formation of ultrahigh-pressure rocks suggests that pressure does not al-

ways translate into depth [4]. The understanding of the nature of such deviations

is crucial since pressure provides, for instance, a constraint for the description of

the dynamics of orogens as well as an indirect measurement of the depth history

of the sample. The source of such discrepancies is the complex chemo-mechanical

interactions as the metamorphic rock complexes evolve towards equilibrium, and

most importantly, that both processes are strongly interdependent. Moulas et al.

[4] provide a comprehensive review of the evidence that metamorphic rocks main-

tain and record significant pressure deviations from the lithostatic values. During

prograde metamorphism, high pressure and temperature conditions induce the

formation of garnet porphyroblasts that harbor quartz and coesite inclusions. As
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the inclusions grow, the metamorphic system endures large volumetric stresses

associated with the expansion of the inclusions in the relaxed host matrix. Even-

tually, the metamorphic system exhibits chemical zonation where each aggregate

has different chemical and mechanical properties. Such heterogeneity generates

spatial variations in pressure. The effect of the inhomogeneous pressure seems

to be critical and will allow us to calibrate geodynamics models as well as to

describe the evolution of fabrics and microstructures.

To date, a few modeling attempts of these physical and chemical interactions,

were made. For instance, Tajčmanová et al. [1] study the effect of inhomogeneous

pressure distributions by using a chemo-mechanical model. They formulate three

cases that showcase the impact of mass fluxes and external loading to achieve equi-

librium while taking into account both pressure gradients and constant pressure.

As a consequence, their results suggest that a rock composed of two minerals with

different mechanical properties will evolve in such a way that favours mechani-

cally maintained inhomogeneous pressure distributions. Powell et al. [9] describe

non-hydrostatically-stressed metamorphic systems as well as equilibrium condi-

tions at grain-boundaries. In their setting, a non-hydrostatically-stressed solid

accounts for a solid under inhomogeneous stress distribution. Essentially, their

formulation follows the ideas behind the Larché-Cahn’s model for multicompo-

nent solids where due to the lattice constrain imposed by the crystalline structure

the chemical potentials of the multicomponent system are calculated through the

Larché-Cahn derivative [10–12]. This derivative leads to the definition of a rel-

ative chemical potential. Thus, their proposal leads to a thermodynamic equi-

librium for metamorphic systems that accommodates spatial variations in the

pressure. The possibility of describing evolution scenarios for metamorphic rocks

with spatial inhomogeneous pressure distributions collides with the classical de-

scription of the evolution of metamorphic rocks. The classical interpretations

assume thermodynamic equilibrium to explain metamorphic mineral assemblages

via thermobarometry techniques and phase diagrams. Therefore, the evolution

processes that induce heterogeneous pressure distributions imply that these tech-

niques may not be robust to characterize metamorphic systems. That is, these

inhomogeneous pressure conditions contradict the foundational assumptions of

uniform pressure and temperature distributions. Thus, the nature of the pres-

sure distribution that defines the equilibrium of metamorphic rocks and especially

how to calculate and define this quantity are still open questions in our opinion.

As pointed out by Hobbs and Ord [3] (and references therein), the thermody-

16



namic equilibrium is entirely characterized by the thermodynamic pressure. This

pressure can be calculated as the partial derivative of the Helmholtz energy with

respect to specific volume or when considering Gibbs free energy, the partial

derivative has to be taken with respect to the volume. We believe that hereto-

fore, in the geosciences literature, the lithostatic pressure has erroneously been

used to describe the state of equilibrium of the metamorphic rocks. And recently,

works on inhomogeneous pressure distributions use the mean stress to charac-

terize equilibrium conditions [1, 13]. Such pressure definitions only make sense

from a thermodynamic point of view when the solid behaves elastically without

ongoing chemical processes [3]. Solids under either viscoelastic, diffusional creep,

or plastic behavior as well as ongoing chemical reactions between the constituent

phases relate dissipative processes which lead to additional contributions to the

definition of thermodynamic pressure [3]. As a consequence, we seek to identify

and define the pressure that properly describes the chemical equilibrium condi-

tions for metamorphic systems. Hobbs and Ord have carried out an extensive

review on the subject [3, 14] (see also e.g [15] and references therein). The phases

that compose these mineral solid solutions diffuse at different rates, and when

considering changes in temperature as a result of uphill diffusion, for instance

during cooling, phase separation processes such as spinodal decomposition may

occur. Ternary feldspars formed by orthoclase, anorthite, and albite show spin-

odal decomposition during cooling. Such process controls the coarsening kinetics

of the exsolution microstructure [16, 17].

We derive the model following the framework of modern continuum mechan-

ics and thermodynamics far from equilibrium. Modern continuum mechanics

deals with the mechanical and chemical behaviour of bodies. The body, which

for the purpose of this dissertation corresponds to a solid composed of several

phases, is treated as a continuum medium rather than a set of discrete parti-

cles. The mathematical structure of this framework relies on the description of

scalar, vector, tensor fields, and their relations. Along this thesis, we use classi-

cal definitions such as Reynolds transport, divergence theorem, and localisation

theorem as well as the laws of thermodynamics. This allows to build up a sys-

tem of coupled chemo-mechanical equations constrained by the entropy inequality

(Clausius-Duhem inequality). We use phase field models to describe the evolution

of interfaces by following the multicomponent Cahn–Hilliard model.
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Chapter 2

Phase field models

We derive the binary version of the Cahn-Hilliard phase field model from a math-

ematical and physical standpoint. We show some properties of the equation and

how it allows to model interfacial phenomena. In particular, we show the equa-

tions capture interface diffusion.

2.1 Introduction

The modelling of interfacial phenomena emerges as a promising tool to understand

the dynamics of different processes which occur along a small region between the

phases called the interface. Within the interface, the chemical and mechanical

properties of each phase change from one bulk phase to the other. Interfacial

modelling is then important in a variety of engineering processes. Particularly

in geosciences, interfacial interactions are responsible for driving the Ostwald

ripening effect in garnets which allows the smaller aggregates to gather and form

bigger ones as well as spinodal decomposition in multicomponent mineral solu-

tions during exsolution processes [18–21]. The later examples are non-trivial to

study experimentally. At the most fundamental level, comprehensive theoretical

and numerical modelling of such mechanisms helps to understand the underlying

processes and their dynamics. An important aspect of interfacial modelling is

to track the evolution of the interfaces. The latter controls the microstructure

of the material and allows to study the chemical and physical responses under

different conditions of pressure and temperature. To date, many models have
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been published to track the evolution of interfaces. From explicit to implicit

models, their common aim is to characterize how the interfaces diffuse through

the material domain and their final configuration. Herein, we focus on models

where the interfaces are tracked implicitly. In this effort, the phase field method

provides a robust framework. The method relies on an order parameter which

describes the tempo-spatial distribution of the phases. Opposite to the explicit

methods, the interface evolution is given by the solution of a temporal partial

differential equation of the order parameter. Such framework successfully models

phase separation, fracture formation, solidification, and viscous fingering pro-

cesses [22–25]. The ideas behind the phase field method were formerly proposed

by Van der Waals [26]. Van der Waals’ brilliant idea was to include a region of

non-zero thickness between the phases where chemical and physical properties

vary smoothly. The interfaces are implicitly represented by a scalar-value field

where a partial differential equation characterises its evolution. For the purpose of

this thesis, we model the interfacial effects using the Cahn-Hilliard equation. By

doing so, we manage to capture mass transport processes coupled with interface

diffusion. A wide extent of this thesis will be dedicated to the multicomponent

version of this equation as well as its physical and numerical properties. Further-

more, when coupling the Cahn-Hilliard equation with deformation and chemical

reactions, we manage to model complex solid solutions undergoing non-Fickian

reaction-diffusion processes coupled with elasticity. In this chapter, we derive the

numerical and physical version of the binary Cahn-Hiilliard.

The chapter is structured as follows: In section §2.2.1, we study the Cahn-

Hilliard model from a mathematical point of view. In this effort, we show the

strong form of the system together with the boundary conditions, followed by

section §2.2.2 where we consider the physical derivation of the equation. Hence,

we show the derivation of the Ginzburg-Landau free energy.

2.2 The Cahn-Hilliard equation

The Cahn-Hiiliard equation is a fourth-order, nonlinear partial differential equa-

tion. Cahn and Hilliard originally introduced the so-called Cahn-Hilliard equa-

tion to model phase separation processes [27]. Changes in temperature drive the

phase separation which eventually form fully separated phases. The model has

been widely used to capture the underlying physics of biological entities such as
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wound healing and tumor growth [28, 29], solidification [30], and phase separation

of binary systems [31].

2.2.1 Mathematical derivation

Let B denote a fixed region of a three dimensional point space E and P an

arbitrarily fixed subregion of B with boundary S = ∂P oriented by an outward

unit normal n. The boundary is composed of two parts ∂Pg and ∂Ph. Therefore,

∂P = ∂Pg ∪ ∂Ph. The underlying aim of the phase field model is to find fields

in P that minimises a particular energy potential that describes the evolution

of the system. Particularly, for the Cahn–Hilliard model, this energy functional

corresponds to the Ginzburg-Landau free energy, i.e.,

FCH [ϕ(x, t)] =

∫
P

Ψ (ϕ) +
Γ

2
|∇ϕ|2 dv, (2.1)

where the order parameter ϕ represents the concentration of one component in

the solution varying in space x and time t, and Γ accounts for the interfacial

energy resulting from interfacial interactions. This energy functional is composed

of two terms Ψ (ϕ), and Γ
2
|∇ϕ|2 to model the bulk and interfacial contributions,

respectively. In addition,
√

Γ represents the length scale of the system associated

with interface thickness between the two species. In the Ginzburg-Landau free

energy, Ψ (ϕ) encompasses entropic effects and is given by

Ψ (ϕ) = (ϕ ln(ϕ) + (1− ϕ) ln(1− ϕ)) + ϑc2ϕ(1− ϕ). (2.2)

The dimensionless number ϑc relates the critical temperature between the phases

and the absolute temperature. The definition of the bulk free energy (2.2) makes

sure that the values of the order parameter ϕ keep in the range of [0, 1]. Further-

more, the potential (2.2) represents a double well function with minima at the

well points. The strong form of the governing equation along with the boundary

conditions for the Cahn-Hilliard system can be stated as follows

ϕ̇−∇ · (Mϕ∇(Ψ′(ϕ)− Γ∆ϕ)) = 0 in P × (0, T ),

ϕ = g on ∂Pg × (0, T ),

Mϕ∇(Ψ′(ϕ)− Γ∆ϕ) · n = h on ∂Ph × (0, T ),

MϕΓ∇ϕ · n = 0 on ∂P × (0, T ),

ϕ(x, 0) = ϕ0(x) in P ,
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where ϕ0(x) accounts for the initial distribution of the concentration, Mϕ is a

degenerate mobility, and Ψ′(ϕ) is given by Ψ′(ϕ) = ∂ϕΨ(ϕ). The definition of

the degenerate mobility is

Mϕ = Dϕ(1− ϕ), (2.3)

where D accounts for a positive diffusion coefficient. On the other hand, the

chemical potential reads

Ψ′ (ϕ) = ln
ϕ

1− ϕ
+ 2ϑc(1− 2ϕ)− σ`∆ϕ. (2.4)

The Cahn-Hilliard equation for multicomponent systems will be derived in sub-

sequent chapters which allow to model complex system undergoing spinodal de-

composition.

2.2.2 Physical derivation

In the sequel, we derive an expression for the Ginzburg-Landau free energy from

a physical point of view [32]. Such a potential characterises the free energy of a

system embodied in an isotropic control volume P which has non-uniform spatial

distributions in concentration. As outlined above, the Ginzburg-Landau potential

reads

F (ϕ) =

∫
P
V (ϕ) +

Γ

2
|∇ϕ|2 dv. (2.5)

V (ϕ) represents the free energy of the homogeneous system, Γ is the interfacial

energy as a function of the interface thickness, and∇ϕ is the composition gradient

resulting from the spatial distributions in concentration. Essentially, this free

energy is composed of a homogeneous contribution V (ϕ), namely the energy that

the system would have as it were a homogeneous solution together with a gradient

energy Γ
2
|∇ϕ|2 as a result of the local changes in composition.

The Ginzburg-Landau free energy potential (2.5) results as follows: Let us

consider a binary fluid mixture composed of A and B particles when diffusion

is the primary controlling mechanism. The phase field φ = 0 corresponds to

the species constituted of particles A. Analogously, the phase field φ = 1 repre-

sents the species constituted of particles B. Moreover, assume a linear interpola-

tion between the two particles which characterises the species composed of both

particles. For the binary mixture A-B, the interactions between A-A and B-B

molecules are favourable. On the contrary, interactions between A-B molecules
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are unfavourable. The energy potential (2.5) takes into account such unfavourable

interactions via ∇φ. In the free energy (2.5), V (φ, ϑ) represents a potential en-

ergy landscape which accounts for the variation in energy from a random to a

ordered phase as the temperature decreases. Using regular solution theory of

binary systems and their description via mean field theory, the potential V (φ, ϑ)

is given by

V (ϕ, ϑ) = kB

(
2ϑcφ(1− φ) + ϑ(φ ln(φ) + (1− φ) ln(1− φ))

)
(2.6)

where kB, ϑc, and ϑ are the Boltzmann constant, the critical temperature between

molecules A and B, and the absolute temperature, respectively. Figure 2.1 shows

the behaviour of (2.6) as we vary the absolute temperature ϑ. Figure 2.1 shows a

single stable phase when the absolute temperature ϑ > ϑc together with a double

well function, ϑ < ϑc, where two stable phases emerge. We use the double-

tangent construction of coexisting phases to find the equilibrium position φeq of

the double well functional, i.e.,

∂V

∂φ

∣∣∣
φeq

= 0 (2.7)

which leads to

φeq −
1

2
=

1

4

ϑ

ϑc
ln

(
φeq

1− φeq

)
. (2.8)

The equation (2.8) has two solutions, φ1 and φ2, which corresponds to the values

at the wells (see Figure 2.1). Therefore, we have that for values of ϑ < ϑc, two

0 0.2 0.4 0.6 0.8 1

ϑ > ϑc

ϑ = ϑc

ϑ < ϑc

φ

V

Figure 2.1 represents the free energy as a function of absolute temperature. Values

of ϑ above ϑc generates a single stable phase. On the other hand, values of ϑ

below ϑc generates a double well potential
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states emerge continuously from one as a result of phase separation. On the other

hand, the free energy of the system embodied in an isotropic control volume P is

given by

F (φ) = Nv

∫
P
h dv (2.9)

where Nv is the number of molecules and h is the local free energy of a non-

uniform composition such that h = h(φ,∇φ,∆φ, . . . ). We expand the local free

energy of the non-uniform composition system h about φ0 = (φ, 0, 0, . . . ) using

multivariate Taylor series. Following Cahn and Hilliard [32], we drop the terms

higher than two. In addition, we assume an isotropic medium and invariance to

rotations and reflection. Thereby, one can prove that

h(φ,∇φ,∆φ, . . . ) = V (φ) + k1∆φ+
k2

2
|∇φ|2 + . . . (2.10)

where

k1 =
∂h(φ0)

∂φii
i = 1, 2, 3 (2.11)

and

k2 =
∂2h(φ0)

∂φ2
i

i = 1, 2, 3. (2.12)

In (2.10), V (φ) corresponds to the Helmholz free energy. Hence, the total free

energy of the control volume P reads

F (φ) = Nv

∫
P
h dv (2.13)

= Nv

∫
P

(
V (φ) + k1∆φ+

k2

2
|∇φ|2 + . . .

)
dv. (2.14)

Following Cahn and Hilliard [32], we carry out an integration by parts of the term

k1∆φ where we assume the term ∂nφ vanishes at the boundary. As a consequence,

we obtain ∫
P

(k1∆φ) dv = −
∫
P

(
∂k1

∂φ

)
dv (2.15)

By inserting (2.15) into (2.13), we get

F (φ)

Nv

=

∫
P

(
V (φ) + k1∆φ+

k2

2
|∇φ|2 + . . .

)
dv (2.16)

=

∫
P

(
V (φ) +

(
−∂k1

∂φ
+
k2

2

)
|∇φ|2 + . . .

)
dv (2.17)

=

∫
P

(
V (φ) +

Γ

2
|∇φ|2 + . . .

)
dv (2.18)

where

Γ = 2

(
−∂k1

∂φ
+
k2

2

)
. (2.19)
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We drop higher order terms in (2.16) and insert the definition (2.6) in (2.16).

Thus, the free energy of the phase field φ as a function of space and time reads

F∗ =

∫
P

[
(φ ln(φ) + (1− φ) ln(1− φ)) + ϑc2ϕ(1− φ)− σ`

2
|∇φ|2

]
dv (2.20)

where F∗ = F [φ(x,t)]
NvkBθ

, and ϑc, σ, ` are dimensionless numbers which depend on

the critical temperature and interfacial energy. These numbers will be shown in

subsequent chapters. In general, F∗ quantifies the free energy of a tempo-spacial

distribution of φ. Consequently, the variation of this energy with respect to those

distribution is the chemical potential. Thus, given the definitions for F∗ and φ,

we can calculate the chemical potential µ, such that

µ =
δF∗

δφ
(2.21)

where the variational derivative reads

δ

δφ
=

∂

∂φ
−∇ · ∂

∂∇φ
+ ∆

∂

∂∆φ
. (2.22)

In (2.22), ∇·, ∇, and ∆ are the divergence, gradient, and laplacian operators.

Fick’s law states that the mass flux is proportional to the chemical potential

gradient, such that

 = −M∇µ (2.23)

where M is the mobility tensor. In subsequent chapters, we will show a de-

generated multicomponent version of the mobility as a function of the species

concentrations. In the binary mixture, we have that

M = Dφ(1− φ) (2.24)

The phase field φ is conservative. Therefore, its evolution can be recasted by the

mass balance

φ̇+∇ ·  = 0. (2.25)

On the other hand, the chemical potential in (2.23) is

µ =
δF∗

δφ
= ln

φ

1− φ
+ ϑc2φ(1− 2φ)− σ`∆φ (2.26)

where we apply the variational derivative definition (2.22). Finally, the evolution

of the phase field φ can be described by

φ̇ = ∇ ·
(
M∇

(
ln

φ

1− φ
+ ϑc2φ(1− 2φ)− σ`∆φ

))
(2.27)

24



Chapter 3

Modelling the chemo-mechanical

responses of mineral solids

solutions far from equilibrium

under heterogeneous stresses

We study chemically active solid solutions subject to mechanical effects due to

heterogeneous stress distributions. We present a fully coupled thermodynamically-

consistent model for the chemo-mechanical responses of the solid solution. We

introduce the theoretical foundations of different interfacial effects and describe

their relation with the chemo-mechanical behaviour of the solid solution. We

describe the Helmholtz free energy of a multicomponent deformable solid under-

going both mass transport and chemical reactions. Moreover, the constitutive

equations describe the evolution of the system towards equilibrium and satisfy

the second law of thermodynamics by construction. Although the constitutive

assumption of the elastic energy allows for deformation induced across the solid

boundaries, in this section we emphasise the behaviour of systems where the

stress generation process is driven solely by the volume changes associated with

the chemical processes. Therefore, we do not take into account deformation across

the solid boundaries. This chapter serves as a theoretical introduction to subse-

quent chapters where a mathematical treatment of chemo-mechanical interactions

of solid solutions is given. This chapter relies on modern continuum mechanics

and thermodynamics far from equilibrium to explain the physical and chemi-

cal interactions of solid solutions. An important feature is the definition of the
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thermodynamic pressure and its relation with characterisation of metamorphic

minerals.

3.1 Introduction

In this chapter, we describe how interactions between interfacial effects, elasticity,

diffusion, and chemical reactions engender inhomogeneous stresses distributions

in solid solutions. By doing so, we seek to understand the chemo-mechanical

behaviour of metamorphic minerals.

The design of the Helmholtz free energy functional accounts for the contribu-

tions from the mechanical and chemical responses of the system. With regards

to the chemical energy, we use a potential that characterises the dynamics of a

solid system which undergoes diffusion together with phase separation in solid

state. Interfacial interactions between the phases drive the phase separation pro-

cess. Accounting for interfacial effects is a choice since not always metamorphic

minerals exhibit such a process. Therefore, the chemical energy can be set such

that interfacial effects are not taken into account. Analogously, we describe the

solid as a compressible neo-Hookean elastic material. We treat the solid as a

continuum body with motion described by a deformation field. The kinemat-

ics of the motion of the particles in the body define the deformation field. The

solid is composed by several phases. In the continuum mechanics literature, such

systems are commonly called solid-species solutions. Henceforth, we adopt this

denomination.

We derive a set of balance equations in the form of partial differential equa-

tions which define how the mass, linear and angular momenta, internal energy

and entropy of the solid solution vary in time as the deformation and chemical

processes take place (see e.g §4 and §5). As suggested in [33–36], three primary

fields govern the coupled chemo-mechanical responses of a solid-species solution:

the deformation field, the species concentration, and the chemical potentials. Our

description of a solid-species solution builds on the Larché-Cahn model of solids

[10, 12, 37, 38]. This model defines the relative chemical potential as a result of

the Larché-Cahn derivative [10, 33] (see e.g §4.2.3). The relative chemical po-

tential expresses that two different species may share the same lattice site in the

crystalline structure of the solid. The relative chemical potential characterizes the
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energy exchange caused by species transport and transformation. This chemical

potential describes how the energy changes when one species increases its concen-

tration while simultaneously reducing another one and keeping all other species

concentrations fixed. The relative chemical potential expresses the constraints im-

posed on the diffusion processes by the lattice of the crystalline structure. That

is, the diffusion process is only feasible if the variation of the local composition

of one species induces a complementary change in another species concentration.

