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ABSTRACT 

 

 Walking can become a difficult task for people with impaired gaits such as foot 

drop and knee osteoarthritis. The assessment of walking can help clinicians to 

determine and provide optimal care and treatments to patients. Currently, most clinical 

assessment is done based on visual inspection, which is subjective as it relies on the 

experience of the clinician. Although optical motion capture system can be used to 

make accurate estimation of 3-dimensional (3-D) orientation angles of human body 

parts, it is non-portable, expensive, and complex to set up. Inertial Measurement Units 

(IMUs), on the other hand, are portable, affordable, and easy to setup.  

This research focuses on developing IMU-based gait analysis methods. Low cost 

IMUs consisting of gyroscopes and accelerometers were first designed and 

constructed. A new 3-D thigh and shank angles estimation algorithm, called 2-point 

error estimation algorithm, was then proposed and validated against gold standard 

Vicon optical motion capture system installed in Motion Analysis Lab of School of 

Physiotherapy and Exercise Science of Curtin Australia. Next, the estimated 3-D 

angles were used as input features of several machine learning algorithms to design a 

real-time standalone gait diagnosis device that lit up green and red LEDs when the gait 

was normal and abnormal, respectively. Additionally, a novel normal and abnormal 

gait phase detection method based on a single shank’s IMU was proposed and 

validated against force sensors. The thigh and shank angle waveforms were also 

mathematically expressed using Fourier series with improved accuracy without 

increasing the number of harmonics through waveform scaling. The reconstructed 

waveforms were able to detect the gait phase accurately, while the scaled waveforms 

were able to increase the gait multi-class classification accuracy. In order to provide 

joint angle information to the clinicians for visual inspection, a method to temporally 

synchronize IMU data and video of a person walking was proposed and validated by 

blinking an LED. Finally, a new stride length estimation algorithm based on linear 

kinematics using a shank’s gyroscope was proposed and validated against the Vicon 

system.  

This thesis presents both applied and fundamental researches. The main 

contribution is an IMU-based system that detects and classifies a selection of gait 

anomalies to assist the medical practitioners in diagnosis of walking disorders.   
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction 

According to World Health Organization, about 15% of the world’s population has 

disability, of which about 3% suffer from significant functional problems such as a 

walking problem [1]. The assessment of walking helps clinicians to determine and 

provide optimal care and treatments to patients [2]. To perform gait analysis, the 

fundamental part is the estimation of joint angular displacement, and it involves the 

detection of joint position and orientation [3]. Currently, the gait evaluation is done 

based on visual inspection, but this inspection is subjective and depends on the 

experience of the medical personnel [4]. Although optical motion capture system can 

be used to make accurate estimation of 3-D orientation angles of human body part, it 

is non-portable, expensive, complex to set up, and requires an empty space without 

any optical obstruction [5]. Inertial Measurement Units (IMUs), on the other hand, are 

portable, affordable, easy-to-setup, and not limited to optical obstruction. This thesis 

focuses on developing gait analysis methods using IMUs. 

This chapter lists the problem statements, objectives, novel approaches, and outline 

of the thesis. 

 

1.2 Problem Statements 

The problems identified and addressed in this thesis are listed as follows: 

1. Optical motion capture technology is non-portable, expensive, and complex to 

setup. IMUs which are portable and easy to setup are favorable. However, 

commercialized IMUs are still expensive. There is a need to construct IMUs 

which are affordable. 

2. Many researchers have focused on estimating the pitch angle using accelerometer 

and gyroscope, which consist of unwanted gravitational/motion acceleration 

component and drift error, respectively. Some researchers managed to estimate 

the roll angle. However, not many researchers had extended their research to 

estimate the yaw angle. For those who estimate yaw angle, the utilization of 

magnetometer is common, but it requires a more complex algorithm to tackle the 

magnetic interference. There is a need to develop a new 3-D angle estimation 

algorithm that is accurate and computationally efficient so that the IMUs can be 

built using low-cost microcontroller.  

3. Current gait diagnosis method is done based on visual inspection, which is 
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subjective and depends on the experience of medical personnel. Therefore, there 

is a need to develop an electronic device which can evaluate the gait 

automatically. 

4. Most of the existing IMU-based gait phase identification methods consider only 

normal walking condition. However, the gait sub-phases of people with impaired 

gaits could occur in different sequences. There is a need to develop a new method 

for abnormal gait phase detection. 

5. Many researchers have worked on expressing human body movement 

mathematically. At current stage, the reconstructed waveforms either represent 

smoothened waveforms, fluctuate along the original waveforms, or require high 

number of computations. There is a need to develop a model that can represent 

the angle waveforms accurately with less computational requirement. 

6. No numerical information is available to the clinicians during visual inspection. 

It is beneficial to synchronize inertial sensor data with video of a person walking 

so that joint angle information is available to the clinicians for visual inspection.  

7. Most existing IMU-based stride length estimation algorithm depends on the 

accelerometer data. It is fundamental to investigate if the stride length can be 

estimated more accurately using the gyroscope data.  

 

1.3 Objectives  

The main aim of this research work is to develop gait analysis methods using Inertial 

Measurement Units (IMUs). Specific objectives are as follows: 

1. Formulate efficient and accurate (≤5º RMSE) algorithms to estimate the 

flexion/extension, adduction/abduction and internal/external rotation of the 

thigh and shank during walking, and validate them against gold standard Vicon 

optical motion capture system. Then, design and construct an accurate (≥90%) 

and low-cost standalone gait diagnosis device using the estimated 3-D angles.  

2. Develop a method to detect normal and abnormal gait phases (≤2 sample 

difference) for gait diagnosis (≥90%), and model the human gait pattern 

mathematically with high reconstruction accuracy (≥99.99%) suitable for gait 

phase detection and diagnosis. 

3. Provide joint angle information to the clinicians for visual inspection by 

synchronizing (≤2 frame difference) video and IMU data of a person walking. 
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1.4 Novel Approaches  

A novel method, called ‘2-point error estimation algorithm’, was proposed to 

estimate the 3-D thigh and shank angles. The drifting direction of the gyroscope was 

assumed to be linear and the error was eliminated by calibrating the gyroscope data at 

2 different timeframes (the 2-point), unlike existing methods updated the angle when 

certain conditions were fulfilled at 1 point. Validated against gold standard Vicon 

optical motion capture system, the proposed algorithm resulted a low average root 

mean square error (RMSE) of 2.9º, 3.6º, and 4.2º for flexion/extension, 

adduction/abduction, and internal/external rotation angles, respectively. The proposed 

algorithm is also very computationally efficient as only 2 “atan2()” functions are 

computed throughout the whole walking motion, and 7 additions and 4 multiplications 

to estimate each angle. 

A new real-time standalone gait diagnosis device was designed and constructed. 

The device lit on red LED automatically when the user’s gait was abnormal. Green 

LED illuminated when the user’s gait was normal. The weights and bias of the trained 

perceptron were successfully transferred to a low-end microcontroller to construct a 

real-time standalone gait diagnosis device which cost only about US$8. The mean 

accuracy of the standalone device was high at 96.5%. The key merits are the feature 

selection and the construction of the low-cost device. 

A novel method to detect normal and abnormal gait phases using an IMU attached 

to the shank was proposed and validated against an existing method that placed force 

sensitive resistors (FSRs) under the foot. Some unique waveform patterns of the 

normal/abnormal shank’s angular velocity and acceleration were identified to detect 

the gait phases using different local maxima and minima of the angular velocity. The 

mean absolute error (MAE) of the heel strike, toe strike and toe off detections was low 

at around 2 sample difference, equivalent to 20ms difference.  

A method to mathematically express the thigh and shank angle waveforms was 

also proposed. The angle waveforms were time and amplitude-scaled before 

performing discrete Fourier transform (DFT). The proposed method when number of 

harmonics H=10 averagely achieved the same correlation coefficient (CORR) as 

conventional method when H = 24, 17, 14, and 15 for normal shank, normal thigh, 

abnormal shank, and abnormal thigh angle waveforms, respectively. This means a 

reduction of 4 to 14 DFT computations to achieve the same CORR as conventional 

method. It was also demonstrated that the reconstructed waveform based on proposed 
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method is able to detect the heel and toe strikes more accurately than conventional 

method by 1 to 4 sample differences, equivalent to 10ms to 40ms difference. The mean 

gait multi-class classification accuracy was also improved from below 85% to above 

90% using the proposed method. 

A method to temporally synchronize IMU data and video of a person walking was 

proposed so that the joint angle information was available to the clinicians for visual 

inspection. The synchronization was achieved by detecting and matching the 

maximum backward swing of the leg detected from video and IMU data. The proposed 

method was validated by blinking LED and sending LED flag to a computer at the 

same time. The mean absolute synchronization error of the proposed method was low 

at ±1 frames.  

Finally, a new stride length estimation algorithm based on a single shank’s 

gyroscope was proposed and validated against gold standard Vicon optical motion 

capture system. 3 new important features for stride length estimation were identified 

based on linear kinematics. The new features are the average angular velocity during 

shank’s flexion, the summation of angular velocity during the whole stride, and the 

duration of the shank’s extension. This proposed method had resulted in a low MAE 

of 4.2cm with a standard deviation of 5.5cm. 

 

1.5 Outline  

This thesis is organized into 5 chapters: 

1. Chapter 1 (Introduction) lists the problem statements, objectives, and novel 

approaches. 

2. Chapter 2 (Existing Technologies and Literature Review on Gait Analysis) 

presents the current practices and technology for human gait analysis. 

3. Chapter 3 (Experimental Platform) presents the design and construction of 

IMUs, and the details of some validation tools such as gold standard Vicon 

optical motion capture system. 

4. Chapter 4 (Proposed Methods related to Gait Analysis) discusses the proposed 

methods, i.e. estimation of 3-D thigh and shank angles, design and construction 

of a standalone gait diagnosis device, gait phase detection, gait modelling, 

temporal synchronization of video and IMU data, and stride length estimation. 

5. Chapter 5 summarizes the thesis and suggests future research work.  
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CHAPTER 2 - EXISTING TECHNOLOGIES AND LITERATURE REVIEW ON GAIT 

ANALYSIS 

2.1 Introduction 

The human gait cycle is presented in this chapter as the understanding is crucial in 

developing novel methods for human gait analysis. This chapter also discusses the pros 

and cons of existing technologies related to gait analysis. 

 

2.2 Human Gait Cycle 

Human walking cycle consists of two main phases, i.e. stance and swing phases 

[6]. The stance and swing phases can be further divided into more detailed 8 sub-

phases [6] [7]: Initial Contact (IC), Loading Response (LR), Mid Stance (MSt), 

Terminal Stance (TSt), Pre Swing (PSw), Initial Swing (ISw), Mid Swing (MSw), and 

Terminal Swing (TSw), as shown in Fig. 2.1. In [8] [9] [10], the gait cycle is divided 

into 7 sub-phases, similar to Fig. 2.1 but combining IC and LR. In [11]-[14], the gait 

cycle is divided into 4 sub-phases: heel strike, stance, push off, and swing as shown in 

Fig. 2.2.  

The primary motion of the leg is flexion/extension, while adduction/abduction and 

internal/external rotation also occur, but the amplitudes are less consistent among 

healthy individual due to soft tissue and bony constraints [15]. However, this may not 

be the case for people with impaired gaits. Therefore, it is needed to estimate the 3-D 

angles of the leg, instead of just the flexion/extension angle. 

 

 

Fig. 2.1: Human gait divided into eight sub-phases [6]. 

 

 

Fig. 2.2: Human gait divided into four sub-phases [11]. 

 

  

Heel Strike Push Off SwingStance
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IC is the moment when the reference heel strikes onto the ground, and at this 

moment occurs the contralateral terminal stance. LR begins with initial contact and 

ends with contralateral toe off (initial swing). During MSt and TSt, the body weights 

are all supported by the reference leg as the other leg is swinging. MSt ends when the 

reference heel starts to leave the ground (heel off). TSt ends with contralateral initial 

contact. PSw ends when the reference toe leaves the ground (toe off). ISw ends with 

maximum knee flexion. MSw ends when the tibia (shank) is vertical, and TSw ends 

when the reference heel strikes onto the ground again. 

 

2.3 Existing Motion Capture Technology 

2.3.1 Visual Inspection 

To perform gait analysis, the fundamental part is the estimation of joint angular 

displacement, and it involves the detection of joint position and orientation [3]. 

Currently, the gait evaluation is done based on visual inspection, but this inspection is 

subjective and depends on the experience of the medical personnel [4]. 

A common apparatus used by clinicians to measure joint angle is a goniometer 

[16]. Edwards et al. [17] reported that 45% of the visual estimates and 22% of the 

goniometer measurements had error greater than 5°. Additionally, the goniometer is 

suitable to measure angle when the patient is not moving, but not suitable when the 

person is walking.  

 

2.3.2 Force Sensor  

Force sensor measures the force exerted by an object. It can be placed under the 

foot to detect when the foot hits the ground for gait phase detection [12]. [18] used a 

force platform to evaluate the balance performance of body sway. [19] used force 

sensors to perform vertical jump analysis, and evaluate the condition of the knee 

cartilage. A disadvantage of force sensor is that it cannot be used to estimate angles. 

 

2.3.3 Optical Motion Capture System 

Optical motion capture system uses video cameras to track human movement. 

Most high-end optical motion capture systems track the absolute coordinates of 

reflective markers attached to human body. The measured position of the markers can 

be used to calculate useful information such as the joint angle, headings, angular 

velocity, and acceleration. Examples of commercially available optical motion capture 
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system are Vicon [20], PhaseSpace [21], and OptiTrack [22]. These systems typically 

consist of 8-16 cameras, and are suitable for full human motion capture. 

Optical motion capture system is considered the gold standard in the motion 

capture field, and is used to validate the performance of other motion capture 

technology [23] [24]. However, optical motion capture system is expensive, complex 

to setup, and space-consuming. It is not suitable to perform gait analysis out of the 

laboratory. 

 

2.3.4 Inertial Sensors 

2.3.4.1 Accelerometer 

Accelerometer measures linear acceleration [25], and its unit is in m/s2 (1g = 

9.81m/s2). As of today’s technology, linear acceleration from gravity g and movement 

A cannot be measured independently using an accelerometer. In practical, an 

accelerometer measures the addition of g (a negative value because gravity is pointing 

downwards) and A together with the offset and white noise n [25], as stated in (2.1).  

aj = gj + Aj + nj (2.1) 

Where a denotes the force vector an accelerometer experienced, and j denotes the x, y, 

and z-axes.  

By eliminating the motion acceleration A and offset and noise n, the accelerometer 

readings are left with gravitational acceleration g as shown in Fig. 2.3. The pitch angle 

ɸpitch and roll angle ɸ roll can be calculated using g, as stated in (2.2) and (2.3), 

respectively.  

ɸpitch = atan2(gz , gx) 

ɸroll = atan2(gz , gy) 

(2.2) 

(2.3) 

Where gx, gy, and gz are the projection of gravity vector g on x, y, and z-axes 

respectively.  

 
 

(a) (b) 

Fig. 2.3: Accelerometer x, y, and z-axes.  

(a) Force vector a asserted on an accelerometer. (b) Gravitational acceleration g. 
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2.3.4.2 Gyroscope 

A gyroscope measures angular velocity 𝜔, and its unit is in °/s or rad/s. Fig. 2.4 

shows the pitch, roll and yaw rotations around the gyroscope axes. Unlike an 

accelerometer, a gyroscope is unaffected by gravitational acceleration or any linear 

acceleration [25]. However, the gyroscope readings 𝜔 also contains zero-offset bias 

and noise n (2.4).  

𝜔j = vi  + nj (2.4) 

Where v denotes the angular velocity of the object without bias and noise, and j denotes 

the x, y, and z-axes. 

Gyroscope pitch, roll and yaw angles ψ can be estimated using (2.5) where T 

denotes the sampling period, and i denotes ith sample. However, (2.5) requires an initial 

angle to be known to begin the calculations of the remaining angles. This initial angle 

may be obtained from (2.2) and (2.3), or a pre-known sensor placement such as 

standing vertically straight. The integration of angular velocity can cause the error n 

to accumulate resulting the calculated angles to keep drifting away from true values. 

ψi = ψi-1 + 𝜔i T (2.5) 

 

Fig. 2.4: Gyroscope angular velocity 𝜔. 

 

2.3.4.3 Magnetometer 

Magnetometer measures magnetic flux density [25], and its unit is in tesla with 

symbol B. The magnetometer readings Bmeasured can be described as (2.6). 

Bmeasured = B + D + n (2.6) 

Where B denotes the magnetic flux density, D denotes the magnetic disturbance, and 

n denotes the white noise. 

The Earth magnetic field lines vary in strength and direction at different places of 

Earth according to the magnetic angle of inclination [26]. Ideally, a magnetometer 

should measure only the Earth magnetic field vector, which is crucial for estimating 

the yaw orientation angle. However, the presence of ferromagnetic objects or electrical 
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appliances D in the surroundings can cause the magnetic field vector to vary [27].  

 

2.4 Existing Works in Literature 

2.4.1 Angle Estimation using IMU 

An IMU is an electronic device that consists of tri-axial accelerometers, tri-axial 

gyroscopes, and sometimes magnetometers to estimate 3-D angles [28]. One of the 

main challenges of estimating angles using IMU is that the gyroscope is prone to drift 

due to noise and surrounding interference such as temperature [29]. Most researchers 

perform data normalization and filtration to estimate the angles accurately [30]-[34]. 

Abhayasinghe et al. [31] compensated the gyroscope integration drift by updating the 

flexion/extension angle of the thigh using accelerometer data when the gyroscope read 

small angular velocity and when the accelerometer magnitude was close to 1g. This 

resulted in a high mean CORR of 99.58% between IMU and Vicon system. Tong et 

al. [35] placed force sensors under the foot to detect mid-stance and used this 

information to remove gyroscope integration drift. When the foot was in contact with 

the ground, the algorithm automatically reset the estimated flexion/extension angle to 

0°. The estimated flexion/extension angle had a mean CORR of 0.97, and a mean 

RMSE of 4.17°.  

Marsico et al. [30] tilt various models of smartphones to read the reference values 

of each axes at 1g and offset at 0g to normalize the accelerometer data. It was reported 

that the estimated angles averagely improved up to 65%, but the normalization 

parameters could not be exported from one sensor to another, though of the same 

smartphone or sensor model. 

Luinge et al. [32] designed and evaluated Kalman filter that fused accelerometer 

and gyroscope data. The authors observed that the forearm inclination estimate from 

Kalman filter was within 3° RMSE, which was significantly smaller than the errors 

obtained by accelerometer alone (within 10° RMSE). However, this technique is not 

possible to estimate yaw orientation accurately. This is because accelerometer reading 

consists of information about inclination only, but not the yaw. Hence, Global 

Positioning System (GPS) and magnetometer are usually used to estimate the yaw 

angle [33].  

Madgwick et al. [34] used a method called Gradient Descent based Orientation 

Filter to estimate the 3-D orientation angles of an IMU which consisted of an 

accelerometer, a gyroscope, and a magnetometer. The proposed method achieved very 
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low RMSE of pitch, roll, and yaw angles at 0.625°, 0.668°, and 1.110°, respectively.  

Roetenberg et al. [25] also used an accelerometer, a gyroscope and a magnetometer 

to estimate the 3-D angles. The authors took magnetic disturbance error into account, 

and Kalman Filter to minimize the data processing. When the magnetic field was 

disturbed by an iron object, the estimated angle of the method with magnetic 

disturbance compensation achieved a low mean error of 1.5°, compared to a big error 

up to 40° without using the compensation method. 

Although a gyroscope can only measure the rate of change of the yaw angle [33], 

some researchers managed to estimate yaw angles accurately by using a gyroscope 

only. For example, Wu et al. [36] actively changed the orientation of the gyroscope to 

obtain relations between the gyroscope bias and tilt angle error, so that the gyroscope 

bias can be estimated and compensated. Using this method, the yaw angle drift, 

sometimes also known as the heading angle drift, was less than 4° after an hour, while 

the heading angle drift without using this method was more than 15° after an hour.  

Additionally, Bonnet et al. [37] used a single gyroscope and a combination of 

Fourier Linear Combiner (FLC) and weighted FLC to estimate the 3-D orientation 

angles of the trunk. The authors compared the phase of measured angular velocity with 

the estimated angular velocity, and then modified the frequency weight to reduce the 

angle estimation error. The estimated 3-D angles had RMSE less than 1.0°, and CORR 

of about 0.85. 

Some researchers [25] [38] tested their algorithms by rotating the IMU gradually, 

and achieved low RMSE. This shows that the algorithms are suitable to estimate the 

inclination of a static or slow-moving object. It is likely to have higher error when the 

IMU is used for estimating walking motion because there is a significant acceleration 

due to motion, especially during heel strike and toe-off [39]. 

Other than being used to estimate the orientation angles, it is worthwhile to note 

that the IMUs can also be used for indoor positioning. Do et al. [40] utilized vertical 

acceleration to estimate the horizontal displacement and achieved low average error of 

1% for straight line paths. Yoon et al. [41] fused data from ultra-wideband system and 

IMUs to track the spatial location and motion. 

 

2.4.2 Gait Diagnosis 

Chen et al. [42] classified the gait of 2 healthy persons into 2 categories, i.e. 

holding and not holding a pole while walking, using deep convolutional neural 
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network based on multistatic radar micro-Doppler signatures. The authors used 20% 

out of a total of 200 samples to train the neural network and achieved an accuracy of 

over 99%. 

Mikos et al. [43] classified freezing of gait, a common walking disorder among 

Parkinson’s disease patients, using neural networks with three extracted features, i.e. 

freeze index calculated using the amplitude of the frequency components of the 

acceleration, stride peak, and standard deviation of the angular velocity. The 

remarkable achievement was the weights of the neural network could be updated to 

learn patterns that were inadequately trained before. This approach resulted in an 

overall sensitivity and specificity of 96% and 93%, respectively. 

Costilla-Reyes et al. [44] classified spatio-temporal gait using raw tomography 

sensor data without the need to reconstruct tomography images. A total of 892 trials 

of varying walking speed, backward walking, side waking, right/left foot leading gait 

and walking with dual task were collected. 50% of the trials were used to train a 

convolutional neural network to learn the spatio-temporal features, resulting a high 

accuracy of 97.88 ± 1.70%. 

Dolatabadi et al. [45] distinguished healthy and pathological gait patterns using 

two machine learning methods, i.e. k-nearest neighbor and a dynamical generative 

classifier using Gaussian Process Latent Variable Model (GPLVM). Gait features, 

including the orientations of the trunk, and lower and upper limbs were collected from 

20 healthy people and 20 people with impaired gaits. The gait classification accuracy 

of k-nearest neighbor was higher at over 94%, compared to GPLVM which achieved 

accuracy of 68-87%. 

Slijepcevic et al. [46] classified normal and impaired gaits using support vector 

machine based on a wide range of spatio-temporal walking parameters collected using 

force platforms. 161 healthy people and 279 patients with gait disorders were 

participated in the data collection. The method achieved an accuracy of 91% in 

classifying the gaits into normal and abnormal categories. 

Poschadel et al. [47] classified normal and impaired gaits based on sparse coding 

and dictionary learning. Walking acceleration of the pelvis, thigh, shank, and feet were 

measured from 23 healthy people and 15 subjects with gait disorders. The authors 

achieved an accuracy of about 93% in classifying normal and impaired gaits using pre-

processed accelerometer data. The classification accuracy dropped to about 70% when 

raw data was used. 
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Mazzaro et al. [48] worked on activity recognition which includes waking, 

running, and walking up a staircase based on a model (in)validation viewpoint. Angles 

of the shoulder, elbow, hip, and knee were collected from 5 people. The authors 

associated a nominal model to each class of gaits, and then classified an activity by 

checking whether the angle waveform matched the given model by exploiting 

interpolation theory. The method achieved an accuracy of 83-86% in recognizing the 

activities. 

 

2.4.3 Gait Phase Detection 

Pappas et al. [12] placed 3 FSRs and a gyroscope on the foot to classify the 4 gait 

phases, i.e. heel strike, stance, heel off, and swing. Senanayake et al. [9] used 4 FSRs 

under the foot to detect IC, LR, MSt, TSt, and PSw. As the foot was in the air during 

swing phase, there are no forces exerted by the foot. Mukhopadhyay [49] used knee 

angle to estimate ISw, MSw, and TSw.  

Martinez-Hernandez et al. [7] collected angular velocity of the thigh, shank and 

foot from 8 healthy male subjects. The authors classified 8 gait sub-phases based on 

probabilistic Bayesian formulation with a sequential analysis method, and achieved a 

mean accuracy of 98%.  

Behboodi et al. [8] used the angular velocities of both shanks to identify LR, PSw 

and MSw using zero crossings, MSt and ISw using local maxima, and TSt and TSw 

using minima. 

MacDonald et al. [10] used a fuzzy inference system to recognize 7 human gait 

phases using hip, knee and ankle angles. These joint angles were normalized to small, 

medium, and large as the input of the fuzzy inference system. The behavior of each 

joint was examined to determine appropriate rules to detect different gait phases. 

