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ABSTRACT 

 

Nanomaterials are widely used in medical, pharmaceutical and industrial areas. People 

are exposed to nanomaterials by ingestion, respiration or skin contact. This body of 

work focused on skin contact. Nanomaterial exposure can be either accidental or 

intentional. Understanding how nanomaterials interact with the skin is essential to both 

avoiding potential toxicity in accidental exposure and to harnessing the potential of 

nanomaterials for targeted drug delivery. An extensive literature review focusing on 

current research of nanomaterial skin exposure and topical nanoformulations is 

provided in chapter 1.  

This thesis is divided into two parts. The first part is an investigation of the effect of 

undesirable nanomaterial topical exposure on penetration into the skin. The first project 

of the first part provided satisfactory information of the visualisation of nanomaterial 

exposure on the compromised skin. Effects of acetone and tape stripping pre-

treatments were investigated on porcine skin penetration of the nanomaterials. 

Hydrophilic CdTe/CdS quantum dots (QDs) were used as a model of the nanomaterials. 

Multiphoton tomography equipped with fluorescence lifetime imaging (MPT-FLIM) was 

used to capture the existence of QDs in the skin following the exposure. We revealed 

that the QDs were mostly deposited on the skin surface and furrows. There was no skin 

penetration of QDs detected on both types of compromised skin. However, some QDs 

were shown on the upper stratum granulosum (SG) as a consequence of stratum 

corneum (SC) removal by tape stripping.  

The project progressed to investigate the influence of age and anatomical site on QDs 

penetration into porcine skin. Adult, weanling and newborn pigs were selected to 

represent age differences. Two anatomical sites on each donor (ear and abdomen) 

were examined by MPT imaging, with a focus on the keratinocytes and follicles. MPT 

images showed that the QDs were in the furrows and follicles, without further 

penetration. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of 

cadmium provided quantitative confirmation that most QDs were deposited in the 

follicles (47-79%). The QDs follicular deposition at 24h was higher in ears than 

abdomen for adult and weanling pig ears, but similar for these anatomical sites in 

newborn piglets. This is associated with the high follicle density and small follicle 

diameter of the NBPS compared to the smaller density of much larger follicles on the 

adult pig skin (APS). Density and diameter of follicles in association with age of pigs 

and application site influenced the amount of QD deposited in follicles. In addition to 
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that, the structure of the SC, follicle density and diameter of newborn pig skin (NBPS) 

is similar to human skin suggesting that NBPS is an appropriate model for human skin 

in the evaluation of topical applications of a range of chemicals including nanosystems. 

The first part of this thesis demonstrates the impact of different treatments on the skin, 

and different skin conditions, to nanomaterial skin penetration. It indicates that exposing 

the skin to nanomaterials would not lead to skin penetration unless the SC and other 

supporting skin barriers are significantly perturbed. The topically applied nanomaterials 

were localised in follicles and furrows without further penetration. In addition, 

differences of follicle density and diameter influence the degree of nanomaterial 

deposition.  

The second part of the thesis focused on the development and evaluation of novel 

nanocarriers for skin delivery of resveratrol (RSV), a potent natural antioxidant.  

Nanoformulations of a lipid-based system, a micellar system and a microemulsion were 

developed and evaluated to initiate the nanoemulsion formulations. The role of terpenes 

(eugenol, D-limonene and eucalyptol) as the oil phase was also investigated. We 

successfully developed nanoemulsions for RSV skin delivery, meeting the quality 

criteria of clarity (aesthetic appearance), simplicity (in fabrication), stability and 

efficiency (skin penetration and permeation). The penetration of RSV into the skin was 

conducted in order to assess RSV deposition in SC and in area of epidermis, dermis, 

and follicles (E+D+F). The permeation of RSV through the skin was also carried out to 

evaluate the cumulative amount of RSV in the deeper area of dermis. Thermodynamic 

activity plays an important role on the degree of RSV penetrate into and permeate 

through the skin for non-terpene nanoformulations. The more soluble RSV in the non-

terpene nanoformulations, the less RSV to penetrate into/permeate through the skin. 

Terpene addition was also examined. The formulation involving eugenol and triacetin 

(ETKTP) showed the highest skin deposition (2.342 ± 0.269 µg/cm2). In addition to this, 

we also suggest that terpene addition enhanced the permeation by disrupting the SC 

intercellular lipids. The amount of RSV permeated through the skin was in correlation 

with the increased lipophilicity degree of the terpenes. The nanoemulsions containing 

D-limonene (Log P: 3.4) showed the highest cumulative amount at 8 hour (4.585 ± 

0.936 µg) followed by formulations containing eucalyptol (Log P: 2.5) (4.036 ± 1.125 

µg), and eugenol (Log P: 2) (0.918 ± 0.126 µg). 

The study was extended to investigate the potential of the combination of chemical and 

physical enhancers on optimizing the RSV permeation through the skin. RSV saturated 

aqueous solution and two nanoformulations (TKTP and ETKTP) were examined. 
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Magnet application (magnetophoresis) and microneedles (MN) were the physical 

enhancers investigated alone and in combination. Magnet application enhanced the 

permeation of RSV in a saturated aqueous solution at 1.88-fold but did not affect 

permeation from the nanoformulations. MN significantly enhanced skin permeation of 

RSV in all formulations. TKTP with MN showed the highest cumulative amount of RSV 

(37.075 ± 7.150 µg). The combination of magnetophoresis and MN enhanced the 

deposition of RSV in the epidermis, dermis and follicles compared to MN alone for both 

nanoformulations, but it did not enhance RSV permeation through the skin. This 

suggests that magnet application in combination with MN results in enhanced lateral 

diffusion of RSV of nanoformulations in the skin. 

This thesis makes a significant contribution to a better understanding of the behaviour 

of nanomaterials in the skin. We confirmed that solid nanoparticles accumulate on the 

skin furrows and follicles, with minimal potential for toxicity.  We also developed a novel 

nanoemulsion delivery system for skin delivery of the natural antioxidant RSV. 

Nanoemulsions hold great promise for a range of cosmeceutical and dermatological 

purposes. 
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1 Chapter 1. Nanosystems in the Skin:             
A Literature Review 

 

1.1 Skin  

1.1.1 Terminology and functions 

Human skin is the outermost and the third largest organ of the body after the 

gastrointestinal tract and the lung, with area of approximately 1.6 m2 for adults and 

around 8% of the body weight.1-3 Skin provides an effective physical protection 

against the entrance of foreign substances and microbes, as well as the excessive 

water loss from the body. As a flexible interface between the body and outer 

environment, skin also protects the body from mechanical contact friction. Having 

nerve fibres and endings, skin facilitates tactile senses, pain, itch and temperature-

related feeling. Skin is also an ideal model to investigate immunological responses of 

the allergens and the pharmacodynamics of antibodies.3 In addition, skin plays an 

important role to maintain body hydrodynamic balance and temperature by regulating 

sweat secretion. Advanced progress has been made in biometric technology for 

human identification involving not only fingerprints but also blood vessel patterns on 

the palm and fingers. Skin appearance is in relevance with aesthetic performance 

such as beautiful and healthy skin look. 2 

1.1.2 Skin structure 

Skin is comprised of two anatomical layers, the dermis (the inner layer) and epidermis 

(the outer layer).4  

Dermis (1-2mm thick) supports the skin mechanically.3-5 It consists of dense and 

elastic connective tissues of elastin and collagenous fibre where blood capillaries, 

nerve fibres and endings, lymph vessels, secretory glands (sweat/eccrine, 

sebaceous, and apocrine glands), and hair follicles are located.6 Sebaceous glands 

generate oils to lubricate the skin, whereas sweat glands regulate the hydrodynamic 

activity and produce sweat as a result of metabolic processes.  

Epidermis (50-100 µm) consists of mostly keratinocytes.5, 7 It is in a steady state 

between cell growth and cell desquamation, starting from proliferation at the stratum 

basale (SB) until terminal differentiation at the stratum corneum (SC). The squamous 

layers (strata) from upper dermis to the surface are the SB, stratum spinosum (SS), 

stratum granulosum (SG) and SC. The epidermis also contains melanocytes, that 
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produce melanin, the dark pigment which also acts as natural UV protection. Between 

the SB and dermis are two anatomical structures known as rete ridges and dermal 

papillae. Rete ridges are the extensions of epidermal layer to prevent the skin from 

shearing. Dermal papillae are uppermost of dermis layer containing blood vessels. 

Dermal papillae project from dermis to epidermis, while rete ridges project the 

opposite. Dermal papillae maintain adhesion between dermis and epidermis and 

provide nourishment to the epidermis and follicles. The SS is characterised by 

noticeable intercellular desmosomal connections. The SG consists of flattened 

keratinocytes and is rich in basophilic keratohyaline granules which contain fillagrin, 

an adhesive substance of keratin filaments. It also contains many lamellar bodies in 

which precursors of lipids (glucosylceramides, sphingomyelin, and phospholipids) are 

stored.8 The SC is comprised of more than 20 layers of polyhedral corneocytes 

interconnected with lipid. Basket-weave pattern was initially observed as SC pattern9, 

although this pattern was shown to be an artefact due to biopsy processing resulting 

in lipid loss.10, 11 A concept of “brick and mortar” describes the SC further as a two-

compartment system12. SC (10-20µm thick, 18-20 cell layers) consists of intracellular 

keratin filaments surrounded by protein-rich cell envelope which bond covalently to 

hydroceramide molecules of lipid envelopes, which are called corneocytes and act as 

bricks.5, 13 These bricks are embedded in extracellular lipids as ceramides, 

cholesterol, free fatty acids, cholesterol esters and cholesterol sulfate in a well-

arranged structure, which then called as mortar. The corneocytes are connected by 

protein structures called corneodesmosomes. Although proteins enrich the structure 

of SC, they do not affect the lipid organisation of SC.5, 14, 15 

 

Figure 1.1 Human skin structure schematic representation. The thickness of 
skin layer was approximately measured, it may vary based on the sites and 
degree of hydration. The figure is reproduced from Roberts et al.6 with 
permission.  
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1.1.3 SC and viable epidermis significance as skin barriers 

The skin provides a physical, microbial, immunological and thermal barrier mutual 

through the roles of SC, tight junctions (TJs), antimicrobial peptides, microbiomes, 

and immunological biochemical.16 With regard to skin drug delivery, the SC and TJs 

of  the epidermis play the most important roles. 

Despite the concept of a metabolically-dead, basket weave layer, and inert wrapping9, 

the complex structure of the SC is believed as the foremost skin barrier against the 

penetration of molecules, microbes, and nanomaterials as well as excessive loss of 

water from the body.17  The SC which is composed of dead cells embedded in 

metabolically active surroundings, facilitating enzymatic reactions, skin low pH, 

immune signaling, and natural moisturizing factors, in order to protect epidermis and 

maintain the skin integrity.18 

The intercellular lipid lamellae of SC form hydrophobic skin barrier by preventing 

water permeation including hydrophilic substances.19 Although water barely 

penetrates into the skin, the over hydration of SC is potential to disrupt the lipid 

structure in the SC thus allow substances to pass through SC.5, 20  

The skin barrier function is also supported by tight junctional complexes which are 

transitional desmosomes in the interconnection between the SC and SG.13, 21 TJ 

proteins are also located in between apical and basolateral cells, acting as a fence 

especially in the interfollicular epidermis.16, 22  Among three layers of SG in human skin 

epidermis, SG2 layer was reported to have functional TJs.23 TJs such as occluding, 

claudins, and zonal occluding proteins are essential in sealing the paracellular 

pathways to limit molecules movement within intercellular pores.16, 21, 24, 25   

1.1.4 Pathways of penetration 

1.1.4.1 Transepidermal pathway 

The transepidermal pathway has been widely reported as the prominent pathway for 

penetration of xenobiotics into the skin11, 26, with two potential routes. The transcellular 

(intracellular) pathway involves the passing of the substances directly through the SC 

and keratinocytes benefiting the water-rich corneocyte openings. It requires reasonable 

partition of the molecules into and through the corneocytes and intercellular lipids.27 

The tortuous intercellular pathway allows applied substances to penetrate within the 

lipid regions between the corneocytes in the SC.11 The thickness of the SC is about 10-

15 µm, however the tortuous pathway length is far longer (> 150 µm).28 There has been 

a perspective that hydrophilic solutes were thought to diffuse intracellularly (within the 
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watery domain close to the outer surface of intracellular keratin filaments), whereas 

lipophilic substances diffuse intercellularly through the lipid matrix.29 Whilst both 

pathways make important contributions, it is generally accepted that in general, the 

intercellular pathway contributes more in the skin penetration.30-32  

 

Figure 1.2 A schematic diagram of penetration pathways showing the major 
routes of intracellular, tortuous intercellular and follicular pathways. Adapted 
from Bolzinger et al.33 with permission 

1.1.4.2 Transappendageal pathway 

The transappendageal (shunt) pathways through sweat glands, sebaceous glands 

and hair follicles has been debated for many years.29 Initially, there was scepticism 

that these pathways contribute to the skin penetration of molecules due to their small 

surface area compared to skin surface. However, although hair follicles only occupy 

0.1% area of skin surface11, 26, several research groups have demonstrated the 

potential of the follicular pathway in skin penetration.34-48 Follicles can act as a 

potential reservoir that may be valuable for the penetration of prolonged existence 

deliverables, although the distinctive barrier properties of the SC covering the follicles 

may be very challenging to manipulate.35-37, 39, 49 Follicle density, follicle orifice 

diameter and follicle volume (related to the depth of follicles into the dermis) define 

the efficiency of follicle deposition of substances.50  

1.2 Nanomaterial topical exposure 

Nanotechnology has produced a range of nanomaterials which positively impact the 

scientific community, domestic and industrial environments in many ways.51 The main 

ways in which people are exposed to nanomaterials is by ingestion, respiration or skin 

contact. Our focus is skin contact that can occur intentionally (while applying a topical 

formulation), or accidentally through the exposure of nanomaterials in workplaces or 

other environments involving nanoparticle handling.52, 53  
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Topical exposure of unintended foreign nanomaterials and surface-retained formulations 

(such as sunscreen and decorative cosmetics) need to be scrutinised in order to assess 

environmental and human health risks such as skin damage or systemic toxicity due to 

the potential of undesired penetration into deeper skin layers.53-55   

1.2.1 Safety issues on nanomaterial exposure 

Titanium dioxide (TiO2) and zinc oxide (ZnO) have been widely used as inorganic 

physical UV reflectors in the form of nanoparticles (NPs) in sunscreen formulations 

and decorative cosmetics.52, 53, 56, 57 Formulations containing TiO2 and ZnO NPs have 

been developed to provide prolonged stay of the substances on the skin surface on 

repeated and daily basis application. Although the formulations are intended to 

remain on the skin surface, concerns have been raised whether these nanomaterials 

penetrate into the skin on application due to their nano-scale nature. The penetration 

of ZnO into human skin in the 5-day use of sunscreen on the beach condition was 

reported.57 Stable isotope 68Zn was used in the sunscreen to distinguish the Zn from 

the formulation and this element was detected in the blood and urine of the 

volunteers. The compromised skin condition adds more concerns regarding risk 

assessment of the formulations.58, 59 Baroli60 argued that the real beach conditions 

(UV exposure, high hydration as a result of sea water bath, accidental scratches, 

formulation type of sunscreen) might have an impact on the potential of ZnO and TiO2 

in the sunscreen to penetrate into the skin. This argument was supported by a theory 

that the function of the skin barrier may weaken while exposed to sunshine due to the 

biological UV ray-induced skin repair processes61. Several in vitro cell culture studies 

reported that the small size and larger surface area of NPs may result in higher risk 

of toxicity when in contact with viable cells.62, 63  ZnO NPs were reported to be taken 

up by primary human epidermal keratinocytes and induced cytotoxic and genotoxic 

responses.64 However the question remains, do these NPs penetrate the SC to reach 

viable cells? 

Quantum dots (QDs) are strong fluorescent semiconductor nanocrystals which are 

used for a wide range of purposes, from electronic displays to diagnostic tools.65, 66 

QDs are generally composed of cadmium/selenium (CDSe) as the core, with 

cadmium sulphide (CdS) or zinc sulphide (ZnS) as the shells. The skin can be 

accidentally exposed in occupational environments. Accidental topical exposure of 

QDs may potentially lead to QDs penetration into the skin. Ryman-Rasmussenn et 

al.67 suggested that cationic QDs penetrated into viable epidermis of weanling pig 

although no QDs were detected in the receptor chamber of flow-through cells. In this 
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ex vivo skin penetration study, they utilised different shape and surface charges of 

QDs in buffers pH 8.3 or pH 9.0. Jeong et al68 further reported that QDs penetrated 

through the SC, although the QDs were not detected in the deeper layer. 

1.2.2 Controversy of nanomaterial skin penetration 

Whilst the potential for nanomaterial (nanosolid) skin penetration remains an area of 

some controversy, the balance of research evidence demonstrates that nanoparticles 

exposed to intact skin do not penetrate into the skin. In vitro and in vivo studies on 

human skin revealed the absence of TiO2 penetration in the skin.69-71 Those studies 

confirmed that TiO2 micro-nanoparticles remained on the outer surface of SC and on 

the orifice of hair follicles after application. Roberts’s group72-76 has consistently 

shown that the ZnO NPs did not penetrate into human skin at any conditions of 

sunscreen application, such as flexing and massage74, occlusion and skin barrier 

impairment75, and a range of formulations applied72, 73, and repetitive administration 

of the sunscreen.76 Those studies applied multiphoton tomography-fluorescence 

lifetime imaging (MPT-FLIM), a state of the art of imaging technology allowing high 

resolution on imaging deeper skin layers. This technology allowed real-time imaging 

of the nanoparticles whilst also assessing metabolic changes on the treated skin that 

could identify penetration related toxicity. 

Prow et al.77 demonstrated that QDs applied topically in the pH 7 medium were 

located at SC and furrows with no evidence of penetration into the viable human 

epidermis. This contrasted with Ryman-Rasmussen et al.67 who reported the 

penetration of QDs into the viable epidermis of weanling pig. Prow et al.77 suggested 

that the penetration seen in the Ryman-Rasmussen study was likely due to the high 

pH medium used, which might perturb the SC allowing the penetration of QDs. 

1.3 Topical/transdermal delivery 

Topical/transdermal delivery offers opportunities to deliver drugs more effectively and 

conveniently compared to oral and parenteral administration.6, 29, 78-80 In contrast to 

oral administration, topical/transdermal delivery avoids the risks of drug instability and 

initial termination due to gastric acidity, intestinal and hepatic first pass elimination. 

Topical delivery offers the potential to target the active pharmaceutical ingredients    

(API) to the skin, whilst transdermal delivery can allow controlled plasma levels. The 

main obstacle of topical/transdermal delivery is the barrier of SC. The ideal 

characteristics of deliverables suitable for skin penetration are low molecular weight 



23 
 

(<500kDa), reasonable value of aqueous solubility and lipophilicity (log P 2-3), low 

melting point and are highly potent.6, 29, 81  

1.3.1 Factors affecting penetration 

Many factors contribute to the extent of molecules penetrate to and permeate through 

the skin and they can be categorised into material factors and skin factors. Material 

factors include physicochemical properties of the solute (such as molecular size, 

particle size, partition coefficient and solubility of solutes in SC) and the nature of 

vehicle/formulation (such as viscosity, vesicle/droplet size, elasticity/deformability, 

and composition).28, 29 The influence of vehicle is further discussed in the section 

1.3.3. Skin condition such as hydration state, age, anatomical site, ethnicity and 

gender may also play important roles in the skin penetration as it may affect the 

integrity of SC as the skin barrier. 

1.3.1.1 Molecular and particle size 

Molecular size determines maximum flux of skin permeation.82, 83 Maximum flux Is 

defined as the permeation rate of pure substance in a saturated solution where the 

vehicle or the substance does not affect permeation.84 Pugh et al. 85 demonstrated 

the inverse correlation between molecular size and skin permeation. Particle size has 

also shown the same tendency. The smaller the particle size, the higher permeation 

would be.6 In addition, shape, charge, surface properties (coating and ligand type), 

and aggregation state may also influence the penetration of particles into the skin.86 

1.3.1.2 Lipophilicity and solubility of solutes in SC 

Drug transport into the skin involves solute partitioning from the vehicle into the SC 

intercellular lipid, diffusion in the lipophilic environment of the SC and another partition 

to the more hydrophilic viable epidermis.87 The process is governed by the solubility 

and diffusivity of solutes. Sloan et al.88 argued that optimal skin penetration can be 

achieved by solutes that have enough oil and aqueous solubility. Roberts’s group 

showed that maximum permeability is dependent on the SC solubility of solutes. 89-92 

A parabolic dependence of maximum flux on lipophilicity has been established in 

solute log P 1-4 (moderately lipophilic solutes) range.93  

1.3.1.3 Skin hydration 

Skin hydration can increase the permeation of solutes by increasing SC solubility of 

the permeant, which then increases permeant partitioning from the vehicle to the 

skin.80, 94 An increase of skin hydration is inversely correlated with decrease of trans- 
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epidermal water loss (TEWL) values. Low skin hydration is shown in perturbed skin 

with high TEWL value. SC swelling and lipid rearrangement was also predicted 

although it has not been experimentally proved.80  

1.3.1.4 Age 

Intrinsic aging affects the skin structure95, resulting in dermo-epidermal interface 

flattening, reduced number of Langerhans cells and melanocytes, atrophic dermis, 

loosen keratinocytes, and the changes in collagen, elastin and glycosaminoglycans.28, 96 

Although there is a decrease in epidermal thickness, the SC thickness and the SC 

proteins remain the same.95, 97 However, the major lipid components in the SC, 

particularly ceramides, are significantly reduced with age.98 These changes in skin aging 

reduce the TEWL values.99 Despite these anatomical changes, permeation studies on 

estradiol, aspirin, caffeine, water, and nicotinates100, 101 suggested that skin aging did not 

alter the skin permeation of this range of solutes. In contrast, the paediatric skin barrier, 

especially in newborns is still developing, thus the skin tends to be more permeable than 

adults.102-105 This needs to be taken into account in developing a topical formulation aimed 

for children, particularly neonates, due to the possible risks of toxicity.  

1.3.1.5 Anatomical site 

Regional variation of 14C-labeled hydrocortisone skin permeation has been studied 

on human skin, with the scrotal area showing 42-fold permeation compared to the 

ventral forearm, while the heel showed the lowest permeation.106 A similar experiment 

was also conducted to investigate the effect of regional variation of 14C-labeled 

benzoic acid penetration in male volunteers at 6 anatomical sites, using tape stripping 

at 30 minutes after permeant application.107 The head and neck showed a three-fold 

permeability compared to back skin. Such variations may be due to the SC thickness, 

skin pH, follicle density and diameter, sebum production and skin hydration level.28  

1.3.1.6 Ethnicity and gender 

Extensive research has been done on the effects of ethnicity on skin penetration and 

the majority studies revealed no significant difference of skin penetration with different 

ethnic groups108-110. Moreover, inter-individual differences in a certain ethnic group 

are greater than the ethnic group difference.111    

Few studies reported the effect of gender on skin barrier function and those available 

provide results that are contradictory.112 Reed et al.113 suggested that there was no 

difference in skin barrier function between genders.  Whilst a couple of groups 

revealed that the barrier integrity of the human female skin reduced on pre-menstrual 
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period114, 115, Jacobi et al.112 further suggested that any differences of skin barrier 

structure in different genders were likely due to different hormonal states. This should 

be taken into consideration when selecting volunteers for skin penetration studies.  

1.3.1.7 Skin disorders 

Skin disorders such as eczema, psoriasis, ichtyosis, acne vulgaris, impetigo, herpes 

simplex and fungal infections reduce the skin barrier as they compromise the SC.116, 117 

However, the compromising effect can be resolved when the disorder is properly 

treated.  

1.3.2 Penetration/permeation enhancement  

Many smart strategies have been developed to overcome the barrier property of the 

SC thereby increasing the permeability of the skin to drug molecules.  Penetration 

into the skin is essential for skin targeting delivery, whereas sufficient permeation 

through the skin is required to access the cutaneous circulation and achieve 

transdermal delivery. 

Ideally, penetration/permeation enhancement techniques reduce the skin barrier 

temporarily, with the barrier then recovering to minimise the risk of foreign material 

penetration into the skin or the excessive water loss from skin and ultimately, to 

maintain skin function. Safety assessment must be considered due to the potential of 

skin irritation risk. Increasing the penetration or permeation can be done in two areas 

of development: alteration/modification of the intrinsic properties of the solute (by 

developing prodrugs, ion-pairs, supersaturated solution, eutectic systems, and 

complexes29); or influencing the solubility or diffusion of the solute in the skin.  

1.3.2.1 Physical penetration/permeation enhancement 

Penetration/permeation techniques involve physical enhancement techniques, 

chemical enhancement technique, or in combination of both techniques. The main 

objective of physical enhancement is to enlarge the skin pores to facilitate more 

penetration. Physical permeation enhancement techniques include the application of 

electric current, ultrasound magnetic field, and nano-microneedles. Iontophoresis 

(electric current) and sonophoresis (ultrasound) have been extensively investigated 

and are briefly described below. The focus here is on the physical enhancement 

techniques that have been investigated in this thesis: magnetophoresis and 

microneedles. 
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Iontophoresis 

Iontophoresis is a non-invasive physical permeation enhancement technique for 

ionised solutes involving an electromotive power generating small electric currents 

(0.5-20 mA).118, 119 The mechanism of enhancement involves electrorepulsion 

(electromigration), electroosmotic and permeabilisation under the influence of the 

electric field.120, 121 Electrorepulsion is the ion movement across the membrane 

whereby negatively charged low molecular drugs are repelled under the cathode 

while positively charged drugs are repulsed under the anode. Electroosmotic is based 

on volume flow on the negatively charged skin under the current flow121 In addition to 

enhancing low molecular drugs such as  lidocaine, ketoprofen, ketorolac, idoruxidine, 

vidarabine monophosphate, iontophoresis also successfully increased the 

permeation of peptides and proteins.122, 123   Iontophoretic delivery system has been  

commercially developed to deliver fentanyl (E-Trans™, Alza), lidocaine-epinefrine 

(LidoSite™, Vysteris-FDA approved) and iontocaine (Phoresor™, Iomed).121, 124 

 

Figure 1.3 Iontophoretic delivery design. Reproduced from Cross et al.119 with 
permission 

 

Sonophoresis 

Sonoporesis or phonophoresis is a physical enhancement technique using ultrasound 

in a range of 20kHz-16 MHz.125 Sonoporesis was firstly introduced by Fellinger and 

Schmidt in polyarthritis treatment using hydrocortisone cream.126 Low-frequency 

sonophoresis (frequency less than 100kHz) has shown transdermal enhancement      

of small molecules 1000-fold greater than therapeutic ultrasound (frequency of 1 
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Mhz).127 Low-frequency sonophoresis enhances the permeation in two different ways: 

simultaneous sonophoresis and pre-treatment sonophoresis. Simultaneous 

sonophoresis involves concurrent application of ultrasound and the deliverables, 

whereas pre-treatment sonophoresis requires ultrasound treatment before 

deliveraboles application. Skin heating128 and the formation and collapse of gaseous 

cavities, called acoustic cavitation129, were reported as the mechanism by which low 

frequency sonophoresis enhances permeation.  

Magnetophoresis 

Magnetophoresis is defined as a physical enhancement technique using magnetic 

fields.130 Magnetophoresis can be generated by static magnetic fields and pulsating 

magnetic fields. Pulsating magnetic fields generate an electrical current 

(electromagnetism), while static magnetic field do not131, thus, the mechanism 

underlying any biological activities due to the application of static magnetic field does 

not relate to electrical matters. In 1845 Michael Faraday stated that organic materials 

are diamagnetic which respond to magnetic field.131 This may produce diamagnetic 

repulsion whereby a topically applied solute is driven away from a magnet into the 

skin thereby enhancing the skin penetration of that applied material.  

Static magnetic fields 

Murthy’s group investigated the effect of stationary magnetic fields in enhancing skin 

permeation of benzoic acid, salbutamol sulphate and terbutaline sulphate, lidocaine 

hydrochloride (HCl).130, 132-134 They suggested that the enhancement of benzoic acid 

which is diamagnetically susceptible in nature, was due to the increase of diamagnetic 

flow, as benzoic acid was repelled away from the magnet and into the skin.130 Murthy’s 

group then continued to explore the mechanism underlying the magnetophoresis using 

static magnetic field with lidocaine as the model of permeant.134 On the in vitro Franz 

diffusion cell study using porcine epidermis, they utilised two neodymium magnets 

located on either side of the donor with a distance of 2 mm from the epidermis to 

generate magnetic cells strengths  (30, 150, and 300 mT). There was no significant 

difference of the amount of lidocaine permeate through the epidermis, with or without 

the magnetic fields in magnetic pretreatrment. In other words, there was no effect of 

magnetic fields in enhancing skin permeation of lidocaine if the magnet was not in 

contact. They also showed that the epidermal barrier was not altered by static magnets, 

based on no change in TEWL or in the Fourier-transform infrared spectrum (FTIR) in 

skin exposed to the magnetic field compared to control.  In contrast, they reported a 

2.7-fold increase of 3H-water permeation through the porcine epidermis, suggesting 
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that magnetic field gradient resulted in the flow of water molecules.  Based on their 

studies they concluded that the mechanism underlying skin permeation enhancement 

by a static magnetic field was magnetokinesis which is a combination of 

magnetohydrokinesis and diamagnetic repulsion.134  

Electromagnetic fields 

Dermaportation is a physical skin penetration/permeation enhancement technology 

involving pulsed electromagnetic fields (PEMF) which generate an electric current. 

This technology was developed by OBJ Pty Ltd, a biotechnology company in Perth, 

WA (www. obj.com.au) and is the underlying technology for the personalised 

cosmetic range under development with Procter & Gamble. Benson’s group have 

demonstrated the enhancement of 5-aminolevulinic acid (5-ALA), lidocaine HCl, 

naltrexone HCl, diclofenac diethylammonium salt and the dipeptide Ala-Trp into and 

across human skin by PEMF technology.135-139 The technology used a 3-voltage 

power to produce an asymmetrical pulse packet type electromagnetic field consisting 

of repeating quasi-rectangular electromagnetic energy of 400µs with a maximum 

peak of magnetic field strength of 5mT. The electromagnetic pulse was transmitted 

through the coils which were set on the exterior of the donor compartment of a Franz 

diffusion cell at 7mm above the skin surface. Thus, there was no contact between the 

magnetic coil and the skin or formulation. In the case of both 5-ALA136 and Ala-Trp137, 

there was a significant initial “push” of transdermal permeation over the first 20 

minutes to 2 hours, which was then followed by a significant increase of permeation 

during PEMF application.  