The chapter is structured as follows: in section §3.2, we explain how inter-

facial mechanisms such as the Ostwald ripening and the Gibbs-Thomson effects

result from the interfacial interactions between the phases due the existence of

interfaces at their boundaries. These mechanisms play a significant role in the

chemo-mechanical behaviour of metamorphic minerals as they are involved, for

example, during exsolution processes, mineral crystallisation and recrystallisa-

tion. Section §3.3 embodies the definition of a crystalline structure for coherent

solid solution. We consider saturated system which imposes a mass constraint in

the system. In general, this mass constraint is related to the crystalline structure

and the spatial distribution of their atoms. Section §3.4 covers the elastic energy

of a neo-Hookean solid solution. In particular, the design of this potential allow

deformation resulting from forces applied across the solid boundaries and volume

changes as a result of chemical processes. The stress-assisted volume changes

contribution is scaled by a swelling parameter which controls the impact of the

variation of the phases concentrations towards stress generation. In section §3.5,

we introduce the chemical energy as its relation with the phases interfaces. In

particular, this setting allows for modelling phase separation processes such spin-

odal decomposition. However, the chemical energy can be set such that no phase

separation takes place. In other words, our design of the chemical energy can

also capture conventional mass transport processes such Fickian diffusion. We

conclude with §3.6 where the definition of the Helmholtz free energy is consid-

ered. This section also embodies the definition of the thermodynamic pressure,

an important physical quantity in subsequent chapters.
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3.2 Interfacial interactions: The Ostwald ripen-

ing and Gibbs-Thomson effects

Our formulation involves non-Fickian diffusion processes as it also relates inter-

facial diffusion. These interfacial interactions are important since, for example,

spontaneous phase separation processes, and the Ostwald ripening and Gibbs-

Thomson effects are governed by this mechanism. The interfacial interactions

Figure 3.1 shows an idealized cubic crystalline structure. The atoms inside the

crystalline structure are more energetically stable than the atoms located on the

surface since they are bounded by more neighboring atoms.

explain the Ostwald ripening and Gibbs-Thomson effect which has been reported

during the textural evolution of metamorphic rocks [18–20, 39]. The Ostwald

ripening effect is a thermodynamically-driven spontaneous process in spatially

heterogeneous solutions, with small and large aggregates, as the thermodynamic

system moves to a lower energy state by minimizing the interface length. The

small aggregates dissolve into the solution and precipitate onto the surface of the

larger aggregates since the smaller aggregates are less energetically favoured. To

illustrate the latter description and without loss of generality, let us consider a

solid solution with a cubic crystalline structure as depicted in Figure 3.1. The

green atom is the most energetically stable atom in the crystalline structure due

to its six neighboring atoms. Meanwhile, the blue atoms on the surface are less

energetically stable since they are only bounded by five or fewer neighboring

atoms. The aggregates compose of more green (interior) atoms are energetically

favoured and therefore, more stable. Thus, the most stable structures in the so-

lution are the larger aggregates as they contain more energetically stable atoms.

Consequently, as the system tries to minimize its free energy, the less stable
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structures, namely the smaller aggregates, tend to dissolve into the solution and

precipitate on the surface of the most stable structures. This mechanism shrinks

the smaller aggregates and grows the larger ones, a process that increases the

overall aggregate size on average in solution. For instance, Figure 3.2 (a) shows

an idealised representation of two aggregates and matrix where the small aggre-

gate of the red phase is subject to Ostwald ripening. Eventually, the smaller red

aggregate completely dissolves and precipitates leading to the growth of the larger

aggregate. Figure 3.2 (b)-(c) portrait the intermediate and final stages of such

process, respectively. On the other hand, the Gibbs-Thomson effect relates the

changes in the chemical potential associated with the curvature of the interfaces

which strongly impact the rates at which the diffusion processes take place (see

e.g (4.42) and (5.65)).

(a) (b)

(c) (d)

Figure 3.2 (a) depicts an idealised configuration of a solid composed of two ag-

gregates and matrix. The dynamics described by the Ostwald ripening effect will

control the dissolution of the small aggregate and eventually its precipitation onto

the surface of the larger aggregate once the solution gets supersaturated, more-

over (b), (c) and (d) showcase the evolution under such mechanism. Moreover,

as the concentration of the smaller inclusion is depleted, the stress field changes

and such process drives the final shape of the large inclusion.
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3.3 Crystalline structure and mass constraint

To understand the impact of the mechanical and chemical processes on solids

requires the description of the nature of solidity and its properties. Gibbs in his

pioneering work ”On the equilibrium of heterogeneous substances” introduced a

theory for the equilibrium thermodynamics of solids under non-hydrostatic con-

ditions where dissolution and accretion at the solid-fluid interfaces is possible

[40]. As a particular example, Gibbs’s model describes a non-hydrostatic stress

distribution at the contact point of a solid with more than one fluid. This pres-

sures induces a different fluid pressure, pfluid, at the solid-fluid interface. The

latter implies that the chemical potential of the dissolved solid in each fluid is

also different. Nonetheless, the Gibbs’s theory does not quantify the internal ad-

justment in the solid lattice caused by the compositional changes as the concept

of solid state diffusion did not exist during Gibbs’s time [12, 40, 41]. We now

model elastic solids that allow for changes in composition while remaining in the

solid state. Consequently, we adopt the network model proposed by Larché and

Cahn [12]. This model relies on the idea of a network embedded in the structure

of the solid which allows for the definition of a displacement field, and therefore

a strain of the solid [10, 33, 35]. As a result, the strain quantifies the network

deformation with regard to a undeformed state in the solid. In several natural

and engineering materials, such as minerals, polymers, and metals, a solid net-

work can be identified. For instance, the unit cell of the crystalline structure of

minerals, which arranges the atoms in a systematic and repeating pattern, acts

as a network. We focus on saturated systems, such that

n∑
α=1

ϕα = 1 (3.1)

where the order parameter ϕα accounts for the concentration of the α-th species

(see also (4.6)). When the solid is solely composed of the diffusing species the

mass constraint given by (3.1) must hold. Figure 3.3 depicts the crystalline

structure of a solid composed of two different species (drawn as the red and

blue circles), and it corresponds to the case where adjacent phases have coherent

transitions, namely the orientation of their crystalline structure coincides. When

a new species grows and nucleates the solid network must account for the lattice

misalignment between the phases. According to Larché and Cahn [10, 12, 37,

38], the growth and nucleation of new phases require describing non-coherent

phase transitions by defining a crystalline structure and proper orientations of

the mechanical properties for each phase. In our framework, the mass transport
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and the nucleation and growth of new species induced by chemical reactions

generate elastic strains. In Figure 3.3, for instance, the transport of the red atom

from the lattice site (1) to (2) must contribute to distort the crystalline structure

and therefore, to generate elastic strains. Henceforth, we denote such mechanism

is denoted as stress-assisted volume changes. The transport of the red atom

from the lattice site (1) to (2) requires the movement of other atoms towards the

lattice site (1) since the mass constraint given by (3.1) must always hold. Thus,

we restrict ourself to systems where mass transport by vacancies is not feasible.

Figure 3.3 depicts the Larché and Cahn representation of the network embedded

in the crystalline structure of a solid. The solid is composed of two species

sketched as red and blue circles. The figure shows a coherent transition between

the phases together with the stress-assisted volume changes mechanism. The

transport of the red atom from the lattice site 1 to the lattice site 2 induces

volumetric stresses.

3.4 Elastic energy

The elastic energy of a solid defines the potential energy stored in the solid

material as work is performed to deform either its volume or shape. External

forces applied through the solid boundaries, body forces due to gravity, electric

and magnetic fields, thermal swelling/shrinkage, and internal adjustment caused

by compositional changes transfer elastic energy to the solid.

The minerals that compose rocks accommodate these processes along their
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evolution. Shear zones and overburden are typical examples of external loading

applied to a rock. The chemical interactions caused by diffusion and reaction,

where atoms arrange to form a material with a crystal structure, are examples

of internal adjustment caused by compositional changes. Exhumation of deep

crustal metamorphic rocks involves thermal swelling and shrinkage due to the

temperature gradient in the crust.

All elastic responses allow the solid to recover its original configuration, namely

shape and volume, which implies that the material does not dissipate energy dur-

ing its mechanical distortion. In our framework, the variations in local species

concentration are scaled by a swelling parameter ω which measures the impact of

a change in local species concentration on the generation of volumetric stresses.

The parameter ω is related to the crystalline structure of the solid and its me-

chanical properties.

Figure 3.4 depicts the elastic energy ψ̂el as a function of the local species

concentration parametrised by the swelling parameter ω for a two phases system.

The solid boundaries are fixed, thus the stress variations are only due to the

changes of the species concentration. As we can see in Figure 3.4, the elastic

energy increases as the swelling parameter becomes larger. Therefore, as long as

the local species concentrations change with respect to the initial distribution,

the solid undergoes elastic deformation. The interaction between diffusion and

deformation change the rates of both processes.
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Figure 3.4 shows the elastic energy ψ̂el as a function of the local concentration.

The parametrisation shows the effect of the swelling parameter ω on the elastic

energy ψ̂e.

3.5 Chemical energy

Solid solutions are complex systems composed of several phases. The phase in-

terfaces may be of non-zero thickness where the physical and chemical properties

vary from one phase to another. That is, the transition from one phase to another

is not sharp. Figure 3.5 represents two phases A and B, in equilibrium, sketched

by the colors blue and red, respectively. The concentration ϕ of A and B corre-

sponds to ϕeqA and ϕeqB , respectively, and there exists a thin region (color gradient)

where the concentration ϕ varies gradually between ϕeqA and ϕeqB . This region is

the interface between the phases A and B. In our formulation of the chemical

energy ψ̂ch, we allow for microstructure evolution of a system undergoing phase

separation processes. The phase separation describes a spontaneous phenomena

that occurs at temperatures below the critical one. As a consequence, the system

favours the formation of spatial domains rich in either phase. Nevertheless, this

chemical energy can also set such that no phase separation processes as a result

of interfacial interactions occur. Spinodal decomposition processes can occur in

plagioclase feldspars and the binary system magnetite-ulvospinel [42–44]

Conventionally, the chemical energy can be written as ψ̂ch = ψ̂ϕ + ψ̂s where

ψ̂ϕ represents the chemical free energy of the homogeneous system and ψ̂s stands
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for an interfacial potential which relates the concentration gradients. Herein,

we use the definition of ψ̂ch outlined in [45]. This functional corresponds to

an extension towards a multicomponent approach of the classical free energy

potential used in the Cahn-Hilliard model [32, 46]. The multicomponent version

of the Cahn-Hilliard equation models the microstructure evolution of the solid

solution. Figure 3.6 (a) depicts the homogeneous free energy ψ̂ϕ for three absolute

temperature values T > Tc, T = Tc, and T < Tc, respectively. This potential

corresponds to the case where two phases compose the solid, for instance, A and

B as depicted by Figure 3.5. When the absolute temperature is greater than

the critical one (i.e., T > Tc), the potential ψ̂ϕ becomes a convex-downward

function of ϕ which renders a homogeneous mix, as there only exists a single

stable state located at the minimum value of ψ̂ϕ. Therefore, for all possible

values of concentration, the homogeneous free energy is stable with respect to

phase separation. Alternatively, when the absolute temperatures is below the

critical temperature T < Tc, the homogeneous free energy functional becomes

a double-well convex upward function from which two stable coexistent phases

emerge where the local minimum value of each well represents the concentration at

equilibrium of each phase. Thus, the system favours phase separation. Figure 3.6

(b) showcases the behaviour of the chemical potential calculated as the variational

derivative of the free energy ψ̂ϕ with respect to the phase concentrations ϕ.

Figure 3.5 shows the microstructure of a solid solution composed of two phases.

The concentration of the phases A and B correspond to ϕeqA and ϕeqB , respectively.

The interface, where the concentration varies between ϕeqA and ϕeqB , embraces the

chemical properties of both the phase A and B.
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3.6 Helmholtz free energy, fundamental balance

equations and thermodynamic pressure

The evolution of an elastic solid undergoing chemical processes can be character-

ized by the total free energy of the system. This energy potential accounts for

the elastic and chemical energy contributions outlined in Sections 3.4 and 3.5.

Hence, the total free energy of the system reads

Ψ̂ = ψ̂ch + ψ̂el. (3.2)

The Helmholtz free energy results from applying the Legendre transform to the

internal energy while replacing the entropy of the system by the temperature as

an independent variable. To describe the evolution of the solid, we derive a cou-

pled set of chemo-mechanical equations. These equations describe the balances

of mass, and linear and angular momenta, for the solid-species solution. More-

over, we describe the dynamics of a non-linear elastic solid undergoing phase

separation and chemical reaction by subordinating the constitutive relationships

0 0.2 0.4 0.6 0.8 1
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T < Tc

ϕ
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Figure 3.6 (a) represents the free energy potential of the homogeneous system.

The double well potential function allows for phase separation where the local

minimum value of each well accounts for the concentration at equilibrium of each

phase, and (b) sketches the chemical potential as a function of the concentration.

By definition, for the multicomponent system, the chemical potentials are the

variational derivative of the Helmholtz free energy with respect to the phase

concentrations.
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to the Helmholtz free energy following the brilliant arguments of Coleman and

Noll [47]. We use the aforementioned thermodynamical framework to calculate

the chemo-mechanical effects acting on the solid solution and especially to define

the thermodynamic pressure that charactirizes the thermodynamic equilibrium.

A spike of recent interest in the geosciences literature is the proper defini-

tion of the thermodynamic equilibrium in the discussion of the characterization

of metamorphic systems. As outlined in chapter §1.1, the thermodynamic pres-

sure can have spatio-temporal inhomogeneities. Recent studies of metamorphic

petrology provide the evidence of pressure deviations from the lithostatic val-

ues as well as spatially inhomogeneous distributions. Such discrepancies arise

from the complex chemomechanical interactions between the minerals which take

place deep in the Earth. Conventionally, we assume that the pressure takes the

Archimedes’s value (directly proportional to the depth). Nevertheless, when con-

sidering deforming rocks together with mineral reactions, stresses emerge from

both volume changes due to reactions and the overburden which lead to inho-

mogeneous pressure distributions. Thus, in general, the Archimedes’s formula is

inaccurate for these systems. For instance, the formation of ultrahigh-pressure

rocks suggests that pressure does not always translate into depth [4]. The un-

derstanding of the nature of such deviations is crucial since pressure provides,

for instance, a constraint for the description of the dynamics of orogens as well

as an indirect measurement of the depth history of the sample. The source of

such discrepancies is the complex chemo-mechanical interactions as the metamor-

phic rock complexes evolve towards equilibrium, and most importantly, that both

processes are strongly interdependent. Moulas et al. [4] provide a comprehensive

review of the evidence that metamorphic rocks maintain and record significant

pressure deviations from the lithostatic values. During prograde metamorphism,

high pressure and temperature conditions induce the formation of garnet porphy-

roblasts that harbour quartz and coesite inclusions. As the inclusions grow, the

metamorphic system endures large volumetric stresses associated with the expan-

sion of the inclusions in the relaxed host matrix. Eventually, the metamorphic

system exhibits chemical zonation where each aggregate has different chemical

and mechanical properties. Such heterogeneity generates spatial variations in

pressure. The effect of the inhomogeneous pressure seems to be critical and will

allow us to calibrate geodynamics models as well as to describe the evolution of

fabrics and microstructures.

Previous studies of metamorphic rocks separated the chemical and the me-
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chanical actions on the mineral assemblages. This splitting is inappropriate as

the volume changes, induced by chemical interactions between minerals, strongly

influence the inhomogeneous pressure distribution. Thus, an appropriate descrip-

tion of the deformation process requires a comprehensive treatment of the coupled

chemo-mechanical interactions.

As mentioned above, the thermodynamic pressure is defined as the partial

derivative of the Helmholtz free energy with respect to the specific volume while

keeping the local concentration and deformation constant. This physical quantity

defines the chemical equilibrium when all dissipative processes, which produce

entropy and therefore variations in local composition, cease [14]. Thereby, the

thermodynamic pressure defines the steady state where the free energy potential

ψ̂ becomes constant [14, 40].
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Chapter 4

Derivation of a multicomponent

reactive Cahn-Hilliard equation

We derive a thermodynamically consistent continuum theory for the multicom-

ponent Cahn–Hilliard equations following the ideas introduced by Fried & Gurtin

[48–50] and accounting for multiple chemical reactions as introduced by Gurtin

& Vargas [51]. To this end, we construct our theory by considering multiple bal-

ances of microforces augmented by multiple mass balance equations within an

extended Larché–Cahn framework. We also remark how to proceed to derive our

theory by postulating the principle of virtual power. As for the Larché–Cahn

framework, we incorporate into the theory the Larché–Cahn derivatives with re-

spect to the phase fields and their gradients. We also show the implications

of constraining the gradients of the phase fields into the gradient energy coeffi-

cients. Moreover, we derive the configurational balance with all the associated

configurational fields which are also in agreement with the Larché–Cahn frame-

work. Particularly, we study solutions whose microstructural evolution depends

upon the reaction-diffusion interactions and analyze the underlying configura-

tional fields. We introduce how interleaving between the reaction and diffusion

processes and their relation with the configurational tractions drive the motion

of interfaces.
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4.1 Introduction

The Cahn and Hilliard phase field framework captures the dynamics of sponta-

neous phase separation as the temperature of the system goes below the critical

temperature. After the separation process, the dynamics forms spatial domains

of fully separated components. This phase field successfully models cancerous tu-

mour growth [29, 52–54], viscous fingering [55], alloys [56], and image inpainting

[57].

Multicomponent systems are ubiquitous in nature, from rocks composed of

several minerals to biological mixtures such as the cytosol [58, 59]. Diffusive

models are commonly used to describe multicomponent systems driven by phase

segregation [60–64]. The theoretical foundations of the multicomponent Cahn–

Hilliard framework can be traced back to Morral & Cahn [65] in the study of the

dynamics of ternary alloys. Shortly after, de Fontaine [66] analyzed the kinetics of

clustering and ordering in multi-phase solid solutions. In particular, de Fontaine

[66] uses the same gradient energy as the one introduced by Morral & Cahn [65].

In alloy manufacturing, the multicomponent Cahn–Hilliard framework has been

used to understand the microstructural evolution of primary alloys where their

microstructures are composed of multiple phases [56, 67–69].

Thus, the multicomponent Cahn-Hilliard model emerged as a promising tool

to study the kinetics of multi-phase systems undergoing phase separation pro-

cesses. In particular, the strength of the model relies on an order parameter which

implicitly tracks the microstructure evolution of the phases. The latter allows,

for example, to enhance material properties (see e.g. [45] and references therein).

Nevertheless, the aforementioned framework has significant drawbacks regarding

the solution of the resulting system of equations, which in turns makes it also

attractive for computational scientists. For instance, Boyanova & Neytcheva [70]

design preconditioners to solve the n-components algebraic system using a quasi-

Newton method for the multicomponent Canh–Hilliard equations. Honjo & Saito

[56] carry out numerical simulations to investigate the microstructural evolution

of Fe Cr Mo ternary alloys. Clavijo et al. [45] coupled the multicomponent

Cahn–Hilliard model with a general law of mass action to study the interleaving

between spinodal decomposition processes and chemical reactions. Clavijo et al.

[45] models the phase separation process of a four phases system as a reversible

chemical reaction between the phases takes place.
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Elliott & Garke [46] approached the underlying physical system by employing

the balance of masses and the thermodynamical definition of chemical potential as

did Conti et al. [71] and Clavijo et al. [45]. Conversely, Fried & Gurtin [49] and Mi-

ranville & Schimperna [72] employed multiple balances of microforces; however,

the Larché–Cahn derivatives were not considered. To describe the underlying

physics of this problem, we consider n-phase fields representing the concentration

of conserved species and use a set of coupled Cahn–Hilliard equations to model

these phenomena. This leads to a system of n degenerate nonlinear fourth-order

parabolic partial differential equations. The degeneracy comes from a nonlinear

mobility tensor depending on the phase fields, which can vanish depending on

the values of the phase fields. We assume that there exist n balances of micro-

forces, as proposed by Fried & Gurtin [48, 49], and n mass balances accounting

for chemical reactions. We then build an extended Larché–Cahn framework to

account for the interdependence between the conserved species. Given the set

ϕ = {ϕ1, . . . , ϕn} of species, where n ∈ N, we consider ϕ̃ = ϕ\{ϕσ} to redefine a

generic conserved species by constraining it, ϕσ :=M0(ϕ̃) as well as its gradient,

gradϕσ := M1(gradϕ̃). A key aspect of this theory is that in computing par-

tial derivatives with respect to ϕα and gradϕα, the mappings M0 : ϕ̃ 7→ ϕσ and

M1 : gradϕ̃ 7→ gradϕσ must be taken into account. We then use the definition

of the partial derivative of generic functions F(ϕ) and G(gradϕ) where ϕσ is

constrained to derive the multicomponent Cahn–Hilliard equations. Moreover, in

defining these partial derivatives, we arrive at a constrained inner product on a

constrained space to appropriately define the gradient energy coefficients Γαβ.