Farah et al. [11] classified the gait into the 4 main gait phases using decision tree, 

random forest, multi-layer perceptron, and support vector machine. Features extracted 

were mean, variance, standard deviation, range, skewness, sum, integral, derivative, 

energy, power, and bfourn of the knee angle and thigh angular velocity and 

acceleration. The accuracies of the machine learning methods were greater than 96.4%. 

MSt was approximated by the mid time between heel strike and push off. 

Wang et al. [13] detected the 4 main gait phases using an accelerometer strapped 

onto the lower part of the shank. The stance phase was detected when the 

accelerometer’s vertical axis reading was close to 1g. The heel off, swing, and heel 
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strike were identified using a dynamic threshold which was calculated using the 

accelerometer data. 

Behboodi et al. [8] estimated the MSt, TSt and PSw of the reference leg using the 

ISw, TSw and LR of the contralateral leg, respectively. The method in [8] is only true 

if both legs are normal. Maqbool et al. [50] only managed to detect the heel strike and 

toe off using the first and second local minimum of the shank’s angular velocity, 

respectively. Abhayasinghe [51] was not able to identify the stance sub-phase, but 

stated that it might be approximated by a local maximum of the time derivative of 

thigh’s gyroscope signal. Therefore, there is a research gap in identifying the stance 

sub-phases, i.e. when the foot flat (more specifically, the toe strike that happens after 

heel strike) on ground, using gyroscope and accelerometer.  

Furthermore, the detection of the end of terminal stance, i.e. heel off, using IMU 

was not well researched, although [51] stated that it can be detected by the zero 

crossing of thigh gyroscope signal, but without any validation performed. 

 

2.4.4 Gait Modelling 

Mathematical representation of different gait waveforms is useful in many gait 

applications including activity recognition and medical diagnosis. For example, 

Ibrahim et al. [52] compared the discrete cosine transform coefficients of the hip’s 

accelerometer signals to classify different walking patterns such as walking on flat 

surfaces, stairs, and ramps. Mostayed et al. [53] used the harmonic components of 

ankle-knee, knee-hip and hip-ankle angle waveforms to diagnose normal/abnormal 

gaits. Latt et al. [54] compared the acceleration patterns of the head and pelvis to detect 

gait abnormalities in patients with Parkinson’s disease. 

Gait modelling is also important for rehabilitation and robotics. In [55], a robotic 

assisted gait rehabilitation system was developed. In [56], normal gait pattern was 

generated for rehabilitation robots to avoid interaction forces between robot and 

human in case the patients walked correctly. In [111] and [57], walking pattern was 

generated for biped walking robots using human model. Other applications of gait 

modelling include animation [58], user identification [59], and sports [60]. 

A lot of efforts had been done for gait modelling in recent years. Qiuyang et al. 

[61] and Wark et al. [62] represented the thigh angle waveforms and waist 

accelerometer signals based on Fourier series. Both [61] and [62] used linear predictive 

model to estimate the key harmonic components of the waveforms. Luu et al. [63] used 
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neural networks to estimate the Fourier coefficient vectors of the lower limb joint angle 

waveforms. Sekine et al. [64] used discrete wavelet transform to approximate the 

signals of a tri-axial accelerometer attached to lower back. Hughes et al. [65] used 

genetic programming to perform symbolic regression for accelerometer data collected 

from smartphones placed in pockets.  

However, it appears that the reconstructed waveforms based on the existing 

methods either represent smoothened waveforms [61] [62] [63] [64], or fluctuate along 

the original waveforms [59] [65]. A problem with smoothened or fluctuating 

waveforms is that the altered waveforms can provide wrong or suffer loss of gait 

information. For example, gait sub-phases such as heel and toe strikes, can be 

identified using the local maxima or minima of the original waveforms [8] [50] [66], 

but not the smoothened waveforms.  

 

2.4.5 Temporal Synchronization of Video and IMU data 

There are several advantages of synchronizing video and inertial sensor data. Chen 

et al. [67] recognized 27 different human motions such as walking and arm-swinging 

using a Microsoft Kinect camera and an IMU. The accuracy of activity recognition 

when camera and IMU were fused was about 10% higher than that of using camera or 

IMU alone. Farnoosh et al. [68] fused inertial data and video recorded from a 

smartphone for indoor navigation. The inertial sensor was used to estimate the 

smartphone orientation, and the navigation accuracy was improved compared to 

navigation without orientation estimation. Jatesiktat et al. [69] fused a Kinect’s depth 

camera with two IMUs worn on the wrists to improve the accuracy of the upper-body 

joint tracking. Validated against the gold standard Vicon system, the authors have 

successfully improved the Kinect’s skeleton tracking by 20%. 

Bae et al. [70] designed a hardware module which connects a gyroscope and a 

camera for synchronization. In cases where the video cameras and inertial sensors are 

two separate systems without a synchronization hardware module, the recordings are 

hard to be initialized at the same time manually. Signal processing needs to be done to 

synchronize the video cameras and inertial sensors data. Plotz et al. [71] synchronized 

depth cameras connected to a computer and a wireless IMU connected via Bluetooth 

to the same computer. The transmission time delay between the cameras and the 

computer was estimated by blinking LEDs controlled by an Arduino board connected 

to the same computer. Cippitelli et al. [72] synchronized camera and accelerometer 
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data using cross-correlation based time-delay estimation. The horizontal and vertical 

hand gestures have low average error of 0.5 and 2 frames, respectively. However, 

circular and wave-like gestures have error more than 10 and 20 frames, respectively. 

Ryu et al. [73] used a position sensitive detector (PSD) camera module to identify the 

positions of markers attached to a moving object. Each marker consists of a radio 

frequency transmitter and an infrared LED. The LED blinked and at the same time 

transmitted a command that consists of the marker’s identification number to the PSD 

to distinguish the identity of each marker. Ofli et al. [74] introduced Berkeley 

Multimodal Human Action Database which consists of temporally synchronized 

video, audio and accelerometer data of people performing activities such as jumping 

and sitting. The authors mentioned that the video, audio, and accelerometer data were 

recorded simultaneously. 

Synchronization methods for multiple videos are also reviewed. Lin et al. [75] 

synchronized two videos captured at different angles. The authors first detected the 

upper body of the subjects, then compared the brightness of the upper body for 

correlation-matching between the videos. The average synchronization error was 

within 1 frame. Duong et al. [76] synchronized multiple versions of the same movie 

by matching the audio tracks.  

It is proposed to match the maximum backward swing of the reference leg detected 

from video and inertial sensor for synchronization. There are several possible methods 

to detect the maximum backward swing of legs from the video. Vicon motion capture 

system [20] is the gold standard in estimating the joint position and orientation, but 

this system is expensive and requires multiple cameras. Meribout et al. [77] used a 

parallel hardware architecture to support a parallel Hough transform algorithm to 

recognize the shape of an object. The method can be extended to detect the shape of 

any kind of objects including legs, therefore the angle of legs can be estimated. Other 

edge detection method such as that proposed by Hu et al. [78] can also be used to 

detect the leg. Zhang et al. [79] proposed a joint gait-pose manifold-based visual gait 

generative model to estimate 3-D gait kinematics from a single video camera. 

Although the method in [79] is accurate enough for some applications, the estimated 

joint orientations still deviate greatly from the ground-truth at some video frames. On 

the other hand, existing inertial sensor-based orientation estimation algorithms have 

achieved higher accuracies [34] [80].  

Overall, synchronizing video and inertial sensor data requires signal processing as 
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the recordings of video and inertial sensor data are hard to be initialized at the same 

time due to human and software delay. Additionally, the video and inertial sensor may 

be sampled at different rates.  

 

2.4.6 Stride Length Estimation 

Stride length estimation is important for many applications including indoor 

positioning and health monitoring [81]. Radio Frequency Identification (RFID) [82], 

WiFi [83], Bluetooth [84] and GPS [85] can be used for stride length estimation. These 

methods are reliable when the radio signals are stable, but can produce high errors at 

places where the radio signals are weak due to blockage from solid walls and obstacles. 

On the other hand, IMUs consisting of gyroscopes, accelerometers and sometimes 

magnetometer are not influenced by the strength of radio signals. IMUs can provide 

real-time motion data of the users for gait diagnosis [46], activity recognition [67], 

stride length estimation [86], and many other applications. 

Many existing IMU-based stride length estimation algorithms are based on the data 

collected from upper body, such as waist, chest, back, and hand. Weinberg [86], Kim 

et al. [87], and Scarlett [88] proposed the relation between stride length and vertical 

acceleration (2.7)-(2.9).  

𝐿𝑊𝑒𝑖𝑛𝑏𝑒𝑟𝑔 = 𝑘1 × √𝑎max − 𝑎min
4  (2.7) 

𝐿𝐾𝑖𝑚 = 𝑘2 × √𝑎̅
3

 (2.8) 

𝐿𝑆𝑐𝑎𝑟𝑙𝑒𝑡𝑡 = 𝑘3 × √
𝑎̅ − 𝑎min

𝑎max − 𝑎min
 (2.9) 

Where L denotes the stride length, k denotes the ratio of the real stride length to the 

estimated stride length. a denotes the vertical acceleration within a stride. amax and amin 

denote the maximum and minimum value of a, respectively. 𝑎̅ denotes the average 

value of a.  

In Ladetto [89], stride frequency f was added to the algorithm (2.10), and the stride 

length estimation accuracy was improved. 

𝐿𝐿𝑎𝑑𝑒𝑡𝑡𝑜 = 𝑤1𝑓 + 𝑤2𝜎
2 + 𝑏 (2.10) 

Where 𝜎2 denotes the variance of a. w denotes the weights of the features. b denotes 

the bias. 

Lee et al. [90] introduced the total amount of vertical rotation R as a new feature. 

Each feature was also subtracted by the average value of the training data (2.11). 
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𝐿𝐿𝑒𝑒 = 𝑤1(𝑓 − 𝑓̅) + 𝑤2(𝜎
2 − 𝜎̅2) + 𝑤3(𝑅 − 𝑅̅) + 𝐿̅ (2.11) 

Where 𝑅 = ∑ |𝜔𝑛 × 𝑇|𝑁
𝑛=1 , and 𝜔 denotes the vertical angular velocity measured by 

the gyroscope. 𝜎̅2, 𝑅̅, 𝑓̅, and 𝐿̅ denote the pre-learnt average 𝜎2, R, f, and L of all 

training data, respectively. 

There are also existing methods that estimate the stride length based on the IMU 

data collected from lower body. Diaz et al. [91] and Abhayasinghe [51] proposed to 

estimate stride length based on the opening angles of the thigh (2.12) (2.13).  

𝐿𝐷𝑖𝑎𝑧 = 𝑤(𝜑max − 𝜑min) + 𝑏 (2.12) 

𝐿𝐴𝑏ℎ𝑎𝑦𝑎𝑠𝑖𝑛𝑔ℎ𝑒 = 𝑤1s n |𝜑max| + 𝑤2s n |𝜑min| + 𝑏 (2.13) 

Where 𝜑m x and 𝜑m n denote the maximum and minimum flexion/extension angles of 

the thigh within a gait cycle. 

Sijobert et al. [92] estimated the stride length by integrating the horizontal speed 

𝑣 of the shank (2.14). 

𝑣(𝑡) = ∫ (  s 𝜃(𝑡)𝑎𝑥(𝑡) − s n 𝜃(𝑡)𝑎𝑦)
𝑡𝑆

0

𝑑𝑡 + 𝑐𝑜𝑠𝜃(0)(−𝜔(0)𝐷) 

𝐿𝑆𝑖𝑗𝑜𝑏𝑒𝑟𝑡 = ∫ (𝑣(𝑡) − 𝜀(𝑡))
𝑡𝑆

0

𝑑𝑡 

(2.14) 

Where 𝑡𝑆  denotes the duration of the stride. 𝜃 is the flexion/extension angle of the 

shank. x and y denote the vertical and horizontal axes of the IMU, respectively.  D is 

the distance between the IMU and the ankle joint. 𝜀 is the error of the estimated 𝑣. 

Hannink et al. [93] used deep convolutional neural networks to estimate the stride 

length based on the IMU placed on the shoe. 

The algorithm proposed by Renaudin et al. [94] describes the relationship between 

height h of subject, stride frequency f, and stride length (2.15), and is not restricted by 

the IMU placement.  

𝐿𝑅𝑒𝑛𝑎𝑢𝑑𝑖𝑛 = ℎ(𝑤1𝑓 + 𝑏1) + 𝑏2 (2.15) 
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2.5 Chapter Summary 

The primary motion of the leg is flexion/extension. Adduction/abduction and 

internal/external rotation occur among healthy individuals with less amplitudes due to 

soft tissue and bony constraints, but this may not be the case for people with impaired 

gaits. Therefore, it is needed to estimate the 3-D angles of the leg for gait diagnosis, 

instead of just estimating the flexion/extension angle. Existing gait analysis 

technologies include force sensors, optical motion capture system, and inertial sensors. 

Among these technologies, inertial sensors offer great advantages in term of portability 

and affordability. An efficient and accurate inertial sensor-based angle estimation 

algorithm is required to be developed. The estimation of 3-D angles is stated in Chapter 

4.2. 

Some researchers used machine learning methods for gait diagnosis and 

classifications. Most existing methods are only suitable for post-processing due to 

complex computations. A real-time standalone gait diagnosis device is needed to be 

developed. The construction and design of the diagnosis device is described in detail 

in Chapter 4.3. 

For gait phase detection, many researchers used force sensors to detect when the 

foot hits the ground. Some researchers used IMUs to detect the gait phases of normal 

gaits. The main research gap is to develop a gait phase detection method for abnormal 

gaits using IMU. This is considered in detail in Chapter 4.4. 

It appears that many research works focused on gait modelling using Fourier series. 

However, at current stage, the reconstructed waveforms either represent smoothened 

waveforms or fluctuate along the original waveforms. A problem with smoothened or 

fluctuating (noisy) waveforms is that the altered waveforms can provide wrong or 

suffer loss of gait information such as gait phase. An improved gait modelling method 

is needed to retain the gait phase information from the reconstructed waveforms. This 

is considered in detail in Chapter 4.5. 

Synchronization of video and IMU data requires signal processing as the 

recordings of video and IMU data are hard to be initialized at the same time due to 

human and software delay, and the sampling rates may be different. A method to 

synchronize markerless video and IMU data is needed to be developed. The 

synchronization method is stated in Chapter 4.6. 

IMU-based stride length estimation remains as a challenging problem despite 

many researchers have tried to use frequency, vertical acceleration, and/or angle to 
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estimate the stride length. Existing IMU-based stride length estimation algorithms 

mostly depend on the accelerometer data. It is fundamental to investigate if the stride 

length can be estimated more accurately using the gyroscope data, and the proposed 

method is described in Chapter 4.7. 
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CHAPTER 3 - EXPERIMENTAL PLATFORM  

3.1 Introduction 

The work presented in this thesis used custom-made IMUs, custom-made IMUs 

with force sensors, custom-made IMUs with red LED, smartphone camera, and Motion 

Analysis Lab (MAL) for data collection. The design and construction of the custom-

made IMUs are discussed in Chapter 3.2. The force sensitive resistors (FSRs)are added 

to the IMUs in Chapter 3.3 for validation of the proposed gait phase detection method 

in Chapter 4.4. A red LED is added to the IMUs for validation of proposed 

synchronization method in Chapter 4.6. The optical motion capture system used to 

validate the IMU angles is described in Chapter 3.4. 

 

3.2 Design and Construction of IMUs 

3.2.1 Hardware 

Fig. 3.1 shows the IMUs constructed for data collection. The model of the inertial 

sensor used for the IMUs is MPU6050, which consists of a tri-axis accelerometer and 

a tri-axis gyroscope. The selected sensitivity of the accelerometer is ±2g, while the 

sensitivity of the gyroscope is ±250º/s, both in 16-bit resolution [95]. The sensors are 

sampled at 100Hz.  

The processor used for the IMUs is Arduino Pro Mini 3.3V, which consists of an 

ATmega328 8-bit microcontroller [96]. The IMU is also equipped with a wireless 

transceiver nRF24L01+. This transceiver operates in 2.4GHz band, with a data 

transmission rate of 2Mbps [97].  

A rechargeable 3.7V lithium-polymer (Lipo) battery was initially selected as the 

power supply of the IMUs, but later changed to 2pcs AAA batteries connected in series 

amounting to nominal 3.0V. This is because it took time to recharge the LiPo battery, 

and replacing the non-rechargeable batteries seemed to be more convenient. 

Fig. 3.2 shows the dongle used to receive wireless data from the IMUs. The dongle 

consists of transceiver nRF24L01+ and an Arduino Uno R3 connected to a computer 

through USB.  
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(a) (b) 

Fig. 3.1: IMUs.  

(a) External view. (b) Internal view. 

 

 
Fig. 3.2: Dongle. 

 
 

Fig. 3.3 shows that the two microcontrollers of the IMUs are connected together 

through Rx/Tx lines. Tables 3.1 and 3.2 show the pin connections for transceiver, 

sensors, and Arduinos. 

The electronic components used to construct IMUs and dongle were purchased 

from www.Taobao.com. The total cost of the electronic components including 

shipping fees to Malaysia was about 58MYR (≈US$14), as listed in Table 3.3. 

 

 

Fig. 3.3: Hardware connections of IMUs. 
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Sensor 

MPU6050

// /4 47

AAA 

Battery  2

IMU 1 IMU 2
Rx

Tx

Vcc

Gnd

Rx

Tx

Vcc

Gnd

Gnd

Vcc



22 

 

Table 3.1: Pin Connection for 

Transceiver nRF24L01+ 

nRF24L01+ pin Arduino pin 

1 – GND GND 

2 – VCC VCC 3.3V 

3 – CE 9 

4 – CSN 10 

5 – SCK 13 

6  – MOSI 11 

7  – MISO 12 

8 – interrupt unused 
 

Table 3.2: Pin Connection for Sensor 

MPU6050 

MPU9150 pin Arduino pin 

VCC VCC 3.3V 

GND GND 

SDA A4 

SCL A5 
 

 

Table 3.3: Cost of Electronic Components 

 Components Quantity Price per Unit 

(MYR) 

Total Cost 

(MYR) 

IMUs Arduino Pro Mini 

3.3V 
2 10.73 21.46 

Sensor MPU6050 2 4.35 8.70 

Transceiver 

nRF24L01+ 
1 2.99 2.99 

AAA Battery 2 1.50 3.00 

Dongle Arduino Uno R3 1 18.57 18.57 

Transceiver 

nRF24L01+ 
1 2.99 2.99 

 Total Cost 57.71 

 

  



23 

 

3.2.2 Software  

The main challenge to tackle for the software development of IMUs is sensor data 

synchronization. To solve this, the 2 IMUs are connected together through Rx/Tx lines. 

As shown in Fig. 3.4, the first IMU (named as IMU 1) sends a signal to the second 

IMU (IMU 2) every 10ms, equivalent to 100Hz. As soon as IMU 2 receives the signal, 

both IMUs start to read the sensor at the same time (within less than 0.5ms difference). 

After reading the sensors, IMU 2 sends its raw sensor data to IMU 1, and IMU 1 will 

compile the raw data from both IMUs according to the format in Fig. 3.5. The data is 

then transmitted from IMU 1 to the dongle wirelessly. Each transmission consists of 

13 sensor data and 1 timer, where each data is 16-bit. In order to reduce data loss, IMU 

1 transmits the same compiled sensor data three times. All these are completed in less 

than 8ms, and the IMUs are ready to repeat the process in the 10thms. 

 

 

Fig. 3.4: Flowchart for IMU software development. 

 

 

Fig. 3.5: Format of compiled sensor data. 
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As shown in Fig. 3.6, as soon as the dongle receives data from the IMU, the data 

received is immediately printed at the serial monitor on a computer. The baud rate was 

set as 115200bps. As the IMU sends the same data three times to reduce data loss, it is 

possible that the dongle receives multiple repeated IMU data. The dongle will not send 

repeated data to the computer, and this is achieved by checking the timer value in the 

received data.  

 

Fig. 3.6: Flowchart for dongle software development. 

 

3.2.3 Data Loss 

As IMU data transmission to dongle is wireless, it is needed to identify the 

optimum separation distance between the IMUs and dongle before the real data 

collection takes place so that there is minimum data loss in transmission. To do so, the 

IMU was placed line of sight with the dongle at different distances, and the dongle was 

set to record 30 seconds of IMU data at each distance. Fig. 3.7 shows the percentage 

of data loss at varying distances. The data loss was very low (≪1%) when the 

separation distance was within 5 meters. The data loss increased to 2% when the 

separation distance was 7 meters, most likely due to interference from other nearby 

devices that operated in the 2.4GHz band. The loss is still considered low (<2% loss) 

even at a separation distance of 19 meters. At a separation distance of 25 meters, the 

percentage of data loss was high (about 10%). Therefore, it is recommended to use the 

IMU system within 19 meters. The lost data Di at ith sample is predicted using (3.1). 

𝐷𝑖 =
𝐷𝑖+𝑁 − 𝐷𝑖−1

𝑁 + 1
+ 𝐷𝑖−1 (3.1) 

Where 𝐷𝑖−1 and 𝐷𝑖+𝑁 are the data successfully received by the dongle. 
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Time elapsed (ms)

0
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Read data

Transmit data 
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No

1.5

2

Repeated data?
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Fig. 3.7: IMU data loss with respect to distance. 

 

3.3 Force Sensors 

In Chapter 4.4, the gait phases detected using shank’s IMU are needed to be 

validated against FSRs. Instead of creating additional device, 4 FSRs are added to IMU 

2 as shown in Fig. 3.8. As shown in Fig. 3.9, each FSR is connected in series with a 

100kΩ resistor. The forces exerted on the FSRs are measured right after (<2ms) the 

IMU 2 reads the accelerometer and gyroscope. 

 

 

 

Fig. 3.8: IMUs with FSRs. Fig. 3.9: FSR circuitry. 

 

Fig. 3.10 shows the format to compile IMU data and FSR readings before 

transmitting to dongle. As there are only sixteen 16-bit slots per data transmission 

using nRF24L01+, the remaining 3 slots (Slots 14, 15, and 16) are used to encode the 

readings of 4 FSRs. Each FSR reading is 10-bit (maximum value = 1023). The reading 

of FSR1 is placed in Slot 14, while the readings of the remaining FSRs are encoded in 

Slots 15 and 16.  

Gnd

Vcc

Arduino Analog Pin of IMU 2100kΩ

FSR



26 

 

 

Fig. 3.10: Format of compiled sensor data with FSR readings. 

 

3.4 Video Capture and IMUs with LED 

In Chapter 4.6, a method to temporally synchronize video and IMU data is 

proposed. The video camera used in this research is the front camera of an iPhone 6 

Plus, which records 720p HD video with a resolution of 1280 × 720 pixels at a frame 

rate of 30fps [98]. 

Inspired from the method in [73] which used blinking LEDs and RF transmitters 

to synchronize video and markers, a blinking LED and the nRF24L01+ transceiver are 

utilized to synchronize video and IMU data, for validation of the proposed 

synchronization method in Chapter 4.6.  

As shown in Fig. 3.11, a red LED is connected to the IMUs through wires. The 

LED blinks for 10ms whenever there is a positive zero crossing of the shank’s angular 

velocity and either one of the previous 10 shank’s angular velocities is lower than a 

threshold -100°/s. At the same time of the LED blinks, an LED flag = 1 is encoded in 

the IMU wireless data transmission to the computer, as shown in Fig. 3.12. 

 

 

Fig. 3.11: IMUs with LED. 

Data from IMU 1 Data from IMU 2

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Data timer 𝑎 𝑎 𝑎 𝜔 𝜔 𝜔 𝑎 𝑎 𝑎 𝜔 𝜔 𝜔 

No. 14 15, 16

Data    1    2,    3,     

Transceiver nRF24L01+ Sensor MPU6050

Microcontroller Arduino Pro Mini 3.3VRed LED
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Fig. 3.12: Blinking of LED for validation of proposed method. 

 

3.5 Vicon Optical Motion Capture System 

In order to validate the angles estimated using the custom-made IMUs, Vicon 

optical motion capture system [5] installed in Motion Analysis Lab of School of 

Physiotherapy and Exercise Science of Curtin Australia was used. The Vicon system 

consists of 18 cameras to track the 3-D coordinates of reflective markers as shown in 

Fig. 3.13. The sampling rate was set at 300Hz. The software used was Vicon Nexus 

1.8.5 motion processing software. 

 

  
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 3.13: Vicon Optical Motion Capture System. 

(a) MAL. (b) Cameras surround MAL. (c) Camera. (d) Markers. 
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3.5 Chapter Summary 

In this chapter, the hardware and software components of the custom-made IMUs 

were described. The wireless data transmission loss of the IMUs was low when the 

distance between IMUs and dongle was within 19 meters, therefore the IMU data 

collection should take place within ±19 meters. For validation of proposed methods, 

the IMUs were added with FSRs and a red LED. A smartphone camera and the Vicon 

system used in this research were also described.  
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CHAPTER 4 - PROPOSED METHODS RELATED TO GAIT ANALYSIS 

4.1 Introduction 

The main contributions of the thesis are presented in this chapter. The proposed 

methods are presented in details, followed by results and discussions in each sub 

chapters. The proposed methods included in this chapter are listed as follows: 

• Estimation of 3-D Thigh and Shank Angles using IMU 

• Design and Construction of a Standalone Gait Diagnosis Device 

• Gait Phase Detection for Normal and Abnormal Gaits 

• Accurate Gait Modelling based on Waveform Scaling before DFT 

• Temporal Synchronization of Markerless Video and IMU data 

• Stride Length Estimation using a Single Shank’s Gyroscope 

 

4.2 Estimation of 3-D Thigh and Shank Angles using IMU 

4.2.1 Introduction 

In this chapter, a new 3-D thigh and shank angles estimation algorithm, called 2-

Point Error Estimation algorithm, is proposed. The gold standard Vicon optical motion 

capture system in Curtin Australia’s Motion Analysis Lab is used to validate the 

proposed method. 