The permeation of Naltrexone HCl was enhanced 5.7-fold across human epidermis 

by Dermaportation139, with an enhancement ratio (ER) of 6.5 over 4-hour-

Dermaportation application and ER of 5.3 after Dermaportation was removed. This 

suggests that the PEMF has a residual effect in the skin which may be related to 

epidermal barrier disruption due to the PEMF application. In a parallel experiment, 

there was no significant difference of Naltrexone diffusion through a silicone 

membrane with the application of Dermaportation. Again, this suggests that the 

mechanism of permeation enhancement was skin structure related and that 

magnetokinesis was not the major mechanism underlying PEMF enhanced 

Naltrexone permeation. Further evidence was provided by the visualisation of PEMF 

induced permeation of 10 nm gold nanoparticles into human epidermis by multiphoton 

tomography, as the nanoparticles did not permeate when applied passively.139  
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Magnetic film array 

Magnetic film array (OBJ Pty Ltd) consists of multiple magnetic elements which are 

arranged on a thin flexible polymer to generate complex 3D magnetic gradients with 

the maximum magnetic field strength of 40 mT, and 2T/m2 total magnetic gradient. 

The potential of a magnetic field array (ETP 008) to enhance the penetration of urea 

(a moisturizing agent) in a hydrogel formulation was evaluated ex vivo and in vivo.140 

The ex vivo permeation increased approximately fourfold in comparison to passive 

diffusion of a non-magnetic occlusive film of 5% urea in gel and there was a fifty 

percent reduction of lag time.  Epidermal thickness in a human volunteer, measured 

by Optical Coherence Tomography (OCT) to monitor hydration, increased by 16% 

and 11% at 30 and 60 minutes, respectively, compared to increases of 3% and 6% 

for non-magnetic film application.140 This technology will be investigated in the current 

research. 

Microneedles 

Microneedles (MN) are arrays of micron-sized projections, with the length of no more 

than 1mm and the external diameter of less than 300 µm, applied/inserted into the skin 

with the specific aim to disrupt the SC.141-143 MN are designed to insert the skin to a 

depth up to 200 µm, not to reach the dermis containing nerves, thereby minimizing pain 

feeling during application.144 MN are ideal for overcoming the delivery problems of large 

molecules such as vaccines, protein and peptides.142, 145-147 There is a substantial body 

of literature exploring the potential of MN and the factors affecting delivery in the skin.143, 

145, 148-150 MN have been shown to administer large molecules at significantly higher 

transdermal flux enhancement compared to conventional topical/transdermal 

systems.151 In comparison to conventional injections they offer minimal invasion, less 

risk of microbial infection, and relatively painless administration.143, 148  

The simplest form is solid MN, termed “poke and patch”, designed to be used as a 

pre-treatment to perforate the skin prior to applying a topical solute.142, 152, 153 Other 

types are coated MN (“coat and poke”), MN designed to dissolve in the skin (“poke 

and release”), and hollow MN (“poke and flow”) as summarised in Figure 1.4.  
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Figure 1.4 Schematic representative of solid MN administration. (a) “poke and 
patch”, (b) “coat and poke”, (c) “poke and release”, (d) “poke and flow” 
Reproduced from Arora et al.154 with permission 

1.3.2.2 Chemical penetration/permeation enhancement technique 

Chemical penetration enhancement can be carried out by SC manipulation or through 

drug and vehicle property optimisation.29 Lipid-protein partitioning (LPP) theory can 

be used to get better understanding of the mechanism underlying the enhanced 

permeability by chemicals.155, 156 In principle, chemical penetration enhancer can be 

utilised to manipulate the SC, such as disrupting the intercellular structure of lipid 

bilayers, interacting with the intracellular protein of SC, and improving the solubility 

and partitioning of the permeant into SC and deeper layers.156-159  The enhancement 

can also be achieved by increasing the thermodynamic activity in the formulation 

(increasing the concentration of drug or lowering the solubility of the drug).160  

A wide variety of chemicals can be used to manipulate the barrier function of the SC 

including water (a hydrating agent), fatty acids, alcohols, esters, essential oils and 

terpenes, surfactants, azone and its derivatives, dimethylsulfoxide (DMSO), glycols, 
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glycol ethers, pyrrolidones, sulphoxides, octyl salicylate, padimate O (PADO), and 2-

(1-nonyl)-1,3-dioxolane (ND).29, 156, 161-164  

1.3.3 Nanocarriers in topical/transdermal delivery 

Extensive research has been carried to develop many types of cutaneous 

nanocarriers with the same objective to enhance the penetration/permeation of 

deliverables into the skin. Lipid-based nanocarriers were developed based on the role 

of lipid to aid the molecules partition-diffusion process into the skin and to occlude the 

skin, thereby increasing skin hydration and enhancing penetration. Vesicle-based 

nanocarriers were designed to produce nano-scale entrapment/encapsulation 

system, which could maintain the stability of the molecules encapsulated and deliver 

the substance into and through the skin in a reasonable amount. A number of 

nanocarriers will be further discussed on this review. 

 

Figure 1.5 Schematic representation of topical-transdermal nanocarriers. 
Adapted from Roberts et al.6 with permission 

1.3.3.1 Lipid-based nanoparticles 

Lipid-based nanoparticles as topical and transdermal nanocarriers are classified as 

solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). 

SLN are spherical solid particles composed of mixtures of solid lipids or lipid-like 

materials dispersed in aqueous medium, which can further incorporate active 

ingredients for a range of drug delivery systems.165, 166 SLN combine the properties of 
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lipid and polymeric nanoparticle systems. NLC are the second generation of SLN, 

involving blends of solid lipids and liquid lipids which stabilised by mixed 

surfactants.165 Both SLN and NLC offer advantages including biocompatibility and 

biodegradability leading to excellent tolerability, prolonged and controlled release, 

excellent protection and stability enhancement, which support the marketing as 

cosmetic products.166  Although SLN show excellent property of occlusion thus better 

skin hydration, NLC improve the SLN properties regarding drug loading and 

entrapment efficiency during storage166, 167. Das et al.168, in their study of clotrimazole-

loaded SLN and NLC, confirmed the superiority of NLC to SLN with respect of the 

physical stability at 25°C and release rate stability over 3-month storage. Zoubari et 

al.169 when investigated the effect of drug solubility and the crystallinity of lipid on the 

release of diclofenac from lipid nanoparticles, reported that the release rate of 

diclofenac was dependent on the solubility in the lipid. They further indicated that a 

lipid with highly ordered crystalline structure released slower than the less ordered 

crystalline of mixtures of lipids.    

A summary of the composition, method of fabrication, physical characteristics and 

skin penetration/permeation study of topical SLN and NLC is presented in Table 1.1. 
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Table 1.1 Representatives of SLN and NLC in topical/transdermal delivery 

Formulation type - 
Compound 
delivered 

Ingredients 
Drug load (DL) 

Method of 
fabrication 

Physical characteristic In vitro/in vivo 
Penetration/permeation study 

Ref. 

Size (nm) Zeta Potential 
(mV) 

PDI 

SLN        
Quercetin Compritol ® 888 

(glyceryl 
dibehenate) 
Precirol ®ATO 5 
(glyceryl 
palmitostearate) 
 

Ultrasonication 311.5 ± 5.5 -34.24 ± 1.29 0.232 In vitro Franz diffusion cell study 
Full thickness human skin 
Donor: 0.5mL of formulation 
Receptor fluid: 1% Tween 20 in PBS 
pH 7.4 
Result: 
No quercetin in the receptor (no 
permeation) 
Skin uptake: ± 24 µg/g 

170 

Retinyl palmitate 
(RP) 
In favour of NE 

Compritol ® ATO 
888 5%  
Span ® 80 5% 
DL: 1% 

Ultrasonication 271.5 ± 2.4 -55.26 ± 1.27 0.475 In vitro Franz diffusion cell study 
Dermatomed human skin (400µm 
thick) 
Donor: ~ 200 µg RP 
Receptor fluid:  
Ethanol:transcutol P® (50:50) 
Result: 
Cumulative amount of RP 
permeated at 24h (µg): 3.64 ± 0.28  
Flux (µg/h): 0.10 ± 0.05  
Skin retention (µg/cm2/mg): 0.06 ± 
0.04  

171 
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Vitamin E (α- 
tocopherol and α-
tocopherolacetate) 

SLN ™, Lipopearls ™ 
Cetylpalmitate 15% 
Tego Care 450 
1.8% 
DL: 5%  

Hot 
homegenization 

270-280 n. i 0.04-0.05 In vivo stratum corneum (SC) 
stripping 
Human volunteers (3 persons aged 
20-30) 
Donor dose: 0.25 mg vitamin E /cm2 

(20µL) on 4cm2 area for 30 min 
5 tape stripping (under 1 kg 
pressure each) 
Result: 
The cumulative percentage of 
vitamin E in SLN was doubled than 
the control (vitamin E dissolved in 
isopropanol)   

172 

8-
methoxypsoralen 
(8-MOP) 

Precirol 12% 
Myverol 0.2% 
Pluronic F68 2.4% 
Water 
DL: n.i 

Hot  
homogenisation 

296.6 ± 
49.5 

-40.0 ± 5.9 n. i In vitro Franz diffusion cell study 
Full thickness dorsal skin of nude 
mice 
Donor: 0.5 mL 
Receptor fluid: 30% ethanol in PBS 
pH 7.4 
Result: 
Flux (nmol/cm2/h):  67.17 ± 8.89  

173 

Benzophenone-3  
(BP-3) 

Suppocire AIML® 
10% 
Montane 80 ® 6% 
Montanox 20 ® 4% 
Deionised water up 
to 100% 
DL: 5% 

Hot 
emulsification 
and ultrasonic 

homogenisation 

412 ± 15 -40.2 ± 3.6 0.242 ± 0.16 In vitro Franz diffusion cell study 
Dermatomed porcine ear skin (600 
µm thick) 
Donor: 1mL of 5% BP-3 
Receptor fluid: composition of 
albumin and PBS 
Result: 
Flux and skin distribution are similar 
to the control (BP-3 albumin 
aqueous solution) 

174 
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Resveratrol (RSV) RS4 
Compritol 888 ATO 
300mg 
Poloxamer 188 
150mg 
Tween 80 75mg 
Bidistilled water 
DL: 0.04% 

High shear 
homogenisation 

161.4 ± 2.7  -15.3 ± 0.4 0.263 ± 0.05 In vitro Franz diffusion cell study 
Rat abdominal skin 
Donor: 200µL 
Receptor fluid: 50% ethanol in water 
Result: 
No permeation of RSV observed 
Skin uptake at 24h (µg/cm2): 1.55 ± 
0.13  

175 

RSV F1.RES 
Stearic acid 5% 
Poloxamer 407 
3.5% 
Methylparaben 
0.18% 
Propylparaben 
0.02% 
Distilled water up to 
10mL 
F2.RES 
Same composition 
above added with 
Soy 
phosphatidylcholine 
(SPC) 1.2% 
DL: 0.1% 

Sonication F1: 155.50 
± 0.26 

F2: 166.23 
± 0.94 

F1: -2.60 ± 
1.27 

F2: -2.66 ± 
0.33 

F1: 0.140 ± 
0.02 

F2: 0.196 ± 
0.02 

In vitro Franz diffusion cell study 
Pig ear skin 
Donor: 0.3mL 
Receptor fluid: 2% polysorbate 80 in 
water 
Result: 
Cumulative amount of RSV 
permeated at 24h 
F1: 45.26 ± 34.88 
F2: 18.61 ± 16.99 

176 
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Tretinoin (TRE) SLN based gel 
Glyceryl 
monostearate 
(GMS) 
Epikuron 200 
Benzyl alcohol 
Tween 80 
Tween 20 
Distilled water 
Carbopol ®  
DL: 0.05% 

Emulsification 
solvent diffusion  

400-500  
(1-2% 
GMS) 

n. i 0.65-0.8  
(1-2% GMS) 

In vitro modified Franz diffusion cell 
study 
Hairless abdominal Wistar rat skin 
Donor: 0.45g of gel 
Receptor fluid: PBS pH 7.4 
containing albumin 
Result:   
Cumulative amount of TRE 
permeated at 12h (% of applied 
dose): 6.414 ± 1.031  
Flux (ng/cm2/h): 75.6 7.21, 
Not significantly different from the 
control (marketed cream Retino-A®) 

177 

RSV Formulation 2 
Cetyl palmitate 10% 
Sesame oil 5% 
Tween 80 4% 
Water 80.8 
DL: 0.2% 

Microfluidisation 
(high pressure 

pneumatic 
homogenisation) 

102-311 25-49 n. i In vitro Franz diffusion cell study 
Stratum corneum (SC) of human 
cadaver skin 
Donor: 0.7 mL 
Receptor fluid: deionised water 
Result: 
Cumulative amount of RSV 
permeated through SC at 24h: 0.04 
± 0.01 µg/mL 
Control (0.2% RSV in ethanol-
propylene glycol): 0.012 µg/mL 
Enhancement ratio (ER):3.33 

178 

Isotretinoin (IT) Formula D 
PRECIROL ATO 5 
3% 
Soybean lecithin 
(SL) 4% 
Tween 80 4.5% 
Water 88.44% 
DL: 0.06% 

Hot 
homogenisation 

method 

42.7 ± 5.50 -13.73 ± 1.51 0.258 ± 
0.016 

In vitro vertical diffusion cell study 
Full thickness abdominal rat skin 
Donor: 1g 
Receptor fluid: 30% ethanol in saline 
Result: 
No permeation of IT observed 
Skin uptake: 3.65 µg  

179 
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Penciclovir GMS 3% 
Egg- 
phosphatidylcholine 
1% 
Poloxamer 188mg 
2.5% 
Water 3.8mL 
DL: 0.15% 
 

Double (W/O/W) 
emulsion  

254. ± 9 
8.2 

-25 ± 0.05 n. i In vitro Franz diffusion cell study 
Full thickness abdominal male 
Wistar rat skin 
Donor: 800µL containing 1.2mg 
penciclovir 
Receptor fluid: saline 
Result: 
Flux (µg/cm2/h): 7.67 ± 0.19  
Cumulative amount of penciclovir 
permeated at 12h (µg/cm2): 88.44 ± 
4.19  
 
Control (commercial cream 
containing 1.2mg penciclovir) 

Flux (µg/cm2/h): 3.31 ± 0.37  
Cumulative amount of penciclovir 
permeated at 12h (µg/cm2) : 41.07 
± 3.07  
ER: 2.32 

180 

Triptolide (TP) Formulation B 
Tristearin glyceride 
5% 
SL 1.2% 
Polyethyleneglycol 
(400) monostearate 
3.6%  
Water  
DL: 0.025% 

Sonication 123 ± 0.9 -45 0.19 In vitro Franz diffusion cell study 
Full thickness abdominal rat skin 
Donor: 1mL 
Receptor fluid:10% ethanol in 
saline 
Result:  
Flux (µg/cm2/h): 3.1±0.4  
 
Control: TP solution (0.025%)  
Flux (µg/cm2/h): 0.9±0.1  
ER: 3.4 

181 

Aceclofenac 
(ACF) 

Hydrogel based 
SLN 
GMS 
SL 
Tween 80 

Ultrasonic 
emulsification 

189±9.2 -32.51±0.12 0.162±0.02 In vitro Franz diffusion cell study 
Full thickness abdominal Sprague-
Dawley rat skin 
Donor: n.i 

182 
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Water 
Carbopol ® 934 
DL: n. i 

Receptor fluid : Phosphate buffer 
pH 6.5 
Result: 
39.32±3.4% of dose permeated 
through the skin after 24h 
Skin stripping (µg/cm2): 25.31±4.8  
Skin uptake (µg/cm2): 22.33±1.43  
Control (ACF gel) 
30.64±4.3% of dose permeated 
through the skin after 24h 
Skin stripping (µg/cm2): 8.71±0.61  
Skin uptake (µg/cm2): 10.72±0.42 
ER: 
2.08 (skin uptake 

 NLC        

Quercetin Compritol ® 888 
0.45g 
Oleic acid 0.05g 
Mixed surfactants in 
water 20mL 
(Tween 20 2.5% 
Dioctyl sodium 
sulfosuccinate 0.1%) 
DL: 0.025% & 0.05% 

Ultrasonication 281.9 ± 2.9 -36.57 ± 2.67 0.306 In vitro Franz diffusion cell study 
Full thickness human skin 
Donor: 0.5mL of formulation 
Receptor fluid: 1% Tween 20 in 
PBS pH 7.4 
Result: 
No quercetin in the receptor (no 
permeation) 
Skin uptake: ± 24 µg/g 

183 

RSV RN1 
Compritol 888 ATO 
285mg 
Poloxamer 188 
150mg 
Tween 80 75mg 
Miglyol 15mg 
Bidistilled water 
DL: 0.04% 

High shear 
homogenisation 

90.58 ± 1.7 -16.1 ± 0.1 0.280 ± 0.06 In vitro Franz diffusion cell study 
Rat abdominal skin 
Donor: 200µL 
Receptor fluid: 50% ethanol in 
water 
Result: 
No permeation of RSV observed 
Skin uptake at 24h (µg/cm2): 1.99 ± 
0.17  

175 
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Tadalafil (TAD) F4 
GMS : Oleic acid 
=1:1 
Tween 80  3% 
Carbomer 940 0.5% 
Ethanol 30% in 
water 
Limonene 5% 
DL: 

Hot 
ultrasonication 

190.6 ± 5.1 -35.4 ± 4.5 0.241 ± 
0.035 

In vitro Franz diffusion cell study 
Spargue-Dawley rat dorsal skin 
Donor: 500µL 
Receptor fluid: 1% Tween 80 in 
phosphate buffer pH 7.4 
Results: 
Flux: 1.463 µg/cm2/h 
Enhancement ratio (ER): 4.8 
 
Control: TAD solution (TAD in 30% 
ethanol) 
Flux: 0.307 µg/cm2/h 
ER: 1 

184 

8-
methoxypsoralen 
(8-MOP) 

NLC-PF 
Precirol 6% 
squalene 6% 
Myverol 0.2% 
Pluronic F68 2.4% 
Water 
 
NLC-Tw 
Precirol 6% 
squalene 6% 
SPC 0.2% 
Tween 80 2.4% 
Water 
DL: n.i 
 

Hot  
Homogenisation 
and sonication 

210.2 ± 
14.3 

 
 
 
 
 
 

172.7 ± 1.2 

-46.0 ± 2.2 
 
 
 
 
 
 

-42.3 ± 2.0 

n. i 
 
 
 
 
 
 

n. i 

In vitro Franz diffusion cell study 
Full thickness dorsal skin of nude 
mice 
Donor: 0.5 mL of saturated solubility 
dose 
Receptor fluid: 30% ethanol in PBS 
pH 7.4 
Result: 
NLC-PF  
Flux (nmol/cm2/h): 96.71 ± 6.22  
NLC-Tw 
Flux (nmol/cm2/h): 107.51 ± 8.57  
Control (lipid emulsion) 
Flux (nmol/cm2/h): 38.31 ± 5.31  
ER:  
2.51 (NLC-PF)  
2.8 (NLC-Tw) 
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Terbinafine HCl 
(TH) 

Gel based NLC 
GMS 
Labrasol 
Pluronic F-127 
Ratio solid:liquid 
lipid= 6:4 
Manitol 5% 
Carbopol ® 940 1% 
DL: 1% 

Hot 
emulsification 

128 ± 4.5 n. i 0.211 ± 
0.012 

In vitro Franz diffusion cell study 
Full thickness Wistar albino rat 
abdominal skin 
Donor: 20mg drug 
Receptor fluid: 0.8% Tween 80 in 
PBS pH 7.4 
Result: 
Cumulative amount of TH 
permeated at 12h (%): 23.16 ± 2.33 
Skin uptake (%): 83.65 ± 2.51 
 
Control (1% marketed cream) 
Cumulative amount of TH 
permeated at 12h (%): 16.72 ± 3.67 
Skin uptake (%): 69.41 ± 1.85 

185 

Benzophenone-3  
(BP-3) 

Suppocire AIML ® 
10% 
Oleic acid 5% 
Montane 80 ® 4% 
Montanox 20 ® 6 
Deionised water up 
to 100% 
DL: 5% 

Hot 
emulsification 
and ultrasonic 

homogenisation 

315 ± 12 -43.2 ± 2.0 0.362 ± 0.06 In vitro Franz diffusion cell study 
Dermatomed porcine ear skin (600 
µm thick) 
Donor: 1mL of 5% BP-3 
Receptor fluid: composition of 
albumin and PBS 
Result: 
Flux and skin distribution are similar 
to the control (BP-3 albumin 
aqueous solution) but 
Nanostructured Polymeric Lipid 
Carrier with 0.5% poly-ε-
caprolactone and nanocapsule 
(NPLC added with Plurol oleique 
and Poloxamer 188) were the best 
in terms of skin retainment  

174 
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Coenzyme Q10 
(Q10) 

Q10-loaded NLC 1 
Cetyl palmitate 7.23% 
Miglyol® 812 0.38% 
Tego® Care 450 1.8% 
Water 
DL: 2.4% 
 
Q10-loaded NLC 3 
Cetyl palmitate 6.46% 
Miglyol® 812 1.14% 
Tego® Care 450 1.8% 
Water 
DL: 2.4% 

High pressure 
homogenisation 

225-250 
 
 
 
 
 
 

225-250 

n. i 
 
 
 
 
 
 

n .i 

0.1-0.2 
 
 
 
 
 
 

0.1-0.2 

In vitro Franz diffusion cell study 
Stratum corneum and epidermis 
(SCE) of human skin 
Donor: n.i 
Receptor fluid: 5% Labrasol in PBS 
pH 7.4 
Results 
At 8h, the cumulative amount of 
Q10 permeated from NLC 3 was 
higher than from NLC 1. The 
opposite result occurred in skin 
penetration of Q10. 
 

186 

Q10 CoQ10-loaded ultra-
small NLC (usNLC) 
Cetyl palmitate 1% 
Cetiol® OE 4% 
Span® 20 2.5 
Tween® 80 2.5 
Water 85% 
DL: 5% 
 
CoQ10-loaded NLC 
(NLC) 
Cetyl palmitate 
14.45% 
Miglyol® 812 0.75% 
Tego care® 450 1.8% 
Water 78% 
DL: 5% 

Hot high-
pressure 

homogenisation 

81 
 
 
 
 
 
 
 
 

226 

-34.5 
 
 
 
 
 
 
 
 

-54.1 

0.132 
 
 
 
 
 
 
 
 

0.087 

In vitro Franz diffusion cell study 
Dermatomed porcine abdominal 
skin (750µm thick) 
Donor:  
Receptor fluid: 5% Labrasol in PBS 
pH 7.4 
Results: 
Trend of Q10 permeation: 
usNLC>NLC 
Trend of Q10 penetration: 
usNLC<NLC 
Data were not statistically 
significant 

187 
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1.3.3.2 Vesicle-based nanocarriers 

Liposomes are colloidal particles of single or multiple layers of spherical phospholipid 

vesicles, with or without cholesterol, containing hydrophilic interior design which aims 

to encapsulate both hydrophilic and lipophilic molecules.29 Hydrophilic molecules can 

be encapsulated in the vesicles, while the hydrophobic molecules can attach on outer 

bilayers of liposomes.188 Topical liposomes were initially introduced by Mezei and 

Gulasekharan189 for skin delivery of triamcinolone acetonide, achieving four times 

penetration compared to a conventional ointment at the same concentration. The 

main component of conventional liposomes is phosphatidylcholine (PC) derived from 

egg yolk or soybean which self-associated into multilamellar, small unilamellar, or 

large unilamellar vesicles. The natural source is in priority to avoid the toxicological 

issues of the synthetic ones.188 The similarity of the structure of the lipid bilayer in 

liposomes with the corneocyte lipid bilayer in the SC facilitates more efficient 

penetration. Apart from that, low gel-liquid crystal transition temperature (Tm) is more 

preferred.190 The molecules in a ‘gel state’ of liposomes, which are rigid, tend to 

accumulate on the skin and permeate less.  The form of liquid crystalline of liposomes 

is desirable as it is more flowing and flexible. Natural lipids show low Tm. Cholesterol 

was added to increase the rigidity of liposomes thereby stabilising the structure, 

although in some cases it can reduce the permeation of the molecules to the skin.190  

Mechanism of liposomal drug delivery was reported due to the liposome accumulation 

and adhesion on the SC, possible interaction of associated molecules with SC and 

thermodynamic state of liposomal bilayers.191 Although liposomes have been applied 

to deliver macromolecules such as vaccines, interferon and genes, the drawbacks of 

liposomes should be taken into consideration. Structural stability and deformability of 

liposomes are a couple of concerns in developing this delivery system. Liposomes 

are prone to leaking and less flexible to enter the SC.192, 193 Due to these concerns, 

many efforts have been made to create smarter ‘-osomes’ which facilitates flexibility. 

Transfersomes® (flexible liposomes), ethosomes, SECosomes, niosomes, 

invasomes, and PEVs are flexible vesicles, composed of materials which are self- 

associated to form stable vesicles, allowing sufficient shape deformability to squeeze 

through intact SC.  

Transfersomes® are flexible liposomes originated by Cevc’s group193-196 composed of 

surfactants (mainly sodium cholate) which acts as the edge activators, cholesterol as 

rigidity improver and ethanol (3-10%). Edge activators facilitate the transfersomes® 

to flexibly squeeze individually in between corneocytes of SC to get through deeper 

layers of the skin. Transdermal gradient due to the water content disparity between 
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hydrated SC and aqueous viable epidermis appears to be the driving force of the 

penetration.27, 193, 195-197 Whilst conventional liposomes get dehydrated and fuse to 

release the deliverables on the skin surface, Transfersomes® do not dehydrate as 

they squeeze and get into the deeper layers following the hydration gradient. Cevc et 

al.198 suggested that at least 50% (of applied dose) of insulin was transported across 

NMRI mouse skin using transfersomes. El Maghraby et al.27 demonstrated that 

oestradiol-loaded ultradeformable liposomes could enhance the permeation of 

oestradiol for about 17-fold under occlusion, while the conventional liposomes could 

only enhance 9-fold. Encapsulation of DNA plasmid for hepatitis B-antigen in cationic 

transfersomes has shown stronger immune response on Balb/c mice compared to 

control of naked plasmid DNA solutions in every 2-week time points from 2 to 8 weeks, 

with similar titration value of antibodies to the intramuscular injection of DNA plasmid 

after 6 weeks.199  

Ethosomes are liposomes which mainly contain high concentration alcohol (up to 

50%) thereby providing fluid state phospholipid bilayers with high permeability.192 The 

alcohol acts as the edge activator to convey the deformability of ethosomes to be 

flexibly pass through the SC pores. Zhang et al.200 demonstrated the superiority the 

psoralen-loaded ethosomes containing 0.2% psoralen, 5% Lipoid S 100 and 40% 

ethanol. The ethosomes transdermal flux and skin deposition were 3.50 and 2.15 

times larger than conventional liposomes, respectively. A recent ethosomal 

formulation containing raloxifene HCl was developed by Mahmood et al.201. The 

transdermal flux was 21 times higher than the conventional liposomes. The 

mechanism of penetration enhancement was assumed by loosening the corneocyte 

layers tight conjugation due to high amount of the ethanol.202 Although ethosomes 

have proved massive enhancement of permeation, the high content of ethanol may 

raise an issue of skin dryness and irritation.  

SECosomes were nanosomes introduced by Geusens et al.203 by combining the ‘lipid 

fluidizing components’ which were surfactant and ethanol, and 1,2-dioleyl-3-

trimethylammonium propane chloride (DOTAP) as cationic lipid. This lipid replaced 

the conventional phospholipid in liposomal formulation. This invention, which later 

was called SECoplexes, was dedicated to deliver siRNA and anti-miRNAs 

cutaneously for psoriasis management.203-205 SECosomes are basically a combination 

of Tranfersomes® and ethosomes features. The surfactant (sodium cholate) and 

ethanol were acting as the edge activator to facilitate the flexibility of the system and 

maintain the nano-size of the vesicles. 206-208 Cholesterol was added to stabilize the 

system. Zeta potential was in positive value due to the nature of DOTAP which 
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selected to enhance the interaction with negatively charge nucleic acids. This cationic 

lipid was also capable to protect siRNA from degradation and enhance the efficiency 

of transfection.209 

Niosomes are vesicles composed of non-ionic amphiphiles in a hydrating medium 

which is structurally supported by cholesterol using energy input.210 Niosomes have 

been demonstrated as excellent topical nanocarriers for drugs and cosmetics as they 

offer safety, biocompatibility, better stability, lower production cost, and higher yield 

compared to liposomes.210-215 Amphiphiles with one or two hydrophobic alkyl, 

perfluoroalkyl or steroidal groups are usually employed in the formation of 

niosomes.210 Cholesterol was used to obtain homogeneous dispersion of niosomes216 

as well as a vesicle stabilizer.212  Balakrishnan et al.214 demonstrated minoxidil-loaded 

niosomes composed of Brij™ or Span™ and cholesterol to treat Androgenetic 

alopecia. The niosomes potentially enhanced the permeation of minoxidil across 

hairless mouse skin due to the surfactant nature and the size of vesicles. Fang et 

al.217 when developing enoxacin-loaded niosomes, suggested niosomes made from 

Span™ 40 or Span™ 60 were relatively more stable compared to liposomes.               

Pando et al.218 indicated that ethanol injection modified method (EIM) was relatively 

superior to thin film hydration-sonication (TFH-S) method in providing resveratrol 

(RSV) niosomes with smaller size, smaller particle distribution index, and better 

stability compared to TFH-S. EIM also generated more effective RSV skin penetration 

(up to 21%) with both oleic and linoleic acid as enhancers than TFH-S.218  

Invasomes consisted of unsaturated phospholipids (high % PC of soybean lecithin), 

ethanol, and terpene mixtures.81, 219 The choice of unsaturated phospholipids was 

based on the low Tm, which resulted in the liquid crystalline form of liposomes. As 

liquid crystalline is superior to gel thermodynamic state (due to its flexibility)220-222, it is 

important to select phospholipid with this liquid crystalline character.81  Ethanol was 

added to fluidize the lipid bilayer to mimic the SC lipid fluidisation.192  This composition 

was equipped with a mixture of terpenes to increase the elasticity of the liposomes. 