The outline of this chapter is structured as follows. In section §4.2, we in-

troduce the balances of microforces augmented by the mass balances, and later,

we postulate the principle of virtual powers as an equivalent way of obtaining

the balances of microforces. We complement the system of equations by deriv-

ing the first and second law of thermodynamics. We also present the concept

of the Larché–Cahn derivative, including functions depending not only on the

phase fields but also on their gradients, and show the implications of constrain-

ing the gradients of the phase fields into the gradient energy coefficients. In §4.3,

we impose the thermodynamical constraints to obtain the constitutive equations

related to every kinematic process. We conclude this section by defining how

the chemical reactions in ideal and non ideal solutions contribute as an internal

mass supply. In section §4.4, we derive the configurational set of forces that drive

the evolution of the interfaces and its configurational balance. In section §4.5, we
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non-dimensionalize the equations. Finally, in section §4.6, we propose a energertic

variational approach to derive the multicomponent Cahn–Hilliard system.

4.2 Fundamental balances and thermodynamic

laws

4.2.1 Balances of masses and microforces

Herein, B represents a three-dimensional point space E of a fixed region and P is

an arbitrarily fixed subregion of B with boundary S = ∂P oriented by an outward

unit normal n.

Let ϕα be the order parameter of the α-th species in a system of n components.

The order parameter represents the concentration

ϕα := %α/%, (4.1)

where %α is the density of the α-th species while % is the total density. We

restrict attention to the case where the phase field represents the concentration

of a conserved species with a mass flux α endowed of a mass supply sα. The

mass supply is composed by two terms, an external contribution due to external

agents and an internal contributions due to chemical reactions. Thus,

sα := sαint + sαext. (4.2)

The partwise species balances are given by

˙∫
P

ϕα dv =

∫
P

sα dv −
∫
S

α · n da, (4.3)

and by localizing it, we arrive at the pointwise version of the the temporal evo-

lution of the mass conservation of the α-th species

ϕ̇α = sα − divα. (4.4)

By construction (4.1), the sum of all concentrations equals one,

n∑
α=1

ϕα = 1, (4.5)
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which yields the following kinematical relations after computing the time and

spatial derivatives,

n∑
α=1

ϕ̇α = 0, ∧
n∑

α=1

gradϕα = 0. (4.6)

Moreover, to conserve mass, from the sum of all balances (4.3), the additional

kinematical constraint are obtained

n∑
α=1

α = 0, ∧
n∑

α=1

sα = 0. (4.7)

To define appropriately the concept of partial derivatives, we take into account

(4.5) and (4.6) to derive this theory.

We then augment the species balances (4.3) and (4.4) by a microforce balance

for each species. To do so, let ξα be the α-th microstress, and πα (γα) field is the

α-th internal (external) microforce [50]. Thus, the microforce balances in their

partwise form are ∫
S

ξα · n da+

∫
P

(πα + γα) dv = 0, (4.8)

where its pointwise version is obtained by localizing (4.8) to arrive at

divξα + πα + γα = 0. (4.9)

4.2.2 Thermodynamics

We follow Gurtin & Fried [50, 73–75] and separate conservation statements from

constitutive equations.

To describe the thermodynamics of this system, we introduce the power ex-

penditure Wext externally to P done by the external microforces on P and mi-

crotractions on S

Wext(P) :=
n∑

α=1


∫
P

γαϕ̇α dv +

∫
S

ξαS ϕ̇
α da

 , (4.10)

where n stands for the total number of species and ξαS = ξα · n is the α-th

microtraction.

The first law of thermodynamics balances the internal energy of the sys-

tem and the power expenditure of chemical energy resulting from the reaction-
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diffusion process. Conversely, the mechanical version of the second law of ther-

modynamics describes the irreversibility of the process. We then present these

two laws as

˙∫
P

ε dv =Wext(P)−
∫
S

q · n da+

∫
P

r dv

+
n∑

α=1

−
∫
S

µαα · n da+

∫
P

µαsαext dv

 ,

˙∫
P

η dv ≥ −
∫
S

q

ϑ
· n da+

∫
P

r

ϑ
dv,


(4.11)

where ε and η represent the internal-energy density and entropy density, q is the

heat flux, r is the heat supply, and ϑ > 0 is the absolute temperature. Note that

there is no contribution of sαint to the energy balance (4.11).

Using the external power expenditure (4.10), the microforce balance (4.9),

the mass balance (4.3), and the mass supply definition (4.2), the thermodynamic

laws (4.11) are localized

ε̇ =
n∑

α=1

{−παϕ̇α + ξα · grad ϕ̇α − α · gradµα − µαsαint} − divq + r,

η̇ ≥ −div
q

ϑ
+
r

ϑ
.

 (4.12)

Rewriting (4.12)2, we obtain

η̇ ≥ −1

ϑ
divq +

1

ϑ2
q · gradϑ+

r

ϑ
. (4.13)

With the definition of the free-energy density as

ψ := ε− ϑη, (4.14)

and after multiplying (4.13) by ϑ and subtracting it from (4.12)1, we arrive at

the pointwise free-energy imbalance as

ψ̇ + ϑ̇η +
n∑

α=1

{(πα − µα)ϕ̇α − ξα · grad ϕ̇α + α · gradµα + µαsαint}

+
1

ϑ
q · gradϑ ≤ 0.

(4.15)

Remark 1 (Alternative derivation—Principle of virtual powers). The virtual

power expenditure definition encompasses, internally to P , the power done by
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internal microforces and the microstresses on P , whereas, externally to P , the

power done by external microforces on P and microtractions on S, implying

Vint(P , χα) = Vext(P ;χα) (4.16)

where the internal and external virtual powers are given by

Vint(P ;χα) :=
n∑

α=1


∫
P

(−παχα + ξα · gradχα) dv

 , (4.17)

and

Vext(P ;χα) :=
n∑

α=1


∫
P

γαχα dv +

∫
S

ξαSχ
α da

 , (4.18)

where {χα} is a set of n kinematically admissible fields.

Finally, we apply the divergence theorem to (4.16) and by means of the vari-

ational arguments, we get the local balance of microforces (4.9).

4.2.3 Larché–Cahn derivatives

We adopt the notation suggested by Gurtin et al. [33, 50] for the Larché–Cahn

derivatives in a multicomponent constrained framework. Thus, Let

ϕ = {ϕ1, . . . , ϕn} (4.19)

be a list of the species concentrations. Moreover, assume that the function F
depends on ϕ such that

F(ϕ) = F(ϕ1, . . . , ϕn). (4.20)

The constraint given by (4.5) implies that the set of concentrations ϕ must be

admissible; namely, 0 < ϕα < 1. Hence, since varying one of the concentrations

ϕα when holding the others fixed violates the constrain (4.5), conventional partial

differential operations are not well-defined on functions such as f . Larché and

Cahn [38] overcame this issue by defining the following operation

∂(σ)F(ϕ)

∂ϕα
=

d

dε
F(ϕ1, . . . , ϕα + ε, . . . , ϕσ − ε, . . . , ϕn)

∣∣∣
ε=0
. (4.21)

As shown in (4.21), Larché and Cahn chose two reference concentrations ϕα and

ϕσ in the set of variables. An infinitesimal change ε in ϕα has to induce the
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same infinitesimal variation ε onto ϕσ when holding the others unchanged. As a

consequence of (4.5), the concentration ϕσ, in general, is expressed by

ϕσ = 1−
n∑

α=1
α 6=σ

ϕα. (4.22)

The operation given by (4.21) implies the variation of F(ϕ) caused by an increase

in the concentration of the α-th species which in turn generates a decrease in the

σ-th species concentration. Due to (4.21), we find the following relations

∂(σ)F(ϕ)

∂ϕσ
= 0, (4.23)

and the skew-symmetric relation

∂(σ)F(ϕ)

∂ϕα
= −∂

(α)F(ϕ)

∂ϕσ
. (4.24)

Following the same process, taking the gradient of (4.22) we arrive at

gradϕσ = −
n∑

α=1
α 6=σ

gradϕα. (4.25)

We thus define the function

G(gradϕ) = G(gradϕ1, . . . , gradϕn), (4.26)

and its Larché–Cahn derivative

∂(σ)G(gradϕ)

∂(gradϕα)
=

d

dε
G(gradϕ1, . . . , gradϕα + ε, . . . , gradϕσ − ε, . . . , gradϕn)

∣∣∣
ε=0

,

(4.27)

where the relations (4.23) and (4.24) specialize to

∂(σ)G(gradϕ)

∂(gradϕσ)
= 0 ∧ ∂(σ)G(gradϕ)

∂(gradϕα)
= −∂

(α)G(gradϕ)

∂(gradϕσ)
. (4.28)

In Cahn–Hilliard systems of multicomponents, we incorporate gradient energy

coefficients Γαβ into the free-energy definition, and obtain a free-energy density

in the following form

ψ̂(ϕ, gradϕ) := f(ϕ) +
n∑

α=1

n∑
β=1

Γαβgradϕα · gradϕβ. (4.29)
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Elliott & Garcke in [46] prove that for multicomponent systems to be well-posed,

it is sufficient to ensure the positive definiteness of Γαβ. We show that this

condition is, in fact, sufficient but not necessary.

To do so, we define a special inner product on a constrained space. Consider

a set vectors {pα} constrained by

n∑
α=1

pα = 0, (4.30)

with the inner product
n∑

α=1

n∑
β=1

Γαβpα · pβ. (4.31)

We now consider the following points:

1. Let each Λαβ be a matrix populated with the same entry κ. Thus, {pα} is

the null space of Λαβ given the constraint (4.30), i.e., Null(Λαβ) = {pα}.
Moreover, if the rows of Λαβ are populated with the same entry κβ, we

arrive at the same conclusion. For any of these cases, we have that

n∑
α=1

n∑
β=1

Γαβpα · pβ =
n∑

α=1

n∑
β=1

(Γαβ + Λαβ)pα · pβ. (4.32)

Moreover, if we use the mass constraint (4.30) with the σ-th species as the

dependent species and quadratic form (4.31), we arrive at

n∑
α=1

n∑
β=1

Γαβpα · pβ =
n∑

α=1
α 6=σ

n∑
β=1
β 6=σ

(Γαβ + Γσσ − Γασ − Γσβ︸ ︷︷ ︸
Γαβσ

pα · pβ. (4.33)

Finally, we obtain a dimension n − 1 unconstrained space with the non-

invertible mapping H : Γαβ 7→ Γαβσ given by

Γαβσ := Γαβ + Γσσ − Γασ − Γσβ. (4.34)

We thus postulate that the problem is well-posed if Γαβσ is positive-definite.

Moreover, Γαβ can be negative-definite without compromising the well posed-

ness of the problem.

2. Let eα be the standard canonical basis in dimension n and Γαβ be a diagonal

matrix such that

Γαβ = κ eα · eβ. (4.35)
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It follows from point 1 that Γαβ can be rewritten as

Γαβ = −κ(1− eα · eβ). (4.36)

The null-diagonal matrix maps all vector in a similar fashion than the di-

agonal matrix (4.35) which captures the mass constraint (4.30).

3. Γαβgradϕα · gradϕβ describes the interfacial energy for the α-th and β-

th species, therefore it is meaningless to consider the interaction term

Γαα|gradϕα|2 as non-zero. By assuming Γαβ diagonal, we specify the in-

terfacial interactions of a certain phase with itself as well as that all the

interactions between any two phases is the same.

Through what follows in this chapter, we denote relative quantities with a sub-

script, for vector-like (·)ασ := (·)α− (·)σ and tensor-like (·)αβσ := (·)αβ− (·)σ quanti-

ties. Additionally, to avoid confusion, we do not use Einstein’s summation when

two indices are contracted.

4.3 Constitutive equations

4.3.1 Thermodynamical constraints

Throughout the derivation of the constitutive relations for the multicomponent

Cahn–Hilliard system, we make use of the Larché–Cahn derivative expressed by

(4.21) and (4.27). We now use the Coleman-Noll procedure [76] to find the

sufficient conditions to ensure the inequality (4.15) by arbitrary fields. Thus, a

set of constitutive equations emerges as a pair of each kinematic process. We

assume the following constitutive dependency of the free energy ψ within the

context of isothermal processes

ψ := ψ̂(ϕ, gradϕ). (4.37)

We thus rewrite the free-energy (4.15) as follows

n∑
α=1

{
µα − πα − ∂(σ)ψ̂

∂ϕα

}
ϕ̇α +

n∑
α=1

{
ξα − ∂(σ)ψ̂

∂(gradϕα)

}
· grad ϕ̇α

−
n∑

α=1

{α · gradµα + µαsαint} ≤ 0.

(4.38)
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The free-energy imbalance (4.38) must hold for any arbitrary ϕ̇α, grad ϕ̇α, and

gradµα fields at a given time and position. Thus, the following relations must

hold

πασ = µασ −
∂(σ)ψ̂

∂ϕα
, (4.39a)

ξασ =
∂(σ)ψ̂

∂(gradϕα)
, (4.39b)

ασ = −
n∑
β=1

Mαβ gradµβσ, (4.39c)

where M is the mobility tensor, which must be positive definite,
∑n

α=1

∑n
β=1 p

α ·
Mαβpβ holding ∀p. Aside from the fact that (4.38) expresses the possible ther-

modynamically consistent choices, the terms πα := πασ , µα := µασ , and ξα := ξασ

are written in the Larché–Cahn sense given their explicit dependence on the

Larché–Cahn derivatives. As a byproduct, we also write the mass flux, α :=

ασ(x, t; gradµασ), and the surface microtraction, ξαS := ξαSσ(x, t; ξασ) in the Larché–

Cahn sense. Finally, all these quantities are relative to the σ-th species.

An essential consequence of (4.5) is the definition of the relative chemical

potential µασ = µα − µσ. According to Larché–Cahn [38], the relative chemical

potential expresses the chemical potential of α-th species measured relatively to

the chemical potential of σ-th species. This construction is then extended to

define the relative fields: πασ , ασ , ξασ , and ξαSσ.

Using guidance from the original Cahn–Hilliard equation [32], the Ginzburg–

Landau potential governs spontaneous phase separation processes such as spin-

odal decomposition. In a multicomponent framework, to determine the constitu-

tive relations in (4.39), the Ginzburg–Landau potential is expressed as

ψ̂(ϕ, gradϕ) = NvkBϑ

(
n∑

α=1

ϕα lnϕα

)
+Nv

n∑
α=1

n∑
β=1

Ωαβϕαϕβ

+
1

2

n∑
α=1

n∑
β=1

Γαβ gradϕα · gradϕβ,

(4.40)

where Nv is the amount of molecules stored in the system per unit volume, Ωαβ

describes the reciprocal interaction energy between the α-th and β-th species, and

kB is the Boltzmann constant. Since the interaction energy between the α-th and

β-th species is reciprocal, Ωαβ has to be a symmetric tensor. Furthermore, the

interaction energy is a positive-definite tensor which is expressed as a function
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of the critical temperature between the α-th and the β-th species, ϑαβc . We

assume a non-energetic interaction when α = β which entails that Ωαβ = 0.

On the contrary, for different species α 6= β, we adopt that Ωαβ = 2kBϑ
αβ
c

[32, 46, 77]. We express Γαβ = σαβ`αβ (no Einstein notation) as the interfacial

energy magnitud between the α-th and β-th species where σαβ and `αβ represent

the interfacial tension and the interfacial thickness 1 between the α-th and the

β-th species, respectively. Cahn and Hilliard express the interfacial energy force

as Γαβ = NvΩ
αβ(`αβ)2 [32].

By combining the expression (4.39a) in conjunction with the balance of conser-

vation of microforces (4.9) and given the constitutive relation for the free energy

(4.40), the relative chemical potential of the α-th species in the Larcé–Cahn sense

can be expressed as

µασ =
∂(σ)ψ̂

∂ϕα
− div

∂(σ)ψ̂

∂(gradϕα)
− (γα + γσ), (4.41)

and therefore (4.41) with (4.40) specializes to

µασ = NvkBϑ

(
ln
ϕα

ϕσ

)
+ 2Nv

n∑
β=1

(Ωαβ − Ωσβ)ϕβ

−
n∑
β=1

(Γαβ − Γσβ) divgradϕβ − (γα + γσ).

(4.42)

In the following, we use the Onsager reciprocal relations of an isotropic sym-

metric mobility tensor Mαβ = Mαβ
1 (off-diagonals terms). We calculate the

mobility coefficients as a function of the species concentration. Particularly, we

calculate such a dependency as Mαβ := Mαβ
0 ϕα(δαβ − ϕβ) where δαβ is the Kro-

necker delta of dimension n and Mαβ
0 is the mobility between the α and β species

(no sum on α and β). The dimensions of Mαβ are length4 per unit force and

time [46]. Thus, (4.7)1 implies the following relation
n∑
β=1

Mαβ = 0, ∀α. (4.43)

4.3.2 Chemical reaction in ideal solutions

In this section, we restrict our attention to ideal solutions and recall the rigorous

treatment by Bowen [78]. Denoting the species ϕ̊ related to the concentration ϕ,

1Cahn and Hilliard suggested that this relation is the root mean square effective interaction

distance [32].
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such that ϕ := [ϕ̊], we express the c-th chemical reaction in a set of ns chemical

reactions, ns ∈ N, as
n∑

α=1

υcαϕ̊α
kc+


kc−

n∑
α=1

$cαϕ̊α, (4.44)

where υcα and $cα are the stoichiometry coefficients corresponding to the α-th

species reacting in the c-th chemical reaction. The c-th forward reaction rate is

denoted by kc+, while the c-th backward one is kc−. Furthermore, the c-th velocities

of both the forward and backward reactions read

rc+ := kc+

n∏
α=1

(ϕα)υ
cα

, (4.45)

rc− := kc−

n∏
a=1

(ϕα)$
cα

. (4.46)

Finally, the internal rate of mass supply term for all ns chemical reactions that

enters in (4.4) of an ideal solution is given by

sαint := −
ns∑
c=1

(υcα −$cα)(rc+ − rc−). (4.47)

Rigorously, the total number m of possible chemical reactions, where m ≥
ns ∈ N, is not arbitrary. To fit our framework in Bowen’s treatment [78], we

recall the indestructibility of the atomic substances postulate

n∑
α=1

tαιsα

mα
= 0, no sum on ι and 1 ≤ ι ≤ na, (4.48)

where na ∈ N is the number of atomic substances making up all the components

ϕ̊, mα is the molecular weight of the α-th component, and tαι is a non-negative

integer expressing the number of atoms of the ι-th atomic substance present

in the α-th component. This postulate assumes that the atomic substance are

indestructible. Moreover, usually tαι is not a square matrix and rank(tαι) =

min(n, na). Finally, the total number of chemical reactions is obtained from

m := n− rank(tαι). (4.49)

4.3.3 Chemical reaction in non-ideal solutions

In thermodynamics, the chemical activity accounts for the deviations from ideal

behaviour of a mixture of chemical substances [79]. Herein, we briefly explain
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how to accommodate such deviations from ideality by introducing the chemical

activities, accounting for the effective concentration of each species in the mixture.

The adjustments that we make in the free energy potential and reaction terms

require the introduction of activity terms, which are a function of the activity

coefficients and species concentration. The activity is a function of the activity

coefficients and species concentrations through

Aα := ςαϕα (4.50)

Essentially, non-ideality means that the solution cannot be defined by either

Raoult’s law or Henry’s law [80]. For example, Raoult’s law states that the

pressure p of an ideal system follows the relation

p :=
n∑

α=1

ϕαpαsat (4.51)

where psat represents the vapor pressure. Those laws assume that the interaction

between molecules is the same regardless the molecule composition. In a binary

solution A−B, the interactions between A and B molecules are the same as those

A−A or B−B molecules. In other words, there is no enthalpy of mixing in a ideal

solution as there are no forces acting between the components of different nature.

Non-ideal solutions can occur in the following scenarios: 1) The intermolecular

forces between molecules of the same nature; namely the same type of molecules,

are stronger than the forces acting between solute and solvent molecules, and

2) the intermolecular forces between similar molecules are weaker than those of

different molecules [81]. The pressure of non-ideal solutions uses the activity

coefficients such that

p :=
n∑

α=1

Aαpαsat =
n∑

α=1

ςαϕαpαsat, (4.52)

to account for such deviation from ideality caused by molecular interactions be-

tween species [82, 83]. A mixture of carbon disulfide and acetone can be consid-

ered as a non-ideal solution. The non-polar dipole moment of the carbon disulfide

generates intermolecular forces are weaker than the polar dipole moment of the

acetone which leads to a dipole-induced dipole mixture. Powney et al. [84] re-

ports a positive deviation form the Raoult’s law for the carbon disulfide-acetone

solution.

We define a new free-energy for a non-ideal solution accounting the activity
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coefficients as

ψ̂(ϕ, gradϕ) =
1

2
NvkBϑ

(
n∑

α=1

ϕα ln(ϕαAα)

)
+Nv

n∑
α=1

n∑
β=1

Ωαβϕαϕβ (4.53)

+
1

2

n∑
α=1

n∑
β=1

Γαβ gradϕα · gradϕβ, (4.54)

which renders the following chemical potential

µασ =
1

2
NvkBϑ

(
2 ln

ϕα

ϕσ
+ ln

ςα

ςσ

)
+ 2Nv

n∑
β=1

(Ωαβ − Ωσβ)ϕβ

−
n∑
β=1

(Γαβ − Γσβ) divgradϕβ − (γα + γσ).