 

Chapter 4.2 is covered by the following publication with minor amendment: 

Y. C. Han, K. I. Wong and I. Murray, "2-Point Error Estimation Algorithm for 3-D 

Thigh and Shank Angles Estimation Using IMU," in IEEE Sensors Journal, vol. 18, 

no. 20, pp. 8525-8531, Oct.15, 2018. 

doi: 10.1109/JSEN.2018.2865764 

© 2018 IEEE 
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4.2.2 Experimental Setup 

Fig. 4.1 shows that the IMUs, consisting of a tri-axial accelerometer and a tri-axial 

gyroscope, were strapped at the outer side of the thigh and shank using Velcro straps. 

The details of the IMUs are described in Chapter 3.2.1. The sampling rate of the IMUs 

was 100Hz.  

The 3-D angles estimated using IMUs were to be validated against the gold 

standard Vicon optical motion capture system. The Vicon system is described in 

Chapter 3.5. The sampling rate of the Vicon system was set at 300Hz. The markers of 

the Vicon system were placed on the IMUs. The 3-D movement of the thigh and shank 

were tracked simultaneously using IMUs and the Vicon system.  

The subjects were requested to stand still for 3 to 5 seconds, then walk straight on 

a flat surface for 3 to 5 steps, and finally stood still for another 3-5 seconds. Although 

more steps were always preferred per trial, 3 to 5 walking steps would be sufficient to 

capture the walking pattern of an individual for gait analysis as walking is a repetitive 

motion. Additionally, since the focus of this research is for walking assessment, a 

patient may not be able to walk for a long distance. For the first 3 trials, each volunteer 

walked straight normally. For another 3 trials, the volunteers were requested to walk 

straight but intentionally move their legs outwards in each walking cycle to simulate 

abnormal walking. A total of 60 walking trials were collected from 10 healthy adults 

(male: 8; female: 2; age: 22-35; height: 160-177cm; weight: 55-94kg). 

 

 

Fig. 4.1: Placement of IMUs. 
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4.2.3 Proposed Method 

4.2.3.1 Overall flowchart 

Fig. 4.2 and 4.3 show the overall flowchart to estimate 3-D angles. The proposed 

method consists of 3 main steps, i.e. identifying the starting and stopping time of 

walking, followed by estimating the accelerometer and gyroscope angles, and finally 

the proposed 2-Point Error Estimation algorithm.  

 

 

Fig. 4.2: Flowchart to estimate flexion/extension and adduction/abduction angles. 

 

 

Fig. 4.3: Flowchart to estimate internal/external rotation angle. 
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4.2.3.2 Starting and Stopping Time of Walking 

The 2-Point Error Estimation algorithm developed requires the starting and 

stopping time of walking to be known. The starting and stopping time can be recorded 

manually using a timer before and after each walking movement. However, manual 

time recording is tedious and prone to human error. For a more accurate identification 

of the starting and stopping time of a waking trial, it is necessary to create an algorithm 

to do so automatically.  

To utilize accelerometer and gyroscope to identify the starting and stopping time 

of walking, it is necessary to know the parameters that are measured by these two 

inertial sensors. The measured accelerometer data a can be modelled as (4.1) where g 

denotes the gravitational acceleration, A denotes the linear acceleration due to 

movement, na denotes the accelerometer DC offset plus noise. The measured 

gyroscope data 𝜔  is modelled as (4.2) where 𝑣  denotes the angular velocity, 𝑛𝜔 

denotes the gyroscope DC offset plus noise. 

a = g + A + na (4.1) 

𝜔 = 𝑣 + 𝑛𝜔 (4.2) 

When the person is standing still, the linear motion A is minimized, and hence 

accelerometer measures a ≈ g + na. On the other hand, when the person is standing 

still, gyroscope will ideally measure zero angular velocity 𝑣 , and hence 𝜔  ≈  nw.  

Assuming the DC offset and noise 𝑛  of the accelerometer and gyroscope are 

negligible, the measured values are now a ≈ g and 𝜔 ≈ 0.  

As the Earth’s gravitational acceleration is 1g pointing vertically downwards, the 

vertical axis of the accelerometer would ideally measure 1g, while the other two 

horizontal axes would ideally measure 0g when the person is standing still. Therefore, 

|a| = (ax
2 + ay

2 + az
2)0.5

 ≈ 1g, where x, y, and z are the axes of the sensor. For the 

gyroscope, all three axes would ideally measure 0º/s when the person is standing still. 

Therefore, by fulfilling (4.3) and (4.4), the period of which the person is standing still 

can be identified, where thresholds 𝜆1 and 𝜆2 are approaching 0. In this research, λ1 

and 𝜆2 were set as 0.07g and 10º/s respectively due to the offset and noise of the 

sensors. The threshold values were obtained through trials and errors. 

1 − (ax
2 + ay

2 + az
2)0.5 < λ1 (4.3) 

| 𝜔j | < λ2      for j = x, y, z (4.4) 

Fig. 4.4 shows the flowchart to identify the starting and stopping time of walking. 

The algorithm checks (4.3) and (4.4) from the middle of the dataset which is when the 
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person is walking, and progress towards the start or end of walking. When (4.3) and 

(4.4) are first fulfilled for a continuous number of λ3 time, the starting or stopping time 

can be identified. The threshold λ3 is set to be 50 in this research. 

It must be noted that the ideas of (4.3) and (4.4) are inspired from [51], but the 

researcher in [51] used these equations to decide whether to use accelerometer or 

gyroscope data to estimate the flexion/extension angle, while the application of these 

two equations in this proposed method is to identify the starting and stopping time of 

walking. 

 

 

Fig. 4.4: Flowchart to identify the starting or stopping time of walking. 

 

4.2.3.3 Estimation of Accelerometer and Gyroscope Angles 

In this research, the accelerometer data a is lowpass filtered using a simple moving 

average in (4.5), where 𝑎̅ denotes the filtered accelerometer data. The value of k used 

in this research is 30. 
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Accelerometer can estimate the pitch angle ɸpitch and roll angle ɸroll according to 
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angle ɸyaw because gravitational acceleration is a vertical reference, but the estimation 

of the yaw angle requires a horizontal reference.  

ɸpitch = atan2(𝑎̅x , 𝑎̅y) (4.6) 

ɸroll = atan2(𝑎̅z , 𝑎̅y) (4.7) 

The initial gyroscope pitch angle ψpitch and roll angle ψroll are set as the 

accelerometer angles as stated in (4.8), respectively. The initial yaw angle is set as 0º 

as stated in (4.9) because the person is facing straight initially. The gyroscope 3-D 

angles can then be estimated using (4.10) which is the integration of measured angular 

velocity w, where T =0.01s is the sampling time. 

 1 =  ɸ1 for ψpitch and ψroll (4.8) 

 1 =  0 for ψyaw  (4.9) 

 𝑖 =  𝑖−1 + 𝜔𝑖𝑇 for i = 2,3,4,… (4.10) 

 

4.2.3.4 2-Point Error Estimation Algorithm 

To compensate the gyroscope integration drift, a 2-Point Error Estimation 

algorithm is proposed. The error of the estimated gyroscope angle is first estimated at 

starting time istart and stopping time istop of walking. The error at these two points are 

called the 2-point error. To estimate the 2-point error, the gyroscope angle is compared 

with the accelerometer angle using (4.11) by calculating their difference Ԑ.  

Ԑ𝑖 =  𝑖 − ɸ𝑖 for 
𝑖 = 𝑖start , 𝑖stop

pitch and roll angles
 (4.11) 

As mentioned, the initial yaw angle at istart is assumed to be 0º because 

accelerometer cannot estimate the yaw angle. Since the heading before and after a 

person walks straight should ideally remain the same, the final yaw angle at istop is also 

assumed to be 0º. The 2-point error of the gyroscope yaw angle can then be estimated 

using (4.12) by subtracting the estimated gyroscope yaw angle with 0º.  

Ԑ𝑖 =  𝑖 − 0 =  𝑖 for 
𝑖 = 𝑖start , 𝑖stop
yaw angle

 (4.12) 

The 2-point error calculated in (4.11) and (4.12) are then used to estimate the error 

of the gyroscope angles during walking motion, i.e. from istart to istop. The error of the 

gyroscope angle from istart to istop is estimated by linearly distributing the 2-point error 

(4.13) using a linearly distributed weight W calculated in (4.14). The final estimated 

3-D angles θ can be calculated using (4.15) by removing the estimated error from the 

estimated gyroscope angle. 
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Ԑ𝑖 = Ԑstart(1 −𝑊𝑖) + Ԑstop𝑊𝑖 (4.13) 

𝑊𝑖 =
𝑖 − 𝑖start

𝑖stop − 𝑖start
 (4.14) 

θ𝑖 =  𝑖 − Ԑ𝑖 (4.15) 

for 
i = istart , istart+1 , istart+2 , ⋯ , istop

pitch, roll , yaw angles
 

 

The pitch and roll angles when the person is standing still, i.e. before starting time 

istart and after stopping time istop, can be estimated using (4.6) and (4.7), respectively. 

 

4.2.4 Results and Discussion 

Fig. 4.5 and 4.6 show the 3-D orientation angles of the thigh and shank of the same 

individual. The blue lines are the angle waveforms estimated using gold standard 

Vicon optical motion capture system. The red lines are the angle waveforms estimated 

using the proposed 2-Point Error Estimation algorithm. The yellow lines are the angle 

waveforms estimated using (4.10) which is prone to gyroscope integration drift.  

Fig. 4.7 shows the error of the estimated 3-D angles in Fig. 4.5. The errors of the 

gyroscope angles before and after walking were mostly linear. However, the error of 

the gyroscope angles (pink lines) was fluctuating while the person was walking. 

Drawing a straight line (dotted green line) connecting the gyroscope angles at starting 

time istart and stopping time istop, it was assumed in this research that the drifting 

direction of the gyroscope angles was linear.  

Referring to the thigh flex/ext. in Fig. 4.7, the gyroscope drifting direction (dotted 

green line) was almost linear at all time. However, there are cases, for example the 

thigh add/abd. in the same figure, that the estimated drifting direction of the gyroscope 

angles were different before, during, and after walking. Therefore, a 2-point gyroscope 

error estimation, i.e. estimating the error based on pre- and post-calibration method, 

was proposed, while many researchers estimated the sensor error based on pre-

calibration method only [8].  
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Fig. 4.5: Estimated 3-D angles of the thigh and shank during normal walking on a 

flat surface. 

Vicon Proposed Method Gyroscope angle (eq. 4.10)
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Fig. 4.6: Estimated 3-D angles of the thigh and shank during abnormal walking on a 

flat surface. 

 

Vicon Proposed Method Gyroscope angle (eq. 4.10)
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Fig. 4.7: Error of the estimated thigh and shank angles during normal walking on a 

flat surface. 

 

  

Proposed Method Gyroscope angle error Estimated Gyroscope 

Drifting Direction
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The RMSE and CORR in Tables 4.1 and 4.2 were calculated for the walking 

period, i.e. from starting time istart to stopping time istop. This better describes the 

accuracy of the method compared to considering the standing period which had very 

little movement. The results improved when the standing still period was considered. 

Referring to Table 4.1, the proposed 2-point Error Estimation algorithm resulted 

an averagely low RMSE of less than 5º for all 3-D angles of the thigh and shank, in 

normal and abnormal walking conditions. Comparing with the angles estimated by 

directly integrating the gyroscope data (4.10), the proposed 2-point error estimation 

algorithm is proven effective in compensating the gyroscope drift. The RMSE of the 

angles estimated by directly integrating gyroscope data was high at 7-36º as shown in 

Table 4.2. 

The flexion/extension angle estimated using the proposed algorithm achieved high 

CORR of 98.8% for thigh, and 97.7% for shank. The adduction/abduction and 

internal/external rotation angles estimated using proposed algorithm achieved lower 

CORR of 83-93% compared to the flexion/extension angle. However, comparing 

Tables 4.1 and 4.2, the proposed algorithm improved the adduction/abduction and 

internal/external rotation angles from 43-77% to 83-93%, i.e. an improvement of 16-

40%. 

 

Table 4.1: Average RMSE and CORR of 3-D Angles Estimated Using Proposed 

Method 

 
Walking on flat 

surface 

Flexion/ 

Extension 

Adduction/ 

Abduction 

Internal/External 

Rotation 

Thigh Shank Thigh Shank Thigh Shank 

RMSE 

(º) 

Normal 1.934 3.685 2.017 4.701 3.604 4.039 

Abnormal 2.270 3.589 2.729 4.952 4.184 4.920 

Overall 2.102 3.637 2.373 4.826 3.894 4.479 

CORR 

(%) 

Normal 98.90 96.70 92.40 79.50 81.60 87.20 

Abnormal 98.60 98.60 93.20 85.40 90.70 90.10 

Overall 98.80 97.70 92.80 82.50 86.20 88.60 
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Table 4.2: Average RMSE and CORR of Gyroscope Angles (eq. 4.10) 

 
Walking on flat 

surface 

Flexion/ 

Extension 

Adduction/ 

Abduction 

Internal/External 

Rotation 

Thigh Shank Thigh Shank Thigh Shank 

RMSE 

(º) 

Normal 7.93 6.69 11.12 23.43 7.88 14.45 

Abnormal 14.46 10.55 13.02 36.09 16.13 18.53 

Overall 11.20 8.62 12.07 29.76 12.00 16.49 

CORR 

(%) 

Normal 94.20 97.90 81.20 45.20 72.80 82.10 

Abnormal 87.70 94.90 71.90 40.40 63.50 62.90 

Overall 90.90 96.40 76.50 42.80 68.20 72.50 

 

An advantage of the proposed method is that the filtration of raw gyroscope data 

is not required. This reduces smoothening or alteration of the angle waveform patterns. 

The waveform patterns of the estimated 3-D angles are relatively similar to that of 

Vicon system, as shown in Fig. 4.5 and 4.6.  

This proposed algorithm is also computationally efficient as only two “atan2()” 

functions were computed in (4.6) and (4.7) throughout the whole walking motion, and 

7 additions and 4 multiplications for each angle estimated using (4.10) to (4.15).  

A disadvantage of the proposed algorithm is that it is only suitable to estimate the 

3-D angles for a short duration of time. However, as walking cycle is expected to be 

repetitive with slight differences [6], 3 to 5 walking steps is sufficient to evaluate the 

gait pattern of a person. Based on the experimental results, the proposed algorithm can 

at least estimate the 3-D angles accurately up to 15 seconds, which is sufficient to 

capture 5 walking steps of a person.  

Moreover, this proposed method is unable to estimate angles in real time, but real-

time angle estimation is not necessary for applications such as gait evaluation.  

Furthermore, many researchers utilize magnetometer to estimate yaw angle [25] 

[34] [99]. Although a magnetometer can be added to improve the accuracy of 

internal/external rotation angle, the proposed 2-point error estimation algorithm does 

not require a magnetometer. As magnetometer is prone to magnetic interference [100], 

avoiding it has drastically improved the computational efficiency. However, the 

assumption that the yaw angle remains before and after walking is only true for 

walking in a straight line. This assumption has resulted a considerably accurate 
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estimation of the yaw angle with low average RMSE of 3.9º for thigh and 4.5º for 

shank.  

The proposed algorithm requires the users to stand still before and after walking. 

As this system is designed for clinical application, it is possible that some patients with 

impaired gaits would have involuntarily shaky legs [101]. This creates a problem that 

there is no standing still period for the algorithm to estimate the 2-point error. To solve 

this, the thresholds in (4.3) and (4.4) can be increased to values slightly higher than the 

average values of accelerometer and gyroscope data collected in the first second, 

respectively. The increased thresholds would treat the shaky legs as standing still, and 

then the walking motion could be identified when the thigh flexes/extends above these 

thresholds. 

 

4.2.5 Summary 

A method to estimate the 3-D angles of the thigh and shank was proposed. The 

proposed algorithm was not only accurate, but also computationally efficient.  

Validated against the Vicon optical motion capture system, the proposed algorithm 

resulted in low average RMSE of 2.9º, 3.6º, and 4.2º for flexion/extension, 

adduction/abduction, and internal/external rotation angles of the thigh and shank, 

respectively. The angle waveform pattern is very similar to that of Vicon as the 

gyroscope data was not needed to be filtered. In term of computational efficiency, only 

two “atan2()” functions were needed to be computed throughout the whole walking 

motion, and 7 additions and 4 multiplications for estimating each angle.  
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4.3 Design and Construction of a Standalone Gait Diagnosis Device 

4.3.1 Introduction 

The performance of machine learning strongly depends on its input data. 

Frequently chosen machine learning input data for gait analysis are spatio-temporal 

walking parameters, whereas in this chapter the feasibility of selecting 3-D thigh and 

shank angles as the features of machine learning methods is investigated. 4 machine 

learning methods, i.e. random forest, k-nearest neighbour, support vector machine and 

perceptron, are compared in term of accuracy and memory usage. The end result is a 

real-time standalone gait diagnosis device that is constructed using low-end 

microcontrollers. 

 

The contents in Chapter 4.3 has been submitted for review for possible publication. 

Once published, the publication can be searched as:  

Y. C. Han, K. I. Wong and I. Murray, "Comparison of Machine Learning Methods for 

the Construction of a Standalone Gait Diagnosis Device". 

 

4.3.2 Experimental Setup 

Fig. 4.8 and 4.9 show the IMUs were strapped in front of the right thigh and shank 

using Velcro straps. As shown in Fig. 4.9(b), the right knee was bandaged to simulate 

knee problem, while in Fig. 4.9(c) an 8-cm high left slipper was worn to simulate leg 

length discrepancy.  

5 healthy adults (male: 3; female: 2; age: 22-32; height: 160-177cm; weight: 55-

90kg) participated in the data collection during the design phase. The volunteers stood 

still for about 5 seconds, then walk straight on a flat surface for 3 to 5 steps, and finally 

stood still for another 5 seconds to collect the 3-D rotation angles of the right thigh and 

shank. Table 4.3 lists the types of walking performed by each volunteer.  

40 walking trials were collected from each volunteer, resulting in a total of 200 

walking trials. A total of 152 normal walking cycles and 461 abnormal walking cycles 

were extracted from the collected walking trials in the design phase. 
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Fig. 4.8: IMUs’ placement and axes direction. 

 
 

   
(a) (b) (c) 

Fig. 4.9: Placement of IMUs. 

(a) Placement of the IMUs in front of the right thigh and shank using Velcro straps. 

(b) Bandaged knee to stimulate knee problem. (c) Wearing a left slipper to simulate 

leg length discrepancy. 

 

Table 4.3: Type of Walking Performed by Each Volunteer 

Trial Type of Walking 

1 – 10 Walk normally 

11 – 20 Walk abnormally by swinging the right leg outwards to 

simulate foot drop 

21 – 30 Walk abnormally by bandaging the knee as shown in Fig. 4.9 

(b) to simulate knee problem 

29 – 40 Walk abnormally by wearing an 8cm-high slipper on the left 

leg as shown in Fig. 4.9 (c) to simulate leg length discrepancy 

 

Pitch (Flexion/Extension)

Roll (Adduction/Abduction)

Yaw (Internal/External Rotation)

IMU

0°

+90°

Thigh 

IMU

Shank 

IMU

Thigh 

IMU

Shank 

IMU

Thigh 

IMU

Shank 

IMU



44 

 

In the prototype-construction phase, 2 IMUs as shown in Fig. 4.10 were 

constructed to process the sensor data locally and in real time. The electronic 

components used in the standalone IMUs were similar to that in Fig. 3.1, except there 

was no transceiver, and a green and a red LEDs were added to show normal and 

abnormal gaits, respectively. The total cost of the electronic components used to 

construct the standalone IMUs was about 34MYR (≈US$8) as listed in Table 4.4. 

To test the standalone gait diagnosis device, another 15 healthy adults (male: 11; 

female: 4; age: 22-38; height: 158-177cm; weight: 52-90kg) were involved. Each 

volunteer performed the same walking as described in Table 4.3, and a total of 600 

walking trials were used to test the standalone gait diagnosis device.  

 

  

(a) (b)  

Fig. 4.10: Standalone gait diagnosis device. 

(a) Standalone IMUs as a gait diagnosis device. Green LED lights up to show the 

gait is normal. (b) Internal view. Red LED lights up to show the gait is abnormal. 

 

Table 4.4: Cost of the Electronic Components used in the Standalone Gait Diagnosis 

Device 

Components Quantity Price per Unit (MYR) Total Cost (MYR) 

Arduino Pro Mini 3.3V 2 10.73 21.46 

Sensor MPU6050 2 4.35 8.70 

AAA Battery 2 1.50 3.00 

LED 2 0.50 1.00 

Total Cost 34.16 
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4.3.3 Proposed Method 

4.3.3.1 Overall flowchart 

This section investigates which combination of 3-D thigh and shank angles can 

result in the highest classification accuracy for normal and abnormal gaits. The 

machine learning methods were also compared in term of accuracy and memory 

requirement. The flowchart in Fig. 4.11 shows the overall flowchart to train a machine 

learning method. 

 

 

Fig. 4.11: Overall flowchart to train a machine learning method. 

 

4.3.3.2 Estimate 3-D Thigh and Shank Angles 

Fig. 4.12 shows the 3-D thigh and shank angles estimated using the method in 

Chapter 4.2 which had been validated against gold standard Vicon optical motion 

capture system. The same sensors, microcontrollers, and sampling frequency (100Hz) 

were used. 

Labelled Normal/Abnormal Raw Sensor Data of all walking trials

Estimate 3D thigh and shank angles

Gait Cycle Extraction 

Feature Extraction (Resampling and Normalization)

Train and test machine learning methods
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Fig. 4.12: 3-D thigh and shank angles of a person walking abnormally. 

 

4.3.3.3 Gait Cycle Extraction in Real Time 

Each gait cycle was extracted using the maximum swings of the shank. In other 

words, a gait cycle starts with a maximum swing of the shank, and ends with a 

subsequent maximum swing of the same shank.  

In order to identify the maximum swings of the shank, 5 conditions in (4.16) − 

(4.20) within a sliding window of 200 samples (grey portion) need to be fulfilled, as 

illustrated in Fig. 4.13. This gait cycle extraction method can be employed in real time 

using Arduino. 

M1 – m > 10° (4.16) 

M2 – m > 10° (4.17) 

iM1 < im < iM2 (4.18) 
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im = 100 (4.19) 

iM2 – iM1 > 90 (4.20) 

Where M1 and M2 are the first and second maxima within the sliding window of 200 

samples, respectively. m denotes the minimum angle. i is the ith sample of the latest 

200 samples. 

The maximum angles M1 and M2 need to be greater than the minimum angle by at 

least 10° as stated in (4.16) and (4.17) to make sure the gait cycle is extracted only 

when the person is walking. This is because the difference between the maximum and 

minimum angles was much less than 10° when the person was standing still. (4.18) 

states that M1 should happen first, then m, and finally M2.  

(4.19) made sure the minimum angle m occurred at the mid of the latest 200 

samples, i.e. m occurs at the 100th latest sample. This is to make sure the gait cycle was 

only extracted once. If (4.19) was not considered, the same gait cycle extracted in Fig. 

4.13 would be re-extracted when a new sample was collected. Additionally, M1 and 

M2 would happen within 100 samples before and after m, respectively. 

The final condition (4.20) states that the duration of the gait cycle needs to be more 

than 0.9 seconds. This is because the average duration of a gait cycle is 1.01 

seconds/step [102].  

 

 

Fig. 4.13: Shank’s flexion/extension angles of a normal gait. Dotted purple lines 

show the extracted gait cycle. 

 

First maximum M1 Second maximum M2

Minimum m

Sample i (100Hz)

Sliding window of 200 samples

Gait Cycle
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4.3.3.4 Feature Extraction (Resampling and Normalization)  

After extracting the gait cycle, the estimated angles θ within a gait cycle were 

resampled to 11 points, where the first and last samples remained as the first and last 

angles of the gait cycle, respectively. The remaining 9 samples were resampled with 

equivalent time interval as shown in Fig. 4.14 (green cross). The resampled angle θ̅ 

can be obtained in (4.21). 

θ̅𝑗 = θ
𝑖𝑀1+⌊

𝑗−1
10

(𝑖𝑀2−𝑖𝑀1)⌋
       for 𝑗 = 1,2,⋯ ,11 (4.21) 

Where i denotes the ith sample of the latest 200 samples. ⌊ ⌋ is a floor function. 

The resampled angles θ̅ waveform patterns were linearly transformed according to 

(4.22) such that the last angle θ̅11 was ‘corrected’ to be the same as the first angle θ̅1. 