Terpenes are also known as potent chemical enhancers.223-225 Dragicevic-Curic et 

al.226, developed temoporfin-loaded invasomes for topical application, that were 

superior to liposomes in terms of physical stability and the penetration of temoporfin 

in human skin in vitro. The invasomes were fabricated using unsaturated soybean 

lecithin, ethanol, PBS pH 7.4 and a mixture of terpenes (cineole, citral and D-

limonene) in concentration of 0.5% and 1%. Significant penetration enhancement of 

temoporfin was obtained with invasomes containing 1% terpenes. Trauer et al.227, 

when investigated the depth of penetration of rigid liposomes and the invasomes in 
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full thickness human skin, revealed that the invasomes penetrated deeper than the 

liposomes in non-occluded system, although the size of invasomes were larger than 

that of the liposomes. The invasomes (flexible liposomes) composed of soybean 

lecithin, ethanol and mixed of terpenes   (limonene:citral:cineol = 10:45:45 by volume) 

whereas the rigid liposomes were prepared from 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium 

salt (DPPG). Amnuaikit et al.228 indicated that invasomes and transfersomes 

significantly enhanced the permeation of phenylethyl resorcinol across newborn pig 

skin, although the enhancement effect of invasomes was lower than transfersomes. 

Invasomes contain 1% D-limonene and 10% ethanol whereas transfersomes involved 

15% sodium deoxycholate as the edge activator. The enhancement of invasomes and 

trasfersomes were reported 2.33-fold and 3.39-fold, respectively. 

Penetration enhancer-containing vesicles (PEVs) involve the benefits of a 

combination of soy phosphatidylcholine or soybean lecithin and penetration 

enhancers (such as Transcutol®, Labrasol®, Oramix™ NS10, glycerol, propylene 

glycol and polyethyleneglycol 400) to enhance the penetration and permeation of 

molecules, into and through the skin.229-231 Minoxidil was the first drug model for 

transdermal delivery of PEVs developed by Fadda’s group229, 232. In comparison of 

PEV-1 (containing Labrasol), PEV-2 (containing Transcutol) and PEV-3 (containing 

cineol) they revealed that in terms of deformability and skin deposition of minoxidil, 

the order of magnitude was PEV 1 > PEV 3 > PEV 2. Fadda’s group has further 

consistently developed the PEVs formulation of diclofenac230, 233, tretinoin234, 

quercetin.235 Overall, PEVs were claimed to be potential as skin penetration enhancer 

due to the interaction of highly fluidised membrane with intercellular SC lipids. 231 

1.3.4 Topical and transdermal micro and nanoemulsion  

1.3.4.1 Terminology   

Microemulsion (ME) is a typical emulsion system involving dispersion of oil in water 

or vice versa, stabilised by surfactant with the addition of cosurfactant. ME is clear, 

isotropic, and thermodynamically stable.236, 237 MEs exist in the form of equilibrated 

phases such as: oil-continuous, water-continuous, and bi-continuous phases. 

Although called as ‘microemulsion’, the clarity or transparency of ME indicates that 

the size of droplets is in the range of nanometer. This is due to high concentration of 

surfactant or mixed of surfactants, which spontaneously disperse the oil and aqueous 

components. Nanoemulsion (NE) also composed of oil, water, surfactants or mixed 

surfactants and cosurfactants. Although NE droplet size is also in nanoscale, most 
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NEs form a non-equilibrium state thermodynamically. NE will undergo phase 

separation by the time. As the kinetics of NE destabilisation is slow (due to minute 

size of the droplets), NE is considered as kinetically stable. Ostwald ripening is the 

dominant destabilizing mechanism observed in NE.237, 238 NE generally needs high 

energy in preparation, although NE can also be fabricated by spontaneous 

emulsification.237 Although both ME and NE are relatively homo-dispersed (poly 

dispersity index <10%), the prominent difference between both is the thermodynamic 

stability.239 

Anton et al.237, Mc Clements et al.239, and Gupta et al.240 have demonstrated a 

thorough review regarding the terminology, critical property differences and the 

formation of ME and NE, which can be summarised in table 1.2.  

Table 1.2 Physical properties of raw emulsion, microemulsion and 
nanoemulsions in comparison. Adapted from Nastiti et al.79 

 Emulsion Microemulsion Nanoemulsion 

Physical description Coarse dispersion Colloidal dispersion Colloidal dispersion 

Particle size range >500 nm <100 nm <100 nm 

Polydispersity High Low Low 

Thermodynamic 

stability 

Unstable Stable Unstable 

Preparation High energy Low energy Low/high energy 

Composition: 

surfactant to oil ratio 

Low High Moderate 

Physical appearance Creamy Transparent Transparent 

Viscosity Semi-solid Liquid Liquid 

 

1.3.4.2 Formulation  

ME and NE can be classified based on their dispersion natures as: water in oil (w/o), 

oil in water (o/w), water in oil in water (w/o/w), oil in water in oil (o/w/o) and 

bicontinuous system.241-244 Bicontinuous system is an emulsion system consisting of 

a similar amount of oil and aqueous phases which are stabilised by sheet-like 

surfactant areas between the phases.245 This system is dynamic, with greater 

interfacial fluctuation, lower interfacial tension and better solubilizing ability compared 

to w/o and o/w ME, due to higher surfactant capacity.246, 247 Naoui et al.247 suggested 
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that transdermal flux of o/w hydrophilic caffeine ME was highest, followed by 

bicontinuous ME and o/w ME, when composed of the same components. In addition, 

Bhatia et al.246 demonstrated that lipophilic adapalene in a formulation of bicontinuous 

ME deposited into hair follicles three times greater than control, as the microstructure 

shifted from w/o to bicontinuous. The increased amount of adapalene deposition was 

in line with increasing amount of water in w/o ME. 

A pseudo ternary diagram is generally constructed to indicate the boundaries as a 

function of oil, water, and mixture of surfactant-cosurfactants. It is also useful to 

predict the optimum area of ME composition showing by the clarity of the system. In 

principle, mixture of oils, surfactants and cosurfactants is diluted with water or 

aqueous solution under moderate agitation until it shows turbidity. The amount of 

water or aqueous solution is recorded just before it reaches turbidity. 

1.3.4.3 Composition 

Component selection and ratios of components play an important role to provide a 

stable and acceptable NE system. A variety of topical NE compositions is displayed 

in table 1.3. 

A wide range of oil substances can be utilised individually or in combination as the oil 

phase in NE-ME79, including fatty acids (oleic acid, myristic acid, lauric acid etc.), ester 

of fatty acids and alcohols (isopropyl myristate, isopropyl palmitate, ethyl oleate etc.), 

medium chain triglycerides, triacetin, terpenes (eugenol, eucalyptol, limonene, 

menthol, cineole etc.).Sodium chloride and buffer salts, water soluble preservatives 

and penetration enhancers can be added in the aqueous phase. NE-ME are liquids 

in nature. Gelling agents (Carbopol®, gelatine, Xanthan gum etc) are added to 

achieve appropriate consistency (gel formation) and to improve spread-ability on the 

skin.  

Considering the issues between the effectiveness of the surfactant-cosurfactant 

combination (in lowering interfacial tension and generating stable nano-size 

emulsions) and the safety of their use, non-ionic surfactants are preferable. Non-ionic 

surfactants show minimum risk of skin irritation. Surfactants such as Tween® 

(polysorbates), Cremophor® (mixture of macrogol glycerol hydroxystearate, PEG-40 

castor oil, polyoxyl 40 hydrogenated castor oil), Labrasol® (mixture of mono-, di-, and 

triglycerides of C8 and C10 fatty acids and mono- and di-esters of PEG) have been 

widely used in developing NE-ME. However, several NE formulation employ cationic 

surfactants with the rationale that the NE system will have a good contact with 

negatively charged SC thus improving the penetration/permeation of the 
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deliverables.248-252 Cosurfactants, which are usually short and medium chain alcohols 

and derivatives of polyglyceryl, such as ethanol, isopropanol, propylene glycol, and 

Transcutol® (diethylene glycol monoethyl ester), are added to aid the functions of 

surfactants in stabilising the emulsion system.  

Several commercial topical NE and ME finished products with lipophilic and 

hydrophilic active ingredients are available.79 Estrasorb® (Novavax Inc., Malvern, PA, 

USA) is NE composed of soybean oil, water, polysorbate 80 and ethanol designed to 

deliver oestradiol hemihydrate, a hydrophobic compound (log P 3.3) indicated for 

vasomotor symptoms management related with menopause. Topicaine® (marketed 

by ESBA Laboratories Inc., USA) is a ME-based gel product containing lidocaine as 

local analgesic. This product is composed of jojoba oil, aloe vera, ethanol, benzyl 

alcohol, glycerine and water stabilised with glyceryl monostearate and gelled with 

Carbopol® 940. Ameluz® (Biofrontera Pharma GmBH, Leverkusen, Germany) is a 

topical NE-based gel formulation containing the hydrophilic compound aminolevulinic 

acid (log P 1.5) with the indication for actinic keratosis and basal cell carcinoma. The 

composition includes soybean phosphatidylcholine, water, polysorbate, propylene 

glycol and isopropyl alcohol.  

1.3.4.4 Methods of fabrication 

ME is generated spontaneously at optimal composition of oil, surfactant, co surfactant 

and water by the aid of low energy stirring and heat.241-243, 253   In general, NE is initially 

prepared from ME which is further converted into NE. This process requires external 

energy application. Based on the power of the energy, the NE fabrication is categorised 

into high-energy emulsification (HEE) and low-energy emulsification (LEE).238, 254 HEE 

methods generate high forces to allow the dispersion between oil and water droplets to 

form nano-sized droplets. These methods include high-pressure homogenizing, 

microfluidisation, and ultrasonication. LEE methods require less power such as 

moderate heating and stirring. NE can also be generated from diluted ME.255-258  
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Figure 1.6 Schematic representation of methods of NE preparation. Adapted 
from Nastiti et al.79 

1.3.4.5 Physical characterisation of NEs and MEs 

Particle analysis and morphology 

Rapid determination of particle/droplet size and polydispersity index can be carried 

out based on the principles of dynamic light scattering (DLS) or photon correlation 

spectroscopy (PCS). DLS captures the fluctuation frequency of light that is scattered 

ing when a laser beam passes through droplets or particles and converts the 

information into the average particle diameter size and the particle distribution index. 

In addition, particle distribution can also be analysed using small angle X-ray 

scattering (SAXs) and small angle neutron scattering (SANS).259 

Nanostructures of NE/ME can be directly imaged using freeze fracture transmission 

electron microscopy (TEM) and cryo-TEM in high resolution.260  

Viscosity and electrical conductivity 

Viscosity is a function of oil, surfactant, water in their concentrations, which can be 

monitored to assess physical stability and the release of the drugs from NE and         

ME.261 Lowering the concentration of surfactant and cosurfactant may result in 

increased viscosity due to the increasing interfacial tension between water and oil. 

Electrical conductivity is a simple technique to determine the type of ME and NE by 

inserting the multimeter probes into ME/NE formulation. Conductivity defined values 

in aqueous phase. Phase inversion as a result of formulation or temperature change 

can be further shown by the simultaneous measurement of viscosity and electrical 

conductivity.262,263 Bicontinuous structure can be further assessed by the presence of 
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the percolation effect due to water droplets attractive interactions which results in 

increasing the conductivity and lowering the viscosity.263-265  

Podlogar et al259 combined the data of physical characterisation including viscosity, 

conductivity, and SAXS techniques, to confirm the type of ME (Isopropyl 

myristate/Tween 40/ Imwitor 308®) and a percolation transition as a result of a bi-

continuous structure. They further suggested that the techniques have potential to 

verify the structure and type of complex system and to predict the partitioning and 

drug release from the system. 

1.3.4.6 Skin delivery of topical nanoemulsions 

A wide variety of compounds have been delivered well into the skin using topical NEs 

and MEs for cosmetic, cosmeceutical, dermatological and transdermal purposes. 

Enhanced outcomes over conventional delivery systems due to the property and 

interaction of the components have been extensively reported.79, 241, 243, 253, 266-269            

As the current formulation study  is focused  on NE development, a key of literature 

on a range of topical NEs formulations is summarised, with particular emphasis  on 

the composition, physical characteristics (size, zeta potential, polydispersity index-

PDI, and viscosity) and skin permeation evaluation (Table 1.3). The compounds were 

classified into non-steroidal anti-inflammatory drugs (NSAID), antifungal agents, 

corticosteroids, vitamins and miscellaneous. Physical characteristics particularly 

permeant particle size and viscosity of NEs were evaluated as they might affect the 

skin permeability.82, 93, 270 On the evaluation of in vitro/in vivo skin permeation, skin 

model selection was critical as it determined the accurate assessment of the amount 

of compound to potentially penetrate/permeate. Although human skin is the ideal skin 

model for skin penetration and permeation study, pig and newborn pig skin can be 

used as the surrogates owing to similar skin structures with human skin.79, 271-274 It 

should be taken into consideration that overestimation may occur in using mouse skin, 

rat skin, and rabbit skin, as they are more permeable than human skin.271, 275-277 The 

selection of receptor fluid is also essential for valid in vitro skin penetration-permeation 

study using Franz-type diffusion cells, especially for lipophilic compounds, to maintain 

the skin integrity, to facilitate sufficient solubility of permeant in order to obtain sink 

condition, and to minimise the presence of aqueous diffusion layers.278  

Several features are also recognised in topical NE formulations summary (Table 1.3) 

including gel based NEs, lecithin based NEs, penetration enhancer (PE) containing 

NEs, and positively charged NEs. Gel-based NEs279-286 were formulated by 

incorporating viscosity enhancing agents such as Carbopol™ at 0.75-1% 
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concentration or Viscolam AT100P at 5% concentration to improve the spread-ability 

property, to ease the application, and to prolong the retention of NE in the skin. 

Despite the benefits of gel formation of NE, we should consider that the permeation 

flux of gel based NEs is likely to be lower than that of the liquid NEs as the viscosity 

increased. Lecithin-based NEs take the benefits of lecithin as a natural surfactant to 

minimize the irritation risk of the formulation while showing comparable features as 

other surfactants.250, 287-291 Terpenes, dimethylsulfoxide and N-methyl pirrolidone were 

employed in PE-containing NE in order to improve the skin permeation.266, 292-294 

Positively charged NEs involving cationic phytosphingosine were introduced as 

alternatives to enhance the skin permeation based on the assumption of the 

interaction of the formulation with negatively charged skin.248-250 
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Table 1.3 Examples of NE formulations evaluated for topical and transdermal delivery: hydrophilic (H) and lipophilic (L) nature of active 
compound, composition, preparation method and physical characterisation of emulsion formulation, and skin permeation experimental 
details and data. Adapted from Nastiti et al.79 

Therapeutic class 
and active 
compound 

H/L Composition Preparation 
method 

Physical characterisation Skin permeation 
evaluation 

Ref 
Particle 

size (nm) 
Surface 
charge 
(mV) 

Polydispersity Viscosity 
(mPa s) 

Non-steroidal anti-inflammatory drugs (NSAID) 

Aceclofenac 
 

L  
Nanoemulsion 
NE31 (O/W) 
O, A: Triacetin 
(13.6%), water 
(54.6%) 
S: Cremophore EL 
(23.9%), 
CoS: PEG 400 
(7.9%),   
 
Nanoemulsion gel 
NG31:  
NE31 gelled with 
Carbopol 934 (1%) 
 
Drug load: 1.5 mg% 
 
  

Spontaneous 
aqueous phase 
titration 

39.48  
(NE31) 

 0.230 (NE31) 339.51 ± 
0.31 
(NE31) 

Full thickness rat 
abdominal skin  
Receptor fluid: 
Methanol-PBS pH 
7.4 (3:7) 
 
Flux  J 
(µg.cm−2.h−1) in 24 
hours: 
NE31: 254.90 ± 
1.25 
NG31: 199.60 ± 
6.93 
Control  
(Hiffenac ™ Gel): 
43.67 ± 2.11 
 
Enhancement 
ratio (ER): 
NE31: 5.84 
NG31: 4.57 

279 
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Aceclofenac 
(ACF) 
 
 
 

L Lecithin based 
Nanoemulsion  
L1.5 S0.5 P2A 
O, A: medium chain 
triglycerides (MCT): 
castor oil (1:1) (20%), 
water (76%) 
S/CoS:  
L: Lecithin 80 (1.5%), 
S: Sucrose stearate 
970 (0.5%)  
P: Sucrose palmitate 
1670 (2%) 
 
Drug load: 1% w/w 

High pressure 
homogenisation 
 
 
 
 
 

181.2±0.8 
 
 

  -39.2±1.5 0.110±0.006 3.60±0.23 Human skin (in 
vivo 12 times 
tape stripping) 
  
Amount of 
drug in SC  
(µg/cm2) 
L1.5 S0.5 P2A 
39.85±1.29  
Control 
L2 P802A      
28.32 ± 4.39 
 

291 

Lornoxicam  
 

L Nanoemulsion NE8: 
O: Labrafac®, 
S: Tween 80, 
CoS: Pluronic F68®, 
Smix= 3:1 
Oil: Smix=2:8 
Nanoemulsion gel 
NG8: 
NE 8 gelled with 
Carbopol 934® (1%) 
 
Drug load: 1.5% 

Spontaneous 
aqueous phase 
titration 

139 ± 29  0.233 23.87 ± 
1.86  

Full thickness 
pig abdominal 
skin 
Receptor fluid: 
PBS pH 7.4 
Flux  J 
(µg.cm−2.h−1) 
in 24 hours: 
NE8: 254.90 ± 
1.25 
NG8: 199.60 ± 
6.93 
Control (gel): 
43.67 ± 2.11 

280 

Indomethacin  
 

L Nanoemulsion F6 
(O/W)  
O, A: Labrafil® (5%), 
water (50%) 
S: Tween 80 (33.75%) 

Spontaneous 
aqueous phase 
titration 

F6 
25.53 ± 
2.22 

 F6 
0.087 

F6 
14.32 ± 
1.12 

Full thickness 
rat abdominal 
skin 
Receptor: 
methanol-PBS  
pH 7.4 (1:9) 

281 
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CoS: Transcutol-HP® 
(11.25%) 
Smix ratio (3:1) 
Smix/oil ratio 4.00 
 
Nanoemulsion gel 
NG6 
F6 gelled with  
Carbopol 940® (1%) 
Triethanolamine 
(0.5%) 
 
Drug load: 0.5 % 
 
 

 
Flux J 
(µg.cm−2.h−1) 
F6: 73.96 ± 
2.89 
NG6: 61.64 ± 
2.38 
Control : 
Indobene gel 
(Indo Gel™ ): 
9.38 ± 0.41 
 
ER: 
F6: 7.88 
NG6: 6.57 

Naproxen and  
Caffeine 
 
 

L, 
H 
 
 
 

Nanoemulsions with 
penetration 
enhancers in oil 
phase: 
E1 
O, A: Eucalyptol (EU; 
15.93%), water 
(30.97%) 
S: Volpo-N10® 
(26.55%) 
CoS: ethanol 
(26.55%) 
 
E2 
O, A: Eucalyptol (EU; 
14.63%), water 
(36.59%) 
S: Volpo-N10® 
(24.39%) 

Spontaneous 
aqueous phase 
titration and 
moderate agitation 
 

Caffeine  
E1: 
19.3±4.0 
E2: 
16.0±3.6 
O1: 
5.9±2.4 
O2: 
1.2±0.1 
 
Naproxen 
E1: 
37.8±5.9 
E2: 
25.0±3.0 
O1: 
11.6±3.8 
O2: 
13.5±4.5 

Caffeine/Naproxen-
EU  
15.3 
 
 
Caffeine/Naproxen-
OA 
15.3 
 
 

 Caffeine/ 
Naproxen-
EU  
13.7 ± 4.5 
15.1 ± 4.0 
 
Caffeine/ 
Naproxen-
OA 
23.7 ± 4.7 
28.3 ± 4.5 
 
 
 
 
 

Full thickness 
human skin  
Receptor fluid: 
PBS pH 7.4 
 
Caffeine:  
Flux  J 
(µg.cm−2.h−1)  
in 24 hours 
E1: 263.6 ± 1.2 
E2: 267.7 ± 
24.0 
O1: 118.8 ± 
57.3 
O2: 136.4 ± 
95.2 
Control 
(Caffeine) 
C1: 2.2 ± 0.8 
C2: 25.6±3.1 

266 
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CoS: ethanol 
(24.39%) 
 
O1 
O, A: Oleic acid (OA; 
15.93%), water 
(30.97%) 
S: Volpo-N10® 
(26.55%) 
CoS: ethanol 
(26.55%) 
 
O2 
O, A: Oleic acid (OA; 
14.63%), water 
(36.59%) 
S: Volpo-N10® 
(24.39%) 
CoS: ethanol 
(24.39%) 
 
 
Drug load :  
Caffeine (3%) 
Naproxen (2%) 
 
Controls: 
C1C:  water 100% 
C2C,N: water 40%, 
ethanol 60% 
C3C: water 75%, 
PEG-6000 25% 
C4N:  water 50%, 
ethanol 25%, Volpo-
N10 25% 

C3: 2.5± 0.7 
C4: not 
identified 
 
Naproxen  
Flux J 
E1: 122.4± 
27.1 
E2: 86.6 ± 8.9 
O1: 101.2 ± 
41.7 
O2: 74.0 ± 2.3 
Control 
(Naproxen) 
C1: not 
identified 
C2: 23.4±4.8 
C3: 6.2± 0.3 
C4: 7.3± 2.7 
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Diclofenac 
diethylamine 
(DDEA) 
 
 

L Nanoemulsion F1 
O, A: Oleic acid  
(15%), water (30%) 
S: Polysorbate 20 
(18.3%) 
CoS: ethanol (36.7%) 
Smix:  1:2 (55%) 
 
Nanoemulsion gel 
NE 
F1 gelled with 
Carbopol 971P® 
(0.75%); and added: 
PG (10.0%) 
Methyl paraben 
(0.18%) 
Propyl paraben 
(0.02%) 
 
Drug load :  
 1.16% w/w DDEA 
(equivalent to 1% w/w 
diclofenac) 
 

Spontaneous 
aqueous phase 
titration and vortex 
mixing  

59.97±3.22 
 

 0.28 ± 0.07 
 

    1.002 Strat-M® 
membrane 
Receptor fluid: 
PBS pH 7.4 : 
methanol 
(70:30) 
 
Flux  J 
(µg.cm−2.h−1) 
in 12 hours: 
F1: 11.5 
NE gel:  12.0  
Controls: 
DDEA solution: 
1.71 
Conventional 
gel: 11.7 
Emulgel:  12.5 
(coarse 
emulsion gel) 
 

282 

Indomethacin 
 
 
 

L Nanoemulsion 
O, A: 
Triacetin®:Capryol 
90® (1:1) (10%), 
water (40%) 
S: Tween 80 (25%) 
CoS: Transcutol 
(25%) 
 
Drug load: 1%  
 

Spontaneous 
aqueous phase 
titration and vortex 
mixing 

101.1 
 

n.a n.a 60 ± 2.1 
 
 
 
 
 
 
 

Full thickness 
hairless 
newborn albino 
rat  
Receptor fluid:  
PBS (pH 7.4) 
 
Flux  J 
(µg.cm−2.h−1) 
in 6 hours 
55.81±4.65 

295 
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 No control  
Meloxicam 
(MLX) 
 
 
 
 
 
 
 

L Nanoemulsion gel 
O, A: Caprylic acid 
(0.95%), water (70%) 
S:  Tween 80 (20%) 
CoS: Propylene glycol 
(PG) (10%) 
Carbopol 940  
(0.05%) 
 
 

Spontaneous 
aqueous phase 
titration 

125 ± 1.9 
 

 

-31.85 ± 0.61 
 

0.193 ± 0.01 
 

 Abdominal rat 
skin 
Receptor fluid:  
Acetate buffer 
(pH 6.0) 
 
Flux  J 
(µg.cm−2.h−1) 
6.407±0.0911 
Control (MLX 
solution): not 
identified 
  
Amount in skin 
layers at 24 h  
Tape strips: SC 
level  
Control > MLX-
NE gel  (1.02 
folds) 
   
Epidermal level 
MLX-NE gel > 
Control (3.24 
folds) 
 
Dermal level 
MLX-NE gel > 
Control (1.42 
folds)   

283 

Flufenamic 
acid  
 

L 
 
 
 

Nanoemulsion 
Aqueous phase: 
Potassium sorbate 
(0.1%) 

High pressure 
homogenisation 
 

- - 
 

- - Dermatomed 
pig abdominal 
skin (1.2 mm) 
Receptor fluid:  

289 
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γ-Cyclodextrin (1.0%) 
water to 100% 
Oil phase: 
PCL liquid  (cetearyl 
ethyl hexanoate, 
isopropyl myristate) 
(20%) 
S/CoS: sucrose 
stearate (2.5%)  
 
Drug load: 1% 
 

PBS pH 7.4 
 
Flux  J 
(µg.cm−2.h−1) 
γ–SN Fluf 
1.83±0.87 
 
No control 
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Antifungal agents 

Amphotericin B  
 

L Nanoemulsions 
F I 
O, A: Sefsol 
218®+DMSO (1:1)  
(18.7%), water (44%) 
S: Tween 80, 
CoS: PG, 
Smix (ratio 2:1) 
(37.3%)  
 
F III 
O, A: Sefsol 
218®+DMSO (1:1)  
(6%), water (64%) 
S: Tween 80, 
CoS: PG 
Smix (ratio 1:2) (30%)  
 
F VI 
O, A: Sefsol 
218®+DMSO (1:1)  
(16.8%), water 
(49.5%) 
S: Tween 80 
CoS: PG 
Smix (ratio 1:3) 
(33.6%)  
 
Drug load: 0.1% 
 

Spontaneous 
aqueous phase 
titration 

FI 
67.33 ± 0.8 
F III 
252 ± 1.0 
F VI 
74.2 ± 1.2 

FI 
-37.305 
F III 
-28.202 
F VI 
-18.148 

FI 
0.635 
F III 
0.468 
F VI 
0.453 

FI 
25.4 ± 1 
F III 
40.7 ± 1.3 
F VI 
43.1 ± 1.4 

Albino Wistar 
rat abdominal 
skin 
Receptor fluid: 
2% DMSO in 
PBS pH 7.4 
 
 
Flux  J 
(µg.cm−2.h−1) 
F I: 18.02 ± 
4.34 
F III: 8.808 ± 
3.55 
F VI: 17.581 ± 
2.56 
 
Controls 
Drug solution 
(0.1%): 
5.895 ± 2.06 
Fungisome® 
gel (0.1%): 
9.704 ± 5.74 

294 

Amphotericin B  L Nanoemulsion NE 
(FV) 
O, A: Sefsol-218®  
(10%), water (65%) 

Spontaneous 
aqueous phase 
titration 

FV 
76.2 ± 1.4 
 

FV 
-31.48 
 

FV 
0.303 
 

FV 
39.01 ± 1.4 
 

Albino rat 
abdominal skin 
Receptor fluid:  

284 
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S: Tween 80, 
CoS: Transcutol® , 
Smix (ratio 1:3) (25%) 
 
AmpB-NE gel: 
FV: Carbopol 980® 
(1%) 
=1:1 
 
Drug load: 0.1% 
 
  

AmpB-NE 
gel: 
97.04 ± 7.4 

AmpB-NE 
gel: 
-39.27 ± 
0.25 

AmpB-NE 
gel: 
0.19 ± 0.01 

AmpB-NE 
gel: 
892 ± 9.64 

2% DMSO in 
PBS pH 7.4 
 
Flux  J 
(µg.cm−2.h−1) 
FV: 15.74 ± 0.4 
AmpB-NE gel: 
18.09 ± 0.6 
Control (AmpB 
solution): 4.59 
± 0.01 
 
ER: 
FV: 8.97 
AmpB-NE gel: 
10.42 
 

Terbinafine (TER)  
Citral (CIT) 
  
 
 

L 
 

L 

Nanoemulsion (NE) 
O, A: CIT  (4%), 
(water 71%) 
S : Cremophor ®EL-
40 (18%) 
CoS: 1,2-propylene 
glycol (6%) 
Smix:  3:1 
 
 
 
 
 
NG1 
NE gelled with 
Carbopol® 934 
(1%)=1:1 
 

Spontaneous 
aqueous phase 
titration 

NE 
15.53±3.32 

 
NG1 

14.88±3.11 
 

NE 
    -7.4±1.8 

 
NG1 

    -6.5±2.3 
 

 

NE 
0.074±0.009 

 
NG1 

0.084±0.025 
 
 

 Guinea pig 
abdominal skin 
Receptor fluid: 
PBS (pH 7.4)  
 
TER  
Flux  J 
(µg.cm−2.h−1)  
NE: 11.30±0.56 
NG1: 
11.50±0.43 
Control: 
1.48±0.34 
 
CIT  
Flux J 
NE: 54.71±1.34 

285 
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(NG 2 and NG 3 
contains 2% and 3% 
Carbopol® 934, 
respectively, at the 
same ratio with NE) 
 
 
Drug load in NE:  
TER 1% and CIT 4% 
(oil phase) 
 
Controls: TER-CIT in 
conventional gels 
(1.5% Carbopol® 
934) 
 
 

NG1: 
55.01±1.67 
Control: 
10.55±0.87 
 
Amount in 
stratum 
corneum 
 (12 h) (µg.cm-

2)  
NE-TER: 
1.65±0.29 
NG1-TER: 
6.27±1.03 
Control TER: 
5.63±0.76 
 
NE-CIT: 
0.95±0.52 
NG1-CIT: 
10.88±5.80 
Control CIT 
13.68±1.91 
 
 
Amount in 
epidermis-
dermis (12h) 
(µg.cm-2) 
NE-TER: 
73.5±8.23 
NG1-TER: 
75.25±9.52 
Control TER 
17.42±5.63 
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NE-CIT: 
210.71±12.38 
NG1-CIT: 
214.64±.92 
Control CIT 
39.47±5.51 
 