(4.55)

We use the definition of activity (4.50) in (4.55). For systems undergoing several

non-ideal chemical reactions, the velocities of both the forward and backward

reactions read

rc+ := kc+

n∏
α=1

(Aα)υ
αc

= kc+

n∏
α=1

(ςαϕα)υ
αc

, (4.56)

rc− := kc−

n∏
a=1

(Aα)$
αc

= kc−

n∏
a=1

(ςαϕα)$
αc

. (4.57)

4.4 Configurational fields

To describe the evolution of interfaces and its thermodynamics, we profit on the

configurational forces proposed by Gurtin [85]. These forces are related to the in-

tegrity of the material and the movement of defects. As for the thermodynamical

interpretation, configurational forces expend power associated to the transfer of

matter. Recalling the configurational balance for a part P by Fried [86], we have∫
S

Cn da+

∫
P

(f + e) dv = 0, (4.58)

which renders, after localizing it,

divC + f + e = 0, (4.59)

where C is the configurational stress tensor, f is the internal force, and e the

external force.

Our goal is to determine the configurational stress, the internal, and external

forces arising from multicomponent systems. We first establish how configura-

tional forces expend power in a migrating control volume P ′, where q is the
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migrating boundary velocity defined on S ′, letting n′ denote the outward unit

normal.

For a migrating volume P ′ the mass balance (4.3) specializes to

˙∫
P ′

ϕα dv −
∫
S′

ϕαq · n′ da = −
∫
S′

α · n′ da+

∫
P ′

sα dv. (4.60)

We now use the external virtual power (4.18), where γα and ξαS are conjugate

to ϕ̇α. We set as virtual field the advective term ϕ̇α + gradϕα · q to follow the

motion of S ′ augmented by the fact that the configurational tractionCn′ is power

conjugate to q on S ′.

Using that

ξαS (ϕ̇α + gradϕα · q) = (ξα · n)ϕ̇α + (gradϕα ⊗ ξα)n · q, (4.61)

we arrive at the total external configurational power

Wext(P ′) =

∫
S′

(
C +

n∑
α=1

gradϕα ⊗ ξα
)
n′ · q da

+
n∑

α=1


∫
P ′

γαϕ̇α dv +

∫
S′

ξαS ϕ̇
α da

 . (4.62)

The motion of S ′ involves the normal component q ·n′, thus power is indifferent

to the tangential component of q, yielding

C +
n∑

α=1

gradϕα ⊗ ξα =: ζ1 , (4.63)

where ζ is a scalar field.

Thus, the first integral of (4.62) becomes∫
S′

ζ q · n′ da. (4.64)

Using the arguments that led to the free-energy imbalance (4.15), for isothermal
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processes, for a migrating control volume P ′ with a velocity q, we state that

˙∫
P ′

ψ dv =

∫
P ′

ψ̇ dv +

∫
S′

(
ψ −

n∑
α=1

µαϕα

)
q · n′ da ≤

n∑
α=1


∫
P ′

γαϕ̇α dv +

∫
S′

ξαS ϕ̇ da−
∫
S′

µαα · n′ da+

∫
P ′

µαsαext dv


+

∫
S′

ζq · n′ da, (4.65)

leading to

∫
P ′

ψ̇ dv ≤
n∑

α=1


∫
P ′

γαϕ̇α dv +

∫
S′

ξαS ϕ̇
α da−

∫
S′

µαα · n′ da+

∫
P ′

µαsαext dv


+

∫
S′

(
ζ −

(
ψ −

n∑
α=1

µαϕα

))
q · n′ da, (4.66)

which implies that

ζ := ψ −
n∑

α=1

µαϕα. (4.67)

Thus, using the constitutive part (4.67) in the relation (4.63), we arrive at the

configurational stress

C :=

(
ψ −

n∑
α=1

µαϕα

)
1 −

n∑
α=1

gradϕα ⊗ ξα, (4.68)

while using (4.39) and (4.59) with (4.68), we obtain respectively the internal and

external configurational forces

f :=
n∑

α=1

ϕα gradµα ∧ e := −
n∑

α=1

γα gradϕα. (4.69)

In considering the Larché–Cahn derivatives, the configurational stress (4.68)

becomes the relative configurational stress

Cσ :=

(
ψ −

n∑
α=1

µασϕ
α

)
1 −

n∑
α=1

gradϕα ⊗ ξασ , (4.70)

while

fσ :=
n∑

α=1

ϕα gradµασ , (4.71)

is the relative internal configurational force. Note that the external configura-

tional force is not constitutively determined, thus, it does not depend upon the

choice of the reference species.
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Remark 2 (The dependency of C and f upon the reference species and the

indifference of the configurational balance to the reference species). Given ref-

erence species ϕσ, we can establish the following relations that appear in the

configurational stress (4.68)

−
n∑

α=1

µασϕ
α = −

n∑
α=1

µαϕα + µσ
n∑

α=1

ϕα

= −

(
n∑

α=1

µαϕα

)
+ µσ, (4.72)

and

n∑
α=1

gradϕα ⊗ ξασ =
n∑

α=1

gradϕα ⊗ (ξα − ξσ)

=
n∑

α=1

gradϕα ⊗ ξα −

(
n∑

α=1

gradϕα

)
⊗ ξσ

=
n∑

α=1

gradϕα ⊗ ξα. (4.73)

while for the internal configurational force (4.69)1

n∑
α=1

ϕα gradµασ =
n∑

α=1

ϕα gradµα − gradµσ
n∑

α=1

ϕα,

=

(
n∑

α=1

ϕα gradµα

)
− gradµσ. (4.74)

Based on (4.72) and (4.73), we can assert that there is only one term in C (4.68)

that depends on the reference species, that is, the relative configurational stress

can be written as

Cσ := C + µσ1 , (4.75)

while the relative internal configurational force (4.69)1 is specialized with (4.74)

yielding

fσ := f − gradµσ1 , (4.76)

Finally, although the configurational stress and the internal configurational force

depend upon the choice ϕσ, this dependency vanishes in the configurational bal-

ance (4.59),

divCσ + fσ = div(C + µσ1 ) + f − gradµσ,

= divC + f . (4.77)
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4.5 Dimensionless Cahn-Hilliard equations

Recalling the final system enclosed by (4.4), (4.39), (4.42), (4.56), (4.57) and

(4.47), we arrive at

ϕ̇α = sα − divασ ,

ασ = −
n∑
β=1

Mαβ
0 ϕα(δαβ − ϕβ) gradµβσ,

µβσ = NvkBϑ ln
ϕβ

ϕσ
+ 2Nv

n∑
α=1

(Ωβα − Ωσα)ϕα

−
n∑

α=1

(Γβα − Γσα) divgradϕα − (γα + γσ),

sαint = −
ns∑
c=1

{
(υcα −$cα)(kc+

n∏
a=1

(ϕa)υ
ca − kc−

n∏
a=1

(ϕa)$
ca

)

}
,

(4.78)

with
ϕα(x, 0) = ϕα0 inP ,

subject to periodic boundary conditions,
(4.79)

where we inserted the definition of the reaction velocities rc+ and rc− for ideal

solutions in sαint. To make the equations dimensionless, we introduce the reference

energy density ψ0 := 2NvkBϑ and define the set of diffusion coefficients Dαβ,

Dαβ = ψ0M
αβ
0 ϕα(δαβ − ϕβ) no sum on α and β. (4.80)

which follow a linear response relation between the reference energy density and

the species mobilities as proposed by Einstein [87, 88]. We additionally define

the following dimensionless variables

x = L−1
0 x, t = T−1

0 t, ϑ
αβ

c = ϑ−1ϑαβc . (4.81)

Conventionally, the reference time for the Cahn–Hilliard system T0 is given as

a relation between the diffusion coefficient, the interface thickness, and domain

length, i.e., T0 = D0`
2
0L
−4
0 where L0 >>> `0 [89, 90]. We set D0 and `0 as the

reference diffusion coefficient and interface thickness of a reference species. We

propose the following sets of scalar dimensionless numbers for the multicomponent

framework, that is,

k
+

c = k+
c D

−1
0 `−2

0 L4
0, k

−
c = k−c D

−1
0 `−2

0 L4
0, ψ = ψ−1

0 ψ,

σαβ = σαβ(ψ0L0)−1, D
αβ

= DαβD−1
0 `−2

0 L2
0, `

αβ
= L−1

0 `αβ,

γα = ψ−1
0 γα.

(4.82)
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By inserting the dimensionless quantities in (4.78), we find the following dimen-

sionless forms

ϕ̇α =sα − divασ,

ασ =−
n∑
β=1

Dαβ gradµβσ,

µβσ =
1

2
ln
ϕβ

ϕσ
+ 2

n∑
α=1

(ϑ
βα

c − ϑ
σα

c )ϕα −
n∑

α=1

(σβα`
βα − σσα`σα) divgradϕα

− (γα + γσ),

sαint =−
ns∑
c=1

{
(υcα −$cα)(k

c

+

n∏
a=1

(ϕa)υ
ca − kc−

n∏
a=1

(ϕa)$
ca

)

}
,

(4.83)

with the initial condition (4.79).

4.6 An energetic variational approach for the

multicomponent Cahn–Hilliard equations

4.6.1 Free energies

Let us consider the following multicomponent functions for both the species and

species gradient concentrations, respectively

ϕ̃ = {ϕ1, . . . , ϕn} (4.84a)

gradϕ̃ = {gradϕ1, . . . , gradϕn} (4.84b)

ϕ = {ϕ1, . . . , ϕn−1, 1−
n−1∑
α=1

ϕα} (4.84c)

gradϕ = {gradϕ1, . . . , gradϕn−1,−
n−1∑
α=1

gradϕα}. (4.84d)

The aforementioned sets ϕ and gradϕ take into account the mass constraint (4.5)

by imposing ϕn = 1 -
∑n−1

a=1 ϕ
α where we use the n-th species as the reference

component. Thereby, we do not consider ϕn. The tilde functions embrace the

whole set of species. In a physical domain P , the Ginzburg-Landau free energy

is given by

Ψ̃(ϕ̃, gradϕ̃) =

∫
P

[
ψ̃(ϕ̃, gradϕ̃)

]
dv =

∫
P

[
ψ̃ϕ(ϕ̃) + ψ̃s(gradϕ̃)

]
dv. (4.85)
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This energy is a function of both the n-well free energy ψ̃ϕ

ψ̃ϕ(ϕ̃) = NvkBϑ

(
n∑

α=1

ϕα lnϕα

)
+Nv

n∑
α=1

n∑
β=1

Ωαβϕαϕβ (4.86a)

ψϕ(ϕ) = NvkBϑ

{
n−1∑
α=1

ϕα lnϕα + (1−
n−1∑
α=1

ϕα) ln(1−
n−1∑
β=1

ϕβ)

}

+Nv

{
n−1∑
α=1

n−1∑
β=1

(Ωαβ + Ωnn − Ωαn − Ωnβ)ϕαϕβ (4.86b)

+
n−1∑
α=1

(Ωαn + Ωnα − 2Ωnn)ϕα

}
. (4.86c)

and the interfacial free energy

ψ̃s(gradϕ̃) =
1

2

n∑
α=1

n∑
β=1

Γαβ gradϕα · gradϕβ (4.87a)

ψs(gradϕ) =
1

2

n−1∑
α=1

n−1∑
β=1

(Γαβ + Γnn − Γan − Γnb)gradϕα · gradϕβ. (4.87b)

Using a negative definite gradient energy with null diagonal, for example the

binary case Γαβ = −0.5Γ, we can recover the former Cahn-Hilliard equation [45].

4.6.2 Chemical potentials

As mentioned above, the chemical potential is the variational derivative of the

free energy with respect to the species concentration. Such energy quantifies the

exchange process resulting from the bulk and interfacial contributions. Hence,

the α-th chemical potential taking as the reference species the n-th component is

µ̃α =
δΨ̃

δϕα
, (4.88)

which entails
δΨ

δϕα
=

δΨ̃

δϕα
− δΨ̃

δϕn
= µ̃α − µ̃n, (4.89)

for α = 1, . . . , n− 1. The n-well (bulk) term is

µ̃αϕ = Nvkϑ (lnϕα + 1) +Nv

n∑
β=1

(Ωαβ + Ωβα)ϕβ

= Nvkϑ (lnϕα + 1) + 2Nv

n∑
β=1

Ωαβϕβ, (4.90a)
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and the interfacial one is given by

µ̃αs = −1

2

n∑
β=1

(Γαβ + Γβα)4ϕβ

= −
n∑
β=1

Γαβ4ϕβ. (4.91a)

We apply (4.89) which leads to the following set of chemical potentials

µαϕ = Nvkϑ

(
ln
ϕα

ϕn

)
+ 2Nv

n∑
β=1

(Ωαβ − Ωnβ)ϕβ, (4.92)

µαs = −
n∑
b=1

(Γαβ − Γnβ)4ϕβ (4.93)

for α = 1, ..., n. Finally, µα = µαϕ + µαs [45].

4.6.3 Generalized Fick’s law

The mass fluxes relating the off-diagonal terms in the Onsager reciprocal relations

are given by

α = −
n∑
β=1

Mαβ grad µ̃β, α = 1, . . . , n, (4.94)

where Mαβ are the Onsager mobility coefficients. To conserve mass, the mass

fluxes must satisfy the following constraint

n∑
α=1

α = 0, (4.95)

which implies the relation

n∑
β=1

Mαβ = 0, ∀α. (4.96)

Thereby, the mass flux for each component is

α = −
n∑
β=1

Mαβ grad µ̃β

= −

(
n−1∑
β=1

Mαβ grad µ̃β +Mαβ grad µ̃n

)

= −

(
n−1∑
β=1

Mαβ grad µ̃β − (
n−1∑
β=1

Mαβ) grad µ̃n

)

= −
n−1∑
β=1

Mαβ grad(µ̃β − µ̃n)

(4.97)
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As expressed above, the mobility tensor depends on the species concentrations

[45].
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Chapter 5

Derivation of a coupled

chemo-mechanical system

We develop a thermodynamically-consistent framework to characterise the evolu-

tion of chemically active elastic solids. We model the system as a solid-species so-

lution where the species mass transport and chemical reaction drive the stress gen-

eration process. We treat the solid as a continuum body and following the Larché

and Cahn network model, we define displacement and strain fields. Thereby, the

strain quantifies the deformation of the network with respect to a reference net-

work configuration set as an undeformed state. We carry out balances of solid

and species mass conservation, balances of conservation of linear and angular

momenta as well as balances of microforces. Using conservation balances and

first and second law of thermodynamics, we build a Lagrangian description for

the Helmholtz free energy of system. By means of the Coleman-Noll procedure,

we find the relations between the chemical potentials, microforces, stress and the

Helmholtz free energy. A mass constraint imposed by the solid crystalline struc-

ture leads to definition of the relative chemical potentials, relative mass fluxes,

and relative microforces. These physical quantities result from the definition of

the Larché-Cahn derivative in saturated systems. Additionally, a general law of

mass action models the source/sink of mass in the balance of species mass con-

servation. This relation allows to model complex chemical reactions. Finally, we

provide several simulation results to showcase and verify the chemo-mechanical

interactions of a solid-species solution that undergoes spinodal decomposition,

chemical reactions and deformation.
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5.1 Introduction

When considering a deformable medium, chemical reactions may affect the solid

strength and its mechanical properties. Analogously, high mechanical strength

may suppress either the volumetric shrinkage or swelling associated with the

local volume changes caused by the chemical processes. Therefore, the chemical

processes, associated with mass transport and chemical reactions, induce volume

changes that lead to stresses around the reaction site.

Finding innovative ways of approaching the modelling of solids is an important

open research topic in science and engineering. For instance, areas such as mate-

rial science and geoscience are constantly in the search of new models which allow

them to improve the properties of materials or to understand the formation of

mineral assemblages. Both relate solids that undergo chemical processes. Thus,

the description of solidity and its properties is crucial to understand the nature of

the physical and chemical responses of solids. In this effort, Gibbs carried out a

comprehensive study that set the groundwork of the thermodynamical properties

of solids [91]. However, Gibbs’ solid model does not quantify internal adjust-

ment caused by compositional changes since the concept of solid state diffusion

did not exist by Gibbs’ time. Herein, we seek to model multicomponent elastic

solids that allow for changes in composition while remaining in the solid state,

and in particular, the impact of compositional changes towards stress generation

[33–36]. Larché and Cahn introduced the equilibrium conditions of deformable

bodies which change composition as a result of chemical processes [10, 12, 38].

For instance, dissolution and precipitation at solid-fluid interfaces change the

chemical composition of the solid which in turn induce stresses associated with

volume changes. Larché-Cahn’s approach models the solid as a network which

allows to define the stress-strain relations. In nature, a solid network can be, for

example, the unit cell of the crystalline structure of polymers, which arranges the

atoms in a systematic and repeating pattern. Thus, we follow the network model

of Larché and Cahn to adequately describe the multicomponent solid.

To date, several authors have published the intrinsic behaviour of diffusion-

mechanics based on theoretical modelling as well as experimental procedures

[3, 92–100]. For instance, Dal et al. [34] study the performance of lithium ion

battery electrodes by using a electro-chemo-mechanical coupling at finite strain.

In their model, the Butler-Volmer kinetic equation defines the electrochemistry
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of the surface reaction. At the solid boundary, the reaction triggers the diffusion

of ions in the battery which in turn induces volumetric deformation. Spinodal

decomposition during the phase transformation of martensite relates large vol-

ume changes. As a consequence, deformation can occur leading to a change in

solid crystalline structure. Moreover, the precipitation of new phases, which may

possess another crystalline structure, induces additional stresses in the solid. Mo-

tivated by this, Rudraraju et al. [101] propose a multicomponent framework for

crystalline solids under diffusional phase transformation. The free energy of the

system is a function of both a mechanical potential, which relates the symmetry-

breaking structural changes of the crystal unit cell, and the chemical free energy

where each spinodal represents a phase.

The outline of this chapter is as follows. Section §5.2 studies the kinematics

of the motion, the fundamental balances of a continuum body and the thermody-

namic laws. Therein, we present a coupled system of partial differential equations

to model mass transport and deformation processes. In section §5.3, we present

the Coleman–Noll procedure together with the necessary constitutive relations

that define a neo-Hookean elastic solid undergoing spinodal decomposition while

its constituent species react. In this section, we also make use of the Larché-Cahn

derivative as outlined in section §4.2.3, followed by Section §5.4 which covers the

dimensionless forms of the coupled system of chemo-mechanical equations for the

multicomponent framework in conjunction with the dimensionless numbers of the

coupling.

5.2 Fundamental balances and thermodynamics

laws

5.2.1 Kinematics of the motion

We introduce a system of partial differential equations to capture the evolution of

a multicomponent elastic solid undergoing spinodal decomposition together with

a reversible chemical reaction. In our framework, deformation induced across

the solid boundaries and compositional changes drive the stress generation pro-

cess. Henceforth, we will call this mechanism as stress-assisted volume changes.

We treat the solid as a continuum body that occupies an open subset B of the
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Figure 5.1 The deformation field χ defines the kinematics of the motion of the

particles in the body from a configuration B onto another configuration Bt.

Euclidean space E . A time-dependent deformation field χ : B x T → Bt ⊂ E
describes the motion from a configuration B onto another configuration Bt. We

refer to B as the reference configuration and to X as the particles in B. We

set the reference configuration such that B represents an undeformed state of the

solid. The deformation field characterizes the kinematics of the motion of the

particles in the body, and after deformation, it assigns to each material particle

X at a given t ∈ T a spatial particle x in the current configuration Bt. The

deformation field is then expressed as

x
def
= χ(X, t) = χt(X), (5.1)

which implies

Bt = χt(B). (5.2)

The deformation field is invertible; namely, there exists an inverse deformation

field χ−1 : Bt x T → B ⊂ E such that

x = χt(χ
−1(x, t)), (5.3)

and which renders

X
def
= χ−1(x, t). (5.4)

Figure 5.1 portraits the reference and current configuration in conjunction

with the motion of the particles. Herein, we adopt the notation suggested by

Gurtin et al. [33]. In particular, we use the differential operators that account for
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the material and spatial description of scalar, vector, and tensor fields. Then, ∇
and Div represent the gradient and divergence with respect to material particles

X in the reference configuration B, respectively. Likewise, grad and div corre-

spond to the gradient and divergence with respect to spatial particles x = χt(X)

in the current configuration Bt, respectively. Besides, we denote second order

tensors and vectors by bold symbols.

In deforming bodies undergoing mass transport and chemical reactions, the

particles move relative to each other as a result of external forces and composi-

tional changes. This movement can be arrested by measuring the relative dis-

placement of the particles. We use a Lagrangian description of the displacement

field u which defines the kinematics of the motion, that is,

u = x(X, t)−X (5.5)

and the deformation gradient

F = ∇χt = ∇u+ I (5.6)

where I defines the second order identity tensor. To ensure an admissible de-

formation, i.e., a continuum body cannot penetrate itself, the Jacobian of the

deformation gradient must fulfill the following constraint

J
def
= det F > 0. (5.7)

The velocity of a material particle X as a function of the motion is given by

V
def
=

∂χ(X, t)

∂t
(5.8)

and its counterpart in the current configuration is

v
def
=

∂χ(X, t)

∂t

∣∣∣
X=χ−1(x,t)

. (5.9)

Equation (5.9) describes the velocity at time t of a material particle located at

x = χt(X).