This is reasonable because walking is a repetitive motion, and hence the first and last 

angles of a gait cycle should ideally be almost the same. φ (blue cross in Fig. 4.14) 

denotes the ‘corrected’ angle. 

φ𝑗 = θ̅𝑗 −
𝑗 − 1

10
(θ̅11 − θ̅1)       for 𝑗 = 1,2,⋯ ,11 (4.22) 

Next, the negative angles are removed by subtracting all angles φ  from the 

minimum angle according to (4.23). 𝛼  (black cross in Fig. 4.14) is the extracted 

features for the machine learning algorithms. As the first and last resampled angles 

were transformed to have the same amplitudes in (4.22), 10 angles are used as the 

features 𝛼 of the machine learning algorithms.  

𝛼𝑛 = 𝛼𝑛 −m n (φ1 10)       for 𝑛 = 1,2,⋯ ,10 (4.23) 
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Fig. 4.14: Resampling and normalization of 3-D angles. 
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4.3.3.5 Feature and Machine Learning Technique Selection 

4 machine learning methods, i.e. random forest (RF), k-nearest neighbor (kNN), 

support vector machine (SVM), and perceptron, were compared in this chapter. These 

machine learning methods were run using MATLAB default setting. The performance 

of machine learning strongly depends on its input data [103]. Therefore, different 

configurations of features 𝛼 were input to the machine learning algorithms, in order to 

identify which 3-D angles are useful in gait diagnosis. Table 4.5 shows the format of 

the features. For example, in the 3rd configuration, the features 𝛼1 to 𝛼10 are Pthigh, 

while 𝛼11 to 𝛼20 are Rthigh.  

 

Table 4.5: Format of Features 

Configuration 
Features 𝛼 

𝛼1- 𝛼10 𝛼11- 𝛼20 𝛼21- 𝛼30 𝛼31- 𝛼 0 𝛼 1- 𝛼50 𝛼51- 𝛼60 

1 Pthigh - - - - - 

2 Pshank - - - - - 

3 Pthigh Rthigh  - - - - 

4 Pshank Rshank - - - - 

5 Pthigh Rthigh  Ythigh - - - 

6 Pshank Rshank Yshank - - - 

7 Pthigh Pshank - - - - 

8 Pthigh Pshank Rthigh - - - 

9 Pthigh Pshank Rshank - - - 

10 Pthigh Pshank Rthigh Rshank - - 

11 Pthigh Pshank Rthigh Rshank Ythigh Yshank 

P, R and Y represent the resampled and normalized pitch (flexion/extension), roll 

(adduction/abduction), and yaw (internal/external rotation) angles, respectively. For 

example, Pthigh is the thigh’s resampled and normalized pitch angle. Rshank is the 

shank’s resampled and normalized roll angle. 
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Walking data from 4 volunteers were used to train the machine learning methods, 

while the data from the remaining volunteer was used for testing (See Table 4.6).  

The accuracy of the machine learning methods was calculated using (4.24), while 

the average correct detection of normal and abnormal gaits was calculated using (4.25) 

and (4.26), respectively. 

Accuracy = 
Number of correctly classified gaits

Total number of gait cycles 
 (4.24) 

Specificity = 
Number of correctly classified normal gaits

Total number of normal gait cycles 
  (4.25) 

Sensitivity = 
Number of correctly classified abnormal gaits

Total number of abnormal gait cycles 
 (4.26) 

 

Table 4.6: Selection of Dataset to Train and Test Machine Learning Methods 

Training Data Testing Data Repeat 

1st , 2nd , 3rd , 4th volunteers 5th volunteer 50 times 

1st , 2nd , 3rd , 5th volunteers 4th volunteer 50 times 

1st , 2nd , 5th , 4th volunteers 3th volunteer 50 times 

1st , 5th , 3rd , 4th volunteers 2nd volunteer 50 times 

5th , 2nd , 3rd , 4th volunteers 1st volunteer 50 times 

 

4.3.3.6 Memory Requirement 

Another requirement of the standalone gait diagnosis device is that it needs to be 

built using low-end microcontroller so that the cost of the device can be kept as low as 

possible. A low-end microcontroller like Atmega168 used in Arduino Pro Mini 3.3V 

has a flash memory of 16 kB (of which 2kB is used for bootloader), 1 kB of SRAM 

and 512 bytes of EEPROM [96]. Therefore, there is a limited number of integers or 

floating numbers that can be stored on the gait diagnosis device. 

The number of integers and floating numbers needed to store a trained random 

forest NRF on the standalone device can be approximated using (4.27). Based on 

observations, each decision tree used an average of 15 comparators. Therefore, there 

will be an average of 15 comparators and 15 floating numbers per decision tree.  

𝑁𝑅𝐹  ≈  30𝑁𝑡𝑟𝑒𝑒 (4.27) 

The amount of floating numbers used by a trained k-nearest neighbor NkNN can be 

approximated using (4.28). k-nearest neighbor requires the training data to be stored 
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on the device so that the distance between new features and the training data can be 

calculated for classification. The ideal group of the training data is also needed to be 

stored.  

𝑁𝑘𝑁𝑁 ≈ 𝑁𝑐𝑦𝑐𝑙𝑒𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (4.28) 

Where Ncycle denotes the number of gait cycles used for training, and Nfeatures denotes 

the number of features used. 

The number of support vectors are dependent on the training data. Based on 

observations, the number of support vectors is 3% of Ncycle in this research. The total 

number of floating numbers NSVM in the support vectors can be approximated using 

(4.29). 

𝑁𝑆𝑉𝑀 ≈ 0.03𝑁𝑐𝑦𝑐𝑙𝑒𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (4.29) 

In perceptron, each feature is multiplied by a weight, and finally a bias is added. 

The number of floating numbers required for perceptron NPerceptron is a small number 

as stated in (4.30).  

𝑁𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 = 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1 (4.30) 

 

4.3.3.7 Standalone Gait Diagnosis Device based on Perceptron 

Fig. 4.15 shows the overall flowchart for the standalone gait diagnosis device. A 

real-time and computationally-efficient angle estimation algorithm is required for the 

standalone gait diagnosis device. The simplest angle estimation method in (4.31) 

which is prone to gyroscope drift is used. The gyroscope drift was not a problem as it 

would be ‘corrected’ through normalization in (4.22).  

θ𝑖 =  0° for i = 1  

θ𝑖 = θ𝑖−1 + 𝜔𝑖𝑇 for i = 2,3,4, …  (4.31) 

Where θ denotes the estimated angles, i denotes the ith sample, 𝜔 denotes the raw 

angular velocity measured by gyroscope, and T = 0.01s denotes the sampling period.   

The gait cycle extraction, resampling and normalization methods used in the 

standalone gait diagnosis device are the same as that in Chapters 4.3.3.3 and 4.3.3.4.  
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Fig. 4.15: Overall flowchart for standalone gait diagnosis device. 

 

After comparing the different machine learning techniques (in Chapter 4.3.4), the 

classification algorithm selected for the gait diagnosis device is perceptron. The 

perceptron consists of 1 hidden layer with 1 neuron, and 1 output Y as shown in Fig. 

4.16. The weights W and bias b of the trained perceptron were stored in the gait 

diagnosis device. 

Each feature 𝛼 is multiplied with a weight W. The multiplication of 𝛼 and W is 

then added together with a bias b as stated in (4.32). The perceptron output Y was 

scaled to a range of ±1 using a hyperbolic tangent sigmoid transfer function in (4.33). 

𝑐 = 𝑏 +∑𝛼𝑛𝑊𝑛

𝑁

𝑛=1

 (4.32) 

𝑌 =
2

1 + 𝑒−2𝑐
− 1 (4.33) 

Where e denotes the exponential function. 

A gait was identified as normal when the output y was greater than 0.5. The gait 

was identified as abnormal when the output Y was lower than and equal to 0.5. The 

green LED connected to the device lights up when normal gait is identified, while red 

LED lights up when abnormal gait is identified. 

𝑌 > 0.5      normal gait  

𝑌 ≤ 0.5      abnormal gait (4.34) 

 

  

Raw Sensor Data

Estimate thigh and shank angles using the latest 200 

samples (eq. 4.31)

Gait cycle extraction (eq. 4.16 – 4.20)

Resampling and normalization (eq. 4.21 – 4.23)

Input to perceptron (eq. 4.32 – 4.33)

Normal (Output green LED) / 

Abnormal (Output red LED) gait pattern (eq. 4.34)

Extracted

Not 

extracted
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Fig. 4.16: Perceptron. 

 

4.3.4 Results and Discussion 

For better accuracy comparison among the machine learning techniques, the 

number of decision trees T for RF and value of K for kNN first need to be decided. 

Feature configuration 11 (refer to Table 4.5), i.e. all features extracted from the 3-D 

thigh and shank angles, were used to determine the mean accuracy, specificity and 

sensitivity of the RF and kNN at varying parameters as shown in Fig. 4.15. T=15 for 

RF and K=10 for kNN were selected as these parameters resulted in considerably high 

accuracy when compared among larger parameter values. The box constraint of the 

SVM was also tuned, but it did not result in any large improvement in classification 

accuracy, therefore MATLAB default value 1 was used instead. 
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Fig. 4.17: Accuracy, Specificity, and Sensitivity of RF and kNN. 

 

The machine learning techniques were then tested with different input feature 

configuration. Based on Table 4.7, support vector machine and perceptron resulted in 

the top two highest accuracy. Based on Table 4.8, perceptron resulted in the highest 

specificity. Based on Table 4.9, random forest, support vector machine and perceptron 

had the top three highest specificity. Overall, random forest resulted in the lowest 

accuracy, while k-nearest neighbor resulted in the second lowest accuracy. Therefore, 

support vector machine and perceptron were recommended for the standalone gait 

diagnosis device. 

 

  

(a) Random Forest

(b) kNN
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Table 4.7: Mean Accuracy of the Machine Learning Methods in Gait Diagnosis 

Features 𝛼 

Mean Accuracy (%) 

Random 

Forest 

(Ntree=15) 

k-Nearest 

Neighbor 

(K=10) 

Support Vector 

Machine 
Perceptron 

Pthigh 96.23 96.87 96.13 95.56 

Pshank 93.10 92.88 97.70 96.79 

Pthigh , Rthigh  93.67 95.93 98.62 97.12 

Pshank , Rshank 85.86 87.92 97.63 96.84 

Pthigh , Rthigh , Ythigh 93.62 90.75 98.54 96.65 

Pshank , Rshank , Yshank 91.20 90.75 94.87 96.82 

Pthigh , Pshank  95.22 95.98 98.17 98.45 

Pthigh , Pshank , Rthigh 94.98 94.69 97.25 97.52 

Pthigh , Pshank , Rshank 94.22 96.15 97.29 98.27 

Pthigh , Pshank , Rthigh , 

Rshank 

93.53 93.96 97.97 97.75 

Pthigh , Pshank , Rthigh , 

Rshank , Ythigh , Yshank 

93.62 90.06 96.47 97.98 

This result was obtained by training and testing the methods based on Table 4.6.  

Grey colour means ≥ 96% accuracy.  
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Table 4.8: Mean Specificity of the Machine Learning Methods in Gait Diagnosis 

Features 𝛼 

Mean Specificity (%) 

Random 

Forest 

(Ntree=15) 

k-Nearest 

Neighbor 

(K=10) 

Support Vector 

Machine 
Perceptron 

Pthigh 89.02 93.68 97.50 88.98 

Pshank 85.00 90.67 94.17 91.21 

Pthigh , Rthigh  77.17 87.33 95.83 97.15 

Pshank , Rshank 73.17 80.83 92.50 91.07 

Pthigh , Rthigh , Ythigh 74.83 67.42 95.35 93.26 

Pshank , Rshank , Yshank 76.33 88.83 90.33 91.03 

Pthigh , Pshank  84.33 92.50 97.20 96.34 

Pthigh , Pshank , Rthigh 83.33 90.83 95.00 96.53 

Pthigh , Pshank , Rshank 86.33 89.67 93.33 96.59 

Pthigh , Pshank , Rthigh , 

Rshank 

77.17 87.00 94.00 97.20 

Pthigh , Pshank , Rthigh , 

Rshank , Ythigh , Yshank 

79.00 89.50 88.83 95.49 

This result was obtained by training and testing the methods based on Table 4.6.  

Grey colour means ≥ 96% specificity. 
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Table 4.9: Mean Sensitivity of the Machine Learning Methods in Gait Diagnosis. 

Features 𝛼 

Mean Sensitivity (%) 

Random 

Forest 

(Ntree=15) 

k-Nearest 

Neighbor 

(K=10) 

Support Vector 

Machine 
Perceptron 

Pthigh 97.90 97.46 95.46 97.15 

Pshank 95.40 93.86 98.71 98.55 

Pthigh , Rthigh  97.95 97.96 99.30 97.10 

Pshank , Rshank 89.65 90.38 99.03 98.65 

Pthigh , Rthigh , Ythigh 98.70 96.02 99.19 97.31 

Pshank , Rshank , Yshank 95.46 91.56 95.90 98.59 

Pthigh , Pshank  98.38 96.97 98.27 98.99 

Pthigh , Pshank , Rthigh 98.06 95.88 97.83 97.87 

Pthigh , Pshank , Rshank 96.40 98.00 98.30 98.72 

Pthigh , Pshank , Rthigh , 

Rshank 

97.74 95.98 99.00 97.94 

Pthigh , Pshank , Rthigh , 

Rshank , Ythigh , Yshank 

97.42 90.69 98.73 98.79 

This result was obtained by training and testing the methods based on Table 4.6.  

Grey colour means ≥ 96% sensitivity. 

 

Other than Table 4.6, another method to train and test a machine learning method 

is by selecting the training and testing data randomly. Referring to Table 4.10, the 

average accuracy of the perceptron was high (96-97%) even when only 10% of 

randomly chosen training data was used. This showed that the number of walking trials 

collected in this research was more than sufficient. The accuracy increased as the 

number of training data increased. 

It has to be noted that the accuracy of the perceptron in Table 4.10 is higher than 

that in Table 4.6. This is because by randomly selecting data, it is possible to train the 

gait pattern of a person to test the gait pattern of the same person. In Table 4.6, 

however, the trained perceptron was tested using the gait pattern of different person. 

Therefore, the training and testing method in Table 4.6 better described the accuracy 

of the proposed method. 
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Table 4.10: Mean Accuracy of the Perceptron in Design Phase by Randomly 

Selecting Training and Testing Data. 

Features 𝛼 

Accuracy (%)  

Training data 

10% 

Training data 

30% 

Training data  

50% 

Pthigh 96.05 97.27 97.45 

Pthigh , Pshank  97.22 98.82 99.14 

Pthigh , Pshank , Rshank 97.14 98.27 99.40 

Pthigh , Pshank , Rthigh , Rshank , 

Ythigh , Yshank 

96.77 98.59 98.61 

This result was obtained by randomly selecting training and testing data. For example, 

training data = 30%; testing data = remaining 70%. Each result was the average of 50 

runs. Grey colour means ≥ 96%. 

 

Table 4.11 shows the approximated number of integers and floating numbers to be 

stored on the gait diagnosis device. Perceptron required the least amount of floating 

numbers to be stored on the gait diagnosis device, followed by support vector machine, 

random forest, and finally k-nearest neighbor. 

 

Table 4.11: Memory Requirement: Approximated Number of Integers and Floating 

Numbers to be Stored on Gait Diagnosis Device. 

Features 

𝛼 

Random Forest 

(Ntree=15) 

k-Nearest Neighbor 

(K=10) 

Support Vector 

Machine 
Perceptron 

𝛼1 - 𝛼10 450 6130 184 11 

𝛼1 - 𝛼20 450 12260 368 21 

𝛼1 - 𝛼30 450 18390 552 31 

𝛼1 - 𝛼 0 450 24520 736 41 

𝛼1 - 𝛼50 450 30650 920 51 

𝛼1 - 𝛼60 450 36780 1104 61 

 

As perceptron results in the top two highest accuracy and having the lowest 

memory requirement, perceptron was chosen to be the classification algorithm for the 
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standalone gait diagnosis device. Based on Tables 4.7 to 4.9, the following analysis 

was made to identify the best feature configuration for the perceptron. 

1) Using Pthigh or Pshank alone resulted in lower accuracy 

• Pthigh resulted in the lowest accuracy among other configurations. 

• Pshank resulted in 2% lower accuracy than the maximum accuracy. 

2) R only helped to improve the accuracy in certain cases. 

• ‘Pthigh Rthigh’ increased the accuracy by 1.5% compared to ‘Pthigh’ alone.  

• ‘Pshank Rshank’ and ‘Pshank’ resulted in almost the same accuracy. 

• ‘Pshank Rshank’ resulted in 0.2-1.0% higher accuracy compared to ‘Pthigh Pshank 

Rthigh’, ‘Pthigh Pshank Rshank’ and ‘Pthigh Pshank Rthigh Rshank’.  

3) Y slightly reduced the accuracy. 

• ‘Pthigh Rthigh Ythigh’ and ‘Pshank Rshank Yshank’ resulted in slightly lower accuracy 

compared to ‘Pthigh Rthigh’ and ‘Pshank Rshank’, respectively. 

4) ‘Pthigh Pshank’ and ‘Pthigh Pshank Rshank’ resulted in the top two highest accuracy. 

 

Therefore, possible feature configurations are ‘Pthigh Rshank’ and ‘Pthigh Pshank Rshank’. 

These two configurations are further tested using the standalone gait diagnosis device. 

Referring to Table 4.12, when ‘Pthigh Pshank’ was used, the mean accuracy of the 

standalone gait diagnosis device was low at 79.5%. The main reason was the trained 

perceptron performed badly for the second type of walking, i.e. leg moving outwards.  

However, when ‘Pthigh Pshank Rshank’ was used, the mean accuracy improved to 

96.50%. The main reason for this improvement was Rshank contained the information 

to detect whether the leg adducted/abducted. Therefore, the final choice of feature 

configuration for the standalone gait diagnosis device is ‘Pthigh Pshank Rshank’. 

 

Table 4.12: Mean Accuracy, Specificity and Sensitivity of the Standalone Gait 

Diagnosis Device. 

Perceptron input 𝛼 Accuracy (%) Specificity (%) Sensitivity (%) 

Pthigh , Pshank 79.50 94.00 74.67 

Pthigh , Pshank , Rshank 96.50 98.00 96.00 

This result was obtained from 15 volunteers. Each volunteer was requested to perform 

10 trials per type of walking as stated in Table 4.3. Grey colour means ≥ 96%. 
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The proposed method was also tested with new types of abnormal walking as 

shown in Table 4.13. ‘Walk with heel’ had considerably high sensitivity at 92% 

initially, most likely because the knee angle was low almost similar to trained pattern 

‘knee bandaged’. For the ‘walk with toe’, ‘cat walk’ and ‘mechanical pertubations’, 

the sensitivity of the device was very low as the perceptron was not trained using these 

new walking types.  

Then, the perceptron was re-trained with new types of walking pattern. The newly 

trained perceptron then provides a high mean sensitivity of at least 94% for the new 

abnormal walking patterns. Therefore, it was proven that the accuracy of the proposed 

method could be improved by increasing the types of abnormal walking pattern in 

perceptron training.  

 

Table 4.13: Mean Sensitivity of the Proposed Method Before and After Training with 

New Abnormal Walking Pattern. 

Type of Walking 
Sensitivity (%) 

Before After 

Walk with heel 92.00 96.00 

Walk with toe 32.00 94.00 

Cat walk 10.00 94.00 

Mechanical perturbations [104] 0.00 98.45 

- ‘Walk with heel’, ‘walk with toe’ and ‘cat walk’ dataset was collected by 7 

volunteers, each performed 10 walking trials per type of walking. Dataset from 

5 volunteers were used for training, while dataset for another 2 volunteers were 

used for testing. 

- ‘Mechanical permutations’ dataset is obtained from [104]. This dataset consists 

of more than 20,000 perturbed walking gait cycles which were caused by 

random speed change in treadmill belt. For balanced training dataset, only 150 

randomly selected abnormal walking gait cycles from [104] were used for 

training with the 152 normal walking cycles and 461 abnormal walking cycles 

collected in Chapter 4.3.2, while the remaining abnormal gait cycles from [104] 

were used for testing.  

- Grey colour means ≥ 96%. 
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It is also worthwhile to compare the proposed method with some existing methods 

for feature-based comparison. In [53], Fourier transform of the gait data waveforms 

were used for gait classification. This is reasonable because Fourier transform could 

reconstruct all amplitudes of the 3-D angles. 5 to 6 harmonic components were usually 

used to reconstruct the angle waveforms [62] [66]. In this experiment, 5 harmonic 

components (consisting of 5 instantaneous amplitudes and 5 phases) of the angle 

waveforms were chosen as features, so that the number of features is the same as 

proposed method (10 angles extracted from an angle waveform). It is also worthwhile 

to compare the proposed method with existing method that uses acceleration and 

angular velocity for gait classification. Mikos et al. [43] extracted 3 features, i.e. freeze 

index from the acceleration, stride peak of the angular velocity, and standard deviation 

of the angular velocity. 

Although RF and kNN performed worse than SVM and perceptron using the 

extracted features in proposed method, kNN outperformed SVM and perceptron when 

DFT features were used. As shown in Table 4.14, AccGy and DFT features resulted 

in higher accuracy than the proposed method when RF and kNN were used. However, 

the proposed method resulted in higher accuracy than AccGy and DFT features when 

SVM and perceptron were used. The drawback of the AccGy and DFT features are 

that the feature extraction requires Fourier transform which is considered 

computationally expensive for low-end microcontrollers. The proposed method is 

preferable when using SVM and perceptron as the feature extraction is 

computationally lightweight which is especially important when the purpose is to 

construct a low-cost standalone gait diagnosis device. 
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Table 4.14: Feature based comparison among related work. 

 Feature 
RF 

T=15 

RF 

T=25 

kNN 

K=10 

kNN 

K=25 
SVM Perceptron 

Accuracy 

AccGy 94.00 95.17 90.67 91.17 92.50 91.88 

DFT 95.26 95.70 96.69 97.33 93.32 95.06 

Prop. 93.62 93.94 94.07 95.00 96.47 97.98 

Specificity 

AccGy 77.39 79.13 75.65 79.13 82.61 83.67 

DFT 81.00 87.50 90.50 92.33 90.00 89.70 

Prop. 79.00 80.33 89.67 86.50 88.83 95.49 

Sensitivity 

AccGy 97.94 98.97 94.23 94.02 94.85 93.83 

DFT 99.35 97.95 98.39 98.71 94.32 96.53 

Prop. 97.42 97.74 95.46 97.74 98.73 98.79 

- AccGy stands for acceleration and gyroscope. The extracted features are 

similar to that of Mikos et al. [43]. 

- DFT stands for discrete Fourier transform. The features are the first 5 harmonic 

components (5 instantaneous amplitudes and 5 phases) of the angle waveform. 

- These results were obtained using all features extracted from 3-D thigh and 

shank sensor data. 

- Grey colour means ≥ 96%. 

 

 

  



64 

 

4.3.5 Summary 

4 machine learning methods (random forest, k-nearest neighbor, support vector 

machine, and perceptron) were compared. Perceptron was chosen for the standalone 

gait diagnosis device as it resulted in the top two highest accuracy, and used the lowest 

memory. The combination of the thigh and shank’s flexion/extension angles, and 

shank’s adduction/abduction angle as input feature of the perceptron resulted in the 

highest accuracy among other configurations of 3-D thigh and shank angles. It was 

discovered that the adduction/abduction angle was able to improve the classification 

accuracy. Internal/external rotation angles of the thigh and shank did not improve the 

accuracy in this research. The weights and bias of the trained perceptron were 

successfully transferred to a low-end microcontroller to construct a real-time 

standalone gait diagnosis device which cost about US$8 only. The constructed 

standalone gait diagnosis device lit up green or red LEDs when normal or abnormal 

gaits was identified, respectively. The mean accuracy of the standalone device was 

high at 96.5%. However, this device could only diagnose certain walking pattern as 

the perceptron was only trained with 4 types of walking pattern. This can be solved by 

training the perceptron with more patterns. 
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4.4 Gait Phase Detection 

4.4.1 Introduction 

The importance of gait phase detection is that it is one of the methods used to 

evaluate and diagnose the gaits [105]. However, the current gait phase analysis is done 

based on visual inspection which is subjective and strongly depends on the experience 

of the clinicians [4]. Therefore, there is a need for autonomous gait phase detection. 

In this chapter, a method to detect normal and abnormal gait phases using a single 

IMU attached to the shank is proposed. The local maxima, minima and zero crossings 

of the shank’s angular velocity are used to detect heel strike, toe strike, and toe off. 

Some unique waveform patterns of normal/abnormal shank’s angular velocity are also 

identified for gait diagnosis and classification. The proposed method is validated 

against force sensors.  

 

Chapter 4.4 is covered by the following publication with minor amendment: 

Y. C. Han, K. I. Wong and I. Murray, "Gait Phase Detection for Normal and Abnormal 

Gaits Using IMU," in IEEE Sensors Journal, vol. 19, no. 9, pp. 3439-3448, May1, 

2019. 

doi: 10.1109/JSEN.2019.2894143 

© 2019 IEEE 

 

4.4.2 Experimental Setup 

Fig. 4.18 and 4.19 show that the IMUs were strapped in front of the right thigh and 

shank using Velcro straps. The IMUs were used to collect the angular velocity and 

acceleration of the thigh and shank. The data collected from the shank’s IMU was used 

to detect the gait phases. The data collected from the thigh’s IMU was unused in this 

chapter. 