Fluconazole  
 

H 
 
 

Lecithin based NE  
Aqueous phase: 
Potassium sorbate 
0.1% 
(γ-Cyclodextrin 
1.0%) 
water to 100% 
 
Oil phase: 
PCL liquid  20% 
 
S: Lecithin E-80 
 
Drug load: 1% 
 

High pressure 
homogenisation 
 

LN Fluc 
156.87±09.73 
 
γ -LN Fluc 
155.60±07.96 
 
 

LN Fluc 
-
24.70±3.41 
 
γ -LN Fluc 
-
22.50±2.20 
 
 
 

LN Fluc 
0.05±0.01 
 
γ -LN Fluc 
0.07±0.02 
 

 Dermatomed 
pig abdominal 
skin (1.2mm) 
Receptor fluid:  
PBS pH 7.4 
 
Flux  J 
(µg.cm−2.h−1) 
LN Fluc 
109.55±11.30 
 
γ -LN Fluc 
93.63±3.80 
 
No control 
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Corticosteroids 

Fludrocortisone 
acetate 
 
 
 
 
 
 
 
 

L Lecithin based NE 
Oil phase: 
PCL liquid 20% 
 
Aqueous phase: 
Potassium sorbate 
0.1% 
γ-Cyclodextrin 0.5% 
or 1.0% 
water to 100% 

High pressure 
homogenisation 
 

γ-0.5% NE 
171.03±0.32 
 
γ-1% NE 
169.73±2.35 
 

γ-0.5% NE 
-
33.17±0.75 
 
γ-1% NE 
-
31.73±1.52 
 

γ-0.5% NE 
0.098±0.042 
 
γ-1% NE 
0.033±0.049 
 
 

 Dermatomed 
pig abdominal 
skin (1.2mm 
thick) 
Receptor fluid:  
PBS pH 7.4 
 
Flux J 
(µg.cm−2.h) 
in 24 h 
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S: Lecithin E-80 
(2.5%) 

 
Drug load: 1% 
 
Control: NE without 
cyclodextrin 
 
Applied as finite 
(5mg/cm2) and 
infinite doses 
(500mg/cm2)  
 
 No significant 
different in drug flux 
between γ-1% NE 
and γ-0.5% NE  
 
 

 
Finite dose  
γ-1% NE 
0.067 ± 0.047 
NE Control 
0.008 ± 0.007 
 
Infinite dose  
γ-1% NE 
2.48 ± 0.68  
NE Control 
0.09 ± 0.07 
 
ER:  
finite dose 8.38  
infinite dose 
27.55 

Fludrocortisone 
acetate (FA) 
 
Flumethasone 
pivalate (FP) 
 

L Positively charged 
NEs : 
Oil phase: 
PCL liquid 
(Ethylhexanoate) 
(20%), 
Lipoid S-75® (4%), 
α tocopherol (1%), 
Phytosphingosine 
(PS)       
(0, 0.4% or 0.6 %), 
 
Aqueous phase: 
water to 100% 
 

High pressure 
homogenisation  

FA NL 
161 ± 0.7 
FA NL-0.4PS 
215 ± 2.8 
FA NL-0.6 
PS 
254 ± 2.2 
 
 
FA NT 
170 ± 3.8 
FA NT-0.4PS 
216 ± 26.6 
FA NT-0.6 
PS 

FA NL 
-6.2 ± 0.4 
FA NL-
0.4PS 
+46 ± 0.4 
FA NL-0.6 
PS 
+48 ± 0.7 
 
 
 
FA NT 
-55 ± 0.7 
FA NT-
0.4PS 

FA NL 
0.12-0.22 
FA NL-0.4PS 
0.22-0.25 
FA NL-0.6 
PS 
0.06-0.1 
 
 
FA NT 
0.15-0.18 
FA NT-0.4PS 
0.13-0.18 
FA NT-0.6 
PS 

 Dermatomed 
pig abdominal 
skin (1 mm) 
Receptor fluid: 
PBS pH 7.4 
 
Flux J 
(µg.cm−2.h) in 
48 hours:  
FA NL 
0.126 ± 0.027 
FA NL-0.4PS 
0.150 ± 0.010 
FA NL-0.6 PS 
0.189 ± 0.012 
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S: Sucrose laurate L 
1695 (1%) or 
Tween 80 (1%) 
 
Drug load: 1% 
 
 
FA NL: FA NE with 
sucrose laurate L 
1695  
 
FA NT : FA NE with 
Tween 80  
 
FP NL: FP NE with 
sucrose laurate L 
1695  
 
FP NT: FP NE with 
Tween 80  
 
 

170 ± 2.1 
 
 

+45 ± 0.7 
FA NT-0.6 
PS 
+48 ± 1.1 

0.10-0.14  
FA NT 
0.263 ± 0.043 
FA NT-0.4PS 
0.353 ± 0.018 
FA NT-0.6 PS 
0.377 ± 0.038 
 
FP NT 
2.290 ± 0.313 
FP NT-0.4PS 
2.698 ± 0.117 
FP NT-0.6 PS 
3.073 ± 0.104 
 
No control  
 
Flux increased 
with PS 
concentration; 
Tween 80 > 
sucrose laurate 
 

Prednicarbate 
(PC) 
 

L Positively charged 
NEs 
(PCNE) 
Phytosphingosine 
(PS) (0.6%), 
 
S: Lecithin E 80® & 
Tween 80 (2%), 
CoS: Ethanol (20%), 
α tocopherol 
(0.03%), 

High pressure 
homogenisation  

PCNE: 157  
NCNE: 136  

PCNE: 50-
60  
NCNE : -
(40-50)  

0.05-0.1  Full thickness 
human skin 
Receptor fluid: 
Ethanol-PBS 
(1:1) 
No PC detected 
in receptor in 
24 hours 
 
Amount PC in 
skin at 24 
hours 
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Potassium sorbate 
(0.1%) 
 
Negatively charged 
NE (NCNE)  
Myristic acid (1%) 
was used to replace 
PS 
 
Drug load: 0.25% 
 
 

PCNE:  
18.4 ± 3.4 
µg/mL  
NCNE: 
11.7 ± 2.5 
µg/mL 
 
No control  
 
Positive > 
negative 
charged NE 
 
 

Fludrocortisone 
acetate (FA) 
 

L 
 
 
 
 
 
 
 
 
 

 

Lecithin based NE  
Aqueous phase: 
Potassium sorbate 
0.1% 
γ-Cyclodextrin 1.0% 
water to 100% 
 
Lipid phase: 
PCL liquid 20% 
 
S: Lecithin E-80 
2.5% 
 
 
 
Drug load: 1% 
 

High pressure 
homogenisation 
 

γ -LN Flud 
175.82±00.47 
 
 
 

γ -LN Flud 
-
30.19±4.12 
 

 
 

γ -LN Flud 
0.09±0.04 
 
 

 Dermatomed 
pig abdominal 
skin (1.2mm 
thick) 
Receptor fluid:  
PBS pH 7.4 
 
FA Flux J 
(µg.cm−2.h−1) 
γ -LN Flud 
4.53±0.99 
 
No control  
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Vitamins 

α tocopherol 
(vitamin E) 

L Hyaluronic acid-
based NE (L6)  
O: methylene oxide, 

Oil/water/surfactant 
emulsifying system 

57.3 ± 0.2  0.260  Full thickness 
Wistar rat 
dorsal skin 
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S/CoS: Tween 80-
Span 20, 
A: HA-GMS solution, 
Mass ratio O:S:A = 
2:3:95 
 
Drug load: 0.1% 
 
HA-GMS is water 
soluble amphiphile 
from crosslinking 
esterification of 
hyaluronic acid and 
glycerol α-mono 
stearate (stearin)  
 
Control: 0.1% Vit E in 
ethanol solution 
 

and solvent 
evaporation 

Receptor fluid: 
PBS pH 7.4 
 
Flux  J 
(µg.cm−2.h−1)  
in 24 hours: 
L6: 14.68 ± 
4.13 
Control: not 
detected 
 
   
 

α tocopherol 
(vitamin E) and 
Vitamin K1 (VK1) 
 
 
 
 
 

L Nanoemulsions 
O, A: α- tocopherol 
(α-TOC) and VK1 
10%, water 64% 
S: Tween 80  10% 
Cos : Ethanol  16% 
 
Drug load: 3% or 5% 
 
 
 
 

 

Spontaneous 
aqueous phase 
titration and 
Ultrasonic 
nebulisation 

 
NE-neb-VK1   
= ultrasonic 
nebulizer  

 

NE-VK1  3% 
254.8±10.7 
 
NE-neb-VK1  
3% 
259.4±4.1 
 
NE-VK1  5% 
215.7±2.3 
 
NE-neb-VK1  
5% 
233.2±0.2 

 
 
 

NE-VK1  
3% 
-
14.89±2.68 
 
NEs-neb-
VK1  3% 
-
16.60±1.01 
 
NE-VK1  
5% 
-
14.14±0.29 
 

NE-VK1  3% 
0.22±0.05 
 
NEs-neb-
VK1  3% 
0.19±0.14 
 
NE-VK1  5% 
0.23±0.02 
 
NE-neb-VK1  
5% 
0.26±0.02 

 
 
 

 Pig ear skin 
(thickness 1.7-
2.3 mm) 
Receptor fluid: 
PBS: Ethanol 
(7:3 v/v) 
 
Amount in 
epidermis at 
24h (ng/mg) 
NEs-VK1  3%: 
46.7 
NEs-neb-VK1 
3%: 72.8 
NEs-VK1  5%: 
55.6 

297 



67 
 

 
 
 
 
 
 

NE-neb-
VK1  5% 
-15.4±0.1 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

NEs-neb-VK1 
5%: 51.4 
 
Amount in 
dermis at 24h 
(ng/mg) 
NEs-neb-VK1 
3%: 27.9 
NEs-neb-VK1 
5%: 24.8 
 
No control  

Miscellaneous          

Thiocolchicoside 
(TCC) 
anti inflammatory, 
analgesic, muscle 
relaxant 

H Nanoemulsion 
C1 (W/O type) 
O, A: (linseed 
oil:Sefsol®=1:1) 
(35.44 %), water 
(10.81%) 
S: Span 80 (40.53%) 
CoS: Transcutol P® 
(13.51%) 
Smix 3:1 
 
 
C3 (W/O type) 
O, A: (linseed 
oil:Sefsol®=1:1) 
(35.19 %), water 
(9.26 %) 
S: Span 80 (41.67 
%) 
CoS: Transcutol P®  
(13.89 %) 

Spontaneous 
aqueous phase 
titration 

C1 
117.73 ± 
13.71 
 
C3 
131.43 ± 
15.15 

 C1 
0.285 
 
C3 
0.311 

C1 
61.12 ± 
5.28 
C3 
65.75 ± 
6.08 

Full thickness 
weanling pig 
abdominal skin 
Receptor: PBS 
pH 7.4 
 
TCC Flux  J 
(µg.cm−2.h−1) in 
24 h 
C1: 30.63 ± 
4.18 
C3: 28.01 ± 
3.41 
Control:  
5.99 ± 0.73 
 
ER: 
C1: 5.114 
C3: 4.676 
 

298 



68 
 

Smix 3:1 
 
 
Drug load: 0.2% 
 

Type of NE did 
not influence 
ER 

Curcumin 
natural anti-
inflammatory  
 
 
 
 

L Nanoemulsion NE 
gel 
O, A: Glyceryl 
monooleate (GMO) , 
water 
S : Cremophor 
RH40®  
CoS: PEG 400  
 
O:S:CoS =1:8:1 
Ratio water: oil 
phase= 5:1 
 
NE gelled with 
Viscolam AT 100P® 
(5%)  
and added with: 
Methyl paraben 
(0.2%) 
Propyl paraben 
(0.05%) 
Glycerine (5%) 
Propylene glycol 
(15%) 
 
Drug load: 0.35% 
 

Spontaneous 
aqueous phase 
titration with 1hour 
ultrasonic sonication 
 
 

85.0±1.5 
 

0.18±0.0 
 

-5.9± 0.3 
 

2000 - 
2700 

Shed snake 
skin  
Receptor fluid:  
PBS (pH 7.4) 
 
Flux J 
(µg.cm−2.h−1) 
NE gel: 1.699 ± 
0.050 
 
Control gel: 
0.836 ± 0.004 
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Bovine albumin-
fluorescein 
isothiocyanate 

L Nanoemulsion Spontaneous 
aqueous phase 
titration with 

85.2±15.5 
 

-
45.17±4.77 
 

0.186±0.026 
 
 

14.6±0.026 
 

Mouse skin 
Receptor fluid:  
PBS (pH 7.4) 
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conjugate (FITC-
BSA) 
vaccine model 
 
 

O: Squalene 
(37.5%), water 
(52.5%) 
S: Span 80, Tween 
80 (10%)  
Smix: 1:1 
 
Drug load: 0.25% 
 
Controls: 
CE: Emulsifiers 
solution (10% of Smix) 
CA: Aqueous 
solution 
 
 

high pressure 
homogenisation  

  
Flux J 
(µg.cm−2.h−1) 
in 48 hours: 
NE: 
23.44±17.230 
Controls: 
CE: 6.10±0.977 
CA: 3.15±0.897 

Granisetron HCl 
(GHCl) 
anti emetic drug 

H Nanoemulsion with 
penetration 
enhancer NMP 
O: Isopropyl 
myristate (IPM) (4%) 
S: Tween 85 (20%) 
CoS: Ethanol (20%) 

PE: n-methyl 
pyrrolidone (NMP) 

(10%) 
A: water up to 100% 
 
 
Drug load: 2.5% 
 
Control: NE without 
NMP 
  

Spontaneous 
aqueous phase 
titration  

 

48.3 ± 1.7  0.27 ± 0.02  Full thickness 
rat abdominal 
skin 
Receptor fluid: 
saline solution 
 
Flux J 
(µg.cm−2.h−1) 
NMP NE: 85.39 
± 2.90 
Control: 71.17 
± 3.54 
 
Amount in 
skin at 12 h 
(µg.cm-2)  
NMP NE: 891.8 
± 2.86 
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Control: 889.1 
± 2.24 
 
NMP NE ≅ NE 

Minoxidil (Min) 
antihypertensive 
vasodilator 
(stimulate hair 
growth) 
 

H Lecithin based NE 
Aqueous phase: 
Potassium sorbate 
0.1% 
γ-Cyclodextrin 1.0% 
water to 100% 
 
Oil phase: 
PCL liquid  20% 
 
S: Lecithin E-80 
2.5% 
 
Drug load: 1% 

High pressure 
homogenisation 
 

- 
 
 

- 
 

- 
 

 Dermatomed  
pig abdominal 
skin (1.2mm 
thick) 
Receptor fluid:  
PBS pH 7.4 
 
Flux  J 
(µg.cm−2.h−1) 
102.56±9.41 
 
No control  
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2 Chapter 2. Effect of Acetone and Tape 
Stripping on Porcine Skin: Application of 
Multiphoton Tomography-Fluorescence 

Lifetime Imaging (MPT-FLIM) 
 

2.1 Introduction 

Despite the concept of a metabolically-dead, basket weave layer, and inert     

wrapping1, SC is acknowledged to be skin barrier against the penetration of 

molecules, microbes, and nanomaterials.2 However, any physical or chemical 

disruption on this barrier may result in increased permeability of foreign materials into 

the skin.  

Dermal exposure of organic solvents may increase the risk of skin dryness, oxidative 

damage and induce irritant contact dermatitis.3, 4 Acetone is a highly flammable, 

volatile and colourless liquid which is used as an organic solvent for a range of 

industrial, medical and cosmetic purposes. Acetone disrupts the skin barrier by SC 

lipid extraction.5-9 In human skin, extraction of skin surface lipid by acetone resulted 

in dry and scaly skin but it did not increase the TEWL and did not disrupt the deeper 

skin layers.10  Under in vitro conditions of skin exposure, acetone poorly extracts 

human SC lipids up to 12 minutes, hence it showed less ability to disrupt the skin 

barrier.11  

Tape stripping involves the repeated mechanical movement of applying and then 

peeling adhesive tapes off the skin surface to remove layers of the SC.12 Tape stripping 

is applied to partially remove the SC to provide a compromised skin model13-16 that can 

be useful for some experimental protocols including skin penetration study of 

substances. Tape stripping can also be utilised in both in vitro and in vivo protocols to 

determine the deposition of topically applied chemicals within the SC, furrows and 

follicle orifices.17-21 Determination of SC protein22, 23 and lipid24 within the tape strip 

samples allows the amount of SC in each strip to be determined and thereby quantifies 

the amount of applied chemical per amount of SC.  

Hence, solvent exposure and tape stripping have the potential to compromise the SC 

barrier and may lead to the skin permeation of nanomaterials. To explore this, it is 

useful to identify a technique that will permit real time monitoring of the penetration of 

nanoparticles into the skin. Multiphoton tomography (MPT) is a powerful, non-invasive 

fluorescence-based microscopic technology that has become a well-established tool 
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for optical skin imaging.  It is used to investigate a wide range of in vitro and in vivo 

skin conditions25-33, including cancerous skin cells such as: melanoma34, 35, basal cell 

carcinoma36, melanocytic nevi37 and non-melanoma cancer.38 MPT has also been 

reported as a promising method for imaging thick tissues/organs of living animals 

(intravital microscopy), such as liver 39-49, kidney 50-54, and brain 55-58. In principle, MPT 

involves simultaneous energy absorption of two photons (or more) of a fluorophore 

which are excited at a longer infra-red wavelength (less energy) using highly spatial 

and temporal intensity of excitation light.26, 59 This excitation is then followed by 

emission of fluorescence which is detected at certain wavelengths on high submicron 

resolution. The emission wavelengths of two-photon excitation are shorter than the 

excitation wavelengths, resulting in higher energy, MPT thereby offers advantages 

over confocal laser microscopy including higher resolution, deeper observation 

through the tissues and less risk of photo-damage as it involves less energy to excite 

the photons.26, 28, 29, 60-62 Fluorescence lifetime is the average time of photons being at 

an excited state. This lifetime is unique for each fluorophore therefore it allows the 

researchers to distinguish fluorophores more accurately. MPT equipped with 

fluorescence lifetime imaging (FLIM) is a powerful tool to visualize the skin structure 

and the deposition of chemicals or particles within the skin layers with better resolution 

and accuracy.60, 63   

This study aimed to investigate the effect of acetone and tape stripping on the 

permeability of nanomaterials in porcine skin using MPT-FLIM. Changes in skin 

morphology after the acetone and tape stripping treatments and the deposition/ 

distribution of nanomaterials within skin layers after treatments were examined.  We 

hypothesized that nanomaterials did not penetrate into deeper layers of viable 

epidermis. 

2.2 Experimental section 

2.2.1 Materials 

Acetone was purchased from Thermo Fisher Scientific Pty Ltd (Australia). Sterile 

normal saline (0.9% sodium chloride) was purchased from Baxter Healthcare Pty Ltd 

(Australia). Hydrophilic CdTe/CdS QDs (size ~ 2.1 nm) were synthesised and 

characterised in house, as previously described 43, 64. The QDs were stabilised by 

mercaptosuccinic acid and coated with carboxyl groups to provide a negatively 

charged surface. These QDs show excitation wavelength range of 200-450nm and 

emission wavelength range 490-520 nm. The QDs were vortexed prior to dilution with 

normal saline immediately before application. Initial concentration of QDs solution 
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was 14.55 µM which was further diluted into 2.5 µM as a working concentration. A 

dose of 62.5 pmoles/cm2 was applied, adapted from the previously reported exposure 

scenario of 40µL of 1 µM QDs onto 0.64 cm2 skin.30, 65 

2.2.2  Skin preparation and Franz cell experimental protocol 

Porcine skin was obtained from the abdomen of adult female Yorkshire pigs that 

underwent scheduled execution due to aging issues, under approval of The University 

of Queensland Research and Innovation (ANRFA/265/16). The subcutaneous tissue 

was removed using blunt dissection. Freshly excised skin at the abdominal site was 

cut to 2x2 cm2 pieces and placed onto saline wetted-non-woven swab in a 6-well 

plate, SC side up. The donor chamber of a Franz-type diffusion cell with average 

surface area of 1.16 cm2 was then attached to the surface of the skin using a double-

sided “O”-ring sticker. The skin was incubated at 35ºC (to reach the skin temperature 

of 32°C) for 24 hours.  

 

Figure 2.1 Set up of Franz cell experimental equipment 

2.2.2.1 Saline application  

One mL of normal saline (0.9% NaCl) was applied onto the skin with intact SC 

followed by skin incubation at 35°C for 2, 4, 6, 8, and 24 hours. Skin with 24h-saline 

application was used as a control for the next treatments. 

2.2.2.2 Acetone application  

One mL of 10% or 100% acetone was applied to the skin surface and the donor 

chamber was covered with a microscope coverslip to minimize the evaporation of 

acetone. After 24 hours of incubation (at 35°C), the acetone was wiped off and the 

skin prepared for histology examination or MPT-FLIM imaging.  

2.2.2.3 Tape stripping treatment  

Adhesive D Squame® stripping tapes (22mm diameter: CuDerm, Dallas, Texas) were 

applied and peeled off thirty times (30x) on the surface of each skin prior to 24h 

incubation at 35°C. Each tape stripping was applied with a pressure of 225g/cm2 using 
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a D-Squame® disc applicator (CuDerm, Dallas, Texas) for 5 seconds prior to removal. 

The protocol was carried out based on the study of Jacobi et al.19 with some 

modification. 

 

Figure 2.2 Experimental protocol of acetone topical exposure and tape 
stripping on porcine skin 

 

Application of hydrophilic QDs  

QDs were dispersed in saline (for control and tape stripped skin) or in 10% acetone 

(for acetone treatment) and applied on skin with a dose of 62.5 pmole/cm2 prior to 24h 

incubation at 35°C. 

 

Figure 2.3 Experimental protocol of QDs application on porcine skin 
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2.2.3 Histology examination 

Skin fixation was carried out using 10% formaldehyde solution for 24 hours followed 

by 70% ethanol immersion for another 24 hours. The fixed skin was then embedded 

in paraffin and sectioned. Hematoxylin and Eosin (H&E) counter-staining was applied 

on the skin sections prior to examination under a light microscope (Zeiss GmBH, 

Oberkochen, Germany) with a 40x objective magnification. 

2.2.4 Skin imaging using MPT-FLIM 

Images of the skin layers (SC, SG, SS and SB) were acquired using a Multiphoton 

tomography (LaVision™ GmBH, Göttingen, Germany) equipped with a time-

corrrelated single photon-counting module SPC-830 (Becker and Hickl, Berlin, 

Germany).  Photons were excited at 760nm using a tunable titanium-sapphire 

femtosecond laser (MaiTai, Spectra Physics, Mountain View, CA, USA) with 100mW 

laser power. Emission wavelengths were set at 387-507nm for channel 1 and 485-

585nm for channel 2. Channel 1 facilitated the emission of nicotinamide adenine 

dinucleotide (NADH) as the skin auto-fluorescence, whereas Channel 2 filtered mostly 

the emission of QDs.  The layer of the skin was determined based on its keratinocyte 

morphology. Images were collected at 502 x 502 pixels. SPCImage 5.2 software 

(Becker and Hickl, Germany) was used to analyse the MPT-FLIM images. 

2.3 Results 

2.3.1 Epidermal morphology of intact porcine skin  

Histology examination was conducted prior to MPT-FLIM in order to assist the 

investigation of the effect of acetone exposure and tape tripping on porcine skin. The 

skin tissue was examined under a light microscope with the aid of H&E staining. The 

principle of this staining was based on the combination of deep blue-purple colour of 

hematoxylin which stains nucleic acids and nuclei in tissues and pink colour of eosin 

which stain nucleoli, protein (non-specifically), and cytoplasm and extracellular matrix 

on various pink colour gradation.66   
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Figure 2.4 H&E image of abdominal porcine skin hydrated with normal saline. 
Scale bar indicates 200µm 

The porcine skin structure is described as it is: the intact SC layers at the outermost 

site, followed by layers of epidermis (purple colour), with the large area of dermis site 

(pink colour) where the follicles and sebaceous glands are located (Figure 2.4). 

Epithelial extensions, known as rete ridges or rete pegs, were the inward projection 

of epidermis site to dermis.  

 

Figure 2.5 MPT FLIM images of skin layers after saline application on the 
surface of porcine skin (scale bar indicates 50µm). The white arrows denote 
dermal papillae. The pseudo-colour is based on the average fluorescence 
lifetime τm (0-2500ps); blue-green-red 

 

 

 



92 
 

Figure 2.5 shows the skin condition acquired by MPT-FLIM after saline application 

during incubation time of 2,4,6,8, and 24 hours. Those images are displayed in 

pseudo-colour based on the average fluorescent lifetime of the fluorophores. The 

fluorescence lifetime is in a range of 0-2500ps with the colour order of blue-green-

red. The prominent green colour of the images is generated by the skin auto-

fluorescence. Several fluorophores of the skin such as NADH, keratin, and melanin 

form a configuration of auto-fluorescence with different lifetimes.33, 60 Skin layers are 

further designated based on the morphology of keratinocytes. SC is identified by a 

tissue-paper-like appearance with polygonal patterns of corneocytes surrounded by 

furrows. Deeper down, the SG layer is represented by large keratinocytes with the 

nuclei in the centre. Double nuclei in some cells can be seen in this layer. The furrows 

are located on the outer side of keratinocyte sacks. The keratinocytes in SS appear 

to be smaller than the ones in SG. SB shows more rigid and even smaller 

keratinocytes than the SS. Some dermal papilla is located on the deeper site of SB in 

a form of irregular shape dark holes. Normal condition of keratinocytes is indicated by 

the small ratio of nucleus diameter to the cell. Saline-hydrated keratinocytes were in 

normal condition and there was no change in morphology of the keratinocytes during 

24h incubation at 35°C.  

 

Figure 2.6 MPT FLIM images of skin layers in 8 hour incubation without saline 
application on top (scale bar indicates 50µm). The pseudo-colour is based on 
the average fluorescence lifetime τm (0-2500ps); blue-green-red 
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Figure 2.6 illustrates the MPT FLIM of non-saline-hydrated skin condition in 8 hours. 

The morphology of the skin layers are similar to the ones in Figure 2.5. The higher 

tendency of ratio of nucleus diameter to the cell in a longer time of incubation, 

suggesting that skin was undergoing dehydration during incubation at 35°C.   

2.3.2 Epidermal morphology of porcine skin after acetone 
topical application 

 
 

Figure 2.7 H&E images of abdominal porcine skin before and after acetone 
application for 24h: (a) control: saline application; (b) 10% acetone application; 
(c) 100% acetone application (scale bars indicate 200µm) 

 

Figure 2.7 shows the effect on porcine skin morphology of exposure to 10% and 100% 

acetone application for 24h. In comparison to untreated skin (a), the outer SC surface 

has contracted due to skin shrinkage after 10% (b) and 100% (c) acetone application, 

respectively. The pink colour intensity of the dermis is decreased in the acetone-

treated skin, with a marked difference from untreated to 10% acetone treated and a 

further loss of colour intensity in the 100% acetone treated skin. In addition, the purple 

colour intensity of the epidermis has decreased slightly when exposed to 10% 

acetone, and markedly with the higher concentration of 100% acetone. 
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Figure 2.8 MPT-FLIM images of skin strata before and after acetone application 
(scale bar represents 50µm). The white arrows denote the keratinocytes 
disappearance. The pseudo-colour is based on the average fluorescence 
lifetime τm (0-2500ps); blue-green-red 

 

The SC on the acetone-treated skin shows more intense fluorescence compared to 

the control (Figure 2.8). There is no observable difference of SG, SS, and SB 

morphologically between control and 10% acetone-treated skin. However, the skin 

treated with 100% acetone shows holes indicating disappearance of keratinocytes in 

the SG and SS layers. Larger ratios between the nucleus and cytoplasm in the cells 

are also observed following exposure to 100% acetone. 
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2.3.3 Epidermal morphology of porcine skin after tape 
stripping 

Thirty times tape stripping resulted in skin shrinkage and less intense pink colour of 

dermis (as seen with acetone exposure: Figure 2.7), although the skin was less 

constricted than the acetone-treated skin (Figure 2.9). We observed a greater than 

80% of SC removed on porcine skin that had been incubated with saline for 24h 

(Figure 2.9. (b)).  

 

Figure 2.9 H&E images of abdominal porcine skin before and after tape 
stripping: (a) control: saline application; (b) 30x tape stripping (scale bars 
indicate 200µm) 

 

Both saline-hydrated intact skin and tape stripped skin show intense green auto-

fluorescence (Figure 2.10).  
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Figure 2.10 MPT-FLIM images of skin strata before and after tape stripping 
(scale bar represents 50µm). The white arrow denotes the keratinocytes shown 
on the skin surface. The pseudo-colour is based on the average fluorescence 
lifetime τm (0-2500ps); blue-green-red 

 

The SC of saline hydrated skin was fully intact; however, parts of the SG was 

observed on the SC of tape-stripped skin. In the deeper layers, the keratinocytes of 

both saline-hydrated skin and tape-stripped skin were arranged well. There was no 

evidence of keratinocytes loss.  
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2.3.4  Effect of acetone application on the penetration of QDs 
into porcine skin 

 
 

Figure 2.11 Visualisation of QDs on the acetone-treated porcine skin, after 24h 
QDs incubation (scale bar indicates 50µm).  MPT-FLIM images represent:                      
A. Auto-fluorescence of skin controls; B. QDs application on intact skin;                    
C. Auto-fluorescence of acetone-treated skin; D. QDs (in 10% acetone) 
application on intact skin. White arrows denote the existence of QDs. White 
circles denote “out of focus” imaging. The pseudo-colour is based on the 
average fluorescence lifetime τm (0-2500ps); blue-green-red 

Figure 2.11 shows the visualisation of QDs deposition on saline-hydrated intact skin 

and 10% acetone-treated skin. Saline-hydrated intact skin shows green auto-

fluorescence with small ratio of nuclei diameter to cells (Figure 2.11.A). The QDs 

(orange spots-Figure 2.11 B) were located in the furrows of keratinocytes after 24h 

QDs in saline incubation. On the SS and SB of Figure 2.11. B, the blurred orange 

spots next to the edge (in white circles) appeared to be out-of-focus emission signals 

of QDs imaging. A similar issue of out of focus emission signals was also observed 

on the QDs (in 10% acetone-Figure 2.11.D) application with some SC part overlapped 

on the deeper layers.  
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2.3.5 Effect of tape stripping on the penetration of QDs into 
porcine skin 

Figure 2.12 illustrates the MPT-FLIM visualisation of tape-stripped porcine skin after 

24h QDs incubation. Saline-hydrated intact skin and tape-stripped porcine skin show 

intense green colour of auto-fluorescence and well-arranged keratinocytes. 