Given the definition of the deformation gradient and the spatial velocity, the

right Cauchy-Green stress, the Green-Lagrange strain, the rate of strain tensors

and the spatial velocity gradient are given by

C = F>F, (5.10)

E =
1

2

(
F>F− I

)
=

1

2
(C− I), (5.11)
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D = sym(gradv) =
1

2
(gradv + gradv>), (5.12)

L = (gradv) = ḞF−1. (5.13)

The relation between the reference and current configuration is obtained by ap-

plying the change of variable theorem. In particular, these equations account for

the deformation of an infinitesimal line, area, and volume element, that is,

dx = F dX, (5.14)

da = JF−>daR, (5.15)

dv = J dvR. (5.16)

5.2.2 Fundamental balances

We derive a set of balance equations in the form of partial differential equations

which define how the mass, linear and angular momenta, internal energy and

entropy vary in time as the solid-species system endures mechanical and chem-

ical processes. As suggested in [33–36], three primary fields govern the coupled

chemo-mechanical responses of the solid: the deformation χ(X, t), the species

concentration ϕαR(X, t) per unit of reference volume, and the chemical poten-

tial µαR(X, t) per unit of reference volume where α denotes the α-th species that

composes the solid.

Let P ⊂ B be an arbitrary control volume in conjunction with its boundary

S = ∂P. Analogously, consider Pt as a bounded control volume of Bt such that

Pt = χ(P) with boundary S = ∂Pt. According to Cauchy’s theorem, the traction

t on a surface da ⊂ S and whose normal n points outwards is

t
def
= T(x, t)n. (5.17)

This traction characterizes the force exerted by the rest of the body Bt \ Pt on

Pt through da ⊂ S [34, 35]. The traction t depends linearly pointwise on the

normal n through Cauchy’s stress tensor T [102]. Applying the Equation (5.15)

to the identity tR daR = t da, we find the force acting on the surface element

da as a function of the surface element daR [33, 34]. This identity leads to the

nominal stress tensor TR,

TR daR = T da with TR = JTF−>. (5.18)
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As mentioned above, the chemo-mechanical interactions take place through

an elastically deforming solid composed by a network and constituent species.

Consequently, we formulate balances of mass conservation for both the solid and

the constituent species. Thus, we define ϕαR as the local concentration of the

α-th species per unit of undeformed configuration together with a spatial species

outflux α. In agreement with the balance of mass conservation, the rate of

mass change of the α-th species in the control volume P has to be equal to

the contribution from the mass supply, typically caused by chemical reactions

between the species, and the net mass flux through the boundary S, that is,

˙∫
P

ϕαR dvR =

∫
P

sα dvR −
∫
S
α · n dv (5.19)

where sα is the mass supply expressed in the reference configuration. As outlined

in §4.2.1 (see (4.2)), the mass supply is composed by two terms, an external

contribution due to external agents and an internal contributions due to chemical

reactions. Thus,

sα := sαint + sαext. (5.20)

Using the divergence theorem, we transform the surface integral of the species

flux into a volume integral of the divergence of the species flux as follows

˙∫
P

ϕαR dvR =

∫
P

sα dvR −
∫
S

divα dv. (5.21)

The Lagrangian description of Equation (5.21) is

˙∫
P

ϕαR dvR =

∫
P

sα dvR −
∫
P

DivαR dvR (5.22)

where we use the Piola transform. Thus, the material species flux is then αR =

F−1(Jα). Finally, the localized version of Equation (5.22) is given by

ϕ̇αR = sα −DivαR. (5.23)

The concentration of each species is linearly dependent on the other, that is,

n∑
α=1

ϕαR = 1 (5.24)

which renders
n∑

α=1

ϕ̇αR = 0 and
n∑

α=1

∇ϕαR = 0 (5.25)

where n stands for the total number of species. In general, when the solid is

solely composed of the diffusing species the mass constraint given by Equation
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(5.24) must always hold. Herein, we restrict our attention to the case where mass

transport by vacancies is not feasible.

Henceforth, a superimposed dot ( ˙ ) stands for the material time derivative,

for instance, ϕ̇αR is the material time derivative of the concentration species. With

regard to the conservation of solid mass, we define ρ and ρ0 as the solid density in

the current and reference configuration, respectively. Then, the balance of solid

mass conservation reads ∫
Pt
ρ dv =

∫
P

ρ0 dvR (5.26)

In Equation (5.26), we convert the volume integral in the current configura-

tion into its counterpart in the reference configuration by employing the relation

(5.16). Finally, we use the localization theorem that leads to the local conserva-

tion of solid mass

ρ0 = Jρ. (5.27)

Neglecting all inertial effects; namely, we assume the spatial velocity v is invariant

through the time, the balance of conservation of linear momenta reads∫
S
t da+

∫
P

b dvR = 0. (5.28)

The balance of linear momenta relates all forces that influence any change in the

motion of the body. Such balance involves the traction t acting on a surface

element da as well as a body force b. Conventionally, the body force b accounts

for forces resulting from gravitational effects. Through the diverge theorem and

the definition (5.17), we express the surface integral in Equation (5.28) as a

volume integral ∫
Pt

divT dv +

∫
P

b dvR = 0 (5.29)

and after some straightforward manipulations in Equation (5.29), the localized

Lagrangian form of the balance of linear momenta is

DivTR + b = 0. (5.30)

The balance of conservation of angular momenta can be expressed as∫
Pt

x× t dv +

∫
P

x× b dvR = 0 (5.31)

where after using the definition of the balance of linear momenta, the divergence

theorem and the localization theorem, we end up with

T> = T. (5.32)
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The previous relation is a direct consequence of the symmetric nature of Cauchy’s

tensor [11, 103]. Finally, the localized Lagrangian form of the balance of angular

momenta is

skwTRF> = 0. (5.33)

Following the line of thought introduced by Gurtin and Fried [50, 73–75], we sepa-

rate balances of conservation laws from constitutive equations. As a consequence,

we include a balance of microforces, that is∫
P

(πα + γα) dvR = −
∫
S
ξα · n da (5.34)

where the vector ξα and the scalar πα (γα) correspond to the α-th microstress

and α-th the internal (external) microforce, respectively. In general, the mi-

crostresses and microforces are quantities associated with microscopic configura-

tions of atoms. We express the balance of microforces in a Lagrangian form∫
P

(πα + γα) dvR = −
∫
P

DivΞα dvR, (5.35)

and after applying the locatization theorem, the balance for microforces reads

πα + γα = −DivΞα (5.36)

where Ξα = F−1(Jξα).

5.2.3 Thermodynamics laws and free energy inequality

We separate conservation statements from constitutive equations as suggested by

Gurtin & Fried [50, 73–75].

To describe the thermodynamics of this system, we introduce a power expen-

diture Wext = Wext(P) +Wext(P) externally to P and P done by the external

microforce and force on P, and the microtraction and traction on S

Wext(P) :=
n∑

α=1


∫
P

γαϕ̇αR dvR

+

∫
P

b · v dvR, (5.37a)

Wext(P) :=
n∑

α=1


∫
S

ξαS ϕ̇
α
R da

+

∫
S

t · v da. (5.37b)

Neglecting all inertial effects and body forces, the first law of thermodynamics

characterizes the energy balance between the rate of internal energy ε̇ and the rate
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at which chemo-mechanical power, caused by external forces, species transport

and chemical reactions, is expended. The first law is then,

˙∫
P

ε dvR =Wext −
∫
S
q · n da+

∫
P

r dvR

−
n∑

α=1

{∫
S
µαR

α · n da−
∫
P

µαRs
α
ext dvR

}
.

(5.38)

As mentioned in chapter §4.2.2, there is no contribution of sαint to the energy

balance (5.38). The entropy imbalance, in the form of the Clausius-Duhem in-

equality, states that the rate of growth of the entropy η is at least as large as the

entropy flux q/ϑ plus the contribution from the entropy supply q/ϑ, that is,

˙∫
P

η dvR ≥ −
∫
S

q · n
ϑ

da+

∫
P

r

ϑ
dvR (5.39)

where q, r and ϑ stand for the spatial heat flux, heat supply and temperature,

respectively.

Remark 3. Let us rewrite (5.37) using index notation. Einstein summation

convention applies, i.e., summation over a pair of repeated indexes

Wext(P) =
n∑

α=1


∫
P

γαϕ̇αR dvR

+

∫
P

bivi dvR, (5.40a)

Wext(P) =
n∑

α=1


∫
S

ξαS ϕ̇
α
R da

+

∫
S

tivi da. (5.40b)

Using the relation (5.17) in (5.40b), we obtain

Wext(P) =
n∑

α=1


∫
S

ξαS ϕ̇
α
R da

+

∫
S

Tijnjvi da. (5.41)

Then, we apply integration by parts and the divergence theory

Wext(P) =
n∑

α=1


∫
P

(ξαi ϕ̇
α
R),i dv

+

∫
P

(Tijvi),j dv. (5.42)

The Lagrangian form (5.42) is

Wext(P) =
n∑

α=1


∫
P

(Ξα
J ϕ̇

α
R),J dvR

+

∫
P

(TRiJvi),J dvR. (5.43)
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In (5.43), we use the Piola transform. Now, Wext is given by

Wext =
n∑

α=1


∫
P

(Ξα
J,J + γα)ϕ̇αR + ϕ̇αR,JΞ

α
J dvR


+

∫
P

(TRiJ,J + bi)vi + TRiIḞiI dvR.

(5.44)

where we use the definition (5.13) for the spatial velocity gradient.

The localized Lagrangian version of (5.38) and (5.39) read

ε̇ =Wext −DivqR + r −
n∑

α=1

{DivµαR
α
R − µαRsαext} , (5.45)

and

η̇ ≥ −Divϑ−1qR + ϑ−1r (5.46)

where qR = F−1(Jq) is the material heat flux. Moreover, Wext is

Wext =
n∑

α=1

{(DivΞα + γα)ϕ̇αR + Ξα · ∇ϕ̇αR}+ (DivTR + b) · v + TR : Ḟ. (5.47)

Rewriting (5.45) and (5.46), and multiplying (5.46) by ϑ, we obtain

ε̇ =Wext −DivqR + r −
n∑

α=1

{∇µαR · αR + µαRDivαR − µαRsαext} , (5.48)

and

ϑη̇ ≥ ϑ−1∇ϑ · qR −DivqR + r. (5.49)

The Helmholtz free energy results from applying the Legendre transform to the

internal energy while replacing the entropy of the system by the temperature as

an independent variable., i.e., ψ̇ = ε̇− ϑ̇η − ϑη̇. Consequently, we obtain

ψ̇ ≤ Wext −
n∑

α=1

{∇µαR · αR + µαRDivαR − µαRsαext} − ϑ−1∇ϑ · qR − ϑ̇η (5.50)

Introducing the balances of both mass conservation and microforces into (5.50),

the free energy imbalance under isothermal conditions is

ψ̇ ≤ TR : Ḟ +
n∑

α=1

{
(µαR − πα)ϕ̇αR + Ξα · ∇ϕ̇αR − αR · ∇µαR − µαRsαint

}
. (5.51)

The dissipation inequality can be expressed as

δ
def
= TR : Ḟ +

n∑
α=1

{
(µαR − πα)ϕ̇αR + Ξα · ∇ϕ̇αR − αR · ∇µαR − µαRsαint

}
− ψ̇ ≥ 0.

(5.52)
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where we can split the inequality into the local

δl
def
= TR : Ḟ +

n∑
α=1

{
(µαR − πα)ϕ̇αR + Ξα · ∇ϕ̇αR − µαRsαint

}
− ψ̇ ≥ 0 (5.53)

and diffusional contributions

δd
def
= −

n∑
α=1

αR · ∇µαR. (5.54)

5.3 Constitutive relations and Coleman-Noll pro-

cedure

Throughout the derivation of the constitutive behaviour of the multicomponent

solid, we use the Larché-Cahn derivative expressed by (4.21) together with the

mass constraint given by (5.24). We assume the following constitutive dependency

of the free energy ψ

ψ = ψ̂(ϕR,∇ϕR,F) = ψ̂ch(ϕR,∇ϕR) + ψ̂el(Fe(F,ϕR)). (5.55)

The objectivity principle requires the constitutive relation (5.55) to be invari-

ant under a superposed rigid body motion or equivalently, independent of the

observer. We can relate two different displacement fields χ and χ∗ as follows

χ∗(X, t) = Q(t)χ(X, t) + c(t) (5.56)

where Q(t) represents a rotation tensor and c(t) the relative translations. There-

fore, the transformation of the potential (5.55) following (5.56) implies

ψ = ψ̂(ϕR,∇ϕR,F) = ψ(ϕR,∇ϕR,C) (5.57)

which ensures consistency with the dissipation inequality (5.52) and the principle

of frame-indifference.

We use the Coleman-Noll procedure [104], which finds necessary and sufficient

conditions that ensure the dissipation inequality (5.52) is satisfied by arbitrary

solutions of the underlying balance laws, to find a set of constitutive equations

as a pair of each kinematic process. We then rewrite (5.52) following (5.55) as(
TR −

∂ψ̂

∂F

)
: Ḟ +

n∑
α=1

(
µαR − πα −

∂ψ̂

∂ϕαR

)
ϕ̇αR

+
n∑

α=1

(
Ξα − ∂ψ̂

∂∇ϕαR

)
· ∇ϕ̇αR −

n∑
α=1

{αR · ∇µαR + µαRs
α
int} ≥ 0.

(5.58)
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Therefore, it is possible to find arbitrary values for Ḟ, ϕ̇αR, ∇ϕ̇αR, and ∇µαR at a

given time and position such that (5.58) always hold.

The relative chemical potential µαRσ results from the Larcé-Cahn derivative as

a consequence of incorporating the mass constraint given by Equation (5.24). Ac-

cording to Larché-Cahn [38], the relative chemical potential expresses the chem-

ical potential of α-th species measured relative to the chemical potential of σ-th

species. This definition entails that, for saturated systems, the mass constrain

given by Equation (5.24) must always hold. Analogously, the relative micro-

force Ξα
σ emerges from the constraint imposed in the concentration gradients,

i.e., Equation (5.25). As a consequence, we rewrite (5.58) in the Larché-Cahn

sense the following terms: πα := πασ , µα := µαRσ and Ξα := Ξα
σ as well as the

material mass fluxes αR := αRσ as all these quantities are expressed relative to the

σ-th reference spices. Thus, the energy imbalance is(
TR −

∂ψ̂

∂F

)
: Ḟ +

n∑
α=1

(
µαRσ − πασ −

∂(σ)ψ̂

∂ϕαR

)
ϕ̇αR

+
n∑

α=1

(
Ξα
σ −

∂(σ)ψ̂

∂∇ϕαR

)
· ∇ϕ̇αR −

n∑
α=1

αRσ · ∇µαRσ ≥ 0.

(5.59)

The latter implies that the following relations must hold to keep consistency with

the dissipation imbalance

TR =
∂ψ̂

∂F
, (5.60a)

πασ = µαRσ −
∂(σ)ψ̂

∂ϕαR
, (5.60b)

Ξα
σ =

∂(σ)ψ̂

∂∇ϕαR
. (5.60c)

We use a logarithmic multi-well potential together with a multi-gradient-type

potential for the chemical energy, that is,

ψ̂ch(ϕR,∇ϕR) = NvkBϑ

(
n∑

α=1

ϕαR lnϕαR

)
+Nv

n∑
α=1

n∑
β=1

ΩαβϕαRϕ
β
R

+
1

2

n∑
α=1

n∑
β=1

Γαβ∇ϕαR · ∇ϕβR.
(5.61)

This expression corresponds to the extension of former Cahn-Hilliard equation

towards multicomponent systems [32, 46]. The Ginzburg-Landau free energy

governs the dynamics of the phase separation process undergoing spinodal decom-

position. Table 5.1 resumes the physical parameters used in the multicomponent

framework.
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Table 5.1: Physical parameters for the multicomponent system

Physical parameter Name

Nv Number of molecules per unit volume

kB Boltzmann constant

Ωαβ Interaction energy between the α-th and β-th species

Γαβ Interfacial energy between the α-th and β-th species

ϑ Absolute temperature

Following [35], we assume the elastic solid behaves as a compressible neo-

Hookean whose elastic energy is given by

ψ̂el(Fe) =
G

2
[Fe : Fe − 3] +

G

β

[
(detFe)−β − 1

]
(5.62)

where G and β are material parameters that relate the shear modulus and the

weak compressibility of the material. β is a function of Poisson ratio ν such

that β = 2ν/1 − 2ν. In line with treatments of thermoelasticity, we assume a

multiplicative decomposition of the deformation gradient [35], that is,

Fe = FϕF, (5.63a)

Fϕ =

(
1 +

n∑
α=1

ωα(ϕαR − ϕαR0)

)− 1
3

I (5.63b)

Fϕ = J
− 1

3
ϕ I (5.63c)

This expression suggests that as long as the local species concentrations change

with respect to the initial distribution, the solid must undergo elastic deforma-

tion. Moreover, the swelling material parameter ωα is related to the crystalline

structure of the solid and its mechanical properties.

The evolution of the conserved field ϕαR obeys a non-Fickian diffusion driven by

the chemical potential differences between the species. Combining the expression

(5.60b) and (5.60c) by means of the balance of conservation of microforces (5.36)

and given the constitutive relation for the free energy (5.55), the relative chemical

potential of the α-th species can be expressed as

µαRσ =
∂(σ)ψ̂

∂ϕαR
−Div

∂(σ)ψ̂

∂∇ϕαR
− (γα + γσ) (5.64)
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and therefore,

µαRσ = NvkBϑ

(
ln
ϕαR
ϕσR

)
+ 2Nv

n∑
β=1

(Ωαβ − Ωσβ)ϕβR

−
N∑
β=1

(Γαβ − Γσβ) Div∇ϕβR −
1

3
ωασJ−1

ϕ tr[TRF>]− (γα + γσ)

(5.65)

where

ωασ = ωα − ωσ. (5.66)

We define p := −1
3
tr[TRF>] as the mechanical pressure and emphasis that this

pressure modifies the mass transport rate. Therefore, for deformable bodies un-

dergoing mass transport, this physical quantity alters the driving force of the

chemical process. Furthermore, we define pαϕ := ωασJ−1
ϕ p as a mechanical pressure

scaled by the local variation of α-th species. Thus, we rewrite (5.65) as

µαRσ = NvkBϑ

(
ln
ϕαR
ϕσR

)
+ 2Nv

n∑
β=1

(Ωαβ − Ωσβ)ϕβR

−
N∑
β=1

(Γαβ − Γσβ) Div∇ϕβR + pαϕ − (γα + γσ)

(5.67)

For convenience, we split the chemical potential µαRσ such that µαRσ = µαϕ +

µαϕ + pαϕ. Thereby,

µαϕ = NvkBϑ

(
ln
ϕαR
ϕσR

)
+ 2Nv

n∑
β=1

(Ωαβ − Ωσβ)ϕβR − (γα + γσ),

µαs = −
N∑
β=1

(Γαβ − Γσβ) Div∇ϕβR,

pαϕ = −1

3
ωασJ−1

ϕ tr[TRF>].

(5.68)

The constitutive relation for the Piola-Kirchkoff stress tensor is

TR = GJ−1/3
ϕ [Fe − (detFe)−βFe−>] (5.69)

As mentioned before, the species fluxes are given by

αRσ
def
= −

n∑
β=1

Mαβ JC−1∇µβRσ (5.70)

where Mαβ are the Onsager mobility coefficients. Moreover, we do not neglect

the off-diagonal terms in the Onsager reciprocal relations. We guarantee mass
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conservation by imposing the mass fluxes to satisfy

n∑
α=1

αRσ = 0, (5.71)

which leads to
n∑
β=1

Mαβ = 0, ∀α. (5.72)

5.4 Dimensionless analysis of the system of chemo-

mechanical equations

The couple system of chemo-mechanical equations is given by

ϕ̇αR = sα −DivαRσ,

αRσ = −
n∑
β=1

Mαβ JC−1∇µβRσ,

µαRσ =
∂(σ)ψ

∂ϕαR
−Div

∂(σ)ψ

∂(∇ϕαR)
− (γα + γσ),

sαint = −
Ns∑
c=1

(υαc −$αc)(k
+
c

n∏
a=1

ςa(ϕaR)υac − k−c
n∏
a=1

ςa(ϕaR)$ac),

DivTR + b = 0,

TR = GJ−1/3
ϕ [Fe − (detFe)−βFe−>],

(5.73)

with
ϕαR(X, 0) = ϕα0 in P,

u(X, 0) = u0 in P,

subject to periodic boundary conditions.

(5.74)

We use the same definition for sαint as suggested in (4.78). Moreover, we introduce

a free energy density ψ0 = 2NvkBϑ together with a set of diffusion coefficients

Dαβ such that

Dαβ = ψ0M
αβϕαR(δαβ − ϕβR). (5.75)

To make dimensionless the energy densities, and the governing and constitutive

equations, we define the following dimensionless variables

u = u−1
0 u x = L−1

0 x t = D0`
2
0L
−4
0 t (5.76)

where u0, D0 and `0 account for a reference deformation state, the diffusion coef-

ficient and interface thickness of a reference species, respectively. We propose the

76



following sets of scalar and vector dimensionless numbers for the multicomponent

chemo-mechanical system, that is,

ωα, k
c

+ = kc+D
−1
0 `−2

0 L4
0, k

c

− = kc−D
−1
0 `−2

0 L4
0, ϑ

αβ

c = ϑ−1ϑαβc ,

`
αβ

= L−1
0 `αβ, ψ = ψ̂ψ−1

0 , σαβ = σαβ(ψ0L0)−1, β, b = G−1b,

G = Gψ−1
0 , l = u0L

−1
0 , D

αβ
= DαβD−1

0 `−2
0 L2

0, γα = ψ−1
0 γα.