Similar to [9], 4 FSRs were placed under the heel, first metatarsal head, fifth 

metatarsal head, and the hallux, as most of the body weights were exerted on these 

positions during walking [6]. In contrast with [9] which integrates the FSRs in a shoe-

insole, the FSRs in this research were attached directly under the foot using double-

sided tape. This is because in [9], the shoe-insole of fixed size resulted in higher gait 

phase detection error due to different foot sizes of the test subjects. By attaching the 

FSRs directly under the foot using double-sided tape, the FSRs can be placed 

accurately under the foot of all test subjects. The FSRs were used to validate the 
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proposed method. 

10 healthy adults (male: 7; female: 3; age: 21-28; height: 151-182cm) were 

participated in the data collection. Each person was asked to walk on a flat surface for 

about 30 continuous gait cycles per type of walking as listed in Table 4.15. A total of 

1146 gait cycles was collected. 

 

Fig. 4.18: Sensors placement. 

 

  

(a) (b) 

Fig. 4.19: Placement of IMUs and FSR. 

(a) Placement of IMUs in front of the right thigh and shank using Velcro stripes. (b) 

Placement of FSRs under the right foot using double-sided tape. 

 

  

Pitch (Flexion/Extension)

 oll (Adduction/Abduction)

Yaw (Internal/External  otation)

IMU

FSR4

FS 2

FS 3

FSR1

IMU 1

(Data unused)

IMU 2

FSRs under 

foot



67 

 

Table 4.15: Possible Gait Sub-Phases 

Type of 

Walking 
Simulation 

Initial 

Contact 
MSt PSw Swing 

1 Normal 
    

2 Habit 
    

3 Foot drop 
    

4 
Bandaged 

knee      

The greyed region is where the part of foots on ground. The white region is where the 

parts of foot not on ground. Note: in normal gait ‘initial contact’ is the heel strike, but 

in abnormal gait ‘initial contact’ could be different. 

 

4.4.3 Proposed Method 

4.4.3.1 Gait Cycle Extraction 

Fig. 4.20 shows the shank’s flexion/extension angle estimated using the method in 

Chapter 4.2 which had been validated against gold standard Vicon optical motion 

capture system. The gait cycles were extracted using the maximum swings of the shank 

such that a gait cycle starts with a maximum swing of the shank, and ends with a 

subsequent maximum swing of the same shank. 

 

 

Fig. 4.20: Shank’s flexion/extension angle for gait cycle extraction. 

 

Sample i (100Hz)

Gait Cycle Gait CycleGait Cycle
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4.4.3.2 Gait Phase Detection using Kinetic Parameters (FSRs) for Comparison 

In this section, the method proposed in [9] that uses fuzzy logic to detect LR, MSt, 

TSt and PSw, is discussed. In [9], normal L  is detected when ‘large’ force is exerted 

on FS  1, while the remaining FS s measure ‘small’ forces. However, the initial 

contact (IC) of an abnormal gait pattern, such as walking type 3 in Table 4.15, may 

not be a heel strike, but a toe strike. Therefore, an extra condition is added in the last 

column (proposed method) of Table 4.16, so that abnormal LR can be detected 

correctly if the IC is toe strike. 

The LR of walking types 2 and 4, for example, is when all FSRs detect ‘large’ 

forces. However, according to [9], the IC of walking types 2 and 4 would have been 

wrongly identified as MSt. Therefore, if the IC consists of toe and heel strikes, 

abnormal LR can be detected correctly using the fuzzy logic. 

FSR 1 is used to detect whether the heel is on ground. FSRs 2 to 4 are used to 

detect whether the toe is on ground. In order to identify when the heel and toe strikes, 

the fuzzy logic in Table 4.17 is applied. The first moment when the heel hits the ground 

is called the heel strike. Similarly, the first moment when the toe hits the ground is 

called the toe strike. The first moment when the toe leaves the ground is called toe off. 

The sigmoid functions (4.35) and (4.36) used in [9] are used to differentiate ‘large’ 

and ‘small’ forces applied to the FS s. In order to fulfill the first condition in Table 

4.16, for example, the AND function or minimum between 𝑓large(FS  ), 𝑓small(FS  2), 

𝑓small(FS  3), and 𝑓small(FS  4) needs to be ‘1’. Detailed explanation of this method 

can be found in [9].  

𝑓large(𝑉𝑖) =
1

1 + 𝑒−𝑉stand(𝑉𝑖−𝑉air)
 (4.35) 

𝑓small(𝑉𝑖) = 1 − 𝑓large(𝑉𝑖) (4.36) 

Where 𝑉𝑖  denotes the voltage measured by an FSR at ith sample. 𝑉max  is the FSR 

voltage when the person is applying maximum body weight onto the FSR. 𝑉min is the 

FSR voltage when no body weight is applied onto the FSR. e is an exponential 

function.  
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Table 4.16: Fuzzy Rules for Gait Phase Detection using Kinetic Parameters 

FSR 1 FSR 2 FSR 3 FSR 4 

Gait phase  

Normal [9] 
Proposed 

method 

Large Small Small Small LR - 

Large Large Large Large MSt 
LR if IC  

MSt if not IC 

Small Large Large Large TSt 
LR if IC  

TSt if not IC 

Small Small Small Small PSw PSw 

 

Based on Table 4.17 and the sigmoid functions (4.35) (4.36), the moment when 

the heel or toe is on ground can be identified as shown in Fig. 4.21. 

As shown in Fig. 4.22, the heel and toe strikes occur at the same time for walking 

types 2 and 4. However, a normal toe strike should occur after the heel strike (as shown 

in walking type 1), therefore the toe strike is diagnosed as abnormal. In the 3rd type of 

walking, toe strike and heel strike occur in the wrong sequence, therefore both heel 

and toe strikes are identified as abnormal. Table 4.18 shows the ideal gait diagnosis 

for the 4 different types of walking stated in Table 4.17. 

 

Table 4.17: Fuzzy Rules to Detect Heel and Toe on Ground using Kinetic Parameters 

FSR 1 FSR 2 FSR 3 FSR 4 Interpretation 

Large - - - 
Heel on ground  

(First moment is heel strike) 

Small - - - 
Heel not on ground 

(First moment is heel off) 

- Large Large Large 
Toe on ground  

(First moment is toe strike) 

- Small Small Small 
Toe not on ground 

(First moment is toe off) 

The ‘dash’ denotes don’t care. 
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Table 4.18: Ideal Gait Diagnosis According to Gait Sub-Phases 

Type of Walking Heel Strike Toe Strike Toe Off 

1 Normal Normal Normal 

2 Normal Abnormal Normal 

3 Abnormal Abnormal Normal 

4 Normal Abnormal Normal 

 

 

Fig. 4.21: FSR measurements during normal walking. 

 

FSR2
FSR1 FSR3 FSR4

Toe on ground = 1 Heel on ground = 1

Sample i (100Hz)
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Fig. 4.22: Ideal gait phases detected using FSRs. 

 

4.4.3.3 Gait Phase Detection using Shank’s IMU for Comparison [50] 

In [50], the heel strike and toe off are detected using the first and last local maxima 

of the shank’s angular velocity respectively, as shown in Fig. 4.23. As the proposed 

method (to be discussed in Chapters 4.4.3.4 to 4.4.3.6) is also based on the local 

minima and maxima of the shank’s angular velocity, it is worthwhile to compare the 

proposed method with [50]. The comparison can be found in Chapter 4.4.4. 

 

 

Fig. 4.23: Detection of heel strike and toe off using shank’s angular velocity 𝜔shank. 
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4.4.3.4 Heel Strike 

As shown in Fig. 4.24, when there is a 2nd positive zero crossing Z2 of 𝜔shank, all 

heel strikes can be estimated using the 1st local maximum An of 𝜔shank before the 1st 

negative zero crossing Zn.  

As shown in the last gait cycle in Fig. 4.24, the heel strike is classified as abnormal 

when Zn (first negative zero crossing after the first positive zero crossing) and Z2 

(second positive zero crossing) are ‘far’ (separated by more than 5 samples equivalent 

to 50ms). If this condition is not fulfilled, the heel strike is estimated as normal when 

the estimated heel strike at An is ‘near’ (within ±5 samples) to A1 (first local maximum 

after the first positive zero crossing) (See 1st, 2nd and 4th gait cycles in Fig. 4.24). The 

third gait cycle in Fig. 4.24 tells that when the above two conditions are not fulfilled, 

the heel strike is abnormal. 

However, there are cases, as shown in all gait cycles in Fig. 4.25, that there is no 

second positive zero crossing Z2. In such case, the heel strikes are not estimated using 

An. Based on observations, such as the first gait cycle in Fig. 4.25, the heel strike is 

estimated using the first local maximum A1 of 𝜔shank when A1 has the lowest amplitudes 

among the first three local maxima (A1, A2, A3). As seen in the second and third gait 

cycles in Fig. 4.25, both A1 do not have the lowest amplitudes among A1, A2 and A3, 

therefore the heel strikes are not detected using A1, and the detection will be decided 

later.  
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Fig. 4.24: Shank’s angular velocity 𝜔shank and ideal gait phases of a volunteer 

walking with different patterns. 

× ××

× and × are far, abnormal heel strike
× exists, heel strike estimated as ×

×

×

×

×

×

×

××

×

××

××

Shank’s angular velocity wshank × 1st positive zero crossing Z1

Heel on ground > 0   × 2nd positive zero crossing Z2

Toe on ground > 0               × 1st negative zero crossing Zn after Z1

1st local maximum A1 of wshank after Z1

× 1st local maximum An before Zn

The coloured stars are to ease the readers in understanding of the proposed 

method, they are linked to Fig. 4.26.

×

×

×

×

× and × are near,    and × are far, abnormal heel strike
× exists, heel strike estimated as ×

and × are near, normal heel strike
× exists, heel strike estimated as ×

and × are near, normal heel strike
× exists, heel strike estimated as ×

and × are near, normal heel strike
× exists, heel strike estimated as ×
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Fig. 4.25: 𝜔shank without 2nd positive zero crossing. 

 

A counter Ԑ is incremented by 1 whenever a heel strike is to be decided later. 

Counter Ԑ is also incremented by 1 every time an abnormal heel strike is detected. 

After processing all gait cycles, by majority voting concept, if counter Ԑ is greater than 

half of the total number of collected gait cycles, the heel strikes that are yet to be 

decided are now estimated using the midpoint imid between the first positive zero 

crossing iZ1 and 50% of the extracted gait cycle i50% (See Fig. 4.25 3rd gait cycle). imid 

can be calculated using (4.36) where i denotes the ith sample.  

𝑖mid = 𝑖𝑍1 + (
𝑖𝑍1 + 𝑖50%

2
) (4.36) 

If Ԑ is smaller than half of the total number of collected gait cycles, the heel strikes 

that are yet to be detected are now detected using iA1.  

 

  

×
has the lowest amplitude among          ,

normal heel strike estimated as 

×

i50%iZ1 imid i100%

does not have the lowest amplitude among          ,
counter Ԑ = Ԑ + 1

2nd local maximum A2 after Z1 3rd local maximum A3 after Z1

The rest of the legends are the same as that in Fig. 4.24.

does not have the lowest amplitude among          ,
counter Ԑ = Ԑ + 1
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Fig. 4.26 summarizes the observations for heel strike detection and diagnosis 

discussed in this section. 

 

 

Fig. 4.26: Proposed method to detect and diagnose heel strikes. 

 

  

Run this first for all gait cycles collected from a subject: 

Before 50% of the extracted gait cycle (i50%), 

If Z2 exists, 

If Zn and Z2 are separated by more than 5 samples (50ms),  

➢ Abnormal heel strike 

➢ iHS = iAn 

➢ counter Ԑ = Ԑ + 1 

Else if An occurs within A1 ± 5 samples, 

➢ Normal heel strike 

➢ iHS = iAn ≈ iA1 

Else 

➢ Abnormal heel strike 

➢ iHS = iAn 

➢ counter Ԑ = Ԑ + 1 
 

Else 

If A1 has the lowest amplitude among A1, A2 and A3, 

➢ Normal heel strike 

➢ iHS = iA1 

Else 

➢ Normal/Abnormal estimates later. 

➢ iHS estimates later. 

➢ counter Ԑ = Ԑ + 1  
 

 

After processing all gait cycles using the method above,  

run this for the gait cycles that have not been estimated yet: 
 

If Ԑ > (total number of gait cycles) × 0.5 

➢ Abnormal heel strike 

➢ iHS = imid 

Else 

➢ Normal heel strike 

➢ iHS = iA1 

iHS denotes the time when the heel strikes. 

The rest of the legends are the same as that in Fig. 4.24. 
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4.4.3.5 Toe Strike 

As shown in Fig. 4.27, normal toe strikes (walking type 1) can be estimated using 

the first local maximum of low pass filtered 𝜔shank. Abnormal toe strikes (walking 

types 2, 3 and 4) can be detected using the first local maximum of 𝜔shank. 

𝜔 shank denotes the low pass filtered 𝜔shank. The low pass filter used is a moving 

average as stated in (4.37). The size k used in this research was 10, obtained through 

trials and errors. 

𝜔 𝑖 =  
1

2𝑘
∑ 𝜔𝑖

𝑖+𝑘

𝑖=𝑖−𝑘

 (4.37) 

The detection of toe strike for walking type 3 can be achieved using the proposed 

method for heel strike detection. In order to distinguish normal/abnormal toe strikes 

for walking types 1, 2 and 4, some unique waveform patterns of normal/abnormal 

shank’s angular velocity 𝜔shank, angle θshank, and acceleration are identified.  

 

 

Fig. 4.27: Proposed method to detect normal toe strikes. 

 

It is observed that 𝜔shank of normal toe strikes has less than 7 local maxima A from 

iZ1 to i50%. Therefore, abnormal toe strikes can be identified when the total number of 

local maxima is equal than or greater than 7, as stated in (4.38). Fig. 4.28 shows an 

Estimated toe strike = 

First local maximum of filtered 𝜔shank

Estimated toe strike = 

First local maximum of 𝜔shank

𝜔 shank
𝜔shank

𝜔 s  n 
𝜔shank

Toe on ground > 0 Heel on ground > 0
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example of 𝜔shank with total number of A = 7, fulfilling (4.38), which means the toe 

strike is abnormal. 

Total number of A ≥  7 (abnormal toe strike) (4.38) 

 

 

Fig. 4.28: Abnormal toe strike (Pattern 1). 

Additionally, 𝜔shank of normal toe strikes does not have A1 and A2 being the lowest 

and highest amplitudes, respectively, and A2 is still greater than A3 even if A3 is 

increased to 130%. In other words, abnormal toe strikes can be detected based on the 

conditions stated in (4.39). An example of abnormal toe strike that fulfill (4.39) is 

shown in Fig. 4.29. 

A1 < A2 AND A1 < A3, AND 

A2 > A1 AND A2 > A3, AND 

A2 > 1.3A3  

(abnormal toe strike) 

(4.39) 

Where A1, A2, and A3 are the 1st, 2nd, and 3rd local maxima of 𝜔shank, respectively. 

 

 

Fig. 4.29: Abnormal toe strike (Pattern 2). 

 

It is noticed that the lowest local minima Mmin for normal toe strikes must be the 

𝜔shank

Local maxima A

𝜔shank

A3

A2

A1
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1st, 2nd or 3rd local minima M of 𝜔shank. Abnormal toe strikes can be detected when 

Mmin is not among the first three local minima M1, M2 and M3, as stated in (4.40). Fig. 

4.30 shows that the lowest local minima Mmin = M4, which fulfills (4.40), signifying 

the toe strike is abnormal. 

Mmin ≠ Mj for j = 1, 2, 3 (abnormal toe strike) (4.40) 

 

 

Fig. 4.30: Abnormal toe strike (Pattern 3). 

 

For normal toe strikes, the highest local maxima Amax is higher than the absolute 

value of the lowest local minima Amin. Abnormal toe strikes can be detected when 

(4.41) is fulfilled. Fig. 4.31 shows an abnormal toe strike with |Amin| = 149.8 > |Amax| = 

140. 

|Amin| > |Amax| (abnormal toe strike) (4.41) 

 

Fig. 4.31: Abnormal toe strike (Pattern 4). 

 

For normal toe strikes, the highest local maxima Amax is higher than the second 

highest local maxima Amax2 by less than 2 times. In other words, Amax2 is lower than 

half of Amax for abnormal toe strikes, as stated in (4.42). Abnormal toe strikes can be 

detected when (4.42) is fulfilled. Fig. 4.32 shows that 0.5Amax is higher than Amax2, 

𝜔shank

Local minima M

Lowest local minima Mmin

𝜔shank

Amax

Amin
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which signifies abnormal toe strike. 

0.5Amax > Amax2 (abnormal toe strike) (4.42) 

 

 

Fig. 4.32: Abnormal toe strike (Pattern 5). 

 

For normal toe strikes, the highest local maxima 𝐴̅max of 𝜔 shank is higher than 40% 

of the highest local maxima 𝐴max  of 𝜔shank. Therefore, abnormal toe strikes can be 

detected if the ratio of 𝐴̅max to 𝐴max is less than 0.4 (4.43). Fig. 4.33 shows the ratio is 

0.33 < 0.4, signifying an abnormal toe strike. 

𝐴̅max

𝐴max
 < 0.4 (abnormal toe strike) (4.43) 

 

 

Fig. 4.33: Abnormal toe strike (Pattern 6). 

 

The maximum angle Pmax of the shank angle -θshank should be the first local 

maximum P1 for normal gaits. However, for some abnormal toe strikes as shown in 

Fig. 4.34, P1 is not Pmax (4.44). 

P1 ≠ Pmax (abnormal toe strike) (4.44) 

𝜔shank

Amax

Amax2

𝜔shank

𝜔 shank

Amax

Amax

_
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Fig. 4.34: Abnormal toe strike (Pattern 7). 

 

As shown in the first gait cycle in Fig. 4.35, the gradient V of the measured vertical 

acceleration and gradient H of the measured horizontal acceleration of normal gaits 

are mostly of the same sign (see pink lines) within the first zero crossing of 𝜔shank to 

half of the gait cycle. However, for some abnormal toe strikes, as shown in the second 

gait cycle in Fig. 4.35, the gradient signs of the accelerations are mostly opposite to 

each other. Therefore, abnormal toe strikes can be identified when (4.45) is fulfilled. 

∑ [sign(𝑉𝑗) × sign(𝐻𝑗)]

𝑖50%

𝑗=𝑖𝑧1

< 0 (abnormal toe strike) (4.45) 

 

 

Fig. 4.35: Abnormal toe strike (Pattern 8). 

−θshank

P1 Pmax

Toe on ground > 0 Heel on ground > 0 𝜔shank

Gradient m1 of accelerometer vertical axis y

Gradient m2 of accelerometer horizontal axis z

Value > 0 if m1 and m2 are both of the same sign. Value = 0 if m1 and m2 are 

of different sign.

Region from first zero crossing of 𝜔shank to 50% of gait cycle
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In cases where none of the conditions in (4.38) − (4.45) is fulfilled, a counter Ԑ is 

incremented by 1. After processing all gait cycles, if counter Ԑ is greater than 0.7 times 

the total number of collected gait cycles, the toe strikes that are yet to be decided are 

now estimated as normal. The toe strikes are estimated as abnormal when Ԑ is lower 

than 0.7 times the total number of collected gait cycles. Fig. 4.36 summarizes the 

observations for toe strike detection and diagnosis discussed in this section. 

 

 

Fig. 4.36: Proposed method to detect and diagnose toe strikes. 

 

4.4.3.6 Toe Off 

As shown in Fig. 4.37, normal toe off can be detected using the last local maximum 

Alast of 𝜔shank in a gait cycle. To improve the toe off detection (an improvement of 

average 0.2 to 0.5 sample difference), the toe off is estimated by adding 2 samples if 

the separation between Alast and the second last local maximum Alast2 is more than 10 

samples, as stated in (4.46). 

               if ( iAlast − iAlast2 > 10)       iTO = iAlast + 2 

               else                                   iTO = iAlast 
(4.46) 

Run this first for all gait cycles collected from a subject: 

If any one of the equations in (eq. 4.38 – 4.45) is fulfilled, 

➢ Abnormal toe strike 

➢ iTS = iA1 

Else   

➢ Normal/Abnormal estimates later. 

➢ iTS estimates later. 

➢ counter Ԑ = Ԑ + 1 
 

After processing all gait cycles using the method above,  

run this for the gait cycles that have not been estimated yet: 
 

If Ԑ > (total number of gait cycles) × 0.7 

➢ Normal toe strike 

➢ iTS = 𝑖𝐴̅1 

Else 

➢ Abnormal toe strike 

➢ iTS = iA1 

i denotes ith sample. 

TS denotes toe strike.  

A1 denotes the first local maximum of 𝜔shank. 

𝐴̅1  denotes the first local maximum of filtered 𝜔shank (eq. 4.37).  
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Fig. 4.37: Proposed method to detect toe off using last local maximum of 𝜔shank. 

 

4.4.4 Results and Discussion 

Some unique waveform patterns of shank’s angular velocity and acceleration for 

normal/abnormal gaits are identified to distinguish them from one another. In contrast 

to other researchers [45] [106] who classified the whole gait pattern as normal or 

abnormal, the proposed method classifies normal or abnormal heel strike and toe 

strike. As stated in Table 4.19, the mean accuracy of classifying heel strike and toe 

strike as normal/abnormal is 94.4%.  

 

Table 4.19: Mean Accuracy (%) of Gait Diagnosis using Proposed Method. 

Type of Walking Heel Strike Toe Strike 

1  90.35 (Normal) 93.30 (Normal) 

2  95.97 (Normal) 92.93 (Abnormal) 

3  93.75 (Abnormal) 93.75 (Abnormal) 

4  97.12 (Normal) 100.00 (Abnormal) 

Overall 94.43 94.47 

 

Fig. 4.38 illustrates the sample difference between proposed method and 

Senanayake et al. [9]. Comparing the proposed method with [9], the detected gait sub-

phases (heel strike, toe strike and toe off) have low mean absolute difference of about 

2 sample difference, as stated in Table 4.20. As the sampling time of all sensors is 

𝜔shank 𝜔shank local maxima           Toe off iTO

Toe on ground > 0 Heel on ground > 0

Sample i (100Hz)



83 

 

synchronized at 100Hz, 2 sample difference is equivalent to 20ms. This means the 

proposed method is reliable in gait phase detection. 

The difference between the proposed method and [9] is that [9] used 4 FSRs 

(kinetic parameters) to detect the gait phases, while the proposed method used a single 

shank’s IMU (kinematic parameters).  

As the proposed method and Maqbool et al. [50] both detect the gait phases using 

local maxima/minima of shank’s angular velocity, the method in [50] is also evaluated. 

As shown in Tables 4.20 and 4.21, the heel strike and toe off detected using [50] have 

higher errors for abnormal gait patterns. This is because [50] considered only normal 

gait patterns. The proposed method, on the other hand, can be said as an improvement 

of the method in [50] as abnormal gait patterns are considered in the gait phase 

detection. 

Fig. 4.39 shows the gait sub-phases for the 4 types of walking analyzed in this 

research. As abnormal gait is subjected to missing phases of a gait cycle [107], LR and 

MSt in walking types 2 and 4 are not distinguishable. 

 

 

 

Fig. 4.38: Illustration of sample difference between proposed method and FSRs [9]. 

 

  

Sample i (100Hz)

Estimated heel strike 

based on proposed method

Heel on ground > 0 (based on [9])1

0

Sample difference
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Table 4.20: Gait Phase Detection Error (in Sample Difference) when compared with 

FSRs [9]. 

Type of 

Walking 

Detection Error (sample difference) 

Heel Strike Toe Strike Toe Off 

Proposed 
Maqbool  

et al. [50] 
Proposed Proposed 

Maqbool  

et al. [50] 

1 
1.26 

(Normal) 

1.17 

(Normal) 

2.63 

(Normal) 

1.63 

(Normal) 

2.15 

(Normal) 

2 
1.06 

(Normal) 

1.67 

(Normal) 

2.33 

(Abnormal) 

1.82 

(Normal) 

5.17 

(Normal) 

3 
4.92 

(Abnormal) 

11.41 

(Abnormal) 

2.34 

(Abnormal) 

1.92 

(Normal) 

6.42 

(Abnormal) 

4 1.48 

(Normal) 

1.65 

(Normal) 

1.77 

(Abnormal) 

2.13 

(Normal) 

4.56 

(Abnormal) 

Average 2.11 3.75 2.00 1.92 4.74 

 

Table 4.21: Gait Phase Detection Error (ms) when compared with FSRs [9]. 