QDs (orange colour) applied on non-tape stripped skin were in the furrows with no 

evidence of penetration into the keratinocytes (Figure 2.12 B). In contrast, removal of 

the SC by 30x tape stripping resulted in QDs in the SG (Figure 2.7).  

Figure 2.12 Visualisation of QDs on 30xtape stripped porcine skin, after 24h 
QDs incubation (scale bar indicates 50µm).  MPT-FLIM images represent: A. 
Auto-fluorescence of skin controls; B. QDs application on intact skin; C. Auto-
fluorescence of 30x tape stripped skin; D. QDs (in saline) application on tape-
stripped skin. White arrows denote the existence of QDs. White circles denote 
“out of focus” imaging. The pseudo-colour is based on the average 
fluorescence lifetime τm (0-2500ps); blue-green-red 

 

The blurred orange spots (in white circles) on SS and SB appeared to be out-of-focus 

emission signals, as described on section 2.3.4.   
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2.4 Discussion 

In this study, we demonstrate the application of MPT-FLIM in visualizing the skin 

layers on saline-hydrated intact skin, acetone-treated skin and tape-stripped skin. We 

also investigated the penetration of QDs in those skin conditions to gain an 

understanding of the deposition of nanomaterials penetrated into normal and 

compromised skin. We used porcine skin as it mimics human skin and is more readily 

available.67-69 As a powerful tool to visualize in vitro and in vivo skin pharmacokinetics 

of nanomaterials, MPT is believed to give much information, thanks to its excellent 

resolution, deeper imaging reach and less risk of photo-bleaching.26, 28, 59, 60, 70 We 

hypothesized that long duration application of acetone on the skin, and tape stripping 

pre-treatment, will induce skin barrier disruption that could allow the penetration of 

foreign nanomaterials into the skin.  

Initial study was conducted by examining saline hydrated intact skin during 24h 

incubation time to gain an understanding of the saline hydrated-skin morphology 

(Figure 2.4 and Figure 2.5). The condition of saline-hydrated skin remained the same 

in 24h incubation. There were no obvious differences between saline-hydrated and 

non-hydrated skin in terms of morphology up to 8h, except that the non-hydrated skin 

(Figure 2.6) tended to be less hydrated along the incubation, as shown by a small 

increase in the ratio of nucleus to the cell.  

Skin histology images show that skin surface alteration, such as shrinkage and untied 

SC, was observed on the acetone-treated skin after 24h incubation in both 

concentrations of acetone applied (10% and 100%) (Figure 2.7). MPT-FLIM images 

also suggest that the SC was damaged by 10% and 100% acetone application. The 

severity increased with increasing concentration of acetone applied. Disappearance 

of some keratinocytes was observable in the SG and SS on 100% acetone-treated 

skin, whereas 10% acetone application did not affect the deeper layers (Figure 2.8). 

This finding supported a previous study reported by Rissmann et al.71 They showed 

that applying ten times of 100% acetone using a wiping procedure disrupted the skin 

barrier in hairless mouse skin. Although the condition of keratinocytes was not clearly 

mentioned, they suggested that there was substantial nonpolar lipid extraction by 

acetone treatment and that the skin barrier was disturbed due to corneocytes removal.  

Our H&E images (Figure 2.9) confirmed that 30xTS on pressure at around 225g/cm2 

using a D-Squame® disc applicator (CuDerm, Dallas, Texas) for 5 seconds, removed 

greater than 80% of SC and caused skin shrinkage (Figure 2.9). The MPT-FLIM 
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images indicate that the SG was exposed as a consequence of SC removal (Figure 

2.10), although no keratinocytes loss was observable.   

To investigate the effect of acetone exposure and tape stripping pre-treatment on 

porcine skin permeability, we applied hydrophilic QDs as a model of nanomaterials 

on intact porcine skin. MPT-FLIM images were acquired after 24h incubation at 37°C. 

The hydrophilic QDs have a long fluorescence lifetime (≥ 10ns)72, therefore it can be 

easily distinguished as a bright orange colour from the green-coloured auto-

fluorescence. We applied hydrophilic QDs in 10% acetone to maintain the dispersion 

of QDs in the solvent and minimize the potential of QDs aggregation due to the non-

polar side of acetone characteristics. 

No QDs penetration was evident in acetone-treated porcine skin (Figure 2.11). QDs 

were only localised in the furrows. Although acetone may alter the skin (shrinkage 

and untied SC), the alteration did not facilitate nanomaterial penetration into the skin. 

This result may be associated with the low capacity of acetone solution in disrupting 

the skin barrier although it was applied in long duration. Furthermore, it is possible 

that there was some aggregation of QDs at the application site, which could influence 

the skin penetration. Although initially the size of QDs were very small  (~ 2.1 nm), the 

aggregation tendency of nanomaterials might lead to larger particles which then 

deposited in the furrows.73 Labouta et al.74 when investigated the human skin 

penetration of gold nanoparticles, reported the deposit of large aggregates of gold 

nanoparticles dispersed in water occurred in the furrows. 

Whilst the bulk of the applied QDs deposited on the furrows of the SC, on tape stripped 

skin, QDs were also observable in the SG, as a consequence of SC removal in tape 

stripping. There are conflicting reports in the literature. For example, Prow et al.30 

reported that QDs can reach the viable epidermis when applied on tape stripped 

human skin, whilst Gratieri et al.75 argued that QDs only deposited in the SC of tape-

stripped human skin. This present study demonstrated that although there is evidence 

in SG, the QDs penetration did not go further to the deeper layers. This finding is in 

agreement with the result of Leite-Silva et al.76 when applying zinc oxide nanoparticles 

(ZnO NPs) on tape-stripped human skin ex vivo and in vivo. They suggested that the 

ZnO was localised on the upper area of the SG. The localization is likely due to the 

role of skin tight junctions located in the SG and acting to support the skin barrier 

mechanism.77-79  

The degree of barrier disturbance in tape stripping pre-treatment depends on various 

factors. Intrinsically, age and anatomical sites of the subjects and skin (SC) 



101 
 

disorders/diseases may affect the outcome.80 Furthermore, the types of adhesive 

tapes, frequency of tape stripping, the pressure of tape application and the rate of 

tape removal, could affect the results.2  

Blurred orange spots (pointed in white circles) present in MPT images were not 

believed to show the real presence of QDs (Figure 2.11 and Figure 2.12). These 

blurred spots were believed to be “out-of-focus” emission signals, which might come 

from QD agglomerates that unintentionally floated around the upper laser excitation 

cone, resulting in randomly aberrant signals. This out-of-focus phenomenon was 

discussed by Leite-Silva et al.76 when they investigated the effects of occlusion and 

barrier impairment on human skin penetration of topical nano zinc oxide using MPT-

FLIM. They managed to minimize the out-of-focus effects by applying soft-continuous 

pressure to flatten the skin in between a glass slide and the coverslip.  

To the best of our knowledge, the present study is the first to demonstrate the visual 

skin condition due to acetone topical application and tape-stripping pre-treatment 

using MPT-FLIM. Although acetone exposure to the skin may lead to skin shrinkage 

and flakiness, the barrier disturbance effect does not facilitate nanomaterials skin 

penetration. However, the concentration and the duration of application may 

determine the chance of skin penetration of foreign materials. Tape stripping, which 

physically removes the SC, may disrupt the skin barrier thus allowing the penetration 

of unexpected chemicals and nanomaterials to some extent, but the depth of 

penetration is limited to the outer regions of the epidermis. 
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Abstract 

Background:  Pig skin is a widely acknowledged surrogate for human skin for in vitro/ex 

vivo skin penetration studies with application for small molecules and nanosystems. We 

have investigated the influence of biological factors such as age and anatomical site on 

the penetration and distribution of nanoparticles (2.1nm Hydrophilic CdTe/CdS quantum 

dots: QDs) in adult pig skin (APS), weanling pig skin (WPS) and newborn pig skin (NBPS) 

at two different anatomical sites (ear and abdomen). Methods:  QDs in saline were 

applied to 1x1 cm2 skin (62.5 pmole/cm2) with 2-minute finger rubbing using a 

standardised protocol. After 6 or 24h incubation on Franz diffusion cells, tape stripping 

(x10) followed by manual follicular casting was conducted. Cadmium in QDs was 

quantified using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for all 

samples. The presence of QDs in similarly treated skin samples was also captured using 

Multiphoton Tomography. Results:  QDs were mainly localized in hair follicles after 6h 

and 24h exposure with no cadmium detected in the Franz cell receptor compartment 

regardless of pig age or anatomical site. The amount of QDs deposited in the follicles was 

similar at 6h but higher on APS and WPS ears compared to NBPS ears at 24h. This is 

associated with the high follicle density and small follicle diameter of the NBPS compared 

to the smaller density of much larger follicles on the APS. NBPS showed consistent QDs 

distribution for ear and abdomen up to 24h. Conclusions: There is minimal penetration 

of QDs through pig skin. Density and diameter of follicles in association with age of pigs 

and application site influenced the amount of QD deposited in follicles. The structures of 

the SC, follicle density and diameter of NBPS are similar to human skin suggesting that 

NBPS is an appropriate model for human skin in the evaluation of topical applications of 

a range of chemicals including nanosystems 
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4 Chapter 4. Development and Evaluation of 
Novel Nanocarriers for Skin Delivery of 

Resveratrol (RSV) 
 

4.1 Background 

Resveratrol (E-5-(4-hydroxystyryl) benzene-1,3-diol; RSV) is a potent natural 

polyphenolic antioxidant 1, 2 that can be extracted abundantly from grape skin and 

seeds, berries, peanuts, and red wine.3-6 In its natural role as a phytoalexin 

compound, RSV acts in response to fungal and bacterial attacks, UV light exposure 

and general injuries to the plants.3, 7 RSV has gained much interest due to its potential 

to generate a range of therapeutic effects. It has been suggested that RSV may be a 

contributing factor in the so-called “French paradox”: the observed reduced risk of 

coronary artery disease in French people attributed at least in part to the regular 

consumption of red wine.8 Extensive reviews of a large number of in vitro and in vivo 

studies have been dedicated to the evidence for RSV therapeutic effects. There is 

good evidence for RSV supporting heart function and providing heart protection 

against cardiovascular diseases 8, 9, protecting against neuro-disorders and cancer 

chemoprevention, due to its anti-oxidant and anti-inflammatory effects.2, 10-13  RSV 

also shows anti-diabetic activities by improving glucose homeostasis and insulin 

secretion, lowering insulin resistance, and protecting pancreatic βcells, again 

attributed to the antioxidant and anti-inflammatory effect of RSV.14 Of particular 

relevance to this thesis, RSV has demonstrated potential for antiaging effects and 

protecting against UV damage in the skin due to its antioxidant activity.7, 15, 16 

RSV (MW: 228.25 g/mL) is a lipophilic compound (log Po/w 3.1), that is poorly soluble in 

water (50 – 60 µg/mL) 17, 18, with little change in solubility over the pH 1.2 - 7.4 range.18 

RSV is highly soluble in DMSO and organic solvents including ethanol.19 RSV has three 

different pKa: 8.8, 9.8, and 11.4 corresponding to deprotonation of the three  hydroxyl 

groups: 4-OH, (3-OH or 5-OH), and (5-OH or 3-OH), respectively.19  

RSV exists as two isomers, trans-resveratrol and cis-resveratrol (Figure 4.1). The trans 

isomer is more common and is more stable and bioactive than the cis-isomer. 20 However, 

trans- resveratrol converts to cis-resveratrol in the presence of UV light18, 20-25 with the UV 

irradiation time, RSV physical forms (in solid or solution), pH and temperature affecting 

isomerization.25  
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Figure 4.1 Structure of RSV. Adapted from Rege et al13  

A considerable impediment to the therapeutic potential of RSV is that whilst RSV is 

relatively well absorbed (approximately 70%)26, it is subject to extensive first pass 

hepatic elimination.27, 28 Two studies conducted in human volunteers revealed that 

less than 10ng/mL of RSV was found in human following oral administration with the 

dose of 25mg RSV.26, 29, 30  

Direct application to the skin is an attractive alternative administration route to avoid 

first pass hepatic elimination and is particularly appropriate where RSV is being 

administered for antiaging of skin or other dermatological or cosmeceutical purposes. 

It remains important to consider metabolism by enzymes in the skin, however RSV 

metabolism in skin is significantly less than in the liver.31  

As a small molecule (MW: 228.25), RSV is actually a good candidate for topical-

transdermal. However, poor aqueous solubility of RSV17, 18 may limit the loading 

capacity of a topical formulation. RSV is also less stable in the presence of UV light and 

in basic solution, which must be considered in formulation development.  Hung et al 32 

reported that the flux of RSV from a saturated solution in PBS pH 6 through female 

nude mouse skin was very low (1.59 ± 0.08 nmol/cm2/h), thus it is imperative to 

formulate RSV topical formulation with an enhancement strategy. Based on its 

physicochemical properties, the formulation must be able to increase the solubility of 

RSV, protect the RSV from degradation thereby enhancing stability, and enhance 

diffusion of RSV through the stratum corneum and deeper epidermal layers.   

A good quality skin-targeted formulation must deliver sufficient amounts of the 

intended substance safely across the SC with minimal side effects. This can be 

achieved by manipulating the barrier property of SC using chemical or physical 

approaches. Whilst physical approaches are mainly related to physical enhancement 
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tools such as: electrophoresis, magnetophoresis, microneedles, etc., chemical 

approaches can be conducted by complexing the active ingredient with other 

chemicals (conjugation, complexation, or pro-drug design) to negate an unfavourable 

physicochemical characteristic or by incorporating the active ingredient into a delivery 

system which can enhance its penetration into the skin.33-39  

A range of approaches have been investigated for the topical delivery of RSV.40-50 For 

example, RSV in combination with 5-fluorouracil was incorporated into 

ultradeformable liposomes which were evaluated with carcinoma-related skin 

abnormalities.42 Phospholipon 90G® was used for vesicle formation, cholesterol 

improved the vesicle stability and sodium cholate provided the flexibility required to 

allow the vesicles to squeeze into the SC. Those ingredients were able to enhance 

the flux through human skin epidermis of approximately 8-fold compared to RSV 

solution. Although this study provided a promising headline, it was difficult to interpret 

the data due to a lack of information on the actual amount of RSV penetrated to the 

skin and the stability of the carrier formulations. This study also demonstrated a 

relatively complicated procedure of fabrication. There is a clear need for a simple but 

scalable formulation that can effectively deliver RSV to the skin in a formulation thus 

can be commercially available.  

Micro-nanoemulsion formulations have properties that suggest they have potential for 

successful skin delivery of RSV.51-55 Micro-nanoemulsions consist of an oil phase, 

surfactant, cosurfactant and aqueous phase, which create an isotropic, 

transparent/translucent, single-phase system of nano-sized droplets.51, 56-59 They 

have excellent solubilizing capacity for lipophilic compounds and provide protection 

for relatively unstable molecules. These formulations also offer simplicity in fabrication 

and good stability.51 In addition, micro-nanoemulsion preparation is relatively 

production scalable and therefore practical for industrial development. Several 

nanoemulsion formulations have been in the market including the Oxalgin NanoGel™ 

(Zydus Cadilla, India) containing diclofenac sodium55, Estrasorb® (Novavax Inc., 

Malvern, PA, USA) containing oestradiol hemihydrate, and Topicaine (ESBA 

laboratories Inc., Jupiter, FL, USA) containing lidocaine.51  

Juškaitė et al.60 developed an RSV microemulsion containing ethyl oleate (oil phase), 

PEG-8-caprylic/capric glycerides (surfactant), polyglyceryl-6-isostearate (co-

surfactant) and water. The highest penetration in the human skin was achieved using 

a formula with Smix ratio of 5:1 (1.96 ± 0.41µg/cm2). The concentration of both 

surfactant and cosurfactant in the formula was higher than 45% which might increase 
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the irritation potential as a topical formulation61, and the pH of the optimized 

formulations was 7.01-7.15 which may further contribute as it is above the ideal skin 

pH range. In addition, RSV is only stable in an acidic environment18 therefore the 

stability of RSV in this developed formulation may be problematic.  

In this current study we develop self-assembly and stable nanoemulsions for RSV 

skin delivery which can solubilize RSV with a relatively low composition of oil, 

surfactant-cosurfactant, and provide good skin penetration and permeation of RSV. 

The nanoemulsions also protect RSV for long duration of storage. 

4.1.1 Objectives of the study 

The objectives of the study are: 

1. To develop an HPLC validated assay for RSV determination 

2. To develop simple, stable, emulsion-based nanocarriers for skin delivery of 

RSV 

3. To characterise the physical properties of the RSV nanocarriers 

4. To assess the skin penetration and skin permeation of RSV released from the 

nanocarriers, into and through the skin 

5. To assess the stability of RSV in the nanoformulations 

4.2 Experimental section 

4.2.1 Materials 

RSV was purchased from PCCA (99% purity, PCCA, USA). Triacetin, eugenol, D 

limonene, eucalyptol were purchased from Sigma-Aldrich (USA). Kolliphor® RH 40 

was purchased from BASF (USA). Labrasol® and Transcutol® were gifts from 

Gattefossé (France). Orthophosphoric acid, hematoxylin, eosin and ethanol were 

purchased from Thermo Fisher Scientific (Australia). Sodium hydroxide and sodium 

chloride were purchased from Chem-Supply (Australia). Acetonitrile (HPLC grade, 

Fisher Chemical, USA), deionised water-passed through a Milli Q apparatus (Millipore 

Corporation, Bedford, MASS, USA). 
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4.2.2 Assay method validation 

Agilent™ (Agilent Technologies, Germany) high performance liquid chromatography 

(HPLC) analytical system consists of: 

1. degasser (Agilent™ G1379B, Serial No: JP82012305, Germany) 

2. binary pump system (Agilent™ G1312A, Serial No: DE63062063, Germany),  

3. automated injection system/autosampler system (Agilent™ G1329A, Serial No. 

DE64775011, Germany) 

4. variable wavelength (VWD) detector (Agilent™ G1314B, Serial No. DE 

1365734, Germany) 

5. Chemstation Rev.B.03.01 (Agilent Technologies Inc., Germany) 

The HPLC system conditions are described on Table 4.1.  

Table 4.1 HPLC system set-up 

System set up Description 

Stationary phase HPLC C18 5µ column, 150mm x 4.6mm (Apollo, India) 

Mobile phase Acetonitrile: water: phosphoric acid = 50:50:0.05 

Flow rate 1 mL/min 

Detection VWD, λmax = 307 nm 

Retention time 2.4 ± 0.1 minutes 

Total analysis time 7.2 minutes 

Running system isocratic 

 

4.2.2.1 Linearity 

To assess the linearity, a series of RSV concentrations was made with serial dilution. 

A stock solution of 100 µg/mL was made by dissolving 1mg of RSV into 10.0 mL 

solvent. Two types of solvent system were set up with different series of 

concentration. The mobile phase-solvent system (A) was used for general purposes 

of RSV determination, whereas a mixture of mobile phase and 20% ethanol in 

phosphate buffer saline (PBS) pH 6 = 1:1 (B) was used to determine the RSV in the 

receptor fluid samples of Franz diffusion cell studies. RSV concentration series of 

0.3125, 0.625, 2.5, 5, 10, and 25 µg/mL was made with system A. Solvent system B 
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was used with a lower series of RSV concentrations typical of skin experiment 

samples: 0.0078, 0.0156, 0.0625, 0.625, 2.5 and 5 µg/mL.  

4.2.2.2 System suitability 

Precision 

RSV solutions with the concentration of 0.078 µg/mL (A), 0.3125 µg/mL (B), 5 µg/mL 

(A and B) and 10µg/mL (B) were used to assess the precision. The injections were 

carried out in six replicates for each concentration. The relative standard deviation 

(RSD), which is the percentage of the ratio of standard deviation to the mean, was 

used to investigate the data point dispersion (degree of variation). 

Sensitivity 

The sensitivity of the assay was assessed by determining the limit of detection and 

limit of quantification. Six injections of solvents (blanks) were conducted with the 

analysis time of 10 minutes for each injection. The noise to peak ratio was calculated 

by dividing the standard deviation of the blanks with the slope of peak height of the 

calibration curve. Limit of detection (LOD) was three times the noise to peak ratio, 

whereas limit of quantification (LOQ) was ten times the noise to peak ratio.  

Accuracy 

A mass balance study of RSV extraction from the skin was conducted to assess the 

accuracy of the assay. The end point of this study was the recovery of RSV skin 

extraction. Briefly, a section of pre-weighted skin was soaked in 5 mL of 100 µg/mL 

RSV ethanolic solution at 35ºC. After 24h immersion, the skin was blotted dry, then 

sectioned and the RSV in the skin was extracted using a solvent extractor. The mobile 

phase in HPLC analysis was used as the solvent extractor. The extraction was carried 

out for 3 hours at room temperature. The RSV in the remaining donor, in the wash 

water, and in the extractor were then determined using HPLC assay described above.  

4.2.3 Formulation 

Spontaneous emulsification method was used to generate the nanocarriers with the aid 

of mild agitation at room temperature based on the study of Pund et al.62 with some 

modification. The formulation study was initiated by developing three types of formula 

(Table 4.2). The mnemonic system was applied in order to name the formulations. 

Triacetin was selected as the oil phase, Kolliphor® RH 40 and Labrasol® as 

surfactants, and Transcutol® was selected as the cosurfactant. PBS pH 6 was utilised 
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as the aqueous phase. PBS pH 6 was applied as the aqueous system to maintain the 

stability of RSV. RSV is stable in acidic environment with pH 5-6.18  

Surfactant and cosurfactant were initially mixed prior to the process. Oil phase was 

added in the mixture of surfactant and cosurfactant with mild agitation to produce the 

lipid based nanoformulation (TKLT2). TKLT2 applied Smix (surfactant-cosurfactant 

ratio) of 2:1 and ratio of oil to Smix 1:2, without the existence of aqueous phase. The 

micellar system was designed as PKLT2 with PBS pH 6 as the aqueous phase and 

the same Smix but without the existence of triacetin (oil phase). The TKLT2P was the 

microemulsion system involving triacetin, Kolliphor® RH 40, Labrasol®, Transcutol® 

and PBS pH 6. It was made by mixing the oil phase with the mixture of surfactant and 

cosurfactant prior to aqueous phase addition. The aqueous phase addition was 

carried out until the system started to show translucency. All processes were 

conducted at room temperature. The RSV was further incorporated into each system 

at 8% (w/w) concentration. 

Table 4.2 Initial RSV nanoformulations (all as % w/w) 

 

The initial nanocarriers were then characterised in terms of physical appearance, 

viscosity, RSV solubility, refractive index and their RSV skin penetration and 

permeation profiles. 

Based on the results of characterisation and evaluation of the initial formulations, the 

nanoformulations were taken forward for further development and evaluated to obtain 

the optimal nanoformulation for skin delivery of RSV (Table 4.3).  RSV was loaded in 

the formulations at a concentration of 2% (w/w). The RSV solution and RSV loaded 

nanocarriers were kept out of light throughout the process, including the analysis. Three 

different terpenes (eugenol, d-limonene, and eucalyptol) were incorporated into the 

formulations to evaluate the potential of adding these chemical penetration enhancers.  
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Table 4.3 RSV nanoemulsions (all as % w/w) 

Ingredients 
Formula 

TKLT2P TKTP ETKTP E5K30TP E5K20TP E1K20TP LKTP EuKTP 

Triacetin 25.7 5 5 - - - - - 

Kolliphor® RH 40 25.7 20 30 30 20 20 20 20 

Labrasol® 12.8 - - - - - - - 

Transcutol® 12.8 10 10 10 10 10 10 10 

Eugenol - - 5 5 5 1 - - 

D-limonene - - - - - - 1 - 

Eucalyptol - - - - - - - 1 

PBS pH 6   23 65 50 55 65 69 69 69 
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4.2.4 Physical characterisation and stability evaluation 

The RSV nanocarriers were physically characterised in terms of physical appearance, 

RSV solubility, viscosity and refractive index. The stability of RSV nanocarriers was 

evaluated based on physical appearance and RSV quantity over the length of storage. 

4.2.4.1 Globule size and dispersion index 

Globule size and polydispersity index (PDI) of the nanocarriers was analysed using 

Zetasizer Nano™ ZSP (Malvern instruments, UK) based on photon correlation 

spectroscopy. The formulations were diluted with water four times prior to the 

measurement.  

4.2.4.2 pH measurement 

The pH of formulations was determined qualitatively by immersing the universal pH 

indicator strips MColourpHast™ (Merck, Germany) in the RSV nanoformulations for 

a minute and matching the colour after immersion with the colour reference on the 

package.    

4.2.4.3 Solubility testing 

Excess amount of RSV was dispersed in the blank nanoformulations and stirred for 

24 hours at room temperature. The dispersion was then centrifuged (Eppendorf, USA) 

at 6000 rcf for 5 minutes. The supernatant was carefully taken and centrifuged at 

15,000 rcf for 10 minutes. The RSV in the supernatant was assayed using HPLC after 

adequate dilution of the supernatant. 

4.2.4.4 Viscosity measurement 

A cup and bob viscometer (Bohlin Visco 88, Malvern, USA) was used to measure the 

viscosity of the nanoformulations. In brief, 15 mL of the formulation was placed into 

the cup. After cup installation, the viscometer was started at room temperature with 

the approximate speed of 572 rpm (speed number 7). The viscosity value is displayed 

in dPa.s. 

4.2.4.5 Refractive index measurement 

The refractive index of the blank nanoformulations was measured using a pocket 

refractometer (Atago, USA) with the range of refractive index measurement 1.3-1.5. 

Briefly, not less than 300 µL of the nanoformulation was added on top of the prism 

prior to measurement. The measurement was conducted in four replications at room 

temperature. 
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4.2.5 In vitro penetration/permeation study 

In vitro penetration/permeation study in this project was performed using Franz-type 

diffusion cells. 

4.2.5.1 Skin preparation 

The skin was obtained from newborn Yorkshire pigs which died due to natural causes. 

The skin was removed from the body and the subcutaneous tissue was carefully 

removed using a scalpel. The hairs were reduced using Veet™ cream applied for 10 

minutes prior to removal. The skin was further rinsed thoroughly to remove dirt and 

cream and blotted dry prior to storage in the -20ºC freezer.  

4.2.5.2 Skin experimental design 

Experimental set up 

Three different subjects were used for each experiment to provide 4-6 replications. 

Full thickness excised skin was thawed at room temperature. The thickness of the 

skin was measured using a digital Vernier calliper (Kincrome, Australia) before 

experiment. In brief, the skin was sandwiched between two glass slides prior to 

thickness measurement. Skin of 400-600 µm thickness was used. The skin was then 

mounted in between the donor and receptor compartments of a Franz-type diffusion 

cell (SC side up) and clamped (Figure 4.2). Skin integrity testing was conducted by 

measuring the resistance using a digital multimeter (UNI-T®, Opava-Předměstí, 

Česko). Briefly, both donor and receptor compartments were then filled with PBS pH 

7.4 and the cells were incubated in the water bath at 35ºC for 20 minutes. One probe 

of multimeter was applied in the donor and the other was in the receptor fluid, and the 

resistance was read in a maximum level of 1 MΩ. The baseline reading was 

considered and the skin with resistance less than 50 kΩ was excluded. The PBS pH 

7.4 in the donor compartment was then discarded, while the PBS pH 7.4 in the 

receptor compartment was replaced by a solution of 20% ethanol in PBS pH 6. A 

magnetic stirrer was added into the receptor compartment prior to donor addition. One 

gram of the RSV nanocarriers or the RSV saturated aqueous solution was then added 

into the donor compartment (infinite dose). Parafilm was used to cover the donor cell 

to minimize evaporation and to facilitate the process of total replacement sampling. 

The cells were incubated in the water bath at 35ºC (to reach the skin temperature of 

32°C63) and the receptor fluid was stirred at 350 rpm. Samples were taken from the 

receptor compartment at time points by taking all the receptor fluid and replacing it 
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with the fresh fluid pre-warmed to 35C (total replacement). The details of the 

experimental set up are displayed on Table 4.4. 

Figure 4.2 Franz cell set up 

 

The RSV in liquid samples was determined by HPLC assay, following suitable dilution 

with mobile phase and centrifugation at 15,000 rcf. for 10 minutes. 

Skin distribution study 

After completing the sampling at 8 hours, the donor was transferred into a volumetric 

flask and made up to 10.0 mL with acetonitrile. The RSV of the remaining donor was 

determined by HPLC.   

A tape stripping process was conducted to assess the amount of RSV on the SC. The 

procedure of tape stripping is similar to that described in Chapter 3 section 3.2.2. 