(5.77)

By inserting the dimensionless quantities in (5.61) and (5.62), we find the follow-

ing dimensionless forms of the chemical energy

ψ
ch

(ϕR,∇ϕR) =
1

2

(
n∑

α=1

ϕαR lnϕαR

)
+

n∑
α=1

n∑
β=1

ϑ
αβ

c ϕαRϕ
β
R

+
1

2

n∑
α=1

n∑
β=1

σαβ`
αβ∇ϕαR · ∇ϕβR

(5.78)

and the mechanical energy

ψ
el

(Fe) = G

{
1

2

[
Fe : Fe − 3

]
+

1

β

[
(detFe)−β − 1

]}
(5.79)

where Fe = J−1/3
ϕ (I + l∇u).

Likewise, the dimensionless forms of the governing and constitutive equations

read

∂ϕαR
∂t

= ∇ ·

(
n∑
β=1

D
αβ
M ∇µβRσ

)
+ sα,

M = det(I + l∇u)(I + l∇u)−1I(I + l∇u)−>,

µαRσ =
1

2

(
ln
ϕαR
ϕσR

)
+ 2

n∑
β=1

(ϑ
αβ

c − ϑ
αβ

c )ϕβR −
N∑
β=1

(σαβ`
αβ − σσβ`σβ) ∆ϕβR

− 1

3
ωασJ−1

ϕ Gtr[TR(I + l∇u)>]− (γα + γσ),

sαint = −
ns∑
c=1

{
(υcα −$cα)(k

c

+

n∏
a=1

(ϕaR)υ
ca − kc−

n∏
a=1

(ϕaR)$
ca

)

}
,

DivTR + b = 0,

TR = J−1/3
ϕ [J

− 1
3

ϕ (I + l∇u)− (detJ
− 1

3
ϕ (I + l∇u)−β(J

− 1
3

ϕ (I + l∇u))−>].

(5.80)

subjected to the boundary conditions (5.74).
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Chapter 6

Numerical simulation

6.1 Reaction-diffusion process of a four phases

system

The following numerical results, discussion, and conclusions are reported in the

manuscript ”Reactive n-species Cahn–Hilliard system: A thermodynamically-

consistent model for reversible chemical reaction” [45]. Copyright clearances from

the Journal of Computational and Applied Mathematics (JCAM) and the authors

to use the material in this thesis can be found in Appendix A.

We perform a numerical simulation of a two-dimensional multicomponent

Cahn-Hilliard reactive equation that showcases the temporal evolution and in-

teractions of a four species system ϕ̊1, ϕ̊2, ϕ̊3 and ϕ̊4 as expressed by the model

we propose in the previous sections. Herein, we consider a reversible chemi-

cal reaction with forward k+ and backward k− reaction rates of 1000 and 10,

respectively [45]. The chemical reaction in our formulation is general. There-

fore, modelling a specific chemical process generates neither implementation nor

theoretical difficulties. By inserting the corresponding stoichiometry coefficients

and reaction rates, our model is capable of representing arbitrary processes. We

consider the following chemical reaction,

5ϕ̊1 + ϕ̊2
k+


k−

2ϕ̊3 + ϕ̊4, (6.1)
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where the stoichiometry vectors υαβ and $αβ are given by

υαβ = (5, 1, 0, 0), and $αβ = (0, 0, 2, 1). (6.2)

As a pointed out in §4.2, the temporal evolution of the conserved field undergoing

spinodal decomposition with chemical reaction is governed by

ϕ̇α = sα − divα. (6.3)

We denote H2 as the Sobolev space of square integrable functions with square

integrable first and second derivatives and (·, ·)P as the L2 inner product over the

physical domain P with boundary S [45]. By multiplying the governing equation

(6.3) by a test function %α, which belongs to H2, using the definition for the mass

fluxes (4.94) and integrating by parts, the primal variational formulation can then

be given by:

(%α, ϕ̇α)P =(%α, sα)P − (%α, αi,i)P

=(%α, sα)P + (%α,i, 
α
i )P − (%α, αi ni)S

=(%α, sα)P + (%α,i,−Mαβ(µβϕ + µβs ),i)P

− (%α,−Mαβ(µβ,i)ni)S

=(%α, sα)P − (%α,i,M
αβµβϕ,i)P − (%α,i, (M

αβµβs ),i)P

+ (%α,i, (M
αβ
,i )µβs )P + (%α,Mαβ(µβ,i)ni)S

=(%α, sα)P − (%α
,i,M

αβµβϕ,i)P + (%α,ii,M
αβµβs )P

+ (%α,i, (M
αβ
,i )µβs )P + (%α,Mαβ(µβ,i)ni)S

− (%α,ini,M
αβµβs )S

(6.4)

In a reversible chemical reaction, the reactant and product species are never

totally consumed. For instance, in equation (6.1), the species ϕ̊1 and ϕ̊2 react to

form the species ϕ̊3 and ϕ̊4 which in turn react to form back the species ϕ̊1 and

ϕ̊2 until the system reaches equilibrium [45]. In general, such reactions do not

need to have the same reaction rates. Thereby, we seek to model a system which

follows a reversible chemical reaction such as (6.1).

Regarding the physical parameters that rule the spinodal decomposition, we

set the interaction energy as

Ωαβ =


0.0 0.5 0.7 0.6

0.5 0.0 0.4 0.7

0.7 0.4 0.0 0.7

0.6 0.7 0.7 0.0

 (6.5)
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Moreover, the magnitude of the interfacial energy between ϕα and ϕβ is

Γαβ =


0.0 −0.5 −0.75 −0.75

−0.5 0.0 −0.45 −0.65

−0.75 −0.45 0.0 −0.75

−0.75 −0.65 −0.75 0.0

 (6.6)

For instance, the magnitude of the interfacial energy between ϕ1 and ϕ3 corre-

sponds to −0.75.
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(a) Initial condition

(b) t = 6x10−5

(c) t = 1x10−3

(d) t = 5x10−3

(e) t = 1x10−2

(f) t = 3x10−2

Figure 6.1 Temporal evolution of the concentration for species ϕ̊1, ϕ̊2, ϕ̊3, and

ϕ̊4, respectively
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The parameters NvkBϑ and Nv take the values of 9000 and 6000, respectively.

Furthermore, the initial condition for each component is set such that ϕα takes

random values between ϕα ± 0.05, assuming that ϕ̄α is 1/n. As discussed above,

we calculate ϕn by applying at each time-step the constraint defined by (4.6),

which guarantees the consistency of the process. The coupled system of par-

tial differential equations for our example computes four coupled concentrations

corresponding to [ϕ̊α] = ϕα, for α = 1, . . . , 4, that evolve in time, is

ϕ̇1 = −5k+(ϕ1)5ϕ2 + 5k−(ϕ3)2ϕ4 − div1
4, (6.7a)

ϕ̇2 = −k+(ϕ1)5ϕ2 + k−(ϕ3)2ϕ4 − div2
4, (6.7b)

ϕ̇3 = 2k+(ϕ1)5ϕ2 − 2k−(ϕ3)2ϕ4 − div3
4. (6.7c)

In (6.7), we use the Larché–Cahn derivative with ϕ̊4 as the reference species.

We form and solve the system of equations using PetIGA [105], an open soure

framework for high-performance computing which has proven flexible, robust and

highly scalable. This framework was applied to various multiphysics and multi-

scale processes, in particular phase-field modeling applications [106–114]. Fol-

lowing [90], we use isogeometric analysis to discretize in space equation (6.4).

This technique successfully solves the standard Cahn–Hilliard equation in primal

form as it allows for high-order, and highly-continuous basis functions, i.e., H2-

conforming spaces. We use a square domain P = [0, 1]2, using 64 C1-quadratic

elements with periodic boundary conditions. In order to control possible nu-

merical instabilities induced by the time discretization, we use the generalized-α

method as suggested by Vignal et al. [115].

Figure 6.1 presents the temporal evolution of the concentration of each compo-

nent. The randomly perturbed initial condition goes through spinodal decompo-

sition during the early stages and is followed by coarsening. Our results highlight

these phenomena including the reaction process. Figures 6.1-(b) and 6.1-(c) de-

pict the early stages of the process, t < 10−3, when chain structures are formed

by components ϕ̊1 and ϕ̊4, whereas the components ϕ̊2 and ϕ̊3 play an interstitial

role. Later on, t > 10−3, a merging process takes place to form large and rounded

structures. When the system reaches steady state, the component ϕ̊1 forms a

bridge at the interface of the two elliptical structures defined by component ϕ̊4.

Furthermore, the component ϕ̊2 becomes the interstitial component, while the

component ϕ̊3 forms a circular structure, surrounded by the component ϕ̊4 [45].

Figures 6.2 and 6.3 depicts the interfacial energy pair (solid black lines) and

the masses of each component (red and blue dashed lines). The chemical reactions
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occur mainly in the range 10−3 < t < 10−2, and outside this range the mass of

each component remains roughly constant. Since the backward reaction plays no

substantial role in the process, due to the fact that k+ >> k−, components ϕ̊1

and ϕ̊2 react decreasing their initial masses. Consequently, this reaction increases

the masses of the components ϕ̊3 and ϕ̊4 as a function of the consumption of

reactant components. The nature of a system undergoing chemical reactions can

create (destroy) the interface between the phases. Thus, the interfacial energy

must also change according to this evolution process. Particularly, Figure 6.3-(a)

illustrates this process, whereby the interfacial energy grows as a result of the

emerging product phase. On the contrary, when considering the early stages of

each phase, Figure 6.2 and 6.3 suggest that the spinodal decomposition controls

the interfacial energy evolution since the chemical process plays no substantial

role during this early process. The relation between the free-energy and the

external power, ˙̃ψ−
∑n

a(gradµα ·α) = ẇext, bearing in mind that the use periodic

boundary conditions renders ẇext = −
∑n

a µ
αsα, suggests the reaction term may

act as either source or sink of energy, explaining the growth observed in the free-

energy. Therefore, this reaction may increase the free energy. Figure 6.4 provides

a picture of such behaviour [45].

The spinodal decomposition controls the early stages since the phases start

separating (unmixing) from each other. Later on, the system favors the growth of

regions rich in each component caused by either phase merging or Ostwald ripen-

ing. Figure 6.4 shows the evolution over time of the total free-energy functional

depicting the concentration fields at four stages, that is, the initial condition,

spinodal decomposition, coarsening at the beginning of the chemical reaction, at

the end of the chemical reaction, and the steady state [45].

83



0.1

0.15

0.2

0.25

ϕ2

ψ̃s
12

ϕ1

ϕ

10−10 10−6 10−2 102

−2

−1

0

1

time

ψ̃s

(a) Interfacial energy for components ϕ̊1 and ϕ̊2
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(b) Interfacial energy for components ϕ̊1 and ϕ̊3
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(c) Interfacial energy for components ϕ̊1 and ϕ̊4

Figure 6.2 Temporal evolution of interfacial energies and masses for ϕ̊1–ϕ̊2, ϕ̊1–ϕ̊3,

and ϕ̊1–ϕ̊4, respectively
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(b) Interfacial energy for components ϕ̊2 and ϕ̊4
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(c) Interfacial energy for components ϕ̊3 and ϕ̊4

Figure 6.3 Temporal evolution of interfacial energies and masses for ϕ̊2–ϕ̊3, ϕ̊2–ϕ̊4,

and ϕ̊3–ϕ̊4, respectively

85



10−10 10−6 10−2 102

3.63

3.64

time

Ψ̃

Figure 6.4 Temporal evolution of free energy.
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To conclude, we derive a set of conservation laws within the appropriate ther-

modynamic constraints for a multicomponent Cahn–Hilliard system with multi-

ple reversible chemical reactions. For binary systems, we recover the standard

Cahn–Hilliard equation. Additionally, we couple the multi-phase framework with

chemical reactions using an ideal mass action law. We perform a numerical sim-

ulation with four components and one reversible chemical reaction with different

chemical reaction rates that showcases the robustness of the model we propose.

The simulation also shows consistency with expected spinodal decomposition as

well as the reversible chemical reaction [45].

6.2 The merging of circular inclusions

We now state the problem as: find ϕ ∈ C4(P) such that (4.83) given (4.79) subject

to periodic boundary conditions up to the fourth derivative of ϕ with respect to

x in a square open region P = (0, 1)× (0, 1). To do so, we use the PetIGA [116]

isogeometric analysis framework and solve this equation in its primal version. We

use 256×256 element mesh of a polynomial degree 4 and continuity 3. The initial

and boundary conditions are described by

h = 0.2

δ1 = 0.31− 0.8

(
0.5 tanh

(
(x− 0.375)2 + (y − 0.65)2 − 0.172

0.01h(h+ 1.7)

)
+ 0.5

)
δ2 = 0.31− 0.8

(
0.5 tanh

(
(x− 0.375)2 + (y − 0.35)2 − 0.12

0.01h(h+ 1.0)

)
+ 0.5

)
ϕ1

0 = 1 + δ1 + δ2,

ϕ2
0 = 0.999− ϕ1

0,

ϕ3
0 = 1− ϕ1

0 − ϕ2
0,

inP , subject to periodic boundary conditionson ∂P × (0, T ),

(6.8)

and pictured in figures 6.5a, 6.5b, and 6.5c.

Table 6.1 summarizes the dimensional parameters which render the dimen-

sionless parameters in (6.9).
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Table 6.1: Chemical and physical parameters for the three phases system

Physical parameter Value Name

ψ0 [J m−3] 2× 107 Energy density

L0 [m] 10−6 Domain length

ϑ [K] 1000.0 Absolute temperature

ϑ12
c [K] 1100.0 Critical temperature between phases 1 and 2

ϑ13
c [K] 1200.0 Critical temperature between phases 1 and 3

ϑ23
c [K] 1300.0 Critical temperature between phases 2 and 3

D [m2 s−1] 10−20 Diffusion coefficient (same for all phases)

k+ [m2 s−1] 10−14 Forward reaction rate

σ12 [J m−2] 0.816 Interfacial energy between phases 1 and 2

σ13 [J m−2] 0.625 Interfacial energy between phases 1 and 3

σ23 [J m−2] 0.921 Interfacial energy between phases 2 and 3

`12 [m] 1.5× 10−8 Interface thickness between phases 1 and 2

`13 [m] 2× 10−8 Interface thickness between phases 1 and 3

`23 [m] 10−8 Interface thickness between phases 2 and 3

D̄αβ = 1× 104


1 1 1

1 1 1

1 1 1

 , ϑ̄αβc =


0 1.100 1.200

1.100 0 1.300

1.200 1.300 0

 ,

σ̄αβ ¯̀αβ = −10−4


0 6.121 6.250

6.121 0 4.605

6.250 4.605 0

 , υαβ =
[
1 1 0

]
,

$αβ =
[
0 0 1

]
, k̄+ = 0.01,

(6.9)

where we choose D0 = D and `0 = `23 as the reference diffusion coefficient and

interface thickness of a reference species, respectively.

We aim to describe configurational tractions as the driven forces in the motion

of interfaces in a multicomponent system undergoing reactions. We then describe

the configurational traction along a level curve Lα∗ , upon which ϕα = ϕα∗ . To do

so, we then introduce the normal and tangential coordinates nα and mα on Lα∗ ,
with unit vectors να and τα defined such that

gradϕα = |gradϕα|να, |να| = 1, (6.10)

augmented by a sign convention which ensures that rotating τα clockwise by π/2

yields να.
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To further the understanding of how configurational fields are developed, we

portray the configurational tractions Cσν
α. In reckoning these tractions in a

{n,m}-frame, we arrive at

Cσ = ζ1 −
n∑

α=1

{|gradϕα|να ⊗ ξασ} , (6.11)

with a free-energy of the form

ψ̂(ϕ, gradϕ) = f(ϕα) +
1

2

n∑
α=1

n∑
β=1

Γαβgradϕα · gradϕβ,

= f(ϕα) +
1

2

n∑
α=1

n∑
β=1

Γαβ|gradϕα||gradϕβ|να · νβ, (6.12)

the relative configurational stress Cσ is then rewritten as

Cσ = ζ1 +
n∑

α=1

{
|gradϕα|να ⊗

(
n∑
β=1

(Γαβ − Γσβ)|gradϕβ|νβ
)}

. (6.13)

Moreover, the configurational tractions Cσν
α can be specialized to

Cσν
α =

ζ +
n∑

α̂=1

n∑
β̂=1

(
(Γα̂β̂ − Γσβ̂)|gradϕα̂||gradϕβ̂|ν α̂ ⊗ ν β̂

)να. (6.14)

The relation (6.14) expresses the traction Cσν
α as a linear combination of all

unit normals ν α̂ for 1 ≤ α̂ ≤ n.

To compute all the relative physical and chemical quantities, the relative

chemical potential, mass fluxes, microstresses, and byproducts, we set the reaction

product as the reference phase. Figure 6.5 pictures the merging process between

two circular inclusions of distinct size at early stages, while in figure 6.6 shows

the evolution of this system after the merging. From left to right, we present

phases 1, 2, and 3, respectively. As the inclusions approach one another, here

represented by phase 2, which in turn are embedded in phase 1, the chemical

reaction

ϕ̊1 + ϕ̊2 k̄+⇀ϕ̊3 (6.15)

takes place at the interface between these two phases. The components ϕ̊1 and

ϕ̊2 represent the reactant phases, while ϕ̊3 the reaction product.

To understand how the merging process is initiated, we portray the relative

configuration traction field. Figure 6.7 presents streamlines of the relative con-

figurational traction C3ν
1, while figure 6.8 depicts the relative configurational
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traction C3ν
2 field at the same times. In figure 6.10, blue curves are the relative

nασ-nullclines of the relative configurational traction Cσν
α. In all these figures,

the black curve is a level curve Lα0 upon which ϕα = 0.

In the streamlines presented in figure 6.7, before and after the merging, we

see that these tractions are normal to the interface. Moreover, in figure 6.8a, we

observe that the relative configurational traction related to the phase 1, corre-

sponding to the background phase, C1
3ν

1, tends to avoid the merging. Conversely

and more strongly, the relative configurational traction related to the phase 2,

corresponding to the inclusions, C2
3ν

2, overcome C1
3ν

1 and provoke the merging.

The relative nασ-nullclines surround the interface from both sides guaranteeing

the phase segregation, restraining the mass transfer through it. At the initial

condition or even at early stages, there are two nασ-nullclines for each phase around

every inclusion. They are circular and occuring innerly and outerly to the level

curve Lα0 . When the merging process is initiated, these nασ-nullclines break apart

favoring the mass transfer as shown in figure 6.9a and 6.9b. At this stage, there

is one nασ-nullcline in each inclusion for each phase and they horseshoe-shaped

curves. After the mereging, these nασ-nullclines also merge, as pictured in figures

6.9c and 6.9d, and surround the level curve Lα0 innerly and outerly once again,

thus enforcing that no ‘particle’ crosses the interface and ensuring a steady phase

segregation.
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(a) t = 0, ϕ1 (b) t = 0, ϕ2 (c) t = 0, ϕ3

(d) t = 6.00× 10−9, ϕ1 (e) t = 6.00× 10−9, ϕ2 (f) t = 6.00× 10−9, ϕ3

(g) t = 3.89× 10−7, ϕ1 (h) t = 3.89× 10−7, ϕ2 (i) t = 3.89× 10−7, ϕ3

Figure 6.5 Phase-field evolution before the merging. Left: ϕ1; Middle: ϕ2; Right:

ϕ3
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(a) t = 6.77× 10−6, ϕ1 (b) t = 6.77× 10−6, ϕ2 (c) t = 6.77× 10−6, ϕ3

(d) t = 3.00× 10−5, ϕ1 (e) t = 3.00× 10−5, ϕ2 (f) t = 3.00× 10−5, ϕ3

(g) t = 5.70× 10−3, ϕ1 (h) t = 5.70× 10−3, ϕ2 (i) t = 5.70× 10−3, ϕ3

Figure 6.6 Phase-field evolution after the merging. Left: ϕ1; Middle: ϕ2; Right:

ϕ3.
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(a) t = 2.30 × 10−7,

C3ν
1, ϕ1

(b) t = 2.30 × 10−7,

C3ν
2, ϕ2

(c) t = 2.30 × 10−7,

C3ν
3, ϕ3

(d) t = 3.89 × 10−7,

C3ν
1, ϕ1

(e) t = 3.89 × 10−7,

C3ν
2, ϕ2

(f) t = 3.89 × 10−7,

C3ν
3, ϕ3

(g) t = 6.76 × 10−7,

C3ν
1, ϕ1

(h) t = 6.76 × 10−7,

C3ν
2, ϕ2

(i) t = 6.76 × 10−7,

C3ν
3, ϕ3

Figure 6.7 Streamlines of the relative configurational traction Cσν
α, level curve

Lα0 (black) upon which ϕα = 0.
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(a) t = 6.77 × 10−6,

C3ν
1, ϕ1

(b) t = 6.77 × 10−6,

C3ν
1, ϕ2

(c) t = 6.77 × 10−6,

C3ν
3, ϕ3

(d) t = 3.00 × 10−5,

C3ν
1, ϕ1

(e) t = 3.00 × 10−5,

C3ν
2, ϕ2

(f) t = 3.00 × 10−5,

C3ν
3, ϕ3

(g) t = 5.70 × 10−3,

C3ν
1, ϕ1

(h) t = 5.70 × 10−3,

C3ν
2, ϕ2

(i) t = 5.70 × 10−3,

C3ν
3, ϕ3

Figure 6.8 Streamlines of the relative configurational traction Cσν
α, level curve

Lα0 (black) upon which ϕα = 0.
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(a) t = 2.30 × 10−7,

C3ν
1, ϕ1

(b) t = 2.30 × 10−7,

C3ν
2, ϕ2

(c) t = 2.30 × 10−7,

C3ν
3, ϕ3

(d) t = 3.89 × 10−7,

C3ν
1, ϕ1

(e) t = 3.89 × 10−7,

C3ν
2, ϕ2

(f) t = 3.89 × 10−7,

C3ν
3, ϕ3

(g) t = 6.76 × 10−7,

C3ν
1, ϕ1

(h) t = 6.76 × 10−7,

C3ν
2, ϕ2

(i) t = 6.76 × 10−7,

C3ν
3, ϕ3

Figure 6.9 Streamlines of the relative configurational traction Cσν
α, level curve

Lα0 (black) upon which ϕα = 0.
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(a) t = 2.30 × 10−7,

C3ν
1, ϕ1

(b) t = 2.30 × 10−7,

C3ν
2, ϕ2

(c) t = 2.30 × 10−7,

C3ν
3, ϕ3

(d) t = 3.89 × 10−7,

C3ν
1, ϕ1

(e) t = 3.89 × 10−7,

C3ν
2, ϕ2

(f) t = 3.89 × 10−7,

C3ν
3, ϕ3

(g) t = 6.76 × 10−7,

C3ν
1, ϕ1

(h) t = 6.76 × 10−7,

C3ν
2, ϕ2

(i) t = 6.76 × 10−7,

C3ν
3, ϕ3

Figure 6.10 Streamlines of the relative configurational traction Cσν
α, level curve

Lα0 (black) upon which ϕα = 0.