Type of 

Walking 

Detection Error (ms) 

Heel Strike Toe Strike Toe Off 

Proposed 
Maqbool  

et al. [50] 
Proposed Proposed 

Maqbool  

et al. [50] 

1 
12.6 

(Normal) 

11.7 

(Normal) 

26.3 

(Normal) 

16.3 

(Normal) 

21.5 

(Normal) 

2 
10.6 

(Normal) 

16.7 

(Normal) 

23.3 

(Abnormal) 

18.2 

(Normal) 

51.7 

(Normal) 

3 
49.2 

(Abnormal) 

114.1 

(Abnormal) 

23.4 

(Abnormal) 

19.2 

(Normal) 

64.2 

(Abnormal) 

4 14.8 

(Normal) 

16.5 

(Normal) 

17.7 

(Abnormal) 

21.3 

(Normal) 

45.6 

(Abnormal) 

Average 21.1 37.5 20.0 19.2 47.4 
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Fig. 4.39: Gait sub-phases for different types for walking. 

 

As shown in Fig. 4.40, the proposed method is accurate in identifying the gait sub-

phases. For example, the proposed method has successfully detected the toe strike 

occurs earlier than heel strike in walking type 3 (abnormal). Referring to the walking 

types 2 and 4 in Fig. 4.40, the heel and toe strikes are considered occurring at the same 

time if the heel and toe strikes are detected within ±2 samples.  

As the proposed method is not able to detect heel off using the shank’s angular 

velocity, MSt and TSt cannot be differentiated. Additionally, MSw has been well 

researched by identifying the maximum angle of the shank [8], therefore MSw is not 

covered in this chapter. MSw has actually been detected in Fig. 4.20. 

Other than that, abnormal gaits such as ‘walk with toe’, do not have heel strike and 

heel off. ‘Walk with heel’, on the other hand, do not have toe strike and toe off. The 

proposed method can only identify the 4 types of gait patterns as stated in Table 4.15, 

but not able to identify ‘walk with toe’ and ‘walk with heel’. Despite having these 

limitations, the proposed method which uses only a single shank’s IMU has been 

validated against the existing method which uses 4 FSRs [9], and is an improvement 

of [50].  

Type of Walking Gait Sub-Phases 

1 

 

2 

 

3 

 

4 

 

 

Heel strike

Toe strike

Heel off Toe off

 LR   →  TSt→

Toe strikeHeel strike Heel off Toe off

 MSt →  TSt→ LR   →

Swing →

Swing →

Heel strike

Toe strike

Heel off Toe off

 TSt→ Swing →

 LR   →  MSt → Swing →

Toe strike Heel strike Heel off

Toe strike

Toe off

 TSt→

 LR   →

Heel strike

Toe strike

Heel off Toe off

 LR   →  TSt→

Toe strikeHeel strike Heel off Toe off

 MSt →  TSt→ LR   →

Swing →

Swing →

Heel strike

Toe strike

Heel off Toe off

 TSt→ Swing →

 LR   →  MSt → Swing →

Toe strike Heel strike Heel off

Toe strike

Toe off

 TSt→

 LR   →

Heel strike

Toe strike

Heel off Toe off

 LR   →  TSt→

Toe strikeHeel strike Heel off Toe off

 MSt →  TSt→ LR   →

Swing →

Swing →

Heel strike

Toe strike

Heel off Toe off

 TSt→ Swing →

 LR   →  MSt → Swing →

Toe strike Heel strike Heel off

Toe strike

Toe off

 TSt→

 LR   →

Heel strike

Toe strike

Heel off Toe off

 LR   →  TSt→

Toe strikeHeel strike Heel off Toe off

 MSt →  TSt→ LR   →

Swing →

Swing →

Heel strike

Toe strike

Heel off Toe off

 TSt→ Swing →

 LR   →  MSt → Swing →

Toe strike Heel strike Heel off

Toe strike

Toe off

 TSt→

 LR   →
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Fig. 4.40: Detected gait sub-phases based on proposed method. 

 

It is also worthwhile to compare the performance of the proposed method with 

other relevant papers. As listed in Table 4.22, several efforts have been conducted for 

gait phase detection using sensors such as IMUs [7] [8] [12] [13], FSRs [9] [12], optical 

systems [10] [11], and electromyography [108] [109]. The mean accuracy of the 

proposed method is 94.4% while other methods [7] [11] [12] [108] [109] reported 

higher mean accuracy of over 97%. The proposed method has lower mean 

classification accuracy, but lower mean error of 20ms than [12] and [109]. 

The proposed method utilizes simple comparators which does not involve complex 

calculations. Although some heel and toe strikes can be detected in almost real-time 

(<40ms) using the proposed method, there are cases where some heel and toe strikes 

can only be detected after processing all gait cycles (See Fig. 4.26 and 4.36). The 

proposed method is more suitable for applications that does not require real-time 

detection, such as gait assessment. 
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Heel strike > 0 LR

Toe strike > 0 MSt and TSt

Toe off > 0 Swing
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Table 4.22: Comparison of Gait Phase Detection Methods among Literatures. 

Reference Method Sensor 

Mean 

accuracy 

(%) 

Mean 

error 

(ms) 

Consider 

abnormal 

gait? 

[7] Bayesian formulation 3 IMUs 99 - Yes 

[8] 
Local maxima and 

minima 

2 IMUs - 20 No 

[9] Fuzzy logic 4 FSRs - 13 Yes 

[10] Fuzzy logic Optical - - No 

[11] 
Machine learning Optical 97 

 

- No 

[12] 
Rule-based 3 FSRs,  

1 IMU 

99 < 90 Yes 

[13] Dynamic threshold 1 IMU - - No 

[108] 
Support vector 

machine 

EMG, 

GRF 

97 - Yes 

[109] 
Adaptive neuro-fuzzy 

inference system 

EMG 97 30 Yes 

Proposed 

method 

Rule-based local 

maxima and minima 

1 IMU 94 20 Yes 

The dash ‘-’ means not reported. EMG stands for electromyography. GRF stand for 

ground reaction force. 

 

4.4.5 Summary 

A method to detect normal and abnormal heel strike, toe strike, and toe off using a 

single IMU attached to the shank was proposed and validated against an existing 

method that placed FSRs under the foot. The MAE of the heel strike, toe strike and toe 

off detections was low at around 2 sample difference, equivalent to 20ms difference. 

Instead of classifying the whole stride, some unique waveform patterns of the 

normal/abnormal shank’s angular velocity were identified to classify the heel strike 

and toe strike as normal/abnormal. This may provide insights into the shank’s angular 

velocity waveform patterns that are human-understandable to assist clinicians to 

evaluate the gaits. The accuracy of the proposed method was high at about 94.4%.   
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4.5 Accurate Gait Modelling based on Waveform Scaling before DFT 

4.5.1 Introduction 

Gait modelling is essential for many applications including animation, activity 

recognition, medical diagnosis, and robotics. Many researchers have worked on 

mathematically express the movement of human bodies. At current stage, the 

reconstructed waveforms from the mathematical expressions either represent 

smoothened waveforms, fluctuate (noisy) along the original waveforms, or require 

high number of computations. In this chapter, a method to mathematically express 

normal and abnormal shank and thigh angle waveforms without smoothening and 

fluctuations is proposed. The angle waveforms are time and amplitude scaled before 

performing DFT. By doing so, the CORR between the original and reconstructed 

waveforms can be improved without increasing the number of harmonics. The shank’s 

angular velocity is also recalculated from the reconstructed shank’s angle waveform 

for gait phase detection, and shows accurate results in heel and toe strikes estimation 

when compared to the original shank’s angular velocity. Additionally, the harmonic 

components of the waveforms are used for gait recognition, and shows the potential of 

proposed method in improving the classification accuracy. 

 

The contents in Chapter 4.5 has been submitted for review for possible publication. 

Once published, the publication can be searched as:  

Y. C. Han, K. I. Wong and I. Murray, "Gait Phase Detection for Normal and Abnormal 

Gaits Using IMU". 

 

4.5.2 Experimental Setup 

The placement of IMUs is the same as Fig. 4.9(a), where the IMUs were strapped 

in front of the right thigh and shank using Velcro straps. In this chapter, the direction 

of the angle is represented in Fig. 4.41, which is opposite to Fig. 4.9. 

20 healthy adults (male: 13; female: 7; age: 21-35; height: 151-182cm) were 

participated in the data collection. Each person was asked to walk at their own pace on 

a flat surface 3 times for 4-5 steps each trial (walking pattern 1). A total of 263 walking 

steps was collected. 

Additionally, 3 types of simulated abnormal walking patterns in Chapter 4.3 is used 

to evaluate how well the proposed method generalizes to movement variability. In this 

Chapter 4.5, the abnormal walking pattern when the volunteers swung their right leg 
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outwards while walking to simulate foot drop is labelled as walking pattern 2. Walking 

pattern 3 is when the volunteers walked with bandaged knee to simulate knee problem. 

Walking pattern 4 is when the volunteers wore a left slipper to simulate leg length 

discrepancy. 

 

Fig. 4.41: Angle direction. 

 

4.5.3 Proposed Method 

4.5.3.1 Gait Cycle Extraction 

Fig. 4.42 shows a shank angle waveform estimated using the method proposed in 

Chapter 4.2 which had been validated against gold standard Vicon optical motion 

capture system. The same sensors, microcontrollers, and sampling period (100Hz) 

were used. As shown in Fig. 4.42, the gait cycles were extracted using the maximum 

backward swings of the shank. The gait cycles were extracted in such a way that it 

starts with a maximum backward swing of the shank, and ends with a subsequent 

maximum backward swing of the same shank.  

 

 

Fig. 4.42: Gait cycle extraction using maximum backward swings of shank. 

 

−90°

IMU

0°

+90°

Cycle 1   Cycle 2   Cycle 3

Sample (100Hz)
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4.5.3.2 Waveform Transformation before DFT 

Fig. 4.43 shows the flowchart to time and amplitude scale the original waveforms 

before performing DFT, so that the required number of harmonics can be reduced 

while maintaining the accuracy.  

 

 

Fig. 4.43: Flowchart for waveform transformation before performing DFT. 

 

As shown in Fig. 4.44, the angle waveform can be divided into 2 regions: smooth 

and less-smooth regions. The smooth region ( egion A) is defined as the region where 

the angles are below a threshold 𝜆% of the peak-to-peak angle. The less-smooth region 

( egion B) consists of more fluctuations and is defined as the region of the waveform 

above 𝜆% of the peak-to-peak angle.  egion B can also be called as the region-of-

interest for some applications such as gait phase detection as it is where maximum 

swing, heel strike, and toe strike occur [8] [50] [66]. 

Region extraction (Fig. 4.44)

Region A

Resample to half the original

number of samples in Region A

(eq. 4.47)

Region B

Resample to fill in the

remaining samples not

occupied by Region A (eq. 4.47)

Time and amplitude scaled waveform (eq. 4.50)

Original waveform of a cycle 𝜃

Repeat waveform (eq. 4.51)

Amplitude scaling (eq. 4.48)

DFT (eq. 4.53 – 4.54)

Conventional method

𝜃𝐴 𝜃 

𝜃̅𝐴 𝜃̅ 

𝜃  

𝜃 

 

Proposed method



91 

 

 

Fig. 4.44: Region extraction for one cycle of an angle waveform.  

 

After the regions are extracted,  egion A is resampled to half of its original number 

of samples because  egion A consists of a smoother curve compared to  egion B, 

therefore down-sampling  egion A will not reduce much of the CO  . Then,  egion 

B is resampled (time stretched) to fill in the remaining samples not occupied by  egion 

A, as shown in Fig. 4.45. By doing so, the total number of samples of the resampled 

waveforms remain the same as the original waveform, and the non-smooth region can 

be “zoomed in” before performing DFT.  

As a side note, Region A could also be resampled to 1/3 or 1/4 of its original 

number of samples so that Region B could be further enlarged, but in this research 

Region A is just resampled to half of its original number of samples to demonstrate the 

practicality of the proposed method. The resampling method in (4.47) can be used to 

resample the waveforms such that the original waveform with 𝐼 number of samples is 

resampled to 𝐼   number of samples. 

𝜃̅𝑗 = 𝜃⌈𝑖⌉(𝑖 − ⌈𝑖⌉ + 1) − 𝜃⌊𝑖⌋(𝑖 − ⌈𝑖⌉)        

                 for {  
𝑖 =  1, 1 +

𝐼−1

𝐼−̅1
, 1 + 2

𝐼−1

𝐼−̅1
, …  , 𝐼

𝑗 = 1,2,3, … , 𝐼 ̅
 

(4.47) 

Where 𝜃 is the original waveform. 𝜃̅ is the resampled waveform. ⌈ ⌉ and ⌊ ⌋ denote the 

ceiling and flooring functions, respectively.  

However, the resampled/time-scaled waveform 𝜃̅  (blue line in Fig. 4.45) has 

abrupt change of gradient at the connection point between Regions A and B. This can 

reduce the CORR between the original and reconstructed waveforms. To connect both 

regions smoothly, the amplitudes of resampled Region B 𝜃̅  are multiplied with the 

0%

100%

𝜆%

Region B Region A Region A 
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ratio m of the final gradient of resampled Region A 𝜃̅𝐴 to the initial gradient of 𝜃̅ , as 

stated in (4.48) and (4.49). 𝜃̅𝐴  remains unchanged. The time and amplitude-scaled 

waveform 𝜃  (4.50) is shown with the red line in Fig. 4.45. 

𝜃  (𝑖) = 𝜃̅ (𝑖) × 𝑚 − 𝜃̅ (1) + 𝜃(𝐼𝐴) (4.48) 

𝑚 = |
𝜃̅(𝐼𝐴) − 𝜃̅(𝐼𝐴 − 1)

𝜃̅(𝐼𝐴 + 2) − 𝜃̅(𝐼𝐴 + 1) 
| (4.49) 

𝜃 = [ 𝜃̅A   𝜃   ] (4.50) 

Where 𝜃   denotes the time and amplitude-scaled waveform of Region B, 𝜃̅ (1) 

denotes the first sample of 𝜃̅ , 𝐼𝐴 denotes the last sample of the resampled angle in 

Region A. 𝜃(𝐼𝐴) denotes the amplitude of the last angle of Region A. 

 

 

Fig. 4.45: Time and amplitude-scaled waveforms. 

 

The time and amplitude-scaled waveform 𝜃  is then then repeated X times as shown 

in Fig. 4.46. In this research, X is selected to be 15 for the repeated waveform   (4.51). 

The harmonics are more distinctive to be identified as X increases.  

 = [𝜃   𝜃   𝜃   ⋯  𝜃  ] (4.51) 

Region BRegion A

Time-scaled waveform 𝜃̅

Time and amplitude-scaled waveform 𝜃 

IA

Remark: 𝐼𝐴 and 𝜃(𝐼𝐴) are stored for waveform reconstruction. 

- Region extraction of the time and amplitude-scaled waveform

is achieved by finding the angle which is the closest to 𝜃(𝐼𝐴).

- The original length of Region A is 𝐼𝐴 2, while the original

length of Region B is 1 − 𝐼𝐴 2.
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Fig. 4.46: Time and amplitude-scaled waveform repeated X times. 

 

DFT in (4.52) is performed for the repeated waveform   and resulted in Fig. 4.47. 

The DFT of the scaled waveform at hth harmonic can be expressed as (4.53). 

𝐷𝐹𝑇𝑗 =
2

𝐿
∑ 𝑖𝑒

−𝑗2𝜋(𝑖−1)
𝑛−1
𝐿

𝐿

𝑖=1

   for 𝑗 = 1,2,⋯ ,
𝐿

2
 (4.52) 

𝐷𝐹𝑇ℎ =
2

𝐿
∑ 𝑖𝑒

−𝑗2𝜋(𝑖−1)
ℎ
𝐼

𝐿

𝑖=1

   for ℎ = 1,2,⋯ ,𝐻 (4.53) 

Where the transform length is selected to be the same as the length L≈1500 of  . e 

denotes the exponential function, and j is the imaginary number. H denotes the total 

number of harmonics. I is the number of samples of 𝜃 . 

The instantaneous amplitude 𝛼ℎ  and the phase 𝜑ℎ  of the hth harmonic can be 

obtained by writing the DFT in polar form (4.54).  

𝐷𝐹𝑇ℎ = 𝛼ℎ  ∠ 𝜑ℎ (4.54) 

The DC component b of the time and amplitude-scaled waveform can be obtained 

by calculating the average value of the waveform within one period. 

 

 

Fig. 4.47: Single-sided amplitude spectrums of a full cycle of scaled waveform. 
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4.5.3.3 Waveform Reconstruction 

Fig. 4.48 shows the flowchart to reconstruct the angle waveform 𝜃. The scaled 

waveform 𝜃  can be reconstructed by inputting the instantaneous amplitudes 𝛼ℎ and 

phase 𝜑ℎ of the hth harmonics to Fourier series in (4.55). 

𝜃 (𝑖) = 𝑏 +∑𝛼ℎ  s (2𝜋ℎ𝑖 + 𝜑ℎ)

𝐻

ℎ=1

 (4.55) 

Where b denotes the average value of the scaled waveform within one period.  

Regions A and B are then extracted by finding the closest scaled angle 𝜃  to 𝜃(𝐼𝐴). 

See the remark in Fig. 4.45. 

The scaled angles of Region B 𝜃   can be inverse-transformed back to its original 

amplitudes according to (4.56). 

𝜃̅ (𝑖) =
𝜃  (𝑖) − 𝜃  (1)

𝑚
+ 𝜃(𝐼𝐴) (4.56) 

Where m is stored from (4.49) for waveform reconstruction. 

After that, both regions are resampled back to its original length. The original 

length of Region A is IA, while the original length of Region B is 100 − IA. 

The reconstructed waveform 𝜃 can be obtained by appending 𝜃  to 𝜃𝐴 (4.57).  

𝜃 = [𝜃𝐴  𝜃 ] (4.57) 

 

 

Fig. 4.48: Flowchart to reconstruct a waveform. 

Region extraction (Fig. 4.44)

Region A

Inverse transformation (eq. 4.56)
Region B

Resample to original number of

samples. (eq. 4.47)

Reconstruct waveform 𝜃 (eq. 4.57)

Fourier series (eq. 4.55)

Resample to original number of 

samples. (eq. 4.47)

𝜃𝐴

𝜃 

𝜃 

Conventional method

Proposed method
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4.5.3.4 Possible Application 1: Gait Phase Detection 

In Chapter 4.4, it was shown that the heel strike, toe strike and toe off can be 

estimated using the shank’s angular velocity 𝜔. As shown in Fig. 4.49, the normal heel 

strike can be estimated using the first local maximum of 𝜔. The normal toe strike can 

be estimated using the first local maximum filtered angular velocity 𝜔 . The toe off can 

be estimated using the last local maximum of 𝜔. 

As angle 𝜃  can be estimated by integrating 𝜔 , 𝜔  can be re-obtained from 𝜃 

according to (4.58), where 𝑇 is the sampling period. The filtered angular velocity 𝜔  

can be obtained from (4.59), where 𝑘 is set as 10 similar to Chapter 4.4. 

𝜔𝑖 =  
𝜃𝑖 − 𝜃𝑖−1

𝑇
 

(4.58) 

𝜔 𝑖 = 
1

2𝑘
∑ 𝜔𝑖

𝑖+𝑘

𝑖=𝑖−𝑘

 (4.59) 

 

 

Fig. 4.49: Shank’s angular velocity to detect gait phases. 

 

4.5.3.4 Possible Application 2: Gait Classification 

In [53], harmonic components of the ankle-knee, knee-hip and hip-ankle angle 

waveforms were used classify normal/abnormal gaits. To investigate if the proposed 

method can be used to improve the multi-class classification accuracy, a simple fully 

connected neural network, as shown in Fig. 4.50, is utilized. 4 different types of gait 

patterns (1 normal, 3 abnormal) collected in Chapter 4.3.2 are to be classified. The 

input features are the instantaneous amplitudes 𝛼ℎ, phase 𝜑ℎ and average value b of 

the shank and thigh angle waveforms when H=10. The initial weights and biases are 

random, and updated with backpropagation. The neural network is set to have 1 to 3 

hidden layers with different numbers of neurons. The activation function used is a 

Heel strike
Toe strike

Toe off
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hyperbolic tangent function. For balanced training dataset, 50 gait cycles from each 

pattern are used for training while the remaining gait cycles are used for testing. The 

training to validation ratio is 80:20%. For the proposed method, a pre-set threshold 𝜆 = 

0.55 is used to extract distinct regions of the 4 different types of walking patterns.  

 

 

Fig. 4.50: Applying proposed method for gait classification. 

 

4.5.4 Results and Discussion 

The proposed method pre-scales the original waveforms before applying DFT. 

Conventional method in this paper means applying DFT without pre-scaling the 

waveforms. In [62] and [64], 6 harmonic components were used to predict the angle 

waveforms. In [66], 5 harmonic components were used. When checked with the 

experimental results, the overall (full cycle) CO   based on conventional method is 

indeed high above 99.9% when the number of harmonics H=6. However, as shown in 

Fig. 4.51, when checked specific regions ( egion B) of the reconstructed waveforms, 

the CO   of the conventional method at  egion B is low (<< 99.9%) when H=6. This 

indicates that 6 harmonics are insufficient to represent the angle waveforms accurately 

based on conventional method. 

A good choice of threshold 𝜆  is crucial in maintaining a highly accurate 

mathematical representation of an angle waveform based on proposed method. The 

ideal value of 𝜆 should successfully extract the waveform in such a way that  egion B 

consists of mainly the less-smooth region. As shown in Fig. 4.52, a low value of 𝜆 

(<0.5) will not help much in increasing the CO   because the extracted  egion B 

consists of a big portion of smooth waveform. 𝜆 cannot be set too high as this will 

reduce the CO   because most of the less-smooth region is failed to be captured.  

 eferring to Fig. 4.52, 𝜆 for the proposed method are set as 0.85, 0.70, 0.55, and 

.

.

.

Region extraction

Time and amplitude scaling

Original waveforms

DFT

Proposed method Feedforward 
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pattern
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0.75 for normal shank, normal thigh, abnormal shank, and abnormal thigh angle 

waveforms, respectively. This is because these 𝜆 values result in a high CO   and 

great improvement in CO   compared to conventional method, which means  egion 

B averagely consists most of the less-smooth region of the waveforms at these 

thresholds. 

Fig. 4.53 shows a plot of mean CO   against H. Considering the full cycle, the 

mean CO   of the proposed method (blue cross line) is lower than the conventional 

method (red cross line) when H<10. However, when H≥10, the mean CO   of the 

full cycle for both conventional and proposed methods are about the same (≥99.9%). 

Considering only the  egion B, the proposed method (blue circled line) has higher 

mean CO   than conventional method (red circled line) when H>6. 

As listed in Table 4.23, the conventional method when H≤6 has low mean CO   

at  egion B <99.0% and <99.4% for normal and abnormal angle waveforms, 

respectively. The mean CO   at  egion B improved to around 99.5% and 99.8% 

when H=10. As a comparison, the proposed method when H=10 has achieved a high 

mean CO   around 99.9% at  egion B. It is only when H>15, the conventional 

method achieves a high mean CO   above 99.9% at  egion B, but the idea is to 

represent the waveforms accurately using lesser H.  

As shown in Fig. 4.54, the reconstructed waveforms based on conventional method 

when H≤ 10 and proposed method when H≤ 6 represent smoothened original 

waveforms. The reconstructed waveforms based on proposed method when H=10 

represent the original waveforms more accurately than conventional method when 

H=15 at  egion B. 

Comparing with existing methods, it can be seen from the figures provided in the 

existing literatures that the reconstructed waveforms based on the existing methods 

either represent smoothened waveforms [61] [62] [63] [64], or fluctuate along the 

original waveforms [59] [65]. 
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Fig. 4.51: Plot of mean CORR against thresholds 𝜆 for conventional method when 

H=6. 

 

 

Fig. 4.52: Plot of mean CORR at Region B against thresholds 𝜆 when H=6 and 10. 

 

×
o

H = 6
H = 10

Conventional method
Proposed method
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Fig. 4.53: Plot of mean CORR against H. 

 

 

  

Number of Harmonics H
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Table 4.23: Mean CORR (%) between Original and Reconstructed Angle 

Waveforms. 

Angle 
Number of 

Harmonics H 

Conventional Method Proposed Method 

Full Cycle Region B Full Cycle Region B 

Normal 

shank 

3 99.92 92.84 98.77 87.72 

6 99.99 98.22 99.90 99.71 

10 100.00 99.43 99.99 99.96 

15 100.00 99.81 100.00 99.99 

20 100.00 99.93 100.00 100.00 

25 100.00 99.97 100.00 100.00 

Normal 

thigh 

3 99.86 97.67 97.08 74.80 

6 99.95 98.76 99.82 99.37 

10 99.98 99.53 99.96 99.90 

15 100.00 99.88 99.98 99.92 

20 100.00 99.96 99.99 99.99 

25 100.00 99.98 100.00 100.00 

Abnormal 

shank 

3 99.60 97.52 96.64 87.37 

6 99.93 99.37 99.73 99.44 

10 99.98 99.77 99.93 99.91 

15 99.99 99.93 99.95 99.80 

20 100.00 99.98 99.99 99.99 

25 100.00 99.99 100.00 100.00 

Abnormal 

thigh 

3 99.61 95.57 97.99 94.22 

6 99.97 99.25 99.73 88.76 

10 99.99 99.80 99.97 99.93 

15 100.00 99.93 99.99 99.99 

20 100.00 99.97 99.83 100.00 

25 100.00 99.99 100.00 100.00 
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Fig. 4.54: Original and reconstructed angle waveforms. 