The first two tapes were kept aside for mass balance study and the remaining tapes 

were used to determine the RSV penetrated into the SC. The skin was then sectioned 

prior to RSV extraction. RSV in the tapes and sectioned skin were extracted using 

mobile phase with the aid of magnetic stirring at room temperature for 3 hours, prior 

to determination of RSV content by HPLC.  
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Table 4.4 Experimental set up of in vitro penetration/permeation study 

System set up Description 

Membrane type Full thickness of newborn pig skin 

Area of cell orifice  1.2-1.3 cm2 

Volume of receptor 

compartment 

3-3.5 mL 

Receptor fluid 20% ethanol in 10mM Phosphate Buffer Saline 

(PBS) pH 6 

Donor application 1 g (infinite dose) of either RSV saturated solution 

or 2% RSV in formulation 

Incubation temperature 35ºC (to reach the skin temperature of 32ºC) 

Magnetic stirring rate 350 rpm 

Duration of incubation 8 hours 

Receptor sampling time 1, 2, 4, 6, 8 hours 

Sampling type Total replacement  

 

Stability of RSV in fluid samples 

Stability study was carried out in order to ensure that RSV was stable during the 

experiment and analysis procedures. Briefly, pre-weighted skin was soaked in the 

experimental solvents for 24 hours: 20% ethanol in PBS pH 6 was used to mimic the 

receptor fluid, and mobile phase was used to represent the solvent extractor in the 

skin distribution study.  These skin solutions then were used to provide 1 µg/mL RSV 

solutions. The solutions underwent a similar process as conducted on the real 

experiment. The first scenario was similar to the process of receptor fluid sampling, 

where the RSV skin-solution (in ethanol: PBS pH 6 = 20:80) underwent three 

conditions: 

1. RSV solution + mobile phase  centrifuged (10 minutes, 15,000 rcf)  

analysed as initial concentration 

2. RSV solution  incubated at 35ºC for 2 hours  added with mobile phase  

centrifuged (10 minutes, 15,000 rcf)  analysed 

3. RSV solution  incubated at 35ºC for 2 hours  kept at 4ºC for 24h  

centrifuged (10 minutes, 15,000 rcf)  analysed    



120 

 

The second scenario was based on the RSV extraction process involving two 

conditions: 

1. RSV solution  centrifuged (10 minutes, 15,000 rcf)  analysed as initial 

concentration 

2. RSV solution  incubated at 35ºC for 3 hours  centrifuged (10 minutes, 

15,000 rcf)  analysed 

4.2.6 Stability of RSV nanoformulations 

To assess the stability in short term of storage, RSV in the nanocarriers was initially 

analysed after preparation (day 0) and considered as 100% potency. The RSV 

nanocarriers were further kept protected from light at ambient temperature (22-25°C) 

for one month. To assess the stability of RSV nanocarriers without light protection, 

the formulations in sealed clear vials were placed on the bench at 22-25°C. 

Long term storage stability of RSV nanoformulations was assessed after 5-8-month 

storage. The formulations were kept at 2-5°C, in sealed amber glass vials, and 

protected from light after underwent initial determination of RSV.   

4.2.7 Data analysis 

For assay validation, LOD was calculated as: 

𝐿𝑂𝐷 = 3𝑥
௔௩௘௥௔௚௘ ௌ஽ ௢௙ ௡௢௜௦௘௦ 

௦௟௢௣௘ ௢௙ ௣௘௔௞ ௛௘௜௚௛  ௩௦ ௦௧௔௡ௗ௔௥ௗ ௖௢௡௖௘௡௧௥௔௧௜௢௡
……….   (1) 

LOQ was calculated as: 

𝐿𝑂𝑄 = 10𝑥
௔௩௘௥௔௚௘ ௌ஽ ௢௙ ௡௢௜௦௘௦

௦௟௢௣௘ ௢௙ ௣௘௔௞ ௛௘௜௚௛௧௦ ௩௦ ௦௧௔௡ௗ௔௥ௗ ௖௢௡௖௘௡௧௥௔௧௜௢௡
 ………. (2) 

To perform the results of the in vitro skin permeation study, curves of cumulative 

amount per area (µg/cm2) versus time of sampling (h) were established. Parameters 

on the in vitro skin permeation study include steady state flux (Jss), maximum flux 

(Jmax), lag time, and enhancement ratio (ER). Jss is defined as the rate of RSV 

permeated in a steady state in a certain area. Jmax is the RSV flux of RSV saturated 

solution/vehicle. Jss is determined from the slope of linear portion of a graph of RSV 

cumulative amount/area vs time, whereas: 

𝐽𝑚𝑎𝑥 = 𝐽𝑠𝑠 𝑥
ௌ௩

஼௩
…………………… (3) 

Sv is saturated solubility of RSV in the vehicles (formulations) and Cv is donor 

concentration. 
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Lag time is the initial time of RSV permeated to the skin. Lag time is calculated based 

on the linear portion of graph of the cumulative amount/area vs time (y=0) as: 

𝑙𝑎𝑔 𝑡𝑖𝑚𝑒 =  
ି(௜௡௧௘௥௖௘௣௧ ௢௙ ௧௛௘ ௚௥௔௣௛)

௦௟௢௣௘
 ……………… (4) 

4.2.8 Statistical analysis 

All data were presented as mean ± SD (physical characteristics-related measurements) 

and mean ± SEM (biological system-related experiments). Normally distributed data 

were analysed using parametric statistical analysis while non-parametric analysis was 

conducted if the data were not normally distributed. In parametric analysis, ANOVA was 

used for more than two datasets whereas unpaired t test was used to analyse two data 

sets. In non-parametric analysis, two datasets were analysed using Wilcoxon test, 

whereas more than two data were analysed based on Kruskal Wallis. Significant 

differences were considered if P < 0.05 (two tails). All data were analysed using 

GraphPad Prism™ 8 software (GraphPad Software, San Diego, CA). 

4.3 Results 

4.3.1 HPLC assay method validation 

The isocratic HPLC assay method for RSV determination was well developed using 

Agilent system (Table 4.1). RSV was detected at λmax: 307nm. The RSV peak retention 

time was 2.4 ± 0.05 minutes in total analysis time of 7.2 minutes (Figure 4.3), at a 

mobile phase flow rate of 1 mL/min. The internal pressure was at 80-90 bar.  

Figure 4.3 HPLC chromatogram of RSV in (a) solvent system A and (b) solvent 
system B. (a) and (b) were in different concentrations of RSV 

 

This assay method was further validated in terms of linearity and range, and system 

suitability (precision, sensitivity and accuracy). The A solvent system containing 

mobile phase (see section 4.2.2.1) was applied for general purposes, such as RSV 
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solubility determination, assessment of amount of RSV in the donor compartment, 

and RSV skin uptake in the in vitro penetration/permeation study. The B solvent 

system (20% ethanol:mobile phase=1:1) was prepared to determine the RSV amount 

in the receptor compartment in the in vitro penetration/permeation study. In terms of 

linearity, there was good linearity between concentrations and responses (peak area; 

AUC) with r 0.9999-1 in two different solvent systems, thus in two different ranges of 

concentration (Figure 4.4).  

Figure 4.4 Representatives of calibration curves of (a) solvent system A and (b) 
solvent system B 

 

The assay was sensitive, shown by the LOD/LOQ of solvent system A which was 

4.37/14.47 ng/mL and solvent system B which was 4.01/13.37 ng/mL. 

Table 4.5 Precision of RSV assay (𝒙  ± SD; 6 replications) 

 Solvent system A Solvent system B 

Concentration (µg/mL) 0.3125 5 10 0.0078 0.625 5 

RSD (%) 0.29 0.19 0.08 9.51 0.23 0.17 

 

Table 4.6 Mass balance study of RSV skin extraction (𝒙  ± SD; 3 replications) 

RSV Donor 

(µg) 

Distribution of RSV (µg) Total 

distribution 

(µg) 

Recovery 

(%) Remaining 

donor 

Wash 

 

Skin 

extraction 

423.15 ± 6.93 361.34 ± 2.59 3.57 ± 0.10 23.16 ± 0.91 388.07 ± 2.38 91.77 ± 1.79 

 

Table 4.5 shows precision of RSV assay in two types of solvent systems. The medium 

and high concentrations showed good precision with RSD < 0.5%, but the low 

concentration (0.0078 µg/mL) of solvent system B was less than LOQ and close to 
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LOD. The low concentration was useful to anticipate the analytical limits for receptor 

fluid sampling.    

The accuracy of the assay was determined from the recovery of RSV extraction from 

the skin (Table 4.6). Mass balance for each of the solvent extraction systems was 

determined based on the amount of RSV added in the initial donor, by adding the 

amount of RSV recovered in the remaining donor, wash liquid and skin extraction 

liquids. Mass balance recovery of RSV was 91.77 ± 1.79 % (as percentage of initial 

RSV applied).  

4.3.2 Optimisation of in vitro penetration/permeation study 

4.3.2.1 Skin preparation 

In vitro Franz-type diffusion cell study was conducted to assess the penetration and 

permeation of RSV from the nanoformulations, into and through newborn pig skin 

(NBPS).  Ideally, human skin is used for ex vivo or in vitro penetration/permeation 

studies. However, human skin was not available, so a suitable alternative was used. 

NBPS is a good surrogate for human skin as it provides similar skin properties to 

human skin64 and can be sourced by utilising stillborn piglets, collected from local 

piggeries by our collaborating veterinary surgeons (Portec Veterinary Services, 

Welshpool).  

NBPS is pink-white skin with fine hairs that were easily removed by Veet™ cream. 

Microscopic examination confirmed that the cream only worked on the surface by 

breaking the hair shafts without damaging the SC and follicles (Figure 4.5 and 

Figure 4.6). 
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Figure 4.5 Hematoxyllin and eosin stained images of NBPS: (a) after being 
shaved using a razor; (b) after Veet™ cream application: (c) untreated skin 
(scale bars indicate 200 µm) 

 

 
 

Figure 4.6 Confocal image of NBPS after Veet™ cream application (scale bar 
indicates 500 µm) 

4.3.2.2 Selection of receptor fluid 

The choice of suitable receptor phase was primarily based on ensuring sink conditions 

for the poorly aqueous soluble RSV. RSV solubility was approximately 5 times greater 

in 2% polyethylene glycol oleyl ether (Volpo 20™) than in 20% ethanol solution (2.766 

± 0.021 mg/mL and 0.701 ± 0.045 mg/mL respectively). However, during diffusion cell 
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stirring and manipulation, the Volpo™ created air bubbles due to its surfactant nature 

that resulted in high variability of RSV in samples taken from the receptor 

compartment (Figure 4.7). In comparison, RSV results using 20% ethanol in PBS pH 

6 were more consistent and adequate solubility was achieved.  

 

Figure 4.7 The permeation profile of RSV through NBPS using 2% Volpo™ and 
20% ethanol in PBS pH 6 as the receptor fluids (𝒙  ± SEM; 4 replications) 

4.3.2.3 Permeation profile of RSV saturated solution in PBS pH 6  

 
Figure 4.8 The permeation profile of RSV from saturated aqueous solution (in 
PBS pH 6) through NBPS over 8 hours ( 𝒙  ± SEM; 4 replications) 

Figure 4.8 presents the permeation profile of RSV of its saturated solution in PBS 

pH 6. The saturated solubility of the RSV in PBS pH 6 was 34.13 ± 0.20 µg/mL and 

the maximum transdermal flux of RSV in PBS pH 6 through NBPS was 0.051 ± 

0.009 µg/cm2/h. 
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4.3.2.4 Stability of RSV in sample fluids 

RSV was stable in the receptor solution (20% ethanol in PBS pH 6) for 2 hours at 

35°C (100.30 ± 0.190 % remaining), and in the skin extraction fluid (mobile phase) for 

3 hours at 35°C (99.730 ± 0.101 % remaining). It was also stable on storage at -20°C 

(100.52 ± 0.411 % remaining).   

4.3.3 Formulation, characterisation and in vitro penetration- 
permeation study 

4.3.3.1 Initial formulation 

Initial formulation study of RSV nanocarriers was performed to investigate the effect 

of lipid-based formulation, micellar formulation and microemulsion on the RSV 

penetration into- and permeation through the skin (table 4.3), with loading dose of 8% 

RSV.   

The appearance of most formulations was clear-transparent, except the blank 

TKLT2P which was translucent (Figure 4.9). pH of all formulations was 6. Physical 

characteristics of TKLT2, PKLT2 and TKLT2P are displayed in the table 4.7. 

 

Figure 4.9 Physical appearance of initial nanoformulations: (a) blank TKLT2; 
(b) RSV-TKLT2; (c) blank PKLT2; (d) RSV-PKLT2; (e) blank TKLT2P; (f) RSV-
TKLT2P 

The solubility of RSV in the nanoformulations significantly increased compared to the 

RSV saturated aqueous solution.  

The globule size was less than 20 nm with PDI less than 0.25 for PKLT2 and TKLT2P. 

The globule size of TKLT2P was slightly larger than that of PKLT2 and the PDI was 

also higher. The globule size and PDI of TKLT2 could not be measured as it is totally 

lipid-based formulation which could not be diluted with water to meet similar procedure 

with the others. 
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Table 4.7 Physical characteristics of initial RSV nanoformulations ( 𝒙 ± SD; 4 replications) 

Formula Appearance Globule size 

(nm)* 

PDI* RSV solubility 

(mg/mL) 

Viscosity 

(dPas)* 

Refractive 

index* 
Clarity Single 

phase 

Colour 

TKLT2 transparent  Light brown n. a n. a 149.64 ± 0.83 0.730 ± 0.010 1.4473 ± 0.0001 

PKLT2 transparent  Light brown 12.85 ± 0.28 0.136 ± 0.010 165.98 ± 3.18 2.467 ± 0.025 1.4232 ± 0.0001 

TKLT2P translucent  Light brown 14.30 ± 0.05 0.229 ± 0.010 177.16 ± 25.95 0.790 ± 0.070 1.4253 ± 0.0007 

 
Notes:  
n. a not available 
* measurements were carried out on blank nanoformulations 
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Figure 4.10 The skin distribution of RSV in the stratum corneum (SC) and in 
the area of epidermis, dermis and follicles (E+D+F) of TKLT2, PKLT2, and 
TKLT2P (𝒙  ± SEM; 4 replications; * P < 0.05, ** P < 0.01) 

 

Figure 4.10 and table 4.8 present the amount per area of RSV of TKLT2, PKLT2, and 

TKLT2P penetrated into NBPS skin in 8 hours. In the SC, TKLT2P showed the highest 

penetration of RSV.  In the area of epidermis, dermis and follicles, the RSV distribution 

of TKLT2, TKLT2P and PKLT2 were comparable.  

Table 4.8 Experimental data of RSV skin penetration in initial nanoformulations ( 
𝒙 ± SEM; 5-6 replications) 

Formula RSV distribution in the skin Enhancement 

Ratio (ER) 
SC E+D+F 

TKLT2 5.471 ± 1.495 8.827 ± 4.450 9.52 

PKLT2 6.417 ± 1.028 15.768 ± 4.918 14.73 

TKLT2P 14.864 ± 3.471 8.593 ± 2.267 15.62 

RSV saturated 

solution 

0.378 ± 0.025 1.124 ± 0.519 1.00 

Notes: SC: stratum corneum; E+D+F: epidermis, dermis, and follicles; ER: 
enhancement ratio, was calculated based on the ratio of average values of the 
RSV amount deposited in the skin from the nanoformulations to RSV saturated 
aqueous solution.  
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Figure 4.11 Cumulative amount of RSV of TKLT2, PKLT2, and TKLT2P after 8h 
permeation through the skin ( 𝒙 ± SEM; 4 replications; * P < 0.05) 

 

Figure 4.11 shows the permeation profile of RSV of TKLT2, PKLT2, and TKLT2P in 8 

hours. Whilst the micellar system (PKLT2) and the lipid-based system (TKLT2) had 

similar RSV permeation to the RSV saturated solution over 8 hours, the 

microemulsion system (TKLT2P) showed the highest permeation of RSV through the 

skin (2.009 ± 0.545 µg) (P < 0.05). 

The complete experimental data of RSV skin permeation is presented in Table 4.9.  

TKLT2 and PKLT2 showed low fluxes and long lag time similar to the saturated 

solution.  TKLT2P reduced the lag time as the flux significantly increased. TKLT2P   

enhanced the RSV skin permeation in five folds, approximately.       
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Table 4.9 Experimental data of RSV skin permeation in initial nanoformulations ( 𝒙 ± SEM; 5-6 replications) 

Formula Cumulative amount 
(µg) 

Flux (µg/cm2/h) Lag time (h) ER 

Steady state flux (Jss) Maximum flux (Jmax) 

TKLT2 0.316 ± 0.154 0.047 ± 0.022 0.088 ± 0.041 2.679 ± 1.046 0.92 

PKLT2 0.298 ± 0.102 0.036 ± 0.012 0.074 ± 0.024 1.178 ± 0.175 0.70 

TKLT2P 2.009 ± 0.545 0.276 ± 0.078 0.612 ± 0.173 0.612 ± 0.173 5.42 

RSV saturated 

aqueous solution 

0.309 ± 0.074 0.051 ± 0.009 0.051 ± 0.009 3.185 ± 0.176 1.00 

Notes: ER=enhancement ratio, was calculated based on the ratio of average values of flux of the formulations to RSV saturated aqueous solution  
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4.3.3.2 Effect of modifying the oil phase and surfactant composition 

The next stage of formulation study was to modify the oil phase and surfactant 

composition to evaluate the effect on the physical, skin penetration and skin 

permeation characteristic. The RSV loading of all formulas were 2%.  The pH of all 

formulations was 6. 

In developing TKTP, the oil phase (Triacetin™) and Kolliphor™ RH 40 as the 

surfactant reduced to 5% and 20%, respectively. The TKTP was made without 

Labrasol™. The TKTP formulation was transparent (Figure 4.12) with the refractive 

index of 1.3769 ± 0.0005, globule size of 13.72 ± 0.40 nm, PDI of 0.106 ± 0.072, and 

the viscosity of 0.110 ± 0.026 dPas. The solubility of RSV in TKTP was 44.771± 4.159 

mg/mL. 

 

Figure 4.12 Physical appearance of TKTP: (a) blank TKTP; (b) RSV-TKTP 

The amount RSV of TKTP distributed on the SC (1.998 ± 0.383 µg/cm2) and the 

epidermal-dermal-follicular (E+D+F) level (5.359 ± 0.845 µg/cm2) were twice as the 

amount of those of TKLT2P, although the difference in the E+D+F was not statistically 

significant (Figure 4.13).  

 

Figure 4.13 Skin distribution of RSV in the SC and in the area of E+D+F of 
TKLT2P and TKTP ( 𝒙  ± SEM; 5-6 replications; * P < 0.05) 
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The permeation of RSV of TKTP also significantly increased compared to TKLT2P 

(Figure 4.14) with the cumulative amount of TKTP and TKLT2P were 0.853 ± 0.091 

µg and 0.278 ± 0.086 µg, respectively (P < 0.05). The steady state flux of TKTP was 

0.103 ± 0.006 µg/cm2/h whereas the flux of TKLT2P was 0.038 ± 0.010 µg/cm2/h. 

TKTP permeated three times faster than TKLT2P, although the lag time of both 

formulations were similar.   

 

Figure 4.14 Cumulative amount of RSV of TKLT2P and TKTP after 8h 
permeation through the skin ( 𝒙 ± SEM; 5-6 replications; * P < 0.05) 

TKTP appeared to be a promising nanoformulation for RSV with good skin penetration 

and permeation characteristics. To further enhance the penetration and permeation 

of RSV, the addition of natural terpenes as chemical penetration enhancers was 

considered. 

4.3.3.3 Effect of terpene addition 

The addition of eugenol (5%) required an increase in the concentration of Kolliphor® 

RH 40 as the surfactant, in order to provide RSV nanoformulations with good clarity 

and surfactant capacity. Kolliphor® RH 40 with 30% concentration was sufficient for 

the ETKTP to show good transparency although it was highly viscous (1.621 ± 0.119 

dPas), 16x times more viscous than TKTP (P < 0.05) (Figure 4.15 and table 4.10). 

Although the high viscosity may assist the spreadability on skin application of the 

formula, it created a problem in the solubility determination. The centrifuge failed to 

separate or precipitate the undissolved RSV of the excess RSV from the system 

(turbid appearance). Moreover, phase separation occurred as the system could not 

resist the high-speed centrifugation (15,000 rcf). The separated phases and the 

turbidity in oil-surfactant-cosurfactant phase led to unreliable solubility values. 
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Figure 4.15 Physical appearance of ETKTP: (a) blank ETKTP; (b) RSV-ETKTP 

 

 
Figure 4.16 Skin distribution of RSV in the SC and in the area of E+D+F of TKTP 
and ETKTP ( 𝒙  ± SEM; 5-6 replications; * P < 0.05) 

Figure 4.16 shows the comparison of RSV skin penetration of TKTP and ETKTP at 8 

hours incubation. A similar amount of RSV of both nanoformulations (ETKTP and 

TKTP) was found on the SC, however there was 2.5-fold increase in the amount of 

RSV in the epidermis-dermis-follicles (12.000 ± 3.598 µg/cm2) of ETKTP compared to 

TKTP (P < 0.05).   

ETKTP also showed higher permeation of RSV (P < 0.05) compared to TKTP (Figure 

4.17). The cumulative amount and steady state flux of ETKTP was 2.973 ±1.051 µg 

and 0.358 ± 0.125 µg/cm2/h compared to 0.853 ± 0.091 µg and 0.103 ± 0.006 

µg/cm2/h for TKTP. The enhancement ratio for ETKTP and TKTP compared to the 
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RSV saturated solution was 6.98 and 2.01, respectively. Lag time was similar for 

ETKTP and TKTP, with both approximately half the lag time of RSV saturated 

aqueous solution. 

 

Figure 4.17 Cumulative amount of RSV of TKTP and ETKTP after 8h permeation 
through the skin ( 𝒙 ± SEM; 5-6 replications; * P < 0.05)  

 

To observe whether the promising results of ETKTP system was due to the interaction 

of eugenol and triacetin, the next formula was developed without applying Triacetin 

(E5K30TP).  

4.3.3.4 Effect of the absence of triacetin  

E5K30TP contained only eugenol as the oil phase without the existence of triacetin. 

Similar to ETKTP, E5K30TP had a light-brown, single phase, transparent appearance 

(Figure 4.18). However, the E5K30TP had lower viscosity (1.060 ± 0.450 dPas), with 

slight difference in the refractive index (E5K30TP and ETKTP were 1.3850 ± 0.0033 

and 1.4021 ± 0.0002, respectively). The size and PDI of E5K30TP was also slightly 

lower than ETKTP.  
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Figure 4.18 Physical appearance of ETKTP and E5K30TP nanoformulations: (a) 
blank ETKTP; (b) RSV-ETKTP; (c) blank E5K30TP; (d) RSV-E5K30TP 

 

The distribution of RSV in the SC (Figure 4.19) of ETKTP (2.342 ± 0.269 µg/cm2) and 

E5K30TP (2.104 ± 0.297 µg/cm2) were similar, with both significantly higher than RSV 

saturated solution (0.378 ± 0.025 µg/cm2).  In the E+D+F region, the amount of RSV 

of E5K30TP penetrated was reduced by 50% to 5.914 ± 1.169 µg/cm2 (P < 0.05). The 

absence of triacetin resulted in a reduction of the amount of RSV in the skin. 

 

Figure 4.19 Skin distribution of RSV in the SC and in the area of E+D+F of 
ETKTP and E5K30TP ( 𝒙  ± SEM; 5-6 replications; * P < 0.05, ** P < 0.01) 
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The cumulative amount of RSV permeated over 8 hours (Figure 4.20) was 

significantly higher for both ETKTP and E5K30TP (2.973 ±1.051 µg and 2.017 ± 0.954 

µg, respectively) than from the saturated RSV solution (0.309 ± 0.074 µg) (P < 0.05). 

There was no significant difference of RSV cumulative amount of ETKTP and 

E5K30TP permeated through the skin over 8 hours (Figure 4.20).  

 

Figure 4.20 Cumulative amount of RSV of ETKTP and E5K30TP permeated 
through the skin ( 𝒙 ± SEM; 5-6 replications; * P < 0.05) 

 

4.3.3.5 Effect of reducing the surfactant (Kolliphor™ RH 40) 

concentration  

The concentration of surfactant in the E5K30TP formulation was reduced from 30% 

to 20%. The appearance of the blank nanoemulsion was clear (refractive index: 

1.3992 ± 0.0040) with the size of 16.54 ± 0.08 nm (PDI of 0.084 ± 0.003), and the 

viscosity was reduced (0.248 ± 0.022 dPas). However, when RSV was incorporated 

in the formula at concentration of 2%, the appearance was turbid (Figure 4.21) 

showing that the solubility of RSV was significantly reduced with the reduction in 

surfactant. The solubility of RSV in the formula was 6.189 ± 0.082 mg/mL, below the 

loading concentration. It was visually obvious that the particle size of RSV was not in 

a nanometer range due to the aggregation and lack of solubilizing capacity of 

surfactant-cosurfactant in the system.  
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Figure 4.21 Physical appearance of E5K20TP nanoformulations: (a) blank 
E5K20TP; (b) RSV-E5K20TP; (c) blank E5K30TP; (d) RSV-E5K30TP 

 

4.3.3.6 Effect of reducing the composition of eugenol and surfactant in 

E5K30TP 

As E5K20TP failed to meet the formulation criteria, the concentration of eugenol and 

surfactant in the formula E5K30TP was reduced to 1 and 20%, respectively. The 

formula named E1K20TP. The blank nanoformulation appeared to be transparent with 

refractive index of 1.3747 ± 0.0003 and low viscosity (0.099 ± 0.013 dPas). The 

solubility of RSV in the system increased five times (34.092 ± 1.133 mg/mL) from the 

previous formula (6.189 ± 0.082 mg/mL), and resulted in the transparency of the 

system.  

In comparison to E5K30TP (Figure 4.22), the amount of RSV of E1K20TP in the SC 

was 1.022 ± 0.129 µg/cm2, which was less than that of E5K30TP (2.104 ± 0.297 µg/cm2)       

(P < 0.05). Although the RSV of E1K20TP distributed less in the SC, the skin distribution 

of RSV in the E+D+F of both formula (E1K20TP and E5K30TP) were similar. 

 

Figure 4.22 Skin distribution of RSV in the SC and in the area of E+D+F of 
E5K30TP and E1K20TP ( 𝒙  ± SEM; 5-6 replications; * P < 0.05) 
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The permeation profiles of E5K20TP and E1K20TP were similar (Figure 4.23). The 

cumulative amount of RSV of E1K20TP permeated over 8 hours was 0.918 ± 0.126 

µg with steady state flux of 0.142 ± 0.017 µg/cm2/h. Whilst there was a trend towards 

lower permeation with lower surfactant in the formulation, there were no significant 

differences in the cumulative amount, steady state flux, and lag time among 

E5K30TP, E5K20TP and E1K20TP.  

 

Figure 4.23 Cumulative amount of RSV of E5K30TP and E1K20TP after 8h 
permeation through the skin ( 𝒙 ± SEM; 5-6 replications; * P < 0.05) 

 

4.3.3.7 A comparison of terpene-based RSV nanoemulsions  

A comparison of terpene-based RSV nanoemulsions was further investigated to 

observe the role of natural terpenes as chemical penetration and permeation 

enhancers in the RSV nanoformulation in this study. Eugenol, D-limonene and 

Eucalyptol were incorporated in the systems as the oil phase in the concentration of 

1 %. The formulations show excellent clarity (Figure 4.24). 

 

Figure 4.24 Physical appearance of terpene nanoformulations: (a) blank 
E1K20TP; (b) RSV-E1K20TP; (c) blank LKTP; (d) RSV-LKTP; (e) blank EuKTP;          
(f) RSV-EuKTP 
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Three different terpenes in the formulation exhibited similar physical characteristics in 

terms of appearance, RSV solubility, viscosity, and refractive index (Table 4.10), 

except that the globule size of LKTP (15.73 ± 0.07 nm) and EuKTP (14.54 ± 0.04 nm) 

was slightly larger than E1K20TP (13.84 ± 0.01 nm). 

 

Figure 4.25 Skin distribution of RSV in the SC and in the area of E+D+F of 
E1K20TP, LKTP, EuKTP ( 𝒙  ± SEM; 5-6 replications, * P < 0.05) 

Figure 4.25 illustrates the skin uptake of RSV in three different terpene-based 

formulation. The RSV retained in the skin of those nanoformulations were 

comparable.  

The cumulative amount of RSV permeated of LKTP and EuKTP were similar and both 

were significantly higher than the RSV in E1K20TP (Figure 4.26) (P < 0.05). Flux and 

lag time of LKTP and EuKTP were also similar, with 10-13-fold enhancement 

compared to RSV saturated solution. 