6.3 The inhomogeneous thermodynamic pres-

sure in solid solutions

In discussing systems undergoing volume changes, Truesdell §5C [117]—in the

appendix A Theory of Multiphase Mixtures by Passman, Nunziato & Walsh—

identified the thermodynamical pressure as the conjugate power expenditure to

this thermo-kinematic process, that is, change of volume versus thermodynamic

pressure. One should bear in mind that the spherical part of the Cauchy tensor

only provides the mechanical’ contribution which is indeed an essential part of the

thermodynamic pressure. Nevertheless, by no means, the spherical part of the

Cauchy tensor represents a complete description of the pressure. Thermodynam-

ically speaking, the thermodynamic pressure is defined as the negative variation

of the Helmholtz free-energy with respect to the volumetric variations, that is,
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pth = −∂Ψ/∂v. In multicomponent systems, we also identify pα = ϕαp as the

pressure related to the α-th species, with a concentration ϕα. At the steady state,

this thermodynamic pressure can be spatially inhomogeneous which entails that

the system reaches equilibrium under non-hydrostatic stresses [10, 12, 37, 38].

To model the physical and chemical responses that lead to inhomogeneous

pressures, we use the thermodynamically-consistent model for the description

of the chemo-mechanical interactions of multicomponent solids far from equilib-

rium described in §3. Inhomogeneous stress generation and therefore spatially

inhomogeneous pressure distributions arise from either external loading induced

by deformation across the solid boundaries or local volume changes associated

with chemical processes. In this section, we model the inhomogeneous pressure

distributions that result from local volume changes. We show that nucleation

and growth of new phases induce volumetric stresses that lead to spatially inho-

mogeneous pressure distributions. We use a constitutive relation for the elastic

energy that relates the stress-assisted volume changes as well as stresses result-

ing from mechanical loading. Moreover, we allow for interfacial interactions in

the definition of the chemical energy. By doing so, we can describe the Ostwald

ripening and Gibbs–Thomson effects which have repeatedly been reported in the

geosciences literature as an important feature in the evolution of metamorphic

rocks [18–20]. Using our thermodynamically-consistent framework, we model an

elastic solid composed of three phases. As the phases diffuse and react, the solid

undergoes volumetric stresses which drive the generation of the inhomogeneous

pressure distribution. We calculate this pressure as the negative of the variation

of the Helmholtz free energy with respect to the specific volume. Herein, we do

not model a specific case in geoscience. However, the parameters used in the

simulation are in the range of common physical processes in geoscience.
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Figure 6.11 represents the spatial distribution of the initial concentrations for

both ϕ̊1 and ϕ̊2. Regions colored by red and blue represent the species ϕ̊1 and

ϕ̊2, respectively. As the chemical and mechanical processes evolve, the system

favours generating a new species ϕ̊3 which contributes to the volumetric stress

formation in the solid as it nucleates and grows.

We treat the system as a general multicomponent solid whose crystalline struc-

ture imposes a mass constraint such that the relation (4.5) holds. One of the

phases emerges from a forward chemical reaction. The chemical reaction occurs

in solid state, and as it proceeds, the new phase grows and nucleates. As men-

tioned in chapter §3.3, we do not take into account neither diffusion by vacancies

nor grain boundaries between the phases. In other words, the crystalline struc-

ture of each phase, described by a lattice such as Figure 3.3, is coherent. We

portrait the scenario where local volume changes caused by chemical interactions

trigger the stress generation in the solid which in turn reflects spatial variations

in pressure. This physical quantity corresponds to the thermodynamic pressure

described in chapter §3.6. We use the diffusion coefficients, the reaction rates,

and the thermodynamic properties of commonly found in solid solutions. Table

6.2 condenses such quantities. The overall reaction is given by ϕ̊1 + ϕ̊2 k+−→ ϕ̊3.

Moreover, ϕ1, ϕ2, and ϕ3 define the concentration of the phases ϕ̊1, ϕ̊2, and

ϕ̊3, respectively. Figure 6.11 depicts the spatial distribution of the initial concen-

tration for the phases A and B, respectively. We assume the initial concentration

of ϕ̊3 to be zero. We also assume a solid without distortions at t = 0.0. This im-

plies zero relative displacements in the sample and thus, zero strains. We choose

a spatial distribution of the concentrations, as Figure 6.11 shows, to account for

large concentration gradients so we can see the effect of the interface evolution

[32]. Namely, the contribution of the curvature in the chemical potential. We

are interested in observing the effect of local variations in the concentration upon
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the generation of inhomogeneous stress and pressure distribution which translates

into the impact of the concentration species on the deformation gradient captured

by a volumetric stress tensor. Hence, the whole source of stress generation comes

from the volumetric deformation since we do not impose external loading nor

deformation. Furthermore, there are no species fluxes through the boundaries.

Following [33], deformation itself cannot induce mass transport. Therefore, for

mass transport to happen, there must be chemical potential gradients where the

chemo-mechanical coupling accounts for the contributions from both the physical

and chemical responses of the solid-species system which in the material sciences

literature is known as the absence of a piezo-diffusive effect. We set the chemical

energy parameter as well as the number of molecules per volume so that we guar-

antee a non-convex triple-well energy functional. For instance, Figure 3.6 models

the two phases case. Phase separation processes are not common in metamor-

phic evolution. Therefore, one can set the chemical energy such that no phase

separation emerging from interfacial interactions occur.

Table 6.2: Chemical and physical parameters to calculate the thermodynamic

pressure

Physical parameter Value Name

ϑ [K] 1373.15 Temperature

ϑc [K] 1500.0 Critical temperature

D [m2s−1] 10−20 Diffusion coefficient

k+ [m2s−1] 10−14 Reaction rate

σ [J m−2] 0.817 Interfacial energy

` [m] 10−8 Interface thickness

G [GPa] 44 Shear modulus

β [-] 0.17 Poisson’s ratio

ω [-] 10−2 Swelling parameter

Figures 6.12-6.15 show the temporal evolution of the concentration of the

phases ϕ̊1, ϕ̊2, and ϕ̊3 together with the spatial distribution of the thermodynamic

pressure, pth, as the solid-three species system goes to equilibrium, respectively.

Unlike the thermodynamic pressure, the concentrations and time evolution are

presented as dimensionless quantities. As discussed above, we calculate the con-

centration of the species ϕ̊3, ϕ3, by applying at each time-step the constraint

defined by 3.1, which guarantees the consistency of the process. At early stages

t < 5.6x10−4, Figure 6.12, the non-Fickian diffusion essentially controls the tem-
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poral evolution of both the physical and mechanical processes as the forward

chemical reaction plays no substantial role. One can verify such assertion by

checking the species mass evolution in Figure 6.16, where during t < 2.63x10−3

the species masses remain approximately constant. Moreover, from Figure 6.12,

one can also infer that there is no formation of the species ϕ̊3 until t > 5.6x10−4.

Therefore, the initial condition, spatially distributed as Figure 6.11, goes through

phase separation during the early stages and is followed by coarsening [45]. These

interactions lead to a merging process which eventually forms large and rounded

structures as suggested by Figures 6.12 and 6.13. Hence, we conclude that at

the early stages the source of stress generation is entirely characterised by varia-

tions in local composition caused by diffusion and therefore, the dynamics of the

spatially inhomogeneous pressure distribution results solely from both the phase

separation and coarsening mechanisms while the system tries to minimise its free

energy by reducing the interface between the species ϕ̊1, ϕ̊2 and ϕ̊3. Figure 6.16

also depicts the temporal evolution of the interfacial energy which verifies that

during t < 2.63x10−3, in particular for the species ϕ̊1 and ϕ̊2, the interfacial energy

decreases. Furthermore, the stress-assisted volume change mechanism primally

occurs along the boundary between ϕ̊1 and ϕ̊2 as the system forms the rounded

structures. Namely, large stresses arise along the interface between ϕ̊1 and ϕ̊2.

Figure 6.18 reports the dynamics of the neo-Hookean energy functional which cap-

tures the shrinkage and swelling process as the phases diffuse through the solid

structure. From the free energy evolution, Figure 6.17, shows that the system is

minimising its free energy as the diffusion dissipative process occurs. The latter is

a direct consequence of the principle of minimum energy which states the internal

energy is minimised as the system reaches constant entropy. The free energy func-

tional describes the contribution from both the physical and chemical responses

of the solid. As discussed in Section 3.5, the model captures the dynamics of

the Ostwald ripening [18–20]. In the range between 1.73x10−3 < t < 2.63x10−3,

Figure 6.13 illustrates that the smaller aggregates of phase ϕ̊1 tend to dissolve

into the solid solution and precipitate along the surface of the larger aggregates.

Such mechanism leads to a large rounded structure of the species ϕ̊1 which is

entirely enclosed by the species ϕ̊2. Figure 6.13 also shows the heterogeneous

distribution of the thermodynamic pressure. The thickness of the reaction layer

between the phases ϕ̊1 and ϕ̊2 is irregular, see Figure 6.13 (c)-(d). Convention-

ally, during reaction-diffusion processes, one can expect a planar growth of the

reaction layer. Nevertheless, when considering reaction-induced stresses and in-

terfacial contributions, the chemical potential becomes also a function of both
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the surface curvature and the mechanical pressure which leads to an irregular

reaction layer of thickness. As a result, the driving force of the diffusion process

changes along the reaction layer which induces different diffusion rates at the re-

action boundary. The forward chemical reaction occurs mainly the time interval

between 8.02x10−3 < t < 3.91x10−2, see Figure 6.14. Milke et al. [2] define that

positive volume changes involve the creation of space by moving out mass from

the reaction site, and thus, the reaction products can grow and accommodate.

On the contrary, negative volume changes induce mass transport into the reaction

site by consuming the reactant phases. During this stage, the system forms the

species ϕ̊3 along the boundary between the species ϕ̊1 and ϕ̊2.

Milke et al. [118] provides experimental evidence that the system forstatite

(fo) - quartz (qtz) - enstatite (en) produces a reaction rim, mainly composed of

enstatite (en), of irregular thickness. They suggest that the nature of this be-

haviour is due to the mechanical contributions to the chemical potentials resulting

from the local volume changes caused by the chemical reaction. Although the me-

chanical contributions are important since they influence the chemical potentials,

one must also consider the contributions of surface curvature between the phases

as they also alter to a large degree the chemical potentials. This curvature effect

is called the Gibbs-Thomson effect [119–121]. The mechanism of rim growth as

defined by metamorphic petrologists results from the chemical reaction between

neighboring minerals [2, 122]. In particular, such a process, which is strongly

related to the mechanical properties of the solid, involves large volume changes

that lead to large volumetric stresses.

Eventually, the volumetric stress drives the spatial variations in pressure.

Moreover, one can verify from Figure 6.16 that in the range between 8.02x10−3 <

t < 3.91x10−2 the species masses change as well as the interfacial energy. Con-

sequently, the masses of the reactant species ϕ̊1 and ϕ̊2 tend to decrease while

the reaction product, in this case the species ϕ̊3, increases. At the end of such

stage, the system completely consumes the mass of the species ϕ̊1 and as ex-

pected the interfacial energy of the species ϕ̊3 increases as the forward reaction

generates more species ϕ̊3 and therefore grows interface. Following [45], the re-

action term in the chemical process increases the free energy of the system re-

sulting in the growth tend depicted by Figure 6.17 in the time interval between

8.02x10−3 < t < 3.91x10−2. Finally, the interleaving between the chemical and

mechanical responses of the solid form an elongated structure along the solid pri-

mally composed of the species ϕ̊2 and surrounded by the species ϕ̊3. Due the large
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volume changes associated with the chemical process, we can see the stresses all

along the solid and thereby the notorious inhomogeneous pressure distribution

at the steady state. Figure 6.17 shows that from t > 7.99x10−2 all dissipative

processes ceased as the free energy remains constant. This final pressure defines

the equilibrium condition of the system and results from the interleaving between

the physical and chemical responses of the solid. The red dots shows in Figure

6.17 represent the beginning of the processes mentioned above. In particular, one

and two account for the beginning of the phase separation and coarsing processes,

respectively. Analogously, between three and four the system undergoes the Ost-

wald ripening effect. Finally, five and six define the action of the forward chemical

reaction and the equilibrium state of the solid-species system, respectively.
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(a) Initial condition

(b) t = 2.911x10−6

(c) t = 2.55x10−5

(d) t = 5.6x10−4

Figure 6.12 depicts the behaviour of the three phases system at the early stages.

According to the evolution, the system is mostly controlled by the interleaving

of phase separation and coarsening. Therefore, the volume changes and sub-

sequent stress generation result from the diffusion process itself leading to the

inhomogeneous pressure distribution
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(a) t = 1.73x10−3

(b) t = 2.50x10−3

(c) t = 2.60x10−3

(d) t = 2.63x10−3

Figure 6.13 portraits the dynamics of the system as it follows the Ostwald ripening

effect. The unstable particles on the surface dissolve and go into the solution, and

once the solution gets supersaturated, these particles tend to precipitate onto the

surface of the more stable structures. Consequently, the larger structure in the

system grows.
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(a) t = 8.02x10−3

(b) t = 9.98x10−3

(c) t = 2.05x10−2

(d) t = 3.91x10−2

Figure 6.14 shows the reaction between the species ϕ̊1 and ϕ̊2 to produce a new

phase C along their boundary. The evolution favours to consume in a greater

proportion the phase ϕ̊1 than the phase ϕ̊2. The simulation results show how

the nucleation and growth of phases induce volumetric stresses which in turn

contribute to generate the inhomogeneous pressure distribution.
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(a) t = 4.21x10−2

(b) t = 5.12x10−2

(c) t = 7.99x10−2

(d) t = 9.33x104

Figure 6.15 suggests that the chemical reaction acts as either a source or sink of

energy. In this particular case, it contributes to increasing the free energy of the

system. Once the chemical process ceases, the system minimizes its free energy

solely by mass transport leading to the steady state at t > 9.33x104. Finally, the

thermodynamic pressure at t > 9.33x104, which results from the contribution of

both chemical and mechanical responses of the solid, defines the equilibrium of

the metamorphic system.
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Figure 6.16 depicts that when a system undergoes a chemical process, either

mass transport or chemical reaction, the dynamics favours to either produce or

destroy the interface between the species. Thus, the interfacial energy must

change according to this evolution process.
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Figure 6.17 shows the free energy evolution and marks the beginning of processes

such as phase separation and coarsening, Ostwald ripening effect, the chemical

reaction and steady state.
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Figure 6.18 depicts the elastic energy of a neo-Hookean solid model. Since no

deformation is induced across the solid boundaries, the variation of the elastic

energy entirely results from the volumetric stresses associated with the variations

in local composition.
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The possibility of describing the formation of metamorphic mineral aggregates

with spatial inhomogeneous pressure distributions collides with the classical de-

scription of the formation of metamorphic minerals. The classical interpretations

assume an isotropic thermodynamic equilibrium to explain metamorphic mineral

assemblages via thermobarometry techniques and phase diagrams. Therefore,

the formation processes that induce heterogeneous pressure distributions imply

that these techniques may not be robust to characterize metamorphic systems.

That is, these inhomogeneous pressure conditions contradict the foundational as-

sumptions of uniform pressure and temperature distributions. Thus, the nature

of the pressure distribution that defines the equilibrium of metamorphic rocks

and especially how to calculate and define this quantity are still open questions

in our opinion. As pointed out by Hobbs and Ord [3] (and references therein),

the thermodynamic equilibrium is entirely characterized by the thermodynamic

pressure given by the partial derivative of the Helmholtz free energy with respect

to the specific volume or when considering Gibbs free energy, the partial deriva-

tive has to be taken with respect to the volume. We believe that heretofore,

in the geosciences literature, the lithostatic pressure has erroneously been used

to describe the state of equilibrium of the metamorphic rocks. And recently,

works on inhomogeneous pressure distributions use the mean stress to charac-

terize equilibrium conditions [1, 13]. Such pressure definitions only make sense

from a thermodynamic point of view when the solid behaves elastically without

ongoing chemical processes [3]. Solids under either viscoelastic, diffusional creep,

or plastic behavior as well as ongoing chemical reactions between the constituent

phases relate dissipative processes which lead to additional contributions to the

definition of thermodynamic pressure [3]. Hobbs and Ord have carried out an

extensive review on the subject [3, 14] (see also e.g [15] and references therein).

To conclude, using a chemo-mechanical model for solid solutions, we study

how the mechanical response affects on the evolution of a chemically active solid-

three species solution. We demostrate that the interleaving between the chemical

and mechanical responses of the multicomponent solid influences the generation of

spatial variations in pressure. This pressure corresponds to the thermodynamic

pressure and defines the equilibrium conditions of the system. By setting the

corresponding physical and mechanical properties, one can model the chemo-

mechanical behaviour of a multicomponent solid which follows interfacial effects

as well as large stresses. Moreover, this framework can help as a first step to model

the behaviour of the stress-generation processes in metamorphic minerals which
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lead to spatial distribution of the thermodynamic pressure. Nevertheless, one

must bear in mind that, phase separation mechanisms are not common processes

in metamorphic systems. Therefore, to model these metamorphic systems using

the aforementioned framework, the chemical energy must be set such that no

phase separation takes place along the process. This can be achieved by choosing

the initial distribution of the phases concentration at the minimum values of the

chemical energy. Thereby, the system does not tend to minimise the energy by

separating the phases.

6.4 Coupled chemo-mechanical responses of solid

solutions

In this section, we carry out 2D and 3D numerical simulations of a solid solution

composed of three phases ϕ̊1, ϕ̊2, and ϕ̊3 to investigate their coupled chemo-

mechanical interactions. In particular, the 2D simulation shows how interfacial

interactions together with a reversible chemical reaction between the phases en-

gender volumetric stresses as a result of local volume changes. The 3D simulation,

on the other hand, studies a pure ripening mechanism. The interfacial interac-

tions between the phases drive the phase separation process and allow for the

Ostwald ripening and Gibbs-Thomson effects. We show the temporal evolution

of the dimensionless phases concentrations as well as the dimensionless displace-

ments in both x and y directions.

Our motivation to carry out simulations in both phase separation and interfa-

cial interactions coupled with deformation relies on the evidence of the spinodal

decomposition patterns in crystals of K-rich feldspar. Moreover, the uphill dif-

fusion of chemical components caused by exsolution processes favours spinodal

decomposition and deformation. These processes are associated with the temper-

ature gradient in the crust and shear zones and overburden, respectively. Hence,

this spontaneous phase separation process coupled with deformation as a result of

changes in temperature controls the evolution of the texture of the metamorphic

system since, when considering a deformable medium, the evolution of the phase

separation is also a function the local stresses [21].
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6.4.1 Reversible chemical reaction of random distributed

phases

The reversible chemical reaction between the phases is

ϕ̊1 + ϕ̊2
k+


k−

2ϕ̊3, (6.16)

where the stoichiometry vectors υαβ and $αβ are given by

υαβ = (1, 1, 0), and $αβ = (0, 0, 2). (6.17)

We seek to study the stress-assisted volume changes mechanism triggered by the

chemical processes. Therefore, we do not consider deformation induced across the

solid boundaries. We set the external body forces and external microforces such

that b = 0 and γα = 0, respectively. Moreover, we neglect all inertial effects.