 

  

Thigh angle (proposed method) :

Thigh angle (conventional method) :

Shank angle (proposed method) :

Shank angle (conventional method) :

Region B
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The proposed method when H=10 averagely achieves the same CORR as 

conventional method when H = 24, 17, 14, and 15 for normal shank, normal thigh, 

abnormal shank, and abnormal thigh angle waveforms, respectively. This means a 

reduction of 14, 7, 4, and 5 DFT calculations in (4.53) to achieve the same CORR. 

Fig. 4.55 counts the number of computations required to run (4.53) per harmonic. 

As stated in Table 4.24, the total number of computations saved for 14, 7, 4, and 5 

harmonics is 112L, 56L, 32L, and 40L, respectively. The proposed waveform scaling 

method in (4.48) − (4.49) uses around 202 additions and 101 multiplications. Adding 

with the computations required to extract the regions (Fig. 4.44) and scaling the 

waveform (Fig. 4.45), the computations required are far lesser than an L≈1500. 

 

 

Fig. 4.55: Number of computations required per harmonic. 

 

Table 4.24: Approximate Number of Computations Required per Harmonic. 

Number of Harmonics Additions Multiplications Cosine / Sine function 

1 2L 4L 2L 

4 8L 16L 8L 

5 10L 20L 10L 

7 14L 28L 14L 

10 20L 40L 40L 

14 28L 56L 28L 

1 complex addition = 2 additions. 1 complex multiplication = 2 multiplications. L ≈ 

1500 is the length of repeated waveform 

 

 

𝐷𝐹𝑇ℎ =∑𝑘1 𝑖𝑒
𝑗(𝑘2ℎ)(𝑖−1)

𝐿

𝑖=1

2L multiplications

ejx = cos(x)+j sin(x)

L complex multiplications

L complex additions

L cosine function

L sine function

L ≈ 1500 is the length of the repeated waveform  .
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Fig. 4.56 shows the shank’s angular velocity estimated by differentiating the 

shank’s angle (4.58). Fig. 4.56 is for the readers to visualize how the results in Table 

4.25 are being obtained. The heel and toe strikes can be detected very accurately using 

the shank’s angular velocity estimated from the angles based on proposed method. The 

shank’s angular velocity estimated from the conventional method gives higher error in 

heel and toe strikes detections. This indicates the proposed method has successfully 

retained the heel and toe strikes information. As listed in Table 4.25, the proposed 

method when H=10 has lower MAE than conventional method when H=25 and H=20 

for heel and toe strikes detections, respectively. 

However, the proposed method gives higher MAE of about +1 sample difference 

more than conventional method in estimating the toe off. This is because the toe off is 

in Region A, while the proposed method is focusing on improving the CORR in Region 

B which consists of heel and toe strikes. To solve this, future work can consider 

extracting more than two regions and focusing on improving the CORR in multiple 

regions rather than just Region B. 

The underlying questions are what is the advantage to represent the waveform 

mathematically and why not use the original measured waveforms instead? It is 

demonstrated in Table 4.26 that waveform scaling before DFT can increase the true 

positive rate of the gait multi-class classification by 5-7% when compared to the 

conventional method. The original waveforms with no waveform scaling give lower 

accuracy than the proposed method with waveform scaling in classification task. This 

shows that it is useful to time and amplitude-scale the angle waveforms to “enlarge” 

the distinctive regions of the angle waveforms for better classification accuracy. 

It is also demonstrated in Table 4.25 that the proposed mathematical model has 

detected the gait phase more accurately than the conventional method. However, using 

the original waveforms would have been more accurate than proposed method. In 

application such as robotics that uses mathematical equation to generate gait patterns, 

original waveforms may be unavailable. An advantage of mathematical equation 

includes but not limited to lower memory storage. For example, saving an original 

waveform may require more than 150 float numbers, while mathematical equation 

requires 13 float numbers (when H=6) or 21 float numbers (when H=10) to regenerate 

that 150 data points per waveform. The proposed method may also be useful in data 

compression and encoding. 
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Fig. 4.56: Estimated shank’s angular velocity to detect gait phases. 

 

Table 4.25: Gait Phase Detection Error using Reconstructed Waveforms. 

Error Number of Harmonics H 
Heel strike Toe strike Toe off 

Conv. Prop. Conv. Prop. Conv. Prop. 

Sample 

6 5.82 1.33 2.99 0.87 3.19 7.73 

10 4.29 0.73 2.06 0.47 2.67 3.74 

15 2.33 0.35 1.21 0.32 2.03 3.00 

20 1.33 0.36 0.48 0.22 1.70 2.75 

25 1.13 0.29 0.36 0.16 1.52 2.36 

ms 

6 58.20 13.30 29.90 8.70 31.90 77.30 

10 42.90 7.30 20.60 4.70 26.70 37.40 

15 23.30 3.50 12.10 3.20 20.30 30.00 

20 13.30 3.60 4.80 2.20 17.00 27.50 

25 11.30 2.90 3.60 1.60 15.20 23.60 
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Table 4.26: Multi-Class Classification Testing Accuracy. 

Neurons 

N 
Pattern 

True Positive (%) True Negative (%) Accuracy (%) 

Conv. Prop. Conv. Prop. Conv. Prop. 

15 

1 100 100 97.04 98.60 97.78 98.95 

2 92.16 82.35 91.50 88.89 91.67 87.25 

3 62.50 92.86 86.90 95.83 80.80 95.09 

4 80.95 80.95 93.12 92.59 90.08 89.68 

Mean 83.90 89.04 92.14 93.98 90.08 92.74 

15,8 

1 99.07 100 99.22 98.60 99.18 98.95 

2 80.39 88.24 90.20 92.81 87.75 91.67 

3 82.14 91.07 92.86 97.02 90.18 95.54 

4 76.19 79.37 92.59 89.95 88.49 87.30 

Mean 84.45 89.67 93.72 94.59 91.40 93.36 

20,15,8 

1 100 100 99.84 100 99.88 100 

2 78.43 80.39 91.50 90.85 88.24 88.24 

3 78.57 94.64 92.86 95.24 89.29 95.09 

4 76.19 87.30 92.59 93.65 88.49 92.06 

Mean 83.30 90.58 94.20 94.93 91.47 93.85 

- N = [20,15,8] means there are three hidden layers in the neural network with 20, 

15 and 8 neurons in the first, second and third layer, respectively.  

- The reported testing accuracies are the best accuracies out of 100 trials.  
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4.5.5 Summary  

A method to mathematically represent the shank and thigh angle waveforms 

accurately without smoothening and fluctuations is proposed. The proposed method 

has also been tested with simulated abnormal gait patterns. The CORR between the 

original and reconstructed waveforms is increased without increasing the number of 

harmonics. By reducing the number of harmonics without reducing the accuracy, the 

calculations for DFT can be reduced. It is shown that the proposed method when H=10 

averagely achieves the same CORR as conventional method when H = 24, 17, 14, and 

15 for normal shank, normal thigh, abnormal shank, and abnormal thigh angle 

waveforms, respectively. This means a reduction of 4 to 14 DFT computations to 

achieve the same CORR. As the reconstructed waveforms based on proposed method 

represent the original waveforms accurately, the reconstructed waveforms are suitable 

for gait analysis such as gait phase detection. It is also demonstrated that the harmonic 

components of the scaled waveforms can increase the gait classification accuracy 

when distinctive regions of the waveforms are extracted.   
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4.6 Temporal Synchronization of Markerless Video and IMU Data 

4.6.1 Introduction 

It is beneficial to have joint angle information available to the clinicians while 

performing visual inspection. A video camera can be used together with IMUs so that 

both video and IMU data are available. To reduce cost, a smartphone camera is used 

in this research. Other applications that involve IMUs and video cameras include 

motion tracking [110], localization [111], and video stabilization [112].  

As the recordings of video and IMU data are hard to be initialized at the same time 

due to human and software delay [113], there is a need to perform temporal 

synchronization for the video and IMU data. In this research, the video and IMU data 

of a person walking on a flat surface are temporally synchronized by detecting and 

matching the maximum backward swing of the reference leg detected from video and 

IMU. The proposed method is validated by blinking LED and sending LED flag to a 

computer (PC) at the same time.  

 

Chapter 4.6 is covered by the following publication with minor amendment: 

Y. C. Han, K. I. Wong and I. Murray, "Automatic Synchronization of Markerless 

Video and Wearable Sensors for Walking Assessment," in IEEE Sensors Journal, 

vol. 19, no. 17, pp. 7583-7590, Sept.1, 2019. 

doi: 10.1109/JSEN.2019.2916163 

© 2019 IEEE 

 

4.6.2 Experimental Setup 

Fig. 4.57 shows that the IMUs were strapped in front of the right shank using 

Velcro straps, and on top of the right foot using double-sided tape. A static front 

camera of the iPhone 6 Plus was used to capture video of the person walking. The red 

LED was placed at the bottom left of the video. 

10 healthy adults (male: 7; female: 3; age: 21-49; height: 151-182cm) participated 

in the data collection. Each person was asked to walk self-pace on a flat surface for 

about 3 meters. In the first 5 trials, the participants were asked to start walking with 

their right legs. In the next 5 trials, the participants were asked to start walking with 

their left legs. A total of 100 walking trials was collected.  
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Fig. 4.57: IMU placement. 

 

4.6.3 Proposed Method 

4.6.3.1 IMU Data Processing 

Fig. 4.58 shows the flowchart to detect maximum backward swing of the leg using 

IMU. 

 

Fig. 4.58: IMU data processing. 

 

Fig. 4.59 shows the shank and foot angle estimated using IMU data. The angle 

estimation algorithm used is based on Chapter 4.2.  

As the IMU is sampled at 100Hz while the video is captured at 30Hz, the estimated 

angle needs to be resampled to 30Hz so that the IMU and video can be temporally 

synchronized. The total number of resampled angles can be calculated according to 

(4.60). The angle can be resampled according to (4.61). 

𝑁 𝐼𝑀𝑈 = 𝑁𝐼𝑀𝑈 ×
𝑓𝑣
𝑓𝐼𝑀𝑈

= 𝑁𝐼𝑀𝑈 ×
30

100
 

(4.60) 

 

𝜃̅𝑗 = 𝜃⌈𝑖⌉(𝑖 − ⌈𝑖⌉ + 1) − 𝜃⌊𝑖⌋(𝑖 − ⌈𝑖⌉)        

                 for {  
𝑖 =  1, 1 +

𝑁𝐼𝑀𝑈−1

𝑁 𝐼𝑀𝑈−1
, 1 + 2

𝑁𝐼𝑀𝑈−1

𝑁 𝐼𝑀𝑈−1
, …  , 𝑁𝐼𝑀𝑈

𝑗 = 1,2,3, … ,𝑁 𝐼𝑀𝑈

 

(4.61) 

Where 𝑁 𝐼𝑀𝑈 denotes the total number of resampled angles, and 𝑁𝐼𝑀𝑈 denotes the total 

number of samples collected by IMU. 𝑓𝐼𝑀𝑈 and 𝑓𝑣 denote the sampling frequency of 

y

+90°

0°

IMU

IMU 2

IMU 1

Resampling

Angle estimation

Maximum backward swing detection

IMU data
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the IMU and video camera, respectively. 𝜃̅ denotes the resampled angle. ⌈ ⌉ and ⌊ ⌋ 

are the ceiling and flooring functions, respectively. 

The first maximum backward swing of the shank and foot can be detected by 

finding the first minimum of the shank and foot angles, respectively. Fig. 4.60 

illustrates that the first maximum backward swing can be detected by finding the 

minimum angle between x1 and x2, where x1 and x2 are the first and second angles that 

cross the threshold 𝜆1 = min(𝜃̅)/2. 

 

  

(a) (b) 

Fig. 4.59: Estimated angle. (a) Shank angle. (b) Foot angle. 

 

 

(a) 

 

(b) 

Fig. 4.60: First maximum backward swing detection. (a) Shank angle. (b) Foot angle. 
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Threshold = 
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4.6.3.2 Video Processing 

Fig. 4.61 shows a flowchart to detect maximum backward swing of leg from video. 

The video captured from the smartphone is in RGB, as shown in Fig. 4.62(a). In order 

to detect the human motion, the video is first gray-scaled, as shown in Fig. 4.62(b), 

using MATLAB function ‘rgb2gray’ (4.62).  

𝑔𝑓 = rgb2gray(𝑣𝑓) (4.62) 

Where 𝑔 denotes the gray-scaled video, 𝑣 denotes the RGB video, and f denotes the f-

th frame of the video. 

 

 

Fig. 4.61: Video processing flowchart. 

 

The human motion can be detected by calculating the difference between the 

current and previous frames, and then convert it to black and white using MATLAB 

function ‘im2bw’ (4.63). Fig. 4.62(c) shows the detected motion. 

𝑀𝑓 = im2bw((𝑔𝑓 − 𝑔𝑓−1)
2
, 𝜆2) (4.63) 

Where M denotes the detected motion in black and white, and 𝜆2 denotes the threshold. 

In this research, 𝜆2 is set to be 0.95 through trials and errors. 

As shown in Fig. 4.63, the captured video is split into upper- and lower-parts 

equally (4.64) (4.65) to detect the maximum backward swing of the leg. The first 100 

columns of the video are ignored because the first 100 columns are reserved for 

validation of proposed method using LED. In MATLAB, the first pixel was at the 

upper leftmost. 

𝑈 = 𝑣
(1 to 

𝑅
2
 ,100 to 𝐶)

 (4.64) 

𝐿 = 𝑣
(
𝑅
2
 to 𝑅 ,100 to 𝐶)

 (4.65) 

Where U denotes the upper part of the video, and L denotes the lower part of the video 

v. R = 720 and C = 1280 denote the number of rows and columns of a video frame, 

respectively. 

 

Upper- and lower-part separation

Motion detection

Maximum backward swing detection

Video
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(a) 

  

(b) (c) 

Fig. 4.62: Video paused at a frame. (a) RGB video 𝑣. (b) Gray-scaled video 𝑔. (c) 

Detected motion 𝑀 in black and white. 

 

 

  

(a) (b) 

Fig. 4.63: Upper- and lower-part separation. (a) RGB. (b) Detected motion 𝑀. 

 

Fig. 4.64 shows the proposed method to approximate the extension of leg in 

horizontal axis. The number of white pixels at each column of the detected motion 𝑀 

is counted by summing up 𝑀 column by column (4.66) (4.67). 

𝑊𝑈,𝑐 = ∑𝑀𝑈,𝑐 (4.66) 

𝑊𝐿,𝑐 = ∑𝑀𝐿,𝑐 (4.67) 

Where 𝑀𝑈  and 𝑀𝐿  are the detected motion 𝑀  at upper U and lower L parts, 

respectively. 𝑊𝑈,𝑐 and 𝑊𝐿,𝑐 denote the total number of white pixels at each column c 

of 𝑀𝑈 and 𝑀𝐿, respectively. 

Upper-part

Lower-part

Upper-part

Lower-part
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The leftmost column of the detected human can be approximated by finding the 

first value of W that is greater than a threshold 𝜆3 (4.68) (4.69). As shown in Fig. 4.64, 

𝜆3 can be safely set as 10 in this research, so that background reflections are ignored. 

        for (𝑐 = 100 to 1279) do 

                if 𝑊𝑈,𝑐 > 𝜆3 and 𝑊𝑈,𝑐+1 > 𝜆3 then 

                        𝑐𝑈 = 𝑐 

                        break 

                end if 

        end for 

(4.68) 

        for (𝑐 = 100 to 1279) do 

                if 𝑊𝐿,𝑐 > 𝜆3 and 𝑊𝐿,𝑐+1 > 𝜆3 then 

                        𝑐𝐿 = 𝑐 

                        break 

                end if 

        end for 

(4.69) 

Where 𝑐𝑈 and 𝑐𝐿 denote leftmost column of detected human at upper U and lower L 

parts, respectively. 

 

Fig. 4.64: Approximate extension of leg. 
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In cases where the motion is very low, such as the person is standing still at frame 

𝑓 in Fig. 4.63, 𝑐𝑈 and 𝑐𝐿 follow the previous values at frame 𝑓 − 1 (4.70) (4.71). The 

initial 𝑐𝑈 and 𝑐𝐿 at the first frame are both set as 0. As shown in Fig. 4.65, the motion 

can be considered low when the total number of white pixels is lower than a threshold 

𝜆  = 1000. 

        if ∑𝑊𝑈,𝑓 < 𝜆  then 

                𝑐𝑈,𝑓 = 𝑐𝑈,𝑓−1 

        end if 

(4.70) 

        if ∑𝑊𝐿,𝑓 < 𝜆  then 

                𝑐𝐿,𝑓 = 𝑐𝐿,𝑓−1 

        end if 

(4.71) 

Where ∑𝑊𝑈,𝑓 and ∑𝑊𝐿,𝑓 are the total number of white pixels in MU and ML at frame 

f, respectively.  

 

 

Fig. 4.65: Total number of white pixels in M. 

 

The backward extension E of the leg is estimated by finding the difference between 

𝑐𝑈 and 𝑐𝐿 (4.72). 

𝐸 = 𝑐𝐿 − 𝑐𝑈 (4.72) 

Fig. 4.66 shows the approximated extension of leg at all frames based on proposed 

method. The first minimum of E can be detected by finding the minimum value 

between x1 and x2, while the second minimum of E can be detected by finding the 

minimum value between x3 and x4, where x1 to x4 denote the first to the forth crossings 

of the threshold 𝜆5 = min(E)/2. 
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Fig. 4.66: Estimated maximum backward swings of leg. 

 

4.6.3.3 Synchronization of Video and IMU Data 

Fig. 4.67 shows the flowchart to synchronize video and IMU data. As the 

approximated leg extension E includes both the extension of right and left legs, it is 

needed to identify whether the person starts to walk with right or left leg before 

synchronization. 

 

 

Fig. 4.67: Flowchart to synchronize video and IMU data. 

 

When the IMU is attached to the right leg, and the person starts to walk with right 

leg, there is a forward swing before the first maximum backward swing, as shown in 

the shank and foot angle waveforms in Fig. 4.68. However, as shown in Fig. 4.69, 

when the person starts to walk with left leg, there is no forward swing before the first 

maximum backward swing. Therefore, the maximum angle between the first sample 

Extension E

Threshold = 
    

2
First minimum

Second minimum
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and the maximum backward swing B needs to be found. When there is no forward 

swing before the first maximum backward swing, the maximum angle between the 

first sample and B approaches zero (4.73). 

if m x(𝜃̅1 to  )  0 then 

   The person starts to walk with left leg. 

else 

   The person starts to walk with right leg. 

end if 

(4.73) 

The video v and IMU resampled angle 𝜃̅ can be synchronized such that the video 

at frame A is synchronized with the IMU sample 𝐵 minus a constant k (4.74). The 

constant k is to reduce the error. It is discovered using the validation method in next 

section (Chapter 4.6.3.4), k = 3 for shank angle, while k = 2 for foot angle. Fig. 4.68 

and Fig. 4.69 show the synchronized video and IMU data. 

𝑣𝐴+𝑖 ≡ 𝜃̅ −𝑘+𝑖     f   𝑖 =  0, 1, 2, … (4.74) 

If the person starts to walk with right leg, A = second minimum of E. If the person 

starts to walk with left leg, A = first minimum of E. The symbol ‘≡ ’ denotes 

synchronization. 

In (4.61), the IMU signal is down-sampled to 30Hz. This sampling rate is 

considered fast enough for human’s visual inspection. However, in case some 

applications such as automatic activity recognition that may require higher sampling 

rate, the original angle 𝜃 can be synchronized with the video starting from sample C 

(4.75). 

𝐶 = (𝐵 − 𝑘) ×
𝑓𝐼𝑀𝑈

𝑓𝑣
= (𝐵 − 𝑘) ×

100

30
 

(4.75) 
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Fig. 4.68: Synchronize video and IMU data using the second minimum of E when 

the person starts to walk with right leg. 
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Fig. 4.69: Synchronize video and IMU data using the first minimum of E when the 

person starts to walk with left leg. 
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4.6.3.4 Validation of Proposed Method using Blinking LED 

Inspired from the method in [73] which used blinking LEDs and RF transmitters 

to synchronize video and markers, a blinking LED and a RF transmitter are utilized 

to synchronize video and IMU data, for validation of the proposed method. 

As stated in Fig. 4.70, the IMU blinks LED and at the same time encodes LED flag 

= 1 in its data transmission to the PC. The video and IMU data can then be 

synchronized using the first blink of the LED and the first LED flag = 1. 

 

 

Fig. 4.70: Blinking LED to evaluate proposed method. 

 

The motion detection method in (4.63) is used to detect the blinking of LED. As 

shown in Fig. 4.71, when the LED is off, the number of white pixels in the detected 

motion is very low. When the LED blinks, the number of white pixels is very high. 

Therefore, the blinking of LED can be detected when the number of white pixels is 

more than a threshold 𝜆5 = 500. 
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with first LED flag = 1.



119 

 

 

Fig. 4.71: LED blink detection. 

 

The video and IMU data can then be synchronized such that the first LED flag is 

matched with the first blink of LED, as shown in Fig. 4.72.  

 

 

Fig. 4.72: Synchronize video and IMU data using first LED flag and first LED blink. 
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4.6.4 Results and Discussion 

Table 4.27 shows the synchronization error of the proposed method based on the 

maximum backward swings of leg detected using shank and foot angles. The 

synchronization error is the difference between the video frame with the first blink of 

LED and the synchronized time generated by the proposed algorithm. The 

synchronization of video and IMU data using either shank or foot angles is very 

reliable with low MAE of less than 1 frame. The maximum error is also low at about 

2 frames.  

As shown in the third plots of Fig. 4.68 and Fig. 4.69, the extension of leg E 

approximated in this research is noisy, but it can be used to detect the maximum 

backward swings of legs accurately. 

 

Table 4.27: Synchronization Error of Proposed Method. 

Subject 

Based on Shank Angle Based on Foot Angle 

Error (Frame) Error (ms) Error (Frame) Error (ms) 

MAE Max  MAE Max MAE Max MAE Max  

1 0.8 1.0 27 33 0.5 2.0 17 67 

2 0.9 2.0 30 67 1.0 2.0 33 67 

3 1.0 2.0 33 67 1.0 2.0 33 67 

4 0.6 2.0 20 67 0.3 2.0 10 67 

5 0.7 2.0 23 67 1.4 3.0 47 100 

6 1.1 2.0 37 67 1.3 2.0 43 67 

7 0.3 1.0 10 33 0.5 2.0 17 67 

8 0.9 1.0 30 33 0.8 2.0 27 67 

9 0.7 2.0 23 67 1.3 2.0 43 67 

10 1.0 1.0 33 33 1.0 2.0 33 67 

Average 0.8 1.6 27 53 0.9 2.1 30 70 

 

Table 4.28 shows several existing methods to synchronize video and inertial 

sensors. Bae et al. [70] used a synchronization hardware module to synchronize video 

camera and gyroscope signal. The main limitation is that the video camera and 

gyroscope signal must be connected through the hardware. However, the smartphone 

and the IMU are two separate systems and not connected together. The method by 
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Plotz et al. [71] had achieved very low error, but it also requires an external hardware, 

i.e. an Arduino board connected to personal computer (PC) to control seven LEDs for 

transmission time delay estimation.  

Compared to the existing methods above, an advantage of the proposed method is 

that it does not require external device or LED for synchronization. Validated against 

the LED-blinking method, the proposed method achieves very low synchronization 

error at an average of 0.9 frames. There are also existing synchronization methods 

which do not require external hardware. Cippitelli et al. [72] used cross-correlation 

method to synchronize video and accelerometer data. Although horizontal hand 

gesture had very low synchronization error, the circular hand gesture had very high 

error. Liu et al. [40] recorded the inertial sensor data right after the Kinect SDK 

software received signal from the Kinect camera. Although [40] did not report the 

synchronization error, the method most likely consists of synchronization error due to 

the transmission time delay as stated in [71].  

 

Table 4.28: Comparison of Video-Inertial Sensor Synchronization Methods among 

Literatures. 

Reference Method  MAE (in frames) 

Bae et al.  

[70] 
Hardware Not reported 

Plotz et al.  

[71] 

Estimate camera-PC and sensor-PC 

transmission delay 

<1 

Cippitelli et al.  

[72] 

Cross-correlation 0.5 (horizontal gesture) 

>10 (circular gesture) 

Liu et al.  

[40] 

Record sensor data right after Kinect 

SDK software receives Kinect signal 

Not reported 

Proposed 

Method  

Maximum backward swing 

detection 

0.8 – 0.9 

 

As shown in Table 4.29, the average execution time to synchronize the video and 

inertial sensor data is 1.12 and 2.05 seconds for 15 frame/s and 30 frame/s videos, 

respectively, while the synchronization errors are almost the same. The computation 

time is considered long, and it is mainly because the proposed method requires all 
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video frames to be processed to obtain the threshold = min(E)/2 as shown in Fig. 4.66. 

The frame-by-frame reading of the video in MATLAB consumes most of the 

computation time, compared to the processing of the algorithms.  