 

Figure 4.26 Cumulative amount of RSV of E1K20TP, LKTP, and EuKTP after 8h 
permeation through the skin ( 𝒙  ± SEM; 5-6 replications, * P < 0.05, ** P < 0.01) 
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Table 4.10 Physical characteristics of RSV nanoformulations ( 𝒙 ± SD; 4 replications) 

Formula Appearance Globule Size 

(nm)* 

PDI* RSV solubility 

(mg/mL) 

Viscosity 

(dPas)* 

Refractive 

index* 
Clarity Single 

phase 

Colour 

TKLT2P translucent  Light brown 14.30 ± 0.05 0.229 ± 0.010 177.16 ± 25.95 0.790 ± 0.070 1.4253 ± 0.0007 

TKTP transparent  Light brown 13.72 ± 0.40 0.106 ± 0.072 44.77 ± 4.16 0.107 ± 0.021 1.3769 ± 0.0005 

ETKTP transparent  Light brown 13.97 ± 0.18 0.055 ± 0.007 n. a 1.627 ± 0.136 1.4021 ± 0.0002 

E5K30TP transparent  Light brown 13.60 ± 0.07 0.046 ± 0.008 n. a 1.280 ± 0.053 1.3850 ± 0.0033 

E5K20TP opaque X Light brown 16.54 ± 0.08 0.084 ± 0.003 6.19 ± 0.08 0.250 ± 0.000 1.3992 ± 0.0040 

E1K20TP transparent  Light brown 13.84 ± 0.01 0.071 ± 0.010 34.09 ± 1.13 0.097 ± 0.006 1.3747 ± 0.0003 

LKTP transparent  Light brown 15.73 ± 0.07 0.117 ± 0.003 35.46 ± 1.60 0.083 ± 0.015 1.3732 ± 0.0011 

EuKTP transparent  Light brown 14.54 ± 0.04 0.091 ± 0.044 37.25 ± 3.68 0.093 ± 0.015 1.3918 ± 0.0329 

 

Notes:  
n. a:  not available 
* measurements were carried out on blank nanoformulations 
 



141 

 

 

Table 4.11 RSV distribution in the skin ( 𝒙 ± SEM; 5-6 replications) 

Formula RSV distribution in the skin ER  

SC E+D+F 

TKLT2P 0.805 ± 0.208 2.915 ± 1.523 2.48 

TKTP 1.998 ± 0.383 5.359 ± 0.845 4.90 

ETKTP 2.342 ± 0.269 12.000 ± 3.598 9.55 

E5K30TP 2.104 ± 0.297 5.914 ± 1.169 5.34 

E1K20TP 1.022 ± 0.129 5.059 ± 1.744 4.05 

LKTP 1.190 ± 0.092 6.234 ± 1.231 4.94 

EuKTP 1.172 ± 0.085 5.526 ± 2.160 4.46 

RSV saturated 
solution 

0.378 ± 0.025 1.124 ± 0.519 1.00 

 

Notes: SC: stratum corneum; E+D+F: epidermis, dermis, and follicles; ER: 

enhancement ratio, was calculated based on the ratio of average values of the RSV 

amount deposited in the skin from the nanoformulations to RSV saturated aqueous 

solution.  
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Table 4.12 Experimental data for RSV skin penetration/permeation parameters in nanoemulsions ( 𝒙 ± SEM; 5-6 replications) 

Formula Cumulative 
amount (µg) 

Flux (µg/cm2/h) Lag time (h) ER 

Steady state flux (Jss) Maximum flux (Jmax) 

TKLT2P 0.278 ± 0.086 0.038 ± 0.010 0.339 ± 0.091 2.330 ± 0.248 0.75 

TKTP 0.853 ± 0.091 0.103 ± 0.006 0.227 ± 0.013 1.711 ± 0.605 2.01 

ETKTP 2.973 ±1.051 0.358 ± 0.125 n. a 1.195 ± 0.280 6.98 

E5K30TP 2.017 ± 0.954 0.116 ± 0.059 n. a 0.636 ± 0.188 2.27 

E1K20TP 0.918 ± 0.126 0.142 ± 0.017 0.258 ± 0.029 2.689 ± 0.224 2.76 

LKTP 4.585 ± 0.936 0.647 ± 0.103 1.191 ± 0.209 1.252 ± 0.715 12.61 

EuKTP 4.036 ± 1.125 0.510 ± 0.153 0.920 ± 0.277 1.143 ± 0.164 9.95 

RSV saturated 
aqueous solution 

0.309 ± 0.074 0.051 ± 0.009 0.051 ± 0.009 3.185 ± 0.176 1.00 

ER=enhancement ratio, was calculated based on ratio of Jss of the formula to the saturated solution. 
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Table 4.13 Mass balance of in vitro penetration/permeation study of RSV into and through the skin ( 𝒙 ± SEM; 5-6 replications) 

  Formula IA (µg) RSV distribution (µg)  Total of RSV 
distribution 

(µg) 

RECOVERY 
(%) 

RA SC E+D+F R S 

TKTP 20179.55 ± 
104.73 

18766.40 ± 
1623.40 

3.70 ± 1.02 7.42 ± 1.78 0.95 ± 0.16 1.41 ± 0.26 18779.88 ± 
1625.73 

93.14 ± 8.44 

ETKTP 19965.18 ± 
346.78 

17545.95 ± 
322.43 

3.60 ± 0.41 14.30 ± 4.31 2.97 ± 1.05 3.19 ± 0.49 17570.02 ± 
319.98 

88.04 ± 1.37 

E5K30TP 19331.13 ± 
26.40 

18120.08 ± 
174.14 

3.27 ± 0.46 7.07 ± 1.37 2.02 ± 0.95 4.03 ± 1.01 18136.46 ± 
174.27 

93.82 ± 0.96 

E1K20TP 19866.22 ± 
56.66 

17739.43 ± 
199.86 

1.57 ± 0.20 6.12 ± 2.18 0.90 ± 0.14 1.03 ± 0.12 17749.05 ± 
199.64 

89.35 ± 1.03 

LKTP 20136.18 ± 
406.76 

18399.50 ± 
277.81 

1.89 ± 0.160 7.34 ± 1.77 4.02 ± 0.91 0.87 ± 0.12 18413.62 ± 
278.65 

91.64 ± 2.70 

EuKTP 20513.03 ± 
437.89 

17485.12 ± 
464.87 

1.80 ± 0.13 6.60 ± 2.59 4.04 ± 1.13 1.33 ± 0.16 17498.90 ± 
462.76 

85.42 ± 2.61 

RSV-SS  34.13 ± 0.20 29.57 ± 1.33 0.58 ± 0.04 1.42 ± 0.71 0.31 ± 0.01 0.42 ± 0.07 32.30 ± 
0.63 

94.65 ± 1.86 

 Notes: IA: initial amount of RSV in the donor compartment; RA: remaining amount of RSV in the donor compartment; SC: amount of RSV in the 

stratum corneum; E+D+F: amount of RSV in epidermis, dermis and follicles; R: amount of RSV in the receptor compartment; S: amount of RSV 

on the surface (µg); RSV SS: saturated RSV in PBS pH 6.0  
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4.3.4 Stability of RSV in the nanoformulations during storage 

Table 4.14 RSV stability during a short term of storage (1 month) at 22-25°C 

Formula Physical stability Chemical stability (%) 

( 𝒙 ± SD; 4 replications) Clarity Single 

phase 

Tendency of 

darker 

appearance 

Protected from light 

TKLT2 transparent  + 90.52 ± 5.04 

PKLT2 transparent  + 114.03 ± 12.50 

TKLT2P transparent  + 83.88 ± 6.74 

TKTP transparent  + 86.41 ± 6.27 

ETKTP transparent  + 92.74 ± 4.20 

E1K20TP transparent  + 103.93 ± 4.84 

LKTP transparent  + 89.22 ± 3.17 

EuKTP transparent  + 109.98 ±3.72 

Not protected from light 

TKLT2 transparent  + 80.92 ± 4.33 

PKLT2 transparent  + 114.50 ± 12.73 

TKLT2P transparent  + 82.69 ± 5.02 

TKTP transparent  + 85.28 ± 5.05 

ETKTP transparent  ++ 88.36 ± 9.27 

E1K20TP transparent  ++ 100.68 ± 4.47 

LKTP transparent  + 82.31 ± 4.13 

EuKTP transparent  + 105.93 ± 3.82 
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Figure 4.27 RSV potency during 1-month storage at 22-25°C (𝒙 ±SD; 4 
replications) 

 

The nanoformulations which were kept at 22-25°C for 1 month were stable with the 

RSV potency of 82-114 % (Figure 4.27 and Table 4.14). This potency remained 

stable, with or without protection from light. The nanoformulations maintained their 

physical and chemical stability at 2-5°C for up to approximately 6-month storage with 

the RSV potency of more than 89% (Table 4.15).  

Saturated RSV in PBS pH 6 was relatively stable in one month at 22-25°C when it was 

protected from light, with a potency of 81.01 ± 1.05 %. The potency significantly reduced 

when it was kept without light protection (52.43 ± 13.55 %). 

Table 4.15 RSV nanoformulations stability during a long term of storage (5-8 
months) at 2-5°C and protected from light 

Formula Duration 

of 

storage 

(month) 

Physical stability Chemical stability 

(%) 

( 𝒙 ± SD; 4 replications) 

Clarity Single 

phase 

Tendency 

of darker 

appearance 

TKTP 8 transparent  + 98.73 ± 4.00 

ETKTP 5 transparent  ++ 89.25 ± 1.70 

E1K20TP 6 transparent  ++ 93.39 ± 8.17 

LKTP 6 transparent  + 107.02 ± 8.73 

EuKTP 6 transparent  + 108.41 ± 4.62 
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4.4 Discussion 

The liquid nanoformulations containing RSV met the target product profile in terms 

of feasibility and scalability of fabrication, clarity, viscosity and skin penetration- 

permeation. In addition, a suitable HPLC assay method including skin extraction and 

quantification of RSV was developed and validated. The HPLC analytical method 

for RSV provided suitable sensitivity, linearity, precision and was fit for purpose as 

demonstrated by the mass balance of > 90% achieved in all skin permeation and 

penetration studies.  

Surfactant-containing liquid formulas were of interest in this study as they offer 

advantages in terms of simplicity of fabrication, excellent solubilizing capacity, and 

attractive appearance. Quality criteria set for the product, were that these 

nanoformulations of RSV must be clear (attractive appearance), simple (fabrication), 

stable (physically and chemically), safe and effective (reasonable amounts of RSV 

penetrate into the skin). The clarity of the formulations can also be further used as a 

visual tool that the RSV is solubilised completely in a single phase nanoformulation. 

The RSV nanocarrier formulations in this study were modified from nanoemulsifying 

formulations developed by Pund et al.62, who developed lipid based nanoemusifying 

formulations for oral administration of RSV. They suggested that the composition of 

the formulation created a broad area of clear and spontaneous nanoemulsification in 

the pseudo-ternary phase diagram. Their nanoemulsifying formulation was 

thermodynamically stable although it was naturally a micellar system. The formulation 

seemed promising as a reference for developing a skin-targeted nanoemulsion for 

RSV.   

Initially, three surfactant-containing liquid formulations were investigated: a lipid 

based nanoformulation (TKLT2), a micellar system (PKLT2), and a microemulsion 

(TKLT2P), employing low energy method of fabrication. The lipid-based formulation 

is basically a combination of oil phase and surfactant/cosurfactant. The micellar 

system is the surfactant-rich aqueous system which confers micelles with their 

solubilizing property.65, 66 The microemulsion consists of a mixture of oil phase, 

aqueous phase, surfactant and cosurfactant. These three formulation types contain 

the same surfactant and cosurfactant, which also have chemical penetration 

enhancers abilities.51, 61, 67-70 Moderate agitation at room temperature was applied to 

provide homogeneous mixtures. RSV was incorporated after blank nanoformulations 

formed and the formulations were kept out of light. 
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Triacetin (glyceryl triacetate) was selected as the oil phase as it gives good clarity, low 

viscosity and good compatibility in the nanoemulsion system, providing a clear-single 

phase system. Triacetin is commonly used as a solvent, solubilizer and the oil phase of 

nanoemulsions71 and categorised as “Generally Recognised as Safe” by the FDA.72 

Triacetin has also shown a skin penetration enhancement effect.73 Kolliphor® RH 40 

(polyoxyl 40 hydrogenated castor oil) was selected as the surfactant. It is a non-ionic 

solubilizer and emulsifying agent.74-76 The hydrophobic part of Kolliphor® RH 40 is 

developed from a combination of glycerol polyethyleneglycol hydroxystearate and fatty 

acid glycerol polyglycol esters, while the hydrophilic part is a combination of polyethylene 

glycols and glycerol ethoxylate.75 The hydrophilic-lipophilic balance of this surfactant is 

between 14-1675 which is appropriate for o/w nanoemulsions. Transcutol® P is a high 

purity grade of diethylene glycol monoethyl ether (DEGEE), which was selected as the 

cosurfactant in this study to aid in stabilizing the emulsion system. Transcutol® is an 

excellent and safe hydroalcoholic solubilizer and skin permeation enhancer without 

compromising skin integrity.77-80 The mechanisms underlying the skin 

penetration/permeation enhancement of the drug include increasing drug thermodynamic 

driving force, improving drug solubility-partition in the SC, escalating the intercellular lipid 

fluidisation, and preserving the SC hydration.80 PBS pH 6 was used as the aqueous 

phase to maintain the stability of RSV18 and to support skin compatibility.81  

All formulations were clear and transparent, except for blank TKLT2P, which was 

translucent (Figure 4.9). Interestingly, the TKLT2P formulation became transparent 

after RSV incorporation. This is likely due to the interaction between RSV hydroxyl 

groups and the nanosystem. The solubility of RSV in three formulations was similar, at 

around 150 mg/mL (Table 4.7), and much greater than RSV solubility in aqueous 

solution (0.034 mg/mL). In terms of viscosity, the TKLT2 and TKLT2P possessed 

similar viscosity, whereas PKLT2 was highly viscous. The high viscosity of PKLT2 may 

be due to the high level of hydration of water molecules around the hydrophilic region 

of surfactant.82  

The capacity of nanoformulations to enhance the penetration and permeation of RSV 

in the skin was evaluated as the endpoint parameter of the skin targeted formulation 

development. The penetration of RSV into the skin was conducted in order to assess 

RSV deposition in SC and in area of epidermis, dermis, and follicles (E+D+F). The 

permeation of RSV through the skin was also carried out to evaluate the cumulative 

amount of RSV in the deeper area of dermis. The in vitro skin penetration-permeation 

study was conducted based on Franz’s protocol83 with some modification. Preliminary 

experiments were conducted to optimize the in vitro skin diffusion methods, in terms 
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of skin preparation, selection of receptor fluid, permeation profile of RSV saturated 

solution in PBS pH 6 and the stability of RSV in sample fluids. 

Due to the lack of availability of human skin, we used the newborn pig skin, as pig 

skin is well accepted as a good human skin surrogate.64, 84-92 Veet™ cream was shown 

to break the hair shafts without compromising the skin and follicles. This was used in 

preference to razor shaving, as the cream application still maintained an intact SC 

(see Figure 4.5 and Figure 4.6). Ethanol-based solution (20% ethanol in PBS pH 6) 

with a total receptor volume removal and replacement protocol was used as the 

receptor fluid to maintain RSV stability and sink conditions (Cs< 70.11µg/mL) and 

minimise variability (Figure 4.7). Total receptor volume removal and replacement is 

beneficial especially for an unstable, lipophilic compound such as RSV, to minimize 

the aqueous diffusion layer effect within the receptor compartment93 and to assist the 

analysis of the stable form of RSV. The stability of RSV in sample fluids was 

maintained well during the sampling process and analysis.  

A saturated solution of RSV in PBS pH 6 was used as the baseline formulation for 

comparison of developed nanoformulations. The maximum flux was 0.051 ± 0.009 

µg/cm2/h at maximum solubility of RSV of 34.13 ± 0.20 µg/m (Figure 4.8).  

TKLT2P showed the highest deposition of RSV in the SC (Figure 4.10 and Table 4.8), 

which was likely due to the greater solubility and partition of RSV in SC compared to 

the other two formulations. Although RSV of PKLT2 appeared to be higher in the 

epidermis-dermis-follicle region, the amount differences were not statistically 

significant.  TKLT2P also showed the highest permeation through the skin compared 

to TKLT2 and PKLT2 (Figure 4.11). High solubilisation and partitioning capacity are 

the main features of topical and transdermal ME-NE formulations which can improve 

the drug loading capacity and dose application thereby enabling higher concentration 

gradients and eventually improving skin deposition and transdermal flux of the         

drug.51, 61, 94-96 Given TKLT2P was promising in terms of RSV penetration into and 

permeation through the skin, this was selected as the primary formulation, and 

therefore was further modified and evaluated. 

The main focus of the current study was modification to develop nanoemulsions which 

required less oil, surfactants and cosurfactant but maintained good physical qualities of 

the nanoformulation and enhanced skin penetration and permeation of RSV. The aim 

of reducing the oil content was to improve skin sensory properties. Surfactant and 

cosurfactant reduction results in solubility decrease of the drug, thus increases the 

thermodynamic activity97 and reduces the potential for skin irritation. In addition, in 
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principle there is a range of commercial and environmental advantages to the reduction 

in the use of materials to increase efficiency in production cost.  

The physical characteristics are summarised in Table 4.10. All nanoemulsions 

showed light brown colour due to original colour of RSV loaded, with the eugenol-

incorporated formulations showing higher intensity of brown colour with respect to the 

colour of eugenol. Most formulations were transparent except E5K20TP.  This 

formulation was opaque due to the lower solubility of RSV in this system. It is likely 

that the surfactant-cosurfactant composition in this formula has less capacity to 

solubilize the RSV.  

The viscosity of the blank formulations varied, depending on the amount and 

composition of the excipients. The most viscous formulation was the ETKTP as 

expected. ETKTP contains eugenol and triacetin at 5% concentration on each. The 

viscosity reduced in the order of ETKTP > E5K30TP > TKLT2P > E5K20TP > TKTP.  

Based on the skin permeation results, the nanoformulations demonstrate that with 

lower solubility of RSV in the formulation, there is higher penetration and permeation 

of RSV into and through the skin. This phenomenon is in agreement with 

Hamishehkar et al98 who evaluated the effect of pure or binary mixtures of solvents 

on tadalafil solubility and transdermal delivery in rat skin. They reported that decrease 

of the solubility of tadalafil resulted in increase of tadalafil transdermal flux. This 

follows the basic principles of thermodynamics, as a permeant with lower solubility in 

the vehicle is more thermodynamically active and therefore more likely to partition 

from the vehicle to the skin.99  

Terpenes are known to be potent chemical penetration enhancers.37 The mechanism 

of terpenes in enhancing penetration and permeation is associated with SC 

intercellular lipid disruption by creating polar microchannels and an increase in 

permeant diffusivity.100-103 Eugenol was selected as the initial terpene selected, based 

on its medium viscosity which was expected to facilitate the spread ability of the 

product on the skin and its pleasant aroma. The addition of eugenol (5%) in the 

nanoformulation significantly increased the amount of RSV in the epidermis-dermis-

follicles area and the RSV permeation through the skin compared to TKTP (Figure 

4.16 and Figure 4.17). The increase in skin deposition is likely due to the role of the 

interaction of eugenol with the system to disrupt the SC lipids and increase lipid 

fluidisation.104 The RSV skin penetration and permeation reduced with the absence of 

triacetin, suggesting that eugenol and triacetin synergistically increased the skin 

penetration and permeation of RSV. Triacetin is also a known penetration enhancer 
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with the same suggested mechanism of increasing SC lipid fluidisation as 

terpenes.105, 106  

The effects of three terpenes-based formulations (Eugenol - E1K20TP, D-limonene - 

LKTP and Eucalyptol - EuKTP) were further investigated. The physical characteristics 

and RSV distribution in the skin was similar for the three different terpene-based 

nanoformulations (Figure 4.25). However, the permeation of RSV through the skin was 

higher for LKTP and EuKTP than that of E1K20TP (Figure 4.26). This was unlikely 

associated to differences in thermodynamic activity as the solubility of RSV in those 

formulations was similar. We suggest that the lipophilicity of terpenes apparently 

affected the RSV skin permeation. The degree of lipophilicity (Log P) of eugenol, 

eucalyptol, and D-limonene is 2, 2.5 and 3.4, respectively.107-109 El Kattan et al110, 111 

when investigating the effect of terpenes on the permeation of hydrocortisone in hairless 

mouse skin SKH1, also reported a positive correlation between degree of lipophilicity 

of the terpenes and cumulative amount of hydrocortisone permeating through skin. The 

higher the lipophilicity of the terpenes, the better the drug partitioned in the skin thus 

permeated through the skin.110, 111  

Nanoformulations were stable in both short- and long-term storage condition. In short 

term conditions, at 22-25°C, nanoformulations remained stable with and without light 

protection compared to RSV saturated aqueous solution, suggesting that 

nanoformulations are capable to maintain the stability of RSV. This capability is likely 

due to the nanosized globules of nanoformulations which encapsulated RSV with high 

kinetic stability.112    

In summary, we successfully developed self-assembly, stable, and suitable RSV 

nanoemulsions to enhance the penetration and permeation of RSV into and through 

the skin, which met the quality of formulation criteria. These nanoformulations have 

the potential to facilitate skin delivery of RSV and potentially exert an antioxidant effect 

in the skin. 
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5 Chapter 5. Enhancing Skin Penetration and 
Permeation of Resveratrol Using A 

Combination of Chemical and Physical 
Enhancement Techniques  

 

5.1 Background 

A number of approaches can be applied to enhance the skin penetration of resveratrol 

(RSV). In Chapter 4 we demonstrated the enhanced skin delivery of RSV with 

nanocarrier formulations, particularly with the inclusion of terpene chemical 

enhancers. Terpene based nanoformulations showed considerable results as 

targeted skin delivery. However, for some other formulations, a combination of 

chemical and physical enhancement techniques was considered to be substantial to 

enhance RSV skin penetration into and permeation across the skin.  

Physical permeation enhancement techniques involve the administration of energy to 

the stratum corneum surface to drive molecules into the skin (iontophoresis, 

sonophoresis, magnetophoresis) or the minimally invasive disruption of the stratum 

corneum (ablation methods, powder and liquid jet propulsion systems, microneedle 

arrays).1-4 Among those techniques, our focus is on the effect of magnetophoresis 

and microneedle array application to explore their effect on RSV skin delivery in 

combination with nanocarrier and terpene penetration enhancers.  

Magnetophoresis is defined as the mobility of diamagnetic or paramagnetic particles 

as a result of a magnetic field induction.5 This term is also applied to physical 

enhancement in skin delivery involving a magnetic field application.6 Benson et al.5 

categorised the magnetic enhancement techniques in 4 types: static magnetic fields, 

pulsed electromagnetic fields, magnetic film array, and field in motion. Over a series 

of literature reports, Murty’s group consistently demonstrated the enhanced 

permeation of several compounds through the skin using static magnets of different 

strengths.7-9 Benson’s group utilised optical coherence tomography (OCT) to monitor 

skin hydration in vivo coupled with in vitro human skin permeation data to investigate 

the effect of a magnetic array on the skin permeation of urea.5, 10 They demonstrated 

a 4-fold enhancement in urea permeation through the skin and a 2-fold increase in 

skin thickness due to hydration with the magnetic array. The advantage of the 

magnetic array technology is that it is light, flexible and inexpensive and can therefore 

be easilty adapted as a patch for skin application.5 
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Microneedles (MN) are designed to physically disrupt the SC by applying an array of 

micron-size needles (25-2000 µm length) to create micro-channels through the  SC.11-13 

This approach aimed to significantly enhance the transdermal permeation without 

creating bleeding or painful sensations as the needles do not penetrate deeply 

enough to interact with the cutaneous blood vessels and nerves.14 MN are designed 

in five main types: solid, hollow, coated, dissolving, and swelling MN.15 Coated MN 

are basically solid MN which are coated by the drug formulation and used as a carrier 

to deliver the water-soluble formulation in the skin, while the term of solid MN refers 

to the MN used for piercing the skin to create microchannels. Hollow MN facilitate a 

liquid drug formulation to be passed through the hollow conduits of  the MN  into the skin. 

Dissolving MN are polymer-based MN in which the drug is dissolved or dispersed and is 

then released into the skin when the polymer dissolved following insertion and uptake of 

interstitial fluid. Swelling MN release are also composed of polymer that takes up 

interstitial fluid but does not dissolve, thus contained drug release is based on a diffusion 

mechanism following the swelling of the polymer.15,16  Figure 1.3 (chapter 1) 

summarised the mechanistic concepts of microneedle application. The focus of our 

work is solid MN, utilising the so called “poke and patch” method.17 Solid MN have 

been proved to enhance the permeation of 5-aminolevulinic acid18 and meso-tetra 

porphine tetra tosylate, a photosensitiser.19 Mohammed et al.20 in delivering 

cosmeceutically-relevant peptides to human skin in vitro, reported that the 

fluorescence signals of melanostatin, rigin and pal-KTTS  were improved  2-22 folds 

by solid MN application. 

We aimed to investigate the skin delivery of RSV with an energy based and a 

minimally invasive physical penetration enhancement technique. Magnet array 

application and MN pre-treatment were investigated individually and in combination 

to evaluate their capacity in enhancing RSV penetration into and permeation across 

the skin. The effect of combination of chemical and physical enhancement was further 

evaluated to get a better understanding of the role of enhancement techniques for 

RSV skin delivery. 

5.1.1 Research questions 

Research questions addressed in this study: 

1. Does the application of magnet array enhance the permeation of RSV from a 

saturated aqueous solution? 

2. Does MN pre-treatment enhance the permeation of RSV from a saturated 

aqueous solution? 
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3. Does a combination of MN pre-treatment and magnet array application 

provide a synergistic enhancement of the skin permeation of RSV from a 

saturated aqueous solution? 

4. Does the application of magnet array enhance the skin permeation of RSV 

from nanoformulations? 

5. Does MN pre-treatment enhance the permeation of RSV from 

nanoformulations? 

6. Does a combination of MN pre-treatment and magnet array application 

provide a synergistic enhancement of the skin permeation of RSV from a 

nanoformulation? 

5.2 Experimental section 

5.2.1 Materials 

RSV was purchased from PCCA (99% purity, Australia). Orthophosphoric acid and 

acetonitrile were purchased from Thermo Fisher Scientific (Australia), sodium 

hydroxide (Merck, Australia), sodium chloride (Lab-Scan, Thailand). TKTP and 

ETKTP formula was in house production (see Chapter 4 Table 4.3), ultrapure water 

(Milli-Q, Merck, Australia)  

5.2.2 In vitro penetration/permeation study 

5.2.2.1 Skin preparation 

Newborn pig skin (NBPS) was obtained from the same source and was treated with 

the same protocol described in the section 4.2.5.1. 

5.2.2.2 Experimental design 

The permeation and penetration of RSV on the skin treated with magnet and MN were 

initially evaluated individually. The combination of both treatments (magnet and MN) 

was further investigated. Vertical Franz-type diffusion cell experimental was set up to 

investigate the in vitro penetration/permeation of RSV into and through the newborn 

pig skin. Skin preparation was conducted under protocol described in the section 

4.2.5.1. 
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Franz cell study set up 

In general, the set-up of experiment, sampling protocol, and skin distribution study 

followed the procedure as described in the section 4.2.5.2 and table 4.4.  RSV 

aqueous saturated solutions, TKTP, ETKTP were applied as donors.  

Magnet array application  

Flat circular static magnetic film arrays (diameter: 0.6 cm) of unpowered flexible array 

matrix ETP 012 (OBJ Ltd, WA, Australia) were used with the peak magnetic field 

strength of 40mT and total magnetic gradient of 2T/m2 (due to the arrangement and 

alternating poles distribution across the surface). An applicator was used to apply the 

magnet array in the donor compartment, at a distance of 2-4mm above the skin 

surface and in good contact with the donor. 

 

Figure 5.1 Franz cell set up with magnet application: (a) magnet applicator 
attached with a magnet array at the bottom, (b) set of Franz cells in the water 
bath 

 

MN skin pre-treatment 

A 3M™ Microchannel Skin System (3M, Singapore) was applied as pre-treatment to 

create microchannels through the SC. This consists of a sterile, single use rectangular 

array of pyramidal-shape needles (13 x 27 needles) with needle length of 700 µm, 

attached on an oval patch in a tip-to-tip space of the needles of 500µm21, 22 (Figure 

5.2). The 3M™ Microchannel Skin System was applied using the applicator in the 

centre of the skin with an applied pressure of 800-900g for 30 seconds. The MN 

treated skin was then placed in the Franz cell SC upwards. One gram of the saturated 

RSV solution or RSV nanoformulation was applied to the SC surface of the skin in the 

donor compartment.  
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Figure 5.2 MN equipment and pre-treatment 

Combination of magnet and MN application 

The skin was pretreated with MN as described above (Figure 5.2. (c)), then placed in 

the Franz diffusion cell. The topical formulation was applied, and the magnet placed 

in contact with the formulation, as previously described above (Figure 5.1.(b)).  

Chemical Analysis 

Quantification of RSV was achieved using a validated HPLC method described in 

section 4.2.2 and table 4.1.  

Data and statistical analysis 

All data were presented as mean ± SEM. Raw data were calculated and analysed 

based on the formula provided in the section 4.2.6. Statistical analysis was performed 

following the method described in section 4.2.7. 

5.3 Results  

The primary measures in all experiments were the penetration of RSV through the 

skin into the receptor compartment and the distribution of RSV in skin tissues due to 

permeation from each formulation in the absence or presence of physical penetration 

enhancement. 

5.3.1 Effects of physical enhancement on the permeation of 
RSV from a saturated aqueous solution 

5.3.1.1 Effect of magnet application on the permeation of RSV  

Figure 5.3 shows the permeation profile of RSV in saturated aqueous solutions 

applied with or without magnet application for 8 hours. The cumulative amount of RSV 

permeated through the skin treated with magnet was approximately two times higher 
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than passive diffusion permeation (0.690 ± 0.209 µg and 0.309 ± 0.074 µg, 

respectively: P < 0.05). Although the lag time and permeability coefficient were similar, 

the rate of RSV permeated through the skin treated with magnet was also two times 

faster than the passive diffusion (P < 0.05). The flux of RSV with magnet application 

and passive diffusion were 0.097 ± 0.026 µg/cm2/h and 0.051 ± 0.009, respectively; 

P < 0.05).  

 

Figure 5.3 Cumulative amount of RSV administered in a saturated aqueous 
solution in passive diffusion (SS PD) and magnet application (SS MAG) in 8h 
permeation ( 𝒙 ± SEM; 5-6 replications; * P < 0.05) 

 

The RSV distribution in the skin tissues is presented in the Figure 5.4.  

 

Figure 5.4 Skin distribution of RSV in the stratum corneum (SC) and epidermis, 
dermis and follicles (E+D+F) after 8h following application of RSV saturated 
aqueous solution with magnet application (SS MAG) or untreated skin (SS PD) 
( 𝒙  ± SEM; 5-6 replications) 
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The amount of RSV retained in the SC (Figure 5.4) was similar for passive diffusion 

and magnet application (0.378 ± 0.025 µg/cm2 and 0.403 ± 0.126 µg/cm2 

respectively). In the combined areas of the epidermis, dermis and follicles the amount 

of RSV was approximately 30% higher with magnetic application (1.124 ± 0.519 

µg/cm2 and 1.497 ± 0.134 µg/cm2 respectively) but this was not a statistically 

significant increase in RSV deposition. 

5.3.1.2 Effect of MN application on the penetration/permeation of RSV  

Figure 5.5 presents the profile of RSV permeation from a saturated aqueous solution 

in passive diffusion or following MN pre-treatment. MN pre-treatment significantly 

increased the RSV flux across the skin by 4.57 times compared with passive 

application (0.051 ± 0.009 µg/cm2/h and 0.234 ± 0.074 µg/cm2/h respectively; P < 

0.01). The cumulative amount of RSV permeated the skin was approximately 6.5 

times with MN than without (P < 0.05).  