Consequently, the spatial velocity is v = 0. The reaction rates and the diffusion

coefficients are in the range of common physical process in geoscience. On the

other hand, the mechanical properties of the solid are in the range of the mechan-

ical properties for metamorphic minerals such as garnet [123]. We assume that

the three phases diffuse at the same rate. Therefore, we only consider one diffu-

sion coefficient. In this simulation example, we set k+ > k−. Thus, the forward

chemical reaction occurs faster than the backwards one. Our initial condition

serves as the reference configuration which we choose as an underformed state

of the body. The mass supply of each phase, captured by the reaction term sα,

results solely from internal contributions as (6.16) takes place. Therefore, we set

sext = 0.0 in (5.20). The initial spatial distribution of the phases concentrations

is random such that ϕα takes values between ϕα ± 0.05 where we assume ϕα is

1/n. We calculate the concentration of ϕ̊3 following the mass constraint given by

(5.24). As mentioned before, this mass constraint is applied at each time step to

calculate the relative quantities resulting from the Larché–Cahn derivative. By

doing so, we guarantee the consistency of the process. Furthermore, there is no

mass flux at the solid boundaries.

Figure 6.19 portraits the spatial distribution of the initial phases concentra-

tions in conjunction with the initial displacements. We set the parameters in

the chemical energy such that we obtain a triple-well function. This function

allows us to model the phase separation process. The initial concentrations for

the phases ϕ̊1, ϕ̊2, and ϕ̊3 will tend to reach the concentrations at the well points

as the system minimises its global free energy. Table 6.3 summarises the param-
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Figure 6.19 represents the spatial distribution of the initial concentrations for ϕ̊1,

ϕ̊2, and ϕ̊3 together with the initial displacements. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy. The phases ϕ̊1 and ϕ̊2 react

to form ϕ̊3 which in turn decomposes into ϕ̊1, and ϕ̊2 as a result of the backward

chemical reaction. The formation of ϕ̊3 and concomitant decomposition into ϕ̊1

and ϕ̊2 favour to generate volumetric stresses.
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Table 6.3: Chemical and physical parameters that control the spinodal decom-

position process

Physical parameter Value Name

ψ0 [J m−3] 1× 105 Energy density

L0 [m] 10−6 Domain length

u0 [m] 10−6 Reference displacement

ω1 [-] 0.0383 Swelling parameter phase 1

ω2 [-] 0.0334 Swelling parameter phase 2

ω3 [-] 0.0165 Swelling parameter phase 3

G [GPa] 40 Shear modulus

β [-] 0.17 Poisson’s ratio

ϑ [K] 727.0 Absolute temperature

ϑ12
c [K] 800.0 Critical temperature between phases 1 and 2

ϑ13
c [K] 800.0 Critical temperature between phases 1 and 3

ϑ23
c [K] 800.0 Critical temperature between phases 2 and 3

D [m2 s−1] 10−20 Diffusion coefficient (same for all phases)

k+ [m2 s−1] 10−14 Forward reaction rate

k− [m2 s−1] 10−16 Backward reaction rate

σ [J m−2] 0.817 Interfacial energy

` [m] 10−8 Interface thickness

γ [-] 0 External microforce (same for all phases)

b [ms−2] 0 Body force

eters used to build up the dimensionless numbers as outlined in (5.77). Hence,

the dimensionless numbers are given by

D̄αβ = 1× 104


1 1 1

1 1 1

1 1 1

 , ϑ̄αβc =


0 1.100 1.100

1.100 0 1.100

1.100 1.100 0

 ,

σ̄αβ ¯̀αβ = 10−2


8.17 0 0

0 8.17 0

0 0 8.17

 , υαβ =
[
1 1 0

]
,

$αβ =
[
0 0 2

]
, k̄+ = 0.01, k̄− = 0.0001, G = 4× 105

(6.18)

where we choose D0 = D and `0 = ` as the reference diffusion coefficient and

interface thickness of a reference phase, respectively.
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The final system of coupled chemo-mechanical equations are given by

ϕ̇1 = −k+ϕ
1ϕ2 + k−(ϕ3)2 −Div1

R3, (6.19a)

ϕ̇2 = −k+ϕ
1ϕ2 + k−(ϕ3)2 −Div2

R3, (6.19b)

DivTR = 0. (6.19c)

In (6.19), we use the Larché–Cahn derivative with ϕ̊3 as the reference phase.

We solve the system of partial differential equation in its primal form (6.20) and

(6.21). We state the problem as follows: find {ϕ,u} ∈ C2(P) such that (5.80)

given (5.73) subject to periodic boundary conditions up to the second derivative

of ϕ, and u with respect to X in a square open region P = (0, 1) × (0, 1). We

use the PetIGA [116] isogeometric analysis framework. We use 64 × 64 element

mesh of a polynomial degree 2 and continuity 1.

We denote H2 as the Sobolev space of square integrable functions with square

integrable first and second derivatives and (·, ·)P as the L2 inner product over the

physical domain P with boundary S. We multiply the Lagrangian version of the

phases mass balance (5.21) by a test function %α, which belongs to H2, using the

definition for the material mass fluxes (5.70) and integrating by parts, the primal

variational formulation can then be given by:

(%α, ϕ̇α)P =(%α, sα)P − (%α, αRσI,I)P

=(%α, sα)P + (%α,I , 
α
RσI)P − (%α, αRσIN I)S

=(%α, sα)P + (%α,I ,−Mαβ(µβϕ + µβs + pβϕ),JC
−1
JI J)P

− (%α,−Mαβ(µβ,J)C−1
JI JN I)S

=(%α, sα)P − (%α,I ,M
αβµβϕ,JC

−1
JI J)P − (%α,I , (M

αβµβs ),JC
−1
JI J)P

+ (%α,I , (M
αβ
,J )µβsC

−1
JI J)P − (%α,I ,M

αβpβϕ,JC
−1
JI J)P

+ (%α,Mαβ(µβ,J)C−1
JI JN I)S

=(%α, sα)P − (%α,I ,M
αβµβϕ,JC

−1
JI J)P + (%α,IJC

−1
JI J,M

αβµβs )P

+ (%α,I(C
−1
JI J),J ,M

αβµβs )P + (%α,I , (M
αβ
,J )µβsC

−1
JI J)P

− (%α,I ,M
αβpβϕ,JC

−1
JI J)P + (%α,Mαβ(µβ,J)N IC

−1
JI J)S.

− (%α,INJC
−1
JI J,M

αβµβs )S

(6.20)

Furthermore, the weak formulation of the Lagrangian version of the linear mo-

menta balance reads

(wi,TRiIN I)S − (wi,I ,TRiI)P = 0, (6.21)

where we multiply (5.30) by a test function wi.
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Figure 6.20 shows the beginning of the phase separation process. Top left: ϕ̊1;

Top middle: ϕ̊2; Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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At early stages Figure 6.20, t < 4.04x10−6, the solution goes through an initial

spinodal decomposition. This spontaneous phase separation process occurs due

to ϑαβ > ϑ. Otherwise, the mixture would only diffuse without unmixing. Due

to the phases ϕ̊1, ϕ̊2, and ϕ̊3 are diffusing as a result of their separation, the solid

endures elastic deformation associated with the mass transport. Analogously,

the pressure pαϕ alters the rate at which the phases diffuse. The deformation

arises solely from the mass transport since the reversible chemical reaction has

no significant impact. From Figure 6.30, we verify that the phases masses do not

change substantially in the range 0 < t < 4.04x10−6. As a consequence, there

is no nucleation and growth of phases. With regards of the interfacial energies,

we notice that in the range 0 < t < 4.04x10−6 the energies decrease gently up

to a point, t ' 1.0x10−7, where the interfacial energies keep constant. A small

change in the interfacial energies means that either the phase separation has not

evolved significantly or there is no substantial coarsening. Furthermore, at early

stages, the deformation is small as the displacements (see Figure 6.20) are not

large since the phase separation has not evolved such that the phases are totally

unmixed. As expected, the displacements ux and uy in the solid move following

the mass transport.

Later on, in the range between 4.04x10−6 < t < 9.03x10−6, the phase sep-

aration becomes prominent as it allows to form spatial domains rich in each

component (see Figure 6.21). In particular, the phase ϕ̊1 remains partially un-

mixed as there are no rounded inclusions with large concentration (see Figure

6.21). On the contrary, for phases ϕ̊2 and ϕ̊3, rounded inclusions with large

concentration appear. The deformation results from the mass transport itself as

there is no substantial influence of the reversible chemical reaction (see Figure

6.30). We notice the larger displacements are located where the larger inclusions

for ϕ̊2 and ϕ̊3 are. This arises since there is mass flux towards these points which

allows the inclusions to grow. The enlargement associated with the inclusions

growth induces deformation. This behaviour is captured by Fϕ. With respect to

the interfacial energies, they remain roughly constant. This implies that there

is a balance between both the creating and disassemble of phases interfaces. As

expected, in the time interval between 0 < t < 9.03x10−6, the tendency of the

global free energy is monotonically decreasing as the system goes to a steady

state of maximum entropy (see Figure 6.31). This free energy encompasses the

contribution from both the chemical and the mechanical energies. At the early

stages, as the evolution towards a steady state goes on, the system favours phase
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separation.

For instance, Figure 6.22 shows the evolution of microscopic ϕ̊1 inclusions in

the range between 9.03x10−6 < t < 1.26x10−5. As suggested before, there is

mass flux towards these points that allows the inclusion growth. Consequently,

there must be deformation associated with the mass transport. Figure 6.22 also

shows the larger displacements in the regions where the inclusions are. On the

other hand, ϕ̊3 inclusions are large and close enough to start merging. This

phenomena is associated with the minimisation of the global free energy as the

system reduces its interfacial energies. Nevertheless, when considering system

undergoing chemical reactions, the interfacial energies evolve according to the

chemical reaction which in this modelling example corresponds to a reversible

chemical reaction. The emerging of more ϕ̊3 phase as a result of the reversible

chemical reaction creates more ϕ̊3 interface. Figure 6.30 shows an increase in ϕ̊3

interfacial energy as well as its mass. On the other hand, the decomposition of

ϕ̊3 into ϕ̊1 and ϕ̊2 following (6.16) must increase ϕ̊1 and ϕ̊2 masses, and their

interfacial energies. However, this behaviour is not prolonged since the rate of

creation of ϕ̊3 is faster than the decomposition into ϕ̊1 and ϕ̊2. This is due to

k+ >> k−.

From t = 5.64x10−5, the system shows the merging of large inclusions and

the action of the reversible chemical reaction (see Figure 6.23). A this stage,

the creation of ϕ̊3 predominates. One can verify such an assertion by checking

the masses. However, there is no interfacial energy growth since the larger in-

clusions are merging. Therefore, the interfacial energies decrease. Moreover, the

ϕ̊1, ϕ̊2, and ϕ̊3 inclusions pass from rounded to square-like structures. Such be-

haviour results from the dependency of the chemical potential upon the pressure

pαϕ caused by deformation and the Gibbs-Thomson effect associated with the cur-

vature ∆ϕαR. Along the boundaries of the inclusions the driving force of the mass

transport changes which may generate inclusions of asymmetric morphologies.

Moreover, the creation of ϕ̊1, ϕ̊2, and ϕ̊3 following (6.16) engenders mechanical

pressure associated with nucleation and growth. Figure 6.23 also shows the large

displacements at the phases boundaries which account for the influence of the

chemical reaction towards stress generation (pressure).

Figure 6.24 shows the evolution at t = 4.26x10−4. The system forms a chain-

like structure composed of the phases ϕ̊1 and ϕ̊2 which is surrounded by the phase

ϕ̊3. This structure emerges as a result of the merging processes and the reversible
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chemical reaction. The reversible chemical reaction is still taking place at the

boundary between phases ϕ̊1 and ϕ̊2. Moreover, the phase ϕ̊3 decomposes into

ϕ̊1 and ϕ̊2. At this point in the evolution, the phase ϕ̊3 composes almost the

whole solid due to k+ >> k−. The masses and interfacial energies for phases

ϕ̊1 and ϕ̊2 decrease (see Figure 6.30). However, for phase ϕ̊3 the mass increase

while reducing its interfacial energy (see Figure 6.30). The phases are totally

unmixed, whereby their concentrations correspond to the concentrations at the

well points in the triple-well function. The displacements ux and uy are in the

range of previous stages. However, they move as the phases diffuse as a result

of the relation between mass transport and deformation. Figure 6.24 depicts the

larger displacements are in line with the chain-like structure.

Figure 6.25 portraits the evolution at t = 5.72x10−4. The minimisation of the

global free energy as the system goes to the steady state reduces the thickness

of the chain-like structure. Eventually, the chain is composed of interleaved in-

clusion of phases ϕ̊1 and ϕ̊2. As the inclusions of ϕ̊1 and ϕ̊2 become smaller, the

phase ϕ̊3 encloses ϕ̊1 and ϕ̊2. The interfacial energies and masses keep decreasing

since the action of the reversible chemical reaction has not ceased (see Figure

6.30). Moreover, the displacements show an interleaved behaviour where the

smaller displacements are located inside the chain-like structure and the larger

ones outside.

In the time interval between 5.72x10−4 < t < 1.84x10−3, the inclusions of

phases ϕ̊1 and ϕ̊2 become smaller progressively as the reversible reaction takes

place at their boundaries (see Figures 6.26, 6.27, and 6.28). When the reversible

chemical reaction ceases, the structure of the inclusions is rounded. The action

of the chemical reaction is in the range between 1x10−5 < t < x10−2. The larger

and smaller displacements, on the other hand, are located along the inclusion of

phases ϕ̊1 and ϕ̊2. These phases are partially consumed while the phase ϕ̊3 gains

mass. Finally. rounded structures composed of the three phases diffuse along the

solid which generate displacements associated with mass transport. Figure 6.29

portraits such a behaviour. Along with the whole evolution, free energy always

behaves monotonically decreasing (see Figure 6.31).
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Figure 6.21 shows the evolution at t = 9.03x10−6. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.22 shows the evolution at t = 1.26x10−5. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.23 shows the evolution at t = 5.64x10−5. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.24 shows the evolution at t = 4.26x10−4. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.25 shows the evolution at t = 5.72x10−4. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.26 shows the evolution at t = 1.28x10−3. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.27 shows the evolution at t = 1.84x10−3. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.28 shows the evolution at t = 2.17x10−3. Top left: ϕ̊1; Top middle: ϕ̊2;

Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.29 shows the steady state reached at t = 1.74x10−1. Top left: ϕ̊1; Top

middle: ϕ̊2; Top right: ϕ̊3; Bottom left: ux; Bottom right: uy.
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Figure 6.30 Interfacial energies for phases ϕ̊1, ϕ̊2, and ϕ̊3 along with their masses
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Figure 6.31 depicts the free energy evolution. During the whole evolution, the

free energy is monotonically-decreasing.

6.4.2 Ripening of spherical inclusions

We carry out a numerical simulation of a 3D configuration of three spherical

inclusions. The spherical inclusions are composed of phases ϕ̊1 and ϕ̊2 while

phase ϕ̊3 serves as an interstitial phase. We study the stress-assisted volume

changes mechanism triggered by the mass transport of the spherical inclusions

associated with interfacial effects. We expect Ostwald ripening as a result of

the differences in the inclusions size. We do not consider external contributions

from body forces and external microforces. Consequently, we set b = 0 and

γα = 0. Regarding the kinematics of the motion, we set v = 0 as we do not

take into account inertial effects. We do not allow for chemical reactions between

the phases, and therefore, the reactions rates k+ and k− are zero. The latter

entails that sα = 0.0. Hence, the stresses emerge solely from the mass transport

associated with the interfacial interactions between the phases. Without loss of

generality, the initial condition serves as the reference configuration. We choose

this reference state as an underformed configuration of the body. The initial and
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boundary conditions are given by

S1 = (x− 0.25)2 + (y − 0.25)2 + (z − 0.25)2 − 0.22

S2 = (x− 0.75)2 + (y − 0.75)2 + (z − 0.75)2 − 0.12

S3 = (x− 0.75)2 + (y − 0.75)2 + (z − 0.3)2 − 0.082

h = 0.2

δ1 = 0.31− 0.8

(
0.5 tanh

(
S1

0.01h(h+ 2.0)

)
+ 0.5

)
δ2 = 0.31− 0.8

(
0.5 tanh

(
S2

0.01h(h+ 1.0)

)
+ 0.5

)
δ3 = 0.31− 0.8

(
0.5 tanh

(
S3

0.01h(h+ 0.8)

)
+ 0.5

)
ϕ1

0 = 1 + δ1 + δ2,

ϕ2
0 = δ3,

ϕ3
0 = 1− ϕ1

0 − ϕ2
0,

u = 0

in P, subject to periodic boundary conditionson ∂P× (0, T ).

(6.22)

As in previous simulation examples, the range of the chemical and physical pa-

rameters are in the range of common processes in geosciences. We use the same

parameters as in §6.4.1. The three phases diffuse with the same diffusion coef-

ficient. Furthermore, the dimensionless numbers correspond to (6.18). As men-

tioned before, the phase ϕ̊3 serves as an interstitial phase following the mass

constraint given by (5.24). Figures 6.32 and 6.33 show the initial condition for

the phases distribution and displacements, respectively. The system of equations

to solve is given by

ϕ̇1 = −Div1
R3, (6.23a)

ϕ̇2 = −Div2
R3, (6.23b)

DivTR = 0. (6.23c)

where we use the phase ϕ̊3 as the reference species. We solve the system of

partial differential equation (6.23) in its primal form (6.20) and (6.21). We state

the problem as follows: find {ϕ,u} ∈ C2(P) such that (5.80) given (5.73) subject

to periodic boundary conditions up to the second derivative of ϕ, and u with

respect to X in a square open region P = (0, 1) × (0, 1). We use the PetIGA

[116] isogeometric analysis framework. We use 64 × 64 × 64 element mesh of a

polynomial degree 2 and continuity 1.
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Figure 6.32 represents the spatial distribution of the initial concentrations for ϕ̊1,

ϕ̊2, and ϕ̊3. Left: ϕ̊1; Middle: ϕ̊2; Right: ϕ̊3. The inclusions differ in size which

drives the ripening process.

Figure 6.33 portraits the initial displacements in the solid. The initial state

corresponds to a undeformed solid, therefore the displacements are zero. The

deformation will result from the mass transport of the phases as the smaller

inclusions go into the solution and deposit in the surface of the larger inclusions.

Left: ux; Middle: uy; Right: uz
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At early stages Figures 6.32 and 6.33, t < 1.182x10−6, part of the phase

ϕ̊1 deposits on the surface of the inclusion ϕ̊2 due to a new spherical inclusion

ϕ̊1 of same radius appears. As the evolution proceeds, between the time range

1.182x10−6 < t < 2.79x10−6, the inclusion of phase ϕ̊2 becomes smaller as its

mass goes into the solution. There is no deposition of phase ϕ̊2 at this point in

the evolution. Regarding the deformation, the stresses associated with the volume

changes are small since the displacements do not change substantially (see Figure

6.35 ). Nevertheless, after t > 5.476x10−6, rings composed of phases ϕ̊1 and

ϕ̊2 appear around ϕ̊1. This occurs due to the solution gets supersaturated and

the mass of phases ϕ̊1 and ϕ̊2 migrate at the surface of the more energetically

stable structures in the system, which in this case correspond to the spherical

inclusions (see Figure 6.36). Such mass transport induces volumetric stresses and

concomitant displacements around the spherical inclusions (see Figure 6.37). As

the system tries to minimise its free energy, the masses of phases ϕ̊1, ϕ̊2, and ϕ̊3

in the solution separate and merge to form new spherical structures (see Figure

6.38). The phase ϕ̊2 locates around the spherical inclusions of ϕ̊1. As mentioned

before, the fact that the phases are diffusing must induce volumetric stresses.

Consequently, we see displacements where the phases are separating and merging

(see Figure 6.39). Later on, t > 5.626x10−3, the spherical inclusions composed

of phase ϕ̊1 and ϕ̊2 merge to form a more energetically stable distribution of

elongated structure (see Figure 6.40). Finally, the phase ϕ̊2 wraps the phase

ϕ̊1, and ϕ̊3 acts as an interstitial phase. The structure at steady state emerges

as a result of the coupled chemo-mechanical interactions of the three-component

system where the source of stress generation solely results from the mass transport

of the phases (see Figure 6.41).
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Figure 6.34 represents the spatial distribution of the concentrations for ϕ̊1, ϕ̊2,

and ϕ̊3 at t = 2.79x10−6. Left: ϕ̊1; Middle: ϕ̊2; Right: ϕ̊3.

Figure 6.35 portraits the displacements in the solid at t = 2.79x10−6. Left: ux;

Middle: uy; Right: uz.

Figure 6.36 represents the spatial distribution of the concentrations for ϕ̊1, ϕ̊2,

and ϕ̊3 at t = 5.476x10−6. Left: ϕ̊1; Middle: ϕ̊2; Right: ϕ̊3.
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Figure 6.37 portraits the displacements in the solid at t = 5.476x10−6. Left: ux;

Middle: uy; Right: uz.

Figure 6.38 represents the spatial distribution of the concentrations for ϕ̊1, ϕ̊2,

and ϕ̊3 at t = 5.626x10−3. Left: ϕ̊1; Middle: ϕ̊2; Right: ϕ̊3.

Figure 6.39 portraits the displacements in the solid at t = 5.626x10−3. Left: ux;

Middle: uy; Right: uz.
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Figure 6.40 represents the spatial distribution of the concentrations for ϕ̊1, ϕ̊2,

and ϕ̊3 at steady state. Left: ϕ̊1; Middle: ϕ̊2; Right: ϕ̊3.

Figure 6.41 portraits the displacements in the solid at steady state. Left: ux;

Middle: uy; Right: uz.
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