There are several methods to reduce the computation time drastically, such as by 

calculating the threshold = min(E1→N/2)/2 instead of threshold = min(E1→N)/2 where N 

is the total number of frames. However, the 2-second computation time is not a 

problem as the proposed method is designed to assist clinicians in walking assessment, 

which does not require real-time processing. 

 

Table 4.29: Average Execution Time and Synchronization Error of Proposed Method 

at Different Frame Rates. 

Frame rate (frame/s) 15 30 

Average execution time (s) 1.12 2.05 

Mean absolute synchronization 

error (ms) 

Shank 32 27 

Foot 25 30 

The original video (30 frame/s) is down-sampled to 15 frame/s for comparison.  

 

Fig. 4.73 shows a paused video of a person walking with the synchronized shank 

and foot angle shown at the right side. This allows the clinicians to know the shank 

and foot angles for possibly better visual inspection of the gait. The full video of Fig. 

4.73 is attached with the published journal and can be downloaded at [114]. 

 

 

Fig. 4.73: Synchronized output for visual inspection paused at 100th frame. 

 

In this research, two IMUs were used, but more inertial sensors can be added for 

full body tracking as long as they are temporally synchronized. Additionally, 
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synchronized force sensitive resistors (FSRs) used in Section 4.4 can be added for gait 

phase detection. With 3-D angle estimation algorithm such as [34], [80], and the 

proposed method in Chapter 4.2, the 3-D joint angle information could also be 

provided to the clinicians for visual inspection. Other than providing the joint angle 

information, gait phase information can be added to the video.  

A limitation of the proposed method is that the video must be captured from the 

side of the user for maximum backward swing detection. The proposed method cannot 

be used to detect maximum backward swing of the subject if the video is captured from 

the front. Additionally, the proposed method can only support one user. If there are 

two people moving in the video, the proposed method cannot differentiate which user 

is wearing the IMUs. 

 

4.6.5 Summary 

A method to temporally synchronize video and IMU data was proposed. The 

proposed method is based on motion detection, and it had achieved very low errors 

without having access to the camera and inertial sensor’s internal system clocks. The 

main idea of the proposed method is to detect and match the maximum backward 

swing of the leg for synchronization. The mean absolute synchronization error of the 

proposed method was low at ±1 frames. The synchronized joint angle information 

obtained from the IMUs was placed side-by-side to the video for clinicians to perform 

visual inspection. The main limitation is that the video must be captured from the side 

of human for maximum backward swing detection. The proposed method cannot be 

used to detect maximum backward swing of the subject if the video is captured from 

the front.  
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4.7 Stride Length Estimation based on a single Shank’s Gyroscope 

4.7.1 Introduction 

Stride length is one of the important measurements in gait analysis. Several IMU-

based stride length estimation algorithms are available in literature. Some algorithms 

are dependent on personalized parameters such as the height, leg length, and/or weight, 

which vary among different users [8] [9]. This requires each user to key in their 

personalized parameters manually for stride length estimation. There are also several 

algorithms that describe the relations between the acceleration and/or step frequency 

for stride length estimation, without requiring the user to input any data manually [10]-

[14]. Additionally, some researchers employ machine learning methods such as deep 

convolutional neural network [15] and long short-term memory [16] for stride length 

estimation, but machine learning methods require high computations. 

In this chapter, an algorithm to estimate the stride length based on a single shank’s 

gyroscope is proposed and validated against Vicon optical motion capture system. 3 

new important features for stride length estimation are proposed based on a linear 

kinematics equation.  

 

Chapter 4.7 is covered by the following publication with minor amendment: 

Y. C. Han, K. I. Wong and I. Murray, "Stride Length Estimation Based on a Single 

Shank's Gyroscope," in IEEE Sensors Letters, vol. 3, no. 10, pp. 1-4, Oct. 2019. 

doi: 10.1109/LSENS.2019.2942177 

© 2019 IEEE 

 

4.7.2 Experimental Setup 

The same dataset with IMUs and Vicon in Chapter 4.2 is used. The angle direction 

is as shown in Fig. 4.41. As shown in Fig. 4.1, two IMUs, each consisting of a tri-axial 

accelerometer and a tri-axial gyroscope (MPU6150) sampling at 100Hz, were strapped 

at the outer side of the thigh and shank using Velcro straps. For validation, the markers 

of the Vicon system were placed on the IMUs. The 3-D movement of the thigh and 

shank were tracked simultaneously using IMUs and Vicon system. Each subject was 

requested to stand still for 3 to 5 seconds, then walk straight on a flat surface for 3 to 

5 steps, and finally stood still for another 3 to 5 seconds. A total of 30 normal walking 

trials (132 strides) from 10 healthy adults (male: 8; female: 2; age: 22-35; height: 160-

177cm; weight: 55-94kg) is used in this chapter.  
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4.7.3 Proposed Method 

Each gait cycle is extracted from one maximum shank angle to another, as shown 

in Fig. 4.74. The ideal distance travelled is measured with Vicon based on the position 

of markers placed on the shank.  

The kinematic equation states that 𝑠 = 0.5(𝑢 + 𝑣)𝑡, where 𝑠 is the displacement, 

𝑢 is the initial speed, 𝑣 is the final speed, and 𝑡 is the time elapsed. It must be noted 

that this is a linear kinematic equation. A linear kinematic equation is attempted 

because the distance travelled during the shank’s extension is almost linear, as shown 

in Fig. 4.74. Therefore, there are 3 variables (𝑢 , 𝑣 , and 𝑡) that are needed to be 

identified to estimate the displacement, i.e. the stride length. 

 

 

Fig. 4.74: Gait cycle extraction based on shank angle, and the distance travelled 

measured with Vicon. 

During the shank’s flexion, the distance travelled changes slightly as shown in Fig. 

4.74. Therefore, the model in Fig. 4.75 can be drawn such that the central position of 

shank’s IMU remains during the shank’s flexion, while the gyroscope z-axis would 

measure the angular velocity 𝜔𝑧. According to Fig. 4.75, the initial speed 𝑢 can be 

estimated as (4.76). 

𝑢 = 𝑟𝜔 𝑧,flexion 

(4.76) 
𝜔 𝑧,flexion =

1

𝑛𝜃min
∑ 𝜔𝑧,𝑛

𝑛𝜃min

𝑛=0
 

Where 𝑟 is the radius as shown in Fig. 4.75. Since the IMU is strapped on the shank, 

and the foot is mostly on the ground during shank’s flexion, 𝑟 can be defined as the 
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distance between the IMU and the joint of ankle. 𝜔 𝑧,flexion  is the average angular 

velocity of the leg during shank’s flexion. 𝑛𝜃min is the 𝑛th sample when the shank angle 

is minimum. 

 

 

Fig. 4.75: Model to convert angular velocity to horizontal speed. 

 

When the shank extends, the position of IMU changes, which means the model in 

Fig. 4.75 is not valid during shank’s extension. However, when looking at a shorter 

time scale, i.e. sampling time ∆𝑡, it can still be assumed that the central position of 

IMU remains from one sample to the next because the change in IMU position is small. 

Therefore, the final velocity 𝑣 can be estimated as (4.77). The derivation of (4.77) is 

based on Fig. 4.76. 

    𝑣1 = 𝑣0 + 𝑎0∆𝑡 

    𝑣2 = 𝑣1 + 𝑎1∆𝑡 

    𝑣3 = 𝑣2 + 𝑎2∆𝑡 

    𝑣  = 𝑣3 + 𝑎3∆𝑡  

          = (∑ 𝑣𝑛
𝑁−1
𝑛=0 ) + ∆𝑡(∑ 𝑎𝑛

𝑁−1
𝑛=0 )       

         ≈ (∑ 𝑟𝑛𝜔𝑧,𝑛
𝑁−1
𝑛=0 ) + ∆𝑡(∑ 𝑎𝑛

𝑁−1
𝑛=0 ) + ε (4.77) 

Where 𝑁  is the total number of samples collected within a stride. The radius 𝑟𝑛 

changes from time to time and is not equal to the distance between IMU and ankle 

joint because the leg is swinging above the ground. 𝑎 is the horizontal acceleration. 𝜀 

is the error mainly resulted from the assumption. 

 

IMU

Assume that the central position of IMU remains 

𝜃
Average angular velocity 𝜔 𝑧
measured by gyroscope

Average horizontal speed 𝑣̅

𝜔 𝑧

𝑣̅

𝑣 =
𝑠

𝑡
=
𝑟𝜃

𝑡
= 𝑟

𝜃

𝑡
= 𝑟𝜔𝑧
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Fig. 4.76: Estimation of final velocity. 

 

Substituting the estimated initial and final velocity into the kinematic equation, it 

is obtained that:  

𝐿 = 0.5(𝑢 + 𝑣)𝑡  

 
= 0.5 (𝑟𝜔 𝑧,flexion + (∑ 𝑟𝑛𝜔𝑧,𝑛

𝑁−1

𝑛=0
) + ∆𝑡 (∑ 𝑎𝑛

𝑁−1

𝑛=0
) + 𝜀) 𝑡extension 

(4.78) 

Where 𝑡 x  ns  n = (𝑁 − 𝑛𝜃m n)∆𝑡, is the duration of the shank’s extension. 𝑡 x  ns  n, 

rather than the total duration of the stride, is used because the horizontal distance 

increases almost linearly during the shank’s extension, while remains during the 

shank’s flexion. 

As the IMU is not able to measure the horizontal acceleration 𝑎𝑛 directly due to 

the change in IMU axes direction during shank’s movement, it is replaced with an 

unknown value which would be estimated automatically using an optimization 

algorithm. As 𝑟𝑛, i.e. the distance between the IMU and ground with shank angle at 

𝑛𝑡ℎ sample, keeps changing from time to time, it is also replaced with an unknown 

value to be estimated using the optimization algorithm. The value of 𝑟, i.e. the distance 

between IMU and ankle joint, is also estimated using the optimization algorithm 

although it can be measured but varies among different participants. Therefore, the 

proposed stride length estimation equation is derived as (4.79), where 𝑏 is the bias to 

reduce error. 

𝐿proposed,1 = (𝑤1𝜔 𝑧,flexion + 𝑤2∑ 𝜔𝑧,𝑛
𝑁−1
𝑛=0 + 𝑏1)𝑡extension+𝑏2 (4.79) 

As this had become an optimization problem, the stride length is estimated by 

weighing each feature (4.80).  

𝐿proposed,2 = 𝑤1𝜔 𝑧,flexion +𝑤2∑ 𝜔𝑧,𝑛
𝑁−1
𝑛=0 +𝑤3𝑡extension+𝑏 (4.80) 

The optimization algorithm used in this research is the genetic algorithm in 

MATLAB. The optimization is run for 100 trials to choose the weights and bias that 

give the minimum error. The loss function is a RMSE. Other than the maximum 

number of generations is increased to 2000, other parameters are set as default values 

𝑣0 𝑣𝑣1 𝑣2 𝑣3

 𝑣   = ∑ 𝑣𝑛
𝑁−1
𝑛=0 + ∆𝑡 ∑ 𝑎𝑛

𝑁−1
𝑛=0      

       ≈ ∑ 𝑟𝑛𝜔𝑧,𝑛
𝑁−1
𝑛=0 + ∆𝑡 ∑ 𝑎𝑛

𝑁−1
𝑛=0 +  

Velocity:

Sample: 0 41 2 3

∆𝑡Sampling time,
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such as population size = 50, elite count = 0.05 × population size, and crossover 

fraction = 0.8. The optimization is terminated when the average change in the fitness 

value is less than 10-6. 

 

4.7.4 Results and Discussion 

Fig. 4.77 shows the best fitness value versus generation for one of the optimization 

trials. The proposed methods took about 300 generations to converge to the best 

results, while 𝐿Abhayasinghe and 𝐿Diaz  took around 150 generations. However, the 

proposed methods obviously have lower errors than existing methods. 

 

 

Fig. 4.77: Best fitness value versus generation. 

 

Fig. 4.78 shows some of the estimated stride lengths with the ground truth from 

gold standard Vicon. The mean absolute error (MAE) is counted as (4.81), while the 

standard deviation (STD) of the error is counted as (4.82). S denotes total number of 

stride lengths. AE is the absolute error (4.83). 

MAE = 
1

S
∑ AE𝑠
S
𝑠=1  (4.81) 

STD = √
1

S
∑ |AE𝑠 −MAE|S
𝑠=1  (4.82) 

AE𝑠 = |𝐿estimated,𝑠 − 𝐿Vicon,𝑠| (4.83) 

 

Referring to Table 4.30, 𝐿proposed,2 (4.80) has an average of 0.5cm lower accuracy 

compared to 𝐿proposed,1  (4.79). Ideally, 𝐿proposed,1  should have higher accuracy than 

𝐿proposed,2  as 𝐿proposed,1  follows the kinematic equation. However, mainly due to the 

lack of direct horizontal acceleration information from the shank’s IMU, 𝐿proposed,1 is 

not the exact kinematic equation. Although this horizontal acceleration information is 

missing, stride length can still be estimated accurately with a low absolute mean error 

of 4.2cm by weighing each important feature in 𝐿proposed,2. 
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Fig. 4.78: Estimated stride lengths. 

 

Table 4.30: Comparison among different methods. 

Estimation Error 𝐿proposed,1 𝐿proposed,2 𝐿𝐴𝑏ℎ𝑎𝑦𝑎𝑠𝑖𝑛𝑔ℎ𝑒 𝐿Diaz 𝐿𝑆𝑖𝑗𝑜𝑏𝑒𝑟𝑡 

MAE (mm) 46.93 41.94 69.71 76.24 80.20 

STD (mm) 57.67 54.51 88.19 93.79 49.20 

 

The IMU data collected in this research is also used to compare the proposed 

method with the existing algorithms listed in Chapter 2.4.6, which are based on the 

thigh or shank’s IMU data. However, IMU data for upper part of body was not 

collected meaning that it is unable to replicate the existing methods which are based 

on the IMU data collected at the upper part of body. 

Referring to Table 4.31, the proposed method also has the lowest MAE compared 

to 𝐿Abhayasinghe, 𝐿Diaz, and 𝐿Sijobert. It must be noted that the results for the proposed 

method, 𝐿Abhayasingheand 𝐿Diaz are obtained and compared by finding the generalized 

parameters 𝑤  and 𝑏  for all participants through optimization algorithm instead of 

using personalized parameters. For example, in 𝐿Abhayasinghe  (2.13), if personalized 

parameters 𝑤1 = 2× length of left leg, and 𝑤2 = 2× length of right leg are used, a lower 

mean error of 5.4cm was reported [51].  

Table 4.31 shows different features used for different methods. An advantage of 

the proposed method is that it does not require an accurate estimation of angle. The 

only needs of angle in the proposed method is for gait cycle extraction, which can also 

be accomplished with non-accurate drifted angle or zero crossings of angular velocity. 

Instead of using angle as a feature which is required in existing methods 𝐿Abhayasinghe, 

𝐿Diaz and 𝐿Sijobert, the mean and summation of raw angular velocity collected from the 

Vicon
Proposed 1
Proposed 2

Abhayasinghe
Diaz
Sijobert
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IMU are used. This means that the proposed method is computationally efficient 

because no data filtration is required while angle estimation would have required more 

complex computations. 

 

Table 4.31: Different types of features used in different methods. 

Method Features 

𝐿proposed,1 𝜔 𝑧,flexion ∑𝜔𝑧 𝑡extension  

𝐿proposed,2 

𝐿𝐴𝑏ℎ𝑎𝑦𝑎𝑠𝑖𝑛𝑔ℎ𝑒 𝜑max 𝜑min   

𝐿Diaz 

𝐿𝑆𝑖𝑗𝑜𝑏𝑒𝑟𝑡 𝜃 𝑎𝑥 𝑎𝑦 𝜔𝑧 

𝜔𝑧  denotes shank’s angular velocity, 𝜑 denotes thigh angle, 𝜃 denotes shank angle, 

and 𝑎 denotes acceleration measured by the IMU. 

 

4.7.5 Summary 

A new method to estimate the stride length based on a single shank’s gyroscope 

was proposed. In this research, it was identified that the average shank’s angular 

velocity during the shank’s flexion and the summation of shank’s angular velocity 

during the whole gait cycle are two important features for stride length estimation. The 

duration of the shank’s extension, rather than the whole duration of the gait cycle, was 

used as the third feature because the horizontal distance of the shank increased mostly 

during the shank’s extension. The proposed method had a low MAE of 4.2cm with a 

standard deviation of 5.5cm.  
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CHAPTER 5 – CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The main purpose of this thesis is to develop gait analysis methods using IMUs. 

Currently, gait diagnosis is done based on visual inspection which is subjective and 

dependent on the experience of clinicians, while other existing technologies such as 

optical motion capture system are expensive. Therefore, in this research, low-cost 

IMUs were designed and constructed to perform gait analysis autonomously. The 

gyroscopes and accelerometers in the IMUs were synchronized and sampled at 100Hz. 

The wireless data transmission loss of the IMUs was almost 0% when the IMUs and 

dongle were 5 meters apart. When the IMU-dongle separation was 19 meters, the data 

loss was also low at 1 to 2%.  

After the IMUs were built, a 3-D thigh and shank angles estimation algorithm, 

called 2-point error estimation algorithm, was proposed. This algorithm estimated the 

gyroscope drifting error based on pre- and post-calibration, and assumed that the 

drifting error was linear. Validated against the gold standard Vicon optical motion 

capture system in Curtin Australia’s Motion Analysis Lab, the proposed algorithm 

resulted in low average RMSE of 2.9º, 3.6º, and 4.2º for flexion/extension, 

adduction/abduction, and internal/external rotation angles of the thigh and shank, 

respectively. The estimated angle waveforms patterns were also very similar to that 

from Vicon system without smoothening because the proposed algorithm did not 

require the gyroscope data to be filtered. In term of computational efficiency, only two 

“atan2()” functions were need to be computed throughout the whole walking motion, 

and 7 additions and 4 multiplications to estimate each angle. 

The estimated 3-D thigh and shank angles were then used as features of machine 

learning algorithms (random forest, k-nearest neighbor, support vector machine, and 

perceptron) to design a standalone gait diagnosis device. The standalone device was 

built using low-end microcontrollers to reduce the cost (total cost of device ≈US$8). 

It lit up green and red LEDs when the gait was normal and abnormal, respectively. 

Perceptron was chosen for the device as it resulted in the top two highest accuracy, 

and required the least amount of memory and computations among the machine 

learning algorithms compared. It was discovered that the adduction/abduction angle 

was able to improve the classification accuracy, but internal/external rotation angles 

of the thigh and shank did not help to improve the accuracy in this research. The 

combination of the thigh and shank’s flexion/extension angles, and shank’s 
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adduction/abduction angle were selected as the input features of the perceptron as this 

combination resulted in the highest mean classification accuracy at 96.5%. This 

standalone device has great potential in real-time identification of abnormal gaits 

without the presence of medical practitioners. 

Additionally, a novel gait phase detection method for normal and abnormal gaits 

was proposed. The local maxima, minima and zero crossings of the shank’s angular 

velocity and acceleration were used to detect heel strike, toe strike, and toe off. Instead 

of classifying the whole stride, some unique waveform patterns of the 

normal/abnormal shank’s angular velocity were identified to classify the heel strike 

and toe strike as normal/abnormal. This may provide insights into the shank’s angular 

velocity waveform patterns that are human-understandable to assist clinicians in 

walking evaluation. Comparing with an existing method that placed force sensitive 

resistors under the foot to detect gait phases, the mean absolute sample difference 

between the proposed and existing methods was low at around 2 sample difference, 

i.e. 20ms difference. The classification accuracy of the proposed method was also high 

at about 94.4%. The main advantage of the proposed method was both normal and 

abnormal gaits were considered, while many existing IMU-based gait phase detection 

methods considered normal gaits only. 

Moreover, a method to mathematically express the normal and abnormal thigh and 

shank angle waveforms was proposed. The angle waveforms were time and amplitude 

scaled before performing DFT. By doing so, the reconstructed waveforms were able 

to represent the original waveforms more accurately than conventional method without 

increasing the number of harmonics. As a comparison, when the number of harmonics 

was 10, the CORR of the reconstructed waveforms based on proposed method was 

above 99.9% for normal and abnormal thigh and shank angles, while the conventional 

method achieved lower CORR about 99.5% for normal angles and below 99.8% for 

abnormal angles. The proposed method used 4 to 14 less DFT computations than 

conventional method to achieve the same CORR. The reconstructed waveforms based 

on proposed method were also able to detect normal and abnormal gait phases more 

accurately than the conventional method. The true positive rate of the gait multi-class 

classification was also increased by 5 to 7% when distinctive regions of the angle 

waveforms were enlarged. 

Furthermore, a method to temporally synchronize video and IMU data was 

proposed. The synchronization was achieved by matching the maximum backward 
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swing of the leg detected from video and IMU. The detection of the maximum 

backward swings of leg from videos was achieved by comparing the motion between 

the upper and lower body of the person. The backward swings detection from IMUs 

was done by finding the local minima of the shank or foot angle. This proposed method 

was validated by blinking an LED connected to the IMUs and encoding an LED flag 

in the IMU wireless data transmission at the same time. The absolute synchronization 

error of the proposed method was low at 0±2 frames. The synchronized joint angle 

information obtained from the IMUs was placed side-by-side to the video for the 

clinicians to perform visual inspection.  

Finally, a new stride length estimation algorithm based on a single gyroscope 

attached to the shank was proposed. It was noticed from the Vicon optical motion 

capture system that the absolute horizontal position of reflective markers placed on the 

shank’s IMU remained during the shank’s extension, then increased almost linearly 

during the shank’s flexion. By applying a linear kinematics equation, 3 new features 

that could be extracted from a single shank’s gyroscope were identified for stride 

length estimation. The new features are the average angular velocity during shank’s 

flexion, the summation of angular velocity during one whole stride, and the duration 

of the shank’s extension. Validated against the Vicon system, this proposed method 

had resulted in a low MAE of 4.2cm with a standard deviation of 5.5cm. 

It can be concluded that the accuracies of the IMUs in gait analysis are comparable 

to gold standard such as Vicon optical motion capture system when proper algorithms 

are used. Other than having high accuracies, the proposed methods have lower 

computational requirements, and thus can be applied on low end embedded devices to 

reduce the costs. Both applied and fundamental researches have been presented in this 

thesis, and the main contribution is an IMU-based system that detects and classifies a 

selection of gait anomalies to assist the medical practitioners in early diagnosis of 

walking disorders. 

 

5.2 Future Work 

The proposed 3-D angle estimation algorithm was designed and only tested to 

estimate 3-D angles of a person conducting one activity, i.e. walking in a straight line. 

The gyroscope drifting error was compensated by assuming the error drifting direction 

was linear. Although this assumption was suitable to estimate the 3-D angles of a 

person walking, it might not be the case if the person performed a series of motions 
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such as sit, stand, jump, walk, then run. The error drifting direction is expected to be 

linear as long as the user is performing the same activity, then changes gradient when 

the user performs a different activity. The future direction is to extend the proposed 

method to estimate 3-D angles when the user performs multiple activities. A possible 

solution is that the angles could be updated using accelerometer data when certain 

conditions are fulfilled, instead of just during the person is standing.  

The standalone gait diagnosis device could only diagnose certain types of walking 

patterns because the perceptron was only trained with 4 patterns. It was shown that the 

accuracy of the device improved when more types of walking pattern were involved 

in the training. However, at the time of writing, there are still very little public gait 

dataset for training. The collaboration with hospitals is essential in collecting different 

types of abnormal walking patterns, not only for the improvement of the standalone 

device, but to make the dataset available to the public.  

This thesis presented heel strike, toe strike and toe off detections using a single 

shank’s IMU. However, heel off detection using IMUs has yet to be discovered. As of 

today, the detection of heel off using IMUs is still not well-researched. In future, the 

IMU can be placed on the foot in an attempt to detect heel off, as well as other gait 

phases. It is recommended to place the IMU on the foot rather than the shank for future 

gait phase detection because the toe and heel are parts of the foot, and the IMU can be 

built inside the shoes for long term monitoring. 

It was demonstrated that the harmonic components of the scaled waveforms based 

on proposed method can be used to increase the gait classification accuracy when 

distinctive regions of the waveforms were extracted. Future works include but not 

limited to extracting multiple regions of the waveforms, improving how the regions 

are being extracted, and resampling the regions with different ratios. These suggested 

future works are expected to further improve the accuracy of gait phase detection and 

gait classification. 

The front view of the user is essential for visual inspection, but the proposed 

synchronization method can only synchronize IMU data and video that is captured 

from the side view of the users for maximum backward swing detection. In future, it 

is planned to temporally synchronize the video and IMU data when the video is 

captured from the front. It is expected that the motion of the users as seen from the 

front view camera will be increased horizontally and vertically for each walking step 

increment. The horizontal or vertical change in motion may be used for 
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synchronization.  

The proposed stride length estimation was based on an assumption that the 

gyroscope axis direction is always pointing horizontally sideway to measure the 

flexion/extension angular velocity. Although this assumption was proven accurate for 

normal stride length estimation, abnormal gaits may cause the gyroscope axis direction 

to change. In future, pre-processing of the gyroscope data is needed to calculate the 

resultant flexion/extension angular velocity in the global axis, i.e. pointing horizontally 

sideway. The calculations of the resultant angular velocity may require tri-axial 

gyroscope and accelerometer measurements. 
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