 

Figure 5.5 Cumulative amount of RSV of administered in a saturated aqueous 
solution to microneedle pre-treatment (SS PD) or untreated skin (SS MN) in 8h 
permeation through the skin ( 𝒙 ± SEM; 5-6 replications; ** P < 0.01 ) 

 

The amount of RSV in the SC (Figure 5.6) of microneedle-treated skin was 

significantly higher than that in passive diffusion (1.064 ± 0.115 µg and 0.378 ± 0.025 

µg, respectively; P < 0.05).  The amount of RSV in the other skin areas (E+D+F) was 

approximately four times greater following microneedle pre-treatment (1.124 ± 0.519 

µg and 4.006 ± 0.378 µg respectively; P < 0.01). 
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Figure 5.6 Skin distribution of RSV in the SC and E+D+F at 8h following 
application of RSV saturated aqueous solution to microneedle pretreated (SS 
MN) or untreated skin (SS PD) ( 𝒙  ± SEM; 5-6 replications; * P < 0.05, ** P < 0.01) 

5.3.1.3 Effect of combination of MN pre-treatment and magnet application 

on the permeation of RSV  

 
Figure 5.7 Cumulative amount of RSV of administered in a saturated aqueous 
solution by a combination of microneedle pre-treatment and magnet 
application ( SS MN-MAG) or passive application (SS PD) in 8h permeation 
through the skin ( 𝒙 ± SEM; 5-6 replications; ** P < 0.01) 

 

Similar to the previous result in microneedle application, the combination of physical 

enhancement techniques also significantly increased skin permeation of RSV (P < 

0.01). The cumulative amount of RSV permeated the skin, when applied for 8 h as a 

saturated aqueous solution of RSV with a combination of microneedle pre-treatment 

and magnet, was 1.546 ± 0.173 µg. The combination of treatments provided a small 
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increase of RSV flux and a decrease of lag time compared to MN application alone, 

but there was no statistically significant improvement in skin delivery with the 

combined treatments.  

 

Figure 5.8 Skin distribution of RSV in the SC and E+D+F of RSV administered 
in a saturated aqueous solution by a combination of microneedle pre-treatment 
and magnet application (SS MN-MAG) or passive application (SS PD) after 8h 
permeation through the skin ( 𝒙  ± SEM; 5-6 replications) 

 

Figure 5.8 shows the RSV retained in the skin after 8h application with magnet on MN 

pretreated skin. Whilst there was an approximately 30% increase in the mean amount 

of RSV in the E+D+F area with the combination treatment, this was not statistically 

significant. It is also interesting to note that the amount of RSV in the E+D+F area was 

significantly less when applied to microneedle pretreated skin with magnets in place 

than without the magnets (Table 5.1). 
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5.3.2 Effect of magnet application, microneedle pre-treatment, 
and combination of MN pre-treatment and magnet 
application on the skin permeation of RSV applied as 
nanoformulations  

5.3.2.1 Effect of magnet application, microneedle pre-treatment, and 

combination of MN pre-treatment and magnet application on the skin 

permeation of RSV applied as TKTP nanoemulsion 

 
Figure 5.9 Cumulative amount of RSV of following application of TKTP 
nanoemulsion with magnet application (TKTP MAG), microneedle pre-
treatment (TKTP MN), combination of magnet application and microneedle pre-
treatment (TKTP MN-MAG), and no physical skin treatment-chemical 
enhancement only (TKTP CEO) in 8h permeation through the skin ( 𝒙 ± SEM; 5-
6 replications; *** P < 0.001) 

 

Figure 5.9 displays the permeation profile of RSV applied in the TKTP 

nanoformulation with magnet application alone, MN pre-treatment alone, the two 

techniques combined and compared to no physical enhancement (designated 

passive enhancement). The magnet application did not increase RSV permeation 

from the nanoemulsion. In contrast, there was 78.37 times increase in RSV flux when 

the nanoemulsion was applied to microneedle pretreated skin. The permeation profile 

for the combination of magnet application and MN pre-treatment was similar to the 

MN treatment alone (Figure 5.9). The RSV flux of the microneedle application and the 

combination treatments were 4.019 ± 0.666 µg/cm2/h and 4.452 ± 0.929 µg/cm2/h, 

respectively.  
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Figure 5.10 The skin distribution of RSV in the SC and E+D+F after 8h following 
application of TKTP MAG, TKTP MN, TKTP MN MAG, and TKTP CEO ( 𝒙  ± SEM; 
5-6 replications; * P < 0.05, ** P < 0.01) 

 

 

There was no significant difference in the amount of RSV in the SC at 8h after 

application in the TKTP nanoemulsion with or without physical enhancement 

techniques (Figure 5.10). In contrast, the combination of MN pre-treatment and 

magnetic application of RSV in the TKTP nanoemulsion (TKTP MN-MAG) resulted in 

almost six times the amount of RSV in the E+D+F tissues, an amount that was 

significantly greater than any other treatment (P < 0.05). The amount of RSV retained 

in E+D+F the TKTP MN-MAG and the TKTP without physical skin treatment were 

30.214 ± 8.711 µg/cm2 and 5.359 ± 0.845 µg/cm2, respectively.  
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5.3.2.2 Effect of magnet application, microneedle pre-treatment, and 

combination of MN pre-treatment and magnet application on the skin 

permeation of RSV applied as ETKTP nanoemulsion 

 
Figure 5.11 Cumulative amount of RSV of following application of ETKTP 
nanoemulsion with magnet application (ETKTP MAG), microneedle pre-
treatment (ETKTP MN), combination of magnet application and microneedle 
pre-treatment (ETKTP MN-MAG), and no physical skin treatment-chemical 
enhancement only (ETKTP CEO) in 8h permeation through the skin ( 𝒙 ± SEM; 
5-6 replications; * P < 0.05) 

Figure 5.11 presents the permeation profile of RSV applied as EKTP nanoemulsion 

to untreated skin and skin with microneedle pre-treatment alone, magnet application, 

and a combination of microneedle and magnet application. As with the TKTP 

nanoemulsion, the permeation profile shows that the microneedle pre-treatment 

enhanced permeation both alone and in combination with the magnet, but the magnet 

alone did not increase RSV permeation. 

 

Figure 5.12 The skin distribution of RSV in the SC and E+D+F after 8h following 
application of ETKTP MAG, ETKTP MN, ETKTP MN MAG, and ETKTP CEO  ( 𝒙  
± SEM; 5-6 replications) 
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Figure 5.12 shows the skin uptake of RSV applied as ETKTP nanoemulsion with and 

without the physical permeation enhancement techniques. The combination of 

treatments (magnet-microneedle) retained slightly higher amount of RSV in SC 

compared to the others. However, the amount of RSV retained in the E+D+F was 

relatively comparable in the untreated skin and all treatments. 

5.3.3 Summary of results 

Table 5.1 summarises the in vitro penetration/permeation data for RSV applied to 

piglet skin in a range of formulations with and without physical enhancement 

techniques. 

Table 5.2 presents the mass balance data for all experiments conducted. The 

recovery was between 85-112%.  
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Table 5.1 Experimental data of in vitro penetration/permeation study of RSV with physical permeation enhancements ( 𝒙 ± SEM; 5-6 
replications) 

Formula RSV distribution in the skin (µg/cm2) Cumulative amount  

(µg) 

Steady state flux  

(Jss; µg/cm2/h)   

Lag time (h) ER 

SC E+D+F 

RSV saturated solution 

Passive diffusion 0.378 ± 0.025 1.124 ± 0.519 0.309 ± 0.074 0.051 ± 0.009 3.185 ± 0.176 1.00 

Magnet 0.403 ± 0.126 1.497 ± 0.134 0.690 ± 0.209 0.097 ± 0.026 2.565 ± 0.498 1.88 

MN 1.064 ± 0.115 4.006 ± 0.378 1.995 ± 0.625 0.234 ± 0.074 1.096 ± 0.307 4.57 

MN-Magnet 0.331 ± 0.028 1.445 ± 0.242 1.546 ± 0.173 0.151 ± 0.016 1.172 ± 0.149 2.94 

TKTP 

Chemical enhancer only 1.998 ± 0.383 5.359 ± 0.845 0.853 ± 0.091 0.103 ± 0.006 1.234 ± 0.886 2.01 

Magnet 1.010 ± 0.224 3.204 ± 0.979 0.264 ± 0.087 0.036 ± 0.013 1.516 ± 0.558 0.70 

MN 2.828 ± 0.522 6.998 ± 1.586 37.075 ± 7.150 4.019 ± 0.666 0.933 ± 0.472 78.37 

MN-Magnet 2.436 ± 0.512 30.214 ± 8.711 36.583 ± 8.554 4.452 ± 0.929 1.291 ± 0.133 86.82 
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Table 5.1. Continued 

Formula RSV distribution in the skin (µg/cm2) Cumulative amount  

(µg) 

Steady state flux  

(Jss; µg/cm2/h)   

Lag time (h) ER  

SC E+D+F 

ETKTP 

Chemical enhancer only 2.342 ± 0.269 12.000 ± 3.598 2.973 ±1.051 0.358 ± 0.125 1.195 ± 0.280 1 

Magnet 2.258 ± 0.436 6.900 ± 2.167 2.789 ± 2.105 0.344 ± 0.286 2.584 ± 0.355 0.96 

MN 2.152 ± 0.407 6.543 ± 1.305 11.944 ± 5.868 1.308 ± 0.616 0.426 ± 0.213 3.65 

MN-Magnet 3.028 ± 0.731 10.428 ± 1.787 13.091 ± 3.835 1.556 ± 0.472 0.921 ± 0.072 4.35 

 

Notes: ER: enhancement ratio. Enhancement ratio was considered based on the ratio of average values of steady state flux of each treatment to 

passive diffusion or chemical enhancer only, at the same formula 
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Table 5.2 Mass balance of in vitro skin penetration/permeation study ( 𝒙 ± SEM; 5-6 replications)  

Physical 

permeation 

enhancement  

IA (µg) RSV distribution (µg)  Total of 

RSV 

distribution 

(µg) 

RECOVERY 

(%) 
RA SC E+D+F R S/S+W 

RSV SOLUTION 

Magnet 36.31 ± 0.18 9.60 ± 1.61 0.62 ± 0.19 1.79 ± 0.17 0.69 ± 0.21 20.23 ± 3.37 30.98 ± 5.50 85.25 ± 5.07 

MN 32.94 ± 0.16 21.50 ± 0.71 1.55 ± 0.17 4.80 ± 0.37 2.68 ± 0.85 0.18 ± 0.03 30.65 ± 0.36 93.03 ± 1.03 

MN-Magnet 35.55 ± 0.12 28.89 ± 7.82 0.48 ± 0.03 1.47 ± 0.13 1.56 ± 0.21 7.68 ± 0.98 40.08 ± 8.72 112.48 ± 24.15 

TKTP 

Magnet 20486.86 ± 

35.31 

18128.11 ± 

317.17 
1.55 ± 0.35 3.84 ± 1.17 0.25 ± 0.09 148.30 ± 

30.95 

18282.05 ± 

307.17 
89.23 ± 1.44 

MN 20200.15 ± 

77.34 

19474.48 ± 

661.84 
4.35 ± 0.80 8.25 ± 1.85 38.73 ± 7.16 2.21 ± 0.32 19526.37 ± 

659.99 
96.63 ± 3.06 

MN-Magnet 18549.28 ± 

64.27 

17240.13 ± 

287.44 
3.75 ± 0.79 36.58 ± 

11.09 

36.58 ± 8.55 378.33 ± 

45.93 

17695.37 ± 

283.08 
95.39 ± 1.38 
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Table 5.2 continued 

Physical 

permeation 

enhancement  

IA (µg) RSV distribution (µg)  Total of 

RSV 

distribution 

(µg) 

RECOVERY 

(%) 
RA SC E+D+F R S/S+W 

ETKTP 

Magnet 20260.93 ± 

41.54 

18599.37 ± 

403.05 
3.47 ± 0.64 8.33 ± 2.60 2.79 ± 2.10 683.43 ± 35.64 19297.39 ± 

406.17 
95.25 ± 2.11 

MN 20062.61 ± 

76.39 

18954.09 ± 

127.81 
3.31 ± 0.63 7.90 ± 1.64 12.73 ± 5.87 2.97 ± 0.80 18981.01 ± 

133.81 
94.62 ± 0.94 

MN-Magnet 20476.16 ± 

32.21 

19381.90 ± 

374.19 
4.66 ± 1.12 12.53 ± 

2.18 

13.09 ± 3.84 926.87 ± 

245.37 

20339.05 ± 

557.89 
97.07 ± 3.32 

 

Notes : IA = initial amount of RSV in the donor compartment (µg); RA = remaining amount of RSV in the donor compartment (µg); SC = amount 

of RSV in the stratum corneum (µg); E+D+F = amount of RSV in epidermis, dermis and follicles (µg) ; R= amount of RSV in the receptor 

compartment; S/S+W = amount of RSV on the surface or on surface and in washing liquid (µg) 
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5.4 Discussion 

The development and evaluation of RSV nanoformulations was described in chapter 

4 of this thesis. The nanoformulations including terpene-based nanoformulations for 

skin delivery of RSV performed well as chemical penetration/permeation enhancers. 

This current study demonstrated the potential of physical techniques 

(magnetophoresis and microneedle application) in enhancing the penetration 

/permeation of RSV administered in a saturated aqueous solution. This is also the first 

study investigating effects of a combination of chemical (TKTP and ETKTP) and 

physical enhancement techniques (magnetophoresis and MN array) in RSV skin 

delivery. Our hypothesis was that the most effective combination would be pre-

treatment with MN to open channels through the SC, followed by administration of the 

terpene based nanoformulations that could present higher RSV concentration and 

improve permeation within the skin tissue. Addition of the magnetic push was aimed 

at improving diffusion and flow of the formulation within the MN induced channels. We 

investigated each of these enhancement technologies alone and in combination. 

First, we investigated the effect of the physical enhancement techniques on a 

saturated aqueous solution of RSV, in our case using PBS to control the pH to 

maintain RSV stability. The magnet array application doubled the permeation of RSV 

(cumulative amount and flux) when the RSV saturated aqueous solution was applied 

as the donor (Figure 5.3 and Table 5.1). Magnetohydrokinesis, a phenomenon of 

material transport by water movement across the skin in the presence of a magnetic 

field8, is likely to be the mechanism underpinning the permeation. Water is 

categorised as a diamagnetic solvent which naturally moves away from a magnet. 

Any substances dissolved in water are likely transported across the skin in the 

presence of the magnetic field. Hence, in a saturated aqueous solution, the dissolved 

RSV (in the PBS pH 6) was likely transported across the SC by flow of the aqueous 

solvent. 

Significant permeation enhancement of RSV administered in a saturated aqueous 

solution was observed in MN pretreated skin (Figure 5.5 and Table 5.1). We applied 

a solid MN device called 3M™ Microchannel Skin System (3M, Singapore) as pre-

treatment in order to create microchannels through the SC, through which the RSV 

could cross the SC. The system was sterile, single use rectangular array of pyramidal-

shape needles (13 x 27 needles) with needle length of 700 µm, attached on an oval 

patch in a tip-to-tip space of the needles of 500µm.21, 22 The system has been reported 

to be safe and well tolerated.23, 24 Li et al.22 reported that the depth of penetration of 
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3M™ Microchannel Skin system was in correlation with the force of application. The 

force of 10 N provided the depth of penetration of approximately 100 µm in human 

skin.   From this information, considering that newborn pig skin structure is relatively 

similar to human skin, we can predict that the depth of penetration of the MN in this 

study was around 80-100µm. MN pre-treatment in this study increased the cumulative 

amount of RSV permeated and flux approximately 4.57-fold and 2-fold, respectively, 

compared to passive diffusion. The lag time was also halved. Substantially enhanced 

skin delivery has been shown following the application of solid MN in a wide range of 

small and macromolecules due to providing direct transfer channels across the SC 

barrier.13, 15 For example, copper peptide, a skin regeneration and wound healing 

agent, was delivered across 3M Microchannel Skin System-treated human skin at 134 

± 12 and 705 ± 84 nmoles for its peptide and copper, respectively, without inducing 

skin irritation.22  

The combination of MN pre-treatment and magnet array application also significantly 

enhanced RSV permeation compared to passive diffusion of the saturated aqueous 

solution (Figure 5.7 Table 5.1). The similar results of RSV skin permeation with MN 

treatment alone and in combination with magnet application suggested that the 

magnet array application did not further contribute to the enhanced permeation of 

RSV compared to the MN alone. This suggests that when RSV was applied to the 

skin as an aqueous solution, the provision of MN derived channels provided optimal 

skin delivery and no increased flow within the channels was achieved for this 

formulation by application of magnetic energy.   

 We also investigated the effect of the physical enhancement techniques with the 

optimal terpene-based nanoemulsions developed in Chapter 4. As expected, the 

amounts of RSV delivered to and through the skin were substantially higher than from 

the aqueous solution (data in agreement with Chapter 4). When the nanoemulsions 

were applied with the magnet array, there was no statistically significant enhancement 

of permeation of RSV (Figure 5.9, Figure 5.11, and Table 5.1). The phenomenon 

could be explained by understanding the nature of the formulations. The 

nanoemulsion composition of TKTP and ETKTP solubilized more RSV compared to 

PBS pH 6. In chapter 4 we have demonstrated that nanoformulations significantly 

increased the solubility of RSV. For example, the RSV solubility in TKTP was 44.771 

± 4.159 mg/mL compared to only 34.13 ± 0.20 µg/mL in PBS pH 6 solution. High 

solubilisation of RSV in nanoformulation increased the efficiency (loading capacity 

and dose application) of RSV in the droplets to penetrate across the SC.25, 26 

Theochari et al.27, when formulating the lipophilic antitumor PLX4720 in a 
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microemulsion containing triacetin, Tween 80, and water, confirmed  that this lipophilic 

compound was located mainly in triacetin, based on electron paramagnetic resonance 

(EPR) studies. Hung et al.28 also argued that RSV is likely to be non-ionic in oil. Hence, 

in our nanoformulations, we expect that the RSV is in non-ionic form and less exists 

in the aqueous phase. This reduces the opportunity for enhanced RSV transport via 

magnetohydrokinesis.  

In contrast, MN pre-treatment and the combination of MN pre-treatment and magnet 

array application significantly increased the permeation of RSV in both 

nanoemulsions (P < 0.05) (Figure 5.9, Figure 5.11, and Table 5.1). Considering first 

TKTP, there were large increase in the flux of RSV administered in TKTP in MN-

treated skin (78.37-fold) and in the comibination of MN pre-treatment and magnet 

array application (86.82-fold) compared to the nanoemulsion alone. The low viscosity 

of the TKTP (0.110 ± 0.026 dPas) enabled the nanoformulation to effectively pass 

through the microchannels created by MN pre-treatment. The lubricating effect of 

triacetin may also facilitate the flow of nanoemulsion and hence the rate of RSV 

permeation through the microchannels. Having bypassed the SC, the presence of 

triacetin, Kolliphor® RH 40 and Transcutol® were able to facilitate diffusion within the 

skin tissues by enhancing the partitioning of RSV in the skin. Transcutol®, in particular, 

increases water absorption from the skin to maximize the drug thermodynamic activity 

due to drug solubility alteration.29-31   

MN pre-treatment alone and in combination with magnet application also enhanced 

the RSV flux when applied in ETKTP although skin delivery was 4-5 times less than 

when TKTP was applied with the physical enhancer combination (ETKTP) (P < 0.05). 

The ETKTP nanoemulsion has a higher viscosity than TKTP (1.621 ± 0.119 dPas), 

which may impede the flow of nanoemulsion through the SC microchannels. The 

steady state flux and cumulative amount of RSV was higher with the combination 

compared to MN alone, but this was not a statistically significant increase (Figure 

5.11, and Table 5.1).  

Interestingly, the deposition of RSV in the epidermis, dermis and follicles was 

significantly higher for TKTP nanoemulsion formulations when applied with the 

combination of MN pre-treatment and magnet array application (P <0.05) (Figure 5.10 

and Table 5.1), suggesting that significant lateral diffusion might occur due to the 

synergistic effects of the combination of microneedle pre-treatment, magnet array and 

nanoemulsion constituents. This significant increase in skin distribution of RSV was 

not seen for any of the enhancement treatments alone.  The result was in agreement 
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with a study reported by Prow et al.32, when they investigated the effect of a 

combination of magnet application (ETP012) and MN pre-treatment on Melanostatin 

skin penetration. They suggested that magnet application enhanced the average 

delivery signal of melanostatin 1.48 times of that in MN treated skin. They further 

suggested that only the SC, epidermis and the uppermost dermis were affected by 

ETP012 application. However, the combination of MN pre-treatment and magnet 

application had less effect on the skin distribution of RSV applied in ETKTP as the 

nanoemulsion itself has already facilitated the optimum penetration.      

Magnet array application is one of a number of promising non-invasive physical 

permeation enhancement tenhiques.5, 7, 33 Magnet-derived increase of skin flux of a 

number of compounds has been reported, including benzoic acid, salbutamol 

sulphate, torbutaline sulphate, lidocaine hydrochloride, naltrexone hydrochloride, 

urea, and amino levulinic acid.6-10, 34-36  The main mechanism of skin penetration 

enhancement are suggested as  magnetohydrokinesis and magnetorepulsion, and 

are appropriate for these mainly polar compounds that have been applied in an  

aqueous/hydrophilic environment or in an electrolyte solution.  

However, the effect of magnetic application with compounds that are not diamagnetic 

or are applied in more complex formulations are less well documented. It is known 

that magnetic enhanced cosmetics are currently marketed by Procter & Gamble, with 

both cream and polymer-based face mask formulations commercially available. In 

addition, Krishnan et al.35 showed enhanced skin permeation of 20nm gold 

nanoparticles when applied to human skin with an electromagnet. They concluded 

that this could only occur if the magnet was capable of disrupting the SC barrier, 

similar to the effect of fluidisation of the lipid bilayers caused by chemical penetration 

enhancers, including terpenes.37-40  

The development of a wide range of MN fabrications has been well documented and 

their ability to form microchannels in the SC is being exploited in many different 

ways.17, 41-44 Indeed a number of phase III trials of MN delivered vaccines45, 46 and 

insulin47 are well underway. Whilst there is no doubt that they can provide significant 

enhancement of skin delivery of a range of compounds, there  can be a high variation 

in delivery, particularly for “poke and patch” type systems if the channels fill or partially 

fill with fluid and start to close thereby affecting flow of applied topical formulation 

within the channels.48, 49  Incomplete insertion of MN may also cause inefficiency of 

dose delivery. For example, less than 2% of the topically applied coumarin 6-loaded 

PLGA nanoparticles was delivered in Sprague Dawley rat skin because of shallow 
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insertion depth of the a 3M™ Microchannel Skin System in the skin.50 In addition, a 

compound applied into the microchannels still needs to flow from the site of deposition 

through the skin tissues. Wei et al.51 showed that the degree of diffusion varied with 

molecular weight and skin layer, following the deposition of dextrans into the skin via 

a nanopatch MN delivery system. 

Various combinations of enhancement approaches have been investigated.1 For 

example, iontophoresis in combination with MN was reported to enhance insulin 

delivery up to three fold in newborn pig skin compared to iontophoresis alone.52           

An optimised combination of MN and sonophoresis increased permeation of bovine 

serum albumin across porcine ear skin at approximately 10 times that of passive 

diffusion53. The flux of lidocaine hydrochloride in magnetophoretically-treated rat skin 

was up to 6.44-fold greater when applied with gel containing menthol as the chemical 

penetration enhancer, compared to the gel without penetration enhancer and 

magnetophoretic patch application.  Prow et al.32 indicated enhancement capacity of 

a static magnet array ETP012 on melanostatin and sodium fluorescence in human 

skin, although the effects were localised in the skin. In our investigations of these 

combinations, we have shown that there is scope for combining technologies that 

disrupt the SC barrier, with those that increase diffusion and flow, and enhance active 

solubility. 

We demonstrated for the first time the capacity of combination magnet application 

and MN pre-treatment with nanoformulations to increase RSV skin penetration into 

the skin, thus this strategy is promising for skin-targeted delivery of RSV.  
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6 Chapter 6. General Discussion, Future 
Directions and Conclusions 

 

 
 

Figure 6.1 A summary of the current research project 

 

6.1 General discussion and future directions 

Whilst the general consensus is that nanoparticle exposure does not lead to 

penetration in healthy, intact skin, questions remain about damaged skin. Solvent 

exposure and tape stripping may compromise the skin barrier thus facilitating 

nanoparticle penetration. In Chapter 2, the effect of acetone pre-treatment and tape 

stripping on the porcine skin permeability was investigated with two objectives: (1) to 

observe the change of porcine skin morphology as a result of acetone and tape 

stripping pre-treatment, and (2) to assess nanomaterial distribution within skin layers. 

Multiphoton tomography (MPT) equipped with fluorescence lifetime imaging (FLIM) 

was used to observe the skin condition in the deeper layers of the epidermis as it 

offers excellent resolution.1, 2  Saline-hydrated skin morphology allowed baseline 

imaging of the structure differences of keratinocytes in every layer of the viable 

epidermis. Acetone application resulted in skin shrinkage and flakiness. Significant 

barrier disruption and the loss of some keratinocytes in SG and SS was seen following 

exposure to 100% acetone, but not 10% acetone. Thirty times tape stripping removed 

the SC completely. Hydrophilic CdSe quantum dots (QDs) applied in acetone solution 

or following tape stripping pre-treatment were primarily located in the skin furrows. 
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Some QDs were observed in the upper SG following tape-stripping but none were 

detected in the deeper epidermal layers. Although acetone application altered the skin 

barrier, it did not facilitate penetration of the solid nanomaterial into the skin. Our finding 

confirms the study of zinc oxide skin penetration on tape stripped human skin.3 This 

localization may due to the role of tight junctions in supporting the skin barrier.4-6  

The effect of age and anatomical site on the penetration of QDs in porcine 

skin was presented in Chapter 3.7 The ears and abdomen of adult pig skin, weanling 

pig skin and newborn pig skin were evaluated, thus providing a range in follicle density 

and diameter. Skin condition and QDs presence in the epidermal layers was observed 

by MPT and quantified by ICP-MS following QDs application with 2 minute-finger 

rubbing, a protocol shown to be important to Lademann group’s “ratchet effect”8 of 

nanoparticle deposition into follicles. Applied QDs were located in the furrows and 

follicles with no penetration in the keratinocytes, in agreement with other nanomaterial 

skin penetration studies.9, 10 Follicular deposition of cadmium varied in different age 

of pigs, with higher levels in ears on adult and weanling pigs than newborns. This 

variation was likely due to the follicle density and follicle diameter differences related 

to the age of the pigs. In addition, regional differences of follicle size and density also 

influenced the amount of QDs deposited except for newborn pig skin. This study again 

supports the body of literature that topical exposure to solid nanomaterial does not 

result in skin penetration, which is reassuring regarding the safety concerns of 

nanomaterial exposure. In vivo visualisation study involving human volunteers is 

essential to conduct in the future, in order to investigate the actual duration of the 

nanomaterial existence in the follicles and the possibility of nanomaterials to 

penetrate into the skin via follicles. 

Nanoformulations for skin delivery of the lipophilic natural substance 

resveratrol (RSV) were developed and evaluated in Chapter 4. RSV has potential as 

a topical antiaging or sun exposure recovery product, based on its antioxidant and 

anti-inflammatory properties.11, 12 Three different types of nanoformulations 

(emulsion-type, lipid-based and micellar systems) were initially developed and 

characterised in terms of physical appearance, RSV solubility, viscosity, refractive 

index, and stability. RSV skin penetration/permeation following topical administration 

was determined across porcine skin mounted Franz-type diffusion cells. RSV was 

quantified in the SC, the area of epidermis-dermis-follicles, and the cumulative 

amount in the receptor compartment after 8 hours. Development of nanoemulsions 

with less oil, surfactant and cosurfactant was further focused in order to obtain better 

quality of RSV nanoformulations which showed reasonable amount of RSV penetrate 
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into and permeate through the skin. The effects of terpenes were also investigated. 

All nanoformulations were successfully formulated, showing excellent clarity and 

quantifiable amounts of RSV in and through the skin. Thermodynamic activity of the 

system likely affects the degree of RSV skin permeation for the non-terpene 

formulations. Higher RSV solubility in the nanoformulations correlated with higher 

thermodynamic stability but lower skin permeation of RSV permeated. RSV 

permeation was higher for nanoemulsions containing terpenes, and increased with 

increasing lipophilicity of the terpenes.  Nanoformulations containing eugenol and 

triacetin showed maximum deposition in the skin (2.342 ± 0.269 µg/cm2) with 9.55-

fold enhancement compared to the control. The highest cumulative amount of RSV 

permeation was from the formulations containing D-limonene (4.585 ± 0.936 µg) and 

eucalyptol (4.036 ± 1.125 µg), with 12.61-fold and 9.95-fold permeation enhancement 

respectively, compared to the control. 

Chapter 5 took this a step further, adding physical penetration enhancement 

in the form of microneedles and or magnetophoresis. The solid microneedle array 

was employed as a skin pre-treatment with pressure of 800-1000g for 30 seconds 

and was subsequently removed. A magnet array was applied in contact with the donor 

formulation above the skin for the duration of the experiment. The magnetic array 

doubled the permeation of RSV in the saturated aqueous solution, but did not 

enhance the permeation from the nanoformulations. It is likely that the main 

enhancement mechanism of magnetohydrokinesis was effective for the aqueous 

solution but less effective in the other solvent vehicles. Microneedles significantly 

enhanced RSV permeation in saturated aqueous solution and both nanoformulations. 

It has been suggested that applying magnetophoresis to microneedle-porated skin 

may enhance flow of the applied topical vehicle within the pores. When this 

combination was used with the nanoformulations there was significantly enhanced 

delivery of RSV into the skin, but permeation through to the receptor compartment 

was not enhanced. We suggest that the physical enhancement combination 

contributed more to the lateral diffusion in the skin. Formulation and in vitro studies in 

this research project have led to important information to develop and evaluate 

nanoformulations for targeted skin delivery of RSV. Human in vivo efficacy studies of 

the RSV nanoformulations as the antiaging and safety assessment of 

nanoformulations involving human volunteers should be carried out in the next stage, 

in order to fully dedicate the formulations for human application. However, due to time 

and resource constraints, human in vivo studies could not be conducted in this 

project. The nanoemulsions can also be further challenged to target the delivery of 
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other natural products and protein-peptides in the skin. The MPT visualisation of the 

effect of nanoformulations on the depth of penetration could also be of significant 

benefit to investigate.  

6.2 Conclusions 

This thesis has highlighted that there is minimum potential for toxicity of undesirable 

nanomaterial (solid nanoparticles) exposure to the skin as the nanomaterials 

accumulate on the skin surface and follicles, unless the skin barriers are perturbed. 

Novel nanoemulsions were also successfully developed for skin-targeted delivery of 

natural potent antioxidant resveratrol. Nanoformulations in combination with magnet 

application and MN skin pre-treatment is a promising strategy for improving skin-

targeted delivery of RSV.  